FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

MASTER THESIS

Jirl Brezina

Multiobjective shortest path problem
with interval costs

Department of Algebra

Supervisor of the master thesis: prof. Mgr. Milan Hladik, Ph.D.

Study programme: Mathematics for Information
Technologies

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

Author’s signature

I would like to thank my supervisor prof. Mgr. Milan Hladik, Ph.D., for his great
advice, willingness and the time he invested in resolving issues associated with
this thesis.

i

Title: Multiobjective shortest path problem with interval costs
Author: Jifi Brezina
Department: Department of Algebra

Supervisor: prof. Mgr. Milan Hladik, Ph.D., Department of Applied Mathemat-
ics

Abstract: The multiobjective shortest path problem with interval costs is a
generalization of the single-pair shortest path problem. In this problem, the edge
weights are represented as tuples of intervals. The aim is to find the path that
minimizes the maximum regret. We present theorems regarding the computation
of the regret and the efficiency of a feasible solution to the problem. The main
result of the thesis is an algorithm seeking for the solution with the least regret
in the interval multiobjective shortest path problem.

Keywords: the interval multiobjective shortest path problem, the minimax regret
problem, an efficient solution.

il

Contents

Introduction

1 Preliminaries
1.1 The shortest path problem
1.2 Multiobjective programming
1.3 Imterval MOLP
1.4 Minimax regret

2 DMultiobjective shortest path problem with interval costs
2.1 Formulation of the problem
2.2 Maximal regret and efficiency
2.2.1 Maximal regret L
2.2.2 Necessary efficiency oL
2.2.3 Possible efficiency and possible weak efficiency
224 Example
2.3 Checking path efficiency is NP-hard

3 An algorithm solving minimax regret problem in IMOSP
3.1 An algorithm for general interval MOLP
3.1.1 Mainidea
3.1.2 The algorithm
3.2 An algorithm for interval MOSP

321 Stepl
3.2.2 Step3 ...
3.23 Stepd ...

3.2.4 The algorithm 0.
3.3 Property of outputted solution
3.4 Time complexity oo
3.5 Example

4 Efficient paths and layered graphs
4.1 Efficient paths
4.2 Efficient paths in layered graphs
4.2.1 An algorithm for preprocessing

23
23
23
24
25
25
26
27
29
31
32
33

Introduction

The shortest path problem (SPP) is a well-known problem from the graph
theory. It has been extensively studied over the past century, and even in the
recent years, researchers continue to seek more efficient algorithms to solve any
type of shortest path problems. This interest is obviously driven by various range
of real-world applications, including traffic low optimization, network routing
algorithms and robot path planning. As our knowledge about SPP deepens,
numerous forms of generalization to the problem naturally arise.

One possible generalization of the SPP is the multiobjective shortest path
problem (MOSP), where the weight of each edge consists of more than one num-
ber. These numbers, known as criteria, allow us to compare the paths based
on multiple aspects, unlike the classical SPP. However, in order to achieve wider
comparison, we pay the cost of complexity when comparing vectors with a large
number of components.

Another generalization involves the uncertainty regarding the exact weights
of edges. There can be situations, where we may not know the precise value of
certain edge weight, but we still know that this value lies within specific intervals.
In such cases, we are solving the interval shortest path problem instead of the
SPP. Different potential values within these intervals can result in different path
lengths, and consequently different longest paths.

In recent years, many authors have studied the two aforementioned gener-
alizations, although not to the same extent as the original SPP. However, the
combination of interval SPP and MOSP has received relatively less attention in
terms of in-depth study. This is the main reason why we have chosen this topic
for our thesis.

The thesis is divided into four chapters, with the first one serving as a prelim-
inary section that introduces the concepts used in the following chapters. In this
chapter, we define the single-pair shortest path problem, interval multiobjective
programming and other necessary definitions and theorems for our work. The
key concepts defined in this chapter are the efficiency and the maximal regret of
a feasible solution.

In the second chapter we delve deeper into these two concepts, emphasizing
that feasible solutions now corresponds to paths in the graph from the starting
vertex to the ending vertex. We present several theoretical theorems regarding
the efficiency and the regret of a given solution. Furthermore, we simplify the
computation of the regret for the interval MOSP. Many theorems discussed in
this chapter will help us in a construction of an algorithm solving the minimax
regret problem in the interval MOSP.

The construction of this algorithm will accompany us throughout the entire
third chapter. Employing the algorithm proposed by Rivaz in [7] for solving
general interval multiobjective linear program, we adapt their approach to our
specific problem. We explain in detail how each step can be solved. Although
the presented algorithm will be written in pseudocode, every reader with basic
programming skills can understand it or potentially implement it on his own.

The final chapter focuses on a smaller details that are not so essential to the

studied problem. We present a few observation about the edges of graph, which
can be used, for instance, in the preprocessing stage of the algorithm stated in
Chapter 3. Our primary focus lies on layered graphs, as they offer nontrivial
preprocessing techniques.

1. Preliminaries

1.1 The shortest path problem

Throughout the entire thesis we consider a directed graph denoted as G =
(V, E), where V represents the set of its vertices and E represents the set of its
edges. We assume that |V| =n, |E| =m, and s,t € V.

In the graph, each edge is assigned a positive real number w(e). We express
these weights as vector w = (w(e1),w(es), ..., w(ey))T € RP. For any subset
A C E, we define:

e€A

To enhance readability, let P denote the set of all paths in GG that initiate
at vertex s and terminate at vertex t. We recall the classical single-pair shortest
path problem, which can be defined as follows:

Definition 1. Let G = (V, E) be a directed, weighted graph, s,t € V two of its
vertices and w € R a vector of weights. The shortest path problem from s to t
in G is the problem of finding path p € P such that w(p) is minimal among all
paths in P.

We denote the Shortest path problem shortly as SPP, and the optimal solu-
tion for this problem for given G, s and t as SPP(G, s,t). In terms of optimiza-
tion, SPP can be stated as

SPP(G,s,t) = argminw(p).
peEP

We formulate SPP as an integer linear program. This program arises quite
naturally by introducing the binary variable x,, for every edge (u,v) of the graph.
The value of z,, expresses if the edge (u,v) belongs to a path, or not. We need
to ensure that variables x,, define a path in G starting in s and ending in ¢. This
is stated in the equality constraints bellow, the objective function then asks for
the path with minimal weight. Overall, we get the following program:

(u,v)EE
s.t Z Tus — Z T = —1,
(u,s)EE vi(s,v)EE
Z Tyt — Z Tty = 1, (11)
u:(u,t)eEE v:(t,v)EE
Z Lo — Z Ty = 0, for every w € V'\ {s,t},
w:(u,w)EE vi(w,w)EE

Tuw € {0,1}, for every (u,v) € E.

The optimal value of the program is equal to the weigh of the shortest path.
The shortest path can be decoded from the variables x,,:

SPP(G,s,t) = {(u,v) | y, = 1}.

4

We transform the above constraints into matrix equations using the incidence
matrix of G, denoted as Ag. The matrix Ag is an element of {0, £1}"*" satisfying
(Ac)ue = —1if u is a starting vertex of e, (Ag)ue = 1 if u is an ending vertex of e
and (Ag)ue = 0 otherwise. With the additional assumption that the first row of
Ag is incident with vertex s and the last one with ¢, we can transform (1.1) into

min w’x
—1
0
st. Age=| ... |, (1.2)
0
1
z e {0,1}™.

This is a good expression of the problem, but we will make it even better.
The first observation will be made about an upper bound on x. There is no
sense in setting any x,, higher than one due to the program structure. Thus, we
can replace the constraint € {0,1}™ with two modified constraints > 0 and
xezm.

More importantly, we can get rid of constraints on integerity. Solving an
integer program is in contrast of solving linear program a very hard task, actually
it is an NP-hard problem. Fortunately, this is not the case for our problem.
We will use two results from integer programming. Firstly, it holds that the
incidence matrix of an oriented graph is totally unimodular. Secondly, an integer
program with a totally unimodular matrix in constraints is equivalent to its linear
relaxation. Problem (1.2) is therefore equivalent to the linear program

min w’z
-1
0
st. Age=| ... |, (1.3)
0
1
xz > 0.

Equivalence of programs (1.2) and (1.3) does not mean that every optimum of
relaxation is integral. However, it guarantees that there exists an integral solution
of the relaxed program which is an optimal for the relaxation. Moreover, every
basic solution of the relaxation is integral, and the simplex method, which is the
most used algorithm for solving linear programs, seeks a solution among these
basic solutions. Hence, when solving (1.3) using the simplex method we obtain an
integral solution for every instance. The basic solution and the simplex method
are fundamental concepts of linear programming. As we will not use them further
in the text, it is unnecessary to provide their definitions here. These definitions
can be found in numerous books on linear programming.

Due to its significance, we denote the set of constraints for the shortest path
problem and its relaxation using specific names. Let Mg denote the set of =
that satisfy the constraints in (1.2), and similarly, let M/, represent the set of

x that satisfy the constraints in (1.3). This notation will be consistently used
throughout the entire thesis.

1.2 Multiobjective programming

We state a definition of a general multiobjective program and define some
important terms related to this kind of programs. Then, we will mainly focus
on multiobjective linear programs, but let us start with a general definition. A
multiobjective program can be formulated as

gélj&lf(l’) :gélﬁ(fl(x)va(x)’>fs<x))Tv (14>

where M is the set of feasible solutions and s is a positive integer typically greater
than one. The function f is a vector-valued function consisting of one-dimensional
functions f1, fo,..., fs. The set M can be defined by equalities, inequalities, or
even other constraints. We say that x is a feasible solution if x € M.

To be precise, the problem (1.4) is not well-defined for s > 1. For instance,
when considering two solutions z; and xs with respective function values f(x;) =
(2,5)" and f(xq9) = (4,3)7, it becomes unclear how to determine the minimum
of them. We introduce two definitions that partially resolve this issue:

Definition 2. Let a,b € R®, we define
-a<b,ifa; <b;, fori=1,...,s,
-a =2b, if a < b and there is at least one 1 < j < s such that a; < b;,
-a=<b,ifa; <b, fori=1,... s.

With respect to the above definition, we distinguish three types of solutions
for (1.4).

Definition 3. Assume xq is a feasible solution for (1.4), then xq is
- ideal, if f(xg) < f(z) for allz € M,
- efficient, if there is no x € M such that f(x) = f(zo),
- weak efficient, if there is no x € M such that f(x) < f(xo).
For x and y such that f(z) = f(y), we say that x dominates y.

Based on the given definition, we can resolve the issue at hand. Assume that
M = {xy, 29}, where f(x1) = (2,5)T and f(x3) = (4,3)”. As per the definition,
neither of these solution is an ideal solution, but both of them are efficient.

The main goal of solving a multiobjective program is to find an ideal solution,
but in the most cases no ideal solution exists. Therefore, we have to try to find at
least efficient or weak efficient solutions, which are not as strong but still possess
some useful properties.

The standard approach for solving multiobjective programs is scalarization.
Obviously, scalarization is meaningful only when using non-negative weights that
are not all zero. Two sets suitable for scalarization are the following ones:

S={AcR*|A=0},S={NcR*|\A>=0}

By taking the scalar product of A from S, respectively S, and f(z), we can
transform the program (1.4) into a single-objective program:

6

zeM

min A\ f(z) = irélj&li)\lfz(:c) (1.5)

Our primary focus will be on the linear multiobjective programs (MOLP).
The programs, where the feasible set M is defined by linear inequalities and the
objective functions are also linear. Hence, we can express the program (1.4) as
follows:

min Cz
s.t. Az < b, (1.6)
x>0,

where C' € R¥*" A € R™*™ and b € R™.

The efficient solutions of MOLP have a strong relationship with the optimal
solutions for its scalarization. Specifically, the set of efficient solutions is equal to
the union of optimal solutions of scalarizations with positive weights. This result
is attributed to Iserman, and we will make use of it in the second chapter.

Theorem 1. Let £ be a set of efficient solutions for the MOLP (1.6). Let My ()
denote the set of optimal solutions for the scalarization of (1.6) using weight \.
Then

U Mu(N) = £

AeS

We mention one additional result about MOLP, which we will also make use
of in the second chapter. This result states that it is possible to evaluate the
efficiency of a feasible solution using a linear program.

Theorem 2 (Charnes and Cooper). Let zq be a feasible solution for (1.6). Con-
sider a linear program:

maz el z, such that Az < b, >0, Cx + z = Cxg, z > 0. (1.7)

Then xq is an efficient solution for (1.6) if and only if the optimal value of (1.7)
s equal to zero.

At the end of the section we recall that linear programming is efficiently
solvable. Several linear algorithms have been proven to run in polynomial time.
Although the simplex method can have exponential time complexity in the worst
case, on average it also runs in polynomial time and outperforms many other
algorithms, which have better theoretical time complexity results. This is why
the simplex method remains the most widely used tool in linear programming
solvers. Nice survey about this issue is presented in [5].

1.3 Interval MOLP

We will further investigate MOLP. Particularly, we are now interested in
interval MOLP (IMOLP). In the IMOLP, the matrix C' can attain any value
within the interval [C?, C*]. This means that the coefficient ¢; ; of C' lies within

the interval [CéJ’ c';]. While the elements of A and b can also have this property,

we will consider them as fixed real numbers. Hence, the uncertainty will solely
appear in the matrix C'. The formulation of an IMOLP is presented in the
following definition:

Definition 4. Let U = [C!,C] be a set of s x n matrices. The interval multi-
objective linear program is program in the form of (1.6), where the matriz C' can
attain any value from V.

By changing the matrix C' within ¥ we can obtain different optimal solutions.
Thus, we distinguish between solutions that are optimal for every choice of C' and
solutions that are optimal for at least one choice of C.

Definition 5. For the IMOLP (1.6) and a feasible solution xy we refer to xo as
- necessarily efficient, if it is efficient for any C' € VU,
- possibly efficient, if it is efficient for at least one C' € W,
- possibly weak efficient, if it is weak efficient for at least one C' € V.

The necessary efficiency is clearly a stronger concept than the possible effi-
ciency. Moreover, determining the necessary efficiency is much harder than the
possible efficiency. Loosely speaking, problems involving the necessary efficiency
are classified as NP-hard, whereas the same problems with the possible efficiency
can be solved in polynomial time. This distinction is formally presented in the
following three theorems. The theorem regarding the necessary efficiency can
be found in [1]. Note that co-NP hardness is attained even in a specific case
described in the theorem.

Theorem 3. Checking if a given solution in an IMOLP is a necessarily efficient
solution is a co-NP-complete problem on a class of IMOLP with one objective
function and rational inputs.

The following theorems focus on possible efficiency. The first is cited from [2],
while the second one is taken from [3].

Theorem 4. Checking the existence of possibly efficient solution in an IMOLP
s a polynomial problem. Additionally, if there exists a possibly efficient solution,
then finding such a solution can also be done in polynomial time.

Theorem 5. Checking whether a given solution to an IMOLP is possibly efficient
can be done in polynomial time.

1.4 Minimax regret

To conclude this chapter, we introduce one of the most important concept in
IMOLP, known as the minimax regret criterion.

In the previous sections, we tried to compare vectors in R*, now we delve
deeper into this comparison. Consider two solutions, x and y, to the MOLP
problem (1.6). The inequality C'y < Cz implies that x is a worse solution than
y. But how much worse is « compared to y?

To answer this question, we need to introduce a weight vector A € S, where
each component \; represents the importance assigned to the i-th objective. Ob-
serve that this concept is closely linked to scalarization.

8

We define the weighted regret of x with weights A corresponding to C' € ¥
and y € M such that C'y < Cx as follows:

r(z,y,C) = max{\ic;(x —y) | i=1,...,s},

where ¢; represents the i—th row of the matrix C.

This definition can serve as an intermediate step towards the weighted maxi-
mal regret of z. Both, the matrix C' and the solution y, can vary in their respective
sets, ¥ and M. The most interesting pair of y € M and C' € VU is the one that
maximizes the weighted regret, as defined above. Consequently, the weighted
maximal regret with weights A corresponding to x is defined as:

r(x) = max{\ci(zr —y) |lye M,C e V,Cy < Czx,i=1,...,s}.

The matrix C” and vector y' satisfying r(z, vy, C") = r(x) are called the worst-
case scenario for x and the worst-case pair for x. We denote them as C* and y”.
The values C* and y* represent the worst-case possibilities for x, as their names
suggest. When discussing the weighted maximal regret, we will interchangeably
use shorter terms such as "the maximal regret”, or simply "the regret”.

The aim of minimizing regret is to find a feasible solution z with the lowest
regret among all feasible solutions. To achieve this, we need to solve the following
program:

minr(z) = minmax{\¢;(z —y) |[ye M,C e V,Cy <Cx,i=1,...,s}.

zeM zeM

The above definition will follow us throughout the whole thesis. In the sec-
ond chapter, we investigate the maximal regret associated with a solution to the
multiobjective shortest path problem with interval costs. The third chapter will
be entirely dedicated to an algorithm seeking for the path with the lowest max-
imal regret. Detailed explanations of these terms and more complex statements
regarding the maximal regret will be provided within these chapters.

2. Multiobjective shortest path
problem with interval costs

Before going straight into the definitions, let us briefly motivate generalization
of the shortest path problem. The shortest path problem, as defined in the first
chapter, is searching for the least weighted path between two given vertices. A
common real-world example is minimizing the time spent on a road from place
A to place B. However, minimizing only one criterion may not be sufficient.
For instance, imagine you want to travel from one place to another via public
transport. The time of travelling is for sure the most important factor, but there
are many other quantities to compare, such as the cost of the travelling, the
number of transfers involved or the reliability of the connection. Moreover, not
all these entities may be known precisely all the time. For example, the travel
time may depend on the train schedule or a traffic situation.

There are of course many other areas where the shortest path problem can
be useful to solve. In many of these areas, generalization makes sense as in our
previous example. We won’t list them here because it is not the goal of this
thesis. Nonetheless, we hope that our given example is enough to deal with the
problem stated in the following section.

2.1 Formulation of the problem

As stated in the first chapter, let G = (V, E) be a directed graph, where V' is
the set of its vertices and E is the set of its edges. Assume |V| =n and |E| = m.
For every edge of the graph, we assign s weights, where s is a positive integer.
Quantity s is equal to a number of criteria. Moreover each of these weights is not
prescribed exactly, we only know that it lies within some given interval. Hence,
we define weight vectors w'(e) € R and w"(e) € RS satisfying w'(e) < w"(e)
and require w(e) € [w'(e), w"(e)] for each edge e € E.

The shortest path problem now becomes more complex with this generaliza-
tion. We formulate a program for finding the shortest path as we did with the
classical SPP. The variables and constraints on these variables remain the same as
in (1.2). The only difference is in the objective function. The vector ¢ is replaced
by the matrix C' € Ry which is an element of ¥ = [C!, C*], where C! and C*
are defined as follows:

C' = (w'(er) [w'(ea) | ... [wlen)),C" = (w(er) | w(ea) | - | w'(em)).

To sum up, the program for finding the shortest path in graph G from the
first vertex to the last one with weight function w can be formulated as

10

min Cx

—1
0
s.t. AGx = e]y (21)
0
1
z € {0,1}™,

where C' € U. For the purpose of the next sections, we will consider one particular
instance of the above interval program. In the following program, matrix C} is
fixed, which makes this program non-interval. Everything else remains the same
as in (2.1):

min Ciz
-1
0
st. Agz = | ... |, (2.2)
0
1
e {0,1}™.

Recall the notation from the previous chapter, where we denoted the set of
x satisfying the above programs as M. When investigating the multiobjective
shortest path problem (MOSP), we cannot simply interchange Mg with M.
There could be a problem with a path that is necessarily efficient among all
solutions from Mg but not among M{,. For example, consider three disjoint
paths with costs equal to (5,5), (2,6), and (6, 2) respectively. Neither the second
nor the third path dominates the first one, but a convex combination of these
paths with coefficients 0.5 already dominates it. Hence, we are required to work
with an integer program and utilize its linearization only in special cases.

2.2 Maximal regret and efficiency

In this section, we present theoretical results of multiobjective shortest path
problem with interval costs (IMOSP). Our main focus lies on the regret and the
necessary efficiency of a particular solution. We also show the close connection
between these two concepts.

2.2.1 Maximal regret

Let us start with the regret, which was defined in the previous chapter in a
general setting. Let be an element of Mg, the regret of this solution is, by the
definition, equal to:

r(2) = max{\c;(Z —y) |y € Mg, C eV, Cy<Cz,i=1,...,s}.

It is easy to see that r(Z) > 0. Moreover, it should be intuitively obvious that
the lower regret, the better. Therefore, our aim is to find a feasible solution with

11

the least regret. This leads us to the minimax problem:

min 7(z) = min max{\¢;(z —y) |y € Mg, C € V,Cy <Cz,i=1,...,s}.
z€EMg z€Mg
(2.3)

Before delving into a deep study of the above program, we would like to
introduce some notation. First of all, every solution from Mg uniquely determines
a path in G from the first vertex to the last one, and vice versa. For a solution
T € Mg, we denote P; as the path induced by this solution, i.e.,

In the text, we will sometimes use the interchange of & and P;. For example,
when we state that ”P; is a necessarily efficient path in G”, it means that "% is
a necessarily efficient solution” to the corresponding problem.

This bijection between paths and solutions helps us to make the following
observation. Let us consider the best and the worst choices of matrices in ¥
for a given 2. It is not difficult to see that the best-case occurs when we set
edge weights of P; to the lower bound and the weights of other edges to the
upper bound. Similarly, in the worst-case scenario, weights on P; are set to the
upper bound and those on other edges to the lower bound. Formally, we define
two matrices C? and B? belonging to the worst-case and the best-case scenarios,

respectively:
D
) oY, =1
T G

where the index ¢ denotes the i-th column of the respective matrix. Although
it may seem obvious, we have not yet proven that C? is indeed the worst-case
scenario. We do it now by proving the following theorem:

Theorem 6. Let & € Mg, then
r(z) = max{\ic;(Z —y) | y € Mg, Cly < C%%,i=1,... , S}

Proof. Let us denote r'(2) = max{\;jc;(2—vy) | y € Mg, C?y < C*%,i=1,...,s}.
Our goal is to prove that r(Z) = r/(Z). The inequality (%) > (%) is easy: it
follows from the fact that in the definition of the maximal regret we consider all
matrices C' € ¥, while in r'(2) we take in account only the matrix C%.

For the reverse inequality assume that r(2) is achieved by y' € Mg, C' € ¥
and k € {1,...,s}, i.e. 7(2) = \ch(2 —y') and it holds that Cly' < C'z. We
will prove that C'y! < C'2 implies C%y! < C*2, meaning that y* and C? are
feasible for the definition of r/(Z).

Since we are comparing two vectors, we need to compare their corresponding
indices. Let i € {1,...,s} be arbitrary, the i-th element of C%y* — C%% is equal
to:

chyl — cta = Z cfij(yjl- — ;). (2.4)
=1

12

It 9%] 0, then yj1 > %;, and according to the definition of C* we derive

¢} ; < ¢} ;. Combining these two inequalities we obtain
?.(1._;;3.)<Cl,(1_§34) (2.5)
CZ»] y] J) = "1 y] 77 '
If 55] = 1, then y; < Z;, and according to the definition of C* we derive

;> Comblnlng these two inequalities results once again in (2.5). Therefore,

1nequahty (2.5) holds for each j from 1 to n, and by summing over all j we obtain:
Z — ;) < Z 21 — &) =c/(y' — %) <0, (2.6)

where the last inequality follows from the assumption that C'y' < C'2. By
combining (2.4) and (2.6), we conclude that

g1 @a
gy —cx<0.

Since ¢ was arbitrarily chosen, we obtain the desired result that C*y!' < C*%.
If 7 is equal to k, (2.5) can be rewritten as:

cig (@5 = y5) = (25— yj)-
Summing over all j and multiplying by A, we achieve:
M (@ = ') > Aeer(E — o).

Hence, we have shown that y', C? are feasible for r(%) and have greater or
equal objective value than y' and C!, therefore

(&) > M (2 = y') > My (B — yt) = ().
This establishes the reverse inequality and concludes the proof. O

Knowing the worst-case scenario matrix for & means that we only need to
consider C? instead of all choices of C' from V¥ in the definition of regret. This
simplifies the computation of regret for a given solution in our problem.

2.2.2 Necessary efficiency

Now, we shift our focus to the necessary efficiency. In the definition of the
regret of Z, we have a condition stating that y dominates Z in the scenario C, i.e.
Cy < CZz. Although this condition does not need to be included, we include it
because it makes more sense. Moreover, we can observe the relationship between
the necessary efficiency and the maximal regret. The statement of the theorem
is widely known and can be found, for instance, in [6].

Theorem 7. Solution % is a necessarily efficient solution for (2.1) if and only if

r(z) = 0.

13

Proof. Let & be a necessarily efficient solution for (2.1). This means that there
are no y € Mg and no C' € ¥ such that Cy < C2%. Therefore, for all y € Mg
and C' € ¥ satisfying Cy < Cz, it holds that Cy = C'z. We make use of this
observation and compute that

r(2) = max{Nc;(Zz —y) |y € Mg,C e ¥, Cy<CZ,i=1,...,s}
= max{\;(Z —y) |y € Mg,C € V,Cy=C2,i=1,...,s}
=max{\;-0|y € Mg, CeV,Cy=Cz,i=1,...,s}
= 0.

Now assume r(Z) = 0, and for the sake of contradiction, also assume that 2
is not necessarily efficient for (2.1). By the definition of the necessary efficiency,
there exist § € Mg and C' € ¥ such that C’y < (2. We can easily compute that

r(Z) > max{\&(Z —9) | i=1,...,8} >0,
which leads to the desired contradiction. O

The previous theorem confirms that definitions of the necessary efficiency and
the maximal regret are reasonable. We strive to find solutions with the least
regret or those that are necessarily efficient. According to the previous theorem,
these efforts lead to the same solutions.

The task of finding a necessarily efficient solution is hard and potentially im-
possible in the cases where no necessarily efficient solution exists. In the following
lines, we will focus on a slightly easier task, which is to test if a given solution is
necessarily efficient. Once again, we make use of the observation about the worst-
case scenario matrix and transform the task of checking the necessary efficiency of
a solution for the IMOSP to checking the efficiency of a solution for non-interval
MOSP. The proof of the theorem is a modification of the proof presented in [9].
We also acknowledge that we get the entire idea about the worst-case scenario
matrix from this essay.

Theorem 8. Solution 3 is a necessarily efficient solution to (2.1) if and only if
& is an efficient solution to (2.2) with Cy = C*.

Proof. The forward implication is clear from the definition of necessary efficiency.
According to this definition, % is efficient for any choice of C' from ¥, so specially
it is efficient for C*.

Now assume that 2 is an efficient solution for (2.2) with C; = C%. Let
y € Mg and C € U be arbitrary. The efficiency of # in the scenario C% implies
that C%y A C*2. This means that either there exists a k such that cfy > iz,
or that cfy = ¢ holds for all i. We have two cases, and in both of them, we
will prove that Cy A C% and therefore, in consequence, that Z is a necessarily
efficient solution.

The first case assumes that cfy > ci#, which is equivalent to

Z Ci,jyj > Z C%’ji’j. (27)
j=1 j=1
The right hand side of this equation is equal to

m
Zlci,jjj: Z Ck,] Z Ck,j - Z CZJ"
j=

Jij=1 Jizj=1 e; €EP;

14

Similarly the left hand side is equal to

m
DY = DGy = D Gt D Gy
j=1

ejEPy e; €(PyNP;) e;€(Py\P;)

Subtracting the same terms from these sums and utilizing (2.7), we obtain

that
> cﬁw > Yy (2.8)
e €(Py\Pz) e €(P:\Py)
Observe that for any indexes ¢, r holds cfm < ¢qr < ¢, Therefore, we can
derive the following set of inequalities, where the second one follows from (2.8)
and the remaining ones from the aforementioned observation:

D= D Gy > D Gz > Gy

e;€(Py\Pz) e;€(Py\Ps) e; €(Pz\Py) e;€(Pz\Py)

The final step of the calculation is to add - e(p,np,) Ck,j to both sides of the
equation. This leads to the inequality

Z Ck,j > Z Ck,j- (29)

e;EPy e;EP;

As at the beginning of the proof, we can conclude that the left-hand side of
the above inequality is equal to the k-th row of C'y, and the right-hand side is
equal to the k-th row of C'z. Therefore, the above equation states cyy > ¢, and
thus Cy A C2.

The second case assumes that c¢fy = 72, for all i. Therefore, for all 7 holds

that
m m
T _ T 2
> CijY¥i = > Ci iy
j=1 j=1

In the similar manner as we derived (2.9), we can conclude that in this case
the following inequality holds for all ¢:

Yocg> Y cige

€; epy €; eP;
This proves that in second case it also holds that C'y A CZ. O

Unfortunately, even this does not make the problem efficiently solvable. In
fact, checking path efficiency is an NP-hard problem, as we will demonstrate in
the final section of this chapter.

Nonetheless, we still present two methods for checking the efficiency of a
given solution. The first approach involves a straightforward use of Theorem 2.
Although the theorem was formulated for linear programs, its applicability to
mixed-integer programs is clearly possible as well. However, when working with
integer values, we lose computational efficiency.

Theorem 9. Let & be a feasible solution to (2.2). Consider a mized-integer linear
program
maz e’ z, such that x € Mg, Cha + 2 = Ci2, 2z > 0. (2.10)

Then & is an efficient solution for (2.2) if and only if the optimal value of (2.10)
s equal to zero.

15

Hence, in order to check the efficiency of Z, we can solve (2.10). The optimal
value obtained from this mixed-integer linear program provides the information
regarding the efficiency.

The second approach is based on modifying Dijkstra’s algorithm to handle
the multiobjective shortest path problem. This modified algorithm is referred to
as Multi-Dijkstra’s algorithm. The complete algorithm was originally presented
in [4], here we outline its main principles.

Similar to the classical Dijkstra’s algorithm, we maintain a set of temporary
labels and permanent labels for each vertex in the graph. However, in Multi-
Dijkstra’s algorithm, we update these labels slightly differently by considering
all efficient paths to a given vertex, rather than just the one with the shortest
weight. Another distinction is that we cannot terminate the computation upon
reaching the target vertex. Instead, we continue until no temporary labels are
available. These characteristics contribute to the computational inefficiency of
the algorithm.

2.2.3 Possible efficiency and possible weak efficiency

Now, we get to possibly efficient solutions. This type of solutions still retains
many useful properties, although the concept of the possible efficiency is not as
strong as the necessary efficiency. In the first chapter, we stated the theorem con-
cerning the efficient search for a possibly efficient solution for a general IMOLP.
In the context of the IMOSP, this task remains straightforward. The following
theorem is a formulation of Theorem 1 applied to our case.

Theorem 10. Let A € R, C) € ¥ and let P; be one of the shortest paths from
the first vertex to the last one in graph G with weight vector NXT'C,. Then % is a
possibly efficient solution for (2.1).

Proof. We assume that path P; is one of the shortest paths in G with weight
vector AT C}. This implies that & is an optimal solution to the linear program

min (A\TC))z

(2.11)
s.t. x € Mg.

Note that (2.11) is a scalarization of (2.2) with positive weights A. Therefore,
by Theorem 1, Z is an efficient solution to (2.2). Finally, by the definition of
possible efficiency, this implies that Z is a possibly efficient solution for (2.1). [

In other words, the theorem states that solving classical SPP is sufficient for
finding a possibly efficient solution. It is important to note that there is always
at least one possibly efficient solution. This does not need to be the case for
necessarily efficient solutions.

Although finding any possibly efficient solution can be achieved in polynomial
time, the task of checking possible efficiency of a given solution remains a hard
problem. It can be done similarly to testing the necessary efficiency. The only
difference is that we consider the best-case scenario matrix instead of the worst-
case scenario matrix.

Theorem 11. Solution & is a possibly efficient solution for (2.1) if and only if
2 is an efficient solution for (2.2) with Cy; = B®.

16

Proof. The proof can be done in a similar way to the proof of Theorem 8, therefore
we will omit it here. O

To evaluate the efficiency of Z in the above non-interval problem, we can again
employ either Theorem 2 or Multi-Dijkstra’s algorithm, just as we did in the pre-
vious subsection.

Let us revisit the minimax regret problem, focusing primarily on its optimal
solution. Theorem 7 states that a solution is necessarily efficient if and only if
its regret is zero. The solution with zero regret is definitely the optimal solution
for the minimax regret problem. What happens if the optimal value of the min-
imax regret problem is positive? In such cases, there are no necessarily efficient
solution by the aforementioned theorem. Nevertheless, we can still ask about the
properties of the optimal solution. It holds that the optimal solution is always at
least possibly weak efficient. The proofs of both theorems bellow can be found in

7).

Theorem 12. If & is an optimal solution of (2.3) such that r(Z) > 0, then & is
a possibly weak efficient solution of (2.1).

In order to attain possible efficiency, we need to add a condition on the unique-
ness of the solution.

Theorem 13. If & is a unique optimal solution of (2.3) such that r(Z) > 0, then
T is a possibly efficient solution of (2.1).

The uniqueness of the solution is a necessary requirement. In the example
below, we illustrate a weighted graph where the optimal solution to the minimax
problem is not possibly efficient, but only possibly weak efficient. The example
also presents concepts discussed in this chapter. Therefore, it can also serve as
a guide in the swamp of many definitions and theorems we have already encoun-
tered.

2.2.4 Example
Ezample 1. Let G; = (V4, Ey), where

Vi={1,2,3,4,5}, B, = {(1,2),(1,3),(1,4),(2,5),(3,5),(4,5) }.

The planar embedding of the graph G is shown below. We denote the edges
of the graph as e; and will use this shorter version for edge names.

There are clearly three paths in G from the first vertex to the last one,
i.e., vertex 5. Namely, it is P = {ej,eq}, Po = {ea,e5}, Ps = {e3,e6}. These
paths correspond to feasible solutions z; = (1,0,0,1,0,0)%, 25 = (0,1,0,0,1,0)7,
and z3 = (0,0,1,0,0,1)7. Let P be the set of appropriate paths, hence P =
{Py, Py, P3}.

It remains to assign weights to the edges. We consider three criteria that
are equally important. Using our notation, this can be expressed as s = 3 and
A1 = Ay = A3 = 1. The weights of edges ey, es, e3 and e5 are degenerate, which
means that their lower weights are equal to their upper weights. We define their
weights as follows:

17

5 5] 5 15
w'e)) = |5, w(es) = | 5], w'(es) = [5],w(es) = | 15
1 2 1 2

The weights of the two remaining edges are non-degenerate. Hence, we need
to assign a lower weight and an upper weight for each of them:

5) 15 15 15
whey) = |15 | ,w'(es) = | 15| ,w'(eg) = | 5 |, w"(es) = | 15
1 1 1 1

Now, we have all the input information and we can examine problems studied
in this chapter. Firstly, we can express the matrices C! and C*. This only involves
rewriting the weights accordingly:

5 5 5 5 15 15 5 5 5 15 15 15
C'=|555 15 15 5 |,C*=|5 5 5 15 15 15
121 1 2 1

Let us start with the properties of feasible solutions. We will show that P
and P3 are possibly efficient, while P, is not possibly efficient but at least it
is possibly weak efficient. For P;, we perform the complete calculation. The
best-case scenario matrix for z; is equal to

5 5 5 5 15 15
B =[5 5 5 15 15 15
1211 2 1

Let us denote wy (P;) as the weights of the path P; in this scenario. Therefore,
wi(P;) = B™x; and it is easy to obtain that

10 20 20
wi(P1) = 20|, wi(P) = [20[,w (Ps)=]20
2 4 2

Clearly, P, is an efficient solution for this scenario, making it a possibly effi-
cient solution. Similarly, we can show possible efficiency of Ps. It is worth noting

18

that P, and P3 are symmetrical in terms of the first and second criterion, which
also implies the possible efficiency of Ps.
Now consider the best-case scenario matrix for z, it is equal to

5 5 5 15 15 15
B =[5 5 5 15 15 15
121 1 2 1

Let us denote wy(FP;) as the weight of the path P, in this scenario. We can
compute that

20 20 20
w2(P1) = 20 ,U}Q(Pg) = 20 ,’LUQ(Pg) = 20
2 4 2

Hence, we have wy(P;) = w(P), indicating that P, is not efficient for this sce-
nario. According to Theorem 11, P, is not a possibly efficient solution. However,
we observe that P, is a possibly weak efficient solution.

Moving from the efficiency of solutions, let’s now focus on the maximal regret.
We calculate the maximal regrets for all paths. This allows us to prove the desired
claim that the solution to the minimax regret problem does not need to be possibly
efficient. Let us begin with the regret of ;. With a little help of Theorem 6 and
reformulation of maximum, we obtain that

r(z1) = max{¢;*(x1 —y) | P, € P,C"'y < C"'xy,i=1,2,3} =
= max max{c'(x; —y) | C"y < C"xy}.

ye{z1,x2,23} 1=1,2,3

We can easily determine that the condition C*'y < C*'x; is not satisfied for
Yy = x9, but it is satisfied for both of remaining cases. The case when y = z; is
trivial, as it is clear that max;_; 2 3{c¢j*(x; — z1)} = 0. The second case is more
interesting. It holds that

1
0
555 15 15 15\ | _, 0
C™(wy—a3)= |5 5 5 15 15 5 || | =10
1211 2 1 0
0
~1

From the above computation, it follows that max;—i 23{c;* (1 — z3)} = 10.
By plugging this value into the formula above, we can determine the maximal
regret of xq:

r(z1) = max max{c¢'(z; —y)| C"y < C"x;} = max{0,10} = 10.
ye{xl 7x3} Z=1,2,3

Similarly, we could determine the regret of x5 and z3. However, for brevity,
we skip calculations and proceed directly to the results, which are as follows

r(z2) = 10, r(zs) = 10.

19

All solutions have the same regret and therefore all of them are solutions with
the least regret. In particular, x5 is the optimal solution to the minimax regret
problem. This answers the question of whether a solution that is only possibly
weak efficient could be optimal for the minimax regret. Some may argue that x,
is not an unique solution to the minimax problem. Indeed, according to Theorem
13, such a situation cannot occur.

Additionally, note that we determined the necessary efficiency of the possibly
efficient solutions x; and z3. Both of these solutions have a positive regret, and
therefore, according to Theorem 7, they cannot be necessarily efficient.

2.3 Checking path efficiency is NP-hard

In the previous section, we dealt with a concept of the necessary efficiency and
stated that checking whether a path in a graph is an efficient path is an NP-hard
problem. In this section, we provide two reductions to establish this statement.
The first reduction transforms the knapsack problem into the problem of finding
a path in a graph with upper bounded weights. The second reduction goes from
the problem of finding this path to checking the efficiency of a given path. By
combining these two reductions with the well-known fact about NP-hardness of
the knapsack problem, we obtain the desired claim.

Let us start with the knapsack problem. In this problem we are given n
objects, where i-th objects has a weigh equal to b; and a utility equal to a;.
Moreover, we can assume for simplicity that a; and b; are positive integers. The
decision form of the knapsack problem asks if it is possible to choose a subset of
objects with a total weight less than or equal to K; and a total utility greater
than or equal to K5. In other words, it poses the question about the existence of
binary variables z; satisfying the following conditions:

n
> aiw; > Ko,

=1
n

> b < K,
i=1

T; € {0, 1}
Theorem 14. The decision form of the knapsack problem is an NP-hard.

Now, we turn our attention to the first reduction, originally proposed by Ser-
afini in his article [8]. The reduction is based on a simple yet brilliant idea, which
we also use here. Given the values a;, b;, we construct a graph using the same
principles as Serafini’s construction, with only minor differences in formalism.
Let us denote this graph as GGy and define its set of vertices V3, set of edges Fj,
and weights of these edges as follows:

‘/2 = {Uiavi,(bvi,l ’ 1= 0717’ <= 1} U {Un}a
EQ = {(Uiavi,j)7 (Ui,javi+1) ’ 1= 0, 1, N 1,] = O, 1},

a; .

w((vi, vi0)) = w((vVip, Vig1)) = (gl,O)T,Z =0,...,n—1,
b; .

w((vi,vi1)) = w((vi1,vi1)) = (0, =) i =0,...,n — 1.

2
20

A planar embedding of graph Ga:

We are interested in investigation of the paths in G from vertex vy to vertex
v,,. Finding such path in G5 with a weight less or equal to a given constant vector
is equivalent to solving the knapsack problem:

Theorem 15. Determining whether there exists a path in Gy from vy to v, such
that w(P) < (X", a; — Ky, K1) is an NP-hard problem.

Proof. We observe that from vertex v; there are two options: we can either go
through vertex v; o, or through v; ;. Let x;11 be a binary variable that determines
whether we go through v; o, or v;;. If we pass through v;o, we set z;1; = 0,
otherwise we set x;,; = 1. The values of x; up to x, uniquely determine the
path, which we denote as P,. The weight of this path is equal to:

n

(Z ai(l — x;), Z biSUi)T-
i=1 i=1

Therefore, the path P, has a weight less or equal to (31, a; — K», K;) if and
only if

n

doai(l—z;) <D a; — Koy, > biw; < K.
=1

=1 =1
Hence, in order to find a path satisfying the given condition, we need to search
for x1,x9, ..., x, such that

n
> aim; > Ko,

i=1
n
> bz < K,
=1

T; € {0, 1}

This is precisely the decision form of the knapsack problem. Based on the
NP-hardness of this problem, it follows that finding a path in G with a weight
less or equal to a given vector is also NP-hard problem. O

Now, let’s consider a graph G with an additional edge (vo, v,,). We will denote
this edge as e and refer to the modified graph as GY%. Assign the weight of e as
(c1 + 0.5,¢c9 + 0.5), where ¢;, ¢o are two positive integers. The second reduction
arises from the following observation:

Lemma 16. The path e is an efficient path in G, if and only if there is no path
Py in Gy such that w(Py) < (¢q,¢).

In conclusion, the NP-hardness of checking path efficiency is established.

21

Theorem 17. The problem of determining if a path in a directed graph is an
efficient path is an NP-hard problem.

Proof. Consider the graph G, and assign weight of the edge e as

w(e) = (> a;— K2+ 0.5, K1 +0.5).

i=1

According to Lemma 16, the edge e is an efficient path if and only if there is no
path P, in Go such that w(P;) < (X%, a; — Ko, K;). According to Theorem 15,
proving the existence, and hence also the non-existence, of this path is NP-hard.
Therefore, checking the efficiency of the path e in G is also NP-hard. O

Note that in Gy and hence also in GY we allowed zero edge weights. This
issue can be solved by adding any positive value € to both criteria of all edges,
and setting an upper bound of w(P) as (31~ a; — K3 + 2ne, K1 + 2ne). We have
intentionally omitted this in order to maintain the clarity of the construction.

22

3. An algorithm solving minimax
regret problem in IMOSP

In this chapter we present an algorithm for solving the minimax regret prob-
lem in the IMOSP. We employ the algorithm from [7] which solves the minimax
regret problem for general IMOLP. Building on the foundations laid in the pre-
vious chapter, we adapt this algorithm to our specific problem.

In the following section we outline the main idea of the algorithm and provide a
detailed description of it. In Section 3.2, we analyze specific steps of the algorithm
and propose possible solutions to our problem. In the remaining three sections, we
will briefly discuss the strength of the outputted solution and the computational
time complexity of the algorithm.

3.1 An algorithm for general interval MOLP

3.1.1 Main idea
Let us consider general IMOLP in the form:

min Cz
s.t. x € M,

where C' € ¥ = [C!,C%]. Our goal is to find a feasible solution for this problem
with the least regret among all feasible solutions. The minimax regret problem
was introduced in the first chapter, we recall that it involves solving the following
program:

Héi]&max{)\ici(x —y)|ye M,C eV, Cy<Cx,i=1,...,s}. (3.1)

The first thing we should do is to convert the above problem into a more
convenient form. Adding a new variable ¢ is a simple way to achieve this:

min o

s.t. max Nici(z —y) <o, ifCly—x) <0,ye M,C €V, (3.2)

re M,o>0.
This is the problem with infinity number of constraints. The main idea of
the algorithm in [7] is to take just the finite number of particular constraints and

solve this relaxed version of the problem. By considering k specific choices of y
from M, and C from ¥ we obtain:

min o

h(e ok oAb h _
Stll’rglgls)i)\lcl ($ Yy) <o, it C (y .1') < Oah 17"'7k7 (33)

re M,o >0,
where y" are fixed elements from M and C” are fixed elements from ¥ for all h.

The key observation is the following theorem.

23

Theorem 18. Let (x¥,0%) be an optimal solution for (3.3) and feasible for (3.2).
Then it is an optimal solution for (3.2) and x* is an optimal solution to the
minimaz regret problem (3.1).

Proof. The statement is a simple observation following from the fact that the set
of constraints in (3.3) is a subset of the constraints in (3.2). However, due to its
importance, we will prove it in detail.

Assume, for a contradiction that (z%, %) is not optimal for (3.2). Therefore,
there exists a feasible solution (z!,o!) for (3.2) such that o' < o*. Since (2!, o)
is feasible for (3.2), it is also feasible for (3.3) due to the aforementioned relation
between the constraints of the two programs. Moreover, (z!, ') has a lower ob-
jective value than (z*, o) and thus (2%, 0*) cannot be optimal for (3.3), resulting
in the desired contradiction.

By derivation of (3.2), the above means that ¢* is the minimal regret of the
problem and z* is the solution that achieves this minimal regret. In other words,
z* is the optimal solution for (3.1). O

This provides a straightforward idea of the algorithm. We solve (3.3) and
then check if the optimal solution is feasible for (3.2). If it is feasible, we have
an optimum for (3.2) and therefore also for the minimax regret problem. If the
optimum is not feasible, then there exists at least one violated constraint from
(3.2). We identify the most violated constraint, add it to k constraints of (3.3),
and solve the updated problem again.

3.1.2 The algorithm

In the following lines, we present the complete algorithm adapted from [7],
although our algorithm will slightly differs from theirs. The difference arises
primarily from their focus on a maximization problem, in contrast to our mini-
mization problem. Another modifications are cosmetic adjustments.

Algorithm 1

Input: A set of feasible solutions M, an interval ¥ = [C!,C%], and weights
A1, ..., Ag for criteria, where \; > 0 for each 1.

Output: The optimal solution for the minimax regret problem (3.1).

Step 1:
for i=1,...,s:
solve the linear programming problem mingeys cla
™ ¢ the optimal solution of the i—th problem
2% ¢ arg ming <jy<s cﬁxi*
yl (_:L,ig*
Cl « ("
Step 2:
k<2
ol 0
ol gyt
Step 3:
solve max{\ic;(z*t—9y)|ye M,C e ¥,C(y —2* 1) <0,i=1,...,s}
®*~1 « optimal value of the above program

24

(y*,C*) < optimal solution of the above program

Step 4:
If @F1 < gkt
return zF !
Else:

solve min o
s.t. maxjcic Ntz —y") <o, if CMy'—2)<0,h=1,....k
reM, 0>0
(2%, 0%) < optimal solution of the above program
k+—Fk+1
go to Step 3

We can observe that Step 1 and Step 2 serve as initialization steps, the main
part of the algorithm consists of Step 3 and Step 4. Step 3 is devoted to com-
puting the regret of a fixed solution, whereas Step 4 involves solving the relaxed
maximum regret problem.

3.2 An algorithm for interval MOSP

Now we shift back from the general IMOLP to the IMOSP. Therefore, the
input now consists of a weighted graph G along with two of its vertices, and
once again weights Ay, ..., A\ for the criteria. Let us again recall the form of the
program solving IMOSP:

min Cz

—1

0
st. Agz = | ... |, (3.4)

0

1

xz € {0,1}™,
where C' is an element of ¥ = [C!,CY], C' = (wl(el) . wl(em)) and C* =
(w“(el) | w“(em)). Also recall that the set of feasible solutions of (3.4) was

denoted as M. With this notation and knowledge from the second chapter, we
can improve the steps of the algorithm. We will go step by step demonstrating
how each one can be solved.

3.2.1 Step 1

The initial step is straightforward. It requires computing s linear programs
and selecting minimum of their optimal values.
The i-th problem is equal to

min cla.
rEMqa

The objective function is fixed and one-dimensional. This means we obtained
the classical shortest path problem with weights given by

ci = ('), (w'(em))s).

25

While it can be solved as a linear program, it is more efficient to use algo-
rithm solving single-pair shortest path problem, e.g. Dijkstra’s algorithm. Hence,
Dijkstra’s algorithm provides the shortest path of the i-th problem. The second
part of the step involves comparing the optimal values of each of these s shortest
paths.

Overall, Step 1 can be solved very efficiently. Step 2 is just an assignment, so
there is nothing to study and we can proceed to more complex steps.

3.2.2 Step 3

The central aspect of Step 3 lies in computing the regret of a given solution
"1, Hence, we are solving the following problem:

max{\;c;(z* ' —y) |y € Mg, C € ¥, C(y—2"1) <0,i=1,...,s}.

Let us denote the value of the above problem as r(z*~!). In the previous
chapter, we studied the problem of the maximum regret and one of the main
results was Theorem 6, which states that

r(a*71) = max{he? (@ —y) |y € Me, 0" (y -t <0i=1,.., s},

where C*" is the worst-case scenario matrix for zF~! defined in the text before
Theorem 6. This simplifies our task.

The next simplification involves dividing the problem into s subproblems. The
i-th subproblem can be expressed in the language of optimization as follows:

k—1 k—1
x k—1 x
max \;c; x T —N¢ Yy

st. O (y— 2" <0, (3.5)
(s Mg.

We transform this problem into the equivalent problem in order to find its
optimal solution y™*. Firstly, we get rid of constant term)\icfk_lx’“*1 in the
objective function, which does not affect an optimality of solutions. By same
reasoning we can also get rid of a positive multiplicative factor \; before non-
constant term in the objective. Finally, we transform the maximization problem
into the minimization problem. Therefore, we have come to the problem

min cfk_ly
st Oy <o T b (3.6)
Y E MGf.

Note also that we slightly change inequality constraints for better understand-
ing of the following thoughts.

Problem (3.6) is classical shortest path problem but with an additional con-
straint on y dominating #*~! in the scenario C**™'. To solve this problem, we
can use any solver for mixed integer programming. This is of course a correct
approach, but it does not take advantage of any additional properties of our
problem. An alternative and potentially more efficient method is to use Yen’s
algorithm as presented in [10].

26

Yen’s algorithm is a generalization of algorithms solving the shortest path
problem. It not only identifies the shortest path in the graph from the starting
vertex to the ending vertex, but also finds £ shortest paths for any positive integer
k. Additionally, it outputs the shortest path first, followed by the second shortest
paths, the third one, and so forth. This property makes it an ideal algorithm for
our problem.

To solve (3.6) we can simply use Yen’s algorithm in G with weights equal to

k—1

= (w0 () (@ (e))is s (0" (em))o)-

For each path outputted by the algorithm, we check if it satisfies the dom-
inance condition. The first path satisfying this condition will be the optimum
for (3.6). This process surely terminates, because there is at least one feasible
solution for (3.6), namely x*~1.

Let us denote y** the optimal solution for (3.6), the regret of x*~
equal to

k—1 k-1

1 is then

r(z" 1) = max{\e® (@ =) [i=1,2,..., s}

As in Step 1, this simply involves selecting the maximum from the set of s
fixed real numbers.

3.2.3 Step 4

The final step of the algorithm corresponds to the problem (3.3). Given
matrices C" € ¥ and vectors y" € Mg, for h = 1,2,...,k, our goal is to find a
feasible z that minimizes the relaxed maximum regret. Thus, we are solving the
problem:

min o
s.t. 1H<18J<X)\lcil(x - yh) S g, if Ch(yh - .Z') S 07 h = 17 ce 7k7 (37)
x € Mg, 0 >0,

When solving this problem, we will follow the same method as employed in
[7]. We will also use logical operator = and V as they do in the aforementioned
article. The expression “A = B” signifies “if A, then B”, while “A V B” means
that “A holds or B holds”.

The problematic part of (3.7) is the inequality constraint involving o, which
must be satisfied when y” dominates z in scenario C". We want to reformulate
(3.7) without employing any logical operators. To achieve this, we will introduce
new binary variables. But before that, a slight modification of the constraint is
required. The constraint ensures that the following must be met for each h:

C'"yh —2) <0 = max Nz —y") < 0. (3.8)
The left-hand side consists of s inequalities. We write each of them individ-
ually. A similar procedure will be applied to the right-hand side - an inequality

with the max operator will be rewritten as s inequalities. This refinement will
transform (3.8) into

(" —2)<0,Vi=1,...,8) = Nz —y") <o,Vi=1,...,5).

27

Now, we utilize the well-known fact that “A = B” is equivalent to “not A V
B”. Furthermore, let us denote the set {1,2,...,s} as S. With this notation and
the aforementioned fact from propositional calculus, we can rewrite the above
proposition into the form:

(FieS: Ay —2)>0)Vv\c(zx—y") <oVicl).

The first part can be expressed as a disjunction of s inequalities. Following
this approach, we eliminate the existential quantifier and obtain that

(M —z)>0) V... V(@ —2)>0) Vv Nz —y") <o,VieS). (3.9)

Finally, it is time to introduce the binary variables b?, for i = 1,...,s. The
variable b determines whether the inequality c!(y" — z) > 0 is satisfied. Ad-
ditionally, we introduce another variable denoted as K, which is a positive real
number. It is important to choose K sufficiently large such that c?(y" —z) > —K
holds for any value of x. The choice of K will be discussed at the end of this
section. We define the equation
Ay —2) > K.

7

If the original equation is not satisfied, we need to assign b = 1. If none of the
s equations cf(y" — x) > 0 holds, then it must be the case that \;c!'(z — y") < o
for all ¢ from S. In this case, all b2 are equal to one and we require the validity of
the inequalities involving o. Conversely, if any of the inequalities c?(y" — x) > 0
is satisfied, there are no objections to other inequalities, even these involving o.
A simple trick allows us to achieve this condition and enables us to rewrite (3.9)

as follows

My —x) > —Kb' i€ S,
S
Ncl(z —y") <o+ MK (s — Zb?), i€ S.
j=1
We have already eliminated logical operators. The final issue we have to deal
with is the strict inequalities, which are not well-suited for program solvers. To
achieve this, we can introduce a small positive value denoted as €, and add it to the
right-hand sides of the inequalities. With this adjustment, we have successfully
reformulated the constraint in (3.7), and we can substitute it into this program.

Putting it all together we obtain a mixed integer program

min o
st. 'yt —2) + KW >e€ i=1,...,5, h=1,...,k,

° 1
)\ic?(x—yh)—)\iK(s—Zb?)ga, i=1,...,8, h=1,...k, (3.10)

j=1

0>0, 0 Mg b e{0,1},i=1,...,s, h=1,...,k.

To solve this program, we can employ any integer program solver. Note that
the matrix of constraints is significantly more complicated compared to the matrix

28

from the shortest path problem. In general, the matrix is not unimodular, which
means we cannot relax the condition on the binary variables . Also note that
for a set of k given vectors y" and matrices C*, the resulted program involves
ks +m + 1 variables. As a consequence, the difficulty of the program increases
with a large value of k.

To conclude the section, we derive which choice of K is sufficiently large. We
require K to satisfy the following equation for all values of ¢ and h:

Ay —2) > K.

Our aim is clear: we will estimate a lower bound of the left-hand side. Upon
obtaining the expression, which is always less than the left-hand side, we simply
define K as this expression. Given the conditions that =,y = 0 and ¢ > 0, it

holds that:
h

h, h h u
GY —CGT>—CT = —CX.

We rewrite the scalar product cfz as the sum and estimate it from above.
Recall that x; are binary variables.

The two previous sets of inequalities, when combined, yield that

h h h
GY —¢

U

T > —m- -maxg, ;.

7
Therefore, it is sufficient to choose K as

U

K =m-maxc};.

i\j

In other words, we defined K as the product of the largest value in the matrix
C*" and the number of edges. Although tighter estimations are possible, they are
not crucial in this context. For instance, we can assign different values of K; for
each 7. However, to keep things simple, we stick with our value of K derived
above.

Similarly, we can derive an appropriate choice for e. We won’t follow the
entire process of deriving this bound, the derivation is similar to the above one.
Without providing a formal prove, we state that we can choose € as follows:

e =minc .
P 5]
17]

3.2.4 The algorithm

In the previous section, we provided a detailed description of how the steps
of the Algorithm 1 can be utilized to solve the shortest path problem. Now, we
add everything together and present the algorithm for solving the minimax regret
problem in the IMOSP. The input to the algorithm is a graph G with interval
weights on its edges and criteria weights A\ indicating the relative importance of
each criterion.

29

Algorithm 2

Input: Graph G with edges weights in the interval matrix [C!,C*] and criteria
weights A = (A, ...,).

Output: The optimal solution to the minimax regret problem (2.3).

Step 1:
for i =1 to s:
solve the shortest path problem with weights ¢
2 < the shortest path
Iy 4— ATE MIN | < ey GT
Yyl gim
Ct + C!
Step 2:
k<« 2
ot 0
x! <yt
Step 3:
for i =1 to s:
Dominance <+ False
[+1
while Dominance = False:

[

i

¢+ the I—th shortest path, weights are ¢
l+—1+1
if Oy < oF T gkt
Dominance < True
Ty arg minlgigs)\Z‘ka712
(", C) ¢ (', 0")
PF L)\icfriflzim
Step 4:
if ¢F 1t <obl:
return zF!
else:
solve mino
s.t. Ayt —a2)+ Kb} > e
Az —y") = NK(s = X5, 0" <o
oc>0, 7€ Mg, bh€{0,1}, i=1,...,s, h=1,...,k
(2%, 0%) < optimal solution of the above program
kE<+—k+1
go to Step 3

)

In the description of the algorithm, by solving the shortest path problem we of
course mean the shortest path problem in GG from the first vertex to the last one.
The solution to more complex commands was discussed in the previous section.
We remind that the single shortest path problem in Step 1 can be solved using
Dijkstra’s algorithm, finding the I-th shortest path can be accomplished by Yen’s
algorithm, and the mixed integer program in Step 4 can be tackled using any
mixed integer program solver.

30

3.3 Property of outputted solution

In this section, we briefly examine the characteristics of the algorithm’s out-
putted solution. In particular, we determine whether the solution is necessarily
efficient, possibly efficient, or possibly weak efficient. The groundwork for these
determinations was laid out in the second chapter, now we just utilize the knowl-
edge gained there.

Let z° and ¢° be the output of the Algorithm 2, i.e. z° is the solution with
the least regret and o is the regret of this solution. We state three theorems that
determine the character of the solution x°. At the end of the section, we present
a simple algorithm that incorporates these theorems.

First of all, according to Theorem 12, x° is always at least possibly weak
efficient. Additionally, based on the definitions, a necessarily efficient solution
is also possibly efficient, and a possibly efficient solution is also possibly weak
efficient. Therefore, our task is to determine the specific type to which the solution
belongs among these three possibilities.

Theorem 19. If 0° = 0, then x° is a necessarily efficient solution for (2.1).
Proof. 1t follows directly from Theorem 7. O]

The determination of the possible efficiency depends on the efficiency in the
best-case scenario. To make a decision about this efficiency, we define the follow-
ing program:

max €TZ

st. Bz + 2= B"1°, (3.11)
r € Mg, z>0.

The optimal value of this program decides about possible efficiency and pos-
sible weak efficiency in the following way:

Theorem 20. If 6° > 0 and the optimal value of (3.11) is zero, then z° is
a possibly efficient solution for (2.1), which is not necessarily efficient for this
program.

Proof. According to Theorem 7, x° is not necessarily efficient. By Theorem 9,
2° is an efficient solution for (2.2) with C; = B®. Therefore, z° is a possibly
efficient solution for (2.1). O

There remains the last case, when o is positive and optimal value of (3.11) is
also positive. If this happens, z° is only possibly weak efficient:

Theorem 21. If0° > 0 and the optimal value of (3.11) is greater than zero, then
x° is a possibly weak efficient solution for (2.1), which is not possibly efficient for
this program.

Proof. The possible weak efficiency follows from Theorem 12. The part with the
possible efficiency is the conclusion of Theorem 11 and Theorem 9. [

31

Previous observations lead us to the following algorithm. We can use this
algorithm to determine a strength of the solution outputted by Algorithm 2.

Algorithm 3
Input: x° and ¢° outputted by Algorithm 2.
Output: efficiency of z°.

if 0°=0:
return ‘‘z°
else:
solve (3.11)
m* < the optimal value of (3.11)

is mnecessarily efficient '’

if m*=0:

return ‘‘z° is possibly efficient '’
else:

return ‘‘x° is possibly weak efficient ’’

By understanding the efficiency of the optimal solution, we also acquire valu-
able information about other solutions as well. For instance, if the optimal solu-
tion is possibly efficient but not necessarily efficient, then there is no necessarily
efficient solution. This observation follows from Theorem 7.

However, if the optimal solution is possibly weak efficient, we cannot say
anything about possibly efficient solutions. At the end of the second chapter,
we provided the example, where the optimal solution was possibly weak efficient,
despite the existence of two other solutions that were possibly efficient.

3.4 Time complexity

In this section, we discuss the time complexity of operations in Algorithm 2.
We will not calculate the complexity of the entire algorithm due to the presence
of several instances of mixed integer programs. These programs are difficult to
solve and even harder to estimate their time complexity.

In our examination, the complexity of the algorithm depends on the values of
inputs, namely the number of vertices denoted as n, and the number of criteria
denoted as s. Additionally, we consider the number of paths in the graph from
the source vertex to the target vertex, denoted as p. This number is finite, but it
can be exponentially large in comparison to n.

Starting from Step 1 of the algorithm, we observe that the nontrivial operation
in this step is solving the classical SPP. It is known that Dijkstra’s algorithm is
capable of solving SPP in O(n?) time complexity. In our case, we need to solve
s instances of this problem, resulting in a total time complexity of s - O(n?) =
O(sn?). The second step solely consists of an assignment, which can be done in
constant time.

Step 3 is similar to the first step, with the difference in utilization of Yen’s
algorithm instead of Dijkstra’s algorithm. In the original paper by Yen [10], it
is stated that finding k& shortest paths requires approximately %kzng‘ operations.
However, the problem lies in not knowing the duration of the search for an ap-
propriate path. Therefore, although k is typically small, the only estimation we

32

can derive is the obvious upper bound obtained by the number of paths, p. As a
result, the time complexity of Step 3 can be bounded as O(spn?).

Even more challenging situation occurs in Step 4, where we are required to
solve a mixed integer program. It is widely known that solving integer programs
is generally NP-hard. While this does not necessarily imply that the program
in Step 4 is also difficult to solve, we currently lack a better estimation for the
program. Let us just state that in the k-th iteration, the program under consid-
eration has sk +m + 1 variables and 2sk + n + 1 constraints. Hence, with every
iteration, the complexity of the program increases.

The final issue is about the number of returns to Step 3. There are infinite
number of scenarios, hence the number of returns can also be infinite. However,
this is not the case, because there are only finite number of paths and if we were
to return to Step 3 with the same path twice, we would already come to halt.
This observation is formally proven in the following theorem. As a corollary, we
deduce that the number of returns to Step 3 is bounded above by p.

Theorem 22. Consider the solution (x%,0%) obtained in the k-th iteration of

Step 4, and the solution (z',0') obtained in the l-th iteration, where 1 < k < I
and 2% = x'. In this case, Algorithm 2 terminates in the (I + 1)-th iteration,

outputting '

Proof. If (2%, 0%) is the optimal solution to the program in Step 4, then after
returning to Step 3, we compute the regret of this solution in this step. Addition-
ally, within this step, we determine the worst-case scenario and worst-case pair
for 2%, and add the constraints on them to the relaxed maximal regret problem
being solved in Step 4. As a result, during the [-th iteration of Step 4, we compute
the exact regret of 2!, which is equal to o!. Clearly, the same regret comes up
from the computation after returning to Step 3. Hence, the condition in if-else
branch is fulfilled during the (I + 1)-th iteration, yielding the output z'.]

3.5 Example

Let us illustrate the execution of Algorithm 2 on a particular instance. Let’s
consider a graph 7 from the example provided at the end of the second chapter.
In this graph, there exists three appropriate paths, hence there are three solutions
that could be the solution with the least regret. We already know that each
solution has the value of regret equals to ten, indicating that all of them are
optimal. Nonetheless, it is still worth to observe how the computation through
Algorithm 2 works.

In the difference to the mentioned example, let us now consider that A\; = 1,
A2 =1, and A3 = 10. The execution of Algorithm 2 will proceed as follows:
Step 1: Finding the shortest path in the scenario ¢! for i = 1,2, 3:

¢ =1 : The optimum is x; with a value of cllxl = 10.

i =2 : The optimum is x5 with a value of c,xs = 10.

i = 3 : The optimum is z; with a value of c4z; = 2.

Selecting the argument of the minimum value: i, = 1.

Setting (y!, C1) = (a1, CY).
Step 2:

33

k=2 ol =0, 2! = .
Step 3: Finding the shortest paths in the scenario C*', which also satisfy the
dominance condition:

¢ = 1: The shortest path is z1, and it satisfies the condition.

i = 2: The shortest path is x5, and it satisfies the condition.

t = 3: The shortest path is x1, and it satisfies the condition.

Selecting the minimum of {\;ci'x1, Aac3' wo, A\3c3' 1}, which is equal to the
minimum of {20, 10, 20}.

Therefore i,, = 3 and ¢' = 10.

Setting (y?, C?) = (x3,C™).
Step 4: Since ¢' = 10 £ 0 = o', we need to solve the mixed-integer program.
(The form of this program is for illustration purposes listed below the example.)

The optimal solution is x = z3, 0 = 0.

Setting 22 = x3, 02 = 0, k = 3 and going to Step 3.
Step 3: Similar to the first execution of this step, but now considering the scenario
s,

We obtain i,, = 1 and ¢* = 10.

Setting (y*, C?) = (z1,C*3).
Step 4: Once again ¢* % o2, hence we proceed to solve another mixed-integer
program.

The optimal solution is x = z1, 0 = 10.

Setting x® = x1, 0® = 10, k = 4 and going to Step 3.
Step 3:

We obtain i,, = 1 and ¢* = 10.

Setting (y*, C*) = (z3,C™).
Step 4: Since ¢ < o3, the algorithm outputs 1, with the regret equal to 0% = 10.

Let us now present the mixed-integer program obtained in the first execution
of Step 4. We have A = 3 and k = 2, and the two constraints given by (y!', C?) =
(x1,C") and (y?,C?) = (x3,C®). This by the way means that the program
consists of 13 variables and 18 constraints. The program takes the following
form:

min o
st. ci(x) —x)+ Kbl >¢€ i=1,2,3,
Mz —)+ Kb} >¢€, i=1,2,3,
3
Nich(x —a1) = NK(3 =Y b)) <o, i=1,2,3,

7
j=1

3
e (x —x3) = NK(3 =) b3) <o, i=1,23,

j=1
-1 -1 -1 0 0 0 —1
1 0 0 -1 0 0 0
0 1 0 0 -1 0fz=]0],
o 0 1 0 0 -1 0
o 0 o0 1 1 1 1
c>0, r€{0,1}% vP €{0,1}, i =1,2,3, h=1,2.

The values ¢}, ¢f', x;, and z3 are known and therefore we can substitute the

79

34

corresponding real numbers for them. Considering the discussion about suffi-
ciency of value K and e, we can choose K as 6-15 =90 and € as 1.

We will not rewrite the entire program here, but we will demonstrate the
substitution for two of the inequalities. After substitution, the inequality on the
first row for ¢« = 1 and the inequality on the fourth row for ¢ = 3 become:

(5 55 5 15 15)x—90b} <9,
(10 20 10 10 20 10)x+900b§+900b§+900b§—a32680.

The rewriting of the remaining ten inequalities would follow a similar process.
Note that even in the first execution of this step, the program is already quite

extensive. Furthermore, the extensiveness of the program increases with each
subsequent iteration of this step.

35

4. Efficient paths and layered
graphs

In the second chapter, we delved into examination of path efficiency. Now, we
revisit this concept again, focusing on a smaller aspect: the efficiency of individual
edges. Some of gained results in this chapter have only theoretical aspect, while
others can also have a practical application, mainly in preprocessing for Algorithm
2.

The first section will be devoted to the analysis of edge efficiency in general
directed graphs. In the subsequent section, we shift our attention to layered
graphs. For these graph, it is easier to derive useful theorems and algorithms
that help us in studying the efficiency and solving the minimax regret problem.

Several results from this chapter are generalizations of theorems and algo-
rithms from [9].

4.1 Efficient paths

Let us start with a notation we will use in this chapter. As before, let P
be the set of paths in G from the starting vertex to the ending vertex, and for
a fixed edge e € F let P, denote such paths in P that contain the edge e. The
weight of path p in the scenario s will be denoted as w®(p). With this in mind,
we can proceed to the definition of edge efficiency.

Definition 6. Let e be the edge of G, we say that e is:

- necessarily efficient, if for each scenario S there exists a path ps € P, such
that ps is an efficient path in scenario S,

- possibly efficient, if there exists scenario S and path ps € P, such that ps is
an efficient path in scenario S,

- possibly weak efficient, if there exists scenario S and path ps € P, such that
ps is a weak efficient path in scenario S.

It should be intuitive that a necessarily efficient edge between two vertices is
also a necessarily efficient path between these two vertices. However, in order
to establish a connection between these two types of the necessary efficiency, we
prove this statement properly.

Theorem 23. If an edge e = (u,v) is a necessarily efficient edge, then e is a
necessarily efficient path from u to v in G.

Proof. Let’s assume, for the sake of contradiction, that e is not a necessarily
efficient path from u to v. According to the definition, this means that there
exists a scenario s; and a path p; from u to v such that:

w(p1) <X w(e). (4.1)
The necessary efficiency of edge e implies that for all scenarios there exists

a path pg € P, which is an efficient path in that scenario. Denote the path

36

satisfying this condition for scenario s; as p,. Moreover, let p,; be the part of p,
from s to u, and let py o be the part of p; from v to ¢.
Consider the walk p§ := pa; U py U pa o, inequality (4.1) then yields:

w* (py) = w* (p2,1) +w* (p1) +w* (p2,2) = W™ (p2,1) +w™ (€) +w (p22) = W (p2).

The walk p; does not need to be a path, but by removing cycles we can
transform it to a path, denoted as p3. The path p; has smaller weight than pj
and therefore w®! (p3) < w* (p2). This contradicts the fact about the efficiency of
P9 in scenario sp.]

We state an easy observation regarding possibly weak efficient edges. Recall
that B® represents the best-case scenario matrix for z,, and b;” denotes the i-th
row of this matrix.

Theorem 24. An edge e is possibly weak efficient if and only if

— < 0.
s e oin, (0 (o = 2g)} <0
Proof. According to the respective definitions, an edge e is possibly weak efficient
if and only if there exists possibly weak efficient path p containing e. By Theorem
11, the latter states that there exists p € P, such that for all p € P holds:

B xy A B,
This vector inequality can be reformulated as follows:
Erlnn {b;"(xp, — x3)} < 0.
The soundness of this inequality for all paths p € P implies that
)<
mealgclmln {b;"(xp — x3)} < 0.

We seek for a path satisfying this condition, which means we aim to minimize
the expression above over all paths that contain e. This can be expressed as
follows:

min max min {b (x, —z3)} <0. (4.2)

peP. peP i=

Altogether, e is possibly weak efficient if and only if the condition (4.2) is
satisfied, which concludes the proof.
[

For a general directed graph, we are currently not aware of any algorithms
capable of efficient aid to the minimax problem. This limitation lead us to shift
our attention towards layered graphs.

37

4.2 Efficient paths in layered graphs

A layered graph consists of a starting vertex, a fixed number of layers of
vertices and an ending vertex. The important restriction is that edges can only
connect vertices from one layer to the following layer. Formally, we define a
layered graph as follows:

Definition 7. A layered graph with | layers is defined as G = (V, E), where
V= {sh ULk) [K =1, 0, j=1,..m}U{t},

and edges exist only from vertex s to vertices in layer 1, from vertices in layer k
to vertices in layer k + 1, for all k =1,2,...m — 1, and from vertices in layer |
to vertex t.

Note that the graph presented in section 2.2.4 is a layered graph and so the
graph we used to prove the NP-hardness of checking path efficiency. It allows
us to reformulate Theorem 17 based on our new definitions to stronger version.
This formulation illustrate that layered structure of graph does not help us with
complexity associated with checking path efficiency, nor with checking edge effi-
ciency:

Theorem 25. The problem of determining if an edge in a layered, directed graph
is an efficient edge is an NP-hard problem.

Proof. The proof follows from Lemma 16 and Theorem 15, just as the proof of
Theorem 17. L

Despite the above theorem, we will still try to utilize the potential benefits of
graph’s layered structure. We start with a straightforward observation regarding
the possible efficiency of all graph’s edges. We will discuss the application of this
observation immediately afterwards.

Theorem 26. Assume that there exist vectors cs, ¢; and ¢, fork=1,...,1 —1
such that:
cs € [w'(es), w"(es)], for all e, € E incident with s,

e € [wher), w"(e;)], for all e, € E incident with t,
cr € [wher), w"(ex)], for all ey, € E from the layer k to the layer (k +1).

Moreover assume that for each edge there exists a path from s to t containing this
edge. Then all edges of G are possibly efficient.

Proof. Assume the existence of the vectors in the theorem statement. Then there
exists a scenario S in which all edges from s have a weight equal to c;, all edges
from layer k£ has a weight equal to ¢, for £ = 1,...,1 — 1, and all edges from
layer [have a weight equal to ¢.

In this scenario, every path from s to ¢ has the same weight. More precisely,
the weight w(p) of each path p € P is equal to:

-1

w(p) = cs + z_: ck + ¢t (4.3)

38

Hence, every path in G is possibly efficient, and consequently due to the
technical assumption about non-emptiness of P, for every edge e, every edge is
possibly efficient as well.

m

The existence of vectors ¢, ¢ and ¢; can be efficiently verified. We can
proceed by traversing the graph layer by layer and computing the intersection of
weight intervals for all edges starting at each layer. For layer k, we calculate:

N [w'(e), w" (e)].

e€ E e starts at layer k

If this intersection yields a nonempty set, then it is certain that there exists a
vector ¢ satisfying the assumption of the theorem. Otherwise, no such ¢ exists.

We repeat this procedure for every layer, including the one containing vertex
s, to determine if the assumption of Theorem 26 is satisfied. If it is so, then we
conclude that all edges in the graph are possibly efficient. If this is not the case,
we can utilize the preprocessing method explained in the following section. This
method tries to identify edges that are not possibly weak efficient.

4.2.1 An algorithm for preprocessing

We present an algorithm determining if an edge from vertex s is possibly weak
efficient. This algorithm can serve as a useful preprocessing step to Algorithm
2 (if the given graph is layered). We will discuss these applications further later
on, now let’s delve into the algorithm. The algorithm is a generalization of an
algorithm from [9].

Consider the edge from s to vertex (1, 1) and let us denote it as e. Our goal is
to find out whether e is possibly weak efficient or not. To begin, we set the edge
values of all paths from s to ¢t passing through e to the lower bound. All other
edge values are set to the upper bound.

In the first iteration we consider only vertex s and vertices in layers 1 and
2. We find all weak efficient paths from s to every vertex in layer 2. This can
be achieved using Multi-Dijkstra’s algorithm. Once we compute these paths, we
encounter three possible cases:

Case 1: None of the weak efficient paths contains e. In this case, we conclude
that e is not possibly weak efficient.

Case 2: For all vertices in layer 2 there exists at least one weak efficient path
that contains e. Then e is possibly weak efficient.

Case 3: Weak efficient paths that contains e exists for some vertices in layer
2 but not for everyone. In this case, we need to proceed to the next iteration:

We shrink the graph between s and layer 2 by considering only the relevant
vertices - those in layer 2 and vertex s. For each vertex in layer 2, we maintain
a set of all efficient paths from s to that vertex. If for a vertex any of efficient
paths from s to this vertex contains e, we discard the paths that do not include e
and keep only those that do. We set edge values from these vertices to the lower
bound, while setting other edge values to the upper bound.

Next, we compute all efficient paths from s to layer 3, taking advantage of
the fact that graph has been shrunk. This computation is similar to the initial
computation of efficient paths. The only difference is that "edge” from s to vertex

39

in layer 2 can attain more than one value - the values of all efficient paths from
s to this vertex. This can slow down the process of computation, but does not
affect correctness of the algorithm.

We then reevaluate which of the three cases applies. After at most [iterations,
we determine the truth about possible weak efficiency of e.

Due to the increased complexity of our algorithm compared to the one pro-
posed in [9], we will prove its correctness in a more formal way:

Theorem 27. The algorithm above correctly determines whether edge e is a pos-
sibly weak efficient edge or not.

Proof. Observe that setting the values of edges as it is done in the algorithm
clearly corresponds to determining possible weak efficiency of edge e. Therefore,
our task is narrowed down to proving the correctness of solving the three cases.
We will demonstrate that the solution for each case is justified.

We begin with Case 2, assuming that there is at least one weak efficient path
for each vertex in layer 2. For the sake of contradiction, let us assume that e is
not possibly weak efficient. Therefore, there exists p € P\ P, such that for every
pe € P, holds

w(p) < w(pe), (4.4)

where w(p) denotes the weight of path p in the scenario constructed via the
algorithm.

Let (2,) be the vertex in layer 2 that is incident with the path p, and ¢; be
one of the weak efficient paths from s to this vertex. Furthermore, let p = p, Up,,
where p, is the part of the path from s to vertex (2,7), and p, is the remaining
part of the path. Then, based on efficiency of ¢;, we obtain:

w(py) A w(q)

By concatenating ¢; with p,, we obtain path from P.. Let’s denote this path
as ¢, hence ¢ = ¢; U D, and by the above inequality we have:

w(p) = w(py) + w(py) A wlgr) +w(py) = wlg).

This is contradiction with (4.4), and therefore the claim regarding the possible
weak efficiency of e holds true.

Case 1 follows from the observation that if a path is weak efficient, then any
part of it must also be weak efficient. A more detailed proof can be done in a
similar way as we proved Case 2.

In the last case, we shrink the graph and essentially end up with a situation
similar to the one we had at the beginning. Therefore, for vertices in layer 3, 4
and so on, we can apply the same proof technique as we used above. The final
issue to address is the elimination of weak efficient paths for vertices where at
least one weak efficient path via e exists. We leave this as an observation, as
the proof again follows the same pattern we used in proving correctness of Case
2. m

The algorithm is correct, and it seems to perform only efficiently computable
operations. However, the number of these operations could become huge due to
the presence of numerous efficient paths from s to intermediate vertices. This
problem is illustrated in the following example.

40

Example 2. Consider a layered graph with [layers, where each layer consists of
three vertices and the set of edges contains all possible edges for this type of
graph. Formally, let G35 = (V3, E3), where

Va={s}U{(i,j) [1<i<I,1<j<3}u{t},
Es ={(s,(1,5)) [1 <j <3} U{((l,5), 1) |1 <j <3}
U{((i,7), i+ 1,0) |1 <i<l,1<y,1<3}.

The planar embedding of Gij:

Consider that all weight intervals are degenerate, and the weight assigning is
defined as follows:

w((3> (Lj))) = &y, w(((i>j)7 (Z + 17[))) = 2iel7 w(((lvj)>t)) = 2lej'

Therefore, an edge from the i-th layer has one coordinate equal to 2¢, while
the other coordinates are equal to zero. Moreover, the non-zero coordinate is
determined by the out-neighbour of the edge. The same principle applies to the
starting and ending vertices.

First, observe that every path from s to any vertex in layer ¢ has the same
total weight, i.e. the sum of the three weights. This weights is equal to:

i—1
dooh=2—1.
=0

In particular, all paths from s to ¢ have a total weight equals to 241 — 1.

It is easy to derive from this observation that any partial path from s to any
vertex is weak efficient. How many paths are there from s to a vertex in the i-th
layer? We can prove by induction that this number is equal to 3i~!. Therefore,
for vertex in layer [we have 3!~! efficient paths, each with a different weight.
Considering the fact that the graph G3 has 31+ 2 vertices, we conclude that there
are exponentially many efficient paths to vertices in the last layers.

The presented algorithm does not need to compute this. In the first iteration,
it already determines that all vertices in layer 1 have one efficient path containing
the edge (s, (1,1)) and outputs that this edge is possibly weak efficient.

41

However, if we consider a slightly modified graph, a problem arises. Consider
G5 without the edges from vertices (i, 1) to vertices (i+1,2) and (i+1, 3), as well
as edges from (4,2) and (4,3) to (i 4+1,1), fori =1,...,1—1. Let’s examine what
happens in layer ¢ for this modified graph. There exists exactly one efficient path
from s to (7, 1), and this path contains the edge (s, (1,1)). All other paths lead to
vertices (i,2) and (4, 3), and none of them contains the investigated edge. Clearly,
these paths are still efficient, and although their number is now 2°~! instead of
371 it is still exponentially large.

Hence, the algorithm must go through all iterations and also memorize ex-
ponentially many efficient paths and for each of these path it needs to start the
computation.

The planar embedding of modified G3:

Now, let us demonstrate how this algorithm can help us in the preprocessing.
For each edge e from s, we can decide if it is possibly weak efficient or not. If e
is not possibly weak efficient, then there is no possibly weak efficient path from
s to t that contains e. According to Theorem 12, the path with the minimal
regret is at least possibly weak efficient. Therefore, this path does not contain
edge e. Hence, when solving the minimax regret problem, we can remove e from
consideration.

We can apply the same procedure to any edge from s. After removing all
edges originating in s that are not possibly weak efficient, we can also remove
the vertices in layer 1 that are incident to these edges. Furthermore, we can also
remove edges that are incident to these vertices. We can continue this process
by removing vertices in layer 2 that have no in-neighbors along with the edges
originating from these vertices, and so on.

Also notice that the same strategy can be employed with edges from layer [
to vertex t: we can consider the mirrored image of graph GG and follow the same
procedure we used to eliminate edges from s. This way, we can obtain a graph
with significantly fewer vertices and edges, which can simplify the problem and
enhance the efficiency of Algorithm 2.

42

Conclusion

In the first chapter, we present essential definitions, including two concepts
that are fundamental for our thesis - the efficiency of a solution and the minimax
regret problem.

In the second chapter, we formulated the interval multiobjective shortest path
problem as a mixed-integer linear program. Then, we dealt with feasible solutions
to this program. We simplified the computation of the maximal regret and check-
ing the necessary and the possible efficiency of a given solution. Moreover, we
established the relationship between the necessary efficiency and the regret of so-
lution. We outlined an approach for checking necessary or possible efficiency. We
provided the proofs for the properties of the solution with the least regret. Lastly,
we demonstrate that checking tha efficiency of a path in interval multiobjective
shortest path problem is an NP-hard problem.

The third chapter was devoted to the algorithm solving the minimax regret
problem in the IMOSP. We introduced an algorithm solving the general MOLP
and adjust it to solve IMOSP efficiently. We provided a brief overview of the
algorithm’s time complexity.

In the final chapter, we examine additional valuable information regarding
the IMOSP. We defined and explored the efficiency of edges and present pre-
processing algorithms that can enhance the efficiency of the algorithm discussed
in the third chapter.

43

Notation

R the set of real numbers

R, the set of positive real numbers

7 the set of integers

Cij the element on ¢-th row and j-th column of matrix C

(C); the i-th column of matrix C

G the i-th row of matrix C

e; vector with value of one in the i-th coordinate and zeros in all

other coordinates, i.e. e; = (0,...,0,1,0,...,0)T

e the vector with all ones, i.e. e = (1,...,1)T

44

Bibliography

[1]

M. Hladik. “Complexity of necessary efficiency in interval linear program-
ming and multiobjective linear programming”. In: Optimization Letters 6.5
(2012), pp. 893-899.

M. Hladik. “On relation of possibly efficiency and robust counterparts in
interval multiobjective linear programming”. In: Optimization and Decision
Science: Methodologies and Applications 217 (2017), pp. 335-343.

M. Inuiguchi and M. Sakawa. “Possible and necessary efficiency in possi-
bilistic multiobjective linear programming problems and possible efficiency
test”. In: Fuzzy Sets and Systems 78 (1996), pp. 231-241.

Ernesto Queirés Vieira Martins. “On a multicriteria shortest path problem”.
In: Furopean Journal of Operational Research 16 (1984), pp. 236-245.

Nimrod Megiddo. “On the complexity of linear programming”. In: Advances
in Economic Theory. Fifth World Congress (1987).

M. A. Yaghoobi S. Rivaz. “Minimax regret solution to multiobjective linear
programming problems with interval objective functions coefficients”. In:
Springer 21 (2012), pp. 625-649.

M.Hladik S. Rivaz M. A. Yaghoobi. “Using modified maximum regret for
finding a necessarily efficient solution in an interval MOLP problem”. In:
Fuzzy Optim Decis Making 15 (2015), pp. 237-253.

Paolo Serafini. “Some considerations about computational complexity for
multi objective combinatorial problems”. In: Recent Advances and Histori-
cal Development of Vector Optimization (1987).

Hande Yaman. “Essay on some combinatorial optimization problems with
interval data”. PhD thesis. Bilkent University, 1999.

Jin Y. Yen. “Finding the K Shortest Loopless Paths in a Network”. In:
Management Science 17.11 (1971), pp. 712-716.

45

	Introduction
	Preliminaries
	The shortest path problem
	Multiobjective programming
	Interval MOLP
	Minimax regret

	Multiobjective shortest path problem with interval costs
	Formulation of the problem
	Maximal regret and efficiency
	Maximal regret
	Necessary efficiency
	Possible efficiency and possible weak efficiency
	Example

	Checking path efficiency is NP-hard

	An algorithm solving minimax regret problem in IMOSP
	An algorithm for general interval MOLP
	Main idea
	The algorithm

	An algorithm for interval MOSP
	Step 1
	Step 3
	Step 4
	The algorithm

	Property of outputted solution
	Time complexity
	Example

	Efficient paths and layered graphs
	Efficient paths
	Efficient paths in layered graphs
	An algorithm for preprocessing

