
MASTER THESIS

Bc. Pavel Madaj

Heuristics for Length Bounded Cuts

Department of Applied Mathematics

Supervisor of the master thesis: doc. Mgr. Petr Kolman, Ph.D.
Study programme: Computer Science - Discrete

Models and Algorithms
Study branch: IDMP

Prague 2023



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



This thesis is dedicated to my family, friends and my thesis supervisor doc. Mgr.
Petr Kolman, Ph.D for their support and encouragement. Without them this
thesis would not have been possible.

ii



Title: Heuristics for Length Bounded Cuts

Author: Bc. Pavel Madaj

Department: Department of Applied Mathematics

Supervisor: doc. Mgr. Petr Kolman, Ph.D., Department of Applied Mathematics

Abstract: This thesis deals with the problem of finding a minimum
length-bounded cut in a graph. We first provide a brief overview of the
problem and its applications. We then discuss the known theoretical results
and approximation algorithms. We look at the existing linear programming
formulations and propose a new one. A concise discussion on potential hard
instances, utilized for testing our formulations, is also incorporated. The focus
of our analysis is on the performance and behavior of our proposed linear
programming family, contrasting it with the established natural formulation. We
also compare the performance of various heuristics and approximation algorithms
in practice by examining their behaviour on a large set of small instances.

Keywords: graph theory, approximation algorithms, length bounded cuts, linear
programming, heuristics

iii



Contents

Introduction 3
Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Research to Date 7

2 Explored Instances 8
2.1 General Remarks and Exhaustive Evaluation . . . . . . . . . . . . 8
2.2 Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Camel Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Fence Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Recursive Camels . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Reduction of Vertex Cover . . . . . . . . . . . . . . . . . . . . 12

3 Linear Programming 13
3.1 Natural LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 A New Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Heuristics 18
4.1 Delete Shortest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Naive Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Shortpath Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Shortestpath Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 L

2 Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Most Shortest Paths Greedy . . . . . . . . . . . . . . . . . . . . . 20
4.7 Most Walks Greedy . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.8 Linear Programming Based Heuristics . . . . . . . . . . . . . . . . 23

4.8.1 Round Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.8.2 "Smart" Round Up . . . . . . . . . . . . . . . . . . . . . . 23
4.8.3 Largest Weighted Distance . . . . . . . . . . . . . . . . . . 24

5 Results 25
5.1 Camel Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Fence Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Recursive Camel Graphs . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Exhaustive Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Implementation Details 32

Conclusion 34

1



Bibliography 35

List of Figures 37

List of Tables 37

A Attachments 38
A.1 Exhaustive Evaluation Results for n = 6 . . . . . . . . . . . . . . 38
A.2 Exhaustive Evaluation Results for n = 7 . . . . . . . . . . . . . . 42
A.3 Exhaustive Evaluation Results for n = 8 . . . . . . . . . . . . . . 47

2



Introduction
The problem of finding the minimum s-t-cut in a graph is one of the classic
problems in computer science. Given a graph G and vertices s, t, we are interested
in finding the least number of edges that, when removed, interrupt all paths from
s to t. There are many applications for the known efficient algorithms solving
this problem. One straightforward application, for example, is checking whether
a network (road network, cable network, etc.) is robust to local failures. A
small s-t-cut means that a few local issues could completely disconnect parts
of the network. However, in practice knowing that there is no small cut does
not necessarily mean the network is well-designed. One could easily imagine a
situation where a car accident on a segment of a road does not interrupt the flow
of traffic entirely, but the detours created are prohibitively long. Thus, one may
want to study cuts which might not disconnect the two vertices entirely but that
increase the distance between them above some constant L. For this purpose the
concept of an L-bounded cut has been introduced. However, unlike the tractable
problem of a minimal s-t-cut the problem of an L-bounded s-t-cut is not efficiently
solvable unless P = NP. Moreover, current approximation algorithms for this
problem have poor approximation ratios. In this thesis we explore a possible new
approach to the approximation algorithms of the L-bounded cut problem and
also compare various heuristics and approximations in practice.

Preliminaries
In this section, we provide definitions for essential concepts used throughout this
thesis.

Definition 1 (Graph). A graph G is an ordered pair G := (V, E) comprising a
set V of vertices or nodes together with a set E of edges. Each edge is a 2-element
subset of V . We will commonly denote the number of vertices of a graph by n
and the number of edges by m.

An edge capacity function is c : G(E)→ Q+
0 . Unless stated otherwise a graph

will have all edges with unit capacities (∀e ∈ E(G) : c(e) = 1).

Definition 2 (Length Bounded Cut Instance). An instance of the length bounded
cut problem is (G, s, t, L) where G is a graph, s, t ∈ V (G) and L ∈ N. The vertices
s and t are commonly referred as the source and the sink.

Definition 3 (s-t-paths). A path in graph G is a sequence of distinct vertices
v1, . . . , vk such that {vi, vi+1} ∈ E(G) for all i ∈ {1, . . . , k − 1}.

A walk in graph G is a sequence of vertices v1, . . . , vk such that {vi, vi+1} ∈
E(G) for all i ∈ {1, . . . , k − 1}, the vertices nor the edges need to be distinct.

An s-t-path in graph G where s, t ∈ V (G) is a path in G that starts in s and
ends in t.

The length of a path is the number of edges in the path. The distance between
s and t is the length of the shortest s-t-path.

We will denote the set of all s-t-paths in G by Ps,t and the set of all s-t-paths
of length at most L by PL

s,t.

3



Definition 4 (Cut). Given an instance (G, s, t, L) of the length bounded cut
problem :

A cut is a set C ⊆ E(G) such that every path between s and t contains an
edge of C. (∀P ∈ Ps,t : P ∩ C ̸= ∅)

An L-bounded cut is a set C ⊆ E(G) such that every path between s and t of
length at most L contains an edge of C. (∀P ∈ PL

s,t : P ∩ C ̸= ∅)
The value of C ⊂ E(G) is ∑︁

e∈C c(e). If the graph has unit capacities we will
also refer to this quantity as the size of the cut.

Definition 5 (Optimization Problem). An optimization problem is given by a
quadruple (I, f, m, g) where:

• I is the set of instances

• f : I → 2S is the solution function that maps an instance to the set of
possible solutions for that instance

• m : I × S → R ∪ {±∞} is the measure function that associates a real
value to each instance-solution pair, where S denotes the set of all possible
solutions

• g ∈ {min, max} is a goal function that indicates whether the problem is one
of minimization (g = min) or maximization (g = max)

A solution s ∈ f(i) is optimal for instance i ∈ I if m(i, s) = g{m(i, s′)|s′ ∈
f(i)}. We will often denote the optimal solution by s∗.

Definition 6 (Approximation Algorithm). An approximation algorithm for an
optimization problem (I, f, m, g) is an algorithm that, for each instance i ∈ I,
produces a solution s ∈ f(i).

The approximation ratio of an approximation algorithm A on an instance i is
defined as

ρA(i) = m(i, A(i))
m(i, s∗)

where s∗ is an optimal solution to i, and A(i) is the solution produced by
algorithm A for instance i.

For a maximization problem, the approximation ratio is defined as

ρA(i) = m(i, s∗)
m(i, A(i))

An algorithm is said to have an approximation ratio of ρ if, for all instances
i, ρA(i) ≤ ρ for minimization problems, or ρA(i) ≥ ρ for maximization problems.

We will also mention heuristics, which are not defined formally. A heuristic is
an algorithm that, like an approximation algorithm, produces a not necessarily
optimal solution to an optimization problem. However, unlike an approximation
algorithm, a heuristic does not have a guarantee on the quality of the solution it
produces. We can therefore think of approximation algorithms as a special case
of heuristics for which we can prove a (good) approximation ratio.

4



Definition 7 (Length Bounded Cut Problem). Given an instance (G, s, t, L) of
the length bounded cut problem the length bounded cut problem on that instance
is an optimization problem of finding the L-bounded cut C with the minimum
value.

The length bounded cut problem is defined as an optimization problem where
the instances are those described above. Feasible solutions for an instance are all
L-bounded cuts and the measure of a feasible solution is the size of the cut. The
goal is to minimize the size.

Definition 8 (Linear Program). A linear program (LP) is an optimization
problem in which the objective function to be minimized or maximized, as well
as all the constraints, are linear in terms of the decision variables. Formally, a
linear program can be represented as:

• Minimization problem: min cT x : Ax ≥ b, x ≥ 0.

• Maximization problem: max cT x : Ax ≤ b, x ≥ 0.

Here:

• x = (x1, . . . , xn)T is a vector of decision variables;

• c = (c1, . . . , cn)T is a vector of coefficients for the objective function;

• A is a m× n matrix of coefficients for the constraint inequalities;

• b = (b1, . . . , bm)T is a vector of constants for the constraint inequalities.

If we restrict the decision variables to be integers, we obtain an integer linear
program (ILP).

When we express a problem as an ILP we often refer to the LP with the integer
constraints removed as the relaxation of the ILP. The solutions of a relaxation
are called fractional solutions.

Definition 9 (Feasible Solution and Optimal Solution). A feasible solution to
a linear program is a vector x that satisfies all the constraints of the linear
program. The set of all feasible solutions is known as the feasible region of the
linear program.

An optimal solution is a feasible solution that minimizes (or maximizes) the
objective function.

Definition 10 (Integrality Gap). The integrality gap of an optimization problem
is the worst-case ratio between the optimal solution of the linear program
relaxation and the optimal solution of the original problem. We often express
this as a function of the size of the input.

We also sometimes refer to the integrality gap on a specific instance of the
problem, which is the ratio between the optimal solution of the linear program
relaxation and the optimal solution of the original problem on that instance.

Linear programs are of fundamental importance in optimization theory
because they can be solved in polynomial time in the real domain using methods
such as the simplex method or interior-point methods.

5



However, when the decision variables are required to be integers, the problem
becomes an integer linear program (ILP), which is a type of problem known to
be NP-hard. (This means that, unless P = NP, there is no known algorithm
that can solve all instances of integer linear programming in polynomial time.)

Although the asymptotic worst-case complexity of solving ILPs is currently
not known to be better than polynomial, in practice there are many effective
heuristics and exact methods for solving ILPs efficiently at least for reasonably
small instances.

6



1. Research to Date
Non-length bounded s-t-cuts were studied in a classical article by Menger [12]
where he proved the now famous Menger’s Theorem: the maximum number of
edge-disjoint s-t-paths is equal to the minimum number of edges in an s-t-cut.
Later Ford and Fulkerson [5] generalized this result to graphs with capacities and
flows. They also provided algorithms for finding the maximum flow and minimum
cut in a graph in polynomial time.

The problem of length-bounded flows seems to have been first studied by
Adámek and Koubek [1]. They observe that the direct generlization of the
min-cut max-flow equivalence does not hold for length-bounded cuts and flows.
Independently of that result Lovász et al. proved in [10] studied the behaviour of
length-bounded node-disjoint s-t-paths problem. For length bounds up to 4 they
proved a result analogous to Menger’s theorem.

Later in the year 1982 Itai et al. [9] gave algorithms for finding the maximum
number of edge-disjoin s-t-paths with at most two or three edges. They also
showed that the same problem is NP-hard for length bounds greater than 4.

The main results related to the topic come from [2] where Baier et al.
proved that the problem of finding a minimum length-bounded cut for L ≥ 4
is inapproximable within a factor of 1.377 by a reduction of the vertex cover
problem. They also showed an approximation algorithm with approximation
ratio of O(min{L, n2/L2,

√
m}), which is O(n2/3) if we want to express it as just

a function of n.
Morever the following natural linear program is a direct translation of the

problem into a linear program and has been also studied in [2].

min
∑︂
e∈E

x(e)∑︂
e∈p

x(e) ≥ 1 ∀p ∈ PL
s,t

x(e) ∈ {0, 1} ∀e ∈ E

(1.1)

The relaxation of the natural linear program is then the following:

min
∑︂
e∈E

x(e)∑︂
e∈p

x(e) ≥ 1 ∀p ∈ PL
s,t

x(e) ≥ 0 ∀e ∈ E

(NATLP)

7



2. Explored Instances
In this thesis we wish to examine the behaviour of heuristics, approximation
algorithms and linear programs for the length-bounded cut problem on actual
graphs. To get data which is complete, we would like to evaluate all graphs
on a given number of vertices. However, the number of such graphs rises faster
than exponentially, which makes this approach infeasible even for graphs with
relatively low number of vertices. For this reason, we choose two approaches.
For graphs with small number of vertices we will explore all instances. To also
cover the behaviour on larger graphs we will explore a smaller set of instances
which we consider to likely be difficult to solve. In this chapter we will discuss
the instances we will explore.

The choice of these hard instances is not entirely objective, but we will try
to justify our choices and explore alternatives. We will also discuss some general
remarks about the instances which we will use in the evaluation.

2.1 General Remarks and Exhaustive
Evaluation

There are some general statements we can make to exclude instances which are
always unsuitable. One obvious category are graphs which are disconnected. If
s and t are in different connected components the problem is solved already. If
they are not, then the problem is equivalent to the problem on the connected
component containing s and t.

This can be generalized further. Given an instance with a parameter L, if
there is an edge which lies on no path of length at most L between s and t,
then we can omit this edge from the graph without changing the solution. We
shall call such edges useless. One approach would be to take the input instance
and remove all useless edges and then solve the problem on the resulting graph.
However, in the exhaustive evaluation part of our analysis we can just check if
an instance has any useless edges and if it does, we can skip it. This is because
the instance with the useless edges removed will be evaluated anyway due to the
exhaustive nature of the evaluation.

Another obvious category of graphs to skip are those which have no path of
length at most L between s and t. In this case the problem is already trivially
solved with the empty cut. In the exhaustive evaluation portion of our analysis
we cover this by taking a graph G, selecting vertices s and t and then generating
instances of the length-bounded cut problem by starting with L equal to the
distance between s and t and incrementing it.

Where do we stop this process? We could stop at L = n − 1 as there are
no paths of length n or more in a graph with n vertices. However, in the vast
majority of cases this is unnecessarily wasteful. Note that for L = n − 1, the
problem is equivalent to the minimum s-t-cut problem as we are asking for a
cut which intersects all paths between s and t. This problem is solvable on
polynomial time for example by the Ford-Fulkerson algorithm[5]. Such value of
L can thus be considered trivial, and we could stop at n − 2. However, we can

8



do better.

Observation 11. Given a graph G, vertices s and t and L ∈ N such that for
length-bounded cut instance (G, s, t, L) the optimal solution of length-bounded cut
has the same size as the optimal solution of the minimum s-t-cut instance (G, s, t)
then for all L′ ≥ L, the optimal solution of (G, s, t, L′) has the same size as the
optimal solution of (G, s, t).

Proof. Every s-t-cut is also an L-bounded s-t-cut for all L by definition.
Therefore, the size of the minimal s-t-cut is an upper bound on the size of the
minimal L-bounded s-t-cut. At the same time the minimal L-bounded s-t-cut is
a lower bound for the size of the minimal L′-bounded s-t-cut because PL

s,t ⊆ PL′
s,t.

But since by assumption the size of the minimal s-t-cut is equal to the size of the
minimal L-bounded s-t-cut, the size of the minimal L′-bounded cut must also be
equal to this value.

The corollary is that as we increment L once we reach an instance where the
optimal solutions of the two problems coincide, we can conclude that for larger
L the length-bounded cut would be trivial, and we can stop the process. This
is the approach we will use in the exhaustive evaluation. One could make the
argument that studying the behaviour of heuristics and linear programs, even on
these seemingly trivial instances, could provide additional useful data. However,
in the interest of reducing the computational effort required we decided to omit
these instances.

In the exhaustive evaluation approach we use Brendan McKay’s database of
small connected unlabelled graphs [11] that covers graphs up to 11 vertices. This
seemingly allows us not to worry about isomorphic graphs because the database
already contains only one representative of each isomorphism class. However,
note that for each graph G we create

(︂
n
2

)︂
triples (G, s, t) and if the graph is

not rigid (i.e. has non-trivial automorphisms) then some of these triples will
be isomorphic. Thus, in order to avoid duplicates in preprocessing, we use
NetworkX’s [7] implementation of the vf2 [4] algorithm to filter out isomorphic
instances.

When we add up all of this together, we arrive at Algorithm 1, which generates
the list of instances on n vertices.

2.2 Random Graphs
One direct approach seems to be to sample among graphs with n vertices at
random. In the Erdős–Rényi random graph model we select a probability
p and each edge is present with that probability. However, during early
experimentation, no matter the choice of p and L, these graphs were rarely
interesting enough to be worth exploring. This is further confirmed later in the
penultimate chapter where we look at how the ratio of "interesting" instances in
the exhaustive evaluation portion is very small. For this reason we decided to
omit the random graph approach from the evaluation.

It seems that for an instance to be hard, it needs to have more structure than
random graphs are likely to provide. One possible approach, which we did not
explore, is to take a random graph and amend it in a way that adds the expected

9



Algorithm 1 Generate exhaustive list of instances on n vertices
1: instances ← ∅
2: for all G simple graph on n vertices do
3: networks ← ∅
4: for all s, t ∈ V (G), s < t do
5: if ∃N ∈ networks : (G, s, t) ∼= N then
6: continue
7: end if
8: networks ← networks ∪ {(G, s, t)}
9: L← distance(s, t)

10: while |optimal L-bounded cut in G| < |minimum s-t-cut in G| do
11: instances ← instances ∪ {(G, s, t, L)}
12: L← L + 1
13: end while
14: end for
15: end for

structure. For example, one could replace each edge with a small copy of a camel
graph (explored in the next section) or to attach s and t as new vertices to disjoint
subsets of the graph that are some distance apart. However, we did not explore
this approach in this thesis.

2.3 Camel Graphs
There are several known sets of instances on which the natural linear program
NATLP has a large integrality gap. For example, in [2] we encounter a graph
constructed as follows: Given an integer k, we take an s-t-path with 2k +1 edges.
The edges of this path are called the ground edges. Parallel to edge ground
edge we add k+ paths of length 2 to form the final graph. Taken together with
parameter L = 3k + 1, this forms an example of an instance family for which
the integrality gap of the natural representation of the length-bounded edge cut
problem and the length-bounded node cut problem is Θ(

√
n).

However, in practice we saw that (for length-bounedd edge cuts which are the
main focus of this thesis) we get clearer results from our approaches by eliminating
the +1 from all the parameters. The main effect is that some of our linear
programs in a later chapter have relaxed optima which are integers or follow ref

easily observable arithmetic progressions. These patters are likely still present
in the unmodified graph family but are slightly obfuscated by the +1 constants.
This modification can be easily verified not to affect the asymptotic behaviour of
the integrality gap. Let us then formally define this family:

Definition 12 (Camel Graph). For k ∈ N a k-camel graph is a graph constructed
as follows: Given an integer k, we take an s-t-path of length 2k and for every
edge we add k parallel paths of length 2 to form the final graph. Together with
parameter L = 3k this forms the length-bounded cut problem instance.

We argue that due to this family having a large integrality gap on the natural
linear program representation of the problem it is a good candidate for exploring

10



s t

1 2 3 4 5 6 7 8 9

Figure 2.1: A fence graph with k = 2. Layer numbers are shown above the
graph. The dashed edges are the shortcut edges.

the behaviour of heuristics and approximation algorithms. Moreover, the family
is easy to describe, generate and parametrize. We will use this family in the
evaluation of the heuristics and linear programs.

It is easy to show that give one "hump" of the camel graph there is little point
in its edges being treated differently. For this reason we will also use camel graphs
where instead of adding k paths of length two to each ground edge we add just
one such path (for each ground edge) and set its weight to k. This is mostly done
to reduce the graph size where LP computations get too intensive.

2.4 Fence Graphs
The careful reader might note that while the aforementioned instance family has
a large integrality gap for the natural linear program representation, it is not the
largest possible. Indeed, as mentioned in the previous chapter, this linear program
has an integrality gap of Ω

(︂
n

2
3
)︂
. This is achieved by the following graph family

used in [2] to prove this integrality gap:

Definition 13 (Fence Graph). Given an integer n that satisfies the condition
n

1
3 ∈ Z, we define k = n

2
3 .

First we create an auxiliary graph G′ composed of 4k + 1 layers.
The first and the last layers of G′ each consist of a single vertex, denoted as

s and t respectively. The second layer and the penultimate layer consist of n
2
3

vertices each. All remaining layers contain n
1
3 vertices each.

Consecutive layers of G′ form a complete bipartite graph with the exception
of layer pairs 2, 3 and 4k−1, 4k. The vertices of the second layer are divided into
n

1
3 groups of size n

1
3 . Each vertex in a group is linked to a unique vertex from

the third layer, distinct from the vertices linked to other groups. The connection
pattern between layers 4k − 1 and 4k follows a similar scheme.

To form the fence graph G = (V, E), we select a single vertex vi from each
odd layer i of G′. The vertices vi and vi+2 are linked by an edge for each odd i.
These newly added edges are termed as "shortcut" edges.

We shall call this graph G a fence graph.

Note that we are sticking to the notation used in ??, this means that n in this
case does not correspond to the exact number of vertices of the fence graph. But
it still holds that |V (G)| = O(n).

11



We shall evaluate our techniques on these fence graphs as they form an obvious
hard case due to them (asymptotically) having the largest possible integrality gap
for the natural linear program. However, note that the construction here is more
complex compared to the camel graphs, and as such the behaviour of methods
on these graphs might be less easy to analyse. Also note that as described the
size of these graphs grows rapidly since we require that n

1
3 is an integer. It could

be interesting to explore the behaviour of methods on a modified version of this
family where we relax this requirement and instead allow any integral n and
round k up or down. However, we did not explore this in this thesis.

2.5 Recursive Camels
One last family of graphs we explore are an attempt to augment the camel graphs
with additional structure. Given parameters k, r ∈ N we set G0 to be an s-t-path
with k edges and K0 = E(G0). Then for i = 1, 2, . . . , r, we create Gi from Gi−1
by taking every edge in Ki−1 and adding one path of length 2 parallel to it. We
form Ki as the set of all edges added in this step. The final graph is the r-depth
recursive k-camel graph. For simplicity, in our analysis we restrict this class of
graphs to just those where r = k and set L = ⌈3

2k⌉+ 1, as that is where the most
complexity seemed to arise. figure

2.6 Reduction of Vertex Cover
Finally, there is one family of graphs that could look enticing at a glance but
quickly proves not to be useful. In [2] Theorem 3.9 the NP-hardness of the
length-bounded cut problem and NP-hardness of its approximation within a
factor of 1.1377 is proven by a reduction from the Vertex Cover problem.

In the Vertex Cover problem we are given a graph G and an integer k and
we are asked if there exists a set of at most k vertices S ⊆ V (G) such that every
edge of G has at least one endpoint in S. It is well known that this problem is
NP-complete.

This problem has a natural linear program representation which has an
integrality gap of 2 [14]. It is simple to show that the natural length-bounded cut proof?

figure?problem linear program’s fractional solutions correspond directly to the fractional
solutions of the Vertex Cover linear program. Thus, on this graph family the
integrality gap of the natural length-bounded cut problem linear program is also
2. This is far from the general Θ(n 2

3 ) integrality gap. For this reason, we do not
consider this instance family as difficult enough to be worth exploring.

12



3. Linear Programming

3.1 Natural LP
The natural linear program NATLP for the length-bounded cut problem has
known integrality gap of Θ(n 2

3 ) as mentioned earlier. This means that, even as
a basis for an approximation algorithm, it is not very good. However, we still
want to analyse its performance to compare it to other approaches and to also
run it in an ILP solver to get the optimal integral solution. There is, however,
an issue because in its standard form the natural LP has an exponential number
of constraints. We will now describe a way to reduce the number of constraints
to a polynomial amount.

In order to do this, we do not constraint each L-bounded s-t-path on its own,
but instead we introduce new auxiliary variables. The x variables stay as they
are in the natural LP — for each edge they indicate whether it is a part of the
cut or not. On top of those we add y variables constrained in a way that, for a
vertex v and i ∈ {1, 2, . . . , L}, make y(v, i) = ∑︁

e∈Pi
s,v

x(e). In order to do this,
we need to define when such a (v, i) pair (representing vertex v at distance i from
s) is valid to be a part of an actual s-t-path of length at most L.

Definition 14. Let G be a graph, s, t ∈ V (G) and L ∈ N. We say that given
v ∈ V (G) and i ∈ N a pair (v, i) is valid if dist(s, v) ≤ i and dist(s, t) ≤ L− i.

Then we can write the following linear program:

min
∑︂
e∈E

x(e) (NATLP-LAYERED)

y(v, i) ≤ y(u, i− 1) + x(uv) ∀uv ∈ E(G) such that (v, i), (u, i− 1) are valid
y(t, i) ≥ 1 ∀i ∈ {1, 2, . . . , L} such that (t, i) is valid

y(s, 0) = 0
x(e) ≥ 0 ∀e ∈ E

y(v, i) ≥ 0 ∀(v, i) valid

With the notational caveat that in the first constraint, we consider both uv
and vu to be edges.

Theorem 15. Linear program NATLP-LAYERED is equivalent to the
natural linear program NATLP. Specifically, for any feasible solution to
NATLP-LAYERED we can construct a feasible solution to NATLP with the same
objective value and for any feasible solution to NATLP we can construct a feasible
solution to NATLP-LAYERED with the same objective value.

Proof. Given a feasible solution x, y to NATLP-LAYERED we can construct a
feasible solution x′ to NATLP by setting x′(e) = x(e) for all e ∈ E.

The basic constraint x′(e) ≥ 0 for all e ∈ E is satisfied because the same
condition holds for x.

Now let us be given an s-t path P = {s = v1, v2, . . . , vk = t} ∈ PL
s,t. By the

constraints in NATLP-LAYERED we have that y(vk, k) ≥ 1. But then we have:

13



1 ≤ y(vk, k)
≤ y(vk−1, k − 1) + x(vk−1vk)

≤ y(vk−2, k − 2) + x(vk−2vk−1) + x(vk−1vk)
. . .

≤
k−1∑︂
i=1

x(vivi+1)

=
∑︂
e∈P

x(e)

Therefore, x′ is a feasible solution to NATLP. Objective values in both linear
programs are the same, because x and x′ are the same and both programs define
the objective value as the sum of x(e) over all e ∈ E.

For the other direction let us be given a feasible solution x′ to NATLP. We can
construct a feasible solution x, y to NATLP-LAYERED by setting x(e) = x′(e)
for all e ∈ E and y(v, i) = min{∑︁e∈P x(e) : P ∈ P i

s,v} for all (v, i) valid.
The constraints y(s, 0) = 0, x(e) ≥ 0 for all e ∈ E and y(v, i) ≥ 0 are satisfied

by the construction trivially. Since in the non-layered linear program we know
that every s-t-path that has length at most L has the sum of x over its edges at
least 1, we can also conclude that the y(t, i) ≥ 1 condition is satisfied.

In order to see why the last constraint is upheld, let us have y(v, i) and an
edge uv. We need to show that y(v, i) ≤ y(u, i− 1) + x(uv). We know that there
exists a path P ′ ∈ P i−1

s,u such that ∑︁
e∈P x(e) = y(u, i−1). Then we can construct

a path P ∈ P i
s,v by adding uv to P ′. Therefore, ∑︁

e∈P x(e) = y(u, i− 1) + x(uv).
Since y(v, i) is defined as the minimum of such sums over all paths P ∈ P i

s,v we
have that y(v, i) ≤ y(u, i− 1) + x(uv).

Finally, the objective values are the same because x and x′ are the same and
both programs define the objective value as the sum of x(e) over all e ∈ E.

Note that unlike the original linear program, this one has a polynomial number
of constraints Θ(nL + m). So it is more useful for practical purposes.

3.2 A New Approach
The natural linear program and its layered variant are inspired by having some
variables indicate which edges are in the cut C and then directly constrain the
distance of s and t in the graph G \ C. However, the integrality gap of this
approach is quite large. One could argue that this is because the variables are
not constrained well enough to represent cuts. In order to remedy this, we can
try to capture not only the distances of s and t in G \ C but also the distances
of all other pairs of vertices. This is the approach taken by the following linear
program and its variants. The variable x(u, v, i) is meant to indicate that the
distance of u and v in G \C is exactly i with the exception of value L + 1 which
is meant to indicate that the distance is at least L + 1. This is because longer
distances are not relevant to the problem. We provide the linear program in its
relaxed form, the ILP is obtained naturally by constraining all variables to be
integral (or specifically in the {0, 1} domain).

14



min
∑︂
e∈E

y(e)

y(uv) =
L∑︂

i=2
x(u, v, i) ∀uv ∈ E (COST)

x(s, t, L + 1) = 1 (STDIST)
L+1∑︂
i=1

x(u, v, i) = 1 ∀uv ∈ E (UNIQUEDIST)

L+1∑︂
i=b+c+1

x(u, w, i) ≤
L+1∑︂

i=b+1
x(u, v, i) +

L+1∑︂
i=c+1

x(v, w, i) (CUTDIST)

∀u, v, w ∈ V pairwise distinct; b, c ∈ {1, . . . , L + 1}; b + c < L + 1
L+1∑︂
i=1

ix(u, w, i) ≤
L+1∑︂
i=1

ix(u, v, i) +
L+1∑︂
i=1

ix(v, w, i) (LPDIST)

∀u, v, w ∈ V pairwise distinct
x(u, v, i) = 0 ∀u, v ∈ V, i ∈ {1, . . . , dist(u, v)− 1} (ZERO)

y(e) ≥ 0 ∀e ∈ E

x(u, v, i) ≥ 0 ∀u, v ∈ V, u < v, i ∈ {1, 2, . . . , L + 1}

This linear program tries to capture the metric space nature of the distances in
the graph G\C. First note that the variables y exist mostly just for convenience.
The COST rule just defines them as shortcuts for how much weight is placed on
the edge distance in G \C being longer than 1. The STDIST rule is the one that
actually captures the distance of s and t in G \ C. The UNIQUEDIST rule is
there to ensure that each pair of vertices has a unique distance in G \ C in the
integral case. The rules mentioned so far are essential and will always be present.
The remaining named rules will be explored in a variety of combinations later
on. The CUTDIST and LPDIST rules are the ones that actually capture the
distances.

In the integral interpretation the CUTDIST rule says that if the distance of
u and w is greater than b + c then it must be the case that the distance of u
and v is greater than b or the distance of v and w is greater than c. This can be
interpreted as an "implication" based form of a triangle inequality. The LPDIST
rule also captures a triangle inequality but this time it uses sums of x variables
to get the distances between u, v and w directly, hence the name "LP dist", as it
uses the distances that the linear program tells us about. Finally the ZERO rule
restricts us from any vertex distances shortening below what they are initially in
G.

However, this linear program can be tweaked further and we explored multiple
combinations of constraints. One variation is one in which we interpret the x
variables differently. Instead of having them indicate the exact distance between
two vertices, we assume that vertices are split into layers based on the distances
from s. Then we have x(u, v, i) indicate that u and v are in layers which are i
apart. However, in order to do this the LP needs to be augmented by removing the
ZERO rule, because now vertices can go closer together as we no longer interpret

15



x(u, v, i) as the actual distance. Moreover, since multiple vertices could be in each
layer we need to extend the range of i to be {0, 1, . . . , L} instead of {1, 2, . . . , L +
1}. This modification propagates straightforwardly to the other rules as well, for
the sake of brevity we omit the modified rules. However, approaches inspired by
this interpretation seem less useful than those where x captures actual distances,
because the approach of placing vertices in layers based on distance from s is
already captured by the NATLP linear program. In the following sections we
stick to the convention that if the ZERO rule is present then indices i are in the
domain {1, 2, . . . , L+1} and if it is not then they are in the domain {0, 1, . . . , L}.
With this layer-based interpretation one could also introduce additional variables
z(u, i) which would indicate that u is in layer i. We briefly explored this approach
but found it not to be of much use. For the sake of completeness, we include the
rules for the z variables as well, but they will not be explored in the rest of the
thesis:

L+1∑︂
i=0

z(u, i) = 1 ∀u ∈ V

L+1∑︂
i=0

iz(u, i)−
L+1∑︂
i=0

iz(v, i) ≤
L+1∑︂
i=0

ix(u, v, i) ∀uv ∈ E

L+1∑︂
i=0

iz(v, i)−
L+1∑︂
i=0

iz(u, i) ≤
L+1∑︂
i=0

ix(u, v, i) ∀uv ∈ E

z(s, 0) = 1
z(t, L + 1) = 1

z(u, 0) = 0 ∀u ∈ V \ {s}
z(u, i) ≥ 0 ∀u ∈ V, i ∈ {0, 1, . . . , L + 1}

If we stick with the ZERO rule being present, we see that it narrows down the
solution space by disabling the distance indices which are too low. During the
exploration of the various LPs we arrived at situations where there seemed to be
"too much space" in the upper part of this index domain which led to harder to
interpret results, as there were many solutions with the same objective value. In
order to remedy this we tried to add constraints which would restrict the solution
space in the upper part of the index domain. To achieve this, let us quickly look
at the interpretation of x. In theory, we could have x(u, v, i) to be an indicator
for the distance of u and v being i exactly for any i. Due to the nature of the
problem, we do not need to do this as distances longer than L are all the same to
us. Therefore, we essentially squash indices i greater than L into a single value.
This is a global operation based purely on the value of L, but we can do better.

Given a pair of vertices u, v let us define g(u, v) = L−dist(s, u)+dist(t, v)+1.
Let us now assume that cut C increases the distance of u, v to at least g(u, v). If
there was a short path {s, . . . , u, . . . , v, . . . , t} in G then after the removal of the
cut the three segments of the path have distances at least dist(s, u) + g(u, v) +
dist(v, t) = L + 1, which makes this path no longer short. Therefore, we could
do the "index squashing", not just for indices larger than L, but for indices larger
than g(u, v). To do this correctly we need to also account for paths where u and
v are met in the opposite order, so this rule is actually:

16



x(u, v, i) = 0 ∀u, v ∈ V, i > max{g(u, v), g(v, u), dist(u, v)} (ZEROUPPER)

The final addition of dist(u, v) is to prevent the combination of ZERO
and ZEROUPPER from eliminating the full domain. This tends to only
happen when the vertex pair is not particularly useful in the first place, so
it is more of a technical detail. With this rule included, the index value
max{g(u, v), g(v, u), dist(u, v)} stands for distances greater than this value too.

Finally, we can look at the LPDIST rule and again consider the previously
mentioned concept of "index squashing". Instead of applying this rule just once
for each vertex pair, we can apply it multiple times, each time squashing a longer
range of upper indices. This is the approach taken by the following rule:

k−1∑︂
i=1

ix(u, w, i) + k
L+1∑︂
i=k

x(u, w, i)

≤
k−1∑︂
i=1

ix(u, v, i) + k
L+1∑︂
i=k

x(u, v, i)

+
k−1∑︂
i=1

ix(v, w, i) + k
L+1∑︂
i=k

x(v, w, i)

∀u, v, w ∈ V pairwise distinct, k ∈ {1, . . . , L + 1}

(EXTDIST)

Note that while the number of constraints for a given instance of the LP is
polynomial, this polynomial can grow relatively large. Specifically for CUTDIST
the number of constraints is Θ(n3L2). This poses no theoretical issue, however,
it can be a practical problem as LP / ILP solvers can struggle with large number
of constraints when it comes to computational time or even memory.

Given the integral linear program (i.e. one in which we constrain all variables
to be integral, or more specifically in the {0, 1} domain), if the CUTDIST rule
is present, it is easy to prove that under the distance interpretation of x any
feasible solution to the ILP forms a metric space. From this it follows that the
set of edges for which y is 1 forms an L-bounded cut. However, for comparison
we will also briefly explore the behaviour of linear programs which do not have
the CUTDIST rule. In those cases such a property need not hold and as such
we must be careful not to, for example, take the optimum of the relaxation and
round it up expecting to get an L-bounded cut.

17



4. Heuristics
In addition to exploring linear programs we also look at the behaviour of various
heuristic approaches to the length bounded cut problem.

4.1 Delete Shortest
The first heuristic we consider is the delete shortest heuristic. This one is very
simple: we repeatedly delete the shortest path between s and t until the shortest
path is longer than L. Brief pseudocode is given in Algorithm 2.

Algorithm 2 Delete Shortest
1: procedure DeleteShortest(G, s, t, L)
2: G′ ← G
3: deleted← ∅
4: while dist(s, t) ≤ L do
5: P ← shortestPath(G′, s, t)
6: G′ ← G′ \ P
7: deleted← deleted ∪ P
8: end while
9: return deleted

10: end procedure

This algorithm runs in time O(nm) since finding the shortest path can be
done in linear time and every iteration removes at least one edge from the graph.
Despite its simple nature this heuristic can be shown to have approximation ratio
of L. Each of the paths we remove is of length at most L and therefore the
optimal solution must remove at least on edge from each of them. We remove
the whole path which is of length at most L and therefore the size of the solution
we find is at most L times the size of the optimal solution.

4.2 Naive Cut
The second heuristic we consider is the naive cut heuristic. The idea is to use
a polynomial algorithm for the minimum cut problem. Every s-t-cut is also
an L-bounded cut, albeit likely not a minimum one. It is easy to see that
the gap between these two is generally unbounded. For example if s and t are
already further than L apart, then the minimum L-bounded cut is empty, but the
minimum s-t-cut can easily be on the order of n. Despite that the heuristic can
be surprisingly useful in some cases. Theorem 3.7 in [2] states that the difference
between the size of the minimum L-bounded cut an the size of a minimum s-t-cut
is at most O

(︂
n2

L2

)︂
and if L ≥

√
m then it is at most O(sqrtm). Therefore if L is

comparatively large the heuristic can be expected to perform well.
In our analysis we use implementation of the Goldberg-Tarjan algorithm for

the minimum cut problem from the NetworkX library[7]. That algorithm runs in
time O(n2√m).

18



4.3 Shortpath Cut
A direct refinement of the previous approach to avoid the obvious pitfalls is to
take the input graph G′ and remove all its useless edged. (As defined previously
an edge is useless if it is not on any s-t-path of length at most L.) Then we run the
minimum cut algorithm on the resulting graph. We call this heuristic shortpath
cut. The running time is equivalent to the previous heuristic as pre-calculating
distances and filtering the graph can be done in linear time.

4.4 Shortestpath Cut
Another variant on the application of general s-t-cut algorithms is to use the
network of the shortest paths. We take the graph G and create G′ by only
keeping edges that are on some shortest path between s and t. Then we run
the minimum cut algorithm on the resulting graph. This increases the distance
between s and t by at least one in every iteration. Once this distance is greater
than L, we stop. We call this heuristic shortestpath cut. Since the number of these
iterations is bounded by L, the running time is O(n2√mL). Brief pseudocode is
given in Algorithm 3.

Algorithm 3 Shortestpath Cut
1: procedure MakeShortestpathNetwork(G, s, t)
2: G′ ← {V (G), ∅}
3: for all uv ∈ E(G) do ▷ Note that distances can be precomputed in

linear time.
4: if dist(s, u) + dist(v, t) + 1 = dist(s, t) then
5: G′ ← G′ ∪ uv
6: end if
7: end for
8: return G′

9: end procedure
10: procedure ShortestpathCut(G, s, t, L)
11: deleted← ∅
12: while dist(s, t) ≤ L do
13: G′ ← MakeShortestpathNetwork(G′, s, t)
14: C ← minCut(G′, s, t)
15: G← G \ C
16: deleted← deleted ∪ C
17: end while
18: return deleted
19: end procedure

4.5 L
2 Combination

The next heuristic we consider is the L
2 combination heuristic. The idea is to

combine the previous two approaches. We first run the shortestpath cut heuristic

19



until the distance between s and t is at least L
2 . Then we run the shortpath

cut heuristic on the graph that is left. We run the union of the edges that both
approaches removed. We call this heuristic L

2 combination. The running time is
O(n2√m). We expect this approach of combining the two approaches to partially
remedy the weaknesses of both as the first one is good for small L and the second
one is good for large L.

4.6 Most Shortest Paths Greedy
A class of greedy approaches to the problem is to repeatedly remove edges one
by one based on some criterion until the distance between s and t is greater than
L. Based on the statement of the problem we could imagine the criterion to be
"always pick the edge with the most paths in PL

s,t going through it". However, this
runs into issues as even enumerating all s-t-paths is known to be #P-complete
[13]. Therefore we need to find a different criterion. We will consider two such
criteria.

The first one is to in each step again calculate the network of the shortest
paths just like in the shortestpath cut heuristic. In this network we can calculate
the number of the shortest paths going through each edge quite easily proceeding
in the direction of increasing distance from s. Then we remove the edge with
the most of these paths going through it and repeat the process. We call this
heuristic most shortest paths greedy. The running time is O((n + m)n). However,
one could possibly improve this by reusing the shortest path network from the
previous iteration. Brief pseudocode is given in Algorithm 4.

4.7 Most Walks Greedy
The second edge-removing greedy approach we consider is to in each step remove
the edge with the most walks of length at most L going through it. We call
this heuristic most walks greedy. Unlike counting paths this can be done in
polynomial time by considering an auxiliary directed graph G′ in which we
replace each vertex v by L + 1 copies v0, . . . , vL representing the vertices v at
distance 0, 1, . . . , L from s on a walk. This is similar to the approach taken in
defining the NATLP-LAYERED linear program. For every edge uv and each layer
i ∈ {0, 1, . . . , L} we add directed edges uivi+1 and viui+1 except if the target vertex
is t (as there is little point in also counting walks which go through t multiple
times). We also add directed edges t0t1, t1t2, . . . , tL−1tL to allow for walks of
length shorter than L. It is easy to see that every s-t-path of length L in this
auxiliary graph corresponds to an s-t-walk of length at most L in the original
graph so running the previously defined CalculateShortestPathsGoingThrough
procedure and then summing up the path counts for all copies of the edge gives
us the number of walks of length at most L going through the edge. The running
time is O((n + m)Ln). Brief pseudocode is given in Algorithm 5.

20



Algorithm 4 Most Shortest Paths Greedy
1: procedure MostShortestPathsGreedy(G, s, t, L)
2: deleted← ∅
3: while dist(s, t) ≤ L do
4: pathCounts← CalculateShortestPathsGoingThrough(G)
5: e← argmaxe∈E(G′)pathCounts[e]
6: G← G \ {e}
7: deleted← deleted ∪ {e}
8: end while
9: return deleted

10: end procedure
11: procedure CalculateShortestPathsGoingThrough(G)
12: G← MakeShortestpathNetwork(G, s, t)
13: layers← []
14: pathCounts← []
15: for all v ∈ V (G) do
16: layers[dist(s, v)]← layers[dist(s, v)] ∪ {v}
17: pathCounts[v]← 0
18: end for
19: pathCounts[s]← 1
20: for i← 0 to dist(s, t)− 1 do
21: for all v ∈ layers[i] do
22: for all u ∈ neighbours(v) do
23: pathCounts[u]← pathCounts[u] + pathCounts[v]
24: end for
25: end for
26: end for
27: return paths
28: end procedure

21



Algorithm 5 Most Walks Greedy
1: procedure MakeAuxillaryGraph(G)
2: V ′ ← ∅
3: for all v ∈ V (G) do
4: for i← 0 to L do
5: V ′ ← V ′ ∪ {vi}
6: end for
7: end for
8: G′ ← {V ′, ∅}
9: for i← 0 to L− 1 do

10: G′ ← G′ ∪ titi+1
11: end for
12: for all uv ∈ E(G) do
13: for i← 0 to L− 1 do
14: G′ ← G′ ∪ uivi+1
15: G′ ← G′ ∪ viui+1
16: end for
17: end for
18: return G′

19: end procedure
20: procedure CalculateWalksGoingThrough(G)
21: G′ ← MakeAuxillaryGraph(G)
22: pathCounts← CalculateShortestPathsGoingThrough(G′)
23: walkCounts← []
24: for all uv ∈ E(G) do
25: walkCounts[uv]← ∑︁L−1

i=0 pathCounts[uivi+1] + pathCounts[viui+1]
26: end for
27: return walkCounts
28: end procedure
29: procedure MostWalksGreedy(G, s, t, L)
30: deleted← ∅
31: while dist(s, t) ≤ L do
32: walkCounts← CalculateWalksGoingThrough(G)
33: e← argmaxe∈E(G)walkCounts[e]
34: G← G \ {e}
35: deleted← deleted ∪ {e}
36: end while
37: return deleted
38: end procedure

22



4.8 Linear Programming Based Heuristics
One final class of heuristics which we can look at are those which are based on
linear programs. We can use the linear programs we have defined to find the
optimal fractional solution and then find some way to round it to an integral
solution. We will consider three such approaches. Following the note at the end
of the previous chapter there is little to no reason to use

4.8.1 Round Up
In this approach we take the optimal fractional solution and simply replace all
non-zero values of the "is this edge cut" indicator variables with 1 (perhaps a
bit confusingly in retrospect these are the x variables in the case of NATLP and
NATLP-LAYERED and y values for the other class of linear programs). We call
this heuristic round up. This is a very simple approach and there is no direct
bound on its approximation ratio.

4.8.2 "Smart" Round Up
A direct refinement of the previous approach is not to pick > 0 as the round up
condition but instead pick the largest still valid threshold. If we assume that the
relaxed linear program assigned variables as weights of how important it is to
remove an edge then this approach is equivalent to removing the edges in order
of decreasing importance. We call this heuristic "smart" round up. We just take
the optimal fractional solution, sort edges in descending order of their variable’s
value and then remove them one by one until the distance between s and t is
greater than L. This is equivalent to picking the largest threshold α such that
the solution to the linear program is still feasible if we set all variables with value
≥ α to 1 and all others to 0. Note that if we can prove that some α always
produces a feasible solution then this implies that the approximation ratio here
is at most 1

α
because what we are doing is essentially multiplying the fractional

solution by α and then rounding down.
Specifically when it comes to NATLP (and its equivalent layered variant) we

can make the following observation:

Observation 16. Let (G, s, t, L) be an instance of the length bounded cut problem
and let x be an optimal fractional solution to the NATLP linear program. Then
for any P ∈ PL

s,t there exists an edge e ∈ P such that xe ≥ 1
L

.

Proof. By the constraints of the LP we have that ∑︁
e∈P xe ≥ 1. By the definition

of P it is at most L edges long. If all of them had xe < 1
L

then ∑︁
e∈P xe < 1 which

is a contradiction.

The above observation implies that α = 1
L

is a valid threshold for the NATLP
linear program. Therefore the approximation ratio of the "smart" round up
heuristic for NATLP is L.

23



4.8.3 Largest Weighted Distance
This approach applies only to the alternative class of linear programs we proposed
in the previous chapter. We apply similar logic to the previous heuristic but
instead of interpreting the fractional y variables as indications of how "important"
the edge is for a cut we now have access to x variables which tell us about the
distance. It is reasonable to expect that if uv was an edge in the input graph, but
the fractional solution tells us that these two vertices are supposed to be distant
then it is likely to be a good candidate for a cut.

Therefore, for each edge uv we assign it f(uv) = ∑︁L+1
i=1 ixi

uv which and proceed
as before by removing edges in order of decreasing f value. We call this heuristic
largest weighted distance. Contrast this with the previous approach which is
equivalent to assigning f(uv) = y(uv) = ∑︁L+1

i=2 xi
uv. One could imagine a spectrum

of in-between approaches which use index weights different from {0, 1, 1, 1, . . . , 1}
and {1, 2, 3, . . . , L + 1} for these sums.

24



5. Results
In this chapter we look at the results of our analysis of the heuristics and linear
programs on real data.

5.1 Camel Graphs
We evaluated the linear programs on the non-weighted variant of the camel
graphs up to k = 3. For larger values of k the linear programs were too slow
to solve in a reasonable amount of time. However, the results for the weighted
and non-weighted variants are equal for these small k values just like one would
expect based on the construction and the properties of the graph. Let us then
focus just on the weighted variant of these graphs.

Results of the linear program analysis are shown in Table 5.1. Each column
corresponds to a weighted camel graph with k being equal to that column’s
header. Row L corresponds to the value of the parameter L of the instance.
Rows n and m correspond to the number of vertices and edges of the instance
respectively. Row OPT corresponds to the optimal value of the instance
(calculated by running an ILP solver on the integral version of ??). The rest
of the rows correspond to the fractional optima of the linear programs. Each row
is named after the constraints we include in addition to the ones we described as
always present.

We are looking for programs which have the smallest integrality gap as that
is a good sign that the linear program describes the problem in question well.
Programs with small integrality gaps are often used to then create approximation
algorithms with approximation ratios which are derived from the integrality gap.
Therefore, generally the larger the values in a row the better the program is.

The results paint a fairly clear picture when it comes to some programs. If the
CUTDIST rule is omitted, we get results we get programs that have integrality
gaps worse than even the natural linear program LPNAT. This is unsurprising
as without the CUTDIST rule we have no reason to believe that the integral
solutions of the program even correspond to L-bounded cuts. The CUTDIST
rule is also the one composed of the most constraints, so it makes sense that
leaving it out would have a large impact on the quality of the program.

However, interestingly enough despite the large number of constraints in the
CUTDIST rule it seems that the rule on its own has very little strength too.
Specifically CUTDIST, CUTDIST ZERO and CUTDIST ZERO ZEROUPPER
all seem to have the exact same fractional optima as LPNAT(-LAYERED). We
conjecture that this pattern holds in general for any instance of the problem.

During a previous stage of this analysis devised the ZEROUPPER rule in
order to constrain the behaviour of x variables a bit more in the CUTDIST ZERO
scenario. It seemed that in the CUTDIST ZERO program the x variables of the
optimum form a nice generalizable pattern. However, in some cases this pattern
was somewhat broken likely because of there being multiple optimal solutions.
The ZEROUPPER rule was supposed to fix this, and we did not expect it to
change the objective value. And indeed for the program in question (CUTDIST
ZERO ZEROUPPER) this was the case. A surprising side effect was that adding

25



the ZEROUPPER rule to CUTDIST LPDIST ZERO program actually improved
the fractional optima to the level of integral optima resulting in integrality gap of
1 for these specific instances. This was an unexpected result as we did not expect
the ZEROUPPER rule to have any effect on the LPDIST part of the program.

We conjecture that this pattern of CUTDIST LPDIST ZERO ZEROUPPER
achieving integrality gap of 1 holds for all instances of the weighted camel graphs.
However, we were unable to prove this conjecture. As we will see in the next
section, there are certainly other instances in which this is not the case.

The EXTDIST rule seems to help less than we would have expected. When
only CUTDIST LPDIST and ZERO are present it helps a small bit but in the
CUTDIST LPDIST ZERO ZEROUPPER case the optimal integrality gap 1 is
achieved even without it. Thus, it seems that either this approach of extending
LPDIST into EXTDIST is not very useful or that it needs further refinement.

5.2 Fence Graphs
As mentioned in the definition of fence graphs, we are sticking to the original
definition in [2] where it is required that n

1
3 is an integer. This means

that the number of vertices of successive fence graph instances grows quickly.
Compounded by the fact that the CUTDIST rule is composed of O(n3L2)
constraints this meant that with computational resources available to us, we
were only able to examine the behaviour of the linear programs for fence graphs
with n ∈ {1, 8}. Of these the n = 1 case is trivial as it is composed of just five
vertices. So let us focus on the n = 8 case. The results re shown in Table 5.2.

Results here paint a less clear picture. None of the linear program variants
achieve approximation ratio of 1. It is what we would expect on difficult instances
as the problem is known not to be approximable within a factor of 1.1377, so in
a way this result partially validates the choice of fence graphs as hard instances.
As we would expect the smallest integrality gap is reached when all LP rules
are enabled. This results in integrality gap of approximately 1.25737. The other
notable result is that CUTDIST without LPDIST still reaches the same fractional
optimum as LPNAT-LAYERED.

Here we see the EXTDIST rule help even in the CUTDIST LPDIST ZERO
ZEROUPPER case. However, the difference is still not very large.

5.3 Recursive Camel Graphs
Recursive camel graphs as we defined them also struggle from quickly growing
number of vertices. Here the growth is exponential. However, despite that fact
we were able to examine the behaviour of the linear programs for k ∈ {1, 2, 3}.
The results are shown in Table 5.3.

Results here support the previous observations. Lacking LPDIST the linear
programs still behave as poorly as LPNAT(-LAYERED) and the smallest
integrality gap is now approximately 1.31250. However, unlike the fence graph
instances here we once again see that the addition of the EXTDIST rule does not
improve the integrality gap when the other rules are present.

26



T
ab

le
5.

1:
W

ei
gh

te
d

C
am

el
D

at
a

P
ar

am
et

er
W

ei
gh

te
d

C
am

el
1

2
3

4
5

6
7

L
4

7
10

13
16

19
22

n
7

11
15

19
23

27
31

m
9

15
21

27
33

39
45

O
PT

2
3

4
5

6
7

8
LP

N
AT

-L
AY

ER
ED

1.
5

1.
66

66
7

1.
75

1.
8

1.
83

33
3

1.
85

71
4

1.
87

5
C

U
T

D
IS

T
1.

5
1.

66
66

7
1.

75
1.

8
1.

83
33

3
1.

85
71

4
1.

87
5

C
U

T
D

IS
T

ZE
RO

1.
5

1.
66

66
7

1.
75

1.
8

1.
83

33
3

1.
85

71
4

1.
87

5
C

U
T

D
IS

T
ZE

RO
ZE

RO
U

PP
ER

1.
5

1.
66

66
7

1.
75

1.
8

1.
83

33
3

1.
85

71
4

1.
87

5
LP

D
IS

T
0.

33
33

33
0.

33
33

33
0.

33
33

33
0.

33
33

33
0.

33
33

33
0.

33
33

33
0.

33
33

33
LP

D
IS

T
ZE

RO
0.

33
33

33
0.

33
33

33
0.

33
33

33
0.

33
33

33
0.

33
33

33
0.

33
33

33
0.

33
33

33
LP

D
IS

T
ZE

RO
ZE

RO
U

PP
ER

0.
5

0.
66

66
67

0.
75

0.
8

0.
83

33
33

0.
85

71
43

0.
87

5
C

U
T

D
IS

T
LP

D
IS

T
1.

87
5

2.
31

03
4

2.
69

35
5

3.
06

3.
42

30
8

3.
77

67
9

4.
12

5
C

U
T

D
IS

T
LP

D
IS

T
ZE

RO
2

2.
38

46
2

2.
77

82
6

3.
14

27
9

3.
49

62
3.

84
36

6
4.

18
74

9
C

U
T

D
IS

T
LP

D
IS

T
ZE

RO
ZE

RO
U

PP
ER

2
3

4
5

6
7

8
C

U
T

D
IS

T
LP

D
IS

T
EX

T
D

IS
T

ZE
RO

2
2.

72
72

7
3.

26
66

7
3.

78
94

7
4.

30
43

5
4.

81
48

1
5.

32
25

8
C

U
T

D
IS

T
LP

D
IS

T
EX

T
D

IS
T

ZE
RO

ZE
RO

U
PP

ER
2

3
4

5
6

7
8

27



Table 5.2: Fence n = 8

Parameter Fence 2
Value

L 12
|V (G)| 36
m 72
OPT 5
LPNAT-LAYERED 2
CUTDIST 2
CUTDIST ZERO 2
CUTDIST ZERO ZEROUPPER 2
LPDIST 0.363636
LPDIST ZERO 0.363636
LPDIST ZERO ZEROUPPER 0.8
CUTDIST LPDIST 2.80919
CUTDIST LPDIST ZERO 2.92234
CUTDIST LPDIST ZERO ZEROUPPER 3.81876
CUTDIST LPDIST EXTDIST ZERO 3.47339
CUTDIST LPDIST EXTDIST ZERO ZEROUPPER 3.97654

Table 5.3: Recursive Camel Data

Parameter Recursive Camel
1 2 3

l 2 4 6
n 3 9 25
m 3 14 45
OPT 2 3 4
LPNAT-LAYERED 2 2.5 2.5
CUTDIST 2 2.5 2.5
CUTDIST ZERO 2 2.5 2.5
CUTDIST ZERO ZEROUPPER 2 2.5 2.5
LPDIST 1 0.666667 0.6
LPDIST ZERO 1 0.666667 0.6
LPDIST ZERO ZEROUPPER 1 0.666667 0.75
CUTDIST LPDIST 2 2.5 2.75101
CUTDIST LPDIST ZERO 2 2.5 2.9
CUTDIST LPDIST ZERO ZEROUPPER 2 2.5 3.04762
CUTDIST LPDIST EXTDIST ZERO 2 2.5 2.93651
CUTDIST LPDIST EXTDIST ZERO ZEROUPPER 2 2.5 3.04762

28



5.4 Exhaustive Evaluation
We started the exhaustive evaluation portion of our analysis at 6 vertex graphs.
It may seem odd that we ignore smaller graphs. However, our results showed that
even among all 925 instances on 6 vertices, there were none for which even the
natural linear program LPNAT-LAYERED gave a fractional optimum. For this
reason we can say that even 6 vertex instances are too small to be interesting.

Summarized results of this evaluation is available in attachments A.1, A.2
and A.3. Each summarizes respectively the results for 6, 7 and 8 vertex graphs.
Each attachment contains data where each linear program’s largest integrality gap
is shown and each heuristic’s worst approximation ratio is shown. The results
are also subdivided based on the value of L. At the end of each summary
there is the total number of instances, the number for which the fractional
NATLP-LAYERED program gave a non-integral optimum and the number of
instances for which the CUTDIST LPDIST EXTDIST ZERO ZEROUPPER (i.e.
the full alternative linear program) gave a non-integral optimum.

One result of this exhaustive evaluation is that the CUTDIST ZERO
ZEROUPPER program always gave the same fractional optimum as that of the
NATLP-LAYERED program. This is in line with the results we saw for the
previous instances. Therefore, we are fairly certain in conjecturing that this
relationship holds in general.

We also see that the fraction of sufficiently interesting graphs (i.e. ones for
which at least the relaxed natural LP gives a non-integral optimum) is very small.
Even for n = 8 this is only about 0.01% of all instances. This seems to confirm our
previous belief that sampling instances randomly would not be a good approach.

Comparison of the linear program integrality gaps suggests that while the
"full" linear program (CUTDIST LPDIST EXTDIST ZERO ZEROUPPER) has
a smaller integrality gap than the natural linear program (LPNAT-LAYERED)
it is not by much. For n = 8 the integrality gap of the natural linear program is
4
3 in the worst case while the integrality gap of the full linear program is 6

5 in the
worst case. This is not a large difference. However, we expect that this is due to
the fact that we are looking at very small instances here. It was our hope that
we would be able to look at the data and conjecture the asymptotic behaviour of
the integrality gaps. However, it seems that for instances which are small enough
to be tractable for us fully the integrality gaps are too small to be useful for this
purpose. For example for n = 7 there are still linear programs which achieve
integrality gap of 1.

When it comes to heuristics we once again focus mostly on the n = 8 case.
The best approximation ratio achieved for these instances is 4

3 which is reached for
the "smart" rounding approach applied to the linear program CUTDIST LPDIST
EXTDIST ZERO ZEROUPPER. Interestingly we see that four linear programs
share the integrality gaps here (1.2 for CUTDIST LPDIST ZERO and all other
programs containing these three rules). However, their derived heuristics differ s
only the full set of rules achieves the approximation ratio of 4

3 .
We also see that with the exception of the shortpath cut heuristic all non-LP

based heuristic approaches fare poorly. This is somewhat surprising and might
again just be an artifact of the small instance size as we expect the refinement of
the L

2 combination heuristic to give better results on larger instances.

29



We can also examine the smallest graphs which are in some sense non-trivial.
For example Figure 5.1 is one of the two 7 vertex graphs for which the fractional
NATLP-LAYERED program gives a non-integral optimum. There is clear
similarity with the camel graph instances which supports our assessment that the
camel graphs are a good choice for hard instances. Similar "camel-like" structures
repeat in the larger instances too.

Figure 5.1: A 7 vertex graph for which the fractional NATLP-LAYERED
program gives a non-integral optimum. The blue vertex is s and the red vertex
is t. The edges on the direct path from s to t have x variables equal to 0.5.

On the other hand if we look at the smallest instances for which the full
alternative linear program gives a non-integral optimum we see that that new
patterns emerge. Figure 5.2 shows one such instance. There is some vague
similarity with the camel graphs in the sense that we have shorter s-t-paths
with longer paths running in parallel to them. However, out of the instances we
explored this perhaps most closely resembles the recursive camel graphs, but even
then the resemblance is not very strong. Likely this means that there are other
hard instances which we have not managed to capture with our instance families.

30



Figure 5.2: A 9 vertex graph for which the fractional CUTDIST LPDIST
EXTDIST ZERO ZEROUPPER program gives a non-integral optimum. The
blue vertex is s and the red vertex is t. Each edge is labelled with its y variable
value.

31



6. Implementation Details
Let us briefly discuss some practical details, problems and their solutions that we
have encountered during our implementation.

The core of our implementation is written in the programming language
Python. For working with graphs we use the NetworkX library[7]. Originally
we used the general purpose high-level library Pyomo [3] [8] with the LP solver
Gurobi [6] version 9.1 under its academic licence. However, we have found that
the overhead of Pyomo is too high for our purposes. As a general purpose LP
library it provides a convenient high-level interface but, given the relatively large
linear programs we worked with, this sometimes hid performance costs. Moreover,
Pyomo itself is written in Python which is known not to generally be fast. After
examining the performance profile of our implementation we have found that
the majority of the time and memory was spent not in the LP solver but in
Pyomo presolver. For this reason we opted to change our approach and bypass
Pyomo by creating our own specialized Python module written in C++ which
directly interfaces with Gurobi. This has resulted in a significant performance
improvement.

One could also consider generating the linear program in one of the many
formats that Gurobi accepts and then running Gurobi solver as a separate process.
However, interfacing with Gurobi’s C++ bindings directly proved to be more
convenient and efficient.

As mentioned before for some instance families their vertex count grows
rapidly. For that reason we resorted to substituting the camel graph with
its weighted version as was discussed previously. This allowed us to continue
evaluating this instance family up to k = 7 as opposed to k = 3 for the unweighted
camel graph.

For all the calculations we used a university server with 32 physical cores
working at frequency of 3.310 GHz and 251 GB of memory. Despite this fact we
found the Pyomo running out of memory several times which was the main reason
for us to switch to the custom C++ module. We did not focus on measuring the
time of our implementation since it was not the main goal of this thesis. However,
in general the running time of solving the largest linear programs was on the order
of days.

In order to reduce the running time as much as possible we used a small
camel instance and ran Gurobi’s automatic parameter tuning on it. After a day’s
worth of iterations it produced a parameter set which we then used for all the
calculations. This parameter set is included in the C++ module, and it contains
the following parameters:

• Method: 1 = Use the dual simplex method

• PreDual: 1 = Force presolve to use the dual

• PrePasses: 1 = Perform exactly one presolve pass

• Presolve: 1 = Conservative presolve

These generally reduced the solving time of the linear programs by a factor
of 2 to 3 compared to the default parameters.

32



The issues mentioned above mostly relate to the part of our analysis where
we examined the behaviour of few large linear programs. However, we also
did the "exhaustive evaluation" part in which the situation was different as we
were running heuristics and LP solvers on comparatively small instances. A
task like that is easily parallelizable, and we used the built-in Python library
multiprocessing to run the calculations on all 64 available virtual cores. Initially
we hit a memory bottleneck in some cases, but that was easily solved by having
processes share a single memory mapped input file instead of each having its own
copy of the input data.

In order to be able to iterate on our methods we split this part of the code into
two stages. The preprocessing stage reads an input file where each line represents
a connected graph in the compact graph6 format. As mentioned earlier for this
input we used Brendan McKay’s database of small connected unlabelled graphs
[11] which alreaday ensures that we do not need to deal with multiple isomorphic
graphs. The preprocessing stage then generates instances as described in the
second chapter and writes their representations into a new file where each line is
in the JSON format and represents a single instance. Had we made the whole file
in the JSON format we would have issues when it comes to splitting the file into
multiple parts for parallel processing. Notably this "JSON lines" format is then
used as both the input and the output format for the actual solving stage. This
allowed us to first run the solving stage with some linear programs. As we added
more we could use the output of the last run as the input for the next one. This
way we would not need to recompute LP or heuristic results which have already
been computed.

33



Conclusion
We have presented a new linear programming formulation for the L-bounded cut
problem. We have explored several variations of it. For the purpose of exploring
its properties we discussed several instances which we expect to be sufficiently
difficult to provide a good insight into the behaviour of the formulations. We have
also discussed the known theoretical results and approximation algorithms for the
problem. We have implemented several heuristics and approximation algorithms
and compared their performance on a large set of small instances and also the
difficult instances. We have also compared the performance of our formulations
with the natural formulation.

We expect the alternative LP formulation to be useful for future results, but
we were not able to prove any new theoretical results using it. However, we
propose at least two conjectures:

Conjecture 17. The linear program CUTDIST ZERO ZEROUPPER has the
same fractional optimum as the linear program NATLP on all instances of the
L-bounded cut problem.

Conjecture 18. On the camel graph instances the linear program CUTDIST
LPDIST ZERO ZEROUPPER achieves fractional optima which turn out to be
the integral optima.

Further research could be done by trying to prove these conjectured or by
exploring the behaviour of the formulations on other instance families. It would
also be interesting to explore the behaviour of the formulations on larger instances
than we were able to handle. One could also explore further refinement of the
linear programs we proposed. The ideal goal would be eventually proving the
integrality gap of the full alternative linear program and then developing an
approximation algorithm with better approximation ratio than the current best
known based on that result.

34



Bibliography
[1] J. Adámek and V. Koubek. Remarks on flows in network with short paths.

Commentationes Mathematicae Universitatis Carolinae, 12:661–667, 1971.

[2] Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, Heiko
Schilling, and Martin Skutella. Length-bounded cuts and flows. In Michele
Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors,
Automata, Languages and Programming, pages 679–690, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg. ISBN 978-3-540-35905-0.

[3] Michael L. Bynum, Gabriel A. Hackebeil, William E. Hart, Carl D. Laird,
Bethany L. Nicholson, John D. Siirola, Jean-Paul Watson, and David L.
Woodruff. Pyomo–optimization modeling in python, volume 67. Springer
Science & Business Media, third edition, 2021.

[4] Pasquale Foggia, Carlo Sansone, and Mario Vento. An improved algorithm
for matching large graphs. 01 2001.

[5] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956. doi: 10.4153/CJM-1956-045-5.

[6] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL
https://www.gurobi.com.

[7] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using networkx. In Gaël Varoquaux,
Travis Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python
in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[8] William E Hart, Jean-Paul Watson, and David L Woodruff. Pyomo:
modeling and solving mathematical programs in python. Mathematical
Programming Computation, 3(3):219–260, 2011.

[9] A. Itai, Y. Perl, and Y. Shiloach. The complexity of finding maximum disjoint
paths with length constraints. Networks, 12(3):277–286, 1982. doi: https://
doi.org/10.1002/net.3230120306. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/net.3230120306.

[10] Lovász László, V. Neumann-Lara, and M. Plummer. Mengerian theorems
for paths of bounded length. Period Math Hung, 9:269–276, 12 1978. doi:
10.1007/BF02019432.

[11] Brendan McKay. Simple graphs. URL http://users.cecs.anu.edu.au/~bdm/
data/graphs.html.

[12] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae,
10(1):96–115, 1927. URL http://eudml.org/doc/211191.

[13] Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979. doi: 10.1137/0208032.
URL https://doi.org/10.1137/0208032.

35

https://www.gurobi.com
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230120306
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230120306
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://users.cecs.anu.edu.au/~bdm/data/graphs.html
http://eudml.org/doc/211191
https://doi.org/10.1137/0208032


[14] Vijay V. Vazirani. Approximation Algorithms. Springer Berlin Heidelberg,
2003. doi: 10.1007/978-3-662-04565-7. URL https://doi.org/10.1007/
978-3-662-04565-7.

36

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7


List of Figures

2.1 A fence graph with k = 2. Layer numbers are shown above the
graph. The dashed edges are the shortcut edges. . . . . . . . 11

5.1 A 7 vertex graph for which the fractional NATLP-LAYERED
program gives a non-integral optimum. The blue vertex is s
and the red vertex is t. The edges on the direct path from s
to t have x variables equal to 0.5. . . . . . . . . . . . . . . . . 30

5.2 A 9 vertex graph for which the fractional CUTDIST LPDIST
EXTDIST ZERO ZEROUPPER program gives a non-integral
optimum. The blue vertex is s and the red vertex is t. Each
edge is labelled with its y variable value. . . . . . . . . . . . . 31

List of Tables

5.1 Weighted Camel Data . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Fence n = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Recursive Camel Data . . . . . . . . . . . . . . . . . . . . . . . . 28

37



A. Attachments

A.1 Exhaustive Evaluation Results for n = 6
Integrality gaps:
NATLP-LAYERED: 1
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1
LALL_CUTDIST_ZERO: 1
LALL_CUTDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST: 1
LALL_CUTDIST_LPDIST_ZERO: 1
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1

Integrality gaps by L:
L=3
NATLP-LAYERED: 1
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1
LALL_CUTDIST_ZERO: 1
LALL_CUTDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST: 1
LALL_CUTDIST_LPDIST_ZERO: 1
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1
L=5
NATLP-LAYERED: 1
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1
LALL_CUTDIST_ZERO: 1
LALL_CUTDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST: 1
LALL_CUTDIST_LPDIST_ZERO: 1
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1
L=4
NATLP-LAYERED: 1
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1
LALL_CUTDIST_ZERO: 1
LALL_CUTDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST: 1
LALL_CUTDIST_LPDIST_ZERO: 1

38



LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1

Approximation ratios:
solve_del_shortest: 4
solve_naive_cut: 2
solve_shortpath_cut: 1
solve_shortestpath_cut: 2
solve_lhalf_combination: 2
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 2.5
solve_smartround_NATLP-LAYERED: 1.5
solve_roundup_lall_cutdist: 2
solve_smartround_lall_cutdist: 1.75
solve_largest_weighted_dist_lall_cutdist: 1.75
solve_roundup_lall_cutdist_zero: 2
solve_smartround_lall_cutdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_zero: 1.33333
solve_roundup_lall_cutdist_zero_upper: 1
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 3
solve_smartround_lall_cutdist_lpdist: 1.5
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.5
solve_roundup_lall_cutdist_lpdist_zero: 3
solve_smartround_lall_cutdist_lpdist_zero: 1.66667
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1.66667
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 3
solve_smartround_lall_cutdist_lpdist_extended_zero: 1.33333
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1.5
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1
solve_greedy: 2
solve_greedy_walks: 4

Approximation ratios by L:
L=3
solve_del_shortest: 3
solve_naive_cut: 2
solve_shortpath_cut: 1
solve_shortestpath_cut: 2
solve_lhalf_combination: 1
solve_NATLP-LAYERED_optimal: 1

39



solve_roundup_NATLP-LAYERED: 1
solve_smartround_NATLP-LAYERED: 1
solve_roundup_lall_cutdist: 2
solve_smartround_lall_cutdist: 1.75
solve_largest_weighted_dist_lall_cutdist: 1.75
solve_roundup_lall_cutdist_zero: 2
solve_smartround_lall_cutdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_zero: 1.33333
solve_roundup_lall_cutdist_zero_upper: 1
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 2
solve_smartround_lall_cutdist_lpdist: 1.5
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.5
solve_roundup_lall_cutdist_lpdist_zero: 3
solve_smartround_lall_cutdist_lpdist_zero: 1.66667
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1.66667
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 3
solve_smartround_lall_cutdist_lpdist_extended_zero: 1.33333
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1.5
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1
solve_greedy: 2
solve_greedy_walks: 4
L=5
solve_del_shortest: 4
solve_naive_cut: 1
solve_shortpath_cut: 1
solve_shortestpath_cut: 2
solve_lhalf_combination: 2
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 2.5
solve_smartround_NATLP-LAYERED: 1.5
solve_roundup_lall_cutdist: 1
solve_smartround_lall_cutdist: 1
solve_largest_weighted_dist_lall_cutdist: 1
solve_roundup_lall_cutdist_zero: 2
solve_smartround_lall_cutdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_zero: 1
solve_roundup_lall_cutdist_zero_upper: 1
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 2
solve_smartround_lall_cutdist_lpdist: 1

40



solve_largest_weighted_dist_lall_cutdist_lpdist: 1
solve_roundup_lall_cutdist_lpdist_zero: 1.5
solve_smartround_lall_cutdist_lpdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 1
solve_smartround_lall_cutdist_lpdist_extended_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1
solve_greedy: 1.5
solve_greedy_walks: 3
L=4
solve_del_shortest: 4
solve_naive_cut: 2
solve_shortpath_cut: 1
solve_shortestpath_cut: 2
solve_lhalf_combination: 2
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 1
solve_smartround_NATLP-LAYERED: 1
solve_roundup_lall_cutdist: 2
solve_smartround_lall_cutdist: 1
solve_largest_weighted_dist_lall_cutdist: 1
solve_roundup_lall_cutdist_zero: 2
solve_smartround_lall_cutdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_zero: 1
solve_roundup_lall_cutdist_zero_upper: 1
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 3
solve_smartround_lall_cutdist_lpdist: 1
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.5
solve_roundup_lall_cutdist_lpdist_zero: 2
solve_smartround_lall_cutdist_lpdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 2
solve_smartround_lall_cutdist_lpdist_extended_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1

41



solve_greedy: 2
solve_greedy_walks: 4

Total instances: 925
# fractional for NATLP-LAYERED: 0
# fractional for LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 0
% fractional for NATLP-LAYERED: 0.00%
% fractional for LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 0.00%

A.2 Exhaustive Evaluation Results for n = 7
Integrality gaps:
NATLP-LAYERED: 1.33333
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1.33333
LALL_CUTDIST_ZERO: 1.33333
LALL_CUTDIST_ZERO_ZEROUPPER: 1.33333
LALL_CUTDIST_LPDIST: 1.23077
LALL_CUTDIST_LPDIST_ZERO: 1.2
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1.2
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1

Integrality gaps by L:
L=3
NATLP-LAYERED: 1
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1
LALL_CUTDIST_ZERO: 1
LALL_CUTDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST: 1
LALL_CUTDIST_LPDIST_ZERO: 1
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1
L=4
NATLP-LAYERED: 1.33333
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1.33333
LALL_CUTDIST_ZERO: 1.33333
LALL_CUTDIST_ZERO_ZEROUPPER: 1.33333
LALL_CUTDIST_LPDIST: 1.23077
LALL_CUTDIST_LPDIST_ZERO: 1.2
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1.2
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1
L=6
NATLP-LAYERED: 1

42



NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1
LALL_CUTDIST_ZERO: 1
LALL_CUTDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST: 1
LALL_CUTDIST_LPDIST_ZERO: 1
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1
L=5
NATLP-LAYERED: 1
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1
LALL_CUTDIST_ZERO: 1
LALL_CUTDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST: 1
LALL_CUTDIST_LPDIST_ZERO: 1
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1

Approximation ratios:
solve_del_shortest: 4
solve_naive_cut: 3
solve_shortpath_cut: 1.5
solve_shortestpath_cut: 2
solve_lhalf_combination: 3
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 1.66667
solve_smartround_NATLP-LAYERED: 1.33333
solve_roundup_lall_cutdist: 3
solve_smartround_lall_cutdist: 1.66667
solve_largest_weighted_dist_lall_cutdist: 1.66667
solve_roundup_lall_cutdist_zero: 3
solve_smartround_lall_cutdist_zero: 1.8
solve_largest_weighted_dist_lall_cutdist_zero: 2
solve_roundup_lall_cutdist_zero_upper: 1.5
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 3
solve_smartround_lall_cutdist_lpdist: 1.8
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.8
solve_roundup_lall_cutdist_lpdist_zero: 3
solve_smartround_lall_cutdist_lpdist_zero: 1.75
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1.66667
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1

43



solve_roundup_lall_cutdist_lpdist_extended_zero: 3
solve_smartround_lall_cutdist_lpdist_extended_zero: 1.75
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1.66667
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1
solve_greedy: 3
solve_greedy_walks: 5

Approximation ratios by L:
L=3
solve_del_shortest: 3
solve_naive_cut: 3
solve_shortpath_cut: 1.5
solve_shortestpath_cut: 2
solve_lhalf_combination: 1.5
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 1
solve_smartround_NATLP-LAYERED: 1
solve_roundup_lall_cutdist: 3
solve_smartround_lall_cutdist: 1.66667
solve_largest_weighted_dist_lall_cutdist: 1.66667
solve_roundup_lall_cutdist_zero: 3
solve_smartround_lall_cutdist_zero: 1.8
solve_largest_weighted_dist_lall_cutdist_zero: 1.75
solve_roundup_lall_cutdist_zero_upper: 1
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 3
solve_smartround_lall_cutdist_lpdist: 1.8
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.8
solve_roundup_lall_cutdist_lpdist_zero: 3
solve_smartround_lall_cutdist_lpdist_zero: 1.75
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1.66667
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 3
solve_smartround_lall_cutdist_lpdist_extended_zero: 1.75
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1.66667
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1
solve_greedy: 2
solve_greedy_walks: 5
L=4
solve_del_shortest: 4
solve_naive_cut: 2

44



solve_shortpath_cut: 1
solve_shortestpath_cut: 2
solve_lhalf_combination: 2
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 1.66667
solve_smartround_NATLP-LAYERED: 1.33333
solve_roundup_lall_cutdist: 2.5
solve_smartround_lall_cutdist: 1.66667
solve_largest_weighted_dist_lall_cutdist: 1.66667
solve_roundup_lall_cutdist_zero: 3
solve_smartround_lall_cutdist_zero: 1.5
solve_largest_weighted_dist_lall_cutdist_zero: 2
solve_roundup_lall_cutdist_zero_upper: 1.5
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 3
solve_smartround_lall_cutdist_lpdist: 1.66667
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.66667
solve_roundup_lall_cutdist_lpdist_zero: 3
solve_smartround_lall_cutdist_lpdist_zero: 1.66667
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1.66667
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 2
solve_smartround_lall_cutdist_lpdist_extended_zero: 1.33333
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1.5
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1
solve_greedy: 2
solve_greedy_walks: 2
L=6
solve_del_shortest: 4
solve_naive_cut: 1
solve_shortpath_cut: 1
solve_shortestpath_cut: 2
solve_lhalf_combination: 3
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 1
solve_smartround_NATLP-LAYERED: 1
solve_roundup_lall_cutdist: 2
solve_smartround_lall_cutdist: 1.66667
solve_largest_weighted_dist_lall_cutdist: 1.66667
solve_roundup_lall_cutdist_zero: 1
solve_smartround_lall_cutdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_zero: 1
solve_roundup_lall_cutdist_zero_upper: 1

45



solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 2
solve_smartround_lall_cutdist_lpdist: 1.66667
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.66667
solve_roundup_lall_cutdist_lpdist_zero: 1
solve_smartround_lall_cutdist_lpdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 1
solve_smartround_lall_cutdist_lpdist_extended_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1
solve_greedy: 3
solve_greedy_walks: 3.5
L=5
solve_del_shortest: 3.5
solve_naive_cut: 2
solve_shortpath_cut: 1
solve_shortestpath_cut: 2
solve_lhalf_combination: 2
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 1
solve_smartround_NATLP-LAYERED: 1
solve_roundup_lall_cutdist: 2
solve_smartround_lall_cutdist: 1.5
solve_largest_weighted_dist_lall_cutdist: 1.5
solve_roundup_lall_cutdist_zero: 1
solve_smartround_lall_cutdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_zero: 1
solve_roundup_lall_cutdist_zero_upper: 1
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 2
solve_smartround_lall_cutdist_lpdist: 1.5
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.5
solve_roundup_lall_cutdist_lpdist_zero: 1
solve_smartround_lall_cutdist_lpdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 2
solve_smartround_lall_cutdist_lpdist_extended_zero: 1

46



solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1
solve_greedy: 3
solve_greedy_walks: 2

Total instances: 10881
# fractional for NATLP-LAYERED: 2
# fractional for LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 0
% fractional for NATLP-LAYERED: 0.02%
% fractional for LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 0.00%

A.3 Exhaustive Evaluation Results for n = 8
Integrality gaps:
NATLP-LAYERED: 1.33333
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1.33333
LALL_CUTDIST_ZERO: 1.33333
LALL_CUTDIST_ZERO_ZEROUPPER: 1.33333
LALL_CUTDIST_LPDIST: 1.23077
LALL_CUTDIST_LPDIST_ZERO: 1.2
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1.2
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1.2
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1.2

Integrality gaps by L:
L=3
NATLP-LAYERED: 1
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1
LALL_CUTDIST_ZERO: 1
LALL_CUTDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST: 1
LALL_CUTDIST_LPDIST_ZERO: 1
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1
L=4
NATLP-LAYERED: 1.33333
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1.33333
LALL_CUTDIST_ZERO: 1.33333
LALL_CUTDIST_ZERO_ZEROUPPER: 1.33333
LALL_CUTDIST_LPDIST: 1.23077
LALL_CUTDIST_LPDIST_ZERO: 1.2
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1.09091

47



LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1.2
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1.09091
L=5
NATLP-LAYERED: 1.2
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1.2
LALL_CUTDIST_ZERO: 1.2
LALL_CUTDIST_ZERO_ZEROUPPER: 1.2
LALL_CUTDIST_LPDIST: 1.2
LALL_CUTDIST_LPDIST_ZERO: 1.2
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1.2
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1.2
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1.2
L=7
NATLP-LAYERED: 1
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1
LALL_CUTDIST_ZERO: 1
LALL_CUTDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST: 1
LALL_CUTDIST_LPDIST_ZERO: 1
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1
L=6
NATLP-LAYERED: 1
NATLP-LAYERED_BOOL: 1
LALL_CUTDIST: 1
LALL_CUTDIST_ZERO: 1
LALL_CUTDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST: 1
LALL_CUTDIST_LPDIST_ZERO: 1
LALL_CUTDIST_LPDIST_ZERO_ZEROUPPER: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO: 1
LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 1

Approximation ratios:
solve_del_shortest: 4.5
solve_naive_cut: 3
solve_shortpath_cut: 1.5
solve_shortestpath_cut: 3
solve_lhalf_combination: 3
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 2.33333
solve_smartround_NATLP-LAYERED: 1.66667
solve_roundup_lall_cutdist: 4
solve_smartround_lall_cutdist: 2.5
solve_largest_weighted_dist_lall_cutdist: 1.8

48



solve_roundup_lall_cutdist_zero: 3
solve_smartround_lall_cutdist_zero: 1.83333
solve_largest_weighted_dist_lall_cutdist_zero: 2
solve_roundup_lall_cutdist_zero_upper: 2.33333
solve_smartround_lall_cutdist_zero_upper: 1.66667
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1.66667
solve_roundup_lall_cutdist_lpdist: 4
solve_smartround_lall_cutdist_lpdist: 1.8
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.8
solve_roundup_lall_cutdist_lpdist_zero: 3
solve_smartround_lall_cutdist_lpdist_zero: 2
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 2
solve_roundup_lall_cutdist_lpdist_zero_upper: 2.33333
solve_smartround_lall_cutdist_lpdist_zero_upper: 1.5
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1.33333
solve_roundup_lall_cutdist_lpdist_extended_zero: 3
solve_smartround_lall_cutdist_lpdist_extended_zero: 1.8
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1.8
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 2
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1.5
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1.66667
solve_greedy: 3
solve_greedy_walks: 6

Approximation ratios by L:
L=3
solve_del_shortest: 3
solve_naive_cut: 3
solve_shortpath_cut: 1.5
solve_shortestpath_cut: 2
solve_lhalf_combination: 1.5
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 1
solve_smartround_NATLP-LAYERED: 1
solve_roundup_lall_cutdist: 3
solve_smartround_lall_cutdist: 1.8
solve_largest_weighted_dist_lall_cutdist: 1.8
solve_roundup_lall_cutdist_zero: 3
solve_smartround_lall_cutdist_zero: 1.83333
solve_largest_weighted_dist_lall_cutdist_zero: 2
solve_roundup_lall_cutdist_zero_upper: 1
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 2.5
solve_smartround_lall_cutdist_lpdist: 1.8
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.8
solve_roundup_lall_cutdist_lpdist_zero: 3
solve_smartround_lall_cutdist_lpdist_zero: 2

49



solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 2
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 3
solve_smartround_lall_cutdist_lpdist_extended_zero: 1.8
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1.8
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1
solve_greedy: 2
solve_greedy_walks: 6
L=4
solve_del_shortest: 4
solve_naive_cut: 2
solve_shortpath_cut: 1.5
solve_shortestpath_cut: 3
solve_lhalf_combination: 2
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 2.33333
solve_smartround_NATLP-LAYERED: 1.66667
solve_roundup_lall_cutdist: 4
solve_smartround_lall_cutdist: 2.5
solve_largest_weighted_dist_lall_cutdist: 1.75
solve_roundup_lall_cutdist_zero: 3
solve_smartround_lall_cutdist_zero: 1.75
solve_largest_weighted_dist_lall_cutdist_zero: 1.75
solve_roundup_lall_cutdist_zero_upper: 2
solve_smartround_lall_cutdist_zero_upper: 1.5
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1.66667
solve_roundup_lall_cutdist_lpdist: 4
solve_smartround_lall_cutdist_lpdist: 1.75
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.75
solve_roundup_lall_cutdist_lpdist_zero: 2.33333
solve_smartround_lall_cutdist_lpdist_zero: 1.75
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1.75
solve_roundup_lall_cutdist_lpdist_zero_upper: 2.33333
solve_smartround_lall_cutdist_lpdist_zero_upper: 1.5
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1.33333
solve_roundup_lall_cutdist_lpdist_extended_zero: 2.33333
solve_smartround_lall_cutdist_lpdist_extended_zero: 1.75
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1.75
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 2
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1.5
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1.25
solve_greedy: 3
solve_greedy_walks: 3
L=5

50



solve_del_shortest: 4.5
solve_naive_cut: 2
solve_shortpath_cut: 1
solve_shortestpath_cut: 2
solve_lhalf_combination: 2
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 1.66667
solve_smartround_NATLP-LAYERED: 1.33333
solve_roundup_lall_cutdist: 2
solve_smartround_lall_cutdist: 1.33333
solve_largest_weighted_dist_lall_cutdist: 1.66667
solve_roundup_lall_cutdist_zero: 1.33333
solve_smartround_lall_cutdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_zero: 1
solve_roundup_lall_cutdist_zero_upper: 2.33333
solve_smartround_lall_cutdist_zero_upper: 1.66667
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1.66667
solve_roundup_lall_cutdist_lpdist: 2.66667
solve_smartround_lall_cutdist_lpdist: 1.66667
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.66667
solve_roundup_lall_cutdist_lpdist_zero: 2
solve_smartround_lall_cutdist_lpdist_zero: 1.33333
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1.66667
solve_roundup_lall_cutdist_lpdist_zero_upper: 1.33333
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 2.5
solve_smartround_lall_cutdist_lpdist_extended_zero: 1.33333
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1.66667
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 2
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1.5
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1.66667
solve_greedy: 3
solve_greedy_walks: 2
L=7
solve_del_shortest: 3
solve_naive_cut: 1
solve_shortpath_cut: 1
solve_shortestpath_cut: 1.75
solve_lhalf_combination: 2
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 1
solve_smartround_NATLP-LAYERED: 1
solve_roundup_lall_cutdist: 2
solve_smartround_lall_cutdist: 1
solve_largest_weighted_dist_lall_cutdist: 1.66667
solve_roundup_lall_cutdist_zero: 1
solve_smartround_lall_cutdist_zero: 1

51



solve_largest_weighted_dist_lall_cutdist_zero: 1
solve_roundup_lall_cutdist_zero_upper: 1
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 2
solve_smartround_lall_cutdist_lpdist: 1
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.66667
solve_roundup_lall_cutdist_lpdist_zero: 1
solve_smartround_lall_cutdist_lpdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist_extended_zero: 2
solve_smartround_lall_cutdist_lpdist_extended_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1
solve_greedy: 1
solve_greedy_walks: 1.75
L=6
solve_del_shortest: 3.5
solve_naive_cut: 1
solve_shortpath_cut: 1
solve_shortestpath_cut: 2
solve_lhalf_combination: 3
solve_NATLP-LAYERED_optimal: 1
solve_roundup_NATLP-LAYERED: 1
solve_smartround_NATLP-LAYERED: 1
solve_roundup_lall_cutdist: 1.5
solve_smartround_lall_cutdist: 1
solve_largest_weighted_dist_lall_cutdist: 1
solve_roundup_lall_cutdist_zero: 1
solve_smartround_lall_cutdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_zero: 1
solve_roundup_lall_cutdist_zero_upper: 1
solve_smartround_lall_cutdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_zero_upper: 1
solve_roundup_lall_cutdist_lpdist: 2
solve_smartround_lall_cutdist_lpdist: 1
solve_largest_weighted_dist_lall_cutdist_lpdist: 1.33333
solve_roundup_lall_cutdist_lpdist_zero: 1
solve_smartround_lall_cutdist_lpdist_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero: 1
solve_roundup_lall_cutdist_lpdist_zero_upper: 1
solve_smartround_lall_cutdist_lpdist_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_zero_upper: 1

52



solve_roundup_lall_cutdist_lpdist_extended_zero: 1.66667
solve_smartround_lall_cutdist_lpdist_extended_zero: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero: 1.33333
solve_roundup_lall_cutdist_lpdist_extended_zero_upper: 1.66667
solve_smartround_lall_cutdist_lpdist_extended_zero_upper: 1
solve_largest_weighted_dist_lall_cutdist_lpdist_extended_zero_upper: 1.33333
solve_greedy: 2
solve_greedy_walks: 2

Total instances: 191930
# fractional for NATLP-LAYERED: 28
# fractional for LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 5
% fractional for NATLP-LAYERED: 0.01%
% fractional for LALL_CUTDIST_LPDIST_EXTENDED_ZERO_ZEROUPPER: 0.00%

53


	Introduction
	Preliminaries

	Research to Date
	Explored Instances
	General Remarks and Exhaustive Evaluation
	Random Graphs
	Camel Graphs
	Fence Graphs
	Recursive Camels
	Reduction of Vertex Cover

	Linear Programming
	Natural LP
	A New Approach

	Heuristics
	Delete Shortest
	Naive Cut
	Shortpath Cut
	Shortestpath Cut
	L2 Combination
	Most Shortest Paths Greedy
	Most Walks Greedy
	Linear Programming Based Heuristics
	Round Up
	"Smart" Round Up
	Largest Weighted Distance


	Results
	Camel Graphs
	Fence Graphs
	Recursive Camel Graphs
	Exhaustive Evaluation

	Implementation Details
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Exhaustive Evaluation Results for n=6
	Exhaustive Evaluation Results for n=7
	Exhaustive Evaluation Results for n=8


