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Introduction
In the study of partial differential equations (PDEs), free boundary problems
constitute a special class of boundary value problems. They are characterized
by the presence of an evolving boundary, the determination of which is linked to
the solution of the PDE itself. The a priori unknown portion of the boundary is
called a free boundary and it is subjected to conditioning in addition to standard
boundary conditions of a PDE problem. As a result, one seeks to not only describe
the solution to the PDE but also determine the free boundary.

These problems emerge in various scientific disciplines, including fluid dy-
namics, where they can model the interface between two immiscible fluids, in
mathematical biology when modeling tumor growth, and also in mathematical
finance to name but a few.

A classical example, which is worth mentioning, is the one-phase Stefan prob-
lem of melting ice, held at 0 degrees Celsius, in contact with its surrounding water.
It is one of the simplest possible models describing a phase-change process and
its study has greatly benefited the progress of the theory of free boundaries in the
last 40 years, and its description may be found in Friedman and Spruck [2011].

This thesis, which is based primarily on the work of Velichkov [2023], focuses
on the one-phase Bernoulli problem. This problem is of particular pertinence to
the study of free boundary regularity theory, as it has inspired significant progress
in the field. In the following chapters, we will translate this problem into the
language of the calculus of variations, as we prove the solution may be obtained
by solving a minimization problem of the functional FΛ. We then continue to
prove the existence of minimizers and tackle the question of their regularity. We
also give two illuminating examples of minimizers in simplified scenarios.

The first chapter briefs the reader on selected parts of the important theory
regarding function spaces, which are relevant to the subsequent sections.

The aim of the second chapter is to introduce the one-phase Bernoulli problem
and transform it into a more accessible variational problem of minimizing the
functional FΛ. We proceed to study several basic properties of this functional.

In the third chapter, the reader will be presented with two examples of mini-
mizers in simplified scenarios, illustrating the desired properties of regularity.

The main result of the fourth chapter is the proof of the existence of minimizers
of the functional FΛ. This is achieved by employing the direct method of calculus
of variations.

Finally, in the fifth chapter, we concern ourselves with an interesting question
of the regularity of the minimizers. We arrive at the result that the minimizers
of FΛ are Lipschitz continuous.

The aim of this thesis is to provide more detail to the theory described in
Velichkov [2023] and thus increase its readability. Our desired objective is to
create an introductory text into the free boundary regularity theory, which is
accessible to mathematicians of all levels of expertise.
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Notation
∆ - gradient operator

∇ - Laplace operator

div - divergence operator

∅ - empty set

ωd - the Lebesgue measure of the unit ball in Rd

Ω - domain

∂Ω - boundary of domain

Ωu - the set {u > 0} for a real-valued function u

Br(x) - open ball of radius r centered at x

Br - open ball of radius r centered at zero

suppu - the support of u, that is the set {u ≠ 0}

C∞0 (Ω) - class of infinitely differentiable compactly supported functions in Ω

(u ∧ v)(x) - the function min(u(x), v(x)) for real-valued u, v

(u ∨ v)(x) - the function max(u(x), v(x)) for real-valued u, v

χΩ - the characteristic function on the set Ω

⨏Ω - the averaging integral 1
∣Ω∣ ∫Ω

Hd−1 - the Hausdorff measure in d − 1 dimentions

a.e. - almost everywhere
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1. Preliminaries
1.1 Weak derivative and function spaces

1.1.1 Lebesgue space
Suppose 1 ≤ p <∞ and (Ω,A, µ) is a measure space. The Lebesgue space Lp(Ω)
consists of equivalence classes of measurable functions Ω→ R such that

∫ ∣f ∣
pdµ <∞ .

This space is endowed with the Lp-norm defined by

∥f∥Lp = ∥f∥p ∶= (∫ ∣f ∣
pdµ)

1
p

.

In the upcoming chapters, we will rely on the following property of the Lp

spaces.

Lemma 1 (Lp are separable). If 1 ≤ p <∞ and Ω ⊂ Rn is a measurable set, then
the space Lp(Ω) is separable.

We will not give the proof here and refer the reader to Brezis [2010] for its
description.

1.1.2 Sobolev space
The following definitions and further theory on the topic of Sobolev spaces can
be found in Evans [1998](chapter 5, p. 251-307).

Definition 1 (Weak derivative). Suppose Ω ⊂ Rn is an open domain and α =
(α1, α2,⋯, αn) ∈ Nn is a multi-index. Let u, v ∈ L1

loc(Ω). We call v the α-th weak
partial derivative of u, written as Dαu = v, on condition that

∫
Ω
u(x)Dαφ(x)dx = (−1)∣α∣∫

Ω
vα(x)φ(x)dx

for every function φ, which belongs to the space of infinitely differentiable func-
tions with compact support C∞c (Ω).

We denote D0u =D(0,⋯,0)u = u.

Remark. Functions φ from the definition above are commonly called test func-
tions.
Remark. The weak α-th partial derivative of u, if it exists, is defined uniquely up
to a set of measure zero. This is not difficult to prove and can be found in Evans
[1998].

We define the Sobolev space H1(Ω), which is a vital building block in the
upcoming chapters. It is a member of the following class of functions.
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Definition 2 (Sobolev spaces). Let Ω ⊂ Rn be an open domain. For a given k ∈ N
and 1 ≤ p ≤∞ we define the Sobolev space

W k,p(Ω) ∶= {u ∈ Lp(Ω) ∶Dαu ∈ Lp(Ω),0 ≤ ∣α∣ ≤ k} ,

where α is a multi-index.
We also introduce the space W k,p

0 (Ω) as the closure of C∞c (Ω) in W k,p(Ω).

This means, that u ∈W k,p
0 (Ω) if and only if there exists a sequence of functions

un ∈ C∞c (Ω) such that un → u ∈W k,p(Ω)

Definition 3. In the special case when k = 1 and p = 2, we denote W 1,2(Ω) as
H1(Ω). We endow this space with the norm

∥u∥H1 ∶= (∫
Ω
∣u∣

2
+ ∣∇u∣

2
)

1
2
,

for a function u ∈H1(Ω).

The space H1(Ω) is also sometimes dubbed the Hilbert space for the following
reason.

Theorem 2 (The space H1(Ω) is Hilbert). The Sobolev space H1(Ω) with the
norm ∥u∥H1 is a Hilbert space.

The proof of this statement is developed in Evans [1998], for example.
The following result neatly describes the relationship between the Lebesgue

and the Sobolev spaces.

Theorem 3 (Rellich-Kondrachov Compactness Theorem). Let D ⊂ Rn be an open
set with a smooth boundary. Suppose 1 ≤ p < n and p∗ = p n

n−p . Then, W 1,p(D) is
compactly embedded in Lq(D) for each 1 ≤ q < p∗.

In other words, the following is true:

1. W 1,p(D) ⊂ Lq(D),

2. ∥u∥Lq ≤ C∥u∥W 1,p for each u ∈W 1,p(D) and a constant C,

3. each bounded sequence in W 1,p(D) is precompact in Lq(D).

Proof. See Evans [1998] (section 5.7, theorem 1) for the proof of this theorem.

1.2 Weak(-★) convergence and compactness
In this section, we give the definitions of two types of convergence in a linear
normed space X. Since we cover the theory concerning these modes of con-
vergence only to a slim extent, we refer the interested reader to Royden and
Fitzpatrick [2010] for further information.

The upcoming definitions depend heavily on the notion of the dual of a Banach
space (X, ∥u∥X), which, as we recall, is the vector space

X∗ = {F ∶X → C continuous and linear} .
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Definition 4 (Weak convergence). Let X be a normed linear space. We say a
sequence {un} ⊂X converges weakly to u ∈X as n→∞, if the sequence of scalars
{f(un)} converges to f(u) for all f ∈X∗. We then write un ⇀ u.

To distinguish between convergence in the weak sense from the more common
{un} → u, meaning limn→∞ ∣un − u∣ = 0, we will often refer to the latter as strong
convergence in X. Since

∣f(un) − f(u)∣ = ∣f(un − u)∣ ≤ ∥f∥ ⋅ ∥fn − f∥ for all f ∈X∗ ,

if a sequence converges in the strong sense, it also converges weakly.
Generally, when dealing with a sequence un, where the condition on strong

convergence of un is too strict to request, one may also arrive at meaningful
results by only having the information of weak convergence. We will witness this
in the case of a minimizing sequence in Chapter 4.

We shall also introduce a type of convergence for a series of functions from
the dual space X∗.

Definition 5 (Weak-★ convergence). Let X be a normed linear space. We say a
sequence {fn} ⊂X∗ converges weakly-★ to f ∈X∗ as n→∞, if

lim
n→∞

fn(u) = f(u) for all u ∈X .

We then write un
★

⇀ u.

One of the most desirable properties of a given space is compactness. The
result for weak−★ topology is usually called the Banach–Alaoglu theorem. In
this thesis, we will use an immediate corollary of this theorem for sequences in
separable spaces.

Theorem 4 (Banach–Alaoglu for sequences). If X is a separable space, then
every bounded sequence {fn} in X∗ has a subsequence {fnk

} which converges
weak-★ to a function f ∈X∗.

The description of the proofs for both Banach–Alaoglu theorem and its con-
sequence for sequences can be found in Brezis [2010].

1.3 Inequalities
In this section, we will declare several important inequalities, which will be lever-
aged in further chapters.

Lemma 5 (Poincaré’s inequality). Let Ω ⊂ Rd be an open, bounded, smooth set
and u ∈H1

0(Ω). Then, there exists a constant C depending only on d and Ω such
that

∥u∥L2(Ω) ≤ ∥∇u∥L2(Ω) .

The description of this inequality can be found in Evans [1998] (section 5.8.,
p. 275).
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Lemma 6 (Hölder’s inequality). Assume that f ∈ Lp(Rn) and g ∈ Lp′(Rn) where
1
p +

1
p′ = 1. Then fg ∈ L1(Rn) and

∫ ∣fg∣ ≤ ∥f∥p∥g∥p′ .

Lemma 7 (Young’s inequality). Assume that f ∈ Lp(Rn) and g ∈ Lp′(Rn) where
1
r ∶=

1
p +

1
p′ − 1 ≥ 0. Then, their convolution (f ∗ g)(x) ∶= ∫ f(t)g(x− t)dt ∈ Lr(Rn)

and
∥f ∗ g∥r ≤ ∥f∥p∥g∥p′ .

Lemma 8 (Jensen’s inequality). Consider a finite-measure set Ω, a convex func-
tion φ ∶ R→ R and a function f ∈ L1(Ω). Then, it holds that

1
∣Ω∣ ∫Ω

φ(f(x))dx ≥ φ(
1
∣Ω∣ ∫Ω

f(x)dx) .

For these three inequalities, we refer the reader to Brezis [2010](chapter 4, p.
92-120) where their statements and proofs are fully treated.
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2. One-phase Bernoulliproblem

Inthischapter,wewillintroduceaproblemofgreatsigniicancetothestudy
offreeboundaryregularitytheory,theone-phaseBernoulliproblem. Asoneof
Bernoulli’sproblems,itsoriginliesinthedescriptionoffreesurfacesinideal
luids.

Thecontentsofthischapterarebasedontheirstchapterof[Velichkov,2023].

2.1 Problemformulation

LetDbeasmoothboundedopensetinRdandΛ>0agivenconstant.Bernoulli’s
freeboundaryproblemaskstoindadomainΩ⊂D andafunctionu∶Ω→R,
suchthat

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∆u=0∈Ω;

u=g on ∂Ω∩∂D;

u=0 and ∣∇u∣=
√

Λ on ∂Ω∩D,

(2.1)

whereg∶∂D→R isagivennon-negativefunction.
Aswemayobserve,thesolutionto2.1dependsbothonthechoiceoftheset

D andtheboundaryvaluefunctiong. Forthisreason,weareusuallynotable
toindthedomainΩandthefunctionuexplicitly,outsideofsomeveryspecial
cases.Infact,eventhequestionoftheexistenceofthepair(Ω,u),solvingthe
problem2.1,presentsachallenge.

Intheirresponsetothischallenge,H. W.AltandL.A.Cafarelliformulatedin
theirseminalpaperAltandCafarelli[1980]thefollowingassociatedvariational
problem:

Weseektominimizethefunctional

u→FΛ(u,D)=∫
D

∣∇u(x)∣
2
dx+Λ∣{u>0}∩D∣ (2.2)

amongallfunctionsu∶D→Rsuchthat

u∈H1(D) and u=gon∂D.

Inotherwords,wearelookingforafunctionuthatwouldsatisfythefollowing
deinition.

Deinition6 (MinimizerofFΛ).SupposeD ⊂Rd isaboundedopenset. The
functionu∶D → R issaidtobea minimizerofthefunctionalFΛ inD,if
u∈H1(D)isnon-negativeinD and

FΛ(u,D)≤FΛ(v,D) forevery v∈H1(D) suchthat u−v∈H1
0(D).

Wecontinuetodemonstratetheconnectionbetweentheminimizationproblem
andtheone-phaseBernoulliproblem2.1,whichallowsustoshiftourfocusfrom
solvingtheformerdirectlytoamoreaccessiblevariationalproblem.

Proposition1. Letu∶D → R bea minimizingfunctionofFΛ,whichisof
theclassC2(D). WeconsiderthedomainΩu∶={u>0}andthepertainingfree
boundary∂Ωu∩D. Then,thecouple(u,Ωu)isasolutiontothefreeboundary
problem2.1.
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We organize the proof in three steps.

(i) The fulfillment of the conditions

u = g on ∂Ω ∩ ∂D and u = 0 on ∂Ω ∩D

comes directly from the construction of the couple (u,Ωu).

(ii) To show harmonicity, we will formulate the following lemma.

Lemma 9 (Minimizer is harmonic). Let D ⊂ Rd be a bounded open set.
Then, any minimizing function u of FΛ in D, which is a C2(D) function,
is harmonic in the open set Ωu = {u > 0}.

Proof of Lemma. Suppose u is a minimizer of FΛ as above. Consider an
arbitrary function φ ∈H1

0(Ωu) and let ε > 0. Since φ is zero on the boundary
∂Ωu, we know that

u + εφ ∈H1(D) and u + εφ = g on ∂D.

We notice that for an ε very close to zero

{u + εφ > 0} = {u > 0}.

Thus, we can focus only on the Dirichlet energy part of the functional.
The minimality of u provides

1
2ε ∫Ωu

∣∇u∣
2
dx ≤

1
2ε ∫Ωu

∣∇(u + εφ)∣
2
dx ,

0 ≤ 1
2ε ∫Ωu

∣∇(u + εφ)∣
2
− ∣∇u∣

2
dx ,

0 ≤ 1
2ε ∫Ωu

∣∇u∣
2
− 2ε∇u ⋅ ∇φ + ε2 ∣∇φ∣

2
− ∣∇u∣

2
dx ,

0 ≤ ∫
Ωu

∇u ⋅ ∇φ +
ε

2 ∣∇φ∣
2
dx .

We pass to the limit ε→ 0

0 ≤ ∫
Ωu

∇u ⋅ ∇φdx .

This holds for both φ and −φ, hence

0 = ∫
Ωu

∇u ⋅ ∇φdx .

By partial integration for φ, we have

0 = ∫
∂Ωu

∂νuφ − ∫
Ωu

∆uφ

0 = −∫
Ωu

∆uφ .

Because φ is auxiliary, this means that

0 =∆u a.e. on Ωu .
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(iii) Lastly, we address the overdetermined condition on the free boundary. Let
ε > 0 and consider any smooth vector field ζ ∶ D → Rd with compact support
in D. Now, the function

ρε(x) = x + ε ζ(x)

is a diffeomorphism on D and, by the nature of ζ, the function

uε = u ○ ρ
−1
ε

is well-defined and belongs to H1(D).
As shown in Velichkov [2023] (lemma 9.5, p.82), the function ε→ FΛ(uε,D)
is differentiable and for smooth enough u and ∂Ωu can be computed as
follows:

∂

∂ε
∣
ε=0
FΛ(uε,D) = ∫

∂Ωu

(−∣∇u∣2 +Λ)ζ ⋅ νdHd−1 ,

where ν is the exterior normal to ∂Ωu.
Owing to the optimality of u, we get the identity

0 = ∫
∂Ωu

(−∣∇u∣2 +Λ)ζ ⋅ νdHd−1

and since ζ is arbitrary, we deduce that

∣∇u∣ =
√

Λ on ∂Ωu ∩D .

Considering all this, we may conclude that by minimizing the functional FΛ,
we obtain the pair (u,Ω) solving the one-phase Bernoulli problem 2.1.

2.2 Properties of the functional FΛ

We proceed to discuss several properties of the functional FΛ, which will prove
helpful in later sections.

Lemma 10 (Scaling). Let Ω ⊂ Rd be an open domain and u ∈H1(Ω).

(i) Consider x0 ∈ Rd, r > 0 and define

ux0,r(x) ∶=
1
r
u(x0 + rx) and Ωx0,r ∶= {x ∈ Rd ∶ x =

y − x0

r
for y ∈ Ω} .

Then, ux0,r(x) ∈H1(Ωx0,r) and also

FΛ(ux0,r,Ωx0,r) = r
−dFΛ(u,Ω) .

(ii) The identity Ft2Λ(tu,Ω) = t2FΛ(u,Ω) holds for every t > 0.
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Proof. (i) Take a function ux0,r as defined above. First, we show that ux0,r is
an element of H1(Ωx0,r). By the shape of Ωx0,r and ux0,r, and by using the
substitution φ(y) ∶= y−x0

r , y ∈ Ω we compute

∫
Ωx0,r

∣∇ux0,r(x)∣
2
dx = ∫

{
y−x0

r
; y∈Ω}

∣∇(
1
r
u(x0 + rx))∣

2
dx =

= ∫
Ω
∣∇(

1
r
u(y))∣

2
∣det(φ′(y))∣dy .

In the right-hand term, u ∈H1(Ω) provides finiteness

∫
Ω
∣∇(

1
r
u(y))∣

2
∣det(φ′(y))∣dy = ∫

Ω
∣∇(

1
r
u(y))∣

2 1
rd
dy =

=
1
rd ∫Ω

∣∇u(y)∣
2
dy <∞ .

The last identity above and the fact that

Λ ∣{ux0,r > 0} ∩Ωx0,r∣ = ∫
Ωx0,r∖{ux0,r≤0}

1dx

= λ∫
Ω
χ
{

1
r

u(y)>0} ∣det(φ′(y))∣ dy

= Λ 1
rd
∣Ω ∩ {u(y) > 0}∣ ,

results in

FΛ(ux0,r,Ωx0,r) = ∫
Ωx0,r

∣∇ux0,r(x)∣
2
dx +Λ ∣{ux0,r > 0} ∩Ωx0,r∣ =

= r−dFΛ(u,Ω) .

(ii) A computation gives

Ft2Λ(t u,Ω) = ∫
Ω
∣t∇u(x)∣

2
dx + t2Λ ∣{u > 0} ∩Ω∣ = t2FΛ(t u,Ω) .

Lemma 11 (Truncation). Let Ω ⊂ Rd be an open domain and u ∈H1(Ω). Then

FΛ(u,Ω) −FΛ(0 ∨ u,Ω) = ∫
Ω∖{u>0}

∣∇u∣
2
dx .

In addition, the identity

FΛ(u,Ω) −FΛ(u ∧ t,Ω) = ∫
Ω∖{u<t}

∣∇u∣
2
dx

holds for every t ≥ 0.

Proof. The proof follows immediately by the definition of F and the identities

∇(u ∧ t) = χ{u<t}∇u and ∇(0 ∨ u) = χ{u>0}∇u .
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Lemma 12 (Comparison). Let Ω ⊂ Rd be an open domain and u, v ∈H1(Ω). The
following holds

FΛ(u ∨ v,Ω) +FΛ(u ∧ v,Ω) = FΛ(u,Ω) +FΛ(v,Ω) .

Proof. We proceed by straightforward computation, integrating non-negative
functions:

FΛ(u ∨ v,Ω) +FΛ(u ∧ v,Ω) =

= ∫
Ω
∣∇(u ∨ v)∣

2
dx +Λ ∣{u ∨ v > 0}∣ + ∫

Ω
∣∇(u ∧ v)∣

2
dx +Λ ∣{u ∧ v > 0}∣

= ∫
{u≥v}

∣∇u∣
2
dx + ∫

{u<v}
∣∇v∣

2
dx +Λ ∣{u > 0} ∪ {v > 0}∣

+ ∫
{u≥v}

∣∇v∣
2
dx + ∫

{u<v}
∣∇u∣

2
dx +Λ ∣{u > 0} ∩ {v > 0}∣

= ∫
Ω
∣∇(u)∣

2
dx +Λ ∣{u > 0}∣ + ∫

Ω
∣∇(v)∣

2
dx +Λ ∣{v > 0}∣

= FΛ(u,Ω) +FΛ(v,Ω) .
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3. Examples of solutions
As the theory of the one-phase Bernoulli problem is complex in nature, we may
find it useful to explore some simple scenarios and examples of solutions. In this
chapter, we will examine two examples of local minimizers of FΛ, which can be
expressed explicitly, and develop intuition behind them.

The contents of this chapter are based mainly on the work of Velichkov [2023]
(chapter 2, p. 21-26) and are organized as follows. In the first section, we
observe that the so-called half-plane solutions are minimizers of FΛ. The second
section investigates the changes to energy caused by symmetrization and finds a
connection between the class of radial functions and the minimizers.

3.1 Half-plane solutions
Let µ ∈ Rd be a unit vector and Λ be positive. We introduce the so-called half-
plane solution

hν(x) =
√

Λ sup{0, x ⋅ ν} . (3.1)

Functions of the above structure are useful concepts in the free boundary
regularity theory, for example, they are used in proving that the free boundary
is C1,α regular. We will not delve further into this statement, one may find it
disclosed in Velichkov [2023].
Remark. Notice, that the function hν(x), in the set where it is positive, has the
slope ∣∇hν(x)∣ =

√
Λ and also ∆hν(x) = 0.

Our aim is to show that the functions of the form hν(x) are global minimizers.
First, we establish the definitions of local and global minimizers.

Definition 7 (Local and global minimizer). Let D be an open set in Rd. Then,
- a non-negative function u ∶D → R+ is said to be a local minimizer of FΛ in

D, if u ∈H1
loc(D) and for any bounded open set Ω, satisfying Ω ∈D, it meets the

condition:

FΛ(u,Ω) ≤ FΛ(v,Ω) for every v ∈H1
loc(D) such that u − v ∈H1

0(D) ,

- a function u ∶ Rd → R is called a global minimizer of FΛ if u is a local
minimizer of FΛ in Rd.

Note, that the definition of a minimizer we gave previously in 6 coincides with
the definition of a global minimizer.

The following proposition is the main result of this section.

Proposition 2 (The half-plane solutions are local minimizers). Let ν ∈ Rn be a
unit vector. Then the function hν(x), as defined in 3.1, is a local minimizer of
FΛ.

In order to prove Proposition 2, we require the assistance of the following two
lemmas.
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Lemma 13. Consider a function f ∶ R→ R+, meeting the condition

f(α) = 0 for some α < 0 .

Then,

f(0) = ∫
0

α
f ′(t)dt

(1)
≤ ∣α∣

1/2
(∫

0

α
∣f ′(t)∣

2
dt)

1/2

(2)
≤

1
2 (∣{f ≠ 0} ∩ {t ≤ 0}∣ + ∫

0

α
∣f ′(t)∣

2
dt) .

Proof. We may assume without loss, that α is the “last negative root” of f , that
is f > 0 on the open interval (α,0). Then, the first inequality (1) is an immediate
consequence of Hölder’s inequality 6. The second inequality (2) follows by Young’s
inequality 7, together with the fact that, by our choice of α,

∣α∣ ≤ ∣{f ≠ 0} ∩ {t < 0}∣ .

Lemma 14. Let D be either an open, smooth, bounded set in Rn or D = Rn. For
a given point x0 ∈ Rd and a unit vector ν ∈ Rd, consider the function

v(x) ∶= hν(x − x0) =
√

Λ sup{0, (x − x0) ⋅ ν} . (3.2)

Then, provided u ∈H1(D) is a non-negative function, such that

u = 0 on ∂D ∩ {v = 0} ,

it holds that
FΛ(u ∧ v,D) ≤ FΛ(u,D) . (3.3)

satisfying the equality if and only if u = u ∧ v.

Proof. Without loss of generality, we may assume that x0 = 0 and ν = ed.
Let us divide the domain D into the following two parts:

D+ =D ∩ {xd > 0} and D− =D ∩ {xd ≤ 0} ,

where xd denotes the value on the d-th coordinate of the point x ∈ Rd. We
calculate

FΛ(u,D) −FΛ(u ∧ v,D) =

= ∫
D
∣∇u∣

2
dx − ∫

D
∣∇(u ∧ v)∣

2
dx +Λ ∣{u > 0} ∩D∣ −Λ ∣{u ∧ v > 0} ∩D∣

= ∫
D−
∣∇u∣

2
dx +Λ ∣{u > 0} ∩D−∣ + ∫

D+∩{u>
√

Λ xd}

(∣∇u∣
2
− ∣∇v∣

2
) dx.

Employing the inequality in Lemma 13, we receive

∫
{xd<0}

∣∇u∣
2
dx +Λ ∣{u > 0} ∩ {xd < 0}∣ ≥ 2

√
Λ∫

{xd=0}
udHd−1 ,

where equality is satisfied if and only if u = 0 in {xd < 0}.
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Moreover, we have

∫
D+∩{u>

√

Λ xd}

∣∇u∣
2
− ∣∇v∣

2
dx = ∫

D+∩{u>
√

Λ xd}

∣∇(u − v)∣
2
+ 2∇v ⋅ ∇(u − v)dx .

Owing to the harmonicity of v =
√

Λxd on D+, we get

∫
D+∩{u>

√

Λ xd}

∇v ⋅ ∇(u − v)dx = −
√

Λ∫
{xd=0}

udHd−1 .

We may conclude, that

FΛ(u,D) −FΛ(u ∧ v,D) ≥ ∫
D+∩{u>

√

Λ xd}

∣∇(u − v)∣
2
≥ 0 ,

where the last inequality is an equality if and only if u ≤ v on Rd.

We are now in a position to prove the Proposition 2.

Proof of Proposition 2. We may assume without loss that ν = ed and put

h(x) ∶= hed
(x) =

√
Λ sup{0, xd} .

For a given R > 0, let u ∈H1
loc(Rd) be a non-negative function such that

(u − h) ∈ H1
0(BR). We shall prove that FΛ(h,BR) ≤ FΛ(u,BR), which will give

us the desired conclusion.
As demonstrated in Lemma 14

FΛ(u ∧ h,BR) ≤ FΛ(u,BR) .

and so we may assume that u ≤ h.
Because h is harmonic in {xd > 0}, we derive that

FΛ(u,BR) −FΛ(h,BR) = ∫
BR∩{xd>0}

∣∇(u − h)∣
2
dx −Λ ∣{xd > 0} ∩ {u = 0}∣

= ∫
BR∩{xd>0}∩{u>0}

∣∇(u − h)∣
2
dx

Where the second equality follows from the fact

∣∇(u − h)∣ = ∣∇h∣ =
√

Λ on u = 0 .

3.2 Radial solutions
In this section, we aim to comprehend two examples of local minimizers of the
functional FΛ, which are radial functions. We show the connection between the
minimizers of the functional and the class of radial functions and explore, how
symmetrization changes energy values.
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3.2.1 Symmetrization and Pólya–Szegő inequality
The following result is our main motivation.

Proposition 3 (Energy of symmetrized functions). Assume u ∶ Rd → R is a
function in H1(Rd), then

F1(u
#,Rn) ≤ F1(u,Rn) , (3.4)

where u# denotes the Schwarz symmetrization of u.

We refer the reader to Talenti [1994], which is our main source for this sub-
section, for a deeper dive into the theory of Schwartz’s symmetrization.

Definition 8 (Schwartz’s symmetrization). Let Ω be a measurable subset of Rd

and suppose the function u ∶ Ω → R vanishes at infinity, meaning all the sets
where u > 0 have a finite measure:

∣{x ∈ Ω ∶ ∣u(x)∣ > t}∣ <∞

for every non-negative t. We shall call these sets the positive level sets of u.
The distribution function of u is defined as the measure of its positive level

sets
µu(t) ∶= ∣{x ∈ Ω ∶ ∣u(x)∣ > t}∣ for t ≥ 0 .

We then define the decreasing rearrangement of u as

u∗(s) ∶= sup{t ≥ 0 ∶ µu(t) ≥ s} .

If Ω# is an open ball in Rn, centered at 0 and with the same measure as Ω,
then the Schwartz symmetrization of u is defined as

u#(x) = u∗(ωn ∣x∣
n
) ; x ∈ Ω#.

We formulate several properties of the functions µu(t) and u#, which are
straightforward results.

Lemma 15. The function µu(t) is decreasing, right-continuous and defined in
(0,∞). It holds that if we put

µu(t−) ∶= ∣{x ∈ Ω ∶ ∣u(x)∣ ≥ t}∣ ,

then
µu(t−) − µu(t) = ∣{x ∈ Ω ∶ ∣u(x)∣ = t}∣ .

Lemma 16. The function u∗ is a decreasing, right continuous function defined
in (0,∞) . The level sets

{s ≥ 0 ∶ u∗(s) > t} = [0, µu(t))

for all non-negative t. In other words

µu(t) = ∣{s ≥ 0 ∶ u∗(s) > t}∣ .
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Proof. By the definition of u∗, if s is on the left-hand side, then t must be such
that µu(t) > s, therefore {s ≥ 0 ∶ u∗(s) > t} ⊆ [0, µu(t)) .

Similarly, by the definition and because µu(t) is decreasing, if s < µu(t) then
belongs to the left hand side of {s ≥ 0 ∶ u∗(s) > t} ⊇ [0, µu(t)) .

Lemma 17. If s is non-negative, then

µu(u
∗(s)) ≤ s .

Additionally, for such s that 0 ≤ s < ∣supp(u)∣, we have

µu(u
∗(s)−) ≥ s .

Proof. As established previously in Lemma 16,

µu(u
∗(s)) = ∣{ξ ≥ 0 ∶ u∗(ξ) > u∗(s)}∣ .

Because u∗ is monotonically decreasing, we deduce

{ξ ≥ 0 ∶ u∗(ξ) > u∗(s)} ⊆ [0, s) ,

leading to the first conclusion.
Next, taking the left limit of the function µu, we obtain

µu(u
∗(s)−) = ∣{ξ ≥ 0 ∶ u∗(ξ) ≥ u∗(s)}∣ .

Given that u∗(s) has a positive value only if 0 ≤ s < ∣supp(u)∣ , and as u∗ decreases
monotonically, we may establish the inclusion

{ξ ≥ 0 ∶ u∗(ξ) ≥ u∗(s)} ⊇ [0, s] .

The second conclusion follows.

The Proposition 3 is a direct consequence of the following theorem, together
with the fact that the Schwarz symmetrization maintains the measure of level sets.
Notice, that the theorem is formulated only for Lipschitz continuous functions.
That is, however, sufficient, as the Lipschitz functions are dense in H1(Rd), and
so the estimate is true for all H1(Rd) functions.

Theorem 18 (Pólya–Szegő inequality). Let 1 ≤ p < ∞ and consider a Lipschitz
continuous function u which vanishes at infinity. That is, for all non-negative t

∣{x ∈ Rn ∶ ∣u(x)∣ > t}∣ <∞ .

Under these conditions, we may establish the following inequality:

∫
Rn
∣∇u#∣

p
dx ≤ ∫

Rn
∣∇u∣

p
dx .

Proof. As u# is a radial function, with the use of polar coordinates and by the
definition of u∗, we arrive at the following result

∫
Rn
∣∇u#∣

p
dx = ∫

∞

0
(−
du∗

ds
(s)nω

1/n
n s

n−1
n )

p

ds .
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On the other hand

∫
Rn
∣∇u∣

p
dx ≥ ∫

∞

0
(
d

ds ∫{x∈Rn∶∣u(x)∣>u∗(s)}
∣∇u∣

p
dx)ds ,

as the integral
∫
{x∈Rn∶∣u(x)∣>u∗(s)}

∣∇u∣
p
dx

monotonically increases from 0 to the integral ∫Rn ∣∇u∣
p
dx as s goes from 0 to ∞.

The proof can be readily obtained from the following lemma.

Lemma 19. Let 1 ≤ p <∞ and Ω ⊂ Rd be an open set. Suppose u is a Lipschitz
continuous function in Ω that decays at ∞. Then

(i) u∗ is locally absolutely continuous,

(ii) the inequality

d

ds ∫{x∈Rn∶∣u(x)∣>u∗(s)}
∣∇u∣

p
dx ≥ (−

du∗

ds
(s)nω

1/n
n s

n−1
n )

p

(3.5)

holds for almost every positive s.

We construct the proof in several steps, proving each before moving on to the
next. We will leverage some important theorems during this process, which we
will briefly state hereby for the reader.

(Coarea formula). Suppose u ∶ Rd ⊃ Ω→ R is a Lipschitz continuous function.
Let f be a non-negative measurable function on Ω, then

∫
Rd
f(x) ∣∇u(x)∣ dx = ∫

∞

0
∫

x∈Rd ∶ ∣u(x)∣=t
f(x)dHd−1 dx .

A proof of this formula may be found in Federer [2014]

(Isoperimetric Theorem). If Ω is a measurable subset of Rd and its measure
is finite, then

Hd−1 ∣∂Ω∣ ≥ ω1/d
d (∣Ω∣)

1−1/d
.

We refer to Burago et al. [2013], where his theorem is treated.

We shall now dive into the main proof.

Proof of Lemma 19. (1) The inequalities

∫
{x∈Rn∶u∗(a)>∣u(x)∣>u∗(b)}

∣∇u∣ dx ≥ nω
1/n
n (u∗(a) − u∗(b)) (3.6)

and
∣{x ∈ Rn ∶ u∗(a) > ∣u(x)∣ > u∗(b)})∣ ≤ b − a (3.7)

hold if ∣supp(u)∣ > b > a ≥ 0 .
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Proof of (1).

∫
{x∈Rn∶u∗(a)>∣u(x)∣>u∗(b)}

∣∇u∣dx

= (by the Coarea formula)

∫

u∗(b)

u∗(a)
(Hn−1 ∣{x ∈ Rn ∶ ∣u(x)∣ = t}∣)dt

≥ (by the Isoperimetric theorem)

∫

u∗(b)

u∗(a)
nω

1/n
n (∣{x ∈ Rn ∶ ∣u(x)∣ ≥ t}∣)

n−1
n dt

≥ (the integrand is a monotone function)

nω
1/n
n (∣{x ∈ Rn ∶ ∣u(x)∣ ≥ u∗(a)}∣)

n−1
n (u∗(a) − u∗(b))

≥ (by Lemma 17)
nω

1/n
n a

n−1
n (u∗(a) − u∗(b)) .

Now, by the definition of u∗ and the properties of µu we have

∣{x ∈ Rn ∶ u∗(a) > ∣u(x)∣ > u∗(b)})∣ = µu(u
∗(b)) − µu(u

∗(a)−) ,

By Lemma 17 follows

µu(u
∗(b)) ≤ b and µu(u

∗(a)−) ≥ a .

We continue with the use of the properties of u∗. Because by Lemma 16, we
see that

supp(u∗) = [0, ∣supp(u)∣]
The previous inequalities show the following

(b − a) esupp ∣∇u∣ ≥ nω1/n
n a

n−1
n (u∗(a) − u∗(b)) ,

when ∣supp(u)∣ > b > a ≥ 0 . Hence

esupp ∣∇u∣ ≥ −nω1/n
n s

n−1
n
du∗

ds
(s)

for almost every non-negative s.

(2) For almost all s ≥ 0 the following inequality holds
d

ds ∫{x∈Rn∶∣u(x)∣>u∗(s)}
∣∇u∣ dx ≥ −nω

1/n
n s

n−1
n
du∗

ds
(s) . (3.8)

Proof of (2). For 0 ≤ s < ∣supp(u)∣ we have
d

ds ∫{x∈Rn∶∣u(x)∣>u∗(s)}
∣∇u∣ dx = lim

h→0+
1
h ∫{x∈Rn∶u∗(s)≥∣u(x)∣>u∗(s+h)}

∣∇u∣ dx . (3.9)

Previously, we saw that the right-hand side of the inequality is greater than
or equal to

nω
1/n
n s

n−1
n (u∗(s) − u∗(s + h)) . (3.10)

We have thus shown the proof of 3.5 in the case of p = 1 for almost all
s ≥ 0.
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(3) We desire to prove 3.5 for all 1 ≤ p < ∞. Without loss of generality, we can
suppose that u∗ is strictly decreasing in a neighborhood of s (otherwise there
is nothing to prove).
We claim that

h = ∣{x ∈ Rn ∶ u∗(s) ≥ ∣u(x)∣ > u∗(s + h)}∣ (3.11)

for small enough positive h.

Proof of (3). Take the distribution function µu of u. Then

h = µu(u∗(s + h)) − µu(u
∗(s)) . (3.12)

By Lemma 15, we know that

µu(t−) − µu(t) = ∣{ξ ≥ 0 ∶ u∗(ξ) = t}∣ .

By the properties of µu in Lemma 17:

µu(u∗(ξ)) ≤ ξ ≤ µu(u∗(ξ)−) ,

if 0 ≤ ξ < ∣supp(u)∣. The claim follows.

Now
1
h ∫{x∈Rn∶u∗(s)≥∣u(x)∣>u∗(s+h)}

∣∇u∣
p
dx

≥ (by Jensen’s inequality 8)

(
1
h ∫{x∈Rn∶u∗(s)≥∣u(x)∣>u∗(s+h)}

∣∇u∣ dx)
p

.

Consequently

d

ds ∫{x∈Rn∶∣u(x)∣>u∗(s)}
∣∇u∣

p
dx ≥ (

d

ds ∫{x∈Rn∶∣u(x)∣>u∗(s)}
∣∇u∣ dx)

p

.

The proof is now complete.

3.2.2 Radial minimizers
Let Br be the open ball in Rd centered at zero with its radius set to r > 0. We
consider the following minimization problem in the exterior domain Rd ∖Br

min{∫
Rd
∣∇(u)∣

2
dx + ∣{u > 0}∣ ∶ u ∈H1(Rd); u = 1 in Br} . (3.13)

The interior version of the problem reads as

min{∫
Br

∣∇(u)∣
2
dx + ∣{u > 0}∣ ∶ u ∈H1(Br); u = 1 in ∂Br} . (3.14)

We will prove that the problems 3.13 and 3.14 admit unique solutions, which
can be explicitly calculated.
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Proposition 4 (Optimal exterior solution). For every r > 0, there exists a unique
solution ur to the problem 3.13 in Rd. The solution can be expressed as

ur(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 in Br ,

hr(x) in BR ∖Br ,

0 in Rd ∖BR ,

where the radius R > r is determined by r and the dimension d, and hr is a radial
function, specifically given by

hr(x) =
∣x∣2−d −R2−d

r2−d −R2−d
if d ≥ 3 and hr(x) =

ln ∣x∣ − lnR
ln r − lnR if d = 2 .

Proof. By Proposition 3, taking Schwarz symmetrization u# of every function u
gives that F1(u#,Rn) ≤ F1(u,Rn). Thus, there is a minimizer of F1 which is a
radial function. First, we seek to minimize F1 in the class of radial functions.

Let d ≥ 3. For every 0 < r < R, consider the function

ur,R(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if ∣x∣ ≤ r,
∣x∣2−d

−R2−d

r2−d−R2−d , if r < ∣x∣ < R,
0, if ∣x∣ ≥ R.

Function ur,R is the unique harmonic function in the set BR ∖Br. Therefore,
every minimizer of F1 among the radial functions must take the form of a function
ur,R, for some 0 < r < R.

Now, taking the functional

F1(ur,R,Rn) = ∫
BR∖Br

∣∇(
∣x∣2−d −R2−d

r2−d −R2−d
)∣

2

dx + ∣BR∣ =
d(d − 2)
r2−d −R2−d

ωd + ωdR
d ,

we wish to find the optimal radius R.
Considering the function f(R) ∶= d(d−2)

r2−d−R2−d +Rd we see that it is strictly convex,
since

(f(R))′′ = (−d(d − 2)2 R1−d

(r2−d −R2−d)2
+ dRd−1)

′

=

= 2d(d − 2)2 R2−2d

(r2−d −R2−d)3
+ d(d − 1)Rd−2

is greater than zero for d ≥ 3 if R > r > 0. Moreover

lim
R→r+

f(R) = lim
R→∞

f(R) = +∞ (3.15)

and so f(R) has a unique minimum R∗ > r.
Let d = 2. For every 0 < r < R, we select the function

ur,R(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if ∣x∣ ≤ r,
ln ∣x∣−ln R
ln r−ln R , if r < ∣x∣ < R,

0, if ∣x∣ ≥ R.
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which is the unique harmonic function in BR ∖Br.
We take the energy

F1(ur,R,Rn) = ∫
BR∖Br

∣∇(
ln ∣x∣ − lnR
ln r − lnR )∣

2

dx + ∣BR∣ =
2

ln(R/r)π + πR
2 .

As in the case of d ≥ 3, there exists a unique minimizer of the calculated energy
R∗.

Finally, we show that the functions ur,R∗ are the unique minimizers of F1
among all admissible functions.

Assume u is a minimizer of F1 which is not a radial function. By 3, the
symmetrized function u# is also a minimizer. As a radial function, u# has the
form u# = ur,R∗ in its corresponding dimension d and we note that in particular
∣{u > 0}∣ = ∣BR∗ ∣.

Now, with u and u# both optimal, by Lemma 12 are the functions v ∶= u∧u#

and V ∶= u ∨ u# also minimizes of F1. Since u is not radial, we have either

∣{v > 0}∣ ≠ ∣BR∗ ∣ or ∣{V > 0}∣ ≠ ∣BR∗ ∣ .

Because their respective symmetrized functions v# and V # are optimal as well
by 3, we necessarily have the identity v# = u# = V #. In particular

∣{v > 0}∣ = ∣{V > 0}∣ = ∣BR∗ ∣ ,

which is a contradiction.
In conclusion, the functions ur,R∗ are the unique minimizers of F1.

Let us investigate the relationship between R(r) and r a little further. We
make several observations, based on the previous Proposition 4.
Corollary. The following statements are true for d ≥ 2.

(i) The radius R(r) from 4 is a continuous function of r, such that

r < R < r + 1 .

(ii) It holds that
lim
r→0

R(r) = 0 .

(iii) The gradient of the radial function hr is of the form

∣∇hr(x)∣ = (
∣x∣

R
)

1−d

.

Proof of corollary. (i) We remember the result given in Lemma 14, which im-
plies that the optimal slope of the solution ur to 3.14 is 1. Therefore, we
may conclude that ur has bounded support. Specifically, u = 0 outside of
the set Br +B1.
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(ii) Let d ≥ 3. Consider the optimal radius R∗, minimizing the function f(R).
Since R∗ is minimum, we have the identity

0 = f ′(R∗)

0 = −d(d − 2)2 R1−d
∗

(r2−d −R2−d
∗
)2
+ dRd−1

∗

(d − 2)2R1−d
∗
= Rd−1

∗
(r2−d −R2−d

∗
)2

d − 2 = Rd−1
∗
(r2−d −R2−d

∗
) .

With this, we obtain a very nice, continuously differentiable implicit function

I(R, r) = Rd−1 −Rrd−2 − (2 − d)rd−2 (3.16)

in R+ ×R+.

(iii) We are now interested in the behavior of R(r) as r → 0. By the Implicit
function theorem (see Rudin [1964]), R can be presented as a single-variable
function of r of the class C1, that is R = γ(r).
We notice that since I(0,0) = 0, we have γ(0) = 0. Remember the definition
of the first derivation of a single-variable function in the point r = 0:

dγ

dr
(0) = lim

h→0

γ(0 + h) − γ(0)
h

= lim
h→0

γ(h)

h
.

On the other hand, we may differentiate the implicit function:

dγ

dr
= −

∂f
∂r
∂f
∂R

=
rd−3(R(d − 2) − (d − 2)2)
(d − 1)Rd−2 − rd−2 ,

where we treat the resulting function as a function of the variable r.
Combining the identities, we get

0 = dγ
dr
(0) = lim

h→0

γ(h)

h
= lim

r→0

R(r)

r

which implies, that R(r) → 0 as r approaches zero. (All limits in 0 were
taken from the right.)
Let d = 2 and consider the optimal radius R∗. By the same process as for
d ≥ 3, we obtain the identity

R∗(ln r − lnR∗) = 1 (3.17)

and the associated implicit function

I(R, r) = re1/R −R ,

which is continuously differentiable in R+ ×R+.
Since we necessarily have that I(R, r) = 0, even for those r which are close
to zero, the function Re1/R must also go to zero. This means, that the decay
of R(r) must overpower the growing term e1/R. That is, R(r)→ 0 as r → 0.
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(iv) Let us now calculate the norm of the gradient of hr. We describe the steps
for d ≥ 3, as in two dimensions the process is analogous.
First, we find the partial derivatives:

∂hr

∂xi

=
∂hr

∂∣x∣

∂∣x∣

∂xi

=
1

r2−d −R2−d
(2 − d)∣x∣1−d xi

∣x∣

=
1

r2−d −R2−d
(2 − d) xi

∣x∣d
.

Then, the euclidian norm of ∇hr = (
∂hr

∂x1
, . . . , ∂hr

∂xd
):

∣∇hr∣ =
1

r2−d −R2−d
(2 − d) 1

∣x∣d−1 = (
∣x∣

R
)

1−d

,

where in the second equality we utilized the identity 3.16.

Now, we move to the interior version of the problem.

Proposition 5 (Optimal interior solution). For every R > 0, there exists a di-
mensional constant Cd > 0 such that for every R > Cd there is a unique solution
uR to the problem 3.14. Moreover, the solution can be expressed as

uR(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 in ∂BR ,

hR(x) in BR ∖Br ,

0 in BR ,

(3.18)

where hR is a radially symmetric function, specifically given by

hR(x) =
∣x∣2−d − r2−d

R2−d − r2−d
if d ≥ 3 and hR(x) =

ln ∣x∣ − ln r
lnR − ln r if d = 2 .

Proof. Once again, we notice that by Proposition 3, for every function u there is
a radially symmetric function u# with lower energy. Let us consider a function
v = 1 − u and its Schwarz symmetrization v#. We now redefine the function u#

as u# = 1 − v# and take the energy functional

F1(u
#,BR) = ∫

BR

∣∇u#∣
2
dx + ∣BR∣ + ∣{u

# > 0} ∩BR∣

= ∣∇v#∣
2
dx + ∣BR∣ + ∣{v

# < 1} ∩BR∣

≤ ∣∇v∣
2
dx + ∣BR∣ + ∣{v < 1} ∩BR∣

≤ ∣∇u∣
2
dx + ∣BR∣ + ∣{u < 1} ∩BR∣

= F1(u,BR) .

Therefore, we know there exists a radially symmetric function u# which minimizes
F1. Because by 9, u# is harmonic in {u# > 0}, it has necessarily the form of the
unique harmonic function uR in BR ∖Br, defined by 3.18. That is, u# = uR for
some 0 < r < R.
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Let d ≥ 3. Now, for a given r ∈ (0,R), we calculate the functional

F1(uR,BR) = ∫
BR∖Br

∣∇(
∣x∣2−d − r2−d

R2−d − r2−d
)∣

2

dx + ∣BR ∖Br∣

=
d(d − 2)
r2−d −R2−d

ωd + ωd(R
d − rd) .

Consider the part of the energy, which is dependent on r, as the function

f(r) ∶=
d(d − 2)
r2−d −R2−d

− rd .

As we may observe,

lim
r→0+

f(r) = 0 and lim
r→R

f(r) = +∞.

Furthermore, if we take R large enough and r = R
2 , then we find that f(R/2) < 0.

Now, we calculate
f ′(r) =

d(d − 2)2r1−d

(r2−d −R2−d)2
− drd−1 .

It is easy to check, that

f ′(r) = 0 ⇐⇒ g(r) ∶= (d − 2) − r + rd−1R2−d = 0 ,

therefore we will focus on the function g(r).
Upon rearranging the equation

(d − 2) − r + rd−1R2−d = 0

rd−1 =
r − (d − 2)
R2−d

we see that on the right-hand side of the equality is a linear function. The
equation g(r), by its polynomial nature, has at most d−1 zeroes. However, since
the term rd−1 can meet the linear function at most twice, the number of possible
solutions of g(r) = 0 is reduced to two.

Now, if we take again a large enough R, then

g(d − 1) < 0 and g(R − 2) < 0 ,

and we also have
g(0) = g(R) = d − 2 > 0 .

Therefore, the equation g(r) = 0 has exactly two solutions

r1 ∈ (0, d − 1) and r2 ∈ (R − 2,R).

Let the md be the minimum of f in the interval [0, d − 1]. Then, for a large
enough R, we have

f(R − 2) = (R − 2)d−2 (
d(d − 2)

1 − (1 − 2
R)

d−2 − (R − 2)2
) <md
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Hence, there is a unique r ∈ (0,R) that minimizes f and therefore also FΛ in
(0,R). Moreover, we know that R − 2 < r < R.

Let now d = 2. For every r ∈ (0,R), consider the function uR as given by 3.18.
Let us take the energy functional

F1(uR,BR) = ∫
BR∖Br

∣∇(
ln ∣x∣ − ln r
lnR − ln r )∣

2

dx + ∣BR ∖Br∣ =
2π

lnR − ln r + π(R
2 − r2)

Similarly to before, we set

f(r) ∶=
2

lnR − ln r − r
2 with f ′(r) =

2
r(lnR − ln r)2 − 2r .

Next, we take
g(r) ∶= 1 − r(lnR − ln r) .

As above, g(r) = 0 can have at most two solutions in the interval (0,R).
For a large enough R we then have

g(1) = 1 − lnR < 0 and g(R − 2) = 1 − (R − 2) ln 1 − 2
R − 2 < 0 ,

meanwhile
g(0) = g(R) = 1 .

Consequently, the two zeroes of g are in the intervals (0,1) and (R − 2,R), re-
spectively,

Let us, again, take a large enough R, then we have

f(R − 2) = 2
ln (1 + 2

R−2)
− (R − 2)2 < −1 < f(1).

Thus, for a large enough R there is a unique r that minimizes f in (0,R) and
R − 2 < r < R.

The uniqueness of the solution is proven analogically as in Proposition 3.14.

By almost the exact same process as in Proposition 4, we may deduce the
magnitude of ∇hR.
Corollary. For d ≥ 2, the gradient of the radial function hR is of the form

∣∇hR(x)∣ = (
∣x∣

r
)

1−d

.
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4. Existence of solutions
In this chapter, we will prove that there exist local minimizers of the functional
FΛ. We then move on to discuss several qualitative properties of these functions.

4.0.1 Existence by direct method
The main result of this chapter is the following proposition.

Proposition 6 (Existence). Let Λ > 0 and D ⊂ Rd be a bounded open set. Con-
sider a fixed boundary value function g ∈ H1(D) such that g is non-negative in
D. Then, there exists a solution to the variational problem

min{FΛ(u,D) ∶ u ∈H
1(D), u − g ∈H1

0(D)} . (4.1)

As we aim to prove the existence of a solution to the minimization problem
4.1, we follow the structure of the direct method of calculus of variations. The
method consists of three steps:

(i) We find a minimizing sequence (un) along which FΛ converges to its infimum
on D.

(ii) We show that (un) admits a subsequence (unk
) which converges in H1(D)

an element u.

(iii) We prove that u is indeed a minimizer of FΛ.

The third step (iii) depends on a specific property of the functional FΛ, called
sequential lower weak semi-continuity with respect to weak convergence. We
continue to show this property.

Lemma 20 (Lower weak semi-continuity). Let Ω ⊂ Rd be a bounded open domain.
For any sequence of non-negative functions {uk}k∈N in H1(Ω), converging weakly
in H1(Ω) and strongly in Lp(Ω), 1 ≤ p <∞ to a function u ∈H1(Ω), it holds that

FΛ(u,Ω) ≤ lim inf
k→∞

FΛ(uk,Ω) (4.2)

We base the proof of Lemma 20 on the work of Arama and Leoni [2012](the-
orem 2.2). In the second half of the proof we rely heavily on a corollary of the
well-known Hahn-Banach theorem, which states:

If X is a normed space and x ∈X, there exists ρ ∈X∗ such that

ρ(x0) = ∥x0∥ and ∣ρ(x)∣ ≤ ∥x∥ for all x ∈X . (4.3)

This statement together with the Hahn-Banach theorem can be found in Rudin
[1991] (chapter 3, p. 56 - 59).

Proof. Consider a sequence of functions {un}n∈N conditioned as above. Taking
the energy functional of un

FΛ(un,D) = ∫
D
(∣∇un(x)∣

2
+ χ{un>0})dx ,
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we note that the sequence {χ{un>0}}n∈N is bounded in L1(Ω). Because L1(Ω)
is a separable function space, by Banach–Alaoglu (4), we may find a function
ξ ∈ L∞(Ω), 0 ≤ ξ ≤ 1 and extract a subsequence {uk} along which convergence
occurs:

χ{uk>0}
★

⇀ ξ in L∞(Ω) .

We show that ξ ≥ χ{u>0}. Having uk → u in L1
loc(Ω) and χ{uk>0}

★

⇀ ξ in L∞(Ω),
we pass to the limit k →∞ in the identity

∫
Ω
uk(1 − χ{uk>0})dx = 0 ,

which yields
∫

Ω
uk(1 − ξ)dx = 0 for all r > 0 .

Since uk ≥ 0 and 0 ≤ ξ ≤ 1, we arrive at the conclusion

uk(1 − ξ) = 0 a.e. in Ω .

Hence
ξ = 1 a.e. in the set {uk > 0}

and thus
χ{uk>0}

★

⇀ ξ ≥ χ{u>0} .

The proof will follow by lower semi-continuity of the H1 norm (with respect
to the weak H1 convergence).

We define closed balls B(α) ∶= {u ∈ H1(Ω) ∶ ∥u∥H1 ≤ α}. We see that the
norm is lower semi-continuous if B(r) are weakly closed for every α > 0.

Let {un} be a sequence in the set B(α), α > 0 weakly converging to u ∈H1(Ω).
Then, by 4.3, there exists a linear functional ρ ∈ (H1(Ω))∗ such that

ρ(u) = ∥u∥H1 and ∣ρ(un)∣ ≤ ∥un∥H1 for all un ∈ B(α) .

Due to weak convergence,

∥u∥H1 = ρ(u) = lim
n→∞

ρ(un) ≤ lim inf
n→∞

∥un∥H1 ≤ α .

Therefore

FΛ(u,D) = ∫
D
(∣∇u(x)∣

2
+ χ{u>0})dx ≤

≤ ∫
D
(∣∇u(x)∣

2
+ ξ)dx ≤

≤ lim inf
n→∞

∫
D
∣∇un(x)∣

2
dx + lim

n→∞
∫

D
χ{un>0} dx = lim inf

n→∞
FΛ(un,D) .

Now, we are equipped to prove the existence of a solution to 4.1.

Proof of Proposition (6). (i) The functional FΛ(u,D) is non-negative,
i.e. bounded from below by 0 on D. Therefore, it has an infimum greater
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than −∞ and by the definition, we may consider a sequence {un} ∈ H1(D)
where

lim
n→∞
FΛ(un,D) = inf{FΛ(u,D) ∶ u ∈H

1(D), un − g ∈H
1
0(D)} > −∞ . (4.4)

We call this sequence a minimizing sequence.
Without loss of generality, we may assume that

FΛ(un,D) ≤ FΛ(g,D) ≤∞ (4.5)

We also assume by 11, that un ≥ 0 for each n ∈ N.

(ii) We wish to show the functions un are uniformly bounded in H1(D) By
definition of the H1 norm, we have the identity

∥un∥H1 = ∥∇un∥L2 + ∥un∥L2 . (4.6)

We notice, that the first term of 4.6 comes from the shape of the functional
and is therefore bounded by FΛ(g,D), according to 4.5.
Now we want to gain control over the second term as well. Because un−g = 0
on the boundary of D, we have by Poincaré’s inequality 5

∥un − g∥L2 ≤ C(d,D)∥∇un −∇g∥L2

where C(d,D) is independent of the function un. Therefore un is bounded
in H1(D).
Because H1(D) is compactly embedded in Lp(D), 1 ≤ p < ∞ by Rellich-
Kondrachov 3, the minimizing sequence contains a subsequence {unk

} which
converges weakly in H1(D) and strongly in Lp(D) to a function u ∈H1(D).

(iii) Now we have a sequence {unk
} in accordance with the conditions of 20,

which gives us weak lower semicontinuity

FΛ(u,D) ≤ lim inf
n→∞

FΛ(un,D) ,

and so, u is a solution to 4.1.

4.0.2 Properties of solution
Definition 9 (Subarmonic function). Let D ⊂ Rd be an open set. A continuous
function u on D is said to be subharmonic, if for any ball Br(x) ⊂D and for all
functions ψ harmonic in Br(x), it holds that

if u ≤ ψ on ∂Br(x) then u ≤ ψ in Br(x) .

Lemma 21 (The minimizers are subharmonic functions I.). Suppose D ⊂ Rd is
a bounded open set and the function u ∈H1(D) is a minimizer of FΛ in D. Then
u u is non-negative, and subharmonic in D (or, in other words, ∆u ≥ 0) in the
sense of distributions:

For every φ ∈ C∞c (D), such that φ ≥ 0 on D, holds the identity

∫
D
∇u ⋅ ∇φdx ≤ 0 .
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Proof. The fact that u ≥ 0 stems straight from the Lemma 11.
Now, consider a given non-negative function φ ∈ C∞c (D). Suppose that t ≥ 0

and v = u−tφ. Then when have that (v∨0) ≤ u. We may integrate on the support
of φ

FΛ(u,D) = ∫
D
∣∇u∣2 dx +Λ ∣{u > 0} ∩D∣

≤ ∫
D
∣∇(v ∨ 0)∣2 dx +Λ ∣{(v ∨ 0) > 0} ∩D∣

≤ ∫
D
∣∇v∣2 dx +Λ ∣{u > 0} ∩D∣ .

By this reasoning, we have that

∫
D
∣∇u∣2 dx ≤ ∫

D
∣∇(u − tφ)∣2 dx

= ∫
D
∣∇u∣2 dx − 2t∫

D
∇u ⋅ ∇φdx + t2∫

D
∣∇φ∣2 dx ,

The claim immediately follows by taking the right derivative at t = 0.

It is an interesting result to show, that we may weaken the conditions on the
optimality of u, and still receive subharmonicity for those non-negative functions,
which are harmonic on the set where they are strictly positive. We formulate the
precise statement in the following Lemma.

Lemma 22 (The minimizers are subharmonic functions II.). Suppose the set
D ⊂ Rd is bounded and open and the non-negative function u ∈H1(D) is harmonic
in the set Ωu ∶= {u > 0}. That is

∫
D
∣∇u∣2 dx ≤ ∫

D
∣∇v∣2 dx for every v ∈H1(D)

such that u − v ∈H1
0(D) and v = 0 on D ∖Ωu .

Then, u is subharmonic on D, ∆u ≥ 0, on D in the sense of distributions.

Proof. Consider a given non-negative function φ ∈ C∞c (D) and let pε ∶ R→ R be
given by

pε(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if x ≤ ε
2 ,

2x
ε − 1 if ε

2 ≤ x ≤ ε,

1 if x ≥ ε .

Now, let us consider the function v ∶= u − tpε(u)φ, which is of the class H1(D)
and we may compare it to u on an energy level. Then, for small enough t ≥ 0, it
is true that

{u > 0} = {v > 0} and ∫
D
∣∇u∣2 dx ≤ ∫

D
∣∇v∣2 dx .

Also,

∫
D
∣∇v∣2 dx = ∫

D
∣∇(u − tpε(u)φ)∣

2 dx

= ∫
D
∣∇u∣2 − 2t∇u ⋅ ∇(pε(u)φ) + t

2∣∇(pε(u)φ)∣
2
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Therefore,

∫
D
∇u ⋅ ∇(pε(u)φ) ≤

t

2 ∫D
∣∇(pε(u)φ)∣

2

and by passing t→ 0, we get

0 ≥ ∫
D
∇u ⋅ ∇(pε(u)φ) = ∫

D
∇u ⋅ (p′ε(u)φ∇u + pε(u)∇φ)

= ∫
D
p′ε(u)φ∣∇u∣

2 + pε(u)∇u ⋅ ∇φ

≥ ∫
D
pε(u)∇u ⋅ ∇φ .

since pε(u) is increasing and, as we notice, differentiable almost everywhere, which
is sufficient in our case.

Notice that pε(u) converges to the characteristic function χ{u>0} as ε → 0,
since:

(i) if x ∈ {u = 0}, then pε(u(x)) = pε(0) = 0,

(ii) if x ∈ {u > 0}, then there is ε0 > 0 such that u(x) ≥ ε0 and then for all ε ≤ ε0
we have pε(u(x)) = 1.

Now, let us prescribe a function g ∶= ∣∇u ⋅∇φ∣ ≥ ∣pε(u)∇u ⋅∇φ∣. Since it holds that

∫
D
g dx = ∫

D
∣∇u ⋅ ∇φ∣dx ≤ ∫ ∣∇u∣∣∇φ∣dx

≤ ∥∇φ∥L∞ ∫
D
∣∇u∣dx ≤

≤ ∥∇φ∥L∞ (∫
D
∣∇u∣2 dx)

1/2√
∣D∣ ≤∞

by Hölder inequality 6. Now, we may conclude by Lebesgue’s dominated conver-
gence theorem (see Rudin [1964]), that

∫
D
∇u ⋅ ∇φdx ≤ 0 .

The proof is completed.

Lemma 23. Let D ⊂ Rd be an open set and u ∈H1(D) be a subharmonic function.
Then take any x0 ∈D. Then, the functions

r ↦ f(r) ∶= ⨏
∂Br(x0)

udHd−1 and r ↦ g(r) ∶= ⨏
Br(x0)

udx .

are non-decreasing. We obtain two properties of u as a consequence:
- u is locally bounded, u ∈ L∞loc(D),
- for u there exists a function u ∶ D → R

u = lim
r→0

1
∣Br∣
∫

Br(x0)
u(x)dx for every x0 ∈D . (4.7)

such that u ≥ 0 and u = u almost everywhere in D
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Proof. We show the monotonicity of the function f(r), as the case of g(r) is
analogical. Notice, that by substituting y ∶= x−x0

r , we obtain

1
dd−1 ∫∂Br(x0)

u(x)dHd−1 =
1
dd−1 ∫∂B1(0)

u(x0 + ry)r
d−1 dHd−1 .

We wish to examine the derivative of f :

f ′(r) =
d

dr ∫∂B1(0)
u(x0 + ry)r

d−1 dHd−1

= ∫
∂B1(0)

∇u(x0 + ry) ⋅ y dH
d−1

(1)
= ∫

∂B1(0)
∂νu(x0 + ry)dH

d−1

(2)
=

1
rd−1 ∫∂Br(x0)

∂νu(x)dH
d−1

=
1
rd−1 ∫Br(x0)

div(∇u)

=
1
rd−1 ∫Br(x0)

∆u ≥ 0

The equality (1) follows by the fact that, in our case, y serves as the unit normal
vector to ∂B1(0). Step (2) then applies the Divergence theorem (see Evans [1998])
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5. Lipschitz continuity of the
minimizers
In this chapter, we examine the regularity property of minimizers. We will prove
that the local minimizers of FΛ are locally Lipschitz continuous functions. The
contents of this chapter are based on Velichkov [2023] (chapter 3, p.29-31).

Our aim is to prove the following result.

Proposition 7. Let D be an open set in Rn and u ∈ H1
loc(D) be a non-negative

function. Suppose that u is a local minimizer of FΛ in D. Then, u is locally
Lipschitz continuous in D, i.e. for every x ∈ Rn there exists a neighborhood U of
x and a constant L, such that

∣u(x) − u(y)∣ ≤ L∣x − y∣ for all y ∈ U .

The proof of Proposition 7, which we shall present, was originally proposed
by Alt and Cafarelli in Alt and Caffarelli [1980], and divided into two steps by
Velichkov in Velichkov [2023]. In the main proof, the Lipschitz continuity of u
will come as a consequence of an estimate on the growth of the function u at the
free boundary. The following Lemma 24 holds the precise statement.

Lemma 24. Let u ∈H1(D) be a non-negative function under the following con-
ditions

1. u is harmonic in the interior of the set Ωu ∶= {u > 0},

2. u satisfies the inequality:

1
Hd−1∣∂Br(x0)∣

∫
∂Br(x0)

udHd−1 ≤ Cr for every 0 < r < r0

and every x0 ∈ ∂Ωu ,

(5.1)

uniformly with constants r0 > 0 and C depending on the distance to the
boundary ∂D.

Then, the gradient of u can be estimated as

∥∇u∥L∞(Dδ
≤ Cd (C +

∥u∥L1(Dδ/2)

δd+1 ) for every 0 < δ < r0,

where Cd is a dimensional constant and, for all r > 0, we put

Dr ∶= {x ∈D ∶ dist(x, ∂D) > r} .

Therefore, the set Ωu is open and the function u is locally Lipschitz continuous
in D.

Remark. For simplicity, we will be writing the averaging integral 1
∣Ω∣ ∫Ω as ⨏Ω from

here onward.

Proof. We choose the point x0 from different parts of the domain and reason
accordingly.
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(i) Suppose x0 ∈ ∂Ωu ∩D. In the estimate 5.1, we may pass to the limit r → 0,
which gives us u(x0) = 0 and so x0 ∉ Ωu. That implies Ωu ∩ ∂Ωu = and Ωu is
an open set.

(ii) Let x0 ∈ Dδ such that dist(x, ∂Ωu) ≥
δ
4 , then either u = 0 or u is harmonic

in the ball Bδ/4. The gradient of a harmonic function in an open set can
be locally estimated, as shown in Evans [1998](chapter 2, p.29), by the
(unsurprisingly) so-called gradient estimate

∥∇u(x0)∥ ≤
Cd

δd+1 ∫Bδ(x0)
udx ,

where Cd is a constant depending only on the dimension of the space.

(iii) Let x0 ∈Dδ such that dist(x, ∂Ωu) <
δ
4 . Suppose the distance to the bound-

ary is realized by a point y0 ∈ ∂Ωu, which simply means that ∣x0 − y0∣ =

dist(x0, ∂Ωu) =min{∣x0 − y∣ ∶ y ∈ ∂Ωu}. Let us denote this distance as r.
Because u is harmonic in Br(x0), we may again estimate the gradient as

∥∇u(x0)∥ ≤
Cd

rd+1 ∫Br(x0)
udx ≤

Cd

rd+1 ∫B2r(y0)
udx ≤ CdC ,

where the second inequality holds, because u is positive and the balls are
nested, Br(x0) ⊂ B2r(y0). In the last inequality, we use the estimate 5.1
together with the fact that, by the use of polar coordinates,

∫
B2r(y0)

udx = ∫
2r

0
∫

∂Bt(y0)
udHd−1 dt .

With Lemma 24 in mind, we now embark on proving the estimate 5.1. We
structure the original arguments by Alt and Caffarelli in three comprehensive
steps as follows:

(1) In Lemma 25, we compare the energy FΛ(u,Br(x0)) of the function u in the
ball Br(x0) with the energy of its harmonic extension h in Br(x0) and receive

∫
Br(x0)

∣∇(u − h)∣2 dx ≤ Λ ∣{u = 0} ∩Br(x0)∣ . (5.2)

(2) In Lemma 26 we estimate from below the left-hand side of the inequality
above for u ∈H1(D)

1
r2 ∣{u = 0} ∩Br(x0)∣ (⨏

∂Br(x0)
udHd−1)

2
≤ Cd∫

Br(x0)
∣∇(u − h)∣2 dx (5.3)

(3) If x0 ∈ ∂Ωu then ∣{u = 0} ∩Br(x0)∣ ≠ 0. Combining the previous two inequal-
ities, we obtain

1
r ⨏∂Br(x0)

udHd−1 ≤
√
CdΛ .

Let us move on to the proof itself.
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Lemma 25. Suppose u ∈ H1
loc(D) is a local minimizer of FΛ in the open set

D ⊂ Rd. Consider the harmonic replacement of u in Br, that is the function
h ∈H1(D) which is harmonic in Br and also h = u on ∂Br. Then it holds that

∫
Br(x0)

∣∇(u − h)∣2 dx = ∫
Br(x0)

∣∇u∣2 − ∣∇h∣2 dx ≤ Λ ∣{u = 0} ∩Br(x0)∣ .

Proof. We analyze the integral furthest to the left

∫
Br(x0)

∣∇(u − h)∣2 dx = ∫
Br(x0)

∣∇u∣2 − 2∇u ⋅ ∇h + ∣∇h∣2)dx (5.4)

Now, we the integral

0 = ∫
Br(x0)

∆h(h − u)dx = ∫
∂Br(x0)

(h − u)∇h ⋅ ν − ∫
Br(x0)

∇h ⋅ ∇(h − u) ,

where the first identity is caused simply by the harmonicity of h, and in the
second equality we employ the Divergence theorem (see Evans [1998]), with ν
being the normal vector to the boundary.

Now, since on the boundary we have h − u = 0, it necessarily holds that

∫
Br(x0)

∇h ⋅ ∇(h − u) = 0

and therefore
∫

Br(x0)
∇h ⋅ ∇u = ∫

Br(x0)
∇h ⋅ ∇h . (5.5)

The first equality of 25 follows. Now, since u is optimal, we have that

∫
Br(x0)

∣∇u∣2 dx +Λ ∣{u > 0} ∩Br(x0)∣ ≤ ∫
Br(x0)

∣∇h∣2 dx +Λ ∣Br(x0)∣ .

The claim follows immediately.

Lemma 26. For each non-negative u ∈H1(Br) we may estimate the following:

1
r2 ∣{u = 0} ∩Br∣ (⨏

∂Br

udHd−1)
2
≤ Cd∫

Br

∣∇(u − h)∣2 dx .

Here, Cd is a dimensional constant and h is the harmonic replacement of u, that
is a harmonic function in Br with h = u on ∂Br,

Proof. Consider the function vn ∈ H1(Br) which is a solution to the minimizing
problem

min{∫
Br

∣∇v∣2 dx ∶ u − v ∈H1
0(Br), v ≥ u}.

Then, v is harmonic on set {v > u}, and we claim it is also super-harmonic on
Br. We prove this by variation of minimization:

Let φ ∈ C∞c (Br) be a non-negative test function and t > 0. Then by optimality
of v, we have

∫
Br

∣∇v∣2 dx ≤ ∫
Br

∣∇(v + tφ)∣2 dx

= ∫
Br

(∣∇v∣2 + 2t∇v ⋅ ∇φ + t2∣∇φ∣2) dx ,
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therefore, by taking derivative at t = 0 we get super-harmonicity

0 ≤ ∫
Br

∇v ⋅ ∇φdx .

Let us rescale the functions u, v in the following way:
For every ∣t∣ ≤ 1

2 , we set the functions

ut(x) ∶= u(x + (r − ∣x∣)t) and vt(x) ∶= v(x + (r − ∣x∣)t) .

The rescaled functions ut, uv still belong to H1(Br), and their gradients are con-
trolled from above and below by the gradients of their respective functions u, v.
Now we define a peculiar set St as

St ∶= {ξ ∈ Rd ∶ ∣ξ∣ = 1 and {ρ ∶
r

8 ≤ ρ ≤ r, ut(ρξ) = 0} ≠ ∅} .

For almost all ξ ∈ ∂B1, and therefore for almost all ξ ∈ St, are the functions

ρ↦ ∇ut(ρξ) and ρ↦ ∇vt(ρξ)

square integrable, since the gradients of ut, vt are L2 functions. For those ξ, we
may consider an equation

((ut(ρ2ξ) − vt(ρ2ξ)) − (ut(ρ1ξ) − vt(ρ1ξ))) = ∫
ρ2

ρ1
ξ ⋅ ∇(ut(ρξ) − vt(ρξ))dρ (5.6)

and suppose it holds for ρ1, ρ2 ∈ [0, r].
Moreover, if we now define for the suitable ξ ∈ St

rξ ∶= inf{ρ ∶ r8 ≤ ρ ≤ r, ut(ρξ) = 0} ,

by plugging the pair rξ, r into 5.6 and the fact that h = u on ∂Br, we obtain the
estimate

vt(rξξ) = ∫
r

rξ

ξ ⋅ ∇(vt(ρξ) − ut(ρξ))dρ ≤
√
r − rξ (∫

r

rξ

∣∇(vt(ρξ) − ut(ρξ)∣
2 dρ)

1/2

.

Now, suppose that h is the harmonic function such that h = u(= v) on ∂Br.
Since v is super-harmonic on Br, we have that

v(x) ≥ h(x) =
r2 − ∣x∣2

dωdr
∫

∂Br

u(y)

∣x − y∣d
dHd−1(y)

≥
(r − ∣x∣)(r + ∣x∣)

dωdr
∫

∂Br

u(y)

rd
dHd−1(y)

≥ cd
(r − ∣x∣)

r

1
rd−1 ∫∂Br

u(y)dHd−1(y) = cd
(r − ∣x∣)

r ⨏
∂Br

udHd−1 ,

where in the first equality we applied Poisson’s formula for the harmonic function
h. Taking

x = (r − rξ)t + rxξ

we have

vt(rξξ) = v((r − rξ)t + rxξ) ≥
cd

2
(r − rξ)

r ⨏
∂Br

udHd−1 = ⨏
∂Br

ut dH
d−1 .
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By combining the two acquired inequalities, we have

r − rξ

r2 (⨏
∂Br

udHd−1)
2
≤ Cd∫

r

rξ

∣∇(vt(ρξ) − ut(ρξ)∣
2 dρ .

We follow by integrating over ξ ∈ St ⊂ ∂B1, obtaining

∫
St

r − rξ

r2 dξ (⨏
∂Br

udHd−1)
2
≤ Cd∫

∂B1
∫

r

rξ

∣∇(vt(ρξ) − ut(ρξ)∣
2 dρdξ ,

and, by the bounds r
8 ≤ rξ ≤ r, we get

1
r2 ∣{u = 0} ∩Br ∖B r

4
(rt)∣ (⨏

∂Br

udHd−1)
2
≤ Cd∫

Br

∣∇(vt − ut)∣
2 dx

≤ Cd∫
Br

∣∇(v − u)∣2 dx .

Now, we integrate over t ≤ 1
2 and conclude that

1
r2 ∣{u = 0} ∩Br∣ (⨏

∂Br

udHd−1)
2
≤ Cd∫

Br

∣∇(v − u)∣2 dx .

Lemma 27. Let u ∈H1
loc(D) be a local minimizer of FΛ in the open set D ⊂ Rd.

Then for each ball Br(x0) ⊂D we have

∣{u = 0} ∩Br(x0)∣ (
√
CdΛ − 1

r ⨏∂Br(x0)
udHd−1) ≥ 0 .

Specifically for x0 ∈ ∂Ωu, this means that ∣{u = 0} ∩Br(x0)∣ > 0 and so

1
r ⨏∂Br(x0)

udHd−1 ≤
√
CdΛ .

Proof. Suppose that x0 = 0 and let h ∈H1(Br) be a harmonic function such that
h = u on ∂Br. Now, combining the results of both Lemma 25 and Lemma 26, we
immediately receive the inequality

1
r2 ∣{u = 0} ∩Br∣ (⨏

∂Br

udHd−1)
2
≤ CdΛ ∣{u = 0} ∩Br∣ .
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Conclusion
In this thesis, we have discussed an engaging topic of the one-phase Bernoulli
problem, which may serve as a pleasant introduction to the free boundary regu-
larity theory. We transformed this problem into a minimization problem of the
functional FΛ, which allows us to gain a better grasp at understanding its solu-
tions. Afterward, we studied two examples of minimizing functions, which can
be explicitly expressed, and which suggest that the Lipschitz property is opti-
mal. We then described the proof of the existence of generalized solutions to the
minimization problem. Finally, in the last chapter, we showed the solutions are
Lipschitz regular. This was the most intriguing result of this thesis.

Working with the mathematical text of Velichkov [2023], which discusses this
absorbing topic, proved challenging in places. The proofs often assume a high
level of prerequisite knowledge and mathematical intuition of their reader, while
a bachelor student would dearly welcome a more detailed approach. For example,
in the case of radial solutions in Chapter 3, the original text declared one more
interesting property of the solutions, which, unfortunately, proved difficult to
understand without any added arguments. Therefore, we did not elaborate on it.

In conclusion, the subject of the one-phase Bernoulli problem and the free
boundary regularity theory offers many more interesting topics for further study.
We highly encourage the reader to delve further into this branch of mathematics,
where they might encounter its surprising beauty.
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