
BACHELOR THESIS

Anna Musilová
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Introduction
Let p1, p2 ∈ (1,∞) and fix p such that 1/p = 1/p1 + 1/p2. Then p falls into
(1/2,∞). Consider a bilinear operator T : Lp1(Rn)×Lp2(Rn) → Lp(Rn), meaning
that T is linear in each of its two arguments and

∥T (f, g)∥Lp(Rn) ≤ c∥f∥Lp1 (Rn)∥g∥Lp2 (Rn). (1)

Let p′ ∈ R be such that 1/p + 1/p′ = 1. When p ≥ 1, the estimate (1) holds
if and only if for every h ∈ Lp

′(Rn)⃓⃓⃓⃓∫︂
Rn
T (f, g)(x)h(x)dx

⃓⃓⃓⃓
≤ c∥f∥Lp1 (Rn)∥g∥Lp2 (Rn)∥h∥Lp′ (Rn).

For this reason, it is useful to study the duality of the space Lp(Rn). There exist
two ways to approach duality - the dual space and the associate space. When
p ∈ [1,∞), the associate space of Lp(Rn) is the space Lp′(Rn) and the dual of
Lp(Rn) is isometric to Lp

′(Rn). For p = ∞, the associate space of (L∞(Rn)) is
equal to the space L1(Rn) but the dual of L∞(Rn) is not isometric to L1(Rn).
In this thesis, we will focus on the case when p ∈ (1/2, 1). Thanks to the
Marcinkiewicz interpolation theorem, see, e.g., [2, Theorem 1.3.2], and its bi-
linear variant formulated in [3], it is sufficient to study the duality of the weak
Lebesgue spaces Lp,∞ instead.

However, for 0 < p < 1 both the dual and the associate space of Lp,∞ only
contain the constant function that is zero almost everywhere. That is why, in
this thesis, we will explore a different method of dualization of the weak Lebesgue
spaces for p < 1, which can be found in [4, Lemma 2.6]. Then we will extend this
method to more general function spaces.

This thesis is structured as follows. In the first chapter we start by defining
some essential concepts such as the distribution function and nonincreasing rear-
rangement, which we then use to introduce the notion of weak Lebesgue spaces.
We also introduce the notions of dual spaces and associate spaces.

The second chapter focuses on the fact that both the dual and the associate
space of the weak Lebesgue space Lp,∞ for p < 1 contain only the zero function.
We prove this for the associate space and direct the reader to [1, Theorem 1] for
the proof for the dual.

In the third chapter, we recall the Dualization lemma as seen in
[4, Lemma 2.6]. Then we extend it to more general function spaces.
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1. Preliminaries
In this thesis, we will only consider functions from the measure space (Rn, λn),
where λn denotes the Lebesgue measure on Rn. For conciseness of notation,
we shall denote the measure of a set A ⊆ Rn by |A| instead of λn(A) and the
space Lp(Rn) by Lp. As is common in the theory Lp spaces, we will consider two
functions f, g ∈ Lp to be equivalent, if |{x ∈ Rn : f(x) ̸= g(x)}| = 0.

Definition 1.1. Let X be a vector space. A functional ∥ · ∥ : X → [0,∞) is
called a norm on X, if the following are true for every x, y ∈ X:

(i) ∥x∥ = 0 if and only if x = 0;

(ii) ∥λx∥ = |λ|∥x∥ for every λ ∈ R;

(iii) ∥x+ y∥ ≤ ∥x∥ + ∥y∥ (the triangle inequality).

A functional ∥ ·∥ is called a quasinorm on X if it satisfies (i) and (ii) and for some
constant C ≥ 1 it holds that

(iii’) ∥x+ y∥ ≤ C(∥x∥ + ∥y∥) for every x, y ∈ X.

Notation 1.2. We will denote the set of all measurable functions on Rn by M.

Definition 1.3. For every f ∈ M we define its distribution function f∗ by

f∗(y) = |{x ∈ Rn : |f(x)| > y}|, where y > 0.

We define the nonincreasing rearrangement f ∗ of the function f by

f ∗(t) = inf{y ≥ 0 : f∗(y) ≤ t}, for all t ≥ 0.

Remark 1.4. The nonincreasing rearrangement does not satisfy the triangle in-
equality, only its weaker version. For all functions f, g ∈ M and s, t > 0 it holds
that

(f + g)∗(s+ t) ≤ f ∗(s) + g∗(t).

This is proved in [6, Proposition 7.1.13].

Definition 1.5. For 0 < p < ∞ and f ∈ M we define

∥f∥Lp,∞ = sup
t>0

t1/pf ∗(t).

The weak Lebesgue space Lp,∞ is the collection of all functions f ∈ M such that
∥f∥Lp,∞ < ∞.

Remark 1.6. Equivalently, we can also express ∥f∥Lp,∞ by the formula

∥f∥Lp,∞ = sup
λ>0

λf∗(λ)1/p.
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It is important to note that the functional ∥ · ∥Lp,∞ is not a norm for p ≤ 1, as
it does not satisfy triangle inequality. It is, however, a quasinorm. When p > 1,
the functional ∥ · ∥Lp,∞ itself is also not a norm, but it is equivalent to a norm.

Definition 1.7. Let X be a quasi-normed space. Then the dual space of X is
the vector space of all continuous linear functionals on X. We shall denote the
dual space of X by X∗.

The following definition can be found in [5, Definition 2.15].

Definition 1.8. For a functional ∥ · ∥X : M → [0,∞], let us set
X = {f ∈ M : ∥f∥X < ∞}. Then we shall define the associate functional
of ∥ · ∥X by

∥f∥X′ = sup
{︃∫︂

Rn
|f(x)g(x)|dλn(x) : g ∈ X, ∥g∥X ≤ 1

}︃
,

and the associate space of X as

X ′ = {f ∈ M : ∥f∥X′ < ∞}.
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2. Duality for Weak Lebesgue
Spaces
In this chapter, we will focus on the dual and associate space for Lp,∞ when p < 1.
First, let us note that although the dual and associate space are similar concepts,
they are not equal. Let us demonstrate this on the example of the Lp spaces.
When p ∈ [1,∞), then the associate space of Lp is the space Lp′ and the dual of
Lp is isometric to Lp′

. However, when p = ∞, we have that the associate space of
(L∞) is equal to the space L1 while the dual of L∞ is not isometric to L1. When
p > 1, the dual space of Lp,∞ is equal to the Lorentz space Lp′,1, which is defined
as the space of all f ∈ M for which ∥f∥Lp′,1 = ∥t1/p′−1f ∗(t)∥L1(0,∞) < ∞. More
information on Lorentz spaces can be found in [6, Chapter 8].

The proof of the following theorem can be found in [1, Theorem 1].

Theorem 2.1. For 0 < p < 1 we have (Lp,∞)∗ = {0}.

Proposition 2.2. For every f ∈ M and p ∈ (0,∞) we can equivalently express

∥f∥(Lp,∞)′ = sup
{︃∫︂ ∞

0
f ∗(s)g∗(s)ds : g ∈ Lp,∞, ∥g∥Lp,∞ ≤ 1

}︃
.

Proof. This proof will be inspired by [6, Proposition 7.6.5], where it is proven
for rearrangement-invariant Banach function norms. However, we cannot apply
it directly because, for p ∈ (0, 1), ∥·∥Lp,∞ is not a norm, so we will have to change
the main argument of the proof to suit our situation.
From [6, Theorem 7.3.8], we know that (Rn, λn) is a resonant measure space,
meaning that for every f, g ∈ M we have∫︂ ∞

0
f ∗(s)g∗(s)ds = sup

{︃∫︂
Rn

|f(x)g̃(x)|dλn(x) : g̃ ∈ M, g̃∗ = g∗

}︃
.

Thus we have

sup
{︃∫︂ ∞

0
f ∗(s)g∗(s)ds : g ∈ Lp,∞, ∥g∥Lp,∞ ≤ 1

}︃
= sup

{︃
sup

{︃∫︂
Rn

|f(x)g̃(x)|dλn(x) : g̃ ∈ M, g̃∗ = g∗

}︃
: ∥g∥Lp,∞ ≤ 1

}︃
When g̃∗ = g∗, we have that ∥g̃∥Lp,∞ = ∥g∥Lp,∞ , so the previous expression is
equal to

sup
{︃∫︂

Rn
|f(x)g(x)|dλn(x) : ∥g∥Lp,∞ ≤ 1

}︃
= ∥f∥(Lp,∞)′ ,

which gives us the desired equality.

The following theorem will be based on [6, Theorem 9.6.1 (i)], where it is
proven for Generalized Lorentz-Zygmund spaces, which are a generalization of
the weak Lebesgue spaces.
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Theorem 2.3. For 0 < p < 1 we have (Lp,∞)′ = {0}.

Proof. First let us set gt = χ(0, n√t)n for t ∈ (0, 1) and notice that g∗
t = χ(0,t).

Then

∥gt∥Lp,∞ = sup
s>0

s1/pg∗
t (s)

= sup
s>0

s1/pχ(0,t)(s)

= sup
t>s>0

s1/p

= t1/p.

Now let f be a measurable function such that f ̸≡ 0. We will show that
then f ̸∈ (Lp,∞)′. Notice that there exist two positive constants ε and δ such
that f ∗(s) ≥ δ for all s ∈ (0, ε). That is because for every f ̸≡ 0 we have
|{x ∈ Rn : f(x) ̸= 0}| > 0, and since f ∗ is nonnegative and nonincreasing, there
must exist some interval where f ∗ > 0. We can choose an arbitrary ε in this
interval and set δ = f ∗(ε). Then we can calculate

∥f∥(Lp,∞)′ = sup
∥g∥Lp,∞ ≤1

∫︂ ∞

0
f ∗(s)g∗(s)ds

≥ sup
0<t<ε

∫︂ ∞

0
f ∗(s) g∗

t (s)
∥gt∥Lp,∞

ds

≥ sup
0<t<ε

δ
∫︂ t

0
t−1/pds

= sup
0<t<ε

δt−1/p
∫︂ t

0
ds

= sup
0<t<ε

δt1−1/p

= ∞.

Therefore (Lp,∞)′ = {0}.
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3. Duality for More General
Function Spaces
In this chapter, we first recall the Dualization lemma for the weak Lebesgue
spaces, found in [4, Lemma 2.6]. Then we extend it to more general function
spaces.

Definition 3.1. We say that a function φ : (0,∞) → (0,∞) satisfies the
∆2-condition, if there exists a constant k > 0 such that for every t > 0 it holds
that φ(2t) ≤ kφ(t).

Notation 3.2. By writing A ≲ B, where A and B are some expressions
containing a function φ which satisfies the ∆2-condition with a constant k, we
mean that there exists a constant c > 0, which can only depend on k, such that
A ≤ c ·B. If both A ≲ B and B ≲ A hold, then we write A ≃ B.

Definition 3.3. For f, g ∈ M we define ⟨f, g⟩ =
∫︁
Rn f(x)g(x)dx.

Notation 3.4. For p ∈ (0,∞) we set p′ ∈ R to be such that 1/p + 1/p′ = 1.
Notice that, for p ∈ (0, 1), p′ is negative.

Theorem 3.5 (Dualization lemma for Lp,∞). Let f ∈ M, p ∈ (0, 1] and A > 0.
Then the following are equivalent:

(i) ∥f∥Lp,∞ ≲ A;

(ii) for every set E ⊆ Rn, such that 0 < |E| < ∞, there exists a subset E ′ ⊆ E
such that |E| ≃ |E ′| and |⟨f, χE′⟩| ≲ A|E|1/p′.

In this case, we are using Notation 3.2 for the function φ(t) = t1/p and a
constant c which can only be dependent on p.

Notation 3.6. For a function φ : (0,∞) → (0,∞) and f ∈ M, let us define

∥f∥φ = sup
t>0

f ∗(t)φ(t).

In this section, let us fix a strictly increasing continuous function
φ : (0,∞) → (0,∞) and consider the space of all functions f ∈ M for which
∥f∥φ < ∞.

First, let us show an alternative formula for ∥f∥φ, which contains the distri-
bution function of f instead of its nonincreasing rearrangement.

Proposition 3.7. For every f ∈ M we have

sup
t>0

f ∗(t)φ(t) = sup
s>0

φ(f∗(s))s.
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Proof. First we will show that the left-hand side is greater than or equal to the
right-hand side. Let s > 0 be such that f∗(s) > 0 and let ε ∈ (0, f∗(s)). Then

f ∗(f∗(s) − ε) > s,

so we get

sup
t>0

f ∗(t)φ(t) ≥ f ∗(f∗(s) − ε)φ(f∗(s) − ε) > φ(f∗(s) − ε)s.

Now, by sending ε → 0 and taking the supremum over all s > 0 we obtain the
desired inequality.
For the opposite inequality, let t > 0 be such that f ∗(t) > 0 and let ε ∈ (0, f ∗(t)).
Then

f∗(f ∗(t) − ε) > t,

thus we get

sup
s>0

φ(f∗(s))s ≥ (f ∗(t) − ε)φ(f∗(f ∗(t) − ε))

≥ (f ∗(t) − ε)φ(t).

Again, by sending ε → 0 and taking the supremum over all t > 0 we get the
desired inequality and the proof is finished.

The previous proof for the special case when p ∈ (0,∞) and φ(t) = t1/p can
be found in [2, Proposition 1.4.5 (16)].

Now we will prove a generalization of the Dualization lemma for ∥ · ∥φ.

Theorem 3.8 (Dualization lemma). Let A > 0 and f ∈ M. Then the following
are equivalent:

(i) ∥f∥φ ≲ A;

(ii) for every set E ⊆ Rn, such that 0 < |E| < ∞, there exists a subset E ′ ⊆ E

such that |E| ≃ |E ′| and |⟨f, χE′⟩| ≲ A |E|
φ(|E|) .

The proof will be based on the proof of the Dualization lemma for Lp,∞, as
found in [4, Lemma 2.6]. The main difference between the two proofs is that we
will need to use the fact that φ satisfies the ∆2-condition.

Proof. (i) ⇒ (ii) Let us fix E ⊆ Rn and let C = k2, where k > 0 is such
that φ(2t) ≤ kφ(t). From (i) we have ∥f∥φ ≲ A < ∞, therefore there ex-
ists a constant d > 0 such that ∥f∥φ ≤ dA. Let us denote B = dA and set
Ω = {x ∈ Rn : |f(x)| > CB 1

φ(|E|)}. Then

∥f∥φ = sup
t>0

tφ(f∗(t))

≥ CB

φ(|E|)φ(|Ω|).
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So

φ(|Ω|) ≤ ∥f∥φφ(|E|)
CB

≲
φ(|E|)
C

.

Since φ satisfies the ∆2-condition, we get

φ(|Ω|) ≲ φ(|E|)
C

≤
kφ

(︂
|E|
2

)︂
C

≤
k2φ

(︂
|E|
4

)︂
C

= φ

(︄
|E|
4

)︄
.

Now since φ is a strictly increasing function, we have

|Ω| ≤ |E|
4 .

Now let us set E ′ = E \ Ω. Then |E| ≃ |E ′|, since

|E ′| = |E \ Ω| ≥ 3
4 |E|

and
|E| ≥ |E \ Ω| = |E ′|.

Now we have

|⟨f, χE′⟩| ≤
∫︂
E′

|f(x)|dx

≤ |E ′|CB 1
φ(|E|)

≲ B
|E|

φ(|E|)

= dA
|E|

φ(|E|)

≲ A
|E|

φ(|E|) ,

which is what we wanted to prove.
(ii) ⇒ (i) Let t > 0 and set E = {x ∈ Rn : f(x) > t}. From (ii) we have the
existence of E ′ ⊆ E, |E| ≃ |E ′| for which |⟨f, χE′⟩| ≲ A |E|

φ(|E|) .
We also have

|⟨f, χE′⟩| =
∫︂
E′
f

≥ |E ′|t ≃ |E|t.
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By the combination of these two we get

|E|t ≲ A
|E|

φ(|E|) ,

and thus

φ(|E|)t ≲ A.

Analogously we can proceed for the set F = {x ∈ Rn : f(x) < −t} and get that
φ(|F |)t ≲ A.
By the definition of E and F , it holds that |E ∪ F | = f∗(t). The sets E and F
are clearly disjoint, therefore |E ∪ F | = |E| + |F |, and we get

φ(f∗(t))t = φ(|E| + |F |)t
≤ φ(2 · max{|E|, |F |})t,

since φ is strictly increasing. Now from the ∆2-condition we have

φ(2 · max{|E|, |F |})t ≤ kφ(max{|E|, |F |})t
≲ kA

≲ A,

so we obtain
φ(f∗(t))t ≲ A.

Since the previous inequality holds for all t > 0, we get that

∥f∥φ = sup
t>0

φ(f∗(t))t ≲ A

as desired.

Now, we will generalize the previous theorem to the case when p ∈ (0,∞),
α ∈ R and φ(t) = t1/p(1 + | log t|)α. We will show that, even though φ is not
strictly increasing when α /∈ [−1/p, 1/p], the previous theorem still holds for ∥f∥φ
with this function φ. The theorem for this specific φ looks as follows.

Theorem 3.9. Let f ∈ M, p ∈ (0,∞), α ∈ R and A > 0. Then the following
are equivalent:

(i) ∥f∥φ ≲ A;

(ii) for every set E ⊆ Rn, such that 0 < |E| < ∞, there exists a subset E ′ ⊆ E,
for which |E| ≃ |E ′| and |⟨f, χE′⟩| ≲ A|E|1/p′(1 + | log |E||)−α.

In this case, we are using Notation 3.2 for the function φ(t) = t1/p(1+ | log t|)α
and a constant c which can depend on p and α.
To prove this theorem, we first need to define what it means that two functions
are equivalent. Then we will prove that our function φ(t) = t1/p(1 + | log t|)α is
equivalent to some strictly increasing continuous function ψ : (0,∞) → (0,∞),
which satisfies the ∆2-condition. Finally, by considering Theorem 3.8 for ∥f∥ψ,
we will be able to prove this theorem.

10



Definition 3.10. We say, that a function φ : (0,∞) → (0,∞) is equivalent to
the function ψ : (0,∞) → (0,∞), if there exist constants c, d > 0 such that
cψ(t) ≤ φ(t) ≤ dψ(t) for every t > 0.

Remark 3.11. The equivalence of functions is symmetric, meaning that if a
function φ is equivalent to a function ψ, then ψ is equivalent to φ.

Proposition 3.12. There exists a strictly increasing continuous
function ψ : (0,∞) → (0,∞) which satisfies the ∆2-condition and is equivalent
to the function φ(t) = t1/p(1 + | log t|)α.

Proof. First we need to find the intervals where φ is not strictly increasing. The
derivative of the function φ for t > 0, t ̸= 1 is

φ′(t) = 1
p
t1/p−1(1 + | log t|)α + t1/p−1α(1 + | log t|)α−1 log t

| log t|

= t1/p−1(1 + | log t|)α−1
(︄

1
p

(1 + | log t|) + α
log t

| log t|

)︄
.

For every t > 0, the function t1/p−1(1 + | log t|)α−1 is positive, therefore we only
need to analyze for which t > 0 is 1/p(1 + | log t|) +α log t

| log t| positive and for which
it is negative. Then we will be able to find a strictly increasing function ψ that
is equivalent with φ.
We will now consider three different cases depending on the value of α with
respect to the value of p.
The first case is when α ∈ (−∞,−1/p). Then the function φ is increasing for
t ∈ (0, 1) and for t ∈ (e−αp−1,∞) and it is decreasing for t ∈ (1, e−αp−1). Therefore
we can define the function ψ as follows.

ψ(t) =

⎧⎪⎪⎨⎪⎪⎩
φ(t) t < 1,
t 1 ≤ t ≤ e−αp−1,

φ(t) − φ(e−αp−1) + e−αp−1 e−αp−1 < t.

Then ψ is a strictly increasing positive continuous function, as desired. For better
visualization of how ψ looks in comparison with φ, the following graph shows the
functions φ and ψ for the particular case when α = −2 and p = 1.

1 e 4 6 8 10

1

2

3

4

t

ψ(t)
φ(t)
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It holds that φ(t) ≤ ψ(t) for every t > 0, so to show that ψ is equivalent to φ we
only need to find a constant c such that cψ(t) ≤ φ(t) for every t > 0. Equivalently,
we need a constant c such that c ≤ φ(t)

ψ(t) for every t > 0.
The minimum of φ(t)

ψ(t) occurs at t = e−αp−1, so for c = φ(e−αp−1)
ψ(e−αp−1) it holds that

cψ(t) ≤ φ(t) for every t > 0. Therefore for α ∈ (−∞,−1/p) the functions φ and
ψ are equivalent.
Next, for α ∈ [−1/p, 1/p] the function φ is increasing for all t > 0, therefore we
can set ψ(t) = φ(t) for every t > 0.
Finally, when α ∈ (1/p,∞), then φ is increasing for t ∈ (0, e1−αp) and t ∈ (1,∞)
and it is decreasing for t ∈ (e1−αp, 1). Therefore we can define the function ψ as
follows.

ψ(t) =

⎧⎪⎪⎨⎪⎪⎩
φ(t) t < e1−αp,

t+ φ(e1−αp) − e1−αp e1−αp ≤ t ≤ 1,
φ(t) + φ(e1−αp) − e1−αp 1 < t.

Then ψ is a strictly increasing positive continuous function as desired.
For better visualization of how ψ looks in comparison with φ, we provide a graph
showing the functions φ and ψ for the particular case when α = 2, p = 1.

e−1 1 2 3 4

1
2
3
4
5
6
7
8

t

ψ(t)
φ(t)

It holds that φ(t) ≤ ψ(t) for every t > 0, so we only need to find a constant c such
that cψ(t) ≤ φ(t) for every t > 0. Equivalently, we need a constant c such that
c ≤ φ(t)

ψ(t) for every t > 0. The minimum of φ(t)
ψ(t) occurs at t = 1, so it is sufficient

to set c = φ(1)
ψ(1) . Therefore the functions φ and ψ are equivalent.

Now we only need to show that the function ψ satisfies the ∆2-condition. First
we shall show that the function φ satisfies the ∆2-condition, and then, from the
equivalence of ψ and φ, we will get that ψ satisfies it as well. So we want to find
a constant k > 0 such that for every t > 0 it holds that φ(2t) ≤ kφ(t).
Each of the following lines is equivalent to the line below itself.

φ(2t) = (2t)1/p(1 + | log(2t)|)α ≤ kt1/p(1 + | log(t)|)α = kφ(t),
21/p(1 + | log(2t)|)α ≤ k(1 + | log(t)|)α,

21/p(1 + | log(t) + log(2)|)α ≤ k(1 + | log(t)|)α,
21/p(1 + | log(t) + log(2)|)α

(1 + | log(t)|)α ≤ k.
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We want this to hold for every t > 0. For α ≥ 0, the supremum of the left hand
side occurs at t = 1 and we have that

sup
t>0

(︄
21/p(1 + | log(t) + log(2)|)α

(1 + | log(t)|)α

)︄
= 21/p(1 + log(2))α.

For α < 0, the supremum of the left hand side occurs at t = 1/2 and is equal to
21/p(1 + log(2))−α.
Therefore picking k = 21/p(1 + log(2))|α| gives us the desired inequality for every
α ∈ R.
We have shown that φ satisfies the ∆2-condition. From the equivalence of φ and
ψ, we have the existence of c > 0 such that cψ(t) ≤ φ(t) ≤ ψ(t) for every t > 0.
Putting this all together, for every t > 0 we get that

ψ(2t) ≤ 1
c
φ(2t) ≤ 1

c
kφ(t) ≤ 1

c
kψ(t),

so ψ satisfies the ∆2-condition as well.

Proof of Theorem 3.9. From the equivalence of φ and ψ, we have that ∥f∥φ ≲ A
if and only if ∥f∥ψ ≲ A. So (i) from Theorem 3.8 holds for ∥f∥φ if and only if
it also holds for ∥f∥ψ. The function ψ is a positive strictly increasing function
satisfying the ∆2-condition, therefore Theorem 3.8 holds for ∥f∥ψ. Now, let us fix
a set E ⊆ Rn and let E ′ be the subset of E from Theorem 3.8 for ∥f∥ψ, meaning
that |E ′| ≃ |E| and |⟨f, χE′⟩| ≲ A |E|

ψ(|E|) .
Now we will show that (ii) from Theorem 3.8 holds for ψ if and only if it also
holds for φ. If it holds for ψ, then from the equivalence of φ and ψ we have

|⟨f, χE′⟩| ≲ A
|E|

ψ(|E|)

≤ A
|E|

φ(|E|)

= A
|E|

|E|1/p(1 + | log |E||)α

= A|E|1/p′(1 + | log |E|)−α,

so it also holds for φ. For the converse, if (ii) from Theorem 3.8 holds for φ, then
from the equivalence of φ and ψ we have

|⟨f, χE′⟩| ≲ A
|E|

φ(|E|)

≲ Ac
|E|

φ(|E|)

≤ A
|E|

ψ(|E|) ,

so it also holds for ψ. This completes the proof.
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