
BACHELOR THESIS

Jakub Parada

Learning V1 targeting optogenetic
stimulation protocol for inducing visual

perception

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Ján Antoĺık, Ph.D.
Consultant of the bachelor thesis: Luca Baroni, M.Sc.

Study programme: Computer Science
Study branch: Artificial Intelligence

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I appreciate all of the support that my supervisor Mgr. Ján Antoĺık, Ph.D. gave
me. His patience, friendly attitude, and will to teach me everything necessary to
complete this thesis pleasantly surprised me. I also appreciate his encouragement
in the final stretch of the work. Next, I thank Luca Baroni, M.Sc. and Ing. Tibor
Rózsa for their theoretical and technical knowledge. When I did not know how
to proceed or some academic details were beyond me, they always stepped in and
pointed me in the right direction. Lastly, I want to thank Metacentrum for their
computational resources and extensive user support in installing all libraries and
packages necessary for conducting this thesis.

ii

Title: Learning V1 targeting optogenetic stimulation protocol for inducing visual
perception

Author: Jakub Parada

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Ján Antoĺık, Ph.D., Department of Software and Computer
Science Education

Consultant: Luca Baroni, M.Sc., Department of Software and Computer Science
Education

Abstract: The Optogenetic stimulation of neurons in the primary visual cortex
(V1) is a novel and promising technique for vision restoration for people with
acquired blindness. One of the challenges of such a technique is finding artifi-
cial stimuli which invoke desired cortical activities. This thesis explores whether
neural networks and deep learning can be used for reverse engineering artificial
stimuli patterns for optogenetic cortical implant prosthesis (LED) from cortical
activity pattern recordings, assuming that similar cortical activity recordings are
caused by similar visual stimuli. Various DNN architectures outperforming base-
line solutions in stimulus reconstruction will be explored. Loss functions such
as MSE and Structural similarity (SSIM) will be used. Questions such as if loss
of information in the high-frequency domain of the reconstructed stimuli nega-
tively affects correspondence between the desired cortical activity and the activity
elicited by artificial stimuli patterns will be investigated. MSE evaluation metric
will be used to determine the degree of similarity between the two types of cortical
activities. Due to the limited availability of biological data, we use a model of V1
combined with a model of optogenetic cortical prosthesis (LED) and stimulation
developed by et al. [2021] to simulate cortical activity under various stimuli.

Keywords: computational neuroscience, deep learning, image synthesis, Primary
visual cortex (V1), optogenetic stimulation

iii

Contents

Introduction 3

1 Deep Learning and Model Selection for Stimuli Image Prediction 6
1.1 Defining the main optimization objective 6

1.1.1 What is a model and its training 6
1.2 Model types . 8

1.2.1 Linear model . 8
1.2.2 MLP model . 8
1.2.3 Convolutional models . 10
1.2.4 CNN V1 . 10
1.2.5 CNN V2 . 10

1.3 Losses and Metrics . 11
1.3.1 MSE . 11
1.3.2 Image correlation . 12
1.3.3 SSIM . 12

1.4 Implementation details . 16

2 Dataset for DNN training 17
2.1 Stimulus presentation to V1 cortex model 17
2.2 Cortical activity . 17
2.3 Cortical activity pre-processing 19
2.4 Stimulus pre-processing . 20
2.5 Dataset description after pre-processing 22

3 Experiments + results 23
3.1 Linear Model . 23

3.1.1 Training Results . 24
3.1.2 Activity comparison . 24

3.2 MLP model . 27
3.2.1 Training results . 27
3.2.2 Activity comparison . 27

3.3 CNN V1 model . 30
3.3.1 Training results . 31
3.3.2 Activity comparison . 31

3.4 CNN V2 model . 31
3.4.1 Training results . 31
3.4.2 Activity comparison . 34

4 Discussion 37
4.1 Possible improvements . 37
4.2 The training set imbalance . 39
4.3 Future work . 39

Conclusion 40

Bibliography 41

1

List of Figures 42

List of Tables 44

List of Abbreviations 45

2

Introduction
Direct stimulation of neurons inside brain areas responsible for vision, such as
in the primary visual cortex (V1), is a promising approach to help people with
acquired blindness and irreparably damaged earlier parts of the visual system,
such as the eye or optic nerve, regain vision Farnum and Pelled [2020], Liu et al.
[2018]. Under the assumption that similar visual stimuli evoke similar cortical
activity patterns, one of the challenges of such an approach to vision restoration
is understanding how to manipulate the neural activity such that the artificially
elicited cortical activity patterns match those elicited through viewing target vi-
sual stimulus via an intact visual pathway. For conciseness, artificially elicited
cortical activity patterns will be referred to as ”artificial activity” (Aart), while
cortical activity patterns induced by natural vision will be ”natural activity”
(Anat). Similarly, the stimuli that evoke the two types of activities will be ”arti-
ficial/natural” stimuli (Sart, Snat respectively).

One approach to stimulate the neurons directly is to use an optogenetic cor-
tical implant (LED). In live tissue, the implant would work in the following way:
first, a cell population gets transfected to express light-sensitive proteins such
as ChannelRhodopsin (ChR); as a result, they become responsive to direct light
stimulation. Second, some light pattern (artificial stimulus) is displayed on the
LED array superimposed on the cortical surface, resulting in the induction of ar-
tificially evoked activity in the neural substrate under the implant. The challenge
comes from understanding which artificial stimuli Sart on the LED array will elicit
the desired artificial activity Aart, as under the assumption used, invoking Aart

to be as close as possible to the Anat would result in functionally the same visual
percepts as in the natural vision.

One possible approach would be to use brute force to try all possible artificial
stimuli Sart and record the artificial activities Aart. Afterwards, to artificially
induce visual percept matching one produced by natural stimulus Snat, all that
is needed is to find the natural activity Anat corresponding to the Snat and use
an artificial stimulus Sart whose induced artificial activity Aart matches Anat as
closely as possible. An exact match may not be possible due to the mechanical
limitations of the prosthesis.

The problem with such an approach is that it would be computationally un-
feasible as the neuron resolution capability of the prosthesis becomes intractable
beyond the most trivial cases. Furthermore, using just some subset of possible
stimuli Sart could limit the range of possible visual percepts expressable by the
prosthesis. Therefore, identifying which artificial stimuli evoke artificial activi-
ties matching any given cortical activity pattern via some innovative mapping
becomes indispensable.

Machine learning, especially neural networks, seems a natural solution for
learning such mapping. This thesis investigates several possible architectures of
neural networks. The networks take any cortical activity pattern recording and
predict artificial stimulus. The training dataset consists only of pairs (Sart, Aart),
which were obtained by simulating the presentation of stimulus sart. The hope is
that due to the generalization abilities of neural networks, the artificial stimulus
they produce would induce artificial activity close to the given cortical activity

3

pattern recording. Moreover, previous work has been done on building a forward
model that predicts natural activities Anat from natural stimuli Snat citation.
This means that a pipeline can be created, where the desired stimulus Snat,
the perception of which is to be elicited, is passed through the forward model
obtaining the target cortical activity Anat, and the second model - the topic
of the thesis - maps this desired cortical activity Anat to the artificial stimulus
(induced by the prosthetic system) Sart, hence offering a ready-to-use stimulation
system.

However, getting sufficient biological data for the data-hungry modern neural
network system is very difficult and expensive; therefore, this thesis employs
a validated biologically realistic model of V1 along with an optogenetic cortical
prosthesis model (LED) cite Antolik capable of simulating manipulation of neural
activity via light stimulation. The advantage of using such a model is that the
research results will be consistent between the tested methods.

Chapter 1 describes the machine learning fundamentals necessary, a list of
the model architectures, losses, metrics and implementation details used. The
baseline consists of Linear and MLP architectures. In contrast, tests on more
sophisticated convolutional models will show if non-trivial model families can
improve the match between induced artificial activity and the desired activity.
All model implementations assume cortical activity patterns and artificial stimuli
are image tensors. Chapter 2 covers the precise way of obtaining image tensors
from cortical activity patterns, the normalization of data, and a description of
the final datasets used for training, testing and validation.

Chapter 3 defines the specific experimental settings - experiment pipeline
setup and hyperparameters used for network training. After that, follow the
individual experiments along with their results.

Chapter 4 examines the success of the experiments, what might have gone
wrong and some possible steps for the future. Chapter 5 summarizes the results
and topics raised by the discussion.

4

Figure 1: The entire background for this thesis. In an intact visual pathway,
visual stimuli start at the eye and get passed to the V1 cortex (indicated by
a turquoise arrow), where they invoke cortical activity. Previous work Picek
[2022] established mapping from natural stimuli Snat to natural cortex activities
Anat. Afterwards Vašek [2023] established model taking cortical activities as an
input and producing Snat stimuli on the output. With the help of the Mozaik
framework, aby artificial stimuli Sart can be converted into artificial activity Aart.
Now the only missing link is a mapping from cortical activity Anat to artificial
stimuli Sart such that artificial activity Aart corresponding to the stimulus Sart

matches the given activity Anat. Finding such mapping would allow for eliciting
cortical activity patterns matching those elicited through viewing target visual
stimulus via an intact visual pathway by combining it with the model from Snat

to Anat. The model for decoding Snat from Anat can also be used to check if the
activity Aart invoked by Sart matches target visual stimulus Snat.

5

1. Deep Learning and Model
Selection for Stimuli Image
Prediction
This chapter describes the necessary deep learning knowledge and the choice of
models for predicting stimuli images Sart from Aart used in experiments. Section
1.1 formally defines the main optimisation problem - predicting Sart such that
corresponding Aart is close to given activity A. Section 1.2 describes the various
types of machine learning models used to tackle the problem. Linear regression
and MLP models are employed as baselines, while subsequent models inspired
by Liu et al. [2022] are more complex. Section 1.3 introduces various types of
losses and metrics used throughout this work. Examples of used losses and metrics
include mean squared error (MSE), mean squared error on deep embeddings from
pre-trained networks (deep MSE) and image correlation. Section 1.4 describes
implementation details. These include used software libraries, environment and
hardware requirements, pre-trained model types, and their exact source used for
extracting deep embeddings from images.

1.1 Defining the main optimization objective
The task of alignment of cortical activities A and Aart is in this thesis defined in
the following way. First, stimulus Sart is predicted from activity A. Afterwards,
Sart is passed into the model of V1 with LED prosthesis to obtain cortical activity
Aart. The aim is to match A and Aart as closely as possible, formally defined as
reducing performance measure P computed from the pair. The results of this
work can be used in future work aiming to accurately predict stimuli images
Sart which elicit activity Aart equal to given cortical activity from other sources
such as natural vision. A description of model training and the reasoning behind
architectures selection is below. All definitions in the following part have been
adapted from Goodfellow et al. [2016] to suit the context of this thesis, mean-
ing that more general definitions may appear in other literature; however, it is
reasonable to modify and restrict them for this work.

1.1.1 What is a model and its training
Definition 1 (Model). Machine learning model, M , refers to the output of a
learning algorithm comprised of model parameters collection ω and algorithm
M(x, ω), which takes input features x along with model parameters ω as input
and produces output data y. Models can be parametric or non-parametric. Para-
metric models use the same set of model parameters with a fixed size for each
prediction regardless of the amount of experience E presented to them. Non-
parametric models can use variable sets of parameters for each prediction. Exam-
ples of parametric models are linear regression and convolution networks, whereas
non-parametric models include support vector machines, k-nearest neighbours and
decision trees.

6

Definition 2 (Learning process). The learning process comprises presenting ex-
perience E to model M with respect to task T and performance measure P . The
model learns if its task performance T measured by P improves with experience
E.

Definition 3 (Task T). In this work machine learning task usually refers to
synthesising desired output data y from given input features x. Input features
x and output data y are tensors of real numbers. Output data y is desirable iff
cortical activity elicited by y resembles x.

Definition 4 (Performance measure P). P is a performance measure if it can
deterministically produce a quantitative measure of the performance of model M
on task T . Usually, such quantitative measure comes as a single scalar number.
Examples of performance measures are MSE or image correlation.

Definition 5 (Dataset). The dataset is a collection of examples called data
points. Each data point is a collection of features which are usually real num-
bers. Usually, the features are a collection of tensors. Each tensor in the data
point can be input or a target for suitable model M depending on the task T . For
example, we can use image tensor x as an input and image tensor y as a target
in an image mapping task. In contrast, in the task of similarity detection, we can
view image tensors x, y on the input as examples of similar images and the job
of the model is to learn these associations.

Definition 6 (Experience E). In most machine learning algorithms, the def-
inition of experience E can be what kind of data the model can access during
the learning process. For example, supervised learning algorithms have access to
input and target features during training, meaning they can learn from this ex-
perience to produce features similar to target features from a given collection of
input features.

Definition 7 (Supervised training). Supervised training is a learning process2

comprised of presenting examples of training data (x, y) to the model M to facili-
tate minimisation of the loss (differentiable type of performance measure4 bounded
from below) between predictions produced by algorithm M(x, ω) and targets y. Of-
ten validation and test sets are set aside from the training dataset to set hyper-
parameters of model M and evaluate its performance after learning.

Definition 8 (Optimizer). Optimisers used in supervised training are algorithms
which take weights ω1 of parametric model M , loss between the output of the model
M(x, ω1) and targets y and produce a new set of weights ω2 which replace ω1. Over
sufficiently enough iterations, such action minimises the loss between M(x, ω2)
and y. Examples of optimisers are stochastic gradient descent or AdamW intro-
duced in paper Loshchilov and Hutter [2019].

The usual training loop for parametric models with weights ω in the supervised
setting is the following:

1. Choose a batch of examples b from training set.

7

2. For each data point p in the batch pass the collection of input feature tensors
xp throughout the model M . Aggregate all predicted output feature tensors
op = M(xp, ω) for all data points p into collection ob. Pass collection ob along
with collection yb of target feature tensors for all data points in batch b and
loss function L to the optimiser.

3. Optimizer produces a new set of weights ω′ which replace the old weights
ω.

4. Repeat steps 1 − 3 until the loss is sufficiently low or other factors, such as
the limit to the number of iterations reached, dictate to stop training.

This thesis used a dataset of artificial stimuli and activity patterns to train the
models. The hope is that by training artificial stimulus reconstruction from a
large enough pool of artificial activities, the models will generalise well on unseen
types of cortical activities such as those from natural vision.

1.2 Model types
All model types described below are from the parametric family. Models from
this family are better interpretable, have easier manipulation of model capacity
and have the possibility of training on GPUs compared to most non-parametric
models. Another essential property shared across all model types, regardless of
architecture, is that they accept a single image tensor as an input and produce a
single image tensor as an output. Image tensor is a 3-dimensional tensor of real
numbers, where the first dimension represents channels, whereas the second and
third dimensions represent pixel coordinates.

1.2.1 Linear model
A linear model is a model that learns linear mapping from its inputs to its out-
puts. Modern machine learning frameworks usually implement it as a single
Linear/Dense layer without any activation function. During model computation,
input image tensor x gets flattened into a vector x′, and then the resulting vec-
tor y′ of affine transformation Wx′ + b is reshaped into the image tensor desired
output shape. This model type got chosen for its simplicity and the possibility of
quantifying whether linear mapping from cortical activity to stimuli images Sart

suffices to elicit similar cortical responses. The input/output shape details can
be found in figure 1.1.

1.2.2 MLP model
MLP model has a series of linear layers and non-linear activation functions in
between them. The activation function of choice is Gaussian Error Linear Unit
(GELU) first introduced in Hendrycks and Gimpel [2023]. As in the previous
model, all input features get flattened into a single vector before passing it through
the network. At the end of the computation, the output gets reshaped into an im-
age tensor with the desired shape. The shapes of the tensors during computation
can be found in figure 1.2.

8

Figure 1.1: Workflow of the linear model with individual input/output tensors
sizes.

Figure 1.2: Sizes of tensors during computation of the MLP model.

9

1.2.3 Convolutional models
Unless stated otherwise, all convolutional models investigated consist of three
main blocks - encoder, embedding-to-image transformation, and upscaler. The
encoder’s job is to process input image tensors into meaningful embeddings. The
embeddings are used in the embedding-to-image transformation block to obtain
an intermediate low-resolution image which is then upscaled by the upscaler block.
It is important to note that the low-resolution image has many channels (16 to 64),
as this helps to preserve information from the encoder input while meaningfully
separating it across multiple locations, since subsequent upscaler layers do not
have receptive field large enough to combine features from far away parts of the
intermediate image.

1.2.4 CNN V1
The first convolutional model is inspired by the models SRResNet and ConvNeXt
introduced in papers Ledig et al. [2017] and Liu et al. [2022], respectively.

The encoder consists of three pairs of (contraction, CNN) blocks. The CNN
blocks were taken from the ConvNeXt above model. Each CNN block consists
of Depth-wise convolution, Layer norm, point-wise convolution 1, GELU, point-
wise convolution 2 and residual connection to the block input. Contraction blocks
comprise a convolution layer with kernel size (2, 2) and strides (2, 2), Layer norm
and GELU activation.

The embedding-to-image transformation is made of a linear layer followed
by GELU activation. The belief is that the encoder produces embeddings which
combine activity patterns from various parts of the input activity tensors; as such,
there isn’t a clear structure to the embeddings anymore. Therefore, the linear
layer was chosen for its ability to combine the embedding features arbitrarily.

The upscaler first uses a convolution layer to reduce the number of channels
from the transformation block output. The convolution is followed by batch
norm and GELU activation. Afterwards, two Expansion blocks using sub-pixel
convolution for upscaling separated by one CNN block are responsible for the
main brunt of the upscaling. Lastly, one convolution layer followed by tanh
activation squashes the number of channels to 1 representing the B/W stimulus
image.

The detailed depictions of the CNN block can be found in figure 1.3, of the
contraction block in figure 1.4 and the expansion block in figure 1.5. The high-
level design of the model architecture is in figure 1.6.

1.2.5 CNN V2
The CNN V2 model 1.7 is very similar to the CNN V1 model. It was constructed
by slowly tinkering with the CNN V1 model by including or removing layers to
improve performance on the validation set. The main differences are in the up-
scaler part. The batch normalisation is removed, and after the second expansion
block comes another CNN block. These modifications may seem simple but result
from systematically eliminating various other changes.

10

Figure 1.3: CNN block inspired by ConvNeXt. channel dim represents the num-
ber of input channels for the cnn block.

1.3 Losses and Metrics
The performance of the trained model is often heavily influenced by choice of the
loss function. The most straightforward type loss function in image synthesis is
MSE between the predicted and target image. However, it suffers from several
drawbacks; hence it is usually combined with other loss functions or modified in
several key aspects. The experiments performed investigate several such com-
binations and modifications. All individual parts of all loss functions used are
defined below.

1.3.1 MSE
The mean squared error (MSE) between two tensors x1, x2 is defined as:∑︂

(x1 − x2)2 (1.1)

Where the subtraction and squaring are applied element-wise, the problem with
using only MSE is that in image synthesis tasks, it tends to reconstruct only low-
frequency features in the output image. This problem stems from the fact that
in image synthesis, there are usually a couple of closely-related options for the
appearance of the final image. Hence, the optimiser picks the average from all of
them. Another problem is that many pixels matching their targets can suppress
a small number of incorrectly bright or dim pixels in their vicinity, as correcting

11

Figure 1.4: Contraction block design. Usually, channels out is twice the number
of channels in the input tensor.

the value of the minority can lead to the increase of the overall MSE due to slight
misalignment in the mostly correct pixels brought by this revision.

1.3.2 Image correlation
Cross-correlation of two images A, B with the same dimensions can be defined
as:

r =
∑︁ (︂(︂

A − A
)︂

·
(︂
B − B

)︂)︂
√︃∑︁ (︂

A − A
)︂2

· ∑︁ (︂
B − B

)︂2
(1.2)

Where the overline symbolises the mean of the image tensor. All arithmetic
operations are applied element-wise, while the final summations sum everything
across all dimensions and produce a scalar. The correlation defined like this can
be used only as a metric, as the range of its outputs is [−1, 1] where 0 is considered
an exact match. Another reason for its unsuitability as a loss function is that two
images whose pixel intensities are multiples of each other are indistinguishable
by it, meaning that the intensities of the predicted images would be unbounded
during training, which leads to divergence of weight sizes.

1.3.3 SSIM
In contrast to MSE, and image correlation, the structural similarity index mea-
sure Wang et al. [2004] compares luminance, contrast and structure between the

12

Figure 1.5: Expansion block design. channels in * 4 with pixel shuffle afterwards
create sub-pixel convolution Shi et al. [2016].

samples, meaning that all of the main concerns of the prior losses are mitigated
to a certain degree. The structure and contrast components prevent MSE over-
smoothing, the luminance component provides the ability to distinguish between
images with different intensities, and the overall measure is not dependent on pre-
trained embeddings, meaning that it can be applied to grayscale images without
issues. The formula for the SSIM is:

SSIM(x, y) = (2µxµy + c1) (2σxy + c2)(︂
µ2

x + µ2
y + c1

)︂ (︂
σ2

x + σ2
y + c2

)︂
where µx, µy are the mean values of x, y, σx, σy are standard deviations of x, y, σxy

is the cross-correlation between x, y. The constants c1 and c2 help stabilise the
division with a weak denominator. The typical choice for them is c1 = (0.01 · L)2,
c2 = (0.03 · L)2 where L is the data range, meaning that for grayscale images
normalised to the range [0, 1] the value of L would be 1. The output of the SSIM
index is in the range [0, 1] where 0 indicates complete dissimilarity and 1 is a
perfect match. SSIM index can be converted to a loss function suitable as an
optimisation target in the following way:

LSSIM (x, y) = 1 − SSIM(x, y)

13

Figure 1.6: Overall CNN V1 architecture.

14

Figure 1.7: Overall CNN V2 architecture.

15

1.4 Implementation details
All models were implemented via the PyTorch framework in Python 3.10.6. The
selected optimiser is AdamW Loshchilov and Hutter [2019]. All hyperparameters
of the training, such as learning rate or batch size, are listed directly with the
experiments. The simulations of the V1 cortex and the LED prosthesis were done
with the Mozaik workflow system1. The implementation of SSIM loss was taken
from PyTorch-MSSSIM library2. The complete code used for this thesis can be
found at 3.

Hardware requirements are split into two parts, one for the generation of
the dataset and one for the training of the models. The training of the neural
networks can be done on a single GPU with at least 16GB of VRAM. The training
of each network takes between 60 and 240 minutes. Generation of the dataset
and validation of activities Aart produced by synthesised stimuli Sart were done
on the MetaCentrum, as it is CPU bound and a very RAM-intensive process. On
a single CPU simulation of activities Aart produced by 50 stimuli Sart can take
up to 24 hours and consume 40GB of RAM throughout the process.

Full acknowledgement for the Metacentrum services: Computational resources
were provided by the e-INFRA CZ project (ID:90254), supported by the Ministry
of Education, Youth and Sports of the Czech Republic.

1https://github.com/CSNG-MFF/mozaik
2https://github.com/VainF/pytorch-msssim/
3https://gitlab.mff.cuni.cz/paradaj/optogenetic_stimulation_protocol/

16

https://github.com/CSNG-MFF/mozaik
https://github.com/VainF/pytorch-msssim/
https://gitlab.mff.cuni.cz/paradaj/optogenetic_stimulation_protocol/

2. Dataset for DNN training
The dataset for training the networks predicting reconstructed stimuli from the
cortical activity is obtained from a biologically detailed spiking model of the cat’s
primary visual cortex (et al. [2021]). The dataset consists of data points with two
parts: Stimulus Sart and Cortical activity Aart. In general, Stimuli are cropped
images taken from the ImageNet dataset Deng et al. [2009]. These images were
chosen because they represent well the statistics of naturalistic images. Cortical
activities are temporal recordings of activation spikes of individual cortical neu-
rons; hence more advanced data processing pipeline was used to obtain a single
image-like tensor representation for each activity Aart recording.

2.1 Stimulus presentation to V1 cortex model
Each stimulus Sart presented to the V1 model is a grayscale image with size
110 × 110 pixels and pixel values in the range 0.0 to 1.0. The stimulus Sart is
presented through optogenetic cortical prosthesis (LED array) of size 3300.0 µm
and LED spacing 30.0 µm. Update interval for the spiking neural network is
1.0 ms, duration of stimulus presentation is 150.0 ms, of which 50.0 ms is onset-
time and 100.0 ms is offset-time. The result of each stimulus presentation is
artificial activity Aart recording.

2.2 Cortical activity
The activity Aart is taken from excitatory neurons in layer 2/3 (L2/3). Each
neuron has (x, y) positions and a list of times with activation spikes. We can
obtain a tensor of cortical activity by binning neuron activation spikes based on
the spatial locations of neurons and the temporal location of the activation. One
cell (t, i, j) in the tensor represents the firing rate of neurons in temporal bin
[t, t + tres) and spatial bin (i, j) corresponding to a square with corners (xi, yj)
and (xi + sres, yj + sres). tres and sres represent temporal and spatial resolution
respectively. xi and yj denote affine mapping between indices (i, j) and actual
coordinates (x, y) in V1 cortex tissue. The firing rate is calculated as

N(i, j, t, tres)
tres

(2.1)

where N(i, j, t, tres) is number of neurons that fired in bin (i, j) over time period
[t, t + tres). For instance N(i, j, t, tres) = 2 and tres = 5 ms yields rate of 400 s−1.

Means across the temporal dimension were taken to reduce the dataset’s size
significantly and as the first measure for normalisation of inputs, as a vast ma-
jority of cells in the cortical activity tensor have value 0. Working with a single
image-like tensor representing Aart ensures that proper data pre-processing can
be meaningfully applied, as individual slices across the temporal dimension have
statistics which are even more skewed than statistics of averaged Aart.

17

0 20 40 60 80 100

0

20

40

60

80

100

t: 0-5ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 5-10ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 10-15ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 15-20ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 20-25ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 25-30ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 30-35ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 35-40ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 40-45ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 45-50ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 50-55ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 55-60ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 60-65ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 65-70ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 70-75ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 75-80ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 80-85ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 85-90ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 90-95ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 95-100ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 100-105ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 105-110ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 110-115ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 115-120ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 120-125ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 125-130ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 130-135ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 135-140ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 140-145ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 145-150ms

0 20 40 60 80 100

0

20

40

60

80

100

t: 150-155ms

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

25

50

75

100

125

150

175

200

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

100

200

300

400

500

600

700

800

0

100

200

300

400

500

600

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

100

200

300

400

500

600

700

800

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

50

100

150

200

250

300

350

400

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

100

200

300

400

500

600

0

50

100

150

200

250

300

350

400

0

100

200

300

400

500

600

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

100

200

300

400

500

600

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400

Figure 2.1: Example of binned cortical activity. The plots are organised by
increasing time range.

18

0 20 40 60 80 100

0

20

40

60

80

100

Mean firing rate

0

10

20

30

40

50

60

70

Figure 2.2: Example of cortical activity tensor averaged through the temporal
dimension.

2.3 Cortical activity pre-processing
The algorithm written in Python used for a pre-processing tensor of mean activ-
ities Aart artificial_cortical_act is as follows:

import numpy as np

artificial_cortical_act = np.load("artificial_cortical_act.npy")
data pre-processing
artificial_cortical_act = np.log(artificial_cortical_act + 1)
artificial_cortical_act -= np.min(artificial_cortical_act)
artificial_cortical_act /= np.max(artificial_cortical_act)
artificial_cortical_act -= np.mean(artificial_cortical_act)

where arithmetic operations +, −, / are applied in element-wise fashion to the
artificial_cortical_act tensor. Element-wise application fashion means that
each element of artificial_cortical_act tensor is operated on individually
with the corresponding scalar operand on the right side of the operators. For
instance artificial_cortical_act + 1 would add 1 to each element in 4D
tensor artificial_cortical_act of shape (num_act, 1, rows, columns), where
num_act is the number of activities Aart in the dataset and 1 is number of channels
meaning that artificial_cortical_act is tensor of image-like tensors with 1
channels representing artificial activities Aart.

The intuition behind this style of transformation is that the distribution of
average firing rate across all mean tensors of Aart is very skewed towards low
values - 0.9996% of all firing rate values are below 30, as it can be seen in the
figure 2.3. However, a few pixels have firing rate values up to 800 even after
taking the mean across the temporal dimension. The natural logarithm breaks

19

0 20 40 60 80 100
Firing rate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
eq

ue
nc

y

1e8 Histogram of neural firing rates

Figure 2.3: Histogram of cortical activity before applying pre-processing trans-
formations.

up this skewness by separating the values by their order of magnitude while not
wholly disregarding the firing rates’ values. The operations after the logarithm
ensure that the range of values of artificial_cortical_act is acceptable for
the neural networks, i.e. the difference between the largest and smallest value
is at most 1 while the arithmetic mean of tensor artificial_cortical_act is
0. The histogram for pre-processed cortical activities in figure 2.4 shows a more
sensible separation of firing rates.

2.4 Stimulus pre-processing
The general pre-processing steps of stimuli images stimuli for network training
are:

import numpy as np

stimuli = np.load("stimuli.npy")
data pre-processing
stimuli -= np.mean(stimuli)

All pixels in the array of stimuli images are in the range [0, 1] due to previous
usage of stimuli array in the simulation of V1 cortex; hence simple data-centring
suffices.

20

0.2 0.0 0.2 0.4 0.6 0.8
Firing rate

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
eq

ue
nc

y

1e8 Histogram of neural firing rates

Figure 2.4: Histogram of cortical activity after applying pre-processing transfor-
mations.

21

In the case of the convolutional models, the stimuli are further downsampled
by a factor of 2, as the models are designed with bottleneck architecture (they
embed the activity tensors to smaller feature tensor, which is then transformed
to low-resolution stimulus and upscaled afterwards). The theory is that the fewer
moving parts to optimize, the better, hence by working with smaller stimuli,
the models can learn the transformation and embeddings more efficiently, as
they don’t have to do upscaling by a factor of 8, only by the factor of 4. The
downsampling is done by averaging 2×2 groups of pixels from stimuli with stride
2.

2.5 Dataset description after pre-processing
The dataset contains 49150 pairs of (artificial stimulus, artificial activity) image-
like tensors. The resolution of stimuli is 110 × 110 pixels, and the resolution of
artificial activity tensors is 112 × 112. The stimuli images and activity tensors
are unique; hence they can be split into train, validation, and test sets in a ratio
of 80 : 10 : 10. Below are descriptions and basic statistics for each split:

Train Set:

• Number of samples: 39320

• Stimuli desctiprion: min −0.440, max 0.560, mean 0.0002, std 0.249

• Cortical activity description: min −0.164, max 0.836, mean 0.0001, std
0.189

Validation Set:

• Number of samples: 4915

• Stimuli desctiprion: min −0.440, max 0.560, mean −0.0023, std 0.250

• Cortical activity description: min −0.164, max 0.835, mean −0.0006, std
0.189

Test Set:

• Number of samples: 4915

• Stimuli desctiprion: min −0.440, max 0.560, mean 0.0003, std 0.250

• Cortical activity description: min −0.164, max 0.836, mean −0.0001, std
0.189

22

3. Experiments + results
Each experiment is structured according to the following outline:

1. First, a machine learning model is trained on mini-batches of size 4 from
the training dataset. The validation set was used to manually find the
best hyperparameters, such as the sizes of layers and loss weights during
training. Hence, the validation error metrics are as low as possible. All
hyperparameters are listed at the start of each experiment description.

2. The trained model is used to predict artificial stimuli Smodel from Aart from
the test set, which are given to a model of the optogenetic cortical prosthesis.
Here Smodel notation is used instead of Sart to indicate that Sart serve as
gold labels of the dataset, while Smodel is the actual stimulus produced by
the machine learning models and Amodel is the cortical activity invoked from
Smodel through the optogenetic cortical prosthesis.

3. The resulting cortical activity tensors Amodel and test set activities Atest are
compared to each other with the MSE and SSIM metrics. Both tensors are
pre-processed in the same way, i.e. natural logarithm is applied to each
element of the tensors. Subsequently, both activities are divided by the
maximum value from Atest. Atest is a subset of Aart used in the test set. In
contrast to the cortical activity pre-processing process described in section
2.3, subtraction of the mean is omitted, as it would not substantially impact
the MSE nor SSIM metrics.

The validation score is measured as the similarity between Smodel, while the
test score is measured as the similarity between Aart and activity Amodel. Visual-
izations of the validation and test differences are shown in the following figures:
Figure 3.1 shows one pair from the validation set and their difference map, while
Figure 3.2 shows one pair from the test set and their difference map.

3.1 Linear Model
Only one experiment with the linear model was performed. The hyperparameters
for the experiment are in the table below.

0 25 50 75 100

0

20

40

60

80

100

S_model

0 25 50 75 100

0

20

40

60

80

100

S_art

0 25 50 75 100

0

20

40

60

80

100

np.abs(S_model - S_art)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.2

0.0

0.2

0.4

0.1

0.2

0.3

0.4

Figure 3.1: Example of (Smodel, Sart) pair used for validation score.

23

0 20 40 60 80 100

0

20

40

60

80

100

A_art

0 20 40 60 80 100

0

20

40

60

80

100

A_model

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_art - A_model)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.2: Example of (Amodel, Aart) pair used for test score.

Optimizer AdamW
Learning rate 1e-3

Batch size 4
Weight decay (l2 regularization) 1e-4

Training loss functions MSE, SSIM
Loss weights 1, 1

Number of epochs 5

Table 3.1: Hyperparameters used for the linear model training.

3.1.1 Training Results
The table 3.2 depicts the model evaluation results on the validation set after each
epoch. The best validation performance was observed after epoch 4; hence, model
weights from this epoch were used to evaluate activity comparisons. Overall, the
linear model is insufficient for general stimulus reconstruction. MSE and LSSIM

in the table 3.2 indicate that all reconstructed stimuli are almost entirely dissimi-
lar from the artificial stimuli in the validation set. Even after the best epoch, the
LSSIM validation result is 0.987, where 1 signifies complete dissimilarity. Simi-
larly, an MSE of 0.310 signifies that something very bad happened, as even two
random uniform variables from the range (0, 1) have expected MSE of 1

6 ≈ 0.16
between them.

Epoch MSE LSSIM

1 0.328 0.988
2 0.320 0.988
3 0.320 0.987
4 0.310 0.987
5 0.323 0.987

Table 3.2: Linear model training results on the validation set after each epoch.

3.1.2 Activity comparison
The metrics comparing Alinear and Atest are summarized in the table 3.3. LSSIM

and MSE denote the average SSIM and MSE loss across all (Alinear, Atest) pairs.

24

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_linear

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_linear

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_linear

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_linear

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_linear

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_linear

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_linear

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_linear

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_linear

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_linear

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.3: Comparison of the first 10 activity tensors from Atest and Alinear. The
first and second columns form the first 5 pairs, while the 3rd and 4th columns
form the second five pairs.

25

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_linear)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_linear)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_linear)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_linear)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_linear)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_linear)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_linear)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_linear)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_linear)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_linear)

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.4: Absolute difference (error map) of the first 10 activity tensor pairs
from Atest and Alinear.

26

The other four rows give context to these values. Mean Axx loss L denotes the
mean loss L across all pairs of activities sampled from Axx. Given the context, the
results of the linear model align with expectations from the training - sampling
a random stimulus from the training set as the model output would probably be
functionally the same as using the Linear model.

LSSIM 0.471
MSE 0.036
Mean Alinear SSIM 0.531
Mean Atest SSIM 0.417
Mean Alinear MSE 0.032
Mean Atest MSE 0.039

Table 3.3: Average difference between Alinear and Atest described by MSE and
SSIM metrics. MSE of 0 and SSIM of 1 mean no difference.

3.2 MLP model
Similarly to the linear model, only one final experiment with MLP was performed.
The choice of hyperparameters, especially increasing the hidden layer size, didn’t
seem to impact the model’s generalisation capacity during training; as such, the
most simple version of hyperparameters, as depicted in table 3.4 was chosen.
Compared to the linear model, only 3 training epochs were done for the MLP
predictor, as it tended to overfit the training data and not generalise well on the
unseen validation data.

Optimizer AdamW
Learning rate 1e-3

Batch size 4
Weight decay (l2 regularization) 1e-4

Training loss functions MSE, SSIM
Loss weights 1, 1

Number of epochs 3
Hidden layer size [24200,]

Table 3.4: Hyperparameters used for the MLP model training.

3.2.1 Training results
The training results in table 3.5 indicate that the MLP model can generalise
better on previously unseen stimuli from the validation set than the linear model.

3.2.2 Activity comparison
Surprisingly the improved capacity of the MLP model to generate stimuli didn’t
seem to help at bridging the gap between Amlp and Atest as shown in table 3.6.
Although the results look almost the same, the MLP model comes slightly on

27

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_mlp

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_mlp

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_mlp

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_mlp

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_mlp

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_mlp

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_mlp

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_mlp

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_mlp

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_mlp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.5: Comparison of the first 10 activity tensors from Atest and Amlp. The
first and second columns form the first 5 pairs, while 3rd and 4th columns form
the second five pairs.

28

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_mlp)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_mlp)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_mlp)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_mlp)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_mlp)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_mlp)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_mlp)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_mlp)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_mlp)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_mlp)

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.6: Absolute difference (error map) of the first 10 activity tensor pairs
from Atest and Amlp.

29

Epoch MSE LSSIM

1 0.035 0.736
2 0.035 0.734
3 0.034 0.735

Table 3.5: MLP model training results on the validation set after each epoch.

top. This still does not change the conclusion that even the MLP model cannot
generalise well on previously unseen stimuli.

LSSIM 0.470
MSE 0.035
Mean Amlp SSIM 0.531
Mean Atest SSIM 0.417
Mean Amlp MSE 0.032
Mean Atest MSE 0.039

Table 3.6: Average difference between Amlp and Atest described by MSE and SSIM
metrics. MSE of 0 and SSIM of 1 mean no difference.

3.3 CNN V1 model
The performance in stimuli synthesis of the convolutional models is superior to
the previous two methods; as such, the weight of the MSE loss was increased to
10 to make it relevant during the training. The larger weight of the MSE loss
during training allowed for faster convergence of the model parameters. Most of
this effect came from the first epoch, as it allowed the model to quickly find some
reasonable setting of its parameters such that the MSE would go down quickly. In
the subsequent epochs, the SSIM loss component dominated the MSE component.
Empirically the best performance was observed with 4 epochs of training, as by
design, the CNN V1 model has very high capacity, meaning that it can quickly
overfit on the training dataset. The advantage of using a convolutional model
with high capacity in this task is that combined with a small number of epochs
which serve as early stopping, much better generalisation performance can be
achieved than with a smaller model version and more training epochs.

Optimizer AdamW
Learning rate 1e-3

Batch size 4
Weight decay (l2 regularization) 1e-4

Training loss functions MSE, SSIM
Loss weights 10, 1

Number of epochs 4

Table 3.7: Hyperparameters used for the CNN V1 model training.

30

3.3.1 Training results
The training results of the CNN V1 model displayed in the table 3.8 are substan-
tially better than those of the MLP model 3.5. This indicates that more advanced
feature extraction, such as the one in the CNN V1 model, is necessary to predict
stimuli from the cortical activities. Another interesting point is that the model
seems to learn most of its encodings during the first epoch, which indicates that a
more extensive training dataset might help with the generalisation performance,
as subsequent epochs improve the validation performance only marginally, even
though the training loss went down, meaning that the model could successfully
learn to predict stimuli from the training set. At the same time, it relatively
struggled to generalise onto the validation set.

Epoch MSE LSSIM

1 0.020 0.603
2 0.019 0.585
3 0.017 0.585
4 0.018 0.578

Table 3.8: CNN V1 model training results on the validation set after each epoch.

3.3.2 Activity comparison
The results in the table 3.9 paint the picture that even the performance of the
CNN V1 model at synthesising stimuli is not enough to invoke cortical activity
Acnnv1 similar to the activity Atest. This might indicate that more precise stimulus
reconstruction is required to invoke chosen cortical activity responses.

LSSIM 0.471
MSE 0.036
Mean Acnnv1 SSIM 0.531
Mean Atest SSIM 0.417
Mean Acnnv1 MSE 0.032
Mean Atest MSE 0.039

Table 3.9: Average difference between Acnnv1 and Atest described by MSE and
SSIM metrics. MSE of 0 and SSIM of 1 mean no difference.

3.4 CNN V2 model
For similar reasons as in the CNN V1 model, the MSE loss weight was increased
to 50. Apart from that, standard values of hyperparameters were chosen 3.10.

3.4.1 Training results
Compared to the CNN V1 model, the CNN V2 model training seems even more
stagnant after the first epoch, only oscillating slightly. For the final activity

31

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v1

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v1

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v1

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v1

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v1

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v1

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v1

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v1

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v1

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.7: Comparison of the first 10 activity tensors from Atest and Acnnv1. The
first and second columns form the first 5 pairs, while 3rd and 4th columns form
the second five pairs.

32

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v1)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v1)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v1)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v1)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v1)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v1)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v1)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v1)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v1)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v1)

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.8: Absolute difference (error map) of the first 10 activity tensor pairs
from Atest and Acnnv1.

33

Optimizer AdamW
Learning rate 1e-3

Batch size 4
Weight decay (l2 regularization) 1e-4

Training loss functions MSE, SSIM
Loss weights 50, 1

Number of epochs 5

Table 3.10: Hyperparameters used for the CNN V2 model training.

comparison, model weights after the 3rd epoch were taken, even if only marginally
the validation performance of LSSIM 0.572 was the best out of all the epochs.

Epoch MSE LSSIM

1 0.016 0.574
2 0.016 0.573
3 0.016 0.572
4 0.016 0.574
4 0.016 0.575

Table 3.11: CNN V2 model training results on the validation set after each epoch.

3.4.2 Activity comparison
Out of all the models investigated in this thesis, the model CNN V2 showed
the best MSE result regarding activity comparisons. This may be caused by the
fact that the average difference between activities Acnnv2 in both MSE and SSIM
metrics is the highest across all the models, indicating more entropy information
in the Acnnv2 distribution.

LSSIM 0.474
MSE 0.032
Mean Acnnv2 SSIM 0.447
Mean Atest SSIM 0.417
Mean Acnnv2 MSE 0.037
Mean Atest MSE 0.039

Table 3.12: Average difference between Acnnv2 and Atest described by MSE and
SSIM metrics. MSE of 0 and SSIM of 1 mean no difference.

34

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v2

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v2

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v2

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v2

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v2

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v2

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v2

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v2

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v2

0 20 40 60 80 100

0

20

40

60

80

100

A_test

0 20 40 60 80 100

0

20

40

60

80

100

A_cnn_v2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.9: Comparison of the first 10 activity tensors from Atest and Acnnv2. The
first and second columns form the first 5 pairs, while 3rd and 4th columns form
the second five pairs.

35

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v2)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v2)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v2)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v2)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v2)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v2)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v2)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v2)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v2)

0 20 40 60 80 100

0

20

40

60

80

100

np.abs(A_test-A_cnn_v2)

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.10: Absolute difference (error map) of the first 10 activity tensor pairs
from Atest and Acnnv2.

36

4. Discussion

4.1 Possible improvements
The model training results show that further improving the stimuli prediction
is necessary for better generalisation performance. A manual look at example
predictions such as 4.1 or 4.2 indicates that not only do the models struggle to
match the overall dynamic range of the target stimuli, but they are also capable of
synthesising only low-resolution features, meaning that any high-frequency data
that is present in most stimuli is inevitably lost. Some of the possible causes for
these phenomenons include:

1. Insufficient training data. The space of possible stimuli images and cor-
tical activity patterns might be very heterogeneous, meaning that copious
amounts of data would be required to cover a fraction of the possible stimuli
and cortical activity patterns spaces. This hypothesis seems quite plausible,
as mammalian vision is very advanced; it is capable of perceiving countless
types of images from the environment; as such, it might be a futile effort to
try reverse-engineering it with just 39000 pairs of (stimuli, cortical activity)
pairs.
Another reason there might be insufficient training data is that most image
synthesis algorithms require big datasets to achieve good results, as high-
frequency details require much more examples than low-frequency image
features. This factor is disconnected from the previous hypothesis, as it
might be relatively easy to distinguish various types of cortical activity
patterns. Still, it is tough to synthesise highly detailed stimuli images with
such a small dataset.
The training data depends heavily on the computational resources and the
amount of software friction with simultaneously simulating many experi-
ments. For example, running more than 1000 simulations in parallel re-
quires distributed strategies for disk management, as some simulations may
crash if they cannot obtain write permission to hard-disk for a long time.
Both of these factors played a significant role in creating the dataset.

2. The CNN architecture is fundamentally flawed in the settings of this task.
The CNN architecture was chosen for its historical significance in vision
neuroscience research. Real neurons are much more complex, meaning that
a more advanced model might be necessary to decode stimuli from cortical
activity patterns successfully. For instance, vision transformers, which can
focus attention only on the crucial parts, might be better suited for the task.
Another consideration is that with CNN architecture, it takes time for all of
the crucial pieces of information from the input to mix, meaning that CNN
models usually have relatively high capacity. This may negatively impact
the performance, as there is a limited amount of training data, and advanced
convolutional models can remember all examples from the training set while
not working well on unseen data.
The last thing worth mentioning with the architecture design is that the

37

0 25 50 75 100

0

20

40

60

80

100

linear

0 25 50 75 100

0

20

40

60

80

100

mlp

0 20 40

0

10

20

30

40

50

cnn_v1

0 20 40

0

10

20

30

40

50

cnn_v2

0 25 50 75 100

0

20

40

60

80

100

target

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0.03

0.02

0.01

0.00

0.01

0.02

0.2

0.1

0.0

0.1

0.2

0.3

0.10

0.05

0.00

0.05

0.10

0.15

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 4.1: Example #1 of stimuli prediction from the test set.

encoder-decoder approach might not be the best overall. Still, a diffusion
model that keeps the identical resolution throughout the activity to stimulus
prediction pipeline would be more suitable, as the activity patterns can be
viewed as a form of structured noise.

3. The loss functions used in this thesis give too weak signals for guiding the
networks in the right direction. In the literature, countless loss functions
focus on specific problems. For example, in the paper Ledig et al. [2017],
they use both DEEP MSE loss and perceptual loss, allowing them to achieve
much better results in image upscaling than with simple loss functions such
as MSE. Specifically, image upscaling is deeply connected with the current
model architectures; hence any process that can add high-frequency data
into the predicted stimulus Amodel might significantly improve the results.

4. Cortical implant is not able to stimulate the cortex sufficiently precisely.
Suppose the cortical implant cannot achieve artificially evoked cortical pat-
terns similar to those evoked through natural vision due to precision issues.
In that case, it may indeed be impossible to match Anat activity patterns
with mappings generated on Aart, Sart pairs. Such imprecision would also
explain why even if most of the low-level features of Sart are matched by
Smodel, the validation performance is abysmal for all model types, as the
simulation may be too chaotic.

Solving these concerns may bring the dream of substituting a non-functional
eye closer to reality.

38

0 25 50 75 100

0

20

40

60

80

100

linear

0 25 50 75 100

0

20

40

60

80

100

mlp

0 20 40

0

10

20

30

40

50

cnn_v1

0 20 40

0

10

20

30

40

50

cnn_v2

0 25 50 75 100

0

20

40

60

80

100

target

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0.03

0.02

0.01

0.00

0.01

0.02

0.2

0.1

0.0

0.1

0.2

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.2

0.0

0.2

0.4

Figure 4.2: Example #2 of stimuli prediction from the test set.

4.2 The training set imbalance
Another aspect which might have negatively impacted the results is the sparsity
of the dataset. Even after applying various operations to increase the variance
of Aart activities used for training, a vast majority of Aart tensor cells are filled
with values corresponding to a firing rate of 0. This issue might stem from an
uneven sampling of neuron positions across the cortex in the Mozaik simulations.
Averaging the data from multiple trials with various random seeds can relieve
this issue and produce a more information-rich dataset.

4.3 Future work
Future work can involve taking cortical activities from actual Anat distribution as
a test set to validate whether the model performance indeed can generalise well
from training on Aart, Sart pairs. Another approach that could be investigated in
the future is to build an ensemble of models in boosting way, meaning that the
first model would learn to produce artificial stimuli Smodel1 as close to the gold
targets Sart. In contrast, subsequent models would be trained on the differences
between the gold labels Sart and the sum of previous models’ predictions. An
ensemble of weak learners might learn to model the complex distribution Sart

from Aart surprisingly well. Besides these two points, all arguments mentioned
in the 4.1 section must be investigated.

39

Conclusion
The whole focus of this thesis was on this single cornerstone challenge from the
beginning: Understanding how to manipulate the neural activity such that the ar-
tificially elicited cortical activity patterns match those elicited through viewing the
target visual stimulus via an intact visual pathway. The machine learning models
investigated provide baselines for future research and shed some light on the is-
sues with learning the innovative mapping between cortical activities and artificial
stimuli. While the results presented are somewhat lacklustre, they helped pave
the road for future research. Mainly the points raised in the discussion (chapter
4) provide valuable insights for future research.

One of the significant successes of this thesis was setting up various scripts
that can help run the Mozaik framework on the Metacentrum infrastructure. This
gives rise to the possibility of using more extensive and varied datasets.

40

Bibliography
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-

genet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–255. Ieee, 2009.

Jan Antoĺık et al. Assessment of optogenetically-driven strategies for prosthetic
restoration of cortical vision in large-scale neural simulation of v1. Scientific
reports, 11:1–18, 2021.

Alexander Farnum and Galit Pelled. New vision for visual prostheses. Front
Neurosci, 14:36, February 2020.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, and Wenzhe Shi. Photo-realistic single image super-resolution using a
generative adversarial network, 2017.

Zhichao Liu, Ruili Huang, Ruth Roberts, and Weida Tong. Toxicogenomics: A
2020 vision. Trends Pharmacol Sci, 40(2):92–103, December 2018.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,
and Saining Xie. A convnet for the 2020s, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Martin Picek. Rotation-equivariant convolutional neural network for design of
visual prosthetic stimulation protocol, 2022.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P. Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural network,
2016.

Vojtěch Vašek. Decoding visual stimuli from cortical activity, 2023.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality Assess-
ment: From Error Visibility to Structural Similarity. IEEE Transactions on
Image Processing, 13(4):600–612, April 2004. doi: 10.1109/TIP.2003.819861.

41

http://www.deeplearningbook.org

List of Figures
1 The entire background for this thesis. In an intact visual pathway,

visual stimuli start at the eye and get passed to the V1 cortex
(indicated by a turquoise arrow), where they invoke cortical activ-
ity. Previous work Picek [2022] established mapping from natural
stimuli Snat to natural cortex activities Anat. Afterwards Vašek
[2023] established model taking cortical activities as an input and
producing Snat stimuli on the output. With the help of the Mozaik
framework, aby artificial stimuli Sart can be converted into artificial
activity Aart. Now the only missing link is a mapping from cortical
activity Anat to artificial stimuli Sart such that artificial activity
Aart corresponding to the stimulus Sart matches the given activ-
ity Anat. Finding such mapping would allow for eliciting cortical
activity patterns matching those elicited through viewing target
visual stimulus via an intact visual pathway by combining it with
the model from Snat to Anat. The model for decoding Snat from
Anat can also be used to check if the activity Aart invoked by Sart

matches target visual stimulus Snat. 5

1.1 Workflow of the linear model with individual input/output tensors
sizes. 9

1.2 Sizes of tensors during computation of the MLP model. 9
1.3 CNN block inspired by ConvNeXt. channel dim represents the

number of input channels for the cnn block. 11
1.4 Contraction block design. Usually, channels out is twice the num-

ber of channels in the input tensor. 12
1.5 Expansion block design. channels in * 4 with pixel shuffle after-

wards create sub-pixel convolution Shi et al. [2016]. 13
1.6 Overall CNN V1 architecture. 14
1.7 Overall CNN V2 architecture. 15

2.1 Example of binned cortical activity. The plots are organised by
increasing time range. 18

2.2 Example of cortical activity tensor averaged through the temporal
dimension. 19

2.3 Histogram of cortical activity before applying pre-processing trans-
formations. 20

2.4 Histogram of cortical activity after applying pre-processing trans-
formations. 21

3.1 Example of (Smodel, Sart) pair used for validation score. 23
3.2 Example of (Amodel, Aart) pair used for test score. 24
3.3 Comparison of the first 10 activity tensors from Atest and Alinear.

The first and second columns form the first 5 pairs, while the 3rd
and 4th columns form the second five pairs. 25

3.4 Absolute difference (error map) of the first 10 activity tensor pairs
from Atest and Alinear. 26

42

3.5 Comparison of the first 10 activity tensors from Atest and Amlp.
The first and second columns form the first 5 pairs, while 3rd and
4th columns form the second five pairs. 28

3.6 Absolute difference (error map) of the first 10 activity tensor pairs
from Atest and Amlp. 29

3.7 Comparison of the first 10 activity tensors from Atest and Acnnv1.
The first and second columns form the first 5 pairs, while 3rd and
4th columns form the second five pairs. 32

3.8 Absolute difference (error map) of the first 10 activity tensor pairs
from Atest and Acnnv1. 33

3.9 Comparison of the first 10 activity tensors from Atest and Acnnv2.
The first and second columns form the first 5 pairs, while 3rd and
4th columns form the second five pairs. 35

3.10 Absolute difference (error map) of the first 10 activity tensor pairs
from Atest and Acnnv2. 36

4.1 Example #1 of stimuli prediction from the test set. 38
4.2 Example #2 of stimuli prediction from the test set. 39

43

List of Tables

3.1 Hyperparameters used for the linear model training. 24
3.2 Linear model training results on the validation set after each epoch. 24
3.3 Average difference between Alinear and Atest described by MSE and

SSIM metrics. MSE of 0 and SSIM of 1 mean no difference. . . . 27
3.4 Hyperparameters used for the MLP model training. 27
3.5 MLP model training results on the validation set after each epoch. 30
3.6 Average difference between Amlp and Atest described by MSE and

SSIM metrics. MSE of 0 and SSIM of 1 mean no difference. . . . 30
3.7 Hyperparameters used for the CNN V1 model training. 30
3.8 CNN V1 model training results on the validation set after each

epoch. 31
3.9 Average difference between Acnnv1 and Atest described by MSE and

SSIM metrics. MSE of 0 and SSIM of 1 mean no difference. . . . 31
3.10 Hyperparameters used for the CNN V2 model training. 34
3.11 CNN V2 model training results on the validation set after each

epoch. 34
3.12 Average difference between Acnnv2 and Atest described by MSE and

SSIM metrics. MSE of 0 and SSIM of 1 mean no difference. . . . 34

44

List of Abbreviations
DNN Deep neural network
MSE Mean square error
SSIM Structural similarity index metric
V1 visual area 1 in the visual cortex
MLP multilayer perceptron
CNN convolutional neural network
LN layer normalisation
GELU Gaussian Error Linear Unit

45

	Introduction
	Deep Learning and Model Selection for Stimuli Image Prediction
	Defining the main optimization objective
	What is a model and its training

	Model types
	Linear model
	MLP model
	Convolutional models
	CNN V1
	CNN V2

	Losses and Metrics
	MSE
	Image correlation
	SSIM

	Implementation details

	Dataset for DNN training
	Stimulus presentation to V1 cortex model
	Cortical activity
	Cortical activity pre-processing
	Stimulus pre-processing
	Dataset description after pre-processing

	Experiments + results
	Linear Model
	Training Results
	Activity comparison

	MLP model
	Training results
	Activity comparison

	CNN V1 model
	Training results
	Activity comparison

	CNN V2 model
	Training results
	Activity comparison

	Discussion
	Possible improvements
	The training set imbalance
	Future work

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations

