
BACHELOR THESIS

Petr Šmı́d

Algorithms for Multi-Agent
Pickup-and-Delivery Problems

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: prof. RNDr. Roman Barták, Ph.D.
Study programme: Computer science

Study branch: General Informatics

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague on July 20th, 2023 Petr Šmı́d

i

I wish to thank my supervisor prof. Roman Barták for his valuable advice and
for pointing me in the right direction. Also to my parents for letting me create
this thesis under their roof.

ii

Title: Algorithms for Multi-Agent Pickup-and-Delivery Problems

Author: Petr Šmı́d

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: prof. RNDr. Roman Barták, Ph.D., Department of Theoretical
Computer Science and Mathematical Logic

Abstract: In this thesis, we explore the world of Multiagent pickup and deliv-
ery algorithms. Basic definitions, as well as simple extensions, are introduced
to the reader. State-of-the-art algorithms are thoroughly described, analyzed,
and tested in various environments based on multiple conditions. We describe
the scalability of the algorithms and demonstrate it in multiple scenarios. The
thesis includes a short overview of explainable plans, their motivation, and their
implementation. Support software was created for conducting experiments, visu-
alization, and making explainable plans.

Keywords: MAPD MAPF Autonomous agents

iii

Contents

List of Abbreviations 3

Introduction 4

1 Problem Definition 5
1.1 MAPD Formalization . 5

1.1.1 Well formed MAPD Instance 6
1.2 Additional settings . 7

1.2.1 Deadline for orders . 7
1.2.2 Capacities . 7
1.2.3 Multi-goal tasks . 7
1.2.4 Task ordering . 7
1.2.5 Agent charging . 7
1.2.6 Offline . 8

1.3 MAPF . 8
1.4 Solving methods . 8

1.4.1 Task assignment . 8
1.4.2 Path planning . 9

1.5 Example . 9

2 Related work 10
2.1 MAPF research . 10

2.1.1 Hierarchical cooperative A* 10
2.1.2 Increasing cost tree search 10
2.1.3 Conflict based search . 11
2.1.4 Constraint programming 11
2.1.5 Learning based algorithms 11

2.2 MAPD research . 11
2.2.1 Offline settings . 11
2.2.2 Online settings . 12
2.2.3 Semi-online settings . 13

3 Algorithm description 14
3.1 Token Passing . 14
3.2 Token Passing Task Swapping . 15
3.3 CENTRAL . 17

3.3.1 Hungarian Algortihm . 18
3.3.2 Path computing . 18
3.3.3 CBS . 18
3.3.4 Update . 19
3.3.5 Prunning . 19

3.4 Possible pitfalls . 20
3.4.1 TP and TPTS . 20
3.4.2 CENTRAL-A* . 20
3.4.3 CENTRAL-CBS . 21

1

4 Plan Validation 22
4.1 Validation algorithm . 22
4.2 Properties . 22

5 Experiments 24
5.1 Experiment descriptions . 24

5.1.1 MAPF benchmarks . 25
5.2 Experiment 1 . 25

5.2.1 Settings . 25
5.2.2 Results . 26

5.3 Experiment 2 . 31
5.3.1 Settings . 31
5.3.2 Results . 32
5.3.3 Conclusion . 36

5.4 Experiment 3 . 37
5.4.1 Settings . 37
5.4.2 Results . 37

5.5 Experiment 4 . 38
5.5.1 Settings . 38
5.5.2 Results . 42
5.5.3 Conclusion . 42

Conclusion 43

Bibliography 44

List of Figures 47

List of Tables 48

A Attachments 50
A.1 Maps used in 4th experiment . 50
A.2 Mapd-visual software used for testing and visualization 50
A.3 Experimental measurements . 50
A.4 Simulation.mp4, showing simulation of selected scenarios 50

2

List of Abbreviations
MAPD: Multiagent pickup and delivery
MAPF: Multiagent path finding
TP: Token Passing algorithm
TPTS: Token passing tasks swapping algorithm
C-A∗: Central algorithm with A∗ local search
CBS: Constraint based search
C-CBS: Central algorithm with CBS local search
CT: Constraint tree

3

Introduction
With the rapid increase in industry productivity in recent years comes the need
for fast transportation, efficient storing of goods, and effective control over rapidly
changing environments. The positive impact of Multi-agent pickup and delivery
(MAPD) research is reflected especially in efficiency and costs. The potential of
multi-agent system usage was demonstrated in large warehouses (Wurman et al.
[2008]). The authors explained the typical workflow in the warehouse environment
and the multi-agent solution’s role. They argued that most modern automated
warehouses were too expensive and provided ideas for cutting costs. Multi-agent
roles in coordinated search and rescue were introduced by Kitano et al. [1999].
The authors proposed an extension of RoboCup-rescue activities, explained the
problematics of a hostile environment and suggested significant issues for the res-
cue to be tackled. Multi-agent systems algorithms even made an appearance in
video games (Silver [2005]). The author proposed a faster method of comput-
ing the paths of units in strategy games. Recently, intelligent warehouses have
been established in Czechia by leading Tech companies such as Mall, Alza, and
Amazon. Any of these use multi-agent solutions daily and would greatly benefit
from faster or more efficient algorithms. It is desirable to research and utilize
multi-agent systems and seize the opportunities they provide. For that reason,
we will briefly visit the world of Multi-agent pickup and delivery algorithms.
This thesis aims to compare existing MAPD algorithms and test them in vari-
ous environments, discuss known techniques, and experiment with the number
of agents for some maps. Multi-agent and pickup delivery is a problem from the
optimization field, and it belongs to the family of NP-Complete problems, and
unlike others, it has not gained popularity until recently, with development in the
fields of robotics and optimization.
Especially progress in robotics enabled the potential of MAPD and allowed for
further extensive research. A set of agents, orders with pairs of locations, and
environment is given, and the goal is to plan the most efficient non-collision paths
while delivering all orders.
MAPD is commonly divided into two subproblems: task assignment and path
planning. The goal of the task assignment is to decide the next location for the
agents. Path planning then safely gets the agents to their designated locations.

4

1. Problem Definition

1.1 MAPD Formalization
MAPD problem instance is defined by the following input: map, n agents with
respective positions, and k orders with respective positions. The map is usually
warehouse-like or a replica of some real-world scenario, such as airports, indus-
trial halls, etc. The goal is to deliver all orders by agents on non-conflict paths
either with the shortest makespan or finding the most efficient solution by utility
function chosen by the user. Commonly used is the cost efficiency function, where
all agents and actions have their respective cost, and we seek the solution as low
cost as possible. In this thesis, we will be working in a discrete environment. We
will denote one tick of the environment as the time step and multiple ticks as
the time frame. The other agents, along with map walls, are considered obstacles
and must be avoided. Non-delivered orders are not considered obstacles.
Definition 1. An instance of a MAPD problem is triple (G, A, T) where G =
(V, E) is a non-oriented graph, in this thesis, also called map. The V set of all
vertices is called locations. A is a set of all agents, where agent has Ai unique
id, as starting location and ac current location. T is a set of all tasks (orders)
of a problem, where τi is denoted by triple (τt, τs, τg) where τt is the time task τ
become available, τs is a starting position and τg is a goal location of task τ .
Definition 2. Neighbor locations of vi ∈ V are all locations vj in the neighborhood
of v.
Definition 3. Agents perform actions every time step. The available actions are
as follows:
Move: Agent moves to a different neighbor location.
Wait: Agent stays in its previous location.
Pickup: Agent picks up an order
Deliver: Agents unload the order

Every action has its cost and duration. The duration has been set to 1 for
simplicity in the experimentation part. The cost will be further discussed in the
solution evaluation section. The basic idea is that it makes sense that the cost
of movement will be more expensive than the cost of staying. This is motivated
by the real world, where the movement of agents burns more fuel, drains more
energy from batteries, etc., than staying still. Thus we divided this into two
actions. In simple scenarios, the same cost can be assumed over all actions, then
Wait actions equal Move actions.
Definition 4. By assigning task τ to the agent, it is meant that the agent’s im-
mediate goal location becomes the τs and once the agent reaches it, the new goal
is τg.
Definition 5. By finishing task τ is understood that agent successfully moved to
τs, picked up the order, moved to τg, and delivered the order.
Definition 6. The agent is occupied if it has been assigned a task that it is exe-
cuting. Otherwise, the agent is idle. Once the agent finishes the task, it becomes
idle. Once it is assigned a task, it becomes occupied.

5

Definition 7. The location of agent a in time t corresponds to its current location
in time t. It is denoted as act

Definition 8. Vertex (location) collision is a situation where two agents a ̸= b share
their current location at the time t. Formally ∃a ̸= b∃t such that act == bct .
Definition 9. Edge collision is a situation, where two agents a ̸= b share an
edge uv simultaneously. Formally let a, b be agents and act , bc′t

be their current
locations at time t. Then edge conflict occurs when at t + 1, their respective
locations become ac′t+1

, bct+1 .
By creating non-colliding paths, we understand that no edge nor location

collision takes place during the plan. This is a neccesseary condition for validity
of a plan.
Definition 10. Path of an agent is l1,t, l2,t+1 . . . li,t+i sequence of locations the
agents have been assigned with their respective time frames.
Definition 11. The plan is a sequence of actions of all agents.

1.1.1 Well formed MAPD Instance
According to Ma et al. [2017], the MAPD instance is well-formed iff it satisfies
the following:

1. Number of tasks is finite

2. There are no fewer non-task endpoints than agents, where by task endpoint,
we understand a designated location in which the idle agents may wait.

3. For any two endpoints, there exists a path such that it contains no other
endpoint

Figure 1.1: Ma et al. [2017] Example MAPD instances

In the Fig. 1.1, black cells are blocked, Blue and green circles are initial
locations, red-dashed circles are task endpoints, and black-dashed circles are non-
task endpoints.
The rightmost picture shows an example of a non-well-formed instance. All paths
from e3 to a2 contain e1, which violates the third condition. The middle one
violets the second property as there is one non-task endpoint and two agents.
The leftmost one is an example of a well-formed instance.

6

The MAPD algorithms are constructed in such a way that they solve every well-
formed instance. These instances, however, rarely reflect real-world scenarios.
Therefore, algorithms are modified to tackle non-well-formed instances as well,
in that case, losing the property of the guaranteed solution. All measurements in
the experimental section are conducted solely on non-well-formed instances.

1.2 Additional settings

1.2.1 Deadline for orders
Every task can be assigned a deadline. Formally new variable is introduced τd ∀τ
which denotes the deadline. Consequentially, every task must be finished before
the deadline. In case of missing the deadline τd for some task τ , the solution is
either invalid or penalized based on the difference between the time of finishing
the task and its deadline.

1.2.2 Capacities
Orders may be assigned volume or weight and agent’s capacities. Formally new
constraints are introduced τw ∀τ , which denotes the weight of a task τ . Ac ∀A,
which denotes the capacities for each agent. This further extends the basic MAPD
instance because the agent may carry multiple orders at once. The goal remains
the same, but the agents must not exceed their respective capacity limit while
processing the orders at any point in time during the solution.

1.2.3 Multi-goal tasks
This MAPD extension is called MGMAPD. The tasks have 1 to n (where n is at
most the number of locations) goal locations. Order is denoted by triple (τt, τs, τG)
where τt is the time task τ becomes available, τs is a starting position and τG is
a set of goal locations for task τ . The task is finished if the order is delivered to
either of these locations. MGMAPD is detailly described by Xu et al. [2022].

1.2.4 Task ordering
In the original MAPD instance, orders may be processed in arbitrary order. In
many real-world scenarios, however, the order in which the tasks are processed is
given and must be followed. For example, an agent may manipulate some order
only after a different order has been completed, etc. The generalized version with
precedence constraints was described by Zhang et al. [2022] for Multiagent path
finding (MAPF) problem.

1.2.5 Agent charging
Real warehouses often force agents to charge their batteries or fill up the fuel in
designated locations. This must be done either at predefined times or when the
agent runs low on power. This MAPD extension introduces additional conditions
and constraints for the plan based on agent charging.

7

1.2.6 Offline
The MAPD problem is considered an online problem. In some cases, solving
its offline version holds important information or even practical uses. Liu et al.
[2019]. By offline settings, it is understood that we know all the orders with
their respective start times and initial and goal locations in advance, and we can
include this information in our computation.

1.3 MAPF
Multiagent path finding is a subproblem of MAPD. The input consists of pairs of
locations , and the goal is to find non-collision paths for agents to move to their
respective target locations Stern et al. [2019]. Formally the classical MAPF is
defined as follows. Input is triple (G = (V, E), s, t) where G is undirected graph
s : [1..k] → V maps agents to source vertex
t : [1..k] → V maps agents to a target vertex.
Time is assumed to be discrete. Each time step agent might perform an action,
wait, or move (the definition of these actions is identical to these of MAPD). The
goal is again to find a valid Plan with non-collision paths.

1.4 Solving methods
The MAPD problem instance is solved by solving multiple subsequent MAPF
instances. The solution method consists of two steps. Task assignment and path
planning. Task assignment returns the pairs of the agent with its initial and
goal location, thus creating a MAPF instance. This problem is then treated as
a MAPF problem and solved as such. The environment is updated, and this
process repeats as long as the simulation runs. We will briefly introduce the
general methods. Concrete algorithms will be described in the Related Work
chapter.

1.4.1 Task assignment
The task assignment problem is computing the matching of agents and their
respective goal positions for the following MAPF subproblem. The locations are
usually the start locations of some task, the end location of a task, or the result
of a wait function call. The assignment should maximize the utility function as
much as possible. For example, if the utility function is service time (difference
between optimal time of delivery of the orders and the real one), then we want to
assign locations such that the sum of their distances from their respective agent’s
current locations is the lowest possible.
Let Aial denote location assigned to the agent i then the aim is to minimize

k∑︂
i

Dist(Aial, Aic) (1.1)

8

1.4.2 Path planning
There are three main general approaches to solving the lifelong MAPF instance.
All of them are utilized in different algorithms and solving techniques described
in Li et al. [2021]
Complete non-collision paths
All paths for all agents are computed at once. This tends to be computationally
more challenging, or the solution tends to be worse if we use some heuristic to
speed up the computation. The scaling is poor.
Decompozing MAPF
Lifelong MAPF is decomposed into individual MAPF problems, and the paths
of the agents are replanned every time step. Search from previous time steps can
be utilized but fails to scale well in dense scenarios, as most of the paths must be
recomputed.
Decompozing MAPF-v2
A method similar to the second one, but only the paths of agents, which delivered
the order in t−1 are recomputed in t-time step. The scalability of this method is
stable; however, other unpleasant drawbacks are typical, such as incompleteness.

1.5 Example

Figure 1.2: The figure shows MAPD instance from mapd-visual software

The above figure shows an example MAPD scenario with 30 agents and 200
orders. Agents are denoted by red tiles, active orders by blue circles, accessible
locations are white tiles, and wall tiles are black. Inactive orders are grey (orders
that have not yet been revealed), and yellow circles are goal locations of orders
which are already loaded on agents. The initial location of all agents must be
different, as well as the initial position of all orders must not be equal. Each order
has an assigned target position, which is a completely arbitrary accessible tile.

9

2. Related work
While the MAPD problem drew attention quite recently, MAPF has been studied
for a while. Provided that most modern MAPD algorithms use solving MAPF
instances as subproblems, We list related work on MAPF algorithms, as well as
research conducted on MAPD.

2.1 MAPF research
Algorithms for MAPF instances can be divided into two basic categories. Optimal
and bounded. While the optimal solvers return solutions with optimal cost, their
runtime is usually rather inefficient. On the other hand, Bounded suboptimal
solvers return solutions with a maximum cost of k times the optimum cost, but
their runtime performance far exceeds that of optimal solvers. In the real world,
computational effectiveness is a trade-off for the cost of a solution and vice versa.
Therefore excessive research has been conducted on both classes. They can both
be subdivided into the same categories based on algorithms used by their solvers
Stern [2019].

2.1.1 Hierarchical cooperative A*
The most intuitive of the listed methods is the extension of well known A* (Silver
[2005]). In some given order, the agents find their respective shortest available
paths. Once the path is found, the information about it is passed to other agents
and the locations became unavailable for other agents. The upside is its simplicity
and computational speed. Downsize is that the scaling in the number of agents
is quite poor. In bigger scenarios, the problem often becomes unfeasible if solved
by HCA*.
Improvement suggested WHCA* (windowed Hierarchical cooperative A*). The
cooperative search is limited to a fixed depth specified by the current window.
Each agent searches for a partial route to its destination and then begins following
the route. At regular intervals (e.g. when an agent is halfway through its partial
route) the window is shifted forwards and a new partial route is computed. Silver
[2005]
Further research suggested CO-WHCA* (conflict-oriented windowed Hierarchical
cooperative A*) Bnaya and Felner [2014]. Authors improve the reservation system
of WHCA* resulting in a great decrease of runtime.

2.1.2 Increasing cost tree search
This algorithm was proposed by Sharon et al. [2013] . The idea of the algorithm
is to traverse the search tree, however, unlike A*-based algorithms, the search is
not driven by heuristic. It divides the search into two levels.
High-level search, which searches for a minimum cost solution, in the space of
combinations of agents.
Low-lever search, which searches for a valid solution under the cost constraints.
The low-level search can be viewed as a goal test for the High-level search.

10

Multiple pruning techniques for the lower-level search were later introduced in
Sharon et al. [2011], leading to a speed-up of the goal test.

2.1.3 Conflict based search
This algorithm was proposed by Sharon et al. [2015]. There are two levels of
search in CBS: high level and low level.
HighLevel: In the high level, we construct a constraint binary tree (CT) The low-
level search is used to evaluate the node, then enumerate them in sorted order by
price. Once we reach a valid, so-called goal node, we return it as a solution.
CBS algorithm is thoroughly described in the third chapter.
The Improved version is introduced in Boyarski et al. [2015]. Multiple improve-
ments are suggested, such as search restarts, smart splitting, or conflict bypassing.

2.1.4 Constraint programming
The MAPF problem can be encoded into a set of constraints, for example, an
agent occupies exactly one location at every time, no two agents occupy the same
vertex at any time, etc. The modulation of these constraints into logic-based Picat
language was presented by Barták et al. [2017]. Once the problem is encoded,
different variants of SAT and MIP are utilized to obtain a solution.

2.1.5 Learning based algorithms
With its gained popularity, deep learning has crawled its way to previously purely
symbolic AI problems. Abreu [2022] proposes a supervised learning approach for
solving MAPF instances using smaller, less costly model for training. In Huang
et al. [2022], learning is being used for guiding the LNS search and proved to be
quite effective in certain scenarios.

2.2 MAPD research
The following section containts non exhaustive list of MAPD related research.

2.2.1 Offline settings
In fully offline settings, the main approach became solving life-long instances of
MAPF problems. In Liu et al. [2019], multiple techniques are introduced.
Solving special TSP instance with constraints and penalty function. The solu-
tion appears to create a very effective task sequence assignment. Prioritize Path
planning. Based on priority, agents plan their paths using A∗ and knowledge
about other agents’ already planned paths. TA-Prioritized path planning
Also takes into account idle agents, parking, and mock locations.
The second proposed algorithm,Hybrid path planning uses the ICBS algo-
rithm to plan agents from pickup locations to goal locations, whereas, for free
agents, it uses a min-cost max-flow polynomial algorithm in every time step.
Nguyen et al. [2017] works with the generalized target assignment and pathfinding
problem. They address the limitation of TAPF by allowing an unequal number

11

of tasks and agents, assigning deadlines to each task, and introducing a check-
point path, where every task is composed of a path of checkpoints that must be
completed prior to completing the task. The problem is modeled as Answer set
programming, however, solutions for only small-size scenarios are presented.

2.2.2 Online settings
The online settings for MAPD problems have rapidly become the default setting
of MAPD problem instances. Exhausting research has been driven by real-world
applications in recent years. The two different algorithms classes were initially
introduced in Ma et al. [2017]. They were thoroughly studied and the algorithms
improved bit by bit in follow up research. Both approaches, central and decou-
pled, will be further examined in the third chapter.
Decoupled
In this class, agents compute the paths themselves based on system knowledge
about other agents. One agent computes one path at a time to ensure conflict-free
paths.
State-of-the-art algorithm Token passing (TP) and Token passing with task swap-
ping (TPTS) have been proposed by Ma et al. [2017]. Follow-up research on TP
has been conducted by Nie et al. [2020]. The authors address the issues with the
original definition of TP, such as problems with feasibility in some scenarios, and
suggest solutions by introducing ITP (Improved token passing). The procedure
for executing mock tasks is added to unblock some of the actual tasks and overall
improve the flow of the algorithm.
Yamauchi et al. [2022] extends TP by adding standby-based deadlock avoidance
for improved transportation efficiency. So-called standby nodes are locations,
where agents wait before they continue with their task execution. These nodes
can be dynamically selected. Pathfinding for the agent first decides whether the
next location is a standby node or an actual task-goal location. Then proceeds
with the slightly modified path-finding method of TP.
The MLA* was invented by Grenouilleau et al. [2021]. This algorithm extends
the classic A* algorithm by computing a path through a set of ordered goal lo-
cations. The advantage over sequential A* is that additional constraints for the
target initial and locations can be omitted. H-value-based task assignment is also
introduced.
Central
In a centralized approach, the system itself computes agents’ respective paths. It
is done so in every time frame based on the current state Ma et al. [2017]. Using
A∗ as a pathfinding method in this manner seemed to be inefficient, therefore,
CBS approaches has been introduced as a pathfinding method. The task assign-
ment uses the Hungarian method for maximum matching.
The centralized approach proves to have far worse scaling, thus it lacks the pop-
ularity of TP.
Other
The authors Chen et al. [2021] explore a technique, which combines the task
assignment step with the path planning step. The idea is to improve the task
assignment by the knowledge of the cost of the paths. The algorithms MCA
(Marginal cost-based task assignment) and RMCA (Regret marginal cost-based

12

task assignment) are introduced. The authors also demonstrate the extension of
MAPD with capacities of the tasks and agents carrying multiple orders.

2.2.3 Semi-online settings
The motivation for researching this setting is quite clear. In many real-world
scenarios, we have certain information about upcoming orders, but at the same
time, other orders might be issued. The main algorithm of this type is Look
ahead horizons, where the paths of the agents are recomputed every h time frame
based on partial knowledge. This algorithm was proposed in Xu et al. [2022].

13

3. Algorithm description
This chapter is dedicated to detail describing the algorithms and techniques used
in solving MAPD and MAPF problem instances.

3.1 Token Passing
This is an algorithm similar to cooperative A*. It was proposed by Ma et al.
[2017]. For its simplicity, this is the only algorithm, that scales to thousands of
orders and agents. It belongs to the Decoupled algorithms family.
Firstly, Agents are assigned states (idle, occupied). In every time step, in a
selected order, agents are iterated. If the state of an agent is idle, it is sent a
token and assigned an order. Orders are selected from a list of already visible
but not yet assigned orders of the token. The agent usually receives the order
with the closest pickup location. This depends on assigning function. Then
the path for the agent is calculated. The token holds information about all the
possible paths. Certain locations and edges are already blocked for other agents
at different times, so they can not be used. To find an optimal path, A* is utilized
with extra conditions on opening new locations based on their time occupancy.
If A* selects position D in time t, and D has 3 neighbors: F, G, H where F is
occupied at t + 1, G at t + 2, H at t + 3. From D we cannot open location F as
we would arrive at time t + 1. Slightly modified but a similar idea is for edges.
Checking for occupied locations is not sufficient enough, in that case, agents could
swap their respective neighbor positions in one time step, but in reality, it would
lead to a collision. When a path is found, it is assigned to the agent and blocked
within the token, meaning the token will now hold information about this path
and block location and edges at corresponding times.
If the path was not found, meaning given the current state, the agent can not
arrive at the pickup location, there are two choices, either we try to compute the
path to the second-best order or we run the waiting function on the agent.
If no order is selected (either there is no order to deliver or no paths have been
found), the waiting function is called on the agent with the state ”idle”.
After that, the system time ticks, and the token is updated. Each agent has
already been assigned movement, so the time in the token is updated, agents
proceed with their respective assigned actions for this time step, and their current
locations and states are updated. If the agent delivers an order, its state becomes
idle and it will be assigned a new one in the next iteration.
This algorithm will terminate and finish all orders. One-by-one access to the
token ensures collision-free paths. Once the path is blocked for a certain agent no
other agent can use it and interrupt it. For the sake of simplicity, we assume, we
will assume agents are immune to malfunctioning. We also assume all orders are
reachable from anywhere on the map. This is a necessary condition that ensures
solvability.
Waiting function: If the agent has to halt for there is no order or path to
its assigned order, the target mock location is assigned instead, and the path to
this location is computed. The easiest is to stay in the same location unless it is
occupied next step. In that case, find a neighbor location that is not occupied

14

in the next step. The edge occupancy must be taken into account as well. By
this logic, collision-free waiting is ensured. Different mock locations can be areas
not covered with agents, meaning no occupied agent has a target location there
and no idle agent is nearby. The advantage is that if a new order comes to this
section of a map, it can be served faster. A disadvantage might be the increase
in the cost function of the solution.
Order heuristic: We can select the order in which we allow agents access to
the token. This can be randomized as the simplest solution. Other options are
a user-based priority. If we want to use some agents more than others, assigning
higher priority allows the agent to complete more orders. A different approach is
distance based, we compute the distance from all agents to their closest location
and assign priority in descending order, meaning the agent that has the longest
distance will be given priority in path selection. The distance can be calculated
fast. Precomputed table with distance info for all locations is available, thus
finding the order of agents is O(1).

Algorithm 3.1 TP
token← InitializeT oken(Agents, Orders, Locations)
while true do

Add new orders to token.Orders
for all a ∈ Agents do

if a.state == idle then
F indBestOrder(a, token)
if a has assigned order then

P lanP ath(a, o, t)
Remove o from token.Orders

else
W ait(a, t)

end if
end if

end for
Agents execute one time step and update state
Time in token increases by one

end while

function FindBestOrder(Agent a, Token t)
minDist← int.MaxV alue
bestOrder ← null
for all oint.Orders do

if d← dist(a.CurrLoc, o.OriginLoc) < minDist then
minDist← d, bestOrder ← o

end if
end for
return bestOrder

end function

function PlanPath(Agent a, Order o, Token t)
path← findP ath(a, o, t.Locations)
token.UpdateLocations(path)
a.P ath← path

end function

3.2 Token Passing Task Swapping
Next decoupled algorithm proposed by Ma et al. [2017]. The idea is similiar to
the TP algorithm with Task Swapping extension. While in TP, once an order is
assigned to the agent it cannot be reassigned to a different one, even if it were
beneficial for the overall performance. This is where Task swapping comes into
play. When computing the optimal order of idle agents, we will assume not only
unassigned orders but also orders that have not been picked up yet. First, we
will find the best order amongst the unassigned ones. Then in ascending order
by distance, we will look at the assigned but not picked up. If the distance to the
unassigned one is closer than any of the assigned ones, we immediately return it.
Otherwise, we have to check the overall behavior.

15

Assume we are finding the best order for agent Ai. The optimal order is Oi,
currently assigned to the agent Aj but not yet picked up. The algorithm will save
the state of the token, and unassign order from agent Aj, so that the remaining
path blockings are cleared from the token, we calculate the path for agent Ai

to order Oi, block it within the token and immediately send the token to the
agent Aj. In case agent Aj finds an order Oj, such that it was worth it based on
distance, we make the swap and save a new token. Aj can repeat the process of
Ai and find order assigned to agent Ak etc. This process eventually terminates,
thanks to the triangular inequality. If even one of the steps fails though, one
of the agents cannot find an order, or the trade becomes overall ineffective, the
changes are rolled out, we take back the saved token, and agent A continues with
the second-best order.
This process is very computationally demanding. Even though the result is guar-
anteed to exceed the performance of TP, the time complexity is much worse and
the algorithm is not scalable for larger scenarios.
Distance-based heuristic: Given the assumption we have access to the pre-
computed distance tables, we can use a local distance heuristic instead of a full
path search. When evaluating, whether a task swap is efficient in a given moment,
instead of recalculating all the paths for all agents to their new orders, we assume
only distance. We search for all agents the orders in ascending order and we only
calculate the distance save/gain in theory based on real distance. This saves a
nontrivial amount of computational time, however, creates space for nonefficient
behavior.
Let Ai be the agent, and let Oi be his optimal order. We compute raw distance,
let’s call it rd(A, O). Then we compute distance under the token, meaning the
fastest way to travel from Ai to Oi.pickupLocation given path blockages td(A,O).
It holds that rd(A,O) ≥ td(A,O). For low agent density scenarios, the difference
will be negligible. However, in high-density agent scenarios, the difference can
cause the overall performance to drop below the one of TP.
This heuristic is very effective for high-order density and lower agent density sce-
narios. It scales much better than the original TPTS and mostly outperforms the
TP algorithm, as demonstrated in the experimental chapter.

16

Algorithm 3.2 TPTS
token← InitializeT oken(Agents, Orders, Locations)
while true do

Add new orders to token.Orders
for all a ∈ Agents do

if a.state == idle then
Order o← F indBestOrder(a, token)
if o ̸= null then

P lanP ath(a, o, t)
Remove o from token.Orders

else
W ait(a, t)

end if
end if

end for
Agents execute one time step and update state
Time in token increases by one

end while

function FindBestOrder(Agent a, Token t)
Orders← t.Orders
while Orders! = null do

bestOrder ← null
minDist← int.MaxV alue
for all o ∈ Orders do

if d← dist(a.CurrLoc, o.OriginLoc) < minDist then
minDist← d, bestOrder ← o

end if
end for
Remove o from Orders
if o has no assigned agent ai then

Assign o to A
P lanP ath(a, o, t)
return true

else
Save the token state
Unassign o from ai
Remove the ai’s path in token
PlanPath(a,o,t), assign o to a
if new dist to o is shorter a FindBestOrderai, t == true then

return true
else

Revert changes to saved token state
end if

end if
return bestOrder

end while
end function

function PlanPath(Agent a, Order o, Token t)
path← findP ath(a, o, t.Locations)
token.UpdateLocations(path)
a.P ath← path

end function

3.3 CENTRAL
This algorithm was proposed by Ma et al. [2017]. Unlike in the Token Passing
algorithm and its derivates, in CENTRAL, as the name suggests, agents do not
calculate their respective paths based on system knowledge, they are assigned
one.
CENTRAL recomputes all the paths of all agents in every time step, which leads
to better performance of the algorithm, yet much worse computational perfor-
mance and ineffective scaling. Because the amount of shared information amongst
the agent and systems is the largest among already mentioned algorithms, the
usual expectation is that it will outperform them. However, due to frequent re-
computation of all paths, for larger environments, CENTRAL does not manage
to compute the agent actions on time thus it is not suitable for bigger warehouses
or other complex MAPD scenarios.
Firstly, CENTRAL assigns tasks to each agent. This can be either the pickup
location of some order, the target location of the order in case the agent is loaded
or mock position in case we need to get the agent out of the way.
Assignments are computed using Hungarian algorithm.

17

3.3.1 Hungarian Algortihm
This optimization method was developed by Kuhn [1955]. By original idea, we
are given a matrix of n workers and n jobs. Element aij denotes the cost of job
j done by worker i. The goal is to minimize the cost and finish all the jobs. The
Hungarian method outputs minimal perfect matching in polynomial time, O(n3)
to be exact.
We discard all agents that are currently loaded with orders and assign them
their target location. CENTRAL usually does not work with the same number of
available tasks and agents, thus we have to create either mock agents or tasks with
arbitrarily large values in the cost matrix. As a result, they will not be prioritized,
Hungarian method outputs minimal max matching in the matrix without them
and we will omit them in result processing. In case the agent is assigned a mock
location, based on settings, the wait function is called. In case the task is assigned
a mock agent, we ignore it and try to reassign the Task in the next time step.

3.3.2 Path computing
Each agent has been assigned a task with its location. Based on priority, CEN-
TRAL computes the fastest path for the agents one by one using CBS.

3.3.3 CBS
This algorithm was proposed by Sharon et al. [2015]. The state space spanned by
A* in MAPF is exponential in k (the number of agents). By contrast, in a single-
agent pathfinding problem, k = 1, and the state space is only linear in the graph
size. CBS solves MAPF by decomposing it into a large number of constrained
single-agent pathfinding problems.
There are two levels of search in CBS: high level and low level.
High level: In the high level, we construct a constraint binary tree (CT) where
each node has:
Agents: List of all agents
Constraints: List of all constraints for given agent.
Constraint format: Constraint is a location-time or edge-timestep pair. It pre-
vents the agent from entering said location (edge) in said timestep.
Price: Evaluation of a node. Usually denoted by the sum of all costs of all paths
of agents.
Low level:The low-level search is used to evaluate the node, then enumerate
them in sorted order by price. Once we reach a valid, so-called goal node, we
return it as a solution.
Low-level search computes the fastest path for all agents given their constraints
independently using A*. The second part is the evaluation of a node. This simply
checks for any conflicts, edge, and vertex, between agents given their plans. If no
conflict is found, this node is a goal node. Because the nodes are enumerated in
sorted order, the first time a goal-node is found, it is always the best solution.
If a conflict is found between two agents ai and aj, it is returned. The High-level
search then splits the node into 2 children, where in one child, the constraint for
ai is added, and in the other, the constraint for aj is added. The search then
continues.

18

In case of a conflict given more than two agents, there are generally options. Ei-
ther the node is split into n children, where n is the number of conflicting agents
or the first two agents in conflict generate the children of a CT node, and the
remaining conflicting agents will be resolved in the lower branch of a CT. Both
are valid and equally fast options, so this choice has little to no effect on the
performance.

3.3.4 Update
At the end of the time step, all agents proceed with their respective assigned
actions. In case they loaded/unloaded an order, their status is updated. Unless
the stop message has been passed down to the Algorithm, the cycle repeats.

Algorithm 3.3 CENTRAL
while true do

Add new orders to system
T askAssignments(system)
CBS(system)
UpdateSystem(system)

end while

function CBS(system)
Initialize root
Add root to nodes
while true do

for all node ∈ nodes do
Evaluate node cost

end for
nodes← nodes.SortByCost
for all node ∈ nodes do

conflict← V alidate(node)
if conflict is empy then

return node.P lan
else

Create two new constraints from conflict
Split node into two, assign each one constraint
Add children of node to nodes, remove node from nodes

end if
end for

end while
end function

function TaskAssignments(system)
Create mock agents/tasks
M ← distances from agents to tasks
result← Hungarian(M)
Assign Task to agents based on results

end function

function UpdateSystem(System s)
for all Agent a ∈ s do

Execute action
UpdateStatus

end for
end function

3.3.5 Prunning
So far, we have treated idle agents and active agents alike. In certain scenarios,
however, we would like to prioritize the active agents to achieve lower makespan
and overall performance. The downside might be a slight increase in cost.
The basic branching idea is simple. If a conflict is detected by high-level search
where one agent is idle and one active, we create just one child CT node where
we add the constraint of the idle agent.
By using this method, in certain time steps, a feasible solution does not exist
and we lose the main strength of CBS. To prevent this, when creating a child CT
node for the idle agent, we also create a node for the active agent, but instead of

19

a CT, we insert it into a list and we do not explore it further. If the CT empties
without finding a solution, we build a new tree using these saved nodes with lower
priority. If we were to use the secondary tree every time step, the runtime would
worsen, but for a reasonable number of agents, this happens extremely rarely, and
the overall performance increases as demonstrated in the experimental chapter
(chap. 5.4).

3.4 Possible pitfalls
Each of the mentioned algorithms has its pitfalls, the worst impact have the
deadlocks. Deadlock is any situation in which no agent can proceed because
each waits for another agent to move. Deadlock can be resolved only by brute
force, meaning some entity must order some agent to move and free a way for
the others. On maps containing the dead-end, the classical MAPD algorithms
may fall into deadlock even with smart wait function modification. To prevent
deadlock, a semafor-like entity needs to be instantiated and control the traffic
flow through the dead-end segment. A possible solution is using the mentioned
standby deadlock avoidance (Yamauchi et al. [2022]).
Assuming dead-end free maps, as all of the experiments conducted are on the
maps, where every location has at least 2 neighbors, We will explain how each
algorithm can fall into a deadlock state and how can we prevent it. The mentioned
methods are inspired by general deadlock avoiding and solving techniques and
modified for our experimental environment.

3.4.1 TP and TPTS
For both of these algorithms, deadlock can happen only if the agent calls a wait
function and zero locations are returned. It means, that agent cannot stay in his
current position nor it can move to a different one, as all of them are occupied (or
edges to them) in the next time step. We can try to prevent this situation with
a conflict heat map. We can run the simulation in our designated environment,
measure the collision heat map, ie score locations based on collision (Zhao et al.
[2023]) and we can set TP/TPSP to preferably the fewer conflict locations. This,
however, does not prevent deadlock completely. Upon stumbling on deadlock,
we have to compute paths of involved (and possibly other) agents again. We
take the paths of these agents, unblock their paths in the token, permutate their
order (ideally we want to begin with the agent that discovered the deadlock)
and run the updates on them again. This will almost likely solve the issue, if
not, another agent must have caused the deadlock again. We can either repeat
this process starting with all the problem agents or we can recount all occupied
agents. This happens very rarely so it does not affect the computational time of
these algorithms.

3.4.2 CENTRAL-A*
This case is very similar as A* algorithm is used for path search. The advantage
of CENTRAL algorithm is that when deadlock happens, we do not need to un-
block paths in the system as only one step every time frame is computed. We

20

simply repeat the computation for this time step with permutated order, which
is computed in the same fashion as above.

3.4.3 CENTRAL-CBS
C-CBS should be deadlock-free (assuming a solvable instance). The reason is
that CBS always return feasible solution, ie non-conflict paths. Two agents’ pos-
sible deadlock is resulted automatically, as creating subnodes with constraints for
agents gives one of the agents augmented priority. For multiple agents, it may
rarely happen, that one of the agents cannot under any scenario find a valid path
to its task. The wait function is called and in the next frame, the attempt is re-
peated. In the worst case, this agent has to wait for all other agents to finish their
tasks and become idle. For the Idle-Active agent possible deadlock, an elegant
solution exists. If the wait function assigns the idle agent its current position,
the CBS only finds a path of length 1, its location. This can, in fact, lead to
deadlock or loop.
Instead, a sequence of wait function calls is assigned, where the number of calls is
the length of the longest path of any active agent computed by low-level search.
The conflict on Xth frame will be recognized, constrained created, and a feasible
path of length n computed for all agents. This transforms the problem into orig-
inal CBS (Sharon et al. [2015])and the problem with deadlock is voided.
Alternatively, the active agent prioritizing over idle agents leads to deadlock
avoidance.

21

4. Plan Validation
The work on plan validation for MAPD was introduced in Almagor and Lahija-
nian [2020].
With the increasing trend of machine learning, solutions to various problems are
somewhat black boxes. In the area of multi-agent systems, it is vital to be able
to verify incorrect and potentially dangerous solutions. Even though we can pro-
grammatically validate any plan, for the sake of safety, the humans (for example,
warehouse controllers) should be able to verify them as well. There are multiple
approaches to the plan validation, also called ”Solution explanation.” The crucial
point is the ability to verify the non-conflict nature of the paths. The valida-
tion process must be effective; the warehouse or other multi-agent environment
is rapidly changing, and identifying problems must be possible within a few mo-
ments.
The already proposed technique slices the plan into specific time frames contain-
ing only non-conflicting paths. These segments must be as large as possible to
speed up the validation process. The agents can be visualized by color lines with
the location either by grid or actual map used for the plan. In the case of a small
number of agents, different colors can be used to visualize them individually and
for easier identification. This method does not scale well to a larger amount of
agents. Therefore it is recommended to implement a mono-color scheme where
we lower the ability to identify the agents, but the overall picture remains easily
readable. Some other identification might be implemented, for example, small
digits next to the start/end of each agent’s paths.

4.1 Validation algorithm
The most straightforward approach is the most direct one. We iterate through
all paths of all agents one by one in each time frame. We remember every visited
location, and once we try to visit an already seen location, we recognize the
positions of agents, index on search in every path, and return the segment. Then
the search continues at the same position. We search until all paths have been
covered. This approach will end after viewing every step of each agent exactly
once, so in time it’s linear in the length of a plan. The memory needed for such
an algorithm is linear in the number of locations because once we try to load one
location twice, the process repeats.

4.2 Properties
Every plan is decomposable in n non-colliding time frames. The proof of this is
trivial if we assume a valid (which implies non-colliding) plan. From the beginning
to the end of a plan, there is no collision between any agents. Therefore we can
certainly take all time steps and present them as a valid non-colliding time frame.
For practical use, the number of frames should be as low as possible for quick
validation. However, once the plan is computed, the exact non-colliding time
frames are determined and can not be changed. So the question arises, can we

22

find a valid plan such that it is decomposable into m time frames, given MAPD
problem instance? The answer is yes, but the hardness of a problem increases
significantly. This problem is arguably harder than regular MAPD; therefore, it
is at least NP-HARD. The solution contains finding disjoint paths in a graph,
which is also NP-HARD. Thus this new problem is also NP-COMPLETE, but
much harder in a sense (Almagor and Lahijanian [2020]).

Figure 4.1: The figure shows plan segment visually explained in MAPD-visual
software.

23

5. Experiments
In this section, we describe conducted experiments and share the results. We have
implemented multiple MAPD algorithms and their version with various heuristics
and conducted various tests and analyses based on thesis guidelines.

5.1 Experiment descriptions
Implementation of algorithms is in C# language along with WPF interactive
application. Due to the usage of objects and suboptimal data structures, some
experiment runs are slower, than if implemented by language as PICAT.
The basic MAPD problem is expanded by actions of pickup, delivery, and wait.
This extension was motivated by the idea of a generalization of the MAPD prob-
lem from the cost point of view. In some of the experiments, the cost of the
solutions will be compared as an additional tool of measurement to runtime and
makespan. It also has a real-life motivation, where pickup and deliver actions
both have their respective duration, as well as wait action is cheaper than the
movement. Nevertheless, Actions pickup and delivery can be omitted by setting
their duration to 0. Similarly, action wait can be turned into action move by
setting its cost to 1, then we create a basic instance of the mapd problem. Be-
cause we do not directly compare results to the ones of other thesis/articles on
base MAPD problem, this will not create any bias or measurement error. We
compare overall results to the ones already mentioned in cited articles based on
their ratios, and order based on MS or RT, however, given this extension is used
across all our algorithms, produced values do not invalidate the measurements.
Our implementation contains a dictionary for locations and distances for first the
”room” map. While some of the articles work with distances as a heuristic based
on their location on the grid and ignoring the obstacles, we precompute the exact
distance. This is advantageous because it allows for a faster run of path-finding
algorithms. It is also motivated by real-world warehouses, where we can divide
them into squares and precompute their respective distances quite easily, thus
this assumption makes sense in the context of the MAPD problem. For other
maps, the Manhattan heuristic is used. Although, with enough memory, it could
be just as easily precomputed, leading to better results.
All agents are considered an obstacle. Some MAPF and MAPD instances are un-
feasible using only basic algorithms because some agents might finish in a choke
area and prevent other agents from finishing their tasks. This implementation
always calls the ”wait” function on idle agents. This function evaluates whether it
is beneficial to move or stay in the same location. Across our experimental mea-
surements, we observed that sending idle agents to the nearest location, which
has 3-4 accessible neighbor locations was the most effective makespan-wise. The
reason is, that if agents moved only when needed, it can create a ”soft deadlock”.
This means that the optimal path is blocked within the algorithm, and before
it is found, the algorithm finds a different, suboptimal one. The difference in
timeframes between the optimal and suboptimal path is usually far greater, that
sending the agent preemptively to the open space where it can be easily dodged.
This also has real-life motivation. idle agents might be sent to some designated

24

locations, to shorten the distance between them and possible future tasks to min-
imize makespan. Every map then can have calculated these locations precisely.
Another motivation is charging the agents. Based on real warehouses, agents
must be charged after a certain amount of steps. These charging stations can be
in the middle of the warehouse to further minimize the timespan or somewhere
behind the main warehouses for a more practical yet a little less effective cause.

5.1.1 MAPF benchmarks
We tested said algorithms on well-established MAPF benchmarks: Stern et al.
[2019]. All maps and scenarios come from this benchmark set. For the trans-
formation from map to MAPD scenario, it had to be modified. For the sake of
this thesis, we transformed individual agents with their start and goal positions
to the orders. Agents in the context of MAPD can be added to the scenario or
generated later. Orders can also be assigned an arrival time with the scenario file
itself or later added to the program.
The maps consist of 2 types of tiles, black and white ones. Black tiles symbolize
obstacles and are not accessible. No agent nor order has their current (or target)
location in the wall tile. All free locations have an edge to their neighbor white
location and their neighbors are called ”accessible locations” in this thesis.
All scenarios will be from the section ”random”, meaning that the start and finish
locations of all tasks had been generated randomly.

5.2 Experiment 1

5.2.1 Settings
This experiment is heavily inspired by testing TP, TPTS, and CENTRAL in Ma
et al. [2017].
We tested 4 algorithms. TP, TPTS, CENTRAL-A∗, and CENTRAL-CBS on
the following maps. There are 200 tasks with frequencies of 0.2,0.5,1,2,5,10 per
time frame meaning that based on their order, their respective start times are
calculated based on frequencies. There will be 10,15,20,25,30 agents for each run.
The goal of this experiment is to compare makespan and runtime across main
MAPD algorithms. This experiment will be conducted on the following map from
mentioned MAPF benchmark:

Figure 5.1: The figure shows Room-64-64-16 map

25

And its ”random” benchmark scenarios modified to MAPD scenarios. Given
the information based on related work, the order of algorithms based on makespan
should be the following: CENTRAL(CBS, A*), TPTS, TP where CENTRAL
should heavily outperform the other 2. However, we expect the same order for
runtime per timeframe values, where CENTRAL runtime is significantly slower
than the other 2.
We further evaluate the depth of the CBS constrain tree throughout the runs.
This measurement should yield clear results, why CBS does not scale well with
the increasing number of agents.

5.2.2 Results
The shortcuts for the result tables are as follows:

TF: Task frequency
A: Number of agents
MS: makespan
RT / TF: Runtime per timeframe in milliseconds

26

Settings TP TPTS C-A* C-CBS
TF A MS RT /

TF
MS RT /

TF
MS RT /

TF
MS RT /

TF
0.2 10 1762 1.717 1762 2.103 1723 4.623 1769 98.312
0.2 15 1363 0.523 1325 0.887 1280 8.097 1317 56.560
0.2 20 1225 0.971 1168 1.461 1142 2.453 1110 19.902
0.2 25 1166 1.55 1124 1.675 1118 2.315 1110 13.776
0.2 30 1190 1.360 1124 1.880 1126 2.313 1111 12.649
0.5 10 1696 0.788 1669 0.395 1613 2.131 1673 81.643
0.5 15 1238 1.259 1186 0.734 1142 3.092 1133 57.505
0.5 20 995 1.170 928 1.018 920 2.750 920 45.168
0.5 25 838 1.103 801 1.764 783 3.591 762 116.83
0.5 30 775 1.384 736 1.927 689 4.393 631 371.70
1 10 1712 0.657 1675 0.460 1598 2.860 1613 67.755
1 15 1201 1.383 1158 0.645 1092 3.097 1172 61.001
1 20 977 1.073 948 1.053 889 2.941 830 53.034
1 25 827 1.153 795 1.959 749 3.688 716 180.65
1 30 712 1.720 667 2.890 639 4.477 609 353.03
2 10 1764 2.194 1673 0.376 1633 1.648 1638 42.534
2 15 1199 2.791 1176 0.619 1163 2.428 1099 30.884
2 20 966 0.908 899 1.136 864 2.990 839 44.241
2 25 850 1.305 777 1.443 743 3.769 687 111.09
2 30 741 1.508 683 5.853 647 4.298 653 258.38
5 10 1622 2.354 1662 0.471 1590 1.848 1656 24.301
5 15 1184 0.950 1129 0.840 1110 3.146 1130 48.595
5 20 956 1.054 925 1.039 861 3.017 871 51.884
5 25 803 1.598 757 1.863 728 3.793 744 259.56
5 30 696 1.982 644 1.684 630 4.758 618 1067.4
10 10 1648 2.341 1750 0.432 1585 2.488 1616 27.002
10 15 1129 1.024 1147 0.599 1158 4.846 1100 44.017
10 20 896 0.940 873 1.342 873 3.141 827 33.702
10 25 786 1.350 755 1.738 727 4.039 691 316.51
10 30 679 2.106 666 2.226 605 4.804 567 733.63

Table 5.1: Experiment 1 results.

27

Figure 5.2: The figure shows selected makespan results for the first experiment

28

Figure 5.3: The figure shows selected runtime results for the first experiment

29

Makespan
The difference of makespan peaks in the largest agent and frequency scenarios.
We can see, that algorithms in ascending order of their makespans in largest
scenarios are TP, TPSP, C-A*, and C-CBS. On the other hand, the smallest dif-
ference is in the low-frequency scenario. The makespans for the smaller number
of agents and small frequencies are negligible. The reason for this is that due
to a lack of conflicts, the orders are finished at nearly optimal times across all
algorithms. The differences start to build up as the number of agents increases.
We can see that the CBS-based algorithm outperforms all others.
There is a clear correlation between makespan and frequencies. The scenario
with 0.2 frequency has a vastly greater makespan simply because agents are not
able to finish orders before the last order appears + its time to distance. On the
other hand, makespan for high-frequency scenarios is far lower as agents work
with most of the orders right away.
Runtime
We can see that the runtimes on algorithms are ascending by the following or-
der: TP, TPSP, C-A*, and C-CBS. This does not come as a surprise, it follows
the same order as the performance makespan-wise. We can see the neverending
tradeoff between performance and computational time.
Runtime per timeframe measures the ability of algorithms to perform well in real-
life MAPD scenarios. The logical bound for accepting an algorithm as suited for
live operation is one second per time frame. We can observe from the measured
data, that all algorithms satisfy this condition. We can assume they are all suit-
able for the scenario of this size.
There is little to no correlation between frequencies and runtime for TP and
TPTS. CENTRAL benefits greatly from lower-frequency scenarios. As most of
the agents are assigned mock locations, fewer conflicts are created thus the whole
algorithm funs much faster. More about this is in the CBS Constrain tree sub-
section.
Little surprising is the fact, that CENTRAL-A* is only slightly worse in runtime,
than Token Passing algorithms yet its performance is better. The reason for this
hides in our settings, in distance precomputing to be exact. We are working with
pre-counted distances for all locations, thus the A* works with exact distance
values, not heuristics. This increases the speed of A* dramatically. The result
is that running multiple instances of A* every time frame is not computationally
demanding thus the resulting time is not greatly increased.
CBS Constrain tree
The first figure shows the graph of depths of the CBS constraint throughout the
run of the algorithms. for 10 agents. The second figure shows the same for the
maximal agent number of 30. We can observe that the busiest part of the algo-
rithm creates deeper trees for such small differences in the number of agents. For
10 agents, the average depth is around 2, this effectively means that the algorithm
runs very fast. Given that CT is binary, the computational hardness doubles for
every level. If the runtime of C-CBS scaled linearly with the number of agents,
we would observe the average depth of a CT for 30 agents around 3.5. This is
however not the case. For higher-frequency runs, the average depth of a tree is
around 6.5. That is about 16 times the computational hardness for just 3 times
the agents. Even though the number of time frames is halved compared to the

30

10-agent scenario, we can conclude that this algorithm is not very suitable for a
large number of agent scenarios.

(a) CT-10A

(b) CT-30A

Figure 5.4: The figure shows CBS-CT depth

5.3 Experiment 2

5.3.1 Settings
In this experiment, we aim to compare the TP algorithm in a large warehouse en-
vironment with various numbers of agents and heuristics. TPTS and CENTRALs
do not scale well enough and did not manage to solve such a high number of agent
scenarios on this large map.
The first goal is to compare various TP algorithms based on the order of the

31

agents, in which they are given access to the token. In Experiment 1, random or-
der was assigned in the beginning and never changed. We denote this as ”Fixed”.
We add two more types of orders. The first one is a random permutation of idle
agents every time frame. This is denoted as ”random”. The second one is the
distance to the closest order. The idea is that the agent with the longest route
should be prioritized with the access to create as small a makespan as possible.
The agents are ordered in descending order based on their Manhattan distance
to their closest order. This is denoted as ”mdist”.
The second goal is to compare the efficiency of the solution based on the number
of agents and frequency. This will be measured in makespan as well as cost and
service time. The cost is calculated as a sum over all agents and their movements
where the move action has a cost of 1, the wait function has a cost of 0.1. This
should somewhat simulate real-world usage where paying for extra agents would
become inefficient at some point.
Service time is a ratio of the ideal time of delivering orders (measured by heuris-
tic) and the real one. It is calculated as an average of ideal times for all orders
and the real ones. The closer to 1, the more effective the algorithm.
The algorithm will be compared separately on two different maps. One map
is a large warehouse, and the second one is ”Berlin” and its purpose is to simu-
late a complex environment, for example, an airport, with its irregular structure.

(a) Warehouse-321x143 (b) Berlin-256x256.map

Figure 5.5: The figure shows ”Warehouse” and ”Berlin” maps respectively

5.3.2 Results
Warehouse
The TP algorithm managed to solve all instances quite quickly, so the assumption
that it does scale well was confirmed.

32

Settings TP-random TP-MDIST
TF A MS cost ST MS cost ST
2 100 2766 220268 0.18 2867 229665 0.17
2 150 2094 233990 0.27 2219 246245 0.24
2 200 1653 241586 0.35 1870 262153 0.30
2 250 1690 262506 0.42 1687 279734 0.35
2 300 1441 275576 0.47 1623 298601 0.39
2 350 2088 275576 0.51 1511 315393 0.41
2 400 1128 287326 0.56 1231 320849 0.44
2 450 2068 335817 0.63 —– —– —-
2 500 1156 322320 0.59 1262 325279 0.59
50 100 2614 212459 0.16 2746 214429 0.16
50 150 1866 215531 0.24 2029 221322 0.23
50 200 1524 220051 0.30 1555 225793 0.28
50 250 1357 228294 0.36 1450 238426 0.33
50 300 1294 239914 0.40 1278 246530 0.37
50 350 1043 233211 0.45 1451 310332 0.37
50 400 1067 247932 0.49 1094 260654 0.44
50 450 1216 275511 0.46 —- —– —-
50 500 941 261304 0.56 966 280976 0.49

Table 5.2: Experiment 3 results on large warehouse.

Figure 5.6: The figure shows results in cost

33

Figure 5.7: The figure shows results in service time

The overall better-performing heuristic is ”random”, but just slightly and with
exceptions. In bigger scenarios. it is always better to have some probability in-
volved because determinism might lead to unwanted deadlocks (viz Fig 5.2, 450
agents) or converge to the local optimum too fast.
Better efficiency was achieved for scenarios with low order frequency. This is
logical because agents do not become overwhelmed with the number of orders
and manage to resolve the order quickly compared to the high-frequency scenar-
ios, where a lot of the orders have to wait for some agent to finish their task,
so the service times become worse. Service times become more efficient with the
increased number of agents for the same reason.
In a slower pace scenario, the optimal number of agents seems to have an upper
bound of about 400. The increase in makespan as well as a spiking increase in
cost suggests that 500 agents is way past the optimal number. The smaller cost
difference along with meaningful improvement in makespan suggest the lower
bound around 330 agents.
For the faster pace, we can observe that the most costly decrease in makespan
is between 400 and 500 agents. Even though the makespan does still decrease,
based on the cost-ST ratio, we can argue that the lower recommended number of
agents is about 400 whereas the upper bound might be slightly past 500.

34

Berlin

Settings TP-random TP-MDIST
TF A MS cost ST MS cost ST
2 100 2625 222259 0.16 2794 230033 0.15
2 150 2103 235927 0.24 2108 243885 0.22
2 200 1766 248708 0.31 1819 260375 0.27
2 250 1498 255541 0.37 1635 276405 0.31
2 300 1514 304344 0.38 1494 292343 0.35
2 350 1302 281321 0.45 1518 307712 0.38
2 400 1250 293299 0.48 1282 317658 0.40
2 450 1343 306379 0.51 1392 390408 0.36
2 500 1226 323119 0.51 —- —— —-
50 100 2338 209114 0.15 2615 217059 0.14
50 150 1835 218557 0.21 1929 223492 0.20
50 200 1577 224832 0.26 1819 232768 0.25
50 250 1409 229876 0.31 1483 244368 0.29
50 300 1221 235718 0.35 1303 248792 0.33
50 350 1193 241994 0.40 1135 254717 0.36
50 400 1051 247215 0.42 1217 270815 0.38
50 450 1069 255098 0.46 1122 276768 0.40
50 500 1343 259028 0.49 —- —— —-

Table 5.3: Experiment 3 results on complex map

Figure 5.8: The figure shows results in cost

35

Figure 5.9: The figure shows results in service time

We can observe that the random heuristic vastly outperformed the distance-
based one. This is likely due to the irregular structure of the map, in the ware-
house map, this difference was not as significant.
The pattern with better service time for low-frequency scenarios continues in this
experiment as well. On the other hand, better makespan results are for the fast
pace scenarios, this is again due to agents being able to process orders in a much
shorter time overall. For the highest number of agents, however, we can see that
the efficiency as well as makespan either decreases only slightly or even increase,
whereas the price increases significantly. Based on the results of TP with random
heuristic and cost-ST ratio, we can deduct that for lower density scenarios, the
optimal number of agents will be around 350-400. For high-density scenarios, the
optimal number should be within the range of 375-425.
For the mdist based tp, this range is lower for both scenarios. Without the ran-
domness, the algorithm starts to struggle greatly with an increased number of
agents.

5.3.3 Conclusion
In this experiment, we have shown the difference between distance-based and
random heuristics based on multiple criteria. We estimated the optimal number
of agents for a given map and order frequency and showed the relation between
order frequency, agent number, and makespan as well as cost and service time.
We can also suggest, that for structurally demanding maps, randomness improves
the algorithm, leads to better runtime, and decreases the danger of deadlocks.
We will use some of the data, knowledge, and observations for the final experi-
ment, which aim is to estimate the ideal number of agents given the map, order
count, and order frequency.

36

5.4 Experiment 3

5.4.1 Settings
This experiment aims to compare the CENTRAL-CBS algorithm with and with-
out the pruning mentioned in the third chapter. The algorithms will be compared
in the Room-64-64-16.map environment with two different frequencies: 0.5 and
5 simulating slower and faster pace of knowledge about the orders. They will be
compared on two different criteria: makespan and runtime. The goal is to empir-
ically show, that the pruning version is faster whereas the change in makespan is
negligible.

5.4.2 Results
The results are shown in the Table 5.4. We can observe that for the higher as
well as the lower frequencies, the makespans do not differ. However, the runtime
is slightly decreased for the pruning version, as noted in the ratio column.
The main difference happens at the beginning and towards the end of the problem
instance. At no other time, do we have to deal with idle agents, so the runtime
difference is not as significant. The basic idea on CT pruning can be expanded
for higher level agent scenarios based on either local heuristic of predefined agent
priorities (viz algorithm description).
The version of CBS without pruning did not manage to find a solution for some of
the instances. We had to implement the local search described in the CT pruning
chapter to guide the final steps of the algorithm. This is another advantage of
using the pruned version, in a state with multiple idle agents and only a few
orders to deliver, the occupied agents solving these few orders are always given
priority. The difference in runtimes is negligible for the 10 agents’ scenario. This

Settings C-CBSp C-CBS
TF A MS RT / TF MS RT / TF ratio
0.5 10 1673 81.643 1673 81.643 1
0.5 20 920 45.168 920 65.945 1.46
0.5 30 631 371.70 631 416.30 1.12
5 10 1656 24.301 1656 24.301 1
5 20 871 51.884 871 63.298 1.22
5 30 618 1067.4 618 1195.4 1.12

Table 5.4: Experiment 3 results.

is to be expected because as shown in the first experiment (chap. 5.2), there
are almost no conflicts so the search space is seldom increased in the nonpruned
version. The main difference is for 20 agent scenarios. The overall runtime is not
so high that the part with idle agents makes up a nontrivial part of it. There are
also enough agents to create obstacles so that the actual search space is visibly
increased. For the 30 agents scenario, the difference is still visible but gets smaller
and the assumption is, with the increased number of agents, for this optimization,
the difference would go near zero. The main part of the computation happens
when all agents are occupied. This state is computationally the hardest as the

37

number of conflicts increases significantly. Part with the idle agents again makes
up only the trivial part of it.
The overall difference is lower for high-frequency scenarios. This is yet again
expected, as the part with idle agents is much shorter. To be exact, for 20
agents and an order frequency of 5, by the time step 5, all agents have become
occupied, whereas, for 0.5 order frequency, this happens only after 41 time steps.
Towards the end of a solution, more and more agents become idle without assigned
orders. This is expected to be about the same for all scenarios so that the biggest
difference happens at the beginning. Therefore the optimization is more efficient
in low-frequency scenarios.

5.5 Experiment 4

5.5.1 Settings
For our last experiment, we attempt to find a formula, which would give us an
approximate ideal number of agents for a given map. This would be very useful if
we wanted to see how efficient may certain warehouses or different locations get.
It is also a good first estimate of how expensive is the operation on a certain map
going to get without prior testing and measurements which can be quite costly.
Observations:
Observation 1: From previous experiments, we can deduce, that if we only in-
crease the number of agents, at some point, it will become slower and more costly
as they block each other’s paths.
Observation 2: With an increased number of orders, an increased number of
agents is needed. This however stops at some point and it does not matter how
many orders the scenario has, the optimal number of agents is approximately the
same.
Observation 3: The same holds for frequencies. In faster pace scenarios, more
agents are needed, but on most maps, it barely matters if the frequencies are
100/tf or 50/tf, the ideal number of agents is about the same.
Observation 4: The shape of a map has a great impact on number of agents
needed. The first important parameter is the dimensions, then available loca-
tions compared to the wall locations, and finally the structure itself. Trivial
observation is that if we have a map with 10x10 free locations square, we may
utilize more agents than in a maze which has 100 available locations in total.
This is the most important, yet difficult aspect of this experiment. We need to
come up with a way to systematically analyze maps and use the results in the
prediction itself. For this experiment, we will make several assumptions under
which the experiment will be conducted. We will base the assumption on the ob-
servations as well as previous experiments and knowledge about the algorithms.
Assumptions:
Number of orders: We take the number of orders as a fraction of available
locations on each map. Based on previous experiment we set this number to
free−locations

10
Equal frequency: We make frequency for each scenario such that all orders will
be available at time t = 100.
Used algorithm: For this experiment, we only use TP with a random ordering

38

heuristic, the best-performing algorithm on larger maps.
The goal: If we use makespan as our utility function, we may not obtain desirable
results. In previous sections, some of the scenarios are solved in smaller makespan
for an extremely high price, this is undesirable. Working with price as the sole
utility function does not work either, based on the experiments, with an increased
number of agents, the price rises even though the makespan lowers. This is be-
cause even idle agents contribute to the cost function. In reality, companies try
to minimize price and maximize value. We can say that they value efficiency by
some cost. We will do the same so that we can decide whether one result is better
than the other based on the price of the efficiency increase of the solution. The
used formula for evaluation is:

1
log(price ∗ makespan) (5.1)

Because we try to minimize price as well as makespan, we will be interested in
the maximum values of the evaluation function.
Map analysis:
The hardest part is to analyze the map and obtain meaningful info, which can
be utilized in approximating the ideal number of agents. We will simplify the
map analysis to four factors. The first parameter p is the size of the maneuver
space. This area determines whether agents can comfortably dodge each other
after crossing the choke or while waiting for it. We can observe that in the room-
16 map, this is rather high as all the rooms create huge maneuver space. In a
maze with choke sizes of 1, however, there is no such area, which effectively de-
creases the optimal number of agents to units at most. The q is going to be the
number of chokes and it will be determined by the number of pairs of locations
that must cross the choke to arrive from one another. If this number of pairs
is sufficient enough, the size of the chokes will determine the second parameter.
The ”sufficient enough” is a vague requirement, we would need exhaustive mea-
surements to set this parameter to the exact value. For this experiment, we just
take the category of the smallest repeating choke. The d parameter is related to
the density of the chokes. And fourth parameter is the throughput of the map,
meaning the ability of the agents to comfortably move between different areas of
the map.
We omit some of the measurements in graphical or table visualization for the sake
of keeping this section short. They are all available as attachments. We begin
with testing on a plain map without any obstacles to receive base case info. The
results are the following:

39

Figure 5.10: The figure shows results of plain maps tests

Result Description: We have highlighted the optimal range for each of the
plain maps. We can see that the efficiency falls off with the greater number of
agents, except for the largest map. The range is also by far the biggest for the
128x128 map. We can assume that the optimal range widens with the increased
length of the map. That is after all logical conclusion. Based on the results, we
roughly predict the optimal number of agents for plain maps as follows:

Figure 5.11: The figure shows prediction on plain maps

p, q, d ∈ [0, 1] for simplification, p, q, d ∈ {S = 0.1, M = 0.4, L = 0.75}.
The d will be set somewhat experimentally based on measurements and then

40

accordingly set on the same map types. In the case of a maze, with constant
corridor sizes, the d must go towards 1. In maps with barely any chokes or areas
with deadlock potentials, the d will be rather low, and for plain maps, it is zero
whereas throughout is set to one.
Room 64x64-16: The chokes are the size of 1 and all the locations in different
rooms are connected through the chokes. We set the choke parameter to S. The
sub rooms however are large in terms of the rest of the map, so we declare the
first parametr as L. The throughput is rather worse, we set it to S.
In a similar fashion, we set parameters for multiple maps and conduct measure-
ments. The base optimal range is given by the earlier estimate and the size of
non-wall locations. For example, if we have 14000 free locations, we take x as a
square root and look up the corresponding value on the base case predictions.

Map Parameters Base opt range Opt range
Name p q t d bounds bounds

ROOM-64-16 L S S 0.2 170-250 90-130
RAND-64-20 M S L 0.1 150-225 70-90

Table 5.5: Experiment 4 map measurements results

Simple formula estimation:
Let n be ideal number of agents, let nb be base case predicted number, let p,q be
first, seconds and parameter respectively. Let t be throughput and d be density-
related parameter. Then

n ∼= nb − nb ∗ (1 − p1−t ∗ q1−d) (5.2)

The p is the main parameter and is always bigger than q. The reason is that
the maneuver space must be greater or equal to the chokes. It is modified by
the throughput parameter. This is because some maps might have small open
maneuver space, but they have multiple different paths to choose from to various
map sections. A great example is map Random-64x64x20. The q parameter
denotes the choke areas and frequency controls the impact of this parameter. If
we look at the Maze-128x128-10 map, we can see that the frequency of the chokes
is constant and equal to the maneuver space, thus making the second parameter
irrelevant. The frequency is set to one and the choke parameter is omitted. By
applying the formula to the base case maps, we obtain the expected:

n ∼= nb − nb ∗ (1 − 11−1 ∗ 11−0) = nb (5.3)

The formula is based on empirical measurements and observations of argument
correlation throughout the experimentations.
We will test the formula on three different maps. The d parameter for ROOM-
64-8 is set to 0.1 because the density is twice the density of ROOM-64-16. For
the same reason, the d parameter of RAND-64-10 is set to 0.2 as the density is
half of the RAND-64-20. The d parameter in the maze is set to one because the
size of all corridors is equal to the size of all chokes and thus manoeuver spaces,
so the q parameter is irrelevant.

41

Map Parameters Base opt range
Name p q t d bounds.

ROOM-64-8 M S M 0.1 150-225
RAND-64-10 M M L 0.2 170-250

MAZE-128-10 M M M 1 325-430

Table 5.6: Experiment 4 map prediction parameters

5.5.2 Results

Map Estimate Opt range
RAND-64-10 65-95 70-150
ROOM 64-8 11-17 50-70

MAZE-128-10 190-300 210-250

Table 5.7: Experiment 4 map prediction results

5.5.3 Conclusion
We have roughly introduced the problematics of an optimal number of agents on
an unfamiliar map. We suggested multiple arguments and factors that contribute
to this value and we conducted small-scale experiments. With knowledge of prior
measurements on a map of a similar type, we can very leniently estimate the
number of agents required to solve the scenarios on different maps in terms of
best value using the suggested formula. It has, however, many issues. Setting the
parameters correctly is very difficult and the simplified domain yields inaccurate
results (see ROOM 64-8 results). The optimal range gets narrow as the number
of agents decreases which is not accounted for in the formula accurately, etc. The
”correct” formula is likely much more complex.
This problem is rather going to be tackled by exhaustive measurements combined
with machine learning analysis. This topic would be adequate for the paper on
its own.

42

Conclusion
The Multiagent pickup and delivery (MAPD) problem has risen in popularity
in recent years along with robotization and automatization. We have covered
multiple different approaches to the MAPD and some of their follow-ups. The
performance of multiple algorithms and heuristics was compared based on various
goal functions and scenarios. Furthermore, discussed the problematics of optimal
range of agents on different maps and scenarios.
The basic pointer of the efficiency of the algorithm is makespan or service time.
The sophisticated algorithms outperformed the simple ones, makespan-wise even
by 15-20%. Even the ”agent swapping heuristic” technique significantly improved
and outperformed Token passing in certain scenarios by as much as 10%. Further
improvement was achieved using central algorithms with local search. We have
also introduced a heuristic for active agent prioritization, which improved the
C-CBS runtime as well as helped prevent deadlocks. On the other hand, the
depth of a CT was shown to demonstrate the inability of C-CBS to scale. To
measure, whether an algorithm is suitable for real-world planning, we described
the requirement of runtime per frame. No other algorithm, than TP manage to
consistently finish its calculation within the limit, therefore we only considered
TP in large scenario experiments. We measured the effectivity as well as the cost
of the TP in a large warehouse and complex scenarios for various numbers of
agents, described the scenarios, and based on the results suggested the number
of agents required to maximize the utility on different maps.
The significance of the result explanation was described. Especially for high pace
environments, humans need to understand and verify the result of algorithm
computation. The example methods for MAPD explanation were shown and
demonstrated on testing software.
In conclusion, we demonstrated the results of MAPD algorithms on small as well
as large scenarios. We have identified the weakness of the robust C-CBS algorithm
as well as the strength in the simplicity of the TP algorithm and its improved
version. Theoretical extensions of TP for concrete situations were described and
argued as promising. With the increasing trend of automatical warehouses, in
Czechia namely Alza, Mall, and Amazon, the research on multiagent pickup and
delivery problems proves to be relevant and quite significant. Given the hardness
of the problem, it is unlikely that an optimal general algorithm will be found,
rather we ought to find improvements for concrete situations.

43

Bibliography
Natalie Abreu. Efficient deep learning for multi agent pathfinding. Proceedings

of the AAAI Conference on Artificial Intelligence, 36(11):13122–13123, Jun.
2022. doi: 10.1609/aaai.v36i11.21697. URL https://ojs.aaai.org/index.
php/AAAI/article/view/21697.

Shaull Almagor and Morteza Lahijanian. Explainable multi agent path finding.
In Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’20, page 34–42, Richland, SC, 2020. Inter-
national Foundation for Autonomous Agents and Multiagent Systems. ISBN
9781450375184.

Roman Barták, Neng-Fa Zhou, Roni Stern, Eli Boyarski, and Pavel Surynek.
Modeling and solving the multi-agent pathfinding problem in picat. In 2017
IEEE 29th International Conference on Tools with Artificial Intelligence (IC-
TAI), pages 959–966, 2017. doi: 10.1109/ICTAI.2017.00147.

Zahy Bnaya and Ariel Felner. Conflict-oriented windowed hierarchical coopera-
tive a*. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 3743–3748, 2014. doi: 10.1109/ICRA.2014.6907401.

Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, Oded Betzalel, David Tolpin,
and Eyal Shimony. Icbs: The improved conflict-based search algorithm for
multi-agent pathfinding. In Proceedings of the International Symposium on
Combinatorial Search, volume 6, pages 223–225, 2015.

Zhe Chen, Javier Alonso-Mora, Xiaoshan Bai, Daniel D. Harabor, and Peter J.
Stuckey. Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery. IEEE Robotics and Automation Letters, 6(3):5816–
5823, 2021. doi: 10.1109/LRA.2021.3074883.

Florian Grenouilleau, Willem-Jan van Hoeve, and J. N. Hooker. A multi-label a*
algorithm for multi-agent pathfinding. Proceedings of the International Con-
ference on Automated Planning and Scheduling, 29(1):181–185, May 2021. doi:
10.1609/icaps.v29i1.3474. URL https://ojs.aaai.org/index.php/ICAPS/
article/view/3474.

Taoan Huang, Jiaoyang Li, Sven Koenig, and Bistra Dilkina. Anytime multi-agent
path finding via machine learning-guided large neighborhood search. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 36(9):9368–9376, Jun.
2022. doi: 10.1609/aaai.v36i9.21168. URL https://ojs.aaai.org/index.
php/AAAI/article/view/21168.

H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou,
and S. Shimada. Robocup rescue: search and rescue in large-scale disasters
as a domain for autonomous agents research. In IEEE SMC’99 Conference
Proceedings. 1999 IEEE International Conference on Systems, Man, and Cy-
bernetics (Cat. No.99CH37028), volume 6, pages 739–743 vol.6, 1999. doi:
10.1109/ICSMC.1999.816643.

44

https://ojs.aaai.org/index.php/AAAI/article/view/21697
https://ojs.aaai.org/index.php/AAAI/article/view/21697
https://ojs.aaai.org/index.php/ICAPS/article/view/3474
https://ojs.aaai.org/index.php/ICAPS/article/view/3474
https://ojs.aaai.org/index.php/AAAI/article/view/21168
https://ojs.aaai.org/index.php/AAAI/article/view/21168

H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1-2):83–97, 1955. doi: https://doi.org/10.1002/nav.
3800020109. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
nav.3800020109.

Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W Durham, TK Satish Kumar,
and Sven Koenig. Lifelong multi-agent path finding in large-scale warehouses.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 11272–11281, 2021.

Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. Task and path plan-
ning for multi-agent pickup and delivery. In Proceedings of the 18th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’19, page 1152–1160, Richland, SC, 2019. International Foundation for Au-
tonomous Agents and Multiagent Systems. ISBN 9781450363099.

Hang Ma, Jiaoyang Li, TK Kumar, and Sven Koenig. Lifelong multi-agent path
finding for online pickup and delivery tasks. arXiv preprint arXiv:1705.10868,
2017.

Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William
Yeoh. Generalized target assignment and path finding using answer set
programming. In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17, pages 1216–1223, 2017. doi:
10.24963/ijcai.2017/169. URL https://doi.org/10.24963/ijcai.2017/169.

Zhenbang Nie, Peng Zeng, and Haibin Yu. Effective decoupled planning for con-
tinuous multi-agent pickup and delivery. In 2020 Chinese Control And Decision
Conference (CCDC), pages 2667–2672, 2020. doi: 10.1109/CCDC49329.2020.
9164394.

Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. Pruning techniques
for the increasing cost tree search for optimal multi-agent pathfinding. In Pro-
ceedings of the International Symposium on Combinatorial Search, volume 2,
pages 150–157, 2011.

Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The increas-
ing cost tree search for optimal multi-agent pathfinding. Artificial In-
telligence, 195:470–495, 2013. ISSN 0004-3702. doi: https://doi.org/10.
1016/j.artint.2012.11.006. URL https://www.sciencedirect.com/science/
article/pii/S0004370212001543.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-
based search for optimal multi-agent pathfinding. Artificial Intelligence,
219:40–66, 2015. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.
2014.11.006. URL https://www.sciencedirect.com/science/article/
pii/S0004370214001386.

David Silver. Cooperative pathfinding. In Proceedings of the aaai conference
on artificial intelligence and interactive digital entertainment, volume 1, pages
117–122, 2005.

45

https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://doi.org/10.24963/ijcai.2017/169
https://www.sciencedirect.com/science/article/pii/S0004370212001543
https://www.sciencedirect.com/science/article/pii/S0004370212001543
https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.sciencedirect.com/science/article/pii/S0004370214001386

Roni Stern. Multi-Agent Path Finding – An Overview, pages 96–115. Springer
International Publishing, Cham, 2019. ISBN 978-3-030-33274-7. doi: 10.1007/
978-3-030-33274-7 6. URL https://doi.org/10.1007/978-3-030-33274-7_
6.

Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Ku-
mar, Eli Boyarski, and Roman Bartak. Multi-agent pathfinding: Definitions,
variants, and benchmarks. Symposium on Combinatorial Search (SoCS), pages
151–158, 2019.

Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hun-
dreds of cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1):
9, Mar. 2008. doi: 10.1609/aimag.v29i1.2082. URL https://ojs.aaai.org/
aimagazine/index.php/aimagazine/article/view/2082.

Qinghong Xu, Jiaoyang Li, Sven Koenig, and Hang Ma. Multi-goal multi-agent
pickup and delivery. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 9964–9971. IEEE, 2022.

Tomoki Yamauchi, Yuki Miyashita, and Toshiharu Sugawara. Standby-based
deadlock avoidance method for multi-agent pickup and delivery tasks. CoRR,
abs/2201.06014, 2022. URL https://arxiv.org/abs/2201.06014.

Han Zhang, Jingkai Chen, Jiaoyang Li, Brian C. Williams, and Sven Koenig.
Multi-agent path finding for precedence-constrained goal sequences. In Pro-
ceedings of the 21st International Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS ’22, page 1464–1472, Richland, SC, 2022. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems. ISBN
9781450392136.

Luman Zhao, Sai Rana Thattavelil Sunilkumar, Baiheng Wu, Guoyuan Li, and
Houxiang Zhang. Toward an online decision support system to improve collision
risk assessment at sea. IEEE Intelligent Transportation Systems Magazine, 15
(2):137–148, 2023. doi: 10.1109/MITS.2022.3190965.

46

https://doi.org/10.1007/978-3-030-33274-7_6
https://doi.org/10.1007/978-3-030-33274-7_6
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2082
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2082
https://arxiv.org/abs/2201.06014

List of Figures

1.1 Ma et al. [2017] Example MAPD instances 6
1.2 The figure shows MAPD instance from mapd-visual software . . . 9

4.1 The figure shows plan segment visually explained in MAPD-visual
software. 23

5.1 The figure shows Room-64-64-16 map 25
5.2 The figure shows selected makespan results for the first experiment 28
5.3 The figure shows selected runtime results for the first experiment 29
5.4 The figure shows CBS-CT depth 31
5.5 The figure shows ”Warehouse” and ”Berlin” maps respectively . . 32
5.6 The figure shows results in cost 33
5.7 The figure shows results in service time 34
5.8 The figure shows results in cost 35
5.9 The figure shows results in service time 36
5.10 The figure shows results of plain maps tests 40
5.11 The figure shows prediction on plain maps 40

A.1 Maps used in 4th experiment . 50
A.2 Maps used in 4th experiment II 50

47

List of Tables

5.1 Experiment 1 results. 27
5.2 Experiment 3 results on large warehouse. 33
5.3 Experiment 3 results on complex map 35
5.4 Experiment 3 results. 37
5.5 Experiment 4 map measurements results 41
5.6 Experiment 4 map prediction parameters 42
5.7 Experiment 4 map prediction results 42

48

List of Algorithms
3.1 TP . 15
3.2 TPTS . 17
3.3 CENTRAL . 19

49

A. Attachments

A.1 Maps used in 4th experiment

(a) maze-128-128-10 (b) room-64-64-8

Figure A.1: Maps used in 4th experiment

(a) random-64-64-20 (b) random-64-64-10

Figure A.2: Maps used in 4th experiment II

A.2 Mapd-visual software used for testing and
visualization

A.3 Experimental measurements

A.4 Simulation.mp4, showing simulation of se-
lected scenarios

50

	List of Abbreviations
	Introduction
	Problem Definition
	MAPD Formalization
	Well formed MAPD Instance

	Additional settings
	Deadline for orders
	Capacities
	Multi-goal tasks
	Task ordering
	Agent charging
	Offline

	MAPF
	Solving methods
	Task assignment
	Path planning

	Example

	Related work
	MAPF research
	Hierarchical cooperative A*
	Increasing cost tree search
	Conflict based search
	Constraint programming
	Learning based algorithms

	MAPD research
	Offline settings
	Online settings
	Semi-online settings

	Algorithm description
	Token Passing
	Token Passing Task Swapping
	CENTRAL
	Hungarian Algortihm
	Path computing
	CBS
	Update
	Prunning

	Possible pitfalls
	TP and TPTS
	CENTRAL-A*
	CENTRAL-CBS

	Plan Validation
	Validation algorithm
	Properties

	Experiments
	Experiment descriptions
	MAPF benchmarks

	Experiment 1
	Settings
	Results

	Experiment 2
	Settings
	Results
	Conclusion

	Experiment 3
	Settings
	Results

	Experiment 4
	Settings
	Results
	Conclusion

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Maps used in 4th experiment
	Mapd-visual software used for testing and visualization
	Experimental measurements
	Simulation.mp4, showing simulation of selected scenarios

