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Introduction
With data analysis uncovering massive amounts of useful information, data vi-
sualization techniques allow us to communicate facts and guide decision-making
efficiently. Moreover, when visualization is done correctly and with good inten-
tions, it is an excellent resource for forming opinions and drawing conclusions.
However, unfortunately, it can very easily be misinformative. This thesis will
examine misleading data visualization elements and their detection.

Even though visualization is a powerful way to convey information and has a
significant effect on fortifying a message or prompting a change Lo et al. [2022],
the main focus, when discussing misinformation and disinformation, is on the
textual form. Furthermore, we need to learn how to interpret graphs correctly;
therefore, for most people, misleading visualizations can be hard to spot.

The goal of this work is to give an overview of known misleading features
that are common in graphs. Then, explain how we can spot them and implement
a simple application that will automatically detect the presence of some of these
elements in a graph image.

Since misinformation can happen in every stage of creating the visualiza-
tion Lo et al. [2022], we will focus mainly on misinformation and confusion cre-
ated by the visualization design of the graph itself. Therefore, we will assume
the underlying data was correctly selected and analyzed since we can only verify
this by examining the original data.

We will also assume that the observer interprets the data based on the visual-
ization itself. Therefore, we will not consider any additional textual information
except in the chart.

The structure of the thesis is as follows. In Chapter 1, we describe frequent
misleading features in visualizations. In Chapter 2, we introduce essential con-
cepts and describe the techniques and algorithms used for application implemen-
tation. Chapter 3 discusses the implementation process and architecture design
of the application, while Chapter 4 describes the experimental tests and their
results.
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1. Misleading Features in Data
Visualization
This section will categorize and classify some known misleading features and
explain how and why they occur. Then, show some examples of these features in
graph images and try and improve comprehension of these example visualizations.

There are many ways to classify misleading mistakes people often make when
creating data visualization and the effects they can have on people. In this work,
we will group these elements by the creation stage in which they arise.

Creating data visualization starts with choosing and collecting the correct
data and preprocessing and analyzing it. Unfortunately, errors occurring in this
stage are hidden in the data, and detecting them from the visual representation
without knowing the data’s context is impossible. That is why we will cover this
section just briefly.

The subsequent step is the design of the visualization, which is the main focus
of this work. Following the creation of the visualization, we also have to consider
the perception and interpretation of the viewer. However, that depends on each
individual and their abilities. Therefore, it cannot be detected from the visual
depiction and will be covered concisely.

1.1 Data Analysis Pitfalls
Before creating a visual representation of data, we want to extract some valuable
information to illustrate. We call this process data analysis consisting of data
collection, cleaning, preprocessing, and analyzing. All this is done to uncover
helpful relations and patterns, answer questions, and forecast trends. However,
the methods which we can choose for data analysis are numerous. Nevertheless,
not all are suited for every problem. Therefore, knowing how to collect and store
the data and what methods to use is crucial. Unfortunately, these decisions are
difficult to make, and it is easy to fall into pitfalls resulting in faulty conclu-
sions and, inevitably, faulty visualizations. The first problem comes with data
collection.

1.1.1 Collecting Data
Collecting data can be demanding and time intensive. Nevertheless, we need a
lot of data for data analysis to be meaningful. Analyzing too few data points
can be misleading Lo et al. [2022] as it can create patterns that would not show
with better data collection. It can also omit important information pivotal to the
bigger picture and conceal important tendencies and patterns.

Another pitfall while collecting data is choosing suitable events to examine.
It is crucial to collect data congruous with the depicted topic because comparing
unrelated events can lead to showing relations that are not there. Correlation
does not necessarily mean causation. Moreover, even if there is a relation, it is
still difficult to tell which event is the cause of the other Klass [2009], Klass [2008].
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Visualizations then may show incorrect relations nonexistent in reality, which is
misleading.

In Figure 1.1, we can see such misleading visualization of events. When we
look at this graph, we can see a high correlation between the birth rate and the
number of stork pairs in European countries Matthews [2000]. Linear regression
shows that the more stork pairs breed, the more babies are born. The straight-
forward conclusion is that, of course, storks deliver babies. That is naturally
nonsense, and in this example, it is obvious. We know that storks have nothing
to do with how babies are born. However, that is a common mistake people make.
They assume that correlation implies causation. However, just because there is
a correlation between the number of storks and the birth rate of babies with a
p-value of 0.008, it does not mean that storks deliver babies with 99.2% probabil-
ity Matthews [2000]. The most plausible explanation of the observed correlation
is the existence of some common factor.

Figure 1.1: Example of correlation not causation, Matthews [2000], (in original
quality)

Thus, When looking at a depiction such as this, we need background knowl-
edge of the context of both events. However, this context is not clear from the
visualization alone. Therefore, even when the visualization depicts the data cor-
rectly, the choice of depicted events might be misleading.

The other well-known problem with data collection is cherry-picking. Cherry-
picking is the intentional or subconscious selection of data points that are strate-
gically chosen to display the intended agenda Lo et al. [2022], Klass [2009], Klass
[2008]. Unfortunately, this means that the data shown is incomplete and does
not realistically show the whole picture. Cherry-picking is often done by zooming
in on a specific time or picking particular comparison criteria.

In Figure 1.2, we can see an example of cherry-picking specific comparison
criteria. This graph was shown to an audience of Bill O’Reilly’s talk show Klass
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Figure 1.2: Example of cherry picking comparison criteria, Klass [2009], Klass
[2008]

[2009], Klass [2008]. He compared the absolute number of people below the
poverty level during the fourth year of the presidency of both Clinton and Bush.
He pointed out that since the number during Bush’s term was lower than during
Clinton’s, Bush’s administration lowered the poverty rate. That is a persuasive
argument that could fool many people. However, once we stop zooming in on
the absolute numbers and look at the graph as a whole, we can see that during
Clinton’s presidency, the poverty rate decreased until the year 2000, when Bush
started his presidency, when the poverty rate started to grow quite rapidly.

1.1.2 Preprocessing and Analyzing Data
Regardless, mistakes happen when manipulating data as well. Analysis can un-
cover and highlight trends and patterns in data so they can be better compre-
hended. Nevertheless, getting information out of data is easy if we are looking
for it. We must be mindful of personal biases that could affect analysis results.

For example, some comparisons in data are not valid without normalization Lo
et al. [2022]. Showing the absolute values is misleading when comparing events
with different magnitudes. In Figure 1.3, we see the difference when plotting
the absolute values compared to values per capita, which is more telling about
the actual murder rate. Cities with large populations will have higher absolute
numbers even though, given the number of people, the murder rate is low.

However, when using normalization, we also need to be careful. If we have
multiple values in a single plot, we need to normalize them in the same way Szafir
[2018]. Normalizing these values to a different range will distort data and show
patterns, shapes, and relations that are not there.
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Figure 1.3: Example of missing normalization, Lo et al. [2022]

For example, in Figure 1.4, we see a graph meant to persuade us that the
number of abortions grew rapidly while other life-saving procedures dropped in
numbers. However, when we examine the plot more closely and look at the
presented numbers, we realize that different metrics were used for each value to
achieve this look of false crossing around the year 2008. When in reality, at no
time on the timeline does the count of abortions exceed the number of life-saving
procedures made.

1.2 Visualization Design Pitfalls
Now that we have analyzed the data and know the points we want to make, it
is time to design the visualization. To create a visualization, we must map the
data to different visual channels, for example, position, size, or color Szafir [2018].
We can create engaging and informative visualizations using a few visual tech-
niques. However, choosing these techniques is where most visualizations become
misleading, either by mistake or malice.

1.2.1 Choice of the Plot
Let us start with choosing the type of plot. While most well-known graphs are
generally ok to use, there are many creative ways to display data. Unfortunately,
although beautiful, unusual, and innovative does not necessarily mean better Lo
et al. [2022]. On the contrary, using graphs unfamiliar to the general public can
cause confusion. Correctly interpreting graphs is a skill one must learn; therefore,
encountering a new type of graph is misleading. For example, where to look for
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Figure 1.4: Example of two-way normalization, Szafir [2018]

information? What message is the graph trying to convey? What do colors
mean in this context, and how are connections displayed? All these are essential
questions that the plot must straightforwardly convey. Unfortunately, with new
innovative visualizations, this does not happen.

For example, in Figure 1.5, we see an unusual graph. Even though the visual-
ization is heavily labeled, it is unclear what information it is supposed to convey,
what the different colors mean, or the connections between data bars.

3D visualizations are widespread and well-known but are also frowned upon by
experts. Even though the interpretation of 3D graphs may seem straightforward,
that is unfortunately not the case Szafir [2018]. There are several significant
problems with 3D plots stemming mainly from the projection of 3D to the 2D
plane. When we do this, we lose our brain’s ability to resolve positions based
on the angles between the perceived object and our eyes. It also distorts our
perception of the size since objects further away appear smaller, whereas a small
object can also mean a small value in a visualization.

Another problem is occlusion Szafir [2018]. When depicting data in 3D, it is
frequent that some objects partially obscure others. This makes it difficult for
people to perceive differences between depicted data correctly, and occluded data
is effectively lost. It is, therefore, better to exchange the third dimension with
some other visual representation, such as color or size.

In Figure 1.6, we can see such improvement. The original graph is hard to
interpret due to the perspective and some data bars hiding others. The improved
images eliminate these problems by representing the third dimension by size and
color.
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Figure 1.5: Example of confusing choice of plot, Lo et al. [2022]

1.2.2 Choice of an Axis
The following pitfalls lie in choosing an axis, with the most well-known being
the truncated axis Lo et al. [2022]. It typically happens when we want to use
plot space the most effectively and therefore map the axis to the minimum and
maximum value of presented data Szafir [2018]. However, as shown in Figure 1.7,
this is misleading as it visually shows differences in data that are not there. Fur-
thermore, since people interpret plots by observing the visual differences between
the axis and the data itself Driessen et al. [2022], an axis that does not start at
zero will distort these differences. Even though the research shows that labeling
the axis counterfeits this phenomenon, most people will not look at the labels
and will form conclusions at first glance at the plot. Moreover, people must learn
how to interpret graphs correctly to avoid this illusion.

The same goes for other pitfalls concerning axes, such as inverting the axis,
which reverses the values, irregular intervals between axis marks, or plotting data
of different magnitudes on the same axis Lo et al. [2022]. All these examples dis-
tort the visual differences and correlations between presented data and, therefore,
can lead to misinformation.

As mentioned before, labeling the axis and values can compensate for these
issues Driessen et al. [2022], which is why missing labels, titles, or legends are
self-explanatory misleading fallacies Lo et al. [2022].
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Figure 1.6: Example of improving 3D graph by size or color, Szafir [2018]

Figure 1.7: Example of truncated axis, Knaflic [2015]

1.2.3 Choice of Color
Lastly, let us mention color as it is a powerful way to add a third dimension
without using 3D graphs Szafir [2018], or it can help highlight important patterns
in data. Many visualizations depend on color to represent data. Even though
color is helpful when visualizing categorical data, it is often misused.

The most common example is using color transitions for continuous data,
creating so-called rainbows. When looking at the grayscale representation of a
rainbow in Figure 1.8, the problems with this approach become more evident.
The color rainbow does not represent a smooth increasing scale Szafir [2018].
Therefore, the human eye will be subconsciously more drawn to specific colors
and group colors with similar hues no matter their position on the rainbow.

Another issue is the perceived distance between adjacent colors Szafir [2018].
We can see in the greyscale version sharp transitions several times throughout
the rainbow. Our eyes will therefore perceive even a small change in values
as significant since there is a big difference in intensity. For all these reasons,
the rainbow transitions can lead to perceiving patterns that are not there and
omitting others.
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Figure 1.8: Problems with mapping values to rainbows, DePasquale [2019]

Such fallacies can be easily avoided by consistently transitioning from light
color to dark, as demonstrated in Figure 1.9.

Figure 1.9: Example of avoiding rainbow pitfalls, Muth [2021]

Finally, using too many colors can cause a problem for colorblind people since
they see colors differently from the average person Lo et al. [2022], Szafir [2018].
Colorblindness is a frequent phenomenon, especially among men, and therefore
designing color graphs needs to reflect this and use colorblind-friendly colors.

In Figure 1.10, we see an example of an unsuitable color scheme and how
a person with Deuteranopia, a.k.a inability to see green color and Protanopia,
a.k.a the inability to see the color red, would perceive it. Again, using colorblind-
friendly color combinations or lightness gradients can address this issue.

1.3 Interpretation and Perception Pitfalls
Analyzing and designing a visualization is just part of the visualization process.
It is not always possible to design a visualization that will communicate intended
information without misleading it. We often need additional information that
cannot be directly in the data visualization itself because it would become il-
legible. We need someone to tell us the essential context we need to know to
understand the problem presented correctly. We might need to explain what is
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Figure 1.10: Example of colorblindness affecting perception, Muth [2021]

displayed in the graph and why it is crucial. In business, this is usually done by
presentation. Someone with deep knowledge of the underlying data and the vi-
sualization design will narrate the asked questions, the process of collecting data,
the analysis used, and what the visualization shows; what are the conclusions,
why are they important, and what action needs to be taken.

Unfortunately, this is not always possible. We encounter many graphs in
our life with no one to give us this much-needed presentation. We are left to
analyze and draw conclusions from the visualization by ourselves, and this is
where interpretation and perception pitfalls occur. It is not possible to completely
eliminate misleading features from graph design. Moreover, people can make
inaccurate conclusions from an objectively correct graph.

12



2. Colorblindness Detection
In addition to showing the misleading features in a graph and their recognition,
this work aims to create an application that, given a graph, will automatically
detect the presence of some particular misleading feature. The misleading feature
this work decided to focus on is colorblindness. This section will describe all the
necessary concepts, libraries, and software used to implement the application.

2.1 Types of Colorblindness
We define Colorblindness or Color Vision Deficiency as the inability or decreased
ability to perceive or distinguish colors Daniel [2020]. The human eye has three
types of color photoreceptors located at the retina; individuals have difficulty
perceiving colors if there is a problem with any of these receptors.

Protanopia means the total absence of red photoreceptors in the affected indi-
viduals. This results in difficulty in distinguishing between red and green colors.
The absence of green photoreceptors causes deuteranopia, which manifests simi-
larly to protanopia and again causes difficulty distinguishing red and green colors.
That is why both protanopia and deuteranopia are sometimes called red-green
blindness. Tritanopia signifies the complete absence of blue receptors and results
in the inability to distinguish between blue and yellow, therefore is often called
blue-yellow blindness (Fig. 2.1).

Most people only experience partial forms of these deficiencies and can more
or less adjust to everyday life.

We should also mention monochromacy, which is the complete loss of color
vision, but we will only concern ourselves with protanopia, deuteranopia, and
tritanopia.

2.1.1 Colorblindness Diagnosis
It is essential to diagnose color vision deficiency as it can make some activities very
difficult or even impossible Daniel [2020]. However, diagnosing colorblindness
is not easy, especially when the colorblindness is mild. There are some tests
for testing color deficiencies, most commonly known being the Ishihara Plate
test Miquilini et al. [2019] for detecting mainly red-green colorblindness. The
test consists of pseudo-isochromatic plates. Each plate is designed to have some
shape or a line difficult to distinguish for people with red-green colorblindness
(Fig. 2.2).

2.2 Color Representation
There are many different ways we can represent color information digitally. Each
color representation model has different qualities and is suitable for different pur-
poses Gonzalez and Woods [2018]. This subsection will introduce the RGB and
the L*a*b* models we use in our application and introduce perceptual uniformity.
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Figure 2.1: Color vision deficiency simulation. (A) Original Joaquin Sorolla’s
painting Saliendo del baño (”Coming out of the bath”); (B) protanopia simula-
tion; (C) deuteranopia simulation; and (D) tritanopia simulation., Moreira et al.
[2017]

2.2.1 RGB Color Space
The RGB color space is designed to relate to human color vision. As mentioned
above, three types of photoreceptors are present in the retina Poynton [2003].
These photoreceptors are called cones, and each type responds to different wave-
length bandwidths that loosely correspond to the red, green, and blue primary
colors. In the RGB color space, each of these three components is represented
by an 8-bit value that spans from 0 to 255 and is proportional to the intensity of
that particular color channel.

This model is generally sufficient to represent colors. However, the human
eye has a far lower ability to detect color detail than lightness Poynton [2003].
The RGB color space is, therefore, not perceptually uniform. That means the
perceptual distance between two colors does not match the Euclidean distance
between them. That may not be ideal for our application; therefore, we introduce
the L*a*b* color space.
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Figure 2.2: Ishihara test plates, Association

2.2.2 L*a*b* Color Space
The L*a*b* color space decouples intensity and color in its representation Gon-
zalez and Woods [2018]. Color is represented by the a* component encoding red
minus green color and by the b* component, which represents green minus blue.
L then represents intensity as lightness.

The L*a*b* color space has the advantage of being almost perceptually uni-
form and colorimetric Gonzalez and Woods [2018], which means that if we per-
ceive colors as matching, they are encoded the same. It is also device independent,
which means it maintains a high degree of color consistency between different de-
vices. However, even though it can encompass the entire visible spectrum, it is
not directly displayable, so we need to convert it to other color spaces.

2.3 Color Distance
We must introduce some color distance metrics to compare, match, and group
colors. In this section, we will introduce two commonly used metrics for color
comparison; Euclidean and CIEDE2000 distance.

2.3.1 Euclidean Distance
Euclidean distance is a metric measuring the distance between two points in
Euclidean space. In RGB color space, the Euclidean distance calculates the square
root of the sum of the squared difference in individual RGB values of the two
colors Gonzalez and Woods [2018](Eq. 2.1).

∆E =
√︂

(r2 − r1)2 + (g2 − g1)2 + (b2 − b1)2 (2.1)
Unfortunately, Euclidean distance assumes, among other things, uniform vari-

ance. As mentioned above, the RGB color space is not perceptually uniform;
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therefore, the Euclidean difference does not exactly align with human perception
of color similarity Paschos [2001].

The L*a*b* color space considerably improves this issue as it is very close to
human perception Paschos [2001].

∆E∗
ab =

√︂
(L2 − L1)2 + (a2 − a1)2 + (b2 − b1)2 (2.2)

2.3.2 The CIE 2000 Color-Difference Formula
Even though L*a*b* color space significantly improves the RGB color space’s
perceptual nonuniformity, it is still not truly uniform Poynton [2003]. With a
genuinely uniform color space, the color difference could be computed with Eu-
clidean distance Fairchild [2005]. Since even the L*a*b* has some nonuniformity,
more sophisticated color difference equations were formulated.

The CIEDE2000 color-difference formula is based on the CIELAB color space
and addresses the limitations of the Euclidean distance in CIELAB Luo et al.
[2001]. Apart from weighting functions for lightness, chroma, and hue, it also
considers the interactive term between chroma and hue differences and the scaling
factor for CIELAB a* scale. Doing that, CIEDE2000 improves performance for
blue as well as grey colors.

2.4 K-Means
K-Means is a widely used clustering algorithm. Clustering is an unsupervised
learning method to group similar-looking data Ichikawa and Morishita [2014].
The K-Means algorithm first selects k random points as the initial centers of
expected groups. Then it repeatedly assigns each point to its closest center and
selects new group centers as the mean of points assigned to that group. This step
is repeated until convergence or our patience runs out (Fig. 2.3).

It is crucial to mention that the final grouping is very sensitive to the initial
random selection of k centers Ichikawa and Morishita [2014]; thus, more efficient
methods have been implemented for the centroid selection.

While introducing the K-Means algorithm, we mentioned assigning points to
its closest group center. We must define a distance metric for this, and Euclidean
or Manhattan distance are available candidates Ichikawa and Morishita [2014].

Using Euclidean distance while grouping colors with the K-Means algorithm,
we may encounter the same problem with perceptual uniformity as mentioned in
subsection 2.3.1.

2.4.1 Silhouette Score
The silhouette score is a metric for evaluating the quality of clusters a clustering
algorithm creates Mishra et al. [2022]. It measures how well each data point fits
within its assigned cluster compared to others. Its values range from -1 to 1, and
a higher silhouette score indicates that the data points are well-clustered, have
high similarity within their clusters, and are neatly separated from others.

In our application, the silhouette score determines the optimal number of
clusters k for the K-Means algorithm. The Silhouette score is calculated for each
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Figure 2.3: K-means algorithm iteration example, Straka [2022]

iteration of algorithms run with different values of k. The highest silhouette score
indicates the optimal number of clusters, so the colors are grouped based on their
similarity and distinguishability.

2.5 Colorblind Library
The Colorblind is a computer vision library that transforms images into a version
that is more accessible to individuals with color blindness, taking into account
the specific type of color vision deficiency Rahfeldt [2021]. It supports the three
previously mentioned types of color vision deficiencies: protanopia, deuteranopia,
and tritanopia.

Apart from implementing various algorithms for converting images into more
colorblind-friendly versions, the library can also simulate different types of color-
blindness, a feature we utilize in our application.
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3. Colorblindness Detection
Application Design
Now that we know all the concepts used in our application, let us describe the
development process. This project aims to develop an application with a graphi-
cal interface that determines if a given graph image is colorblind-friendly or not.
The application will analyze the colors of a given image and assess their distin-
guishability for people with different types of color blindness.

Throughout this section, the implementation process, including the method-
ology analysis, system design, and performance evaluation, will be discussed.

3.1 Dataset
The evaluation dataset consists of 80 randomly generated graph images. Each
image was randomly assigned a chart type, either a bar, line, or scatter chart.
Furthermore, the number of colors used in each graph was randomly chosen from a
range of 1 to 3. Specific colors were selected from a set of potentially problematic
colors for individuals with different types of color blindness. Subsequently, the
dataset underwent a manual scanning process to identify and remove any graphs
whose color distinction was deemed unreadable, even for individuals with intact
color vision. Additionally, each image was classified by hand with information
about which color vision deficiency it triggers.

Figure 3.1: Example of an image from the threshold evaluation dataset.
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Figure 3.2: Example of an image from the threshold evaluation dataset.

3.2 Methodology
As we can see in figures 3.1 and 3.2, the image quality is not the greatest. That
is expected since our application assumes the input image is in either jpg or png
format. The jpg format is lossy; therefore, saving an image in this format results
in loss of information, and the resulting image is not precisely the same as the
original one Hamzah et al. [2021]. This means that even though only four colors
were used to create the dataset image 3.1, when we load the image for processing,
we receive 12 736 unique color pixels. Unfortunately, a vast amount of colors will
decrease the computation process drastically, and as we need an application that
will be user-friendly, we need to speed up our computation.

Therefore, we need a way to compare colors and decide which ones are close
enough to be considered the same color group; this is where color distance comes
in.

Thus, the color grouping process will involve experimenting with different
techniques to determine the most effective approach, which will then be chosen
as the default strategy for the final user application.

One approach for grouping colors is to use the K-Means algorithm. How-
ever, that requires specifying the number of groups beforehand. To determine
the optimal value of k, we use the Silouhette score, which is computationally
expensive.

An alternative would be grouping the colors based on similarity given by their
Euclidean distance. This approach may improve the algorithm’s time complexity
but compromise the grouping accuracy as RGB color space is not perceptually
uniform. Therefore, the Euclidean distance will be additionally tested with the
L*a*b* color space.
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Another potential improvement may arise from using the deltaE distance met-
ric instead of Euclidean; however, this might add time complexity.

Overall, we strive to balance speed and accuracy to develop an application
that maintains high colorblindness issue detection accuracy while remaining user-
friendly.

The algorithm for grouping colors based on similarity utilizing the Euclidean
or delatE distance is further described in section 3.3.2, and section 4 describes
the experiment evaluation process.

3.3 The Core of the Program
As the foundation for our implementation, we used the algorithm described in
the article ”I wrote some code that automatically checks visualizations for non-
colorblind safe colors. Here’s how it works” by Gregor Aisch Aisch [2022]. This
algorithm extracts a representative color sample and then computes color differ-
ences with the deltaE distance metric. Then does the same for colorblind sim-
ulated representative colors and finally triggers a color warning if the computed
difference ratios are above some threshold. From this, we extract our algorithm
structure as shown in Algorithm 1.

Algorithm 1 Application’s algorithm structure
1: img ← LoadImage(image path)
2: colors← LoadPixelColors(image)
3: color groups← GroupColors(colors)
4: detected issues warnings← DetectColorblidnIssues(color groups)

After loading the image from the given path and extracting the image col-
ors 3.3.1, we first group all the image colors and select the representative color
from each group 3.3.2. Then we analyze these grouped colors to detect col-
orblindness issues for different color vision deficiencies returning the triggered
warnings 3.3.3. Each of these steps is described more elaborately in the corre-
sponding subsections.

3.3.1 Loading the Image and Colors
We load the image using the open method from the PIL.Image library. Next,
we load the RGB pixel values using the convert and getdata methods from the
same library. We can use these color values directly for grouping using the K-
means algorithm. However, the grouping algorithm based on similarity using the
Euclidean or deltaE distance needs further preprocessing.

3.3.2 Grouping Colors
For the grouping of colors based on similarity, we first filter unique colors and
sort them in descending order based on the number of occurrences.

Then the grouping algorithm starts with the color with the highest occurrence
frequency and calculates the distances between this color and all other ungrouped
colors using either the Euclidean or deltaE distance metric. Then, it compares
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the distances with some threshold value, and if the distance between the currently
first color and some ungrouped color is below this threshold, the ungrouped color
is grouped with the first color. The optimal threshold value that needs to be set
will be determined using experiment evaluation described in section 4.

Then the algorithm takes the next ungrouped color with the highest frequency
and repeats the grouping process. This step is repeated until there are no un-
grouped colors left. The output is then single representative color for each final
color group. The representative color is computed as the mean of all the colors
within that group. The pseudocode for this grouping algorithm can be seen in
Algorithm 2.

Algorithm 2 Color Grouping
1: function group colors(colors, threshold)
2: if ungrouped colors left then
3: distances← [compute distance(colors[0] - color) for color in colors]
4: group← colors[distances ≤ threshold]
5: rest← colors[distances > threshold]
6: return [group] + group colors(rest, threshold)
7: end if
8: return []
9: end function

One notable aspect of the color grouping method is the importance of sorting
the colors by occurrence frequency. Since the grouping process is order sensitive,
sorting the colors allows the algorithm to prioritize the most frequently occurring
colors, which are most likely the actual colors in the image. Therefore, we group
any perceptually similar colors to the actual color in the image, making it a valid
choice for a group.

3.3.3 Detecting Colorblindness Issues
Upon receiving the representative colors, the detection of colorblindness issues
can begin. We start by calculating the distance matrix using the deltaE distance.
Since the number of representative colors is small, we do not need to concern
ourselves with the computational intensity. Then we utilize the Colorblind Rah-
feldt [2021] library to simulate the representative colors to the different types
of colorblindness and calculate the same distance matrix for these color values.
Finally, we compute the difference ratio, and if the simulated distance between
some colors has decreased as opposed to the original by more than half, then we
consider the image unfriendly for the corresponding colorblindness.

3.4 System Design and Architecture
The application is designed with a separation of concerns approach, separating
the UI design from the business logic, which should ensure the modularity and
maintainability of the application.

For developing the user interface, the application utilizes the Kivy library,
which provides a framework for building cross-platform graphical user interfaces.
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The UI communicates with the underlying business logic through a Facade design
pattern, which acts as an interface between the two components.

The UI is simplistic and user-friendly, with five buttons to control the ap-
plication 3.3, 3.4. Application input assumptions and usage is described in user
documentation, located in Attachment A.1.

Figure 3.3: User interface after application launch

Figure 3.4: User interface image analysis demonstration

The business logic is further divided into three parts; the grouping of col-
ors algorithms, the detection of colorblindness issues logic, and the experiments
evaluator. The color grouping algorithms are implemented as a Strategy design
pattern with the different grouping approaches acting as concrete strategies and
the experiment evaluator as both the context and client. Moreover, the Facade
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also acts as a context; however, this time without the client logic since the user
is not allowed to change grouping algorithms, but rather the best performing one
will be set in the Facade constructor as the default one. However, during the
implementation phase, the Facade acting as a context came in handy.

Additionally, the experiments evaluator is implemented as a template design
pattern, where the evaluation method defines the structure of the evaluation al-
gorithm. At the same time, two concrete classes redefine some of the steps based
on whether they perform threshold experiments or the k-means performance ex-
periment.

The overall design and architecture, including the detailed description of all
components, is described in the code documentation, which is situated in Attach-
ment A.2.
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4. Experimental Evaluation
This section describes the methodology and evaluation results of the performed
experiments. It involves finding the optimal threshold values for the Euclidean
and delatE color grouping algorithm and comparing and evaluating the overall
performance in terms of accuracy and running time of all proposed approaches.
Finally, this section states the reasons for the algorithm choice utilized in the
final application.

4.1 Experiment Methodology
Since the Euclidean distance paired with the RGB color space, Euclidean distance
paired with the L*a*b* color space, and the delatE distance all need a threshold
value for separating colors, the first experiment aims to find an optimal threshold
value for these three algorithms. Since the threshold affects the grouping of colors,
it would make sense to evaluate the threshold experiments on grouping accuracy;
the accuracy calculated from the number of actually used colors in the image and
the number of detected color groups.

However, that might not be ideal because we are not strictly interested in
the number of groups alone but rather in what groups we find and, therefore,
what representative colors we get. The best grouping accuracy then might not
correspond to the overall accuracy, which is described in Section 4.1.1.

We might prefer lower threshold values over higher ones, and that is because of
the ratio method we use to trigger warnings, which was described in Section 3.3.3.
We detect colorblindness issues only if the simulated distance between some colors
has decreased by more than half compared to the original distance of these two
colors.

With a low threshold, we might divide a single color into two similar color
groups. However, this will not result in unwanted triggers since the original
distance between these similar groups will be low, just as the simulated distance
will.

However, if we choose a higher threshold and find fewer color groups than
we were supposed to, it means we connected distinct colors into a single one.
Consequently, we will not calculate the distances between these two colors, and if
these two colors are unfriendly, we will not trigger a warning as we were supposed
to.

Therefore, we will evaluate the threshold experiments on the overall perfor-
mance accuracy and compare each best-performing algorithm with the K-Means
performance results.

The K-Means performance evaluation will be run independently since the K-
Means algorithm does not need the threshold or sorted colors by occurrence.

The tested threshold values and step size range was picked based on the
analysis with a wide threshold range on a single image from the dataset.
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4.1.1 Performance Accuracy
Accuracy is a simple measure of correctness. It tells us the ratio of correct predic-
tions to the total number of predictions. However, since each image can trigger
none or up to all three color deficiencies, we need to adjust the accuracy score
accordingly.

In our evaluation, we consider each type of colorblindness issue as an individ-
ual prediction. A value of 1 represents that the issue was triggered, while a value
of 0 indicates that it was not. Thus, if the correct classification for an image is no
triggers, it is counted as three 0 predictions. This approach ensures that even if
our algorithm correctly predicts one deficiency but misses or incorrectly predicts
others, we still count the correctly predicted trigger as a correct prediction.

4.2 Euclidean Distance Threshold Results
We list the threshold experiment results for Euclidean distance with RGB color
space in Table 4.1. Performance accuracy is rounded to three decimal places, and
the row with the best accuracy score for the threshold value 180 is highlighted.

In the table, we can also observe a tendency for the running time to decrease
with increasing threshold value. This results from the grouping algorithm be-
cause, with a larger threshold value, more colors are immediately included in
groups, which results in less iteration and, therefore, faster grouping.

Threshold Performance Accuracy Running Time
150 0.775 1 min 16 s
160 0.796 1 min 13 s
170 0.829 1 min 11 s
180 0.842 1 min 9 s
190 0.825 1 min 8 s
200 0.800 1 min 9 s
210 0.788 1 min 8 s
220 0.779 1 min 7 s
230 0.800 1 min 6 s
240 0.779 1 min 5 s
250 0.758 1 min 4 s

Table 4.1: Euclidean Distance Results

4.3 Euclidean Distance with L*a*b* Threshold
Results

The results for Euclidean distance with the L*a*b* color space can be seen in
Table 4.2. Again, performance accuracy is rounded to three decimal places, and
the row with the best accuracy score for the threshold 95 is highlighted.
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Threshold Performance Accuracy Running Time
55 0.463 2 min 38 s
60 0.488 2 min 42 s
65 0.517 2 min 44 s
70 0.533 2 min 44 s
75 0.529 2 min 46 s
80 0.554 2 min 43 s
85 0.583 2 min 34 s
90 0.625 2 min 40 s
95 0.708 2 min 39 s
100 0.663 2 min 35 s

Table 4.2: Euclidean Distance with L*a*b* Results

4.4 DeltaE Distance Threshold Results
The original threshold range for the deltaE threshold experiments was from 30 to
40. However, based on the initial results, it seemed that lowering the threshold
may improve the accuracy further. Therefore, we run additional experiments
with threshold values from 20 to 30. And it paid off, as we achieved the best
result with threshold value 27, which is highlighted in Table 4.3.

Threshold Performance Accuracy Running Time
20 0.604 35 min 59 s
21 0.650 31 min 7 s
22 0.688 34 min 42 s
23 0.704 34 min 48 s
24 0.696 33 min 17 s
25 0.746 42 min 22 s
26 0.758 1h 8 min 29 s
27 0.779 48 min 55 s
28 0.758 23 min 7 s
29 0.767 21 min 35 s
30 0.754 20 min 1 s
31 0.696 19 min 2 s
32 0.733 17 min 16 s
33 0.713 16 min 46 s
34 0.708 17 min 24 s
35 0.713 16 min 23 s
36 0.725 14 min 53 s
37 0.721 14 min 49 s
38 0.708 14 min 38 s
39 0.696 14 min 12 s
40 0.708 14 min 3 s

Table 4.3: DeltaE Distance Results
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4.5 Performance Evaluation
After determining the threshold values, we proceeded with the performance evalu-
ation of the K-Means algorithm and compared its results to the other algorithms.
Since the K-Means algorithm is nondeterministic and its results depend on the
random initialization of the cluster centers, we ran this algorithm ten times and
compared the overall average performance accuracy and the total average running
time to each algorithm’s optimal threshold results.

4.6 Performance Evaluation Results
The performance results are sorted by performance accuracy in Table 4.4. First,
let us look at the running times, which turned out as expected, with the Euclidean
algorithm performing the best and the delatE algorithm being the worst. That is,
Euclidean paired with L*a*b* is over 20 times faster than the deltaE algorithm,
while Euclidean paired with RGB is even over 40 times faster. While K-Means
is slower than both Euclidean algorithms, it still performed very well compared
to the deltaE algorithm in terms of running time.

Now let us focus on the accuracy. Surprisingly, both the Euclidean algorithm
with the RGB color space and the K-Means algorithm outperformed the deltaE
algorithm. That is unexpected since the RGB color space is not perceptually
uniform. However, since the dataset images are of graphs and a limited set
of colors was used, it may be that the colors are so far apart that perceptual
uniformity does not matter. Therefore, additional research and experimentation
on a more diverse dataset is recommended to either validate or refute this result.

Algorithm Performance Accuracy Running Time
Euclidean, RGB 0.842 1 min 9 s

K-means 0.802 5 min 38 s
DeltaE 0.779 48 min 55 s

Euclidean, Lab 0.708 2 min 39 s

Table 4.4: Performance Evaluation Results

This experimentation aimed to find the best method for our final application
while considering both the accuracy and the speed. Unfortunately, the deltaE
algorithm is out of running. Even though it performs solidly in terms of accuracy,
its running time is 48 min 55 s, which is over half a minute on average, and we
believe that to be too long for a user’s convenience.

The same is true of the K-Means algorithm, whose accuracy is sufficient; how-
ever, 4 s on average still seems too long for a user-friendly application, considering
we can do better.

Therefore, the final application will employ the Euclidean distance working
with the RGB color space as it outperformed all the other algorithms both in
terms of accuracy as well as running time.
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Conclusion
This thesis focused on detecting misleading features in data visualizations. It
provided an overview of known misleading features in data visualization with an
emphasis on recognizing these elements and improving validity and inclusion in
data visualizations. Furthermore, with the analysis of various algorithms, this
work aimed to develop an application that detects the presence of colorblind-
unfriendly elements in graphs.

The results of performed experiments show the efficiency and shortcomings of
different algorithms. The deltaE distance and the K-Means algorithms demon-
strated high accuracy in detecting colorblindness triggers but at the cost of longer
processing time. On the other hand, The Euclidean distance paired with the
L*a*b* color space, while performing sufficiently in terms of running time, did
not do well in terms of accuracy. In contrast, the Euclidean distance with the
RGB color space outperformed all other algorithms in both cases.

This research’s topic is important, as it contributes to the awareness and un-
derstanding of misleading features that can affect data interpretation and, conse-
quently, the public’s trust in scientific research. By developing an application that
can detect colorblindness-unfriendly graphs, this thesis shows how software can
simplify the detection of misleading features for the everyday user and increase
the accessibility of data visualizations.

However, it is essential to acknowledge the limitations and challenges encoun-
tered during this research. The use of self-generated data and the design of
experiments may have introduced biases and limitations in the findings. Further
analysis with additional diverse datasets is therefore recommended to validate
the results and uncover potential discrepancies.

Future research directions could investigate the reasons behind the unexpect-
edly good performance of the Euclidean distance algorithm paired with the RGB
color space. Additionally, further optimizations could be examined to enhance
the overall performance of the detection algorithms.

In summary, this thesis contributes by raising awareness of the issues sur-
rounding misleading features in data visualizations and demonstrating the po-
tential of software implementations to address these challenges. This research
hopes to inspire further exploration and advancements in data visualization to
create more accurate and inclusive visual representations of data.
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Jannetje Driessen, Daniël Vos, Ionica Smeets, and Casper Albers. Misleading
graphs in context: Less misleading than expected. PloS one, 17:e0265823, 06
2022. doi: 10.1371/journal.pone.0265823.

M.D. Fairchild. Color Appearance Models. The Wiley-IS&T Series in Imaging
Science and Technology. Wiley, 2005. ISBN 9780470012697. URL https:
//books.google.sk/books?id=8_TxzK2B-5MC.

R.C. Gonzalez and R.E. Woods. Digital Image Processing. Pearson, 2018. ISBN
9780133356724. URL https://books.google.sk/books?id=0F05vgAACAAJ.

Rostam Hamzah, Muttaqin Roslan, ahmad fauzan Kadmin, Shamsul Fakhar
Abd Gani, and Khairul Azha A Aziz. Jpg, png and bmp image compression us-
ing discrete cosine transform. TELKOMNIKA (Telecommunication Computing
Electronics and Control), 19:1010, 06 2021. doi: 10.12928/telkomnika.v19i3.
14758.

Kazuki Ichikawa and Shinichi Morishita. A simple but powerful heuristic
method for accelerating k -means clustering of large-scale data in life science.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11
(4):681–692, 2014. doi: 10.1109/TCBB.2014.2306200.

Gary Klass. Just plain data analysis: Common statistical fallacies in analy-
ses of social indicator data. 09 2009. URL http://www.statlit.org/pdf/
2008KlassASA.pdf.

G.M. Klass. Just Plain Data Analysis: Finding, Presenting, and Interpreting
Social Science Data. G - Reference, Information and Interdisciplinary Subjects
Series. Rowman & Littlefield Publishers, 2008. ISBN 9780742560536. URL
https://books.google.cz/books?id=e1BE2UbBhKgC.

C.N. Knaflic. Storytelling with Data: A Data Visualization Guide for Busi-
ness Professionals. Wiley, 2015. ISBN 9781119002253. URL https://books.
google.cz/books?id=retRCgAAQBAJ.

29

https://www.vis4.net/blog/2018/02/automate-colorblind-checking/
https://www.vis4.net/blog/2018/02/automate-colorblind-checking/
https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/color-vision-deficiency
https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/color-vision-deficiency
https://medium.com/@enneyeseakay/3-common-misuses-of-color-in-data-visualization-98aa18d7c940
https://medium.com/@enneyeseakay/3-common-misuses-of-color-in-data-visualization-98aa18d7c940
https://books.google.sk/books?id=8_TxzK2B-5MC
https://books.google.sk/books?id=8_TxzK2B-5MC
https://books.google.sk/books?id=0F05vgAACAAJ
http://www.statlit.org/pdf/2008KlassASA.pdf
http://www.statlit.org/pdf/2008KlassASA.pdf
https://books.google.cz/books?id=e1BE2UbBhKgC
https://books.google.cz/books?id=retRCgAAQBAJ
https://books.google.cz/books?id=retRCgAAQBAJ


Leo Yu-Ho Lo, Ayush Gupta, Kento Shigyo, Aoyu Wu, Enrico Bertini, and
Huamin Qu. Misinformed by visualization: What do we learn from misin-
formative visualizations? Comput. Graph. Forum, 41(3):515–525, 2022. doi:
10.1111/cgf.14559. URL https://doi.org/10.1111/cgf.14559.

Ming Luo, Guihua Cui, and B. Rigg. The development of the cie 2000 colour-
difference formula: Ciede2000. Color Research Application, 26:340 – 350, 10
2001. doi: 10.1002/col.1049.

Robert Matthews. Storks deliver babies (p= 0.008). Teaching Statistics, 22:36 –
38, 06 2000. doi: 10.1111/1467-9639.00013.

Leticia Miquilini, Mauro Ratis, Monica Lima, Natali Bento-Torres, Eliza Lacerda,
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A. Attachments

A.1 User Documentation

A.1.1 Objective
The Colorblind Detector application aims to help users determine if a graph image
is colorblind-friendly. It analyzes the colors in the image and checks if they are
distinguishable for people with different types of color blindness.

A.1.2 System Requirements
• Windows Operating System

• Python version 3.7

A.1.3 Installation
Follow these steps to set up the application:

1. Download the zip Colorblindness Detector project from
https://github.com/roubalovaHana/colorblindnessDetector

2. Extract the project to a desired location on the computer.

3. Open the project in IDE and create a 3.7 version Python interpreter.

4. Install the required Python packages by running the following command in
the terminal:

pip install -r requirements.txt

5. Once the installation is complete, launch the application.

A.1.4 Application interface
The Colorblind Detector application provides a user-friendly graphical interface.
After launching the application, the main screen will appear with five buttons
for controlling the application and three checkboxes for selecting the color vision
deficiency.

A.1.5 Usage

Loading image
Press the Load button and find the desired image in the file manager. Selecting
a folder of images is also possible by pressing the check button while in the file
manager. In this case, the first image in the selected folder will display.
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Figure A.1: User interface after application launch

Navigating folder
To navigate the images, use the Prev and Next buttons. The Prev button will
display the previous image in the folder, while the Next button will display the
following image.

Choosing the type of color vision deficiency for analysis
The checked boxes indicate the selected types of color vision deficiencies for anal-
ysis. Choose the desired combination by selecting appropriate checkboxes.

Starting analysis
Pressing the Check button will start the analysis, which may take a while. After
the analysis, if the image is unfriendly, a warning will display next to the corre-
sponding color vision deficiency. If no warnings appear, the picture is colorblind-
friendly.

Downloading the analysis report
After the analysis, download the pdf report about the current image by pressing
the Download button. The report will show the original image and a simulated
image for each triggered deficiency. Therefore, if no issues were triggered, no
report will download.
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A.1.6 Limitations
The application assumes that the input image is in a standard PNG or JPEG
format. It is not excessively large or complex. And that the image is of a single
graph.

The application has no memory. When loading the same image, the analysis
must be performed again.

A.2 Code Documentation

A.2.1 Input data
The input for this application is an image of a single graph in a JPEG or PNG
format, selected by the user using the file manager. Input can also be a user-
selected folder with images.

To test this application, one can utilize the TestFiles directory of prepared
images or the GroupingDataset directory containing generated graph images.

A.2.2 Code Overview
The application consists of three main modules. The first module handles the
graphical user interface. Second takes care of the underlying application logic,
which is separated from the user interface module by a Facade. The third module
handles the experiments performed to compare the performance of different color-
grouping algorithms.

main.py

The main.py serves as the entry point for the application. It initiates the execu-
tion of the Kivy application and launches the user interface.

User interface
design.py

The design.py defines the handling methods for events triggered in the user in-
terface, including all methods for pressing the buttons and navigating in the file
manager.

design.kv

Defines user interface design and layout of the Kivy application using a declarative
syntax specific to the Kivy library.

Application logic
facade.py

The facade.py implements the Facade design pattern. It serves as a separation
of the application logic from the user interface logic and as a simplified entry
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point to the application logic. It defines two main methods, find issues, and
generate report, that intermediate the communication with the application logic
subsystem.

It also acts as the context for the Strategy design pattern that implements the
color grouping algorithms. This functionality was used during the implementation
phase. The best-chosen strategy is set in the constructor as the default in the
final application.

color grouping algs.py

Defines three distinct implementations for grouping colors of an image using the
Strategy design pattern. Both the abstract Strategy class and the concrete im-
plementations are located here.

The context and client code are placed in the evaluation.py file.
The concrete strategies of grouping colors are implemented using the K-means

algorithm from the Sklearn library and the Euclidean and the deltaE distance
calculations, which are implemented in the delatE distance calculator.py file.

detection algs.py

The detection algs.py implements the analysis part of the application logic. For
given grouped colors, it computes the distance between the original and the sim-
ulated colorblindness colors. Then triggers a warning if some of the original
distances have shrunk considerably in the simulated versions. The results are
conveyed using the report result object.py objects. For each type of colorblind-
ness, one report object is created that carries the information on whether the
corresponding issue was triggered.

deltaE distance calculator.py

Calculates the CIE2000 delatE distance for every pair of given colors using the
scipy and colormath libraries. It returns the distances as an upper triangular
matrix flattened to a list.

report result object.py

Represents warning objects. Stores information about the type of colorblindness
and whether it was triggered or not. It also stores the simulated image for the
corresponding colorblindness.

pdf generator.py

The pdf genereator.py generates the pdf report based on the report result object.
It first renders the report template.j2 to html with the given information and
then converts the html to pdf using the xhtml2pdf library.

report template.j2

The report template.j2 contains the jinja2 template for the pdf report generation.
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Experiments
dataset generator.py

The method generate graph images generates the random test images using the
matplotlib library and genData method adapted from

https://github.com/ddecatur/VizExtract/blob/main/create graph.py.
Additionally, the method generate dataset creates a csv dataset containing

the generated images and required information about them. Furthermore, the
simulate colorblindness method simulates all types of colorblindness for them.

evaluation.py

Runs the experiments and calculates the evaluation metrics. It is implemented
as a context to the Strategy pattern that implements color grouping algorithms
from the color grouping algs.py file.

A.2.3 System Requirements
• Windows Operating System

• Python version 3.7

The application relies on the following external libraries:

• Kivy: Graphical interface development framework.

• Colorblind: Library for simulating color blindness and evaluating color
distinguishability.

• NumPy: Computational and array manipulation library.

• Scikit-learn (Sklearn): Machine learning library. Used for K-means al-
gorithm and metrics.

• Matplotlib: Plotting library used for generating datasets.

• Pandas: Data manipulation library used for CSV file operations.

• Pillow: Image manipulation library.

• SciPy and colormath: Libraries used for calculating deltaE distance.

• Jinja2 and xhtml2pdf : Libraries used for generating PDF reports.
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