FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

DOCTORAL THESIS

Mgr. Simon Midlik

Quantum fluid dynamics and quantum
turbulence probed using micro- and
nano-resonators

Department of Low-Temperature Physics

Supervisor of the doctoral thesis: doc. RNDr. David Schmoranzer,
Ph.D.
Study programme: Physics of Condensed Matter and
Materials Research
Study branch: Physics

Prague 2023



I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

Author’s signature



First, I would like to thank all of my parents, friends, and partners, for a lot of
emotional and personal support. Next, I would like to thank all my colleagues
and collaborators for the well-spent time during the endless measurements. The
most thanks belong to my supervisor David Schmoranzer for his advising, good
leadership, and a lot of past knowledge. I want to thank him for the time spent
with all the corrections and for the great collaboration on the joint projects. Fur-
ther, I would like to thank my colleagues from the Laboratory of Superfluidity
in Prague, for the inspiration and help with the experiments, namely Ladislav
Skrbek and Emil Varga and younger students Filip Novotny, Maximilian Golena,
and Marek Talit, working on the projects together. During my Ph.D., thanks to a
European Microkelvin Platform, I was allowed to visit some of the top European
ultra-low-temperature laboratories in Grenoble, Lancaster, and Helsinki. For
these beautiful collaborations, I want to thank Andrew Fefferman, Eddy Collin,
Sebastien Triqueneaux, James Buttherworth, Ilya Golokolenov, and Viktor Tse-
pelin, Theo Noble, Roch Schanen, Sergey Kafanov, and Vladimir Eltsov, Jere
Maékinen and Timo Kamppinen. My last thanks go to my good friend and great
human Jozef.

i



Title: Quantum fluid dynamics and quantum turbulence probed using micro- and
nano-resonators

Author: Mgr. Simon Midlik
Department: Department of Low-Temperature Physics

Supervisor: doc. RNDr. David Schmoranzer, Ph.D., Department of Low-Temperature
Physics

Abstract: In this Thesis, we present an extensive study of the dynamics of quan-
tum fluids employing the detectors in the form of mechanical resonating structures
with characteristic dimensions below 1 mm. We operate the devices in normal
and superfluid liquid phases of both helium isotopes scanning the wide range of
temperatures between 2.17 K and ~ 150 puK. We show, that the detectors in
the form of quartz tuning forks and superconducting vibrating wires are suitable
probes in both hydrodynamic and ballistic regimes of superfluids, described by
the two-fluid model. Not only can these devices be used to trigger the turbu-
lent transition in quantum fluids by their driven motion, they can also operate
as detectors of externally generated turbulence. The observation of the initial
instability is reported in mechanically and thermally driven oscillatory flows. Its
origin in either normal or superfluid component is identified and described in
terms of suitable dimensionless parameters, solving previous discrepancies re-
garding critical velocities in oscillatory counterflow experiments. Additionally,
in steady thermal counterflow, a microwire is characterised as a local probe of
quantized vorticity and compared to second sound measurements. Finally, we
discuss the properties and potential of the MEMS and NEMS devices, advancing
from much smaller dimensions, fabricated via custom cleanroom processes and
we report the manufacture of our own device. Such detectors are able to probe
the quantum fluids on the scale of a single quantized vortex, studying its detailed
dynamics and should lead to more information about the energy dissipation in
zero temperature limit.
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Preface

This thesis aims to report and discuss cryogenic experiments conducted by the
author, with the goal to enrich current knowledge of turbulent flows in quantum
fluids. Superfluid helium (*He and *He isotopes) are one of the best laboratory-
accessible quantum fluid systems, although temperatures of the order of units of
Kelvin (for “He ) or even millikelvin (for He ) are required. As a payoff for the
higher complexity of the technical realization of the quantum flows, they offer a
plethora of fascinating physical effects, having no analogy in any classical fluids,
e.g. quantization of circulation leading to the existence of quantized vortices.
One of the most interesting tasks in the research of superfluids is the study of
flow instabilities and the development of complex turbulent flows representing
the phenomena of quantum turbulence (QT) [1H4] or Despite many distin-
guishing differences between quantum and classical turbulence, QT may be used,
under specific conditions, as a model system of classical turbulence. The study of
turbulence in quantum fluids can, therefore, lead to a better understanding even
of its classical counterpart.

Studying the drag forces acting on submerged mechanical resonators repre-
sents one of the most expanded techniques of QT research. In this configura-
tion, turbulence can be both generated and detected by the devices of various
shapes, e.g. tuning forks [5] [6] or vibrating wires [7HI0] or [A.2] moving
grids [I1), 12], levitating spheres [I3HI5]. The recent expansion of accessibility
of highly equipped cleanroom facilities allowed the boom of custom MEMS and
NEMS (micro/nano electro-mechanical systems) device manufacture. The great
advantage of the local character of these detectors can be effectively used to probe
externally driven flows and is a necessary condition for the studies of systems with
spatially non-homogeneous turbulence [I6H20] or[A.3] Scaledown of resonator di-
mensions opens the way to significantly higher sensitivity for the devices used for
the detection. With the ability to reach nano-metric scales, it is now possible
to probe quantum liquids at the level of coherence length (in the case of *He
). Customization of the used geometry further allows to effectively trap single
quantized vortices, now in both isotopes of superfluid helium, with the device
and study their mutual interaction. Experimental observations of single vortex
dynamics should lead to a better understanding of fundamental questions of en-
ergy dissipation in a pure superfluid regime where a viscous dissipation channel
is absent [21-H26].

Manufacture of such local detectors stands on lithography processes allowing
very precise etching and layer coating procedures. Typical devices are created
from thin Si3N, membranes or monocrystal Si wafers and covered with super-
conducting layers (aluminum, niobium, ...) used for movement induction [27-29]
or[A.6l Even devices based only on superconducting metal have been reported re-



cently [30]. The geometry of the MEMS/NEMS may be easily varied, e.g. doubly
clamped cantilevers or goal-post-shaped wires. The device position may lead to
a well-tuned distance from the substrate or other device, employing the grids of
devices [31], or alternatively, it can probe the bulk, standing in an open window.

In the first chapter [I] we present the theoretical background essential to this
Thesis and discuss the recent author‘s contribution to the understanding of quan-
tum turbulence. We further refer to more detailed works suitable for further
reading. The second chapter 2] is dedicated to the description of the turbulent
instability onset in oscillatory flows of He II, based on our experimental obser-
vations. We discuss the turbulent transition occurring in either of the He II
components and show that the cross-over between the two is possible in a single
experimental setup. In the third chapter [, we show the measurements of the
local detection of externally driven turbulent flow in He II employing vibrating
wire resonators. We are trying to approach the theoretical understanding of the
processes, affecting the resonant frequency and amplitude of a weakly driven os-
cillator exposed to a turbulent thermal counterflow at temperatures above 1 K.
In the final chapter 4] we discuss the general use of the MEMS and NEMS struc-
tures for the detection of quantum turbulence and characterize the damping due
to acoustic emission in He , which may limit the detection ability of the probe.
In the end, we present the fabrication process of custom-made MEMS devices
manufactured by the author and characterize their properties at 20 mK tempera-
tures. In the end, we present the data showing a stably attached single quantized
vortex to a similar device in *He -B and study the additional losses caused by the
vortex. A list of the most relevant publications, with the author’s contribution,
is attached in Appendix [A]



Chapter 1

Theoretical background

1.1 Quantum fluids

The study of classical fluid dynamics represents one of the most important re-
search fields with applications in everyday life. Under extreme conditions, such
as low temperatures or high pressures, fluids can behave under special quan-
tum restrictions, similar to many quantum phenomena in solid bodies. Fluids,
whose macroscopic behaviour cannot be described entirely by classical models,
e.g. Navier-Stokes equations [32], are generally called quantum fluids. The idea
of quantum fluids was introduced following the discovery of superfluidity in *He
(independently by Kapitza [33] and Allen & Misener [34]), resulting from rapid
cryogenic development at the beginning of the twentieth century. Nowadays, the
most frequently studied quantum fluids are superfluid phases of liquid helium and
ultracold atomic gases. In this work, we restrict our interest to the former ones,
especially to the superfluid “He .

1.1.1 Superfluid helium isotopes

Upon lowering the temperature towards absolute zero, helium remains liquid (if
high pressure is not applied) unlike all other substances, which freeze to their
solid state. It is due to the imbalance of the ground state motion energy of
the helium atoms acting against weak van der Waals forces, trying to bind the
atoms together. This allows the existence of liquid phases experiencing quantum
behaviour on a macroscopic scale. In this new liquid phase of *He , existing
below 2.17 K, several non-classical phenomena were observed, e.g. ability to flow
through very small pores without the viscosity, formation of a thin superfluid
film, the fountain effect or thermo-mechanical effect and led to the recognition of
this phase as the superfluid “He also denoted as He II. The full phase diagram
of *He is displayed in Fig . The phase transition line between two helium
liquid phases (normal liquid He I and superfluid He II) is called the A transition
line. This name comes from the shape of the heat capacity evolution across the
transition.

The superfluid phase was later experimentally discovered also in much rarer
helium isotope *He in 1972 35, 36]. The main technical obstacle connected with
SHe superfluidity is the three orders of magnitude lower superfluid transition
temperature being of units of millikelvin. The different physical properties of
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Figure 1.1: Phase diagram of *He . It can exist in two liquid phases, either
classical normal liquid denoted He I or in superfluid phase - He 11, which consist
of normal and superfluid component. Second order phase transition between the
two, happening at around 2 K, is called superfluid or lambda transition.

these superfluids originate from the bosonic nature of *He vs the fermionic nature
of 3He and require different theoretical approaches.

Superfluidity of *He was first connected with Bose-Einstein condensation in
1938 by London [37] and the same idea was further used in works of Tizsa [38] in-
troducing the first two-fluid model of He II. However, this approach was criticized
by Landau, for omitting the atomic interactions, presenting his own model build
on the ideal gas of elementary excitations [39, 40]. As a result, both approaches
were shown to be complementary. Superfluid, as a quantum mechanical ground
state, consists of cca. 10% of the condensate, as measured experimentally by
neutron scattering [41]. The lower portion of the particles in the atomic ground
state comes from their interactions.

The issue with *He superfluidity description through the mere idea of the
Bose-Einstein condensation is evident due to its fermionic nature. However, in
analogy to the Cooper pairing of the electrons in the theory of superconductivity,
a similar process works for the *He atoms. Having an atomic spin of one-half, 3He
atom pairs created below the transition temperature form a triplet state (unlike
singlet pairing of electrons in superconductors), with possible spin projection
S,=0,4+1. In addition, pair of atoms orbiting around a common centre has an
orbital spin L=1. Based on the properties of the spin-orbital space and external
parameters - pressure and magnetic field, we may observe three different bulk
phases. The first one, with all possible spin projections, is called superfluid-B
phase or 3He -B. At higher pressures, concerning a zero magnetic field for now,
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Figure 1.2: Top: Phase diagram of 3He in zero magnetic field. Superfluid tran-
sition occurs from 1 mK to 3 mK in dependence on the pressure. Two different
superfluid phases, *He -A and 3He -B, exist in bulk at zero field. Bottom: 3D
phase diagram of 3He showing also magnetic field dependence. At higher fields,
3He -A phase is more preferable, and a new bulk phase *He -A1 can exist.

see the phase diagram in Figure superfluid-A phase or *He -A exists, not
containing any S,=0 component. When higher magnetic field is applied the area
covered by in *He -A grows rapidly. Finally, in a non-zero magnetic field we can
observe *He -A1 phase, similar to A phase, but consisting of only S,=1 (|11))
spin projection component. The full 3D phase diagram of 3He superfluid phases
as a function of pressure, temperature, and magnetic field is shown in Figure|1.2
Additional superfluid *He phases, e.g. polar phase, exist under special topological

restrictions [42, [43], but a closer description of these is beyond the scope of this
Thesis.



1.1.2 Two-fluid model - hydrodynamic regime

Superfluid phases of both helium isotopes can be described by the two-fluid model.
We can, therefore, describe the He II as a mixture of two inter-penetrating fluid
components. The first one is a classical-like normal component independently
acting as a viscous fluid in accordance with the Navier-Stokes equations [32].
This holds, in the high-temperature regime, between the A transition and ~ 0.7 K,
where normal component can be described by its hydrodynamical properties. In
the following, we discuss this hydrodynamic limit of the two-fluid regime.

The second component is called superfluid component and is responsible for
the originally observed peculiar behaviour of He II. The superfluid component
is a practical realization of compressible ideal fluid which may be described by
Euler’s equations [32]. It lacks any viscosity and does not possess or transfer any
entropy, as it represents the macroscopic quantum mechanical ground state of the
fluid. The normal component is therefore responsible for the whole entropy and
heat transfer. He II has, for these reasons, an extremely high thermal conduc-
tivity, which strongly suppresses bulk boiling as all excessive heat is effectively
transferred to the surface and lost due to evaporation.

Two-fluid nature of He II is further allowing the existence of flows that have
no equivalence in classical fluids. One can easily mechanically generate the mean
flow of whole fluid, resulting in the co-flow [44] of the components. Alternatively,
the flow of the normal fluid may be blocked by the porous plug, which does
not affect the flow of inviscid superfluid component, resulting in the pure super-
flow [45]. Finally, a flow of the two components in opposite directions, so-called
counterflow [46], may be generated either mechanically or thermally.

As purely independent flows of the components are possible, we have to in-
troduce separate densities p,, ps and velocity fields v, vs, for the components of
the two-fluid model. The total density of He II p is only weakly dependent on the
temperature [47] and its value equals the sum of the single component densities:

Due to the discussed properties of the two components, it is obvious that the
ratio, or better say density, of the normal component must be decreasing with
the temperature. The local ratio of p, and p, is then, in the general approxima-
tion neglecting the pressure dependence, defining the temperature of He II and
vice versa. The first measurement of the normal component and superfluid com-
ponent densities as a function of temperature, proving this idea, was performed
by Andronikashvili [48] in 1946. In his experiment, a set of closely packed tor-
sional disks on a string were used as a fully-submerged oscillator. The spacing
was made small enough, smaller than the viscous penetration depth, to force the
oscillation of the normal component between the discs together with the whole
body. The changes in the oscillator period led to the determination of the tem-
perature dependence of the normal and superfluid density ratios as displayed in
Figure 1.3

Further, in analogy to classical fluids, we should be able to build a set of
equations of motion governing the macroscopic behaviour of the fluid system
proposed by the two-fluid model. As stated above, it should be based on the
Navier-Stokes-like equation for normal component and Euler-like equation for the



T T T T
1.0 - I'_—_—"-ﬂ——_ i 1,0
/ > | ps/p
0.8 4 1 2o}
J n
o ¥ S s
=R 4 1 ° T i Apoint
. } E (217 K)
T D4 04 | i
(.'-’“ He Il 2
. T:l | %
0.2 il - e oo2r
I
! Pu/p
C,:} S| | | 1 0.0 f i 1 A L ]
15 2.0 25 30 35 00 05 10 15 2,0 25
Temperature T/ K Temperature (K)

Figure 1.3: Left: Normal component density measurement performed by An-
dronikashvili [48]. Right: Temperature dependence of normal (red) and super-
fluid (blue) component density in a He II.

superfluid component. First, the mass and entropy flow inside the fluid should
be described by the equations of continuity. For the system of our two fluids, we
get:
(pn + ps)
ot
for the conservation of the total mass, also stating that the exchange of the mass
between the components is not forbidden. And:

+ V(pnvn + psvs) = 0, (1.2)

9(p5) + V(pSv,) =0, (1.3)
ot
assuming only the non-dissipative flows. Here, S denotes the specific entropy.
Finally, assuming the incompressible flows, we can write the following equations
of motion, called HVBK equations (named after Hall, Vinen, Bekarevich and
Khalatnikov [49-51] ):

Mo (v V)ve = 2P — L9VT 4 vy, + P, (1.4)
ot p Pn p
N (Ve Vve— —LvP 4 svr4T- PR (1.5)
at S s p p ) *

where v stands for the kinematic viscosity of the normal component, P for pres-
sure, T for temperature and T for the vortex tension. We can further define the
vector difference of the component velocities as, so-called, counterflow velocity
Vps = VU, - Us. Finally, F represents the mutual friction force, which is responsi-
ble for the coupling of the motion of the two He II components. However, this
force is nonzero only in the presence of rotational flow in the superfluid compo-
nent, possible only due to quantized vortices, which will be closer described in
the following chapters.

When describing the superfluid *He , the same two-fluid model having normal
and superfluid components can be applied. However, the main difference to He II
picture is the viscosity of the normal component. While normal component of

9
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Figure 1.4: Left: Dispersion of thermal excitations in He II. Two branches of
linear phonons and parabolic rotons, with energy gap A, are present. Under
critical Landau velocity (highlighted by dashed line), roton minimum gets below
zero energy line and excitation generation beaks the superfluidity. Right: Dis-
persion of thermal excitations in superfluid *He . Superfluidity is connected with
the existence of an energy gap A in the spectrum, which might be anisotropic.
The fermionic nature of the excitations leads to the necessity of distinguishing
quasiparticles and quasiholes based on the direction of the momentum and the
group velocity.

4He possesses one of the lowest viscosities, three orders of magnitude lower than
the water, the viscosity of the normal *He is closer to that of the honey. For this
reason, in most of the experiments performed close below critical temperature 7'¢,
the normal component is considered to be static and only the flow of superfluid
component can be studied. However, the situation changes, if superfluid *He is
cooled further, below approx. 0.2 T'¢, where normal component can be no longer
described as a continuum. For the He II it happens below ~0.7 K. In this case,
we have to consider normal component to behave rather like a ballistic gas of
thermal excitations surrounded by ”superfluid vacuum” and we can discuss the
two-fluid model in its ballistic limit.

1.1.3 Two-fluid model - ballistic regime

At low enough temperatures, where the normal component density is too low for
it to be described by the hydrodynamic model, we have to consider a different
picture. The presented ballistic model for normal component is based on the
original phenomenological description of He I made by Landau [39] 40]. However
it is important to understand, that Landau‘s model does not restrict to a ballistic
regime and can lead to approximately correct normal and superfluid component
density in two-fluid regime in accordance with Fig[1.3]

At first, Landau intuitively correctly postulated the dispersion law, see Fig|1.4],
for the introduced thermal excitations, as was later proven by neutron scattering
experiments [52H54]. In his ideas, an ideal gas of these excitations represented
the weakly interacting atoms of the normal fluid. We can find many analogical
approaches in solid body physics, trying to describe interacting systems of the

10



electrons [55]. Based on the shape of the dispersion curve, two types of excitations
may be discussed. First, at the low-energy part of the spectrum, we can see a
linear dependence of the energy F with the momentum of the excitation p = hk,
with h being the Plank constant and k the wave vector. This part of the spectrum,
in analogy with linear excitations in solids (considering only longitudinal modes
as dealing with the liquid), represents phonons, having the following dispersion
relation:

€ =uip, (1.6)

defining the speed of sound u;.

The second type of the thermal excitations, having an effective mass pu, is
called rotons and occupy parabolic part of the dispersion around the energy
minimum at py momentum.

(p— po)2
7# .

€e=A+ (1.7)
The right branch of the roton spectrum, with the group velocity in the direction
of the momentum, can be denoted as R™, while the left branch, having the
group velocity direction opposite to the momentum direction, being called R™.
The energy A of the excitations with the momentum p, gives the roton energy
gap necessary for its generation in He II flow. This leads to the existence of a
critical "Landau” velocity given as vy, = €(po)/po, being of the order of 60 m/s,
at which thermal excitations can be created spontaneously. However, typically in
experiments a different type of perturbation of the superfluid (quantized vortices,
which will be further discussed later) onsets at much lower velocities.

The population of the energy spectra of thermal excitations N pnonon and Nyoton
is naturally strongly dependent on the temperature:

Nphonon ~ (kBT)Sa (18)
Nroton ~ (kBT)%e_kB%a (19>

with kg, being Boltzmann constant.

The dispersion law in *He differs from that of “He , due to its fermionic nature.
It is missing the phonon part, see Figure (1.7, which results in the existence of
the energy gap A in the energy spectrum. Moreover, the energy gap might be
anisotropic across the k-vector sphere. It is not the case for the *He -B, but in 3He
-A phase energy gap disappears at the ”south and north” poles, see Figure [1.5]
having consequences regarding the anisotropy and the temperature dependence
of the excitation population in these phases. In *He , we have to account for
the fermionic nature of the thermal excitations. Based on the momentum of the
excitation, we can divide them into quasiparticles having momentum larger than
the Fermi momentum |p| > pr in the same direction as the group velocity and
into quasiholes with |p| < pr with opposite direction of the momentum and the
group velocity. The energy of the excitation is given as [56]:

Ep = \/<2i* —er) A2, (1.10)

11



Figure 1.5: Superfluid 3He energy gap visualization in the k-space. Left:
Anisotropic gap in ®He -A phase vanishing at the poles. Right: Fully isotropic
energy gap in *He -B phase.

with m* being effective mass of the excitation and ez Fermi energy. The existence
of the isotropic energy gap leads to the exponential temperature dependence of
the excitation population in *He -B phase:

A
Nexcit ~ 6_16377 (111)

The nature of the excitation spectrum further allows effects, which do not exist
in He II, such as screening of the excitations by the superfluid flow in the form
of Andreev reflection [57, 58].

Temperature dependence of the thermal excitation population can be effec-
tively used for the thermometry in the superfluids, especially in *He having
exponential dependence, via measurement of the damping forces acting on a
solid resonator due to ballistic collisions [5]. In the recent work of Lancaster
group [59], employing a nano-metric resonating cantilever in He II, they experi-
mentally showed the cross-over between the hydrodynamic behaviour in the two-
fluid regime and ballistic behaviour with mainly roton contribution at higher
temperatures and mere phonon contribution at the lowest temperatures, down to

the units of millikelvins, in accordance with Equations

1.1.4 Quantized Vortices

In previous, we have introduced, in closer detail, the description of normal compo-
nent of superfluid helium. Let’s further concentrate on the behaviour of superfluid
component of He II. As discussed above, superfluid component can be identified
with the macroscopical quantum mechanical ground state. It is therefore advan-
tageous to introduce the macroscopic wave function W(r,t), as originally done by

Tizsa: .
W(r,t) =/ ps(r, 1)t (1.12)

with superfluid density ps(r,?) and macroscopic phase ®(r,t), both as a function
of time and spatial coordinate.

12



Using this description, we can obtain the superfluid velocity vg(r,t), as a
fraction of superfluid mass flux J(r,¢) and superfluid density, in following form:

_ —ih
B 2m4ps<r7t)

(W (r, 1) VU (r, 1) = U (r, ) VI (r,1)] = iwp(r,t) (1.13)

S 7t
v.(r.1) =

with m4 being a mass of helium atom. This equation should prescribe the exis-
tence of only potential flows of superfluid component making rotation of super-
fluid velocity V x vy identically zero.

It is, nonetheless, possible to arrive with the rotational flow of the superfluid
component if a multiply connected region of superfluid is considered. Having this
assumption in mind, we can discuss the circulation of superfluid component T,
defined as the closed loop integral of superfluid velocity:

r— j'{ va(r, )dl = - f V(e L, (1.14)

L my JL
using [[.13] Considering the properties of the macroscopic wave function, being
uniquely defined in space and time, the change of its phase after passing around
any closed loop must be equal to the integer value of 27. As a result, apply-
ing it to leads to the condition for quantization of circulation in superfluid
component in He II by integer number of circulation quanta x ~ 1077 m?/s.

r= ni = nK, (1.15)
my
The rotational flow may be therefore realized in superfluid component, but
only in the form of superfluid circulating around a non-superfluid singularity, as
multiply connected region is required and possessing integer number or circulation
quanta. Described structures are called quantized vortices and in He II take the
form of line topological defects of superfluid, which represent the vortex core. The
energy of the unit length of quantized vortex e, is then given as kinetic energy
of the superfluid component circulating around the core, having the radius ag,
see m However, with the subatomic core size, of the order of A, it cannot be
interpreted simply as normal component. It is rather defined by the coherence
length of the macroscopic wavefunction. The spatial distribution of superfluid
density and superfluid velocity away from the vortex axis is shown in Fig. [1.6]
n?psk? . b

In —. (1.16)

™ Qo

b
€y :/ Wpsvzfr’dr =
ao

Single quantized vortex energy ¢, also weakly depends on the interaction with
the container walls or with other vortices in the volume, being in distance b. From
the equation further follows, that in He II only singly quantized vortices exist
as they are energetically favourable. This is, however, not true in superfluid *He
, where e.g. half-quantizes vortices or other exotic types of superfluid defects
are possible [56]. As vortex cores represent topological defects in both discussed
superfluids, there are additional important restrictions, defining their dynamical
behaviour. It is not allowed for the quantized vortex to start or end inside the bulk
superfluid. The only possible configurations are such, that place vortex ends on
the free liquid surface or present solid surface (of the container or of the submerged
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Figure 1.6: Left: Scatch of the quantized vortex with hollow core and superfluid
component circulation around it. Circulation must be quantized by x ~ 1077
m?/s. Right: The structure of quantized vortex with p, and v, spatial dependen-
cies. The dashed line represents the core’s dimension.

body) or in the form of a closed loop propagating in the bulk [60]. Another option,
also supported by the continuity of the superfluid phase, is a quantized circulation
around fully submerged bodies, e.g., nanometric cantilevers [59], substituting the
vortex core.

Similar restrictions hold for the superfluid *He , with circulation quanta being
KHes = h/2mg =~ 6.6% 10~8 m2/s, as Cooper pair consists of two atoms with
the mass mgz, but with more complex nature of the possible vortex structures.
Especially, in the case of 3He -A phase various vortex structures are possible, such
as "continual unlocked vortices” having a "soft” core, without the full suppression
of the order parameter (superfluid wave function), "locked vortices”, 2D "vortex
sheets” or "singular vortices” with the "hard” core (representing the singularity
of the A-phase order parameter), being the closest relative in *He -A to He II
quantized vortices. Recently, also theoretically predicted half-quantum vortices
have been experimentally confirmed [61]. A more detailed description of these
vortices is far beyond the scope of this work but can be found in [62].

All possible vortex structures in *He -B have a "hard” core. However, the
coherence length is much larger than in the case of He II, being of order tens
of nm depending on the pressure. Quantized vortices in 3He -B are therefore
macroscopic objects, with the core being "filled” by normal component or possibly
other superfluid phases, unlike the hollow core of vortices in He II and can also
be connected with the vortex mass [63].
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1.2 Turbulent flows in quantum fluids

Regarding fluid mechanics research, the study of turbulent flows contains some of
the most important problems with applications in everyday life e.g., aerodynam-
ics and acting drag forces, fluid transfer, energy transport in the fluid, large-scale
flows in oceans or atmosphere, and many others. In fact, most of the real flows in
nature are turbulent. However, there is still no rigorous definition of turbulence
and it is rather described by its characteristic features, namely chaotic pressure
and velocity changes, stochastic behaviour, diffusive flows and the presence of ro-
tational flows and vortex structures. In contrast with turbulent flows, we discuss
laminar or strictly potential flows. Describing the transition between the two and
characterizing the initial instability occurrence is one of the most important tasks
to understand fluid behaviour. For the first time, it was studied for the pipe flows
in 1883 by Osborne Reynolds[64]. After the initial instability, upon raising the
flow velocity, a developed turbulent flow is built up, typically containing vortex
structures on a wide range of length scales and connected with excess drag (on
submerged body) or dissipation (in the fluid). As He II may consist of two com-
ponents with very different properties, let’s first discuss the turbulent flows of
each separately.

1.2.1 Classical turbulence

Discussing the normal component of He I, as an incompressible viscous fluid, we
can simply use all classical models known for fluid mechanics [32]. The flow of
normal component must obey the Navier-Stokes equations, which for the steady
pipe flows or steady flows past the body introduce a single critical parameter,
called Reynolds number (Re). This parameter depends on both the properties
of the body or pipe, given by its characteristic dimension D; and the proper-
ties of the fluid, given by the flow velocity V and its kinematic viscosity v. Its
value distinguishes between previously discussed flow regimes and prescribes the
instability onset as giving a ratio of inertial and viscous forces. The critical flow
parameter for classical fluid may of course differ, depending on the flow geome-
try. For example, it may be the Keulegan-Carpenter number (K¢) in the case of
oscillatory flow past a smooth body [65]. Although, the presence of sharp cor-
ners or rough surface of the body leads again to Re, being the critical parameter
also in the oscillatory flow, with characteristic dimension represented by viscous
penetration depth 6 = |/2v/w, dependent on angular frequency w. When dis-
cussing normal component of He II, this critical parameter should be referred to
as Donnelly number (Dn) [A.2]

When the critical value of the flow governing parameter is reached, the transi-
tion from originally laminar flow starts and the first individual vortex structures
start to occur. In the case of a flow past the body the typical critical value of
this parameter is of the order of unity. In channel flows it is of the order of
103. When increasing the flow intensity past this transition, fully turbulent flow
containing many vortex structures of different sizes will gradually develop having
all discussed characteristic properties of the turbulence.

The developed turbulent flow of classical fluid may be further understood
describing the energy FE(k) distribution, as a function of wavenumber £, in the
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Figure 1.7: Left: Classical process of energy transfer in viscous fluid. Kinetic en-
ergy is injected and stored at large scales and then transferred via dissipationless
Richardson cascade process towards Kolmogorov length scale 7y, where viscous
dissipation operate. Right: Viscous dissipation process is not present in inviscid
superfluid component. The energy stored in quantized vortices, which may at
large scales imitate the Richardson cascade, must be dissipated via different pro-
cesses, e.g., propagation of the discrete cascade of Kelvin waves on single vortices
leading to dissipation over phonon emission at high frequencies.

flow, looking at different length scales. The energy is inserted into the flow
typically at the large scales - energy-containing scale, and than transferred via
the Richardson cascade process [66], to a small scales, where it can be dissipated,
see Figure 1.7, The rate of energy dissipation €, in steady state equal to energy
injection, is given by the vorticity, w= V xwv as:

_aE _
dt

The length scale, small enough that the viscous forces overcome the inertia of the
eddies and the dissipation can take place, is called the Kolmogorov’s length scale:

T ("55)1 (1.18)

€

v{w?). (1.17)

€ =

There is no significant energy dissipation during the cascade decomposition of
the eddies towards Kolmogorov’s scale and for each step of the cascade [, /1,11 =
const. holds [67], where [; denotes length scale of each step of Richardson cascade.
It was Kolmogorov who first introduced a detailed theory of turbulence [68, [69],
including the description of energy distribution in the non-dissipative range, also
called inertial range, of the energy spectra:

E(k) = C&Pk™3, (1.19)

with C being a universal Kolmogorov constant of the order of unity.
When the turbulence generation mechanism is switched off, we can observe
its temporal decay. Solving for the time evolution of the total turbulent energy F
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= [E(k)dk. In the first stage of the decay, the energy-containing scale increases
and eventually saturates, reaching the limiting scale of the vessel dimension D.
Now, using Kolmogorov’s shape of inertial range [1.19, occupying most of the
energy spectrum and [1.I7, we can get the decay of vorticity in the following
form [70] [71]:

3/2
w(t) = D(3C)3/

2m\/v

with ¢y representing the virtual decay start, being the origin time of infinitely
intense turbulence decay. Further detailed description of classical turbulent flows
can be found in various textbooks [66, [72].

(t+to) ™%, (1.20)

1.2.2 Quantum vortex dynamics

The turbulent flow, strictly in superfluid component is much different to the
classical case due to quantum restrictions. The only possible rotational flow is
allowed in the form of quantized vortices [[.1.4, The most natural way to create
the quantized vortices is to induce a rotation to the superfluid by the external
source. Many experiments with the rotating He II vessels have been performed to
verify that superfluid component can mimic the solid body rotation by creating
the triangular mesh of straight, parallel to the axis of rotation, vortex lines [73],
see Figure [1.8] This has an analogy in superconductors of the second type with
a mesh of quantized magnetic flux vortices. The critical angular velocity 2. for
the creation of single quantized vortex in the vessel of radius R is then given by

Feynman criterion [74]:
K
Q, = Wm(i), (1.21)
Further speeding of the rotation then results in the creation of the quantized
vortex mesh with the density (number of vortices per unit area) equal to 2§2/k.

The creation of a quantized vortex in the flow of the superfluid is connected
with the instability, typically due to a critical flow velocity. The seeding per-
turbations, which are constantly created by thermal fluctuations, may persist in
the fast flow and lead to vortex creation. Such a vortex generation mechanism,
without the existence of an already stable seeding vortex, represents the intrinsic
vortex nucleation. In the case of He II, vortex loops may nucleate at critical Feyn-
man velocity [76] (where the vortex nucleation is energetically favourable) of the
order of tens of m/s. The vortex nucleation is favourable around sharp corners in
the case of flow past a body, where the velocity is enhanced [32]. The vortex loops
may also intrinsically nucleate around fast ions flying through the superfiluid [77-
79] due to quantum tunnelling, at Landau critical velocity [40, [80] (representing
a limit of superfluidity as discussed in [1.1.3)), being also of the order of tens of
m/s. However, much smaller critical velocities are typically observed, because
intrinsic nucleation in He II is rarely a case in real experiments, as preparation
of remnant-vortex-free state is a non-trivial task [81], 82].

The first vortices are nucleated already during the superfluid transition. It
is partially governed by the Kibble-Zurek type mechanism[83], but more impor-
tantly due to conventional hydrodynamic mechanisms [84]. Additionally, a small
number of quantized vortices might be generated in the vessel by natural ra-
dioactivity, due to ionization of the liquid [85], or from the rotation velocity of

17



w

Figure 1.8: Direct visualization of the uniform mesh of quantized vortices as occur
in rotating vessel at velocity €.

the Earth. With respect to the quantized vortex core size in He II, all real sur-
faces must be considered very rough, having a great number of possible pinning
sites. It is, therefore, extremely difficult to remove remnant vortices, which are
pinned to all submerged surfaces and prepare conditions for intrinsic nucleation
in the flow. However, it does not limit the study of intrinsic nucleation by the
flying ions happening in the bulk.

This is not true if we consider the nucleation of the quantized vortices in *He
-B. Due to the much larger coherence length - core size, the statement about the
impossibility to create a smooth surface does not hold. However, again because
of the larger core size, the critical velocity for the intrinsic nucleation is much
smaller.

If we consider the preexisting seeding loops, we may discuss an extrinsic vor-
tex generation, where the energy is transferred to existing vortices, which then
grow, rather than new vortices are being nucleated. Therefore, the possible mech-
anisms of such generation of quantized vortices are much different to previously
mentioned. The typical critical velocities for extrinsic generation of quantized
vortices in the flow of He II are the order of magnitude lower in the range of
cm/s. In the case of oscillatory flows a frequency scaling of such critical ve-
locity v. ~ /K27 f was further confirmed in many experimental works [86, [87]
or[A.2] One of the typical processes which are responsible for the vortex stretching
and sub-sequent emission of the vortex loops is the Donnelly-Glaberson instabil-
ity [88H90], resulting from induction of the helical wave perturbances (Kelvin
waves) on quantized vortex due to parallel passing flow.

When quantized vortices are generated in greater number, they start to inter-
act and create a chaotic bundle forming a developed turbulent flow in superfluid
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component. The same can be obtained when abruptly stopping the vessel rota-
tion. When vortices in the bundle get close to each other, they may reconnect
and exchange their segments. A single vortex may even reconnect within itself
and create a free vortex loop, which then may travel through the superfluid bulk.
A localized bundle of quantized vortices, therefore, emits free vortex loops. The
velocity of such loop depends inversely on its radius and is induced by the inter-
action of its opposite segments having anti-parallel circulation. Interaction of the
two parallel vortices with the same direction of the circulation results in joined
rotation of the quantized vortices around their common centre. If the vortex gets
to the vicinity of the solid wall, it will further interact with the mirror vortex
behind the boundary, having opposite directions of circulation. More details on
the dynamics of the quantized vortices in He II can be found in [2, [60].

In order to define the intensity of the turbulence in superfluid component, we
can use the quantity L, vortex line density, giving the total length of the vortex
cores per unit volume. Another important quantity, defined as the inverse square
root of vortex line density describes the important length scale of superfluid
turbulence called intervortex spacing [ =1/ V'L, giving the mean distance between
the vortex lines. The development of the random vortex bundle is described by
Vinen’s equation [91]:

oL 3 K
i axlvnng — %Lz. (1.22)

Here, the first term describes the generation of the quantized vortices by loop
growth in thermal counterflow. This is a rather specific mechanism and does not
apply at low temperatures in a ballistic regime. The second term describes the
decay of quantized vortices, happening upon the vortex collision and annihilation
of opposite segments in the bundle. Dimensionless constants y; and y, are of
order unity and « describes the interaction between He II components (will be
further discussed later). The temporal decay of this type of turbulent flow, re-
sulting from turning the first term of off, is different to what we introduced
for the classical turbulence The decrease of the vortex line density governed
by vortex annihilation in the bundle should evolve inversely with time [2] 2] as:

1 Xk ]

L) = |7+ 5] (1.23)

with Ly denoting the initial vortex line density of the steady-state turbulence.
The question remains, how can the energy of the single quantized vortex
be dissipated in the absence of viscosity and if a collision with other vortices
is improbable? This may happen, when helical wave perturbance - Kelvin wave,
defined by wavenumber £, is induced on the vortex line propagating along it. The
energy of the wave is then propagated towards higher frequencies in a non-linear
cascade-like process as theoretically predicted [21H25] (this may be considered
as an analogy to Richardson cascade in classical turbulence), see Figure .
At high enough frequencies the energy may then be dissipated over emission of
thermal excitations [93] in He IT or excitation of core bound states [94] in *He -B.
The experimental verification of the Kelvin wave cascade existing on quantized
vortex in superfluid He is still missing but recent measurements in Helsinki with
rotation-modulated wave-turbulence in superfluid 3He are pointing towards this
phenomenon [95]. Additionally, our new experiments in collaboration with the
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Figure 1.9: Schematic picture of possible energy flow in superfluid helium. Energy
input may be realized, for example, by moving oscillating object, thermally driven
flow or other, into one or both components. The mutual exchange of the energy
between the components is then mediated by mutual friction force, which may
operate in one direction only. Final loss of the energy can then be directed
to either of the dissipation channels (i) viscous dissipation in normal component
dominating at temperatures above 1 K and not existing in zero-temperature limit
(ii) energy transfer in Kelvin wave cascade terminated by phonon emission.

Helsinki ultra-low-temperature group, with a single quantized vortex trapped on
a small resonating device, see [4.4] seem to be leading to similar results, which
will be published soon.

1.2.3 Mutual friction force

Now, that we have introduced the turbulent behaviour of both components sepa-
rately, let’s discuss the more realistic situation, switching the interaction between
the components on. As mentioned before [I.1.2] there is a force F' coupling the
motion of the two components, see Equations called mutual friction force.
It originates from the scattering of normal component on the quantized vortex
core and is acting to align the flow of the components to be parallel. It was
first studied in thermal counterflow experiments [911, 96199 introducing it in the
following approximate form, dependent on a cube of the counterflow velocity v,
and the temperature-dependent Gorter-Mellink parameter A.

Fan = Apspn(vs — v,) (Vs — vp). (1.24)

The geometry of the straight aligned vortex lines, existing under the rotation,
is however, more straightforward for the study of this phenomenon, as was later
done by Hall and Vinen [49, 100]. In their experiments with the helium vessel
rotating at angular velocity €2, they arrived at:

Fri = -B2P20 s (0 (0, - 0,)) - B2 0x 0 -7), (125)
p P

using a coarse-grained averaging of the fluid velocities over regions exceeding the
mean inter-vortex distance. The tabulated values of experimentally determined

20



mutual friction parameters B and B’ may be found in [47]. Finally, QO = Q/Q
represents the unity vector in the direction of the rotation. When investigating
dissipative phenomena only, the prescription of mutual friction force may be
further simplified, using experimentally shown vortex line density dependence on
the velocity, when generated in the thermal counterflow [46], and ignoring the
second term in [1.25] which represents inertial forces and thus does not lead to
dissipation of energy, to a form [74] TO1]:

FL = _Bﬂp;’;” L. (1.26)

The existence of the coupling between He II components has important con-
sequences for the dynamics of the energy flow in the fluid. In the two-fluid
regime, mutual friction allows both-way energy transfer between the components,
as schematically shown in Figure[1.9] It acts on the quantized vortices in order to
polarize the vortex bundle into large-scale eddies following the vortex structures
in the normal component and even form a Richardson cascade-like system. It
can be therefore expected, that at finite temperatures, the dominant dissipative
channel will be represented by the viscous drag in the normal component. Turbu-
lent energy stored in the superfluid component, in the form of quantized vortices,
can be transferred via mutual friction onto the normal component. However, the
flow of energy and dissipation via Kelvin wave cascade on the single vortices is
not disallowed and will dominate at low temperatures in the absence of normal
component continuum.
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1.3 Quantum turbulence

Now, that we have introduced flow regimes and their peculiarities in both com-
ponents of the superfluid separately, together with the mutual interaction be-
tween the two, we can discuss the quantum turbulence phenomena. It should
be understood as any turbulent motion in the quantum fluid and can consist of
beforehand mentioned turbulent structures. We will follow the recently published
phenomenological description of quantum turbulence [A.1], with the experimental
contribution of the Thesis author, see [A] and bring forward the most important
ideas.

First, we have to introduce all relevant length scales. Starting from the largest,
we have a limiting dimension of the vessel size D, where no larger structures may
exist. The energy input is realized at the scale M, which may differ significantly
regarding the turbulence driving mechanism. The dissipation in normal com-
ponent happens at Kolmogorov viscous scale ng. If M< ng no turbulent flow
may develop in normal component. We can further introduce a new length scale
denoted quantum length scale I defined as:

o (2) a

It is an analogy to classical Kolmogorov scale [I.18| where circulation quantum s
takes place of the viscosity v, having the same dimension and even similar values
regarding the two-fluid regime of He II. The quantum length scale is comparable
to the inter-vortex distance and marks the onset of the quantum character of the
flow, where quantization of circulation becomes essential. It may be understood
as a cut-off length for any classical-like description of the flow and its presence
implies that no quantum flow may be fully described by a classical analogy. This
implies, that the full component coupling via mutual friction below the quantum
length scale is not possible. Finally, we have a smallest length scale [*, where
dissipation processes on single vortices, as described in [1.2.2] takes place.

At finite temperatures, the developed turbulent flow of He II driven at reason-
ably large scales, M>>1g, consists of both large-scale eddies in normal component;
and vortex bundle in superfluid component. In this case, the mutual friction force
causes the vortex bundle to polarize and form large vortex structures imitating
the normal component eddies. These structures can then follow the Richardson
cascade process resulting in the same Kolmogorov shape of the inertial range of
the energy spectra in both components. At all scales above [g, the system
may be in first approximation described as a single quasi-classical fluid possessing
effective viscosity v.s¢, dependent on the temperature and the energy dissipation
is given as e=v.;;(kL)?. At high temperatures, dissipation happens dominantly
by the viscous channel at nx and the energy in superfluid component is trans-
ferred to this channel via dissipative mutual friction force. Energy dissipation by
single vortices is not important here as the Kelvin waves are heavily damped by
mutual friction. We call this turbulent system a quasi-classical or Kolmogorov
turbulence. Finally, the decay of the vortex line density in this system is similar
to the classical case [71], see equation [1.20}

L= 2%%

22

ol

(t+ to) 3. (1.28)



€ = —dE/dt

E(k) l Normal fluid Energy input at quantum
5 laminar length scale as identified
k/\ by Schwarz
T ] T v
21/D kQ ¢
€ =—dE/dt
E(k) Ectass = —dE/dt | Additional, classical-like
'l 2 energy input at large
"\ scale, D.
T T v
21/D kQ K
. lgcr Steady—s'tate Decaying (late time)
E(k) superfluid energy spectrum superfluid energy spectrum
€= —dE/dt
Normal ﬂuld 1 c
turbulent E(k) E(k) « k"/:f
NS energy
decay exchange
271;/D kg . 27/D b

Figure 1.10: Schematic log-log view of the energy spectra of the steady-state
of thermal counterflow, in the channel, with increasing intensity (from top to
bottom), having energy input ultimately at two different length scales, quantum
length scale and size of the channel D. The quantum length scale is represented
by k-vektor kg = 2m/lg and energy spectrum termination scale by k* = 2w /I*.
Inertial range with Kolmogorov scaling k~°/3 develops during the temporal decay
initially of Vinen type Loct~! and changing to Kolmogorov type Loct3/2 for later
times upon this process.

However, the picture changes dramatically, if the turbulent flow is driven at
small scales of the order or smaller than [y, e.g., by a small quartz tuning fork
with prong cross-section of (75x90) um? or using ultrasound. For this case driv-
ing mechanism operate at scales already smaller than 7 (as v &~ k) and classical
turbulent flow in normal component cannot develop in the first place. The tem-
poral decay of such a system will be much different from the previous, as the
main dissipation mechanism would be a local decay governed by the annihilation
of the vortex lines, leading to L(t)xt™! as described in by equation m
However, the viscous dissipation channel is still operational, at these tempera-
tures and dominates, when the density of the tangle decreases significantly. The
experimental realization of such decay is shown in Figure [1.12] This type of
turbulent system is then called ultra-quantum or Vinen type of quantum turbu-
lence. We can again introduce the effective viscosity for this turbulent fluid, where

=1/(kL)?, but now describing only turbulent superfluid component consisting of
the vortex bundle given as:

/ X2Psk l )
= In{— . 1.29
g 8m2p " (ao (1.29)
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Figure 1.11: Schematic log-log view of the energy spectra of quantum turbu-
lence in zero-temperature limit. The turbulent regime depends on the interplay
between energy input scale M and quantum length scale, represented by kg, de-
pendent on energy input. For small energy input, we will observe Vinen type
of quantum turbulence. Upon rising the energy input, quasi-classical turbulence
of Kolmogorov type develops. During the decay, energy flow decreases together
with kQ.

Both v.f; and v/ can be obtained from the experimental realization of the tem-
poral decay of the corresponding type of turbulent flow. Discussion on the two
presented forms of quantum turbulence may be found also in [T02H104].

It is further possible, to have an energy input on more scales of the spectrum
simultaneously. This situation may be realized, e.g. in channel thermal coun-
terflow, having an energy input at the level of /g in superfluid component via
reconnection-based mechanism [105), 106] and energy input at the scale of order
channel size D via instability in normal component flow. The energy spectrum
of the steady state of such a case is illustrated in Figure [I.10] The classical
spectrum is, however, missing the Kolmogorov inertial range [1.19 as this energy
is also transferred by mutual friction to the creation of the polarized quantized
vortex structures and the coupling is not perfect [I07]. Upon switching the driv-
ing mechanism off, the initial Vinen-like decay L(t)oxt™! occurs as vortex bundle
annihilation of energy stored around quantum length scale dominates. During
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Figure 1.12: Left: Temporal decay of thermal counterflow in the channel. Initially
Vinen type Loct™! of decay transforms over short vortex line density increase (a
"bump”) to Kolmogorov type Loct=3/2. At the smallest drive, 50 mW /cm? only
Vinen type is observed as normal component does not experience flow instability,
and energy input at large scales is therefore missing. Further description can be
found in the text. Right: Temporal decay of mechanically driven turbulence at
small scales ~ [ around small oscillating quartz tuning fork. The decay is of
Vinen type at all times. Meaning of Ly and ¢, can be found in the main text.

this time, quasi-classical cascade develops building the inertial energy range. As
the Richardson cascade develops towards smaller scales, energy input from nor-
mal component into quantized vortices causes a temporal rise of L resulting in
the "bump” in the decay [108, 109]. Afterwards, flow has a quasi-classical en-
ergy spectrum and Kolmogorov-like decay L(t )o<t_3/ 2 follows until the late times.
Experimental realization of such temporal decay is shown in Figure [1.12

Finally, one may expect that getting rid of normal component, cooling the sys-
tem to a zero-temperature limit, should result in mere ultra-quantum turbulence.
However, this is not necessarily true. The resulting type of the turbulent flow in
this regime depends on the generation intensity affecting the € and therefore the
value of quantum length scale /g and on the scale at which the flow is driven M.
It is the interplay between these two scales, which resolves if quasi-classical or
ultra-quantum turbulent regime operate as schematically shown in Figure |1.11}
In the case that M <l there is no possible effect leading to the creation of quasi-
classical form and the turbulence is always of Vinen type. This may be obtained
when driving the flow at a low enough scale (M is small) or with low enough
energy input (lg is big). However, if the opposite case, M being larger than g,
quasi-classical inertial range will develop over the polarization of the bundle of
quantized vortices resulting in Kolmogorov type of turbulence. The final dissipa-
tion channel here, in the absence of viscosity, must be the phonon emission from
single vortices at scales below [*.
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1.4 Quantum turbulence detection

Let’s now discuss the experimental techniques, which allow us to directly or indi-
rectly visualize above described flows of quantum fluids. These techniques work
well as verification tools for the presented theoretical models. For the direct visu-
alization of the turbulent superflows, similarly to classical visualization methods,
we may use "Eulerian” particle image velocimetry (PIV) or "Lagrangian” parti-
cle tracking velocimetry (PTV) techniques. The difference with a classical case
is in the suitability of the tracker particles (tracers). With liquid helium having
a density of about seven times lower than water, there is a limit on the mass of
the tracers [I10, 111]. In He II, micrometer-sized frozen particles of hydrogen or
deuterium are broadly being used [I12-115] or alternatively an excimers He*s,
being neutral helium triplet molecules [I16, T17] with the size of several A. The
necessity of the optical access for this method, as tracers are typically illuminated
by the laser sheet and tracked by the high-speed camera, represents a technical
issue if very-low temperatures (below 1.2 K) are being aimed for. Having the
particles interacting with both fluid components, being pulled by normal compo-
nent and trapped by quantized vortices at the same time, and affecting the flow
itself, special care must be taken when interpreting the results. Despite these
limitations, very important results are being obtained by the visualization of the
superfluid flow. One of many such results is the first direct visualization of the
regular vortex mesh in rotating vessel [75], see Figure [L.8]

Creating helium ions, using a radioactive source or sharp emission tip and
their fine manipulation by electric field can be also effectively used to probe
turbulence in superfluid component. Knowing the interaction cross-section vortex
line density may be measured, as done originally by Milliken and co-authors [118|
119]. In their experiments, they were able to measure the free decay of the vortex
bundle or characterize vortex bundle in the channel counterflow. This technique
is still being regularly used in Manchester group [104], 120, 121].

In 3He , we can benefit from an extremely powerful detection method of
nuclear magnetic resonance (NMR), thanks to the magnetic properties of the
superfluid. In analogy to spin systems in solid bodies and biomolecular systems,
we can extract very detailed information about the superfluid *He structure from
the relaxation of its spin system. This technique is very suitable for the study of
different superfluid phases as they differ by the texture of the spin-orbital space.
Even detection of the different phase existing inside the core of the quantized
vortex is possible as shown in [122]. More information on the usability of the
NMR for superfluid *He research might be found in [123-125].

Finally, we will mention the second sound attenuation technique, allowing
the measurement of vortex line density in superfluid component of He II and
the use of small mechanical resonators able to probe turbulent flows in both
He II components as well as in superfluid 3He . These mechanical devices allow
detection of the turbulence generated by the probe itself in the means of energy
loss or alternatively detection of externally driven turbulent flows via their mutual
interaction. We will pay detailed attention to these two techniques in the following
sections, as they represent the vast majority of detection tools used for the analysis
of the studied flows presented in this Thesis.
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1.4.1 Second sound attenuation

The hydrodynamic properties of He II in the two fluid regime, as described
in[I.1.2] allow the existence of a number of non-classical wave modes. For the de-
tection of quantized vortices, we can use a wave mode called second sound, whose
existence was experimentally confirmed by Peshkov [126]. It can be described as
a counter-oscillation of normal and superfluid components against each other.
The standing wave can be therefore understood as local oscillations of density
ratio of the components p,/p, or alternatively a spatial temperature or entropy
wave. However, the total density p distribution is not affected unlike in the case
of the first sound. Being based on the oscillatory flow of the normal component,
second sound can be advantageously used to detect the quantized vortices due to
scattering on their cores. The presence of the vortices in the probed volume can
therefore result in attenuation of the second sound wave.

The mutual interaction of second sound with quantized vortex matrix was
originally studied in rotating cryostat experiments [49, [I00], finding the geomet-
rical dependence on the angle © between sound propagation direction and vortex
lines. The attenuation was found maximal in the perpendicular case, but being
zero if second sound propagated in parallel to the vortex cores, having sin?(0)
dependence. Assuming a fully random isotropic and homogeneous vortex tangle,
we can arrive at the following formula to obtain the vortex line density in the

experiment:

[~ 5mAS (A _ 1), (1.30)

kB \ A

where measurement of calibration peak in the non-vortex state (omitting now the
presence of remnant vortices), having amplitude Ay and width (FWHM) Af, is
necessary. When driving the turbulence, generating vortex lines, the measured
amplitude of second sound standing wave A will decrease. The mutual friction
parameter B and circulation quantum s are described in previous sections. A
more detailed description of this detection technique can be found in [127]. In
Figure [1.13] we show the typical series of the measured second sound peaks in
gradually intensifying turbulent flow in superfluid component of He II.

Taking the described properties of the second sound wave, it may be prac-
tically driven either mechanically or thermally. In the case of the thermal gen-
eration, by sine-shaped heat pulses, there is an issue with the average DC heat
input, which might affect the studied flow. However, small localized detectors
with limited heat input are being developed [128]. It is, however, technically
more advantageous to use mechanical apparatus based on electrically driven os-
cillations of the "superleak” - a porous wall allowing for the passage of only
superfluid component. Pair of such detectors can be used in closed-volume ge-
ometry, e.g. in the flow channel, one acting as a transducer and the second as
a receiver. A model picture of one such decomposed detector unit based on the
movable gold-coated porous membrane stretched on the brass electrode is shown
in Figure|1.14}

The second sound attenuation technique is well established for the study of
approximately homogeneous isotropic turbulent bundles, occurring for example
in channel counterflow experiments. The sensitivity of the wave mode depends
on its spatial distribution being highest in the anti-nodes, where the velocity of
the components oscillation peaks. Therefore probing more low-frequency modes
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Figure 1.13: Left: Overview of second sound resonance attenuation. Series of
in-phase (black) and quadrature (red) signal components are being attenuated as
amount of quantized vortices in volume rise. Ay denotes the original amplitude

in non-vortex state. Right: Temperature dependence of second sound velocity in
He II.

may lead to a better understanding of the quantized vortex distribution, as sug-
gested in [46) 127], and the use of high-frequency modes give the average value
of vortex line density in probed volume. Although, extra care must be taken
when interpreting the results if dealing with strongly non-homogeneous vortex
bundles. One can try to model both the spatial distribution of the bundle and
the spatial distribution of the detection mode used to find appropriate quantita-
tive results, but it would be a non-trivial task. This is being attempted for the
case of spherically symmetric thermal counterflow [20], which should contain a
strongly non-homogeneous vortex structure [16, [17, [19], existing around a point-
like heater. However, even under these conditions, if we assume that relative
vortex distribution is not changing much as the turbulence is driven harder or if
we use a ”dense” enough detection mode (high-frequency mode with many anti-
nodes), the qualitative picture of the vortex line density expressed by changes of
resonance quality factor can be approximately correct.

Another technical issue, connected with second sound attenuation technique,
is the temperature dependence of the sound propagation velocity uy, which causes
changes of resonant frequency if the helium sample is overheated by the turbulence
generation mechanism. It may be overcome, if overheating is not too severe, by
PID algorithm stabilizing the quadrature signal component, as done in or by
post-processing based on calibration peaks as described in [I127]. The temperature
dependence of second sound velocity in He II was systematically measured by

Peshkov [129], see also Figure and can be found tabulated in [47].

1.4.2 Local mechanical probes

Since the presentation of the original idea of the existence of quantized vortices
various mechanical resonators (in the form of disks, spheres, grids, tuning forks,
reeds, double paddles, wires... are being used to probe the turbulent flows of
quantum fluids. The first experiments in He II have been conducted by Vinen [7]
employing resonating string stretched through the centre of the experimental cell.
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Figure 1.14: Photo (left) and scheme (right) of capacitive second sound sensor
consisting of brass electrode and gold-plated porous membrane.

Figure 1.15: Left: Custom-made quartz tuning fork with spacing of the prongs
of 90 pum. Right: Vibrating wire resonator with leg spacing of 3 mm. The loop
is made of NbTi 60 pm thick wire.

In this experiment, it was possible to fully or partially trap a single quantized
vortex along the string and measure its precession due to the Magnus force in-
duced by the superfluid flow. As a result, Vinen was able to measure the value of
the circulation quantum . Similar experimental setups are still being used for
example to study the boundary conditions for the vortex movement across the
boundary at very low temperatures [130].

Another type of heavily studied mechanical resonators used to study super-
fluids is levitating spheres [13| 15, [85, 86, I31HI33]. The great advantage of
this geometry is its theoretical simplicity for the hydrodynamical models and full
isolation from other surfaces, which may propagate extra remnant vortices or
additional heat onto the device. Such resonators are typically levitated in the
superfluid bulk via the use of the magnetic forces acting on light superconducting
or charged ferromagnetic spheres.

Arguably, the most used mechanical resonators to study not only the turbu-
lent flows in superfluids but working as great probes of the properties of the fluid
(such as temperature, pressure, viscosity) are quartz tuning forks [0 134+
139], see Figure m They are manufactured in mass as they are widely used
as a frequency standard in watches. The customization of the device fabrica-
tion allows for the dimensions of order tens of micrometers. Having a crystalline
structure further leads to relatively high values of quality factors Q ~ 10° of
the resonance, which is important for the device sensitivity. Oscillation motion
is being driven by the alternating voltage U(w) using the piezoelectric properties
of the quartz and the motion of the prongs induce current I(w) proportional to

its amplitude. Obtaining the fork constant a; = \/ drm.ffA¢I/U [5] by the cal-
ibration measurement in a vacuum, we get the connection between electrical and
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mechanical properties, force F' and velocity v, see equation [1.31] The calibration
must be done still in the linear regime, where Ay denotes the with (FWHM) of
the Lorenzian resonance peak and m.f f gives the effective mass of the fork [A.2]

arU(w)
2

a
o(w) = I<L). (1.31)

Last but not least, we will mention the vibrating wire resonators, being su-
perconducting wire half-loops with leg spacing D, see Figure [1.15, which are
very typically used for very-low temperature thermometry in *He experiments,
measuring the thermal excitation gas density. However, their use is definitely
not restricted to the above and numerous experiments with quantum turbulence
generated or detected by these probes are being performed [S-HI0) T40-143]. The
typical driving geometry is using a magneto-motive induction. The device, placed
in the magnetic field B is driven by Lorentz force F, when alternating current
I(w) is supplied and its movement induces Faraday voltage U(w). Again, we
can connect electrical to mechanical properties by equations holding as pre-
sented here for the typical case, where the magnetic field is parallel with the wire
legs and if we account for the first resonant mode shape, for more details see [A.2]
More detailed discussion on mechanical resonators use at low temperatures may
be found in [144].

Fw) =

_ Uw)
~ 0.69BD°

Both quartz tuning forks and superconducting vibrating wires may be effec-
tively used at a high enough drive for the generation of quantum turbulence
eventually driving turbulent flow in both components in the case of He II. This
self-generated turbulence might then be studied by the device itself, as energy
input to the flow must equal dissipation measured on the device. The laminar to
turbulent flow transition may be simply characterized by the change of resonant
peak shape, going from Lorenzian, displaying linear dependence of measured peak
velocity on driving force to a "distorted” one tending to a quadratic behaviour
of F(v). Under more detailed analysis including also changes of resonant
frequency, a closer description of the laminar to turbulent transition may be ob-
tained. For example, the existence of multiple critical velocities in the oscillatory
flow of the tuning fork in He IT was shown [6], connected with the multiplication
of vortex loops pinned on the device surface leading to effective mass enhance-
ment, next the start of loop emission with the onset of extra drag and finally
build-up of large scale turbulent wake.

The big advantage of mechanical resonators when used as quantum turbulence
probes is their local character, allowing for the study of any vortex structure.
Although, the mutual interaction with the fluid may be very complex and is typ-
ically leading to a puzzling interpretation. It is anyway a great tool to study the
self-generated turbulence and critical flow phenomena in superfluid. Mechanical
resonators might be further used to probe the externally driven turbulence. De-
vices in the form of wire loops were used in past, to study the vortex emission at
very low temperatures with the device working as a time of flight collision detec-
tor [82, 145, 146]. We believe, that the potential for the detection of externally
driven turbulent flow has not yet been fully exploited and in the following, we
present our results reaching towards this goal in the two-fluid regime also.

F(w) =0.69BDI(w),v(w) (1.32)
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Figure 1.16: Illustrative photos of chosen mechanical resonators of micro- and
nano-metric dimensions fabricated with use of lithography and other cleanroom

processes. For more details see [27) 3T}, 149].

Device properties and their interaction with the fluid is further limiting the
accessible sensitivity caused by the parasitic dissipation, which may be caused,
e.g., by the intrinsic material or resistive losses or excessive damping [147]. These
might be overcome by nowadays well-accessible customization of the device geom-
etry and the material choice. Using lithography and clean room processes allows
down-scaling of the device dimensions to micro-metric or even nano-metric range
and it become a fairly routine procedure. At these scales, we may already reach
the order of the coherent length of 3He -B or study detailed dynamics of the sin-
gle trapped quantized vortex [I48]. In Figure we show some of the different
types of existing devices. More generally used manufacture procedures and device

geometries may be found in [27H31], 149] or
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Chapter 2

Onset of quantum turbulence

We have already discussed the peculiarities of the developed turbulent flow of
quantum fluids resulting from their two-fluid nature. It is though, equally im-
portant to address the initial onset of the flow instabilities which also possess
complex behaviour. At low velocities, the interaction between the He II compo-
nents is weak, as only a small amount of remnant quantized vortices is present,
and we can consider the components as independent. Following the two-fluid
model, we have to account for the possible origin of the instability in either of the
components and develop an analytical approach allowing their identification. It
is, however, not a trivial task as the mutual friction force typically initiates the
transition also in the other component soon after the initial instability occurs.
At higher drives, we then deal with the combination of the developed turbulent
flow in both components, if present, as described in [1.3]

We have introduced the available detection methods which are sensitive to
excess damping originating from either He II component, such as submerged me-
chanical resonators|1.4.2 or those that can display only the presence of quantized
vortices in superfluid component, such as the second sound attenuation [1.4.1]
A well-designed combination of these techniques can, therefore, offer comple-
mentary information on the fluid system under turbulent transition. The most
straightforward approach, to identify transition with either of components, is to
seek for the critical parameter governing the transition as it is expected to differ
for the classical instability in normal component and instability leading to vortex
creation in superfluid component, as discussed below.

In this work, we experimentally address behaviour of He II in the temperature
regime of continuous normal component above 1 K. Due to technical difficulties
connected with the realization of stationary steady flows in He II, we concentrate
on the study of the steady oscillatory motion of the fluid realized by moving
objects or by the application of alternating heat pulses. We are able to accurately
identify the origin of the instabilities and show a temperature-controlled cross-
over between the two mentioned types of instability in both experimental setups.

2.1 Normal fluid instability

To closely describe the hydrodynamic behaviour of normal component and in-
troduce the governing critical parameter, we will follow the summary offered in
the attached publication [A.2] see[A] All performed experiments are considered in
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high-Stokes-number (or high-frequency) limit of oscillatory flow, defined for the
body of the characteristic dimension D as St = D*/(76?)>> 1. For the submerged
body oscillating at frequency w, we consider normal component, with kinematic
viscosity v and density p,, to create the Stokes boundary layer of temperature-
dependent thickness 0, = 1/2v/p,w. The same quantity can be analogically
introduced for the case of oscillating He II driven by the heat impulses.

The hydrodynamic behavior of normal component is described by Navier-
Stokes equations, which are in their dimensionless form governed by a single flow
parameter. The exact form of the dimensionless parameter further depends on
the surface roughness or presence of the sharp corners. For the hydrodynamically
smooth body, e.g., smooth cylinder representing clean vibrating wire, it is the
Keulegan-Carpenter number K¢ = 27v,,/(wD), with v,, being characteristic flow
velocity. On the other hand, if surface imperfections are present, flow character
is described merely by the value of the boundary-layer-based Reynolds number,
called Donnelly number in the context of the two-fluid model, reflecting and
honoring the work of Russell James Donnelly:

Dn = §,v,/v. (2.1)

Upon exceeding the flow velocity of normal component beyond v, ., leading to the
critical value of Dn it will experience first instabilities towards turbulent regime.
The specific critical value can differ for different flow geometries, in direct analogy
to different critical Re for the flow past cylinder, being of order unity and for the
pipe flow, being ~ 103.

However, to describe scaling of viscous drag forces at low velocities, in the
laminar regime, Dn may be used regardless of the body geometry (even if having
a smooth surface). In this regime, only viscous drag is offered by the normal
fluid. The drag forces F'p may be well described by means of the dimensionless

drag coefficient:
2Fp

T ApVE
using peak velocity V,, and oscillators cross-sectional area A perpendicular to the
flow direction. The laminar drag then obeys the universal scaling C’, = ®/Dn, for

all types of bodies, with ® being purely a geometrical parameter. Any instability
can then be associated with deviation from this scaling law.

cr (2.2)

2.2 Superfluid instability

In superfluid component, we deal with the quantum-restricted flow, and the tur-
bulent transition is connected with the start of excessive generation of quantized
vortices. Although an ideal low-velocity regime should be described by purely po-
tential flow, it is mostly the case that remnant vortex loops are already present.
They are pinned to all surfaces and exist in bulk stabilized by the Earth‘s rota-
tion. The instability is, therefore, typically not connected with the generation of
the first quantized vortices in the fluid sample but rather with the start of the free
vortex production into the bulk, originating from the seeding loops on the body’s
surface. As Schmoranzer et. al [6] showed, the multiplication of vortex loops on
the surface of the oscillator may happen prior to free vortex loop production.
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The generation of the free vortex loops from the oscillating body or from the
channel surface in the case of oscillatory counterflow is governed by vortex self-
reconnection due to Donnelly-Glaberson type of instability [89]. This transition
may be associated with the existence of the critical flow velocity v; ., of superfluid
component, working here as the critical flow parameter. The value of the critical
velocity obeys universal scaling, given by equation [2.3| as shown in experiments
employing small 100 pym sized magnetically levitating oscillating spheres [14], [86].

Vs or R \/f (2.3)

The numerical factor 5, dependent on the mutual friction parameters, is of order
unity and its value decreases slightly with the rising temperature. The value of
the critical velocity, therefore, varies by about 10% in temperature region above
1 K. For these reasons, it is convenient to introduce a reduced dimensionless peak

superfluid velocity as:
|78

Vrw/B

which represents the true critical low parameter.
In analogy, with classical case, we may introduce a dimensionless superfluid
drag coefficient C'},, describing the drag forces acting in superfluid component as:

v, = (2.4)

2F
co 2P0

=—7. (2.5)
ApskwVs

In the sub-critical regime, we should again expect the universal laminar drag
(with origin in normal component) scaling, expressed as C%, = ¢/ V., with ® and
¢ relation given by equation (8) in[A.2] see[A]

It is important to emphasize, that in experiments employing turbulence driven
by oscillating bodies, we consider an oscillatory coflow having V,, = V, while in
the case of oscillatory thermal counterflow it does not hold.

2.3 Turbulent onset in oscillatory coflow

In the first experiments, we present measurements of drag evolution of three
mechanical resonators fully submerged in He II, scanning the temperature region
above ~ 1.3 K. We have employed two different quarts tuning forks, commercially
made and custom-made, and one superconducting vibrating wire, each measured
separately in dedicated cooldown. The tuning forks were driven using their piezo-
electric properties and the vibrating wire was driven magneto-motivelly, in ac-
cordance with the description offered in [1.4.2] Used devices are similar to those
in Figure Agilent A33220 signal generator was used as a source of driving
voltage/current and induced signal was measured with a phase-sensitive Stanford
Research SR830 lock-in amplifier measuring both in-phase and quadrature signal
components. In the case of tuning forks, an induced current is processed using an
I/V converter and lock-in is reading voltage signal from all oscillators. Measured
electrical quantities may be translated to mechanical ones using relations given

by equations and |1.32]

34



Specific dimensions of the used tuning forks are listed in the table[2.1} The cor-
responding resonant frequency of the fundamental mode for a commercial tuning
fork is 32 kHz, while for a custom-made tuning fork, we have used both funda-
mental and first overtone modes resonating at 6.5 kHz and 40 kHz, respectively.

Table 2.1: Listed dimensions of the two used quartz tuning forks.

Type prong length prong width prong thickness prongs spacing
commercial 2.17 mm 210 pm 100 pm 120 pm
custom 3.5 mm 90 pm 75 pm 90 pm

In Figure [2.1, we show the characteristic behaviour of quartz tuning forks
as the motion velocity is increased. FEach individual point is a result of the
full frequency sweep across the resonance at a given drive and obtained peak
quantities are plotted. In the left panels, we show the velocity dependence of the
clasicall drag coefficient defined analogically to [2.2] using whole fluid density p
(instead p,,) and peak velocity of the device V, representing correctly V,,, as we
are dealing with coflow. Temperature dependence of the laminar regime is clearly
showing that superfluid component is not contributing to the drag significantly
at these velocities. However, after the turbulent transition, showing as signature
deviation from the linear dependence, the total drag collapses towards a single,
temperature-independent, value of the drag coefficient. This manifests that the
turbulent flow develops in both He II components which are coupled together and
the system behaves as a single fluid. This is in good agreement with the model
introduced above.

The correct parameter showing the behaviour of normal component only is
one given by equation and is plotted in the right panels of Figure 2.1| as a
function of Donnelly number. The results show very good agreement with the
presented scaling law and agree almost perfectly with approximate predictions for
values of @ (plotted as blue dashed lines), made based on theory for rectangular
beams [I50], ignoring the surface roughness. The normal flow instability can be
well identified from this picture, as a first deviation from the obtained scaling.

The very same measurements have been performed also with the vibrating
wire resonator, allowing the study of a similar system in a different geometry.
The loop is made from a single filament NbTi wire of diameter of 40 ym having
a leg spacing of ~ 2 mm. The stationary magnetic field of (170£10) mT (room
temperature value, which should drop by & 23% upon cooling) is generated by
the pair of NdFeB permanent magnets. The theoretical prediction for the value of
the scaling factor ® for the smooth cylinder may be done exactly, following [32]
and is in reasonable agreement (regarding geometrical uncertainties) with the
measured data. The same original analysis, as for the tuning forks, is performed
and shown in Figure [2.2] obtaining the expected behavior. The significant differ-
ence, compared to quartz tuning forks, is the evident temperature dependence of
the deviation point from the laminar scaling law when plotted as a function of
the Donnelly number which will be discussed in more detail later.
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Figure 2.1: Left: Drag coefficient of the whole fluid as a function of measured
peak velocity. Right: Normal component drag coefficient as a function of Don-
nelly number. Blue dashed lines are representing the universal scaling of laminar
drag predicted based on ideas in [I50]. The values of the resonant mode indepen-
dent scaling factor ® are printed. The data are presented for two quartz tuning
forks using fundamental or first overtone resonant modes in a wide range of tem-
peratures.

2.4 Turbulent onset in oscillatory counterflow

In the second experiment, described in more detail in[A.3] see[A] we study the tur-
bulent transition in high amplitude second sound standing wave, which might be
understood, regarding its properties described in [I.4.1] as the oscillatory counter-
flow. As was shown in the original work of Kotsubo and Swift [I51], [152], second
sound wave may generate quantized vortices, when driven hard enough, that the
peak counterflow velocity locally exceeds the critical value.

In our experiment, see schematics in Figure 2.3 we employ two perpendicular
second sound waves, propagating inside a closed brass channel (second sound
resonator), with the length of 3.2 cm and square (1x1) cm? cross-section. The
first standing wave is driven thermally, along the channel, using a resistive heater
as the driving unit and biased (constant current of 1 pA) Ge/GaAs sensitive
semiconductor thermometer [I53] for the detection of the temperature wave. This
mode is able to initialize the vortex production and we refer to it as "longitudinal”
or "generation” mode. The second wave is generated mechanically, between the
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Figure 2.2: Left: Drag coefficient of the whole fluid as a function of peak velocity
and Right: normal component drag coefficient as a function of Donnelly number,
measured with the vibrating wire resonator. The Blue dashed line represents
the universal scaling of the laminar drag on a smooth cylinder derived according
to [32].

pair of capacitive sensors described in [1.4.1] see also Figure in the center of
the channel. This mode is used for the detection of generated vortex line density
and we refer to it as "transversal” or ”detection” mode.

The longitudinal wave mode is driven via the application of alternating voltage
U = Uy cos(wt) to the 50 2 manganine wire heater by the Agilent A33220 signal
generator. The generated heat pulses Q o U? result in the heat flux Q = Qdc+Qac
having a net DC component and AC thermal wave component at double frequency
of the voltage source 2w.

. U2
Q= 2R [1 4 cos(2wt)] . (2.6)

We, therefore, have to keep in mind the parasitic steady counterflow being gen-
erated due to a DC heat component. The thermometer signal at a frequency of
the AC heat wave 2w was measured with Stanford SR830 lock-in amplifier.

In order to identify the transition into the turbulent state, we can analyze both
of the second sound modes. Let us start with the "longitudinal” mode, which
might be used for the self-detection of the generated vortices as it gets attenuated
in their presence also. This results in the following driving power series of full
frequency sweeps, illustrated in Figure 2.4, At low drives, no quantized vortices
are generated and the resonance has a Lorenzian shape. It is good to understand
that measured signal amplitude is directly connected with the peak velocity of
the fluid oscillations, for details see[A.3 Knowing this, it is then straightforward,
that the peak amplitude cannot exceed some critical value, meaning that the
critical velocity is reached, where most of the accessible energy is injected into
the formation of the vortex bundle. This behaviour is clearly demonstrated in
Figure [2.4] as resonance peaks for higher drives change, having a ”cut-off-top”
shape. This was observed at three different temperatures exciting the first three
resonant modes of the "longitudinal” second sound wave. However, it may seem,
that the amplitude saturation value is even decreasing with the further rise of the
drive. This was not observed in previous experiments [151} 152] with mechanically
driven "generation” mode and is connected with additional parasitic vortex line
density having origin in net DC heat input.
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Figure 2.3: Schematic of the experimental cell arrangement. The longitudinal
second sound wave is generated thermally via the heater, along the resonator,
and probed by the sensitive resistance thermometer at the opposite end. The
transversal second sound signal is driven perpendicularly in the middle of the
resonator, between the two capacitive sensors.

Additionally, in our setup, we can verify the vortex production with the "trans-
verse” mode. It is done in a usual way, measuring the onset of the attenuation
of the "detection” mode propagating simultaneously in the centre of the channel.
As may be seen in (Figure 3), it exactly agrees with the amplitude satura-
tion of the first resonant mode of the "longitudinal” wave and directly proves
the generation of the quantized vortices. This is, however, not true if a second
resonant longitudinal mode is employed, regarding the measurable saturation of
its amplitude. It is clearly showing, that the vortex generation is well localized
in the anti-nodes of the ”generation” wave, where the flow velocity is maximal.

From the simultaneous measurements of "transversal” mode during the power
series of "longitudinal” mode, we can identify the critical heat power and associate
it with critical counterflow velocity, as done in It is finally necessary to
emphasize, that above characterized transition is again not the observation of pure
initial instability, but rather an onset of the additional excessive vortex production
in oscillatory counterflow from already preexisting vortex loops generated at lower
velocities by present DC counterflow.

2.5 Interplay of normal and superfluid compo-
nent instabilities

In order to address the origin of the initial instabilities described previously, in
more detail, we need to present the obtained data in a convenient form. First, let

us discuss the instability onset in oscillating coflow experiments. As we presented
above, the superfluid component instability should be governed by well-defined
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Figure 2.4: Driving power series of full frequency sweeps of longitudinal second
sound wave. First two resonant modes are shown, measured at 1.65 K. Signal
values represent the full voltage amplitude measured across the biased thermome-
ter. Plotted frequencies agree with the supplied ac voltage and represent the half
frequency of resulting heat pulses. Two distinct resonance shapes are present,
depending on the power. At low drives, we observe a non-dissipative flow having
a Lorenzian peak shape. At higher drives, signal amplitude saturates and cut-
off-top peak shape is observed, meaning the production of quantized vortices.

nearly temperature-independent critical velocity v .., at which deviation from the
universal linear drag dependence C%, = ¢/ V, occur. Analogously for instability
in normal component, we expect a deviation from C’, = ®/Dn laminar drag at
a well-defined critical value of the Donnelly number.

For this reason, it is advantageous to introduce scaled non-linear drag contri-
butions 1 - ¢/(C%V,) and 1 - ®/(C%Dn) for superfluid and normal component,
respectively. These quantities are close to zero for laminar drag and exhibit a
steep rise at turbulent transition onset. In Figure [2.5] we plot these quantities
as a function of the corresponding parameter for the data measured with three
described mechanical resonators.

It is evident, that all devices are behaving in a different manner, deducing
from the relative spread of shown critical parameters and the rate of the nonlin-
earity onset. The instability presence is identified by the crossing of the dotted
horizontal line, representing the safe estimate for experimental noise levels, being
set as 5% for the tuning forks and 10% for the vibrating wire.

In the case of the custom-made tuning fork, see top panels in Figure[2.5] we can
identify the instability onset with the transition in normal component observing a
small spread for critical Dn., ~ 2.5 at all temperatures, see the left panel. On the
other hand, the critical velocity value is clearly temperature dependent, showing
a higher spread than Dn.
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Figure 2.5: Nonlinear drag contribution for three studied mechanical resonators
showing the origin of the initial instability. Left: Drag normalized for the normal
component as a function of Donnelly number. Right: Drag normalized for super-
fluid component as a function of dimensionless velocity.

The commercial tuning fork, shown in the middle panels, exhibits a cross-
over, as for low temperatures well defined critical dimensionless velocity exists
V.=1.2, pointing to initial transition in superfluid component, but for the two
highest temperatures it does not hold and Dn,, of a similar value of 2.5 is the gov-
erning parameter. The same value of Dn, is observed, when measuring in normal
helium at 4.2 K, where only classical instability is considerable, strengthening our
argumentation.

Finally, the vibrating wire, shown in the bottom panels, is exhibiting behavior
similar to the commercial tuning fork. The wide spread in critical Dn and much
sharper transition in velocity is obvious, except for the two highest temperatures,
where Dn., &~ 9 is observed. The difference in this value has its origin in the
device geometry, as velocity flow around sharp edges of tuning forks is likely to
be enhanced, resulting in higher than measured real peak flow velocity.

Our experiments with mechanically driven oscillatory coflow have shown, that
the instability in either of the components of He II can initialize the turbulent
transition of the whole fluid. Further, there is a possible crossover in a single
experiment, depending on device geometry, between the superfluid and classical
transition, which is tunable by the temperature of the system.

We will now continue, with the discussion of the instability onset in oscilla-
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Figure 2.6: Critical Donnelly number observed for oscillatory counterflow in var-
ious experiments [151], 152, 154] as a function of temperature. The Black
dashed line follows the effective Donnelly number introduced by equation [2.7]
representing the correct governing parameter for the onset of turbulent transition
in superfluid component.

tory counterflow, although, special care must be taken, as velocity amplitudes of
normal and superfluid components are not equal, as it was in the previous ex-
periment. We, therefore, need to introduce a common dimensionless parameter,
allowing us to distinguish the two turbulent transition mechanisms. Classical
hydrodynamic instability occurring at critical normal component velocity vy, ¢, is
governed by the Donnelly number as introduced by equation [2.1 The generation
of quantized vortices, on the other hand, happens above the critical velocity of
superfluid component v, ... However, this critical velocity may be converted into
means of effective critical Donnelly number:

OnUs.crPs

PnV

Dncmff = (27)

using zero net mass flow condition v, = vsps/pn, holding for the counterflow.
The physical meaning of this parameter is the Donnelly number of normal com-
ponent flow, exactly when the critical superfluid velocity is reached and Donnelly-
Glaberson instability is initiated in the superfluid component. Substituting for
the true universally constant critical parameter v, given by equation and
considering the frequency dependence of the viscous boundary layer size d,,, we
find that the value of Dng, ¢ is independent of frequency, but strongly tempera-
ture dependent. This may be seen in Figure being plotted as a black dashed
line.
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In Figure [2.6] we show the temperature dependence of the critical Donnelly
number in the oscillatory counterflow, as provided from our experiment and
reconstructed from the previous experiments of Kotsubo and Swift [I51} [152] and
Chagovets [154]. Specific details can be found in [A.3] Tt is clearly seen, that in
the low-temperature regime, a well-defined constant value of critical Dn., ~ 17
is followed, in all experiments involving turbulence generated in oscillatory coun-
terflow driven at various frequencies. However, for temperatures above ~ 1.8 K
results follow the Dn,, ¢, representing the correct critical parameter for transition
in superfluid component.

These results show, that the crossover from classical to superfluid instability
exists in this type of flow as well, but has the opposite temperature character than
one observed in coflow, with classical transition preferred at lower temperatures.
The reason for this phenomenon is the inequality of the component velocities in
counterflow, where having a smaller density of either component leads to a much
higher flow velocity.
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Chapter 3

Local detection of quantum
turbulence in two fluid regime

Detection of the self-generated turbulent flow in the vicinity of oscillating struc-
tures plays a very important role for a better understanding of the turbulent
transition in quantum fluids and its further development towards fully turbulent
flow. However, we also need to be able to characterize the properties of exter-
nally driven flows. There is a number of probes that can address this goal, e.g.,
employment of second sound [46, [127], tracking of ions or excimers [I17], and hot
wire anemometry [I55], although, all have their disadvantages as described in[1.4]
The main issue, typically, is the interpretation and accessible information, when
used for the study of highly non-homogeneous turbulence, which became a rather
hot topic lately [16-20] or . The need for good and reliable local probes of
quantum turbulence emerged, seeking a deeper understanding of turbulent flows
in new geometries (oscillatory counterflow, cylindrically or spherically symmetric
counterflow).

The use of second sound attenuation is providing a great tool for scanning
the average density of quantized vortex lines, although, interpretation relies on
consideration of homogeneity and isotropy. It is true, that approaches towards
local probes exist [128], but have a limiting sensitivity. However, the employment
of mechanical probes proposes a very straightforward option thanks to its very lo-
cal character and fast development of processes allowing further miniaturization.
The devices in the form of superconducting vibrating wire loops [82, [145, [146]
have proved their usability at temperatures close to and below 1 K, where the
contribution of normal component is negligible. We try to study these devices
further [A.4] in the hydrodynamic limit of He II, and offer an understanding of
their mutual interaction with the quantum turbulence in a wide range of flow
intensity.

3.1 Experimental apparatus and method

Our experimental setup included two conventional thermal counterflow chan-
nels [46] of square cross-section. The first channel, denoted "long”, had 7 mm X 7 mm
in cross-section and a length of 167.5 mm. This channel included two vibrating
wire resonators, Ly and L3, and two conventional second sound attenuation units
probing the same volume, as illustrated in the sketch, see Figure |3.1, The addi-
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tion of second sound sensors is giving us the ability to independently calibrate
our sensors against vortex line density, under rather well-understood properties
of thermal counterflow [46], [T07-109]. The real situation with mechanical probes
is, however, more complex, as they are able to sense both components of He II,
providing additional information about the flow. The second channel, denoted
"short”, with a cross-section of 4 mm x 4 mm and length of 40 mm included only
the two of the vibrating wire resonators, M; and My (for geometrical reasons, we
could not add a second sound unit) and was allowing for the production of much
denser vortex bundles, as the counterflow velocity v, at temperature T for given
heater power () depends on the channel area A as:
)
ns ASTpS )
where s and ps have the same meaning as in Both channels had additional
Ge/GaAs thermometer installed inside, to probe the real temperature as affected
by a small gradient in the thermally driven flow.

All four mechanical devices studied in our experiments were of the same form
of superconducting wire loops, as described in [1.4.2] made from the d = 60 um
in diameter thick single core NbTi wire. It was first stripped from the layers of
varnish insulation (mechanical abrasion and chemical etching) and of Cu matrix
(etched in 67% HNO3) to obtain bare superconducting half-loop with leg spacing
of &~ 3 mm. The variations in the exact loop shape result in the difference of the
resonant frequencies, ranging between 5300 Hz and 7300 Hz. The position of the
wires in custom-made holders, see Figure 3.2, was secured with 2850FT Stycast
gluing and was made such that the top of the loop is close, + 1 mm, to the centre
of the channel. Resonators were placed in static magnetic field B of the order of
100 mT, generated by FeNdB magnets, necessary to induce movement. The real
value of the magnetic field can be obtained based on calibration to the universal
laminar drag, described in [A.2] see [A.4]

In the experiments, counterflow was generated in a slow pulse sequence using
driving powers up to 500 mW. At each power two repetitions of heater-ON and
heater-OFF states were set, each step of a length of ~ 100 s, while the response
of all detectors was measured. It is essential that all detectors are driven in a
laminar regime and do not contribute to the vortex generation. In Figure [3.3|
we show the illustrative time evolution of the scaled resonant amplitude signals
of each detector type, as the counterflow pulses with rising drive intensity are
applied. At some critical power, turbulence starts to be generated as second
sound amplitude begins to decrease. The same occurs for vibrating wires, but
only at higher heater power, showing their limited sensitivity. Together with the
resonant amplitude, we track the resonant frequency evolution of the mechanical
probes, which increases with the applied flow. The resonance is tracked using the
PID stabilization algorithm holding zero value of quadrature signal.

The attenuation of the second sound amplitude may be used to evaluate gen-
erated vortex line density L, following equation [1.30] and used for calibration of
mechanical resonator response. In our measurements, we have verified the ex-
pected counterflow velocity evolution of L [46], above the critical counterflow
velocity v, of the order of cm/s:

L= 72<vn32 - Uns,cr2) (32)

(3.1)
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Figure 3.1: Top: Schematics and photographs of the "long” semi-closed coun-
terflow channel, showing the open ports for the second sound sensors. Scheme
includes all the relevant dimensions in mm. Position of the second sound sensors
is such, that the exact volume occupied by vibrating wire sensor is probed. In
the centre, between the sets of probes, Ge/GaAs thermometer is placed. Bottom:
Photograph and scheme of the "short” channel with same notation. Second sound
sensors are not included for geometrical reasons.

and evaluated the values of the v coefficients in the whole range of probed tem-
peratures, between 1.45 K and 2.05 K. Our obtained values correspond well with
those reported in previous works with thermal counterflow [46]. The exact values
can be found in in Table 1. We consider the same v(7") in both channels, as
it should not be affected by the change in the cross-sectional area in the desired
range of dimensions.

Finally, we can convert measured changes of the mechanical device resonant
frequency and amplitude, upon exposure to the turbulent flow, to the hydrody-
namic quantities. We can connect the observed shifts of the resonant frequency
to the change of the probe effective mass Am,ys, neglecting any change of the
stiffness, as argued in by:

i
Amefy = meff(F -1), (3.3)
where fq, denotes original resonant frequency and f the changed resonant fre-
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Figure 3.2: Photographs of the vibrating wire detectors installed on custom hold-
ers compatible with the "long” channel (left) and the "narrow” channel (right).

quency after the flow application. The effective mass m.s; of the oscillating
structure submerged in He II, without any external flow, may be expressed as[A.2}

Mepp = Em+ BpV + 'S ppon. (3.4)

The first term describes the vacuum effective mass originating from the velocity
profile of the resonant mode. The second term represents the backflow of both
normal and superfluid components, proportional to the probe volume V. Finally,
the third term, dependent on the surface area S, gives the additional mass of
the normal fluid in the viscous boundary layer, having a temperature-dependant
thickness 9,, (as defined in , moving together with the oscillator. The geomet-
rical constants 8 and S’ are of order unity.

In a similar way, we convert the observed amplitude decrease, from original
Ap to A in the flow, to the means of additional damping due to the turbulent flow
of He II components. This can be best expressed as the inverse quality factor:

-1 AfO AO
ch - fO ( A 1)7 (35)
with Afy being the resonant linewidth (FWHM) in the absence of the flow.

In Figure we show the calibration of the additional damping Qé}, = Qc—fl -
Q;; to the value of vortex line density, exhibiting the linear dependence in both
channels. The additional contribution of parasitic effects, resulting from the
temperature rise in the channel of order ~ 10 mK maximum (as measured by
an in-channel thermometer and predicted by the theory, see , was subtracted
from the data. The origin of the thermal effect Q;," is in the change of the viscous

drag, scaling with /p,(T)n(T), but was shown to be the order of magnitude
smaller than the total observed response.

Data measured in ”short” channel, reaching much higher tangle densities,
show two distinct regimes. At lower L, linear dependence prefactor ¢ = Qéflp /L
depends systematically on temperature, and scales approximately with ps. In
contrast, above L ~ 10'° data collapse to a single dependence, hinting at the
coupling of the two components. The limited sensitivity, compared to second
sound attenuation technique, well visible from Figure [3.3 seems to be connected
with the characteristic device dimension, being the wire diameter of 60 pum, as it
roughly coincides with the mean inter-vortex spacing [ at the detectable threshold
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Figure 3.3: Measured time series of second sound and vibrating wire amplitude
at 1.65 K as the heater power is gradually stepped up. The heater is switched
on/off twice at each given power. The microwire is visibly less sensitive than
the second sound technique, as expected for a local, but fairly large, mechanical
probe.

L. This, together with the well-defined linear dependence of excess damping on
the vortex line density offers additional information about the possible mechanism
of the device interaction with the flow, which must be connected to the direct or
mediated interaction with the quantized vortices.

3.2 The origin of the device response

In order to seek the origin of the measured change of the mechanical probe re-
sponse, when turbulent counterflow is driven, we have to further analyze observed
changes in its resonant frequency and amplitude. The additional damping may
be addressed by the introduction of the effective viscosity of the turbulent flow
providing the excess damping force. However, the change of the resonant fre-
quency, which, in our experiments, always rise upon flow induction (meaning the
decrease of the effective mass), is most likely connected with the boundary layer.
This is deducted from the fact, that neither vacuum effective mass nor oscillatory
back-flow contribution to effective mass, described by Equation [3.4] should be
affected by the presence of externally applied stationary flow. In further text, we
introduce these approaches, which are fully discussed in [A.4]
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Figure 3.4: Left: Calibration of the vibrating wire additional damping against
the vortex line density L in the "long” channel. The solid blue line shows a lin-
ear relationship observed in the upper decade of L. Right: Microwire additional
damping as a function of vortex line density L, deduced from the observed v fac-
tors, in the ”"short” channel. The solid lines depict linear relationships Qé%r =c L.
Two distinct regimes are observed, with temperature-dependent damping at low
L and temperature-independent regime at L above 10°. The mean inter-vortex
distance [ = L~Y2 is equal to the wire diameter at L = 2.78 x 10® m~2, see the
vertical dashed lines in both graphs.

3.2.1 Effective viscosity based boundary layer

It is important to realize, that the nature of such effective dynamic viscosity
Neffor is conceptually not equivalent with the v.sr, described in , being based
on turbulent energy dissipation of the coupled turbulent flow in He II, which
is driven externally. In our case, we have to describe the extra dissipation of
the driven device kinetic energy due to the interaction with turbulent flow. The
necessary condition for such a scenario to be applicable is the sufficient density
of the vortex bundle. It is needed, that the vortex spacing is smaller than the
boundary layer thickness in order for quantized vortices to be able to mimic the
viscous-like momentum exchange in fluid layers around the body. The thickness
of this boundary layer, connected with 7.¢s¢or, can be estimated based on ,
Equation (9), leading to:

Qélprd
4p
where p,= 6550 kgm =2 denotes the density of the wire material. All of the values
of 0cssr obtained from the measured Qg are below 1 pm. This would require
a value of vortex line density higher than 10> m™2 to obtain an inter-vortex
spacing in the desired range. Therefore, we cannot in our experiments consider the
viscous-like interaction with the vortex bundle, but rather ballistic interactions
of the individual quantized vortices affecting the boundary layer. These events
occur randomly and sporadically, but our measuring scheme is rather providing
the mean value of (L) in the boundary layer, as lock-in is averaging over many
device oscillation periods. We can discuss the possible effect of these vortices on

the normal fluid boundary layer further.

Oefr.Qr = ; (3.6)
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3.2.2 Boundary layer with mean mutual friction

Having only a limited amount of the quantized vortices in the close vicinity of the

resonator, we may still consider a boundary layer to be affected by the mutual

friction force. Here, we consider only the modification of an oscillatory Stokes-

like boundary layer and omit the Blasius-like boundary layer due to stationary

flow, as it should not be experimentally probed at used frequencies. However, the

interaction of these two might be very complex and is not well understood yet.
Evaluating the full mass of the Stokes boundary layer:

2

My = %pnmn (d+34,), (3.7)

we can plot the measured mass decrease Am.sy, given by Equation , normal-
ized as a fraction of my;, as a function of L, see Figure [3.5l The mass decrease
observed from the frequency change measurement indeed represents a fraction of
the boundary layer, comparable with my; at high counterflow velocity.

When trying to describe the oscillatory boundary layer, affected by the mu-
tual friction force, in thermal counterflow, we need to solve Stoke’s second prob-
lem [32] for the two-fluid system of He II. The flow past a circular cylinder in a
high-frequency limit may be approximated by planar elements. The equations of
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motion must originate from the HVBK Equations [I.4][L.5] but we can consider
the pressure and temperature gradients and the vortex tension to be negligible,
arriving at:

vy, PrPs
Lo PnPs g Lo, 4+ nAw,, 3.8
P 2 kLvps + nAv (3.8)
0vs _ L Pubs gy (3.9)
pS at - 2p ns» .

using the expression of the mutual friction given by equation [1.26 The solu-
tion for the flow around an in-plane oscillating planar infinite boundary can be
considered in the form:

Uy = Uno + U1 FZ790 (3.10)

Vs = Ugo + vgg e FFTED (3.11)

with the z representing the perpendicular space coordinate being zero at the posi-
tion of plane. We consider both velocities to oscillate in the same direction as the
plane with the no-slip boundary condition for the normal component only. The
superfluid component motion is induced by the mutual friction force as described
by Equation |3.9,

As discussed above, we consider the mean value (L) of vortex line density in
the boundary layer, as decomposed from L = (L) + L, and neglect the fluctuating
term. As a result, considering only terms oscillating at the drive frequency w, we
get the following condition for the wavenumber k:

- (2pw)? + pup(BE (L))? + 2ippswBr (L)

(kd,)* = 2i 202 1 (0B (D) : (3.12)

We can estimate the mean relaxation time for the action of mutual friction by
the term 7,y =2/(B x (L)), being of the order of ms for our experimental val-
ues of L. It agrees with the idea that the mutual friction is sufficiently fast to
affect the boundary layer behaviour measured during ~ 100 ms (given by lock-in
time constant), but cannot fully follow the oscillations of the device with period
~ 30 us.

Following the solution for purely classical problem, see chapter §24 in [32] and
one yielded in our case when further modifying Equation [3.12] as done in [A.4] we
arrive at the comparison for the resulting boundary layer thickness ¢,, and acting
viscous stress forces ,. This approach, in the linear approximation, predicts the
correction to the classical solutions originating from the mean-field effect of the
mutual friction force in externally driven stationary counterflow:

ps BEL

Onmt = 0né1 ~ 1 ) 3.13
mf &1 &1 o dw ( )
ps BRL
nomt = Onla > — . 3.14
Onmf = 0nd2 S + ) dw ( )

The resulting agreement with the experimental data of effective mass decrease,
shown in Figure (3.5} is strongly supporting this scenario. However, the measured
values of additional damping Qé}, see Figure , are systematically higher than
the ones predicted but scale correctly with the temperature i.e., with ps. It shows,
that the described effect significantly contributes to the additional damping, but
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Figure 3.6: Ratio of extra drag due to quantum turbulence, Qé%,’, to the hy-
drodynamic viscous drag in zero counterflow, @7 as function of L, measured in
"short”channel. The solid lines are obtained using the correction &, to a classical
hydrodynamic solution of Stoke‘'s boundary layer. The data show higher damping
than predicted and additional effects must be considered.

other mechanisms with a similar effect might be present in the flow. We can
imagine the direct momentum transfer during the events of the ballistic collision
of the device with the vortex loops. This will lead to an increase in the measured
damping, but should not affect the boundary layer significantly.

Our experiments clearly show the potential of the mechanical oscillating probes
for the local study of turbulent flows in quantum fluids, even in the hydrodynamic
regime of the two-fluid model, but further experiments are needed to fully de-
scribe their interaction with the flow. The steps towards higher sensitivity devices
should be taken through size reduction. The smaller devices reaching the nano-
metric dimensions should provide much higher sensitivity to the effects governed
by the direct momentum transfer during the collisions with the vortex loops, op-
erating at all temperatures, thanks to their very low total mass. Finally, such
devices also allow the measurement of the dynamics of single quantized vortex,
which can be stably trapped on the surface of the probe [14§].
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Chapter 4

Use of micro-scaled mechanical
resonators

The physical oscillating probes have already shown their big potential for the
study of quantum fluids at a large range of temperatures reaching even below
millikelvin. The recent rise of accessibility of clean-room facilities is allowing fast
development and simplifies the customization of the device for its specific use. The
employment of optical or electron lithography processes makes designs with nano-
metric (order of hundreds of nm) critical dimensions reachable and a plethora of
etching and deposition techniques bring freedom in material and device geometry
choices. This is proven by the existence of many devices being used in various
experimental works, including studying quantum liquids properties [5], 59, [156],
the dynamical behaviour of quantum turbulence at the smallest scales [14§], stud-
ies of mechanical quantum states [I57], and many others. We aim for the study
of superfluid helium isotopes at the level of single quantized vortex dynamics in
zero-temperature limit. To reach this goal, we present the manufacturing pro-
cess and characterization measurements of such new device [A.6 produced by the
author of the thesis, and discuss the limiting effects complicating the detection
with the required sensitivity.

4.1 General damping of mechanical resonators

In this Thesis, we are proposing the mechanical resonating devices to be used,
under various experimental conditions, as detectors of quantum turbulence. In
order to employ such a device, at first, the parasitic damping effects, other than
those under study, must be understood and characterized. Discussing the dissipa-
tion experienced by the device of micro- or nano- dimensions Ref. [147] presents
a good overview. We can categorize the damping forces into two main groups
based on their origin: intrinsic and extrinsic dissipation.

In the case of intrinsic dissipation, only the properties of the device itself
must be considered. The origin of the main contribution to the damping may
differ for the specific device properties. It can be governed by, e.g., the defects of
the single crystal lattice, the effects on the grain boundaries in polycrystals, the
internal residual stresses or other effects in multi-material devices, the existence
of the two-level energy systems or the surface effects especially important for
low dimensional devices. The characterization of these effects can be performed
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experimentally by vacuum measurements at the lowest possible temperatures over
the full intended range of amplitudes or velocities to be used in the experiments.

The extrinsic losses can be important even in the absence of the measured
media, depending on the driving mechanism. The most typical effects in the
electrically driven devices are the resistive losses, which can be suppressed by
the use of the superconducting materials or the magneto-motive losses due to
eddy currents scaling as Q! ocB?. Further additional losses might be caused
by the phonon propagation through the mechanical clamps of the device in the
experiment.

Finally, we can discuss the dissipation originating from the studied media.
Some part of this dissipation is typically at the centre of the interest for the
experiment, but we have to be able to distinguish its contribution to the total
measured damping. We have already, in previous chapters, broadly discussed the
excessive dissipation resulting from the turbulent instability and its development,
which is governed by the flow velocity. This can be ruled out by the device
operation in the laminar regime well below the critical condition. In this case,
depending on the temperature, damping is offered by the hydrodynamic or the
ballistic effects in normal component. The transition between the two regimes,
reaching even temperature-independent region at the very lowest temperatures,
was demonstrated in Ref. [59], using a nano-metric doubly-clamped cantilever.
The damping in the ballistic regime depends on the population and energy of
the thermal excitations as discussed in [I.1.3 In the hydrodynamic regime, not
only damping but also an effective mass of the device is affected, as described by
Equation 3.4 For the body oscillating in the high-frequency limit (D> 4,,), we
can express the additional viscous hydrodynamic damping in the means of the
resonant width A fv¢ as [5]:

visC __ S Pn77f0 fH ’
s o " (7)) Y

with fg being a hydrodynamically shifted resonant frequency, fo the original
resonant frequency in vacuum, and C' being a purely geometrical constant of order
unity, which should be universal for the given device, despite the fluid properties.
Viscous hydrodynamic damping is, therefore, dependent on the frequency as o
V/f and on the temperature via the V/Pn7] term. Experimentally obtaining the
value of the geometrical factor C allows for the device to be used as a good
thermometer or viscometer [5].

Last, but not least, we will discuss in more detail the dissipation due to gen-
eration of acoustic waves, which can then propagate in the fluid media. The
acoustic emission can be a limiting factor for the detectors, especially ones, oper-
ating at high frequencies. Therefore, it is very important to be able to predict its
contribution in the planned device geometry. The theoretical models describing
the acoustic emission by the resonators of different geometries are presented in
Ref. [I58]. The experimental verification of the model for the quartz tuning forks
in *He was provided in Refs. [I35, [159], where the tuning fork is described as
a linear quadrupole of point sources with effective strength based on the mode-
dependent velocity distribution, see Equation [4.2] In the next chapter, we show
and discuss our recent data, see[A.5] of the acoustic emission by the quartz tuning
forks in normal and superfluid *He and compare them with the results from *He

93



IV Converter

36 kHz
55 kHz
97 kHz

J103enuany

Lock-in
Amplifier

4

159 kHz

Cryogenic Environment

Figure 4.1: Photograph of the tuning fork array together with the scheme of the
piezoelectric drive and read-out circuit.

4.1.1 Acoustic emission in quantum fluids

In our experimental setup, we have employed an array of five custom-made quartz
tuning forks Li,...,Ls. They were mounted in an experimental cell, being part of
a "wet” dilution refrigerator with a Cu nuclear demagnetization stage, in Lan-
caster [I60]. All dimensions of the tuning forks in the array, except for the
prong length Ly, were the same, namely: prong width 7'y = 90 pm, thickness
W = 75 pm and prong spacing Dy = 90 um. The prong lengths were chosen
in a range from 0.9 mm to 1.9 mm to approximately uniformly cover the range
of resonant frequencies between 20 kHz and 600 kHz using the fundamental and
the first overtone resonant modes.

// In Figure[d.1] we show the picture of the tuning fork array and measurement
schematics. Driving and read-out methods are the same as described in[I.4.2] All
resonant frequencies were measured in a dedicated cell at the end of a dipstick at
cold 4.2 K vacuum, together with the resonant widths characterizing the intrinsic
(and other parasitic) damping, are listed in Table It seems that the flexural
modes of the shared base are very important for the clamping losses, as the
vacuum width for the L, and L4 tuning forks are an order of magnitude larger
than the others.

In Figure 4.2] we show the measured values of the resonant widths as a func-
tion of the frequency, where vacuum widths have been already subtracted. There-
fore, the presented data are representing only dissipation by hydrodynamic /ballistic
and acoustic emission losses. Each point is a result of the full resonant peak mea-
surement. The data were taken at five different temperatures between 1.5 K and
12 mK in normal *He and at ~ 0.16 T¢ in superfluid *He -B. The tempera-
ture was measured via additional vibrating wire resonators. The dashed lines are
representing the fits of the hydrodynamic contribution, performed based on the
model given by Equation [4.1] using only the values at frequencies below 100 kHz,
where it dominates the dissipation. From the measured hydrodynamic frequen-
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Table 4.1:  Vacuum properties of fundamental and overtone resonant modes of
used tuning forks measured at 4.2 K. The last column shows the product of the
angular frequency, w, and the estimated relaxation time 7 in superfluid *He -B at
~ 0.16 T¢. In normal *He wt remains below 0.04 even for the highest frequency
at all investigated temperatures.

Fork-mode Frequency Width wT
Hz Hz (T=0.16T¢)

L1-fund 22,403 0.05 56.1
L2-fund 35,770 5.15 89.7
L3-fund 55,276 0.29 139
L4-fund 97,055 3.58 243
L5-fund 159,316 0.55 399
L1-over 138,689 0.44 348
L2-over 220,110 32 552
L3-over 337,514 3.90 846
L4-over 579,000 159 1450

cies F'y, known fork dimensions, and tabulated properties of the liquid, we can
evaluate the value of the geometrical constant C'=0.65, with variation less than
3% at all temperatures and for all forks separately, which is in good agreement
with the previous works [I35], [159]. In the case of superfluid data, we consider
only constant ballistic contribution, as described in [I59], equal to the value of
the first point.

After the subtraction of these contributions, we can analyze the dissipation by
the acoustic emission only. For this purpose, we use the same theoretical model
as derived and applied for the He [135] [158]:

pr 2y fh nfu(2Ty +Dy)\ . (7fuDs\]
Ast Csp £m fo sz;) (2m-+1) |:7 < . > — Jm (c )]

(4.2)
based on the spherical Bessel functions j,,. It again depends on the single geo-
metrical constant Csp of order unity and ¢ denotes the applicable sound veloc-
ity. The effective length of the acoustic source Less = pessLy is however, unlike
the effective mass £m, resonant mode dependent. The values of the prefactors
ers = 0.3915 for the fundamental resonance and ji.¢y = 0.2169 for the first over-
tone, can be derived based on [A.2] Tt is, therefore, necessary to evaluate the
datasets from the fundamental and the overtone modes separately. In the case
of the overtone mode, due to its geometry, it would be more correct to consider
two separate quadrupole sources with opposite directions, shifted by a half-length
along the prong, to the maxima of the velocity. Regarding our results, see further,
the used approximation is well applicable. For the normal *He data it is only the
overtone mode measurements, which may be used, as at the lower frequencies
viscous dissipation dominates, and acoustic emission is practically absent.

Performed fits of the acoustic emission contribution, based on Equation
including only fitting parameter C5p, show the good agreement of the data with
the model. It is shown by the dotted lines in Figure [£.2] representing the total
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Figure 4.2: Total resonance widths (minus vacuum values) as a function of tuning
fork frequency measured at five temperatures in normal 3He and one temperature
in superfluid *He -B. Empty and filled circles represent fundamental and over-
tone resonant modes, respectively. Dashed lines correspond to the viscous drag
contribution using the fitted value of the geometrical parameter C' = 0.65. The
dotted lines represent fits of total resonance width as a sum of viscous drag and
acoustic emission contributions. Regarding *He -B data, we obtained different
geometrical coefficients for acoustic emission by fundamental C}4%" = 3.3 and

overtone C% = 8.5 resonant modes.

dissipation as a sum of the fitted widths, giving hydrodynamic/ballistic plus
acoustic losses. We have observed following values of the geometrical parameter:
C%vt = 8.5 for the overtone mode data and €% = 3.3 for the fundamental mode
data, measured at 0.16 T'¢ in 3He -B. These values are in good agreement with
the experimental results observed in superfluid *He [135] (we note that agreement
is met only after the correction for the newly derived value of p.ry = 0.2169 is
used as in Ref [I35] where the overtone data are treated using s = 0.3915).
Our results, together with the previous works [I35], [159] confirm the validity
of the same acoustic emission model for the bulk of both normal and superfluid
phases of “He and *He . The fact, that a single model holds in the whole range of
temperatures of both quantum liquids is pointing towards the same mechanism
of wave emission of the first sound in normal *He and in liquid phases of “He
and longitudinal zero sound in superfluid 3He -B. In Table , we evaluate the

product of the frequency w and fluid relaxation time 7, which determines the
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Figure 4.3: Driving circuit for custom fabricated MEMS device. The aluminum
layer (grey) was deposited over the chip body (blue) creating electrical pads and
leads (300 nm thick) and over a single crystal Si goal-post-shaped device (120 nm
thick). The low-temperature connection was realized by gluing superconducting
NbTi leads (brown) to the pads, using silver epoxy.
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Figure 4.4: Schematic of the step-by-step workflow of MEMS fabrication process,
see text for more details.

collisionless limit w7 > 1, see [56]. The relaxation time 7 represents the ther-
malization of individual quasiparticles to an equilibrium temperature or to the
walls of the cell. In this limit, Landau zero sound mode [161], being described as
asymmetric deformations of the Fermi sphere, is preferable. In our experiments,
the collisionless limit is reached only at the very lowest temperature.

Finally, the acoustic model for the tuning fork geometry, in a long wavelength
approximation, predicts a very steep ocf® dependence of the dissipation, which
strongly limits the devices operating at high frequencies. Analogous models, pre-
dicting a lower power dependence, describing the wire or cantilever geometry can
be found in [I58]. However, it is clear that acoustic emission must be considered
when designing mechanical resonating devices for detection purposes in quantum
liquids.
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Figure 4.5: Left: SEM picture of wire structure made by smooth Bosh DRIE
process. Right: SEM picture showing the resulting surface roughness of the
MEMS, having scallops of the order of 10 nm deep as a result of cyclical smooth
Bosh process. The sample is rotated by 90deg to visualize the scallops. The layer
on the top of the device (e.i. left in the picture) is remaining photoresist.

4.2 Custom MEMS fabrication

We have designed and manufactured single crystal silicon chips containing two
goal-post-shaped vibrating wire resonators, similar to those referred in [27], freely
standing in the open window. Oppositely standing MEMS (Micro-Electro-Mechanical
System) devices can differ in dimensions, being of the order of 10 pum in cross-
sectional dimensions and of the order of mm in length of the goal-post and spacing
between the devices is tuned between 1 mm and 30 pm. This design should allow
the pinning of the single quantized vortices between the two devices, securing
the vortex geometry. Used device shape leads to the resonant frequencies below
10 kHz. Aluminum film of 120 nm thickness, superconducting below ~ 1 K,
is covering the device and allows its magneto-motive drive and electric readout,
see The conversion of electrical to mechanical quantities slightly differs in
this geometry and is given as:

F(w) = LysusBI(W), v(w) = Ulw)

= — . 4.3
LyemsB (43)

with Ly EMS being the length of the device crossbar. The measuring scheme
is illustrated in Figure 4.3 The single crystal nature of our MEMS leads to a
relatively high-quality factor @), representing very low intrinsic damping losses.
We have built our devices starting from RCA cleaned 300um thick double
side polished single crystal 4 inch silicon wafers with <100> orientation and
5-10 Ohm/cm resistivity. The fabrication process is based on multiple optical
lithography steps from both sides of the chip. Here, we introduce the step-by-
step fabrication process, which is illustrated in Figure In the first step, using
the PECVD process, a 7 nm thick SizN, layer was deposited on both sides of the
wafer. From the top, windows were opened in the SizN, with the use of reactive
ion etching by CHF3 gas. In the second step, 120 nm of aluminum was deposited
by an evaporator, directly on silicon in the pre-opened window, having the shape
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Figure 4.6: Optical microscope image of the final devices in the opened window
of the H3 chip. Devices are separated by a gap of 30um on this chip. a) 120 nm
aluminum layer on top of the substrate, b) substrate, still covered with 75 nm of
SizNy, ¢) thin Si ledge, as a result of wall screening effect during deep back-side
etching, d) Si wire, with 120 nm of aluminum layer on top, freely standing in
the open window e) the oppositely standing wire separated by a gap of 30u. f)
300 nm thick aluminum leads.

of final wire devices. Next, aluminum electrodes and leads with a thickness of
300 nm were deposited and connected (having an overlap) to the layer from the
previous step. SizNy layer under the pads works as a buffer for the mechanical
strain caused by electrical contacts.

The wafer was then cut to single chips (it included chips with various config-
urations of the device dimensions) using a laser or mechanical saw and further
fabrication processes continued on each chip separately. In the following step, the
silicon device structures were created by the Si etch around the aluminum wire
coating, using a design enlarged by 1 um to each side. It was done by the smooth
Bosch process using the deep reactive ion etching (DRIE), having a height of
~ 7 pm. The result after this step is illustrated on SEM picture in Figure |4.5, as
executed on the testing chip (with much higher etching depth and not including
the aluminum layer yet).

In the final step, devices were covered by the protective photoresist, filling
the whole window, and released by a deep DRIE etch from the back side. This
etch of the window in Si of a similar size was stopped at the moment of the de-
vice’s appearance. The protective photoresist was then cleaned by liquid chemical
solvent and photoresist residuals were removed in O, plasma. Exact details of
each fabrication step, including photoresist type and lithography specifics, can be
found in [A.6] The pictures of resulting devices are shown in Figure as done
by optical microscope and in Figure by scanning electron microscope (SEM).
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Figure 4.7: SEM image of the base of the silicon wire showing its structure.
Pointers a)->d) correspond with the Figure

Figure 4.8: Visualization of the first three resonant modes of our MEMS devices,
produced by finite element method model using the geometry of the whole chip.

4.3 Vacuum properties

In the first set, we have been able to prepare three working devices placed on two
chips. One of the chips had only one of the devices working electrically, but both
still physically present. In Table [£.2] we list the characteristic dimensions of all
used MEMS devices. In Figure 4.8 we show the models of the first three resonant
modes as a result of finite element method calculations using the geometry of
the whole chip. We have accounted for the anisotropic elasticity of <100> Si,
using following elastic constants [162], ¢;; = 165.7 GPa, c¢12 = 63.9 GPa, ¢4y =
79.6 GPa. These models can be used to predict the resonant frequencies of the
individual devices modes and we list the values of the first fundamental mode in
Table 4.2

Initial experiments were performed in vacuum at room temperature, using
a glass desiccator connected to a rotary pump, in order to find the resonant
frequency of the devices and compare them with the values predicted by the
model. The results agree well with the calculations, see Tablel4.2. Both chips have
been later mounted in the *He cell on the "wet” helium bath dilution refrigerator,
with the base temperature of ~ 20 mK, in Prague. In order to characterize devices
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further, especially the intrinsic damping, we performed vacuum measurements
at the base temperature. The MEMS were operated in an electrical scheme
visualized in Figure[4.3| using Agilent A33220 signal generator and phase-sensitive
Stanford Research SR830 lock-in amplifier, measuring the induced voltage. The
driving current could be adjusted by the resistance of the I/V Converter and a
static magnetic field was generated by the superconducting magnet. In the case
of all here presented data, constant values of the magnetic field B = 504 mT and
I/V resistance R = 1 MQ were used.

Table 4.2: Listed dimensions and resonant frequencies of four used MEMS devices
denoted by chip name (A->H) and position of wire on the chip (1->2). In this
table, Lygpys denotes the crossbar length, h the leg length, w the width, ¢
the thickness, and dy;gas the spacing between the two wires on the chip. The
frequencies f ... were calculated from the design geometry using the finite element
method model. The vacuum frequencies f3gox and foo,x Were measured in a
desiccator at room temperature and in a dilution refrigerator cell at the base
temperature (20 mK), respectively. We note that the uncertainty in the thickness
t of up to 0.5 pm due to uneven etching is sufficient to explain the discrepancies in
the resonant frequencies. The intrinsic quality factor of the MEMS resonators @),
are evaluated from low-temperature measurements at a relatively high magnetic
field B = 504 mT. It should be noted that higher () factors are obtained in lower
magnetic fields, see text.

Name Lygpus — h w t dupms  feate  faoox  foomrx  Q-factor
(pm)  (pm) (pm) (pm) (pm) (kHz) (kHz) (kHz)

G1-1 1000 1000 22 6.8 1080 480 4.88 491 1.5x10°
G1-2 1000 900 22 6.8 1080 572 550 554 1.8x10°
H3-2 300 1000 12 7.3 30 708 7.62 7.67 0.8x10°

In Figures [4.9][4.10]4.11] we show the current drive series of the full frequency
dependence sweeps of the MEMS resonances. At the highest drive currents,
we start to operate in a non-linear Duffing regime, which is most profound for
the G1-2 device, see Figure [4.10l The transition to this regime is typical for
these devices and is described in more detail in Ref. [27]. We further evaluate
the vacuum quality factors @ of order 10°, see Table , estimated based on
the fractions of resonant frequency and resonance width (FWHM) @ = f,.s/Af.
For this purpose, we consider only the linear resonances at low drives. The
main contributions, which should be considered for the observed dissipation are
intrinsic, magneto-motive losses. We report the values of @ ~ 4x10°, for the
G1 devices driven at smaller fields ~ 10 mT. Concerning the resistive losses,
we should be able to operate the MEMS in both normal and superconducting
states of the driving aluminum layer. The state of the layer can be tuned by the
temperature or more easily by the magnetic field. However, even in normal state
of aluminum, having a resistance of the order of tens of €2, the resulting power,
in the range of used driving currents, should not exceed picowatt. Our results,
therefore, show the good potential for the further use of manufactured devices
as quantum turbulence detectors. More information on the following analysis of
the temperature and the magnetic field dependence of device characteristics in
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vacuum can be found in the Master Thesis of Maximilian Golena from Prague. His
work also discusses the preliminary data from the device response in isotopically
clean superfluid *He at temperatures below 1 K.
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Figure 4.9: Drive series, between 10 nA and 106 nA, of the full resonant sweeps
measured for MEMS device G1-1 in vacuum at 20 mK.
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Figure 4.10: Drive series, between 7 nA and 106 nA, of the full resonant sweeps
measured for MEMS device G1-2 in vacuum at 20 mK. The device is showing
Duffing-type non-linearity at highest used drive.
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Figure 4.11: Drive series, between 7 nA and 106 nA, of the full resonant sweeps
measured for MEMS device H3-2 in vacuum at 20 mK. Lower amplitude com-
pared to the devices on G1 chip is caused by the smaller cross-bar length, as it
affects the electro-mechanical properties given by Equation H4.3|
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4.4 Detection of single quantized vortices in *He

In our last experiment, we performed measurements employing NEMS device,
having similar geometry to the ones discussed above, submerged in *He-B on
a rotating dilution refrigerator with a copper nuclear demagnetization stage at
Aalto University in Helsinki. This experiment was conducted in collaboration
with the ultra-low-temperature group led by Vladimir Eltsov. The used goal-
post-shaped NEMS, manufactured by Timo Kamppinen, based on a single layer of
aluminum in open window geometry is described in Ref. [30], having the following
dimensions: cross-bar length = 160 pum, leg length = 50 pm, bar width = 20 pm,
bar thickness = 250 nm. It was driven, at the resonant frequency of about
15 kHz, via magneto-motive technique, according to Equations in magnetic
field B = 93 mT.

In Figure [£.12] we show the typical force-velocity dependence of the device,
operated at 0.15 T at the pressure of 19 bar. We plot the peak velocity of
the NEMS, obtained from the full frequency sweeps, divided by driving force,
to better visualize different observed regimes, as a function of the driving force,
which is in a steady state equal to the sum of the drag forces. The real flow
velocity values near the device are most probably higher than measured, due to
the flow enhancement around the sharp edges. We can identify three distinct
regimes of device operation. At the lowest velocities, NEMS velocity behaves
linearly with force as expected for losses dominated by drag from ballistic quasi-
particles. At higher velocities, damping due to thermal excitations is weakened
by the screening effect of Andreev reflection [57, 58]. The thermal excitations
may be reflected in the flow field generated around the oscillating NEMS, effec-
tively decreasing their population sensed by the device. The same behavior was
observed and explained in Ref [I43]. Finally, at the highest velocities, above the
critical velocity ~ 7 mms™!, we enter the "pair-breaking” regime [139} 143], where
the superfluidity of *He starts to be suppressed. It is connected with a strong ex-
cess dissipation and NEMS velocity is saturating, see inset in Figure [4.12] In this
regime, the detection ability of the device is limited by this dissipation mechanism
and resonances are strongly non-linear, resembling frequency softening.

The unique geometry of the Helsinki apparatus is allowing for cryostat rotation
leading to the generation of a uniform matrix of vertical quantized vortices. The
NEMS is oriented in the experiment in such a way, that the device legs are
aligned with the vortex grid (the axis of rotation is vertical), thus cross-bar being
perpendicular (horizontal), with NEMS pointing down. In this geometry, we have
been able to prepare a device state, with a single quantized vortex stably pinned
to it. It is done by an "abrupt” change (on a timescale of order 10 s) of the steady
rotation angular velocity, causing the vortex grid to travel towards the cell edges
and eventually decay in case of zero rotation velocity or to reorganize spatially
in other cases [163]. During this process, vortices passing the NEMS can interact
with it and get trapped, see Figure These events can be detected as a
change in the device signal driven at a constant resonant frequency ~ 15kHz, as
vortex trapping causes a frequency shift of order 1 Hz. In an illustrative vortex
trapping event shown in Figure we distinguish between a vortex-free state,
having original signal values visualized by solid lines, and a vortex-trapped state,
with shifted signal values visualized by the dashed lines. Right after the rotation
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Figure 4.12: NEMS peak velocity, divided by driving force for visualization of
the linear regime at low drives (black horizontal line), as a function of driving
force, measured at 0.15 T'¢. The red dashed lines bound different regimes. At the
lowest velocities (i.e., lowest drives), NEMS velocity behaves linearly with force.
At higher velocities, damping due to thermal excitations is weaker than linear
caused by the screening effect of Andreev reflection. At the critical velocity, of the
order of 7 mms™' (see inset), the pair-breaking regime is reached, limiting further
increases in velocity due to very effective dissipation. In the inset, corresponding
force-velocity dependence is shown.

is stopped, a complex interaction of the device with a number of vortices in the
system is observed, happening for ~ 600 s, in this specific case. After this time,
the signal changes are less frequent and more stable as there are fewer vortices
remaining in the system. In the end, the vortex state is rather rare at zero or low
rotation velocities, but if created then very stable. In the presented event, there
is a vortex being trapped to the device after 1700 s from the rotation stopping
and this state then persists for the whole experimental run of the order of days.
When the vortex is trapped on the device after the vortex mesh decay is finished,
it is very stable, and the device properties affected by the vortex, containing
information about the single quantized vortex dynamics, may be studied. Vortices
are much easier to trap at higher final rotation velocities and the signal levels are
highly reproducible for multiple vortex trapping events.

In Figure 4.14, we show the difference in the drag experienced by the NEMS
in vortex-free and pinned-vortex states, as measured at 0.15 T¢. At low veloci-
ties, there is no difference in the drag coefficient, and only the frequency of the
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Figure 4.13: Time trace of the NEMS device response, measuring both signal
components, after the abrupt stop of the cryostat rotation. After initial complex
interaction with many vortices in the system, two device states are observed,
based on values of signal components. Solid lines are representing the NEMS
response without the vortex and dashed lines represent the state with the trapped
vortex.

device is affected by the vortex, as discussed above. The quantized vortex is
starting to contribute to the NEMS dissipation only above some critical velocity
~3.7 mms~!, where the two plotted data sets start to deviate. The additional
drag should be directly connected to the dissipation mechanism of the vortex in
a zero temperature limit, as discussed in [[.3] Unfortunately, we have a limited
window of velocities where it can be studied further as the "pair-breaking” regime
sets soon after. It is also possible that the vortex shifts the velocity at which the
pair-breaking mechanism comes into effect.

Similar experiments on trapped vortices should lead to the observation of
the Kelvin wave excitations on the trapped vortex, obtaining their spectrum and
verifying the expected scaling of frequencies. The experimental work and analysis
is ongoing [164] at the moment of writing of this Thesis and the details will be
published elsewhere.
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Figure 4.14: The difference in the drag experienced by the NEMS with trapped
quantized vortex and without the vortex. The vortex is clearly causing additional
damping above the critical velocity ~3.7 mms~!. The real critical velocity is
however different, as flow enhancement around the sharp corners of the NEMS
must be considered. The steep increase of the drag at the highest velocities is

connected with the pair-breaking regime.
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Conclusion

This Thesis brings together the main results of the Author, accumulated during
his Ph.D. studies, working in the Laboratory of Superfluidity at the Department
of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles Uni-
versity. Over the past four years, numerous experiments employing mechanical
resonating structures as tools for the study of the turbulent flows of quantum
fluids have been performed, leading to the findings summarized below.

In general, the experimental work of the Author, especially measurements
of the turbulent flows of superfluid *He in a wide range of temperatures, has
contributed to a better understanding of the phenomenon of quantum turbu-
lence Based on the experimental data, properties of the turbulent flows in
hydrodynamic and zero temperature limit were discussed on the phenomenolog-
ical level. Two distinct types of turbulent flow can exist at all temperatures in
He II, having different dynamical properties and coupling character of the pos-
sible turbulent structures — classical vortices and quantized vortices. We can
distinguish the quasi-classical or Kolmogorov type of quantum turbulence with
the coupled motion of normal and superfluid components and the ultra-quantum
or Vinen type of quantum turbulence consisting of a chaotic bundle of quan-
tized vortices. Further, new quantum lengthscale [y was introduced, marking
the onset of the quantum character of the flow, where quantization of circulation
becomes essential. It may be understood as a cut-off length for any classical-like
description of the flow and its presence implies that no quantum flow may be
fully described by a classical analogy.

In Chapter [2], we have addressed the onset of quantum turbulence in oscillatory
flows of He II, i.e., in mechanically driven coflow and mechanically or thermally
driven counterflow. Two types of instability can be considered in He II, being
classical hydrodynamic instability in normal component or quantum instability
connected with the production of quantized vortices in superfluid component.
The origin of the initial transition can be identified through the analysis of the
critical flow parameters. We showed that temperature-controlled cross-over be-
tween the two mentioned types of instability can exist in a single experiment,
for both coflow and counterflow, however, having an inverse temperature trend
in these two flow types. Among other, this approach helped to explain previ-
ously observed critical velocities in oscillatory counterflow and offers a unified
framework for future discussion of flow instabilities.

The mechanical resonators in the form of superconducting vibrating wires
have been also used, as local detectors of externally driven turbulent flows, as
discussed in Chapter [3 Experiments have been conducted probing the hydrody-
namic regime of He II, above 1 K, with complex interaction of its components.
We measured the changes in resonant frequency and amplitude of the oscillator,
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driven strictly in the laminar regime, upon application of the turbulent thermal
counterflow. The changes in the device response can be connected with the change
of its effective mass and excess damping and show the linear dependence with
the vortex line density. Obtained decrease of the effective mass represents the
fraction of Stokes boundary layer and can be explained by the properties of the
boundary layer affected by mean mutual friction. However, this effect does not
explain the whole measured excess damping and other mechanisms are present,
e.g. direct momentum transfer during the device-vortex collisions.

In the final Chapter [4] we have discussed the general dissipation mechanisms
of the resonators submerged in quantum fluids and closely characterized the losses
due to acoustic emission, measured in ®*He , which can limit the detection potential
of the device. Additionally, we report the fabrication process of the custom
MEMS, following the trend of miniaturization of the devices leading to much
higher sensitivity. Our devices have been characterized in vacuum at 20 mK
and show potential for further study of quantum turbulence at the level of single
quantized vortices. This goal was, nonetheless, achieved in experiments based
on collaboration with the Helsinki ultra-low-temperature group. We have shown,
that we can stably attach a single quantized vortex to a MEMS device, from the
decaying turbulence in rotating vessel in 3He -B, and measure additional losses
caused by the vortex. Further experiments with the deeper analysis are still
ongoing and will be presented elsewhere.

As a result, we have proven the potential of the employment of the mechanical
resonating structures for the study of turbulent flows in quantum liquids. Devices
of the custom dimensions and geometries can be developed for the specific experi-
ments and can probe the superfluids at all temperatures with the great resolution
and sensitivity. The use of such devices can lead to a better understanding of
the properties of fully developed turbulent flow, but also of the initial instability
onset. Finally, the MEMS and NEMS devices can be used to tackle the ques-
tions of single vortex dynamics, having unmatched spatial resolution amongst the
available detection techniques.
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Quantum turbulence—the stochastic motion of quantum fluids such as “He and 3He-B, which display pure
superfluidity at zero temperature and two-fluid behavior at finite but low temperatures—has been a
subject of intense experimental, theoretical, and numerical studies over the last half a century. Yet, there
does not exist a satisfactory phenomenological framework that captures the rich variety of experimental
observations, physical properties, and characteristic features, at the same level of detail as incompressible
turbulence in conventional viscous fluids. Here we present such a phenomenology that captures in simple
terms many known features and regimes of quantum turbulence, in both the limit of zero temperature and
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the temperature range of two-fluid behavior.

quantum turbulence | pure superfluid state | two-fluid state | Vinen and Kolmogorov turbulence

Turbulence is ubiquitous in Nature. Although it is an
unfinished problem in science, incompressible turbu-
lence in classical viscous fluids described by the
Navier-Stokes equations, especially its decay without
sustained production, as in the case of homogeneous
and isotropic turbulence (HIT), is understood suffi-
ciently well at the phenomenological level. Its proper-
ties can be described in surprisingly tangible detail (1).
Quantum turbulence (QT) (2, 3) occurs in quantum
fluids displaying superfluidity and two-fluid behavior
at finite temperatures, such as the liquid phase of *He
below the lambda temperature T, or the superfluid B
phase of *He (4). Physical properties of quantum fluids
cannot be described entirely by classical physics con-
tained in the Navier-Stokes equations. Most physical
properties of He Il and 3He-B are understood within
the phenomenological two-fluid model, with the fol-
lowing main features. For temperatures T < T; 2.2 K,
liquid “He, called He II, is described as if it is com-
posed of two interpenetrating constituents, the super-
fluid of density p, and the normal fluid of density p,,; for
3He-B the corresponding temperature T. ~ (1 —3) mK,
depending on the pressure. The viscous normal fluid
consists of a gas of thermal excitations and carries the
entire entropy content of the liquid. At relatively
“high” temperatures (approximately above 1 K in He
IIand >200 pK in 3He-B), the mean-free path is small

and the thermal excitations can be described hydro-
dynamically as a fluid with finite viscosity. It coexists
with the inviscid superfluid component carrying no
entropy. The total density p of the liquid is nearly tem-
perature independent and satisfies p=p, +ps. In the
T — Olimit, helium is entirely a superfluid (p, /p - 1 and
pn/p = 0), while superfluidity vanishes at the high tem-
peratures just stated (p/p — 0 and p,/p - 1).

Under isothermal conditions, the two fluids move
independently when flow velocities are small. When a
certain critical velocity is exceeded, however, thin
vortex lines are formed in the superfluid component.
Their circulation is not arbitrary as in classical fluids but
quantized (5, 6) in units of k=h/M (usually singly),
where h is Planck’s constant and M is the mass of the
superfluid particle (in the He Il which is bosonic,
M=mjs, the mass of the “He atom, while in the fer-
mionic *He-B M =2mj, mass of the Cooper pair, twice
the mass of the 3He atom). The interaction of these
quantized vortices gives rise to a tangle of quantized
vortices, whose dynamics are QT's essential ingredient.

In the experimentally challenging limit of zero
temperature with no normal fluid, QT consists only
of the dynamical and disordered tangle of quantized
vortex lines and can be called pure superfluid turbu-
lence. The quantity characterizing the intensity of
superfluid turbulence is the vortex line density, L,
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which is the length of vortex line per unit volume. There exist two
distinctly different and well-defined turbulent regimes called the
Vinen (or ultraquantum) turbulence and the Kolmogorov (or qua-
siclassical) turbulence, the latter having various analogies with that
in classical fluids.

At finite temperatures with the two-fluid behavior, QT may or
may not involve turbulent motion of the normal fluid. When vortex
lines are present in the isothermal flow, the otherwise indepen-
dent normal and superfluid velocity fields become coupled by
mutual friction acting at all relevant length scales, adding more
complexity. Still, Vinen and Kolmogorov forms of quantum
turbulence exist. We shall discuss them when the normal and
superfluids flow counter to each other (called counterflow), for
which there is no obvious classical analogue, and when they flow
in parallel (coflow).

In this article we offer a systematic phenomenological descrip-
tion of various forms of QT in helium superfluids and compare
them with turbulence of viscous fluids. For simplicity, our analysis
is focused on three-dimensional (3D) HIT and based on experi-
mental observations but, toward the end, employs models that
treat the superfluid component containing the vortex tangle as a
continuum possessing an effective “superfluid viscosity.” The rea-
son is that, even though the essential information in QT lies at
small scales between vortex lines, their coarse graining enables
useful views of the continuum type to be valid.

Pure Superfluid Turbulence

We start with the zero-temperature limit. In the frame of the two-
fluid model both He Il and *He-B are purely superfluid. As in
classical turbulence, we have to consider only one velocity field.
However, this velocity field is subject to the quantum mechanical
constraint that the vorticity is zero everywhere except within the
cores of quantized vortices.

The Model. In classical HIT, the finite size D of the turbulent box
bounds the largest scale. The turbulent energy is supplied at
some characteristic scale M < D, which might be the size of a bluff
body, the mesh size of the turbulence-generating grid, or Ditself.
In a steady state, the turbulent kinetic energy, K, and the rate of
energy dissipation & at small scales are related by £=—-dK/dt.
Nonlinearity ensures that the energy is dissipated in a different
range of scales than the injection range. By the processes of ad-
vection and stretching, the energy is thought to undergo the
Richardson cascade down the scales until it reaches small scales of
dissipation. The characteristic scale around which the turbulent

energy eventually dissipates is the Kolmogorov scale = (1./3/8)1/4,
where v is the fluid viscosity; the corresponding Kolmogorov
wavenumber k, = 2x /. One can also define, taking v and ¢ as the

only relevant variables, a corresponding velocity scale u= (ve)'*,
which characterizes the motion of the scale #; the characteristic
Reynolds number Re,=un/v=1. From these considerations,
scales smaller than 7 are not relevant to turbulence dynamics in a
classical viscous fluid.

If the energy input at scale Mis small enough for the Kolmogorov
dissipation length 5 to be of the order of M, no turbulence can be
created. Upon increasing &, n becomes smaller and crosses M;
gradually an “inertial range” of scales develops between M and 7.
According to our present understanding, the part of the spectrum
for k<M acquires a k? slope by the equipartition theorem, in
agreement with the Birkhoff-Saffman invariant (7, 8). By requiring
the spectral energy density E(k) in the inertial range to depend only
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on the wavenumber k and & (which is transmitted across the inertial
range without dissipation), one arrives at the celebrated Kolmo-
gorov form E(k) = Ce?/3k=>/3, where the constant C is experimen-
tally known to be about 1.62+0.17 (9).

After the cessation of energy input, the energy-containing
scale grows with time and could saturate at D at some point. Al-
though 7 also grows with time, leading to a shorter inertial range,
considerable scale separation could persist and the spectrum in
the decaying state could retain the same form as above. In this
state of decay (10), it is possible to solve for the energy as a
function of time. The result is that & « t=2 and the turbulent energy
decays as K« t72.

In pure superfluid turbulence, there is no viscosity and hence
no dissipative scale . The flow exists down to the smallest scale,
which is the size of the vortex core & ~0.1 nm in He Il and
&3~ 10 to 60 nm in 3He-B. One can, however, define the superfluid
Reynolds number Req by replacing the kinematic viscosity v by the
quantum of circulation x of the same dimensions, and ask for the
length scale g at which Reqg =uqla/k =1, where ug = (K€)1/4.* We
call the length ¢q as the quantum length scale’ ¢q = (1<3/s)1/4 and
define a corresponding wavenumber as ko =27/tq. Physically, ¢q
marks the transition between quasiclassical scales for which quan-
tization of circulation plays no role (or the “granularity” of QT does
not matter) and the quantum scales for which quantum restrictions
are essential.

The Kolmogorov cascade cannot proceed beyond kg because
its very existence is a purely quantum effect. The transfer of tur-
bulent energy farther down the scales is possible by a different
mechanism mediated by the Kelvin wave cascade on individual
vortex lines in incompressible flow (12) [although a bottleneck,
analogous to the classical case (13), might develop around ¢q (14)].
The dissipation mechanism for k> k™ is the phonon emission by
Kelvin waves in He Il (15) or the excitation of Caroli-Matricon
states in vortex cores in 3He-B (16). For this range, L'vov and
Nazarenko (17) derived (neglecting these dissipation mechanisms)
the superfluid energy spectrum for k> kq to be of the form

E(k) = CinAke'Pw=3/2k=5/3 1]

where ¥ =4zKA™'c2, K = fE(k)dk, the dimensionless num-
ber A is about 15 for He Il and 12 for 3He-B, and C;ny=0.304
(18). Beyond k*, there must be a cross-over to E(k)x1/k,
which is the form of the spectral energy for straight vortex
lines. Length scales smaller than 2z/k™ are not relevant to

*The quantum length scales in He Il (for which k20.997 x 107 m?/s) and *He-B
(for which x=0.662x10~7 m?2/s) are of the same order as the Kolmogorov
dissipation scale # in the normal liquid He | just above T;; indeed, v~«/6
according to ref. 11. As in unitary Fermi gas [M. Zwierlein, “Quantum transport
in strongly interacting fermi gases” in International Workshop on Quantum
Turbulence: Cold Atoms, Heavy lons, and Neutron Stars, March 18-April 19,
Seattle (2019), vol. 1, p. 1.}, this fact links two apparently unrelated physical
quantities—the kinematic viscosity, , in the normal state and the quantum of
circulation, «, in the superfluid state, bridging classical and quantum-
mechanical descriptions of liquid *He.

TIn the literature, the term quantum length scale is often used for the mean
distance between vortex lines in the tangle, ¢=1/v/L. Although a useful mea-
sure of the intensity of QT and density of vortex lines, it does not carry any
information on whether or not the normal fluid is turbulent. We will later show
that ¢q and ¢ differ by no more than a factor of 2 in He Il. We reserve the phrase
for (q because it is analogous to the dissipation length 1 and allows useful
comparisons to be made of complementary phenomena in classical turbulence
and QT.

Skrbek et al.
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the dynamical motion of vortex tangles. An alternative ap-
proach to calculating the high wavenumber spectrum considers
the flow as compressible. Tanogami (19) studied superfluid tur-
bulence in 3D via the Gross—Pitaevskii equation and exploited
the analytical method of Onsager’s “ideal turbulence” theory.
He proposed a quantum energy cascade with k=3 scaling be-
yond the quantum length scale, induced by quantum stresses,
which, interestingly, may include the Kelvin wave cascade.

Now, let us examine the evolution of the steady-state superfluid
energy spectrum in a box of size D, assuming a sustained energy
input at scale M (e.g., by a grid of mesh size M, &3,&, < M <« D)
(Fig. 1). Any remnant vorticity (21) (e.g., vortex loops pinned on the
grid surface, which is nearly always rough on these scales) becomes
unstable by the Glaberson-Donnelly instability (22), leading to a
vortex tangle when the critical flow velocity is exceeded. A steady-
state superfluid energy spectrum develops after a transient, trun-
cated at k* by one of the mechanisms described above.

The actual form of the steady-state energy spectrum depends
on the interplay between the two important scales, M and ¢q. For
small enough &, (o > M, and so the Richardson cascade cannot
operate. Energy is transferred down the scales via a Kelvin wave
cascade or quantum stress cascade, until k* is reached. This is the
Vinen (ultraquantum) turbulence, where the vortex tangle is ap-
proximately random (Fig. 1, Top). The temporal decay of this
turbulence, characterized by just one fixed length scale (quantized
vortices in the tangle are assumed to be approximately evenly
spaced), was first discussed by Vinen (23). On page 504, he wrote,
"We shall now suppose that, if two oppositely directed vortex
lines approach each other sufficiently closely, they can break up
into small vortex rings in the manner suggested by Feynman (6)
and eventually degenerate into thermal excitations” and argued
that the vortex line density decays according to the equation

%z _%B , [2]
dt 2n
where 9 is a constant of order unity, leading to L(t) « 1/t for
late times. This form of the temporal decay of L, once the
energy input stops, is the fingerprint of the Vinen turbulence.
Let us now increase ¢ so that (o becomes nominally smaller
than M (Fig. 1, Middle). Assuming an interaction between scales 4
la the equipartition theorem, the spectrum to the left of M must
acquire the k? form, but the situation to the right of M changes by
developing an inertial range between M and ¢q, with the energy
transfer from the small to the large wavenumbers occurring qua-
siclassically via the Richardson cascade. With increasing ¢, the
inertial range of scales increases and contains most of the kinetic
energy of superfluid turbulence; see the red spectrum in Fig. 1,
Bottom. This is the Kolmogorov (quasiclassical) turbulence, con-
taining large vortex structures which can be thought of as com-
posed of vortex-line bundles, achieved by partial polarization of the
tangle. At scales sufficiently larger than (g, the shape of the energy
spectrum is thus Kolmogorov's. How far in k this picture holds
depends on the interplay between classical and quantum physics,
since the latter starts to intervene when approaching kq = 27/(q;
thereon, the turbulent motion is discretized and governed by
quantum physics, described by the dynamics of individual quan-
tized vortices. The quasiclassical limit is very similar to 3D Navier—
Stokes for HIT, where viscous dissipation acting at small scales of
order 77 is replaced by one of the mechanisms discussed above. At
scales smaller than (g the turbulence is always ultraquantum.

Skrbek et al.
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A key point is that for classical turbulence in the unbounded
case, there are only two length scales to consider: M and 7. In
superfluid turbulence, there is an additional important scale, (q,
which intervenes as described above. Pure superfluid turbulence
therefore cannot be considered, in contrast to statements in the
literature, a simple "prototype” of turbulence; despite the similari-
ties, it is different and more complex than the classical case. Natu-
rally, however, the quasiclassical part of the picture is the same as
that of classical 3D HIT and its temporal decay follows predictions
of the spectral decay model (10, 24, 25). It is applicable also for
decaying vortex line density, L, since the quasiclassical relation
& =veg(xkL)?, following from the Navier-Stokes equations, holds
(20). Here kL is the quasiclassical vorticity and v denotes the effective
kinematic viscosity. We present the experimental evidence for this
relationship in Cross-Over from the Vinen to Kolmogorov Forms.

We note that this close correspondence of the Kolmogorov-
type QT with the classical case suggests the plausibility that the
intermittency corrections may be the same for classical 3D HIT
and for Kolmogorov pure superfluid turbulence at scales suffi-
ciently larger than ¢q. We will comment more on it later.

Manifestations of Vinen and Kolmogorov Forms of QT. At
present, there are no direct spectral measurements of superfluid
turbulence at zero temperature (i.e., close enough to zero that the

E(K) €= Jab/dt Small energy input

Y

N E(k) o< k=3
E(k) crossover
Quasi-classical
inertial scale
developing
1 T 1 v
21/D 2n/M kq
A
E(k)

Large energy input
Kolmogorov QT

Quasi-classical
Kolmogorov

inertial range late time decay
L(t)~1/63/2
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E(k) o« k=

T T 1 11,
21t/D 21‘C/MkQ k kq

Q

Fig. 1. Schematic in log-log coordinates of the general shapes of 3D
energy spectra E(k) plotted versus the wavenumber k of purely
superfluid turbulence, assuming that it is forced at the scale M. (Top)
Vinen turbulence, where (g (red arrow) is larger than M. (Middle)
Crossover from Vinen to Kolmogorov turbulence. With increasing ¢,
(q crosses M. The classical Richardson cascade begins to operate and
an inertial range of scales (thick red) develops gradually. (Bottom) For
large enough ¢, a significant extent of the inertial range develops asin
steady-state classical 3D HIT (red). After the forcing stops, the
decaying spectrum is shown in green and violet for two subsequent
times; kq values are shown explicitly for each of them. The energy-
containing scale grows during decay and eventually saturates at D
and the classical decay of the form L(t) x t=3/2 follows (20). Also, ko
decreases faster than the energy-containing scale, so the inertial
range shrinks with time. The spectra between kq and k* have been
drawn with slopes of —5/3 to be consistent with Eq. 1.
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normal component is essentially nonexistent), so we cannot test
the model in detail. Following Vinen (20), we introduce an effec-
tive mean-square vorticity in the superfluid component, defined

by (0?) o= (kL)?, which allows us to make direct reference to the
experimentally measured quantity L. Using the above relation, we
obtain the expression L(t) x 1/t%/? at late times for Kolmogorov QT
when the length-scale saturation occurs; this is the result we shall
test repeatedly here. The spectral form of the Vinen turbulence is
not known [it could be of the k=>/3 form as in Eq. 1 with a bottleneck
or of the k=3 form of Tanogami (1 9)].¥ For the purposes of Fig. 1, we
take the manifestation of the Vinen turbulence to be Eq. 2,
according to which (at late times) L 1/t. This is the main result we
will test here. Our other important exploration concerns the cross-
over between the two types of turbulence.

Cross-Over from the Vinen to Kolmogorov Forms. We will il-
lustrate the cross-over in both steady-state and decaying quantum
turbulence in *He-B in the measurements of the Lancaster group
(27). QT was generated by oscillating grids and detected using
the unique technique of Andreev reflection, which is possible
because of the fermionic nature of superfluidity in *He-B. Briefly,
the equilibrium number of quasiparticles (and quasiholes) can be
sensed by a vibrating wire resonator. The drag force exerted on
the vibrating wire by these ballistically propagating excitations is
reduced if the wire is surrounded by a vortex tangle, as some
incoming quasiparticles (quasiholes) cannot reach it, being
Andreev reflected by energy barriers of the velocity field near the
vortex cores.’ The fractional decrease in damping can then be
converted into the vortex line density in the tangle (27).

Two complementary experiments are worthy of attention. In
the first one, quantum turbulence is generated by an oscillating
grid of fine copper wires spaced M=50 pm apart. By increasing
the forcing, more and more energy is supplied to the flow at the
scale M, all of which is being dissipated in the steady state. Facing
the grid are detectors of quantum turbulence—two vibrating wire
resonators—detecting the transition to quantum turbulence
above a certain drive level (28). Increasing the oscillation ampli-
tude of the grid results in a higher energy decay rate, &; conse-
quently, the quantum wavenumber kq xx&'/# increases. Bradley
et al. (29) then investigated the temporal decay of vortex line
density originating from various levels of intensity of the steady
state; they presented representative results in their figure 2. With
increasing & used to reach the steady state, temporal decay
changed its form from L(t)xt™" (Vinen QT) to L(t) xt™3/? (the
Kolmogorov QT in a bounded domain).¥

*Although the energy spectrum beyond ¢q has not yet been measured, a hint of
possible k=3 scaling at high k appears in the Andreev reflection data (figure
13 in ref. 26) on the vorticity deduced for grid turbulence in *He-B.

SAt very low temperatures below about 0.2 T, the mean-free paths of these
excitations—quasiparticles and quasiholes, the constituents of the normal fluid
of *He-B—exceed the size of the turbulent box; hydrodynamic description of
the normal fluid is therefore meaningless. The interaction of vortex line defects
in the superfluid component of *He-B with the normal fluid thus must be de-
scribed in terms of scattering of individual quasiparticles.

IThe cross-over corresponds to a steady-state level generated by grid velocity
about 5 mm/s, when the grid is forced by about 0.2 pN (30). Multiplying these
values gives the absolute energy decay rate in the stationary case. Knowing the
size of the grid, we estimate that the decay takes place in a volume of order
5x 1078 m3. With the density of *He-B & 100 kg/m? this gives ex~2x 1074
m2/s3, resulting in (o =21(z/x3)""* ~ M.
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In the second experiment, Bradley et al. (31) measured directly
the energy decay rate & of grid-generated turbulence inside a
small box acting as a black body radiator of quasiparticles. The
late-time decay changes in character, from & o« 2 to & = vegx? L2 o t~3—
consequently the turbulent energy decays as Ko t™2, in agree-
ment with the late decay of turbulent energy in classical 3D HIT
in a bounded domain. We emphasize that this experiment pro-
vides a direct measurement of the energy released by freely
decaying quantum turbulence. It is remarkable that, leaving
aside caveats such as homogeneity and isotropy of the turbu-
lence inside the black box radiator, the decay of pure superfluid
turbulence was found to be surprisingly similar to the known
decay of classical 3D HIT. The results also confirm that the
key phenomenological relationship, e=—dK/dt =vgg(xL)?, first
suggested by Vinen (20), is meaningful for the Kolmogorov type
of pure superfluid turbulence.

We now consider another indication of the transition from
Vinen to Kolmogorov turbulence in pure superfluid, following the
scenario of Fig. 1, this time in He Il It is based on the observation
of three critical velocities marking cross-overs between different
types of flow due to the oscillating quartz tuning fork that reso-
nates at 6.5 kHz, with prongs 3.50 mm long and a 90x75-pm
cross-section (32). The first critical velocity of about 2 cm/s is hy-
drodynamic in origin, related to the formation of a vortical
boundary layer, and therefore not directly relevant to turbulence
in the bulk liquid.*

The second critical velocity can be linked reliably to significant
production of quantized vorticity, which then propagates away
from the surface of the tuning fork (or similar oscillators such as
vibrating wires) and features a rapid increase in the drag force.!
The observed drag coefficients are typically 1072 to 10~", much
lower than in classical oscillatory flows, where drag coefficients of
order unity are expected for cylinders or tuning forks at sufficiently
high Reynolds number (or Keulegan—-Carpenter number). This
strongly suggests flow patterns significantly different from classi-
cal turbulence. No large flow structures resembling the classical
wake exist in the superflow above the second critical velocity,
which we therefore associate with the Vinen turbulence. It is only
above the third critical velocity, about 1.5 m/s, that the drag coefficient
starts to rise toward unity, the value typical for classical high Re flows.
This is most likely related to a distinct change in the flow pattem, in
which the superfluid develops larger polarized structures and
starts to mimic the behavior of classical turbulent flows. We are
therefore led to conclude that the third critical velocity marks the
transition from Vinen- to Kolmogorov-type superfluid QT.

Pure Superfluid Turbulence in He Il Driven at Small and Large
Scales. Quantitative data on steady-state and decaying pure su-
perfluid He Il turbulence have been obtained by Golov and co-
workers (34-36). They injected negative ions into the experimental

#Schmoranzer et al. (32) collected evidence from various complementary exper-
iments employing small objects oscillating in He Il in the zero-temperature limit
and argued that the first critical velocity, connected mostly to frequency shifts
rather than changes in the drag force, is associated with the formation of a
number of quantized vortex loops near the surface of the oscillator, possibly
forming a thin layer, which affects the coupling to the fluid and thus the hydro-
dynamic added mass.

lits magnitude is about 6 cm/s if measured at 6.5 kHz, using the fundamental
vibrating mode of the fork, and about 12 cm/s if measured at 39.8 kHz, using
the overtone, satisfying the scaling with the square root of oscillating fre-
quency (33).
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cell by a sharp field-emission tip and manipulated them by an electric
field. This technique can be used for both the generation and de-
tection of quantum turbulence. We focus first on the pure superfluid
turbulence generated by impulsive spin-down, in which a rotating
cubic-shaped container of He II, 4.5 cm in size, is brought rapidly to
rest. For all starting angular velocities (0.05 < Q < 1.5 rad/s) (34), ob-
served decays are of the form L(t) « t~3/2, expected for late decay in
classical 3D HIT decaying in the bounded domain—a strong signa-
ture of Kolmogorov-type QT.

Let us now consider temporal decay of pure superfluid tur-
bulence with relatively low starting vortex line density, generated
using an alternative technique of a jet of charged vortex rings of
size about 1 pum, resulting from the injection of negative ions. At
late times, two distinctly different power law decays were ob-
served, depending on experimental conditions and the history of
preparing the initial vortex tangle. Basically, instances of QT
produced after short injection of ions display L(t) <1/t decay,
while those generated after sufficiently long injection follow L(t) « t=3/2
decay law at late times, in agreement again with Kolmogorov's
pure superfluid turbulence generated by the rapid spin-down
technique.

The phenomenological explanation within our model is as
follows. For short charging times, the turbulent energy is supplied
to the flow at the scale given by the typical size, 1 pm, of small
vortex rings injected to the flow. The situation is basically the
same as in Fig. 1, Top, with the size of the injected rings playing
the role of the mesh size of the grid, M. The result is the Vinen
turbulence with its typical signature, the L(t) « 1/t form of the late
decay. On the other hand, if the tangle of the same vortex line
density is prepared by long charging times, the injected vortex
rings have plenty of time to interact with each other (for more
details, see ref. 14 and numerical simulations therein) as well as
with the already existing vortex tangle. During the reconnection
processes, both smaller and larger vortex loops are created, the
former quickly propagating and decaying and the latter eventually
creating large energy-containing superfluid eddies. This way, a
superfluid energy spectrum is formed whose large scales have a
form similar to classical turbulence. This results in the L(t) «t=3/2
form of the late decay, a typical signature of the Kolmogorov
turbulence in contained domains.

Situations intermediate to these two limiting cases are also
possible, depending on the duration of charging, for which QT is
neither of the Vinen nor of the Kolmogorov type. When charging
is stopped, the vortex line density first roughly obeys the Vinen
L(t) x 1/t type of decay (corresponding to the decay of energy
contained in small eddies of the size of order ¢g), displays a cross-

over, and enters the L(t) xt~3/2 regime.

Quantum Turbulence in the Two-Fluid Regime

At finite temperatures, He Il and *He-B behave as two-fluid sys-
tems consisting of the inviscid superfluid and viscous normal
components having their separate velocity fields. We emphasize
that the presence of the normal fluid renders the issue more
complex.

The first step in the phenomenological description is to deter-
mine which fluid is turbulent. With no vortex lines, the superfluid
component under isothermal conditions flows independently of
the normal fluid possessing a kinematic viscosity v, = u/p,,, where
is the dynamical viscosity of the entire liquid. Potential superflow
can be superimposed on the normal fluid flow. Although this ideal
situation is uncommon, there is experimental evidence in flow of
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He Il around oscillatory objects for classical instabilities in the nor-
mal fluid flow before the critical velocity for Glaberson-Donnelly
instability is reached in the corresponding superflow (37). If vortex
lines are present, they couple the two velocity fields by the action of
the mutual friction force, acting at all length scales. This has the
serious consequence of creating superfluid energy spectra of
shapes drastically different from those at T — 0.

Superfluid Turbulence in Stationary Normal Fluid of *He-B.
This case represents the next logical step in the phenomenolog-
ical description of QT because of its simplicity. The simplicity
arises from the relatively high kinematic viscosity of the normal
fluid of ®He-B, which renders the normal fluid effectively station-
ary. ** Although we formally deal with two velocity fields, the
velocity field of the normal fluid only determines the unique and
physically significant frame of reference in which the normal fluid
is at rest.

Experiments with *He-B have to be performed at sub-
milliKelvin temperatures; to keep the flow so cold, the energy
input needs to be very modest, typically of the order a few
nanowatts. It is this factor and the high viscosity of the normal fluid
that ensure that the normal fluid remains at rest with respect to the
experimental container. The vortex lines will thus not move freely
but are subject to a friction force as they move; this friction is
temperature dependent and becomes larger as T — T, (38). We
should therefore expect that superfluid turbulence considered in
the earlier section in the zero-temperature limit will be modified
by the presence of damping: Vortex lines will appear smoother
and short Kelvin waves and vortex cusps resulting from recon-
nections will be quickly damped out. With increasing temperature
the damping becomes so strong that above ~0.6T. quantum
turbulence does not exist. Temperature thus plays a similar role
here as the inverse Reynolds number in classical turbulence (39).

The energy spectrum of the turbulent superfluid possesses the
following special features: 1) There is a maximum size of the tur-
bulent eddy limited by mutual friction (40), and 2) dissipation due
to mutual friction occurs at all length scales and 3) modifies the
roll-off exponent to —3 at largest scales which, according to pre-
dictions of continuum approximation, displays a cross-over to the
classical —5/3 (40, 41). Let us emphasize, however, that these re-
sults have been obtained theoretically within the continuum ap-
proximation, i.e., assuming that all relevant length scales of the
problem are sufficiently larger than ¢ and the energy input occurs
at large scales. These features are yet to be investigated in
detail experimentally.

Quantum Turbulence in He Il above =1 K. Here He Il displays
the two-fluid behavior. Isothermal incompressible flow of the
normal fluid of He Il can be described using the Navier-Stokes
equations with density p, and very low kinematic viscosity of order
k, characterized by the analogue of the Reynolds number in
classical viscous fluids: the Donnelly number, Dn, which is based
on the kinematic viscosity of the normal fluid alone, v, =u/p,,, not
on the kinematic viscosity v=pu/p of the entire fluid.™

**We assume here that the hydrodynamic description of the normal fluid of *He-
B is justified; i.e., the mean-free path of its constituents, viz. quasiparticles and
quasiholes, is short; in practice, this means that the temperature is above
about 0.3 T,.

T This dimensionless parameter, a “Reynolds number” defined for the normal com-
ponent of He Il only, was named by Schmoranzer et al. (37) as the Donnelly
number, based on the latter’s early investigations of boundary layer flows of He 1.
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Fig. 2. Temporal decay of vortex line density (Left) in spherical counterflow generated by a steady-state central heater and (Right) generated
mechanically by a vibrating fork. In both panels, to is a virtual origin of time and L, denotes the remnant vorticity. Red dashed lines have the slope

1/t to guide the eye.

Schmoranzer et al. (37) used this nomenclature for oscillatory flows
at high Stokes numbers, but we extend its definition for any
quantum flow of superfluid helium and suggest that its meaning is
the same for the normal fluid flow as that of the Reynolds number
in classical flows. Flow of the superfluid component of He Il is
potential. In isothermal flow of He Il, the normal and superfluid
velocity fields are independent but become coupled by the mu-
tual friction force when quantized vortices appear in the super-
fluid. Additionally, any temperature gradient in He Il results in a
thermal counterflow of the normal and superfluid components
against each other which we shall consider in detail later.

From the fluid-dynamical point of view, the situation in He II
differs from that in *He-B because the normal fluid is much less
viscous. Additionally, the mutual friction force (characterized by
the dissipative mutual friction parameter a) (42) at temperatures
far enough away from T, is typically weaker by one to two orders
of magnitude than in 3He-B above ~0.3T., considered above. It
therefore seems sensible to check whether the physical picture of
two nearly independent velocity fields agrees with some experi-
mental observations. We first focus on the isothermal and
mechanically driven flows of He II.

It is often stated in the literature that the mechanically driven
He I, with both components forced in the same way, results in the
so-called coflow and represents Kolmogorov-type QT. This,
however, is generally not the case. Experimental evidence on this
point comes from a recent Prague experiment. QT is driven
mechanically by a small quartz tuning fork with prongs of small
(75%90) pm? cross-section. Fig. 2, Right shows that L(t) « 1/t, the
late temporal decay of the Vinen type, in accordance with Fig. 1,
Top, where the flow is driven at a scale smaller than or comparable
to €q.** The normal fluid is therefore driven by the fork at scale
smaller than n,, for which the classical phenomenology is hardly
applicable. The situation is somewhat as in *He-B, but without the
unique quiescent normal fluid frame; the normal fluid flow is
characterized by Dn=17, which is slightly past the classical in-
stability (37). Mutual friction is weak and does not significantly
affect the decay.

It is fair to note that QT generated by an oscillating fork is far
from HIT, so the experimental results should be interpreted with
care. The nonhomogeneous tangle is expected to undergo a decay
process accompanied by vortex diffusion. However, convincing

At T=1.35 and 1.45 K the Kolmogorov dissipation scale in the normal com-
ponent, 7, is even larger and, at 1.65 K, about equal to (q.

6 of 10 | PNAS
https://doi.org/10.1073/pnas.2018406118

experimental evidence was provided by Milliken et al. (43), who
used the technique based on pulses of negative ions propagating
through the steady state and decaying vortex tangles generated by
ultrasound. The pulses were shaped by gate grids and manipulated
by electric field, so that they could be stopped at a chosen position
to provide spatial as well as temporal information on the decay. An
overall inverse time decay of L was observed, which seemed to
preserve its spatial profile, indicating that local decay dominates
over diffusive phenomena. Under such an assumption, the nonlin-
ear decay rate o L? would first lead to a rapid homogenization of
the tangle, which would further decay as L(t) «t~1.58
Kolmogorov Quantum Turbulence in Coflowing He Il. Consider
now QT in coflowing He Il at T> 1 K. Perhaps surprisingly, it has
properties closely similar to those of 3D HIT in classical fluids. In
contrast with 3He-B, the normal fluid of He Il becomes readily
turbulent: There are not one but two turbulent velocity fields,
coupled by the mutual friction force, acting at all relevant length
scales. We are dealing here with the situation of double turbu-
lence and have to examine both the superfluid and the normal
fluid energy spectra.

Let us consider the example of turbulent He Il flow driven by a
grid at mesh scale M > (q. To simplify the problem, let us artifi-
cially switch off the mutual friction and assume that the temper-
ature is just below 1.5 K, where v, &k (42)—in other words, the
Donnelly number is equal to the superfluid Reynolds number. It
follows that ¢q in the superfluid is equal to the Kolmogorov dis-
sipation scale 7, in the normal fluid and that the turbulent spectra
in the normal fluid and in the superfluid are naturally matched at
scales considerably larger than ¢q or ,. The difference is that while
in the normal fluid the Richardson cascade is terminated at this
scale, it continues in the superfluid in the form of a Kelvin wave or
quantum stress cascade, and the dissipation occurs beyond k*
introduced above. Upon decreasing (increasing) the temperature,
due to the steep temperature dependence of v (T), 1, becomes
larger (smaller) than ¢q. By turning on the mutual friction, not much
happens at large scales (significantly exceeding 7, or ¢, whichever
is larger), as large eddies of normal and superfluid components are

$5While this scenario is contrary to the claim that the spatial profile is maintained
during decay, it is surprisingly consistent with the raw data in figure 2 of ref. 43,
where in the center of the cell, the initially high L drops by a factor of ~4.5
within the first 4 s, while in the border regions a significantly smaller drop by a factor
of ~2 is observed. This validates the scenario of predominantly local decay of
nonhomogeneous QT, which results in L(t) xt™" at late times.
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closely matched. Upon approaching smaller and smaller scales,
however, the matching cannot be complete, dissipation due to
mutual friction starts to operate (the roll-off exponent becomes
gradually steeper), and one component starts to act as a source or
drain for the other. This results in an increase of intermittency
corrections, as predicted by Boue et al. (44) and experimentally
confirmed by Varga et al. (45).

Both the superfluid and normal energy spectra in steady-state
and decaying Kolmogorov turbulence of He Il contain an inertial
range of scales. This has been observed in a number of coflow
experiments, first by Maurer and Tabeling (46) in the von Kéarman
flow and by Roche and coworkers (47) in superfluid wind tunnels
(48). In these experiments, velocity fluctuations were determined
using a Pitot tube, and the characteristic f~>/3 frequency depen-
dence of the spectrum was observed; this scaling corresponds to
E(k) ~ k=573, if one uses Taylor's frozen flow hypothesis, and
confirms the presence of a Richardson energy cascade as in
classical turbulence. Geometrically it means that the turbulence
contains, within a tangle of random vortex lines, partially polarized
vortex lines, or bundles, with relatively large coarse-grained su-
perfluid vorticity. We also note that the inertial range in the tur-
bulent normal fluid was observed by Guo and coworkers (45) by
visualizing grid-generated turbulence using neutral He2* mole-
cules, allowing one to measure transverse velocity structure
functions selectively in the normal fluid. This is possible due to the
small size of He2* triplet molecules that are effectively part of the
normal fluid and do not trap vortex lines above &1 K (49).

Grid-generated QT in He Il, driven at the large-scale M, when
both components are turbulent on scales appreciably larger than
(o, represents a typical example of Kolmogorov QT. Large normal
and superfluid scales are closely coupled by mutual friction, which
does not cause any appreciable energy loss and, in accordance
with Richardson’s picture, there is an inertial range characterized
by the —5/3 exponent (neglecting intermittency). Matching is not
possible once the quantum or Kolmogorov length scale is
reached. Mutual friction partly dissipates and partly transfers the
turbulent energy from superfluid eddies to normal ones and vice
versa, with either fluid serving as the drain or source of energy for
the other. Viscous dissipation, together with the coupling by
dissipative mutual friction, terminates both normal and superfluid
cascades. The Kelvin wave or quantum stress cascades, so important
in the zero-temperature limit, do not play a significant role here.
Turbulent coflowing He Il above about 1 K can thus be treated, at
least approximately, as a single-component quasiclassical fluid,
characterized by the temperature-dependent effective kinematic
viscosity vef. Its value can be extracted from the temporal decay,
when L(t) displays the universal form of the decay [as observed in
many experiments (10, 24, 25, 50-52) and reviewed in ref. 25]:

3
L(t+to)=L(T) =3;/5:<D \/%1_3/2 . [3]

Here ty is the virtual origin time marking the instant when L
would be infinite if this law of decay were to be valid, and Dis
the size of the turbulent box (playing the role of saturated
energy-containing length scale). This decay is the typical qua-
siclassical signature (20) of the Kolmogorov QT, allowing us to
extract v(T); see also the more rigorous recent treatment
based on independent measurements of decaying turbulence
in the superfluid and normal components of He Il (52, 53).
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Thermal Counterflow of He Il. The flow of He Il can take various
forms because of the existence of two fluid components. One can
push the normal fluid and the superfluid components to flow with
different average velocities, a situation generally called counter-
flow. A special case of counterflow is the thermal counterflow,
easily achieved in a channel closed at one end and open to the He
Il bath at the other. Heat flux g supplied at the closed end is
carried away by the normal fluid, with the superfluid flowing in the
opposite direction so that the net mass flux is zero. The counterflow
velocity uns =q /(psoT) is established, where ¢ is the entropy of He
IIl. QT appears in the channel when g exceeds a critical value.

It has been known since early experiments, notably those per-
formed by Tough’s group (56), that counterflow turbulence can exist
in two forms, referred to as T I and T . Recently Guo and coworkers
(49, 57), using helium excimer molecules as tracers of the normal
fluid, revealed that the normal fluid in the T Il state is turbulent. In the
T | state, where the flow of the normal component is laminar beyond
reasonable doubt, the turbulent energy is injected around ¢q by the
reconnection-based mechanism first identified by Schwarz (54, 55).
The superfluid energy spectrum therefore has the shape as sketched
in Fig. 3, Top. The shape is the same as in Fig. 1, Top. For small
enough & we deal with Vinen turbulence, the decay of which was
experimentally confirmed (58) to obey L(t) «t™" at late times.

The two forms of QT in He Il—Vinen and Kolmogorov—display
two distinctly different forms of decay which subsequently allow
the definition of two effective kinematic viscosities of turbulent He
II. In addition to veg(T) introduced above for Kolmogorov QT, we
now follow refs. 36 and 52 and note that the energy per unit mass
associated with a random tangle of vortex lines in Vinen QT (i.e.,
superflow circulating with velocity x/(2zr) around vortex lines) is
given by (pk?)/(4mp) LIn(¢/&,), where ¢=1/+/L denotes the mean
intervortex distance in the tangle. By differentiating with respect
of time and using Eq. 2, we see that the turbulent energy would
then decay as e =v'x%L?, where the quantity

39
V=g  xln(e/e) [4]

is the effective kinematic viscosity for the Vinen-type QT.

We thus have two definitions for two effective kinematic vis-
cosities v and vef, which can be extracted from decaying turbu-
lent He Il flow of the Vinen and Kolmogorov forms. Their existence
is not a consequence of the two-fluid behavior, since they readily
exist in the T — 0 limit as well. And they need not be the same,
either. Indeed, while ve is a property of turbulent flow of the
entire He 1, i.e., of both fluids whose turbulent motions are cou-
pled at large enough scales, v/ is the property of a single fluid flow,
namely of the turbulent superfluid component, coupled by the
mutual friction force to the normal fluid. This difference—coupling
to the normal fluid as well as the factor p,/p—should disappear
with dropping temperature, as p, approaches p and the mutual
friction gradually ceases to operate. For reasons such as ill-defined
boundary conditions in He Il below 1 K, the values of v’ and v are
so far not determined with sufficient accuracy to unequivocally
confirm that v equals v at low temperature; however, they
both have been found to be of order 0.1x (51).99

¥IDiscussion of boundary conditions for turbulent flows of helium superfluids is
outside the scope of this paper. In short, there is experimental evidence that
both in He Il (51) and in 3He B (59) the turbulent flow with dropping temper-
ature decouples from the container reference frame.

PNAS | 7 of 10
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Superfluid energy spectrum in thermal counterflow
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Fig. 3. Schematic view in log-log coordinates of the general shapes of
3D superfluid energy spectra of thermal counterflow turbulence in
He Il. (Top) Vinen turbulence, where the energy input identified by
Schwarz (54, 55) occurs at (g = 27/ ko (red arrow). The temporal decay
is of the form L(t) < 1/t. (Middle) Upon increasing the heat flux, there
is additional quasiclassical energy input in the normal component at
large scale which, because of mutual friction, occurs in the superfluid
component as well. (Bottom Left) With increasing heat input, there is
energy input at large scale akin to classical turbulence, but the inertial
range of the Kolmogorov-type QT, characterized by the —5/3 roll-off
exponent, cannot develop, as mutual friction acts on all scales making
the roll-off in this range much steeper. There is still a quantum peak
because of the energy input at quantum length-scale (o, which itself
shifts to the right with increasing heat input. (Bottom Right) Once the
heat flux ceases, the quantum energy peak quickly decays and the
energy content at large scales gradually cascades down the scales,
forming an inertial range that acquires classical Kolmogorov form. It
results in a classical decay of the form L(t) x 1/t%2, with growing
quantum length-scale (q.

At this point, we need to discuss the relation between the
quantum length scale, defined as before quasiclassically as

o= (K3/8)1/4, and the mean intervortex distance ¢=1/+/L, as this
quantity is also often referred to in the literature as quantum
length scale. It is easy to show that for Kolmogorov turbulence in
He Il they are roughly equal. Indeed, assuming the validity of the

above quasiclassical relationship & :Ueﬁ(KL)Z (20), we obtain their

ratio to be
1/4
(o K
Q_( 2 . 5
4 (Ueﬁ) [5]

Available experimental data on v#(T) (51, 53, 60, 61) suggest
that in He Il over most of the temperature range (g and ¢ differ
by less than a factor of 2.

Let us now return to counterflow turbulence. Upon increasing
the heat load, there develops an instability of laminar flow that
carries the heat away from the heater, and the transition to tur-
bulence occurs in the normal fluid (as in any channel or pipe flow
of classical viscous fluid) to which the energy is injected quasi-
classically, at the outer scale of order the size of the counterflow
channel, D. An inertial range of scales with the classical roll-off
exponent of —5/3 cannot be established in the normal fluid. The
reason is that mutual friction creates superfluid eddies and cou-
ples them with normal eddies and also dissipates the turbulent
energy at all scales. This mutual friction mechanism serves as an

8 of 10 | PNAS
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additional source of energy injection to the superfluid compo-
nent, at large scales, resulting in the gradual growth of a classical-
like peak, as sketched in Fig. 3, Middle; the situation for increasing
heat input is shown in Fig. 3, Bottom. The sketch takes into ac-
count that eddies larger than D cannot exist and that steady-state
measurements of the structure functions (49, 57) suggest a
steeper roll-off exponent of its right-hand side. Of course, the
steady energy input into the superfluid component identified by
Schwarz (54, 55) operates and results in a quantum peak in the
superfluid energy spectrum around (q. Its low wavenumber end is
again of the k? form because of the equipartition theorem (62).

This steady-state, two-peak shape of the superfluid energy
spectrum drastically changes during the temporal decay that oc-
curs when heating is switched off. For a short transition time,
counterflow is still driven by the excess entropy contained in the
channel; for details, see refs. 63 and 64. The quantum peak
quickly decays, displaying a decay of the L 1/t type. Simulta-
neously, over times of the order of the turnover time of large
eddies, the energy contained at large scales of both fluids pro-
ceeds through the inertial range of scales. From now on, the in-
ertial range is characterized by the classical —5/3 roll-off exponent,
as superfluid and normal eddies are coupled at these scales; thus,
hardly any significant dissipation occurs, with the situation being
similar to that in the coflow (Kolmogorov) QT. As the energy
reaches smaller and smaller scales, a larger number of vortex lines
are needed for carrying nearly the same energy content. This is dis-
played as a “bump” in recorded decay curves of L(t). The qua-
siclassical decay occurs beyond this point, displaying L(t) &t~/
(58, 62).

The dynamics of vortex tangles in thermal counterflow are not
fully understood by any means. Their complexity can be illustrated
by an experimental study of thermal counterflow in a channel
when the turbulence was not allowed to settle to a statistical
steady state (64). This was achieved by modulating by a square-
wave g and a similarly varying counterflow velocity uns. The tur-
bulent transients thus obtained allowed one to study, by using the
phase portrait, the time evolution of both the growth and decay of
L. In particular, while the growth of L always followed the same
form, independent of the length of the heat pulse, the temporal
decay of vortex line density was strongly affected by the history of
the turbulent sample (figure 7 in ref. 64). The bump in decaying L(t)
was displayed only in decays of dense original tangles, prepared using
long heat pulses sufficient for generating large eddies and, with the
aid of mutual friction, the classical-like part of the superfluid energy
spectrum. The situation is similar to that discussed earlier, when the
tangle was generated in the T — O limit by the injection pulses of ions
(immediately creating small vortex rings) of variable duration (36). In
both these cases the decay of L(t) depends on the shape of the su-
perfluid energy spectrum (also on the shape of the energy spectrum in
the normal fluid in the case of thermal counterflow, due to coupling by
the mutual friction force); these shapes depend on how intensely and
on which length scales QT is driven.

Let us add that this phenomenological scenario of thermal
counterflow and its decay, complex though it is, derives indirect
support from complementary experiments. First, the Prague
group investigated in detail the steady-state (65) and temporal
decay (66) of pure superflow in square channels, with ends cov-
ered by sintered silver superleaks, allowing a net throughflow of
the superfluid component only (the normal fluid throughflow was
suppressed by submicrometer pores of the sintered silver plugs).
While the measurements of L in the steady states of counterflow and
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pure superflow display the same value for the same mean counter-
flow velocity, the temporal decays are distinctly different. The
experimentally recorded bump on L(t) decay curves originating
from pure superflow is suppressed, either fully or at least signifi-
cantly. The reason is easily understood: In pure superflow the
classical energy input at large scale of order Dis inefficient, as there
is no net flow of the normal component through the channel.

In the second example, the Prague group utilized an experi-
mental cell of the outside form of a regular dodecahedron con-
taining a spherical sample of He II. The heat, supplied by a small
spherical heater in the center, generates a nearly spherical
counterflow. Upon exceeding some critical heating level, an in-
homogeneous vortex tangle is formed and surrounds the spheri-
cal heater. A full account of this experiment will be published
elsewhere, but preliminary second sound data display temporal
decay of the form L(t) x 1/t, where L(t) now stands for the spa-
tially averaged vortex line density, detected by a chosen spherical
resonant harmonic of second sound, as shown in Fig. 2, Left.
Assuming local decay, this is a typical signature of Vinen type of
quantum turbulence. It is important to emphasize that this decay
form follows the steady-state vortex line density values which, in
conventional 1D thermal counterflow, would have displayed a
complex decay containing a bump and subsequent quasiclassical
late decay «t~3/2. The reason for this distinctive difference is the
lack of classical large-scale energy input that in the “conventional”
1D counterflow occurs due to the friction between the normal
fluid and solid channel wall. Such an energy input does not exist in
spherical counterflow with radial normal fluid flow.

Conclusions

We have presented a unified phenomenological description of
various forms of QT in helium superfluids. We believe that all
forms of QT observed to date, and their relation to classical

turbulence in viscous fluids, are broadly understood at this phe-
nomenological level. In particular, we presented a unified de-
scription on the existence of the Vinen and Kolmogorov forms of
QT. Their existence is not a consequence of the two-fluid behavior
of quantum fluids; they readily exist as two different forms of pure
superfluid turbulence in the zero-temperature limit. These two
forms emerge as a direct consequence of quantum mechanical
constraint on circulation in a superfluid, which results in the exis-
tence of a finite quantum length scale. We have discussed a cross-
over from one form of QT to the other. The very existence of the
quantum length scale makes even pure superfluid turbulence
more complex than classical turbulence in viscous fluids.

At finite temperature, the presence of the normal fluid,
whether turbulent or not, adds more complexity to existing forms
of quantum turbulence and their temporal decays. Although the
phenomenology presented here is semiquantitative at best, this
unified picture captures many experimental facts, known features,
and regimes of quantum turbulence accumulated over many years
of research of helium superfluids, both in the limit of zero tem-
perature and in the temperature range where they display two-fluid
behavior. We therefore believe that our perspective represents
a firm basis for fluid-dynamical studies of even more complex
turbulent superfluid systems, such as mixtures of Bose-Einstein
condensates, heavy atomic nuclei, and neutron stars.

Data Availability. All study data are included in this article.
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We present a unified analysis of the drag forces acting on oscillating bodies submerged in superfluid helium
such as a vibrating wire resonator, tuning forks, a double-paddle oscillator, and a torsionally oscillating disk.
We find that for high-Stokes-number oscillatory flows, the drag force originating from the normal component of
superfluid helium exhibits a clearly defined universal scaling. Following classical fluid dynamics, we derive the
universal scaling law and define relevant dimensionless parameters such as the Donnelly number. We verify this
scaling experimentally using all of our oscillators in superfluid *He and validate the results by direct comparison
with classical fluids. We use this approach to illustrate the transition from laminar to turbulent drag regime in
superfluid oscillatory flows and compare the critical velocities associated to the production of quantized vortices
in the superfluid component with the critical velocities for the classical instabilities occurring in the normal
component. We show that depending on the temperature and geometry of the flow, either type of instability may
occur first and we demonstrate their crossover due to the temperature dependence of the viscosity of the normal
fluid. Our results have direct bearing on present investigations of superfluids using nanomechanical devices

[Bradley et al., Sci. Rep. 7, 4876 (2017)].

DOI: 10.1103/PhysRevB.99.054511

I. PREFACE

Historically, experiments on oscillatory flows of classical
viscous fluids have been studied since the days of Stokes [1],
with many notable developments made in the last century
[2-5]. Recently, oscillating flows have reemerged thanks to
developments in micromechanical and nanomechanical en-
gineering, where access to nano electromechanical systems
(NEMS) [6-10] has offered unprecedented sensitivity and res-
olution in fluid dynamical experiments, allowing the transition
from continuum to ballistic (molecular) regime to be probed
at easily attainable pressures, directly probe fluid boundary
layers [9], or formulate universality relations [6—8] for clas-
sical oscillatory flows. This work extends such universality
relations to superfluids, concentrating on the hydrodynamic
regime; the transitional and ballistic regimes will represent the
subject of a later publication.

An extremely broad range of working fluids of well-known
physical properties [11-13] may be obtained when traversing
the different phases of helium, even limiting ourselves to
the common isotope “He. The normal liquid phase of “He,
known as He I, is a highly interesting working fluid thanks
to its extremely low kinematic viscosity v, which provides
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very high Reynolds number (Re ~ 107) flows in controlled
laboratory experiments [14,15]. Similarly, cryogenic He gas
provides extremely large Rayleigh numbers (Ra =~ 10!7) in
convective flows [16]. Liquid “He undergoes a superfluid
phase transition at 7, ~ 2.17 K at saturated vapor pressure.
Superfluid ‘He, or He 11, is a quantum fluid, and its flow
properties cannot be described by means of classical fluid
dynamics. According to Landau’s two-fluid model [17,18], it
behaves as if composed of two interpenetrating liquids (the
normal and superfluid components) with individual velocity
fields and temperature-dependent densities. At the superfluid
transition at 7}, the density of the normal component accounts
for 100% of the total density, but drops rapidly with decreas-
ing temperature and vanishes for 7 — 0 K.

Oscillatory flows of He II have been studied using var-
ious oscillators such as disks [19,20], piles of disks [21],
spheres [22-24], grids [25-29], tuning forks [30-33], reeds
[34], double paddles [35-37], cylinders of rectangular [38]
or circular cross-section (wires) [39-42] since the discovery
of superfluidity, and have led to important insights to this
fundamental physical phenomenon. For reviews, see [43,44].
Despite these efforts, a universal picture is still missing in
superfluid hydrodynamics, which motivated us to investigate
oscillatory flows of He II due to mechanical oscillators of
largely varied geometries (vibrating tuning forks, a microwire
loop, a torsionally oscillating disk, and a double-paddle oscil-
lator) and search for universal features.

II. INTRODUCTION

In this section, we introduce the key concepts of super-
fluid hydrodynamics, and use classical oscillatory flows in

Published by the American Physical Society
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the high-Stokes-number regime as a stepping stone to derive
the properties of similar flows in superfluids. We limit our
discussion of the dynamics of superfluids to the Newtonian-
type hydrodynamic description applicable above ~1 K, as this
corresponds to most of the experiments described here.

A. Superfluid hydrodynamics

On a phenomenological level, superfluid “He at finite
temperatures is described as consisting of two components:
a viscous normal component and an inviscid superfluid com-
ponent [17]. Their temperature-dependent densities p, and ps,
respectively, add up to the (nearly temperature-independent)
total density of He II, p. While the normal component behaves
classically, possessing finite viscosity and carrying the entire
entropy content of He II, the superfluid component has neither
entropy nor viscosity and, due to quantum restrictions, the
vorticity is constrained into line singularities called quan-
tized vortices [18]. In He II, each quantized vortex carries
one quantum of circulation, given as k = h/my ~= 0.997 x
1077 m?%s~!, where A is the Planck constant and m4 denotes
the mass of a *He atom. Superfluid turbulence [45] therefore
takes the form of a dynamic tangle of quantized vortices in the
superfluid component.

At temperatures above ~1 K, where the fraction of the
normal fluid is significant, this tangle of quantized vortices
typically coexists with classical-like turbulent flow of the
normal component, making up what is usually called quantum
turbulence (turbulent flow of a quantum fluid). In the presence
of quantized vortices, the otherwise independent normal and
superfluid velocity fields become coupled by a mutual friction
force which arises due to thermal excitations (responsible for
the entropy and viscosity of the normal component) scattering
off the cores of quantized vortices. Quantum turbulence can
thus be loosely defined as the most general way of motion of
quantum fluids displaying superfluidity [45].

Does quantum turbulence always contain quantized vor-
tices? Strictly speaking, quantized vortices are not a necessary
ingredient of quantum turbulence, as one can imagine a two-
fluid flow of He II consisting of turbulent normal flow and
potential superflow. Indeed, in the hypothetical case of a
macroscopic sample of He II free of quantized vortices (i.e.,
without mutual friction coupling the two velocity fields), in
an isothermal flow the normal and superfluid components
move independently and any instability criteria ought to be
applied to them separately. In this hypothetical case, quantized
vortices must be nucleated intrinsically; this process requires
critical velocities of order 10 m/s or higher [45]. In practice,
however, remnant vortices always exist in macroscopic sam-
ples of He II and nucleation of quantized vorticity takes place
extrinsically, by stretching and reconnections of seed vortex
loops. In many types of flow, the critical velocity for extrinsic
vortex nucleation is observed to be a few cm/s. As turbulence
of the normal component may be possible even below this ve-
locity threshold, it follows that there indeed is a possibility of
having a quantum flow displaying (nearly) potential superflow
together with a vortical flow of the normal component.

With very few remnant quantized vortices present, the
mutual friction force is negligible and, according to the two-
fluid model of Landau [17], an isothermal flow of the normal

component is described by the Navier-Stokes equations, while
that of the superfluid component by the Euler equations for
ideal fluids. Under these conditions, any body moving through
He II at low velocity below the (generally independent) criti-
cal thresholds would experience drag forces originating from
the normal component alone, while the drag forces offered by
the superfluid component are zero (neglecting any drag due to
surface waves and compressibility effects). In this case, the su-
perfluid component can be understood as a physical vacuum,
merely renormalizing the effective mass of the oscillating
body by means of conservative inertial forces. Therefore, to
derive the scaling laws for the drag forces in the Newtonian
limit, we must analyze the Navier-Stokes equations governing
the motion of the normal component.

B. Classical oscillatory flows: Hydrodynamic limit

To describe a classical oscillatory flow, the governing
Navier-Stokes equations (NSE) may be expressed in terms
of dimensionless velocity #’ = u/U, time ' =¢/T, and po-
sitions ¥ =r/L; as

a)Ua—u, + U—z(u' -V'u'+V'p) = ﬂA’u' (1)

o L PI=12%"

where the characteristic length scales L; , are used together
with the characteristic velocity U to estimate the maximum
magnitude of the respective velocity derivatives. An indepen-
dent timescale is introduced, given (in the continuum limit) by
the angular frequency of oscillation w. Generally, the choice
of L and L, depends on body geometry and flow parameters.
Candidates may include the typical body size D, the surface
roughness R, or the Stokes boundary layer thickness (vis-
cous penetration depth), defined as § = +/21/(pw), where n
denotes the dynamic viscosity of the working fluid. If, for a
given body § < D, one may say that the object oscillates in
the high-frequency regime, which is equivalent to the high-
Stokes-number limit St = D?/(78%) > 1.

In the high-frequency limit, depending on body geometry
(especially surface roughness and the presence of sharp cor-
ners), § or D may take the part of L (related to the largest tan-
gential velocity derivative) in the NSE, but it is always § that
takes the part of L, (related to the largest velocity derivative
in any direction) (see Fig. 1). When sharp corners are present
[case (a) in Fig. 1] or when R, > § [case (d) in Fig. 1], one
may safely put L; = L, = 4, and the Navier-Stokes equation
may be expressed using only one dimensionless parameter,
the boundary-layer-based Reynolds number: Res = (6pU)/n.
Conversely, for a hydrodynamically smooth body (R, < §)
without any sharp corners, such as a cylinder [case (b) in
Fig. 1], one would obtain the Navier-Stokes equation with the
Keulegan-Carpenter number K¢ = UT /D as the only relevant
dimensionless parameter [2]. However, for laminar flows with
K¢ « 1, where the nonlinear term can be neglected, the
viscous drag force would still be expected to scale with Res,
as for the viscous drag L, = § is the only relevant length scale
even in this case.

Of the oscillators used in this work, only the disk may
be considered hydrodynamically smooth. The classification
of our oscillators would thus be tuning forks [Figs. 1(a) and
1(d)], vibrating wire [Fig. 1(d)], double paddle [Fig. 1(a)],
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FIG. 1. Illustration of the effects of surface roughness and sharp
corners on the estimates of (maximum values of) velocity derivatives
in the high-frequency limit, where § < R. In cases (a) and (d), both
velocity derivatives present in the NSE are estimated using §, while
in case (b), the tangential velocity derivative is estimated using R and
the Laplacian using 8. In case (c), where R, ~ §, reliable estimates of
the tangential derivative prove difficult; a smooth crossover between
cases (b) and (d) is expected.

disk [Fig. 1(b)]; see Sec. III for details. The tuning forks
contain sharp corners and have a surface roughness exceeding
the boundary-layer thickness at the same time. We expect the
roughness to be more significant for the commercial tuning
fork (see Sec. IIT A).

C. Oscillatory flows of He 11

Assuming two independent velocity fields in He I, as is the
case at low velocities, where the normal component exhibits
laminar flow and the superfluid component remains potential,
the above considerations are fully applicable to the oscillatory
viscous flow of the normal component. We therefore replace
p by pn, decompose the pressure into partial pressures of the
normal and superfluid components, and replace § by §, =
21/ (paw), where n denotes the dynamic viscosity of He
II. Again, if, for a given body §, < D, and R, > 8, (in our
experiments, typically &, ~ 1 um, except for the disk, where
8p ~ 0.5 mm), we may put L; = L, = §,, and the Navier-
Stokes equation may be written using only one dimensionless
parameter: Dn = (8,0,U)/n, which we call the Donnelly
number [46]:

au, ’ r’ ./ 1’
2W+Dn(u-Vu +Vip)=Au. 2)

We note that Dn will become equivalent to Res at the su-
perfluid transition temperature 7}, allowing direct comparison
with classical fluids.

If 6, < R is satisfied (high-Stokes-number limit), then the
flow may be regarded as potential everywhere outside the thin

boundary layer of thickness on the scale of §,. Moreover, if §;,
is smaller than the typical radius of curvature of the oscillator
surface, the surface may be described as consisting of many
planar elements, and the velocity profile within the boundary
layer is given by the solution to Stokes second problem (an
oscillating plane). In laminar flow around such a body, the
average energy dissipation per unit time is given by [47]

flAvLmlzdS =55

where Avrg, is the difference between two local velocity
amplitudes projected tangentially to the surface, that of the
potential flow just outside the boundary layer and that of the
surface element of the body. Then, ¢ is the local flow en-
hancement factor relating this velocity difference to the (local)
velocity amplitude upo of the surface element in question:
|Avrgt] = apury. Integrating over the entire surface of an
oscillator, we get

ofutydS,  (3)

_ Otf;"Upz Sr 1 , (4)
2 by
where U, is the maximum velocity amplitude along the sur-
face of the resonator (peak velocity). The dimensionless quan-
tity of order unity § = § utds/ (SrUpz) describes the velocity
profile along the resonator, and an effective surface area S, >
S may be used to account approximately for surface rough-
ness. The integrated flow enhancement factor « is defined
from af& = f aLuLOdS / (SrU 7). We note that for a smooth

rigid oscillator this becomes o = ¢ ozde /S, e.g., for a sphere:
ar, = 3/2sin(6), with the angle & measured from the direction
of the flow, and o = % Similarly, for a cylinder oriented
normally to flow, o, = 2sin(f) and o = 2. We emphasize
that the above derivation is valid for all the cases described in
Fig. 1, as the length scale relevant to viscous drag is always §,.
Using the peak velocity U,, it is possible to model a
given mode of the resonator as a one-dimensional (1D) linear
harmonic oscillator, as done in Ref. [30] for a tuning fork. This
leads to the definition of a (net) dissipative force amplitude:
_AE) as—nSrUp. (5)
Up n
We note that this force is meaningful only in the 1D model
of the given resonant mode (or for a rigid oscillator) and
does not, generally, offer a direct measure of the total forces
experienced by the body. In analogy with steady flow, we
define the dimensionless drag coefficient related to the normal
component of He II as

on 2F 2085
P ApU2 T A palpdy

= ®/Dn, (6)

where A is the sectional area perpendicular to the direction of
flow, and the dimensionless quantity & = 2«a£S; /A is deter-
mined purely by the geometry of the oscillator. This scaling
law is valid universally for laminar flow around all types of
objects shown in Fig. 1.

Additionally, in accordance with the principle of dynam-
ical similarity, for hydrodynamically rough bodies or bodies
with sharp corners, the normal fluid drag coefficient may
be expressed as a unique function of the Donnelly number
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C5 = C(Dn) even in nonlaminar flow. Any departure from
this function must then signify either a violation of these
assumptions or an instability occurring in the superfluid com-
ponent. In such a case, if the superfluid component becomes
turbulent at some critical velocity Uc, we expect a marked
increase in the drag coefficient above the dependence Cf}(Dn)
measured in a classical fluid (substituting the total density o
for p, and Re; for Dn).

The Donnelly-Glaberson (DG) instability leading to the
production of quantized vorticity in the superfluid is related
to self-reconnections of seed vortex loops. This process has
been described in the literature [48,49], and for macroscopic
objects, the related critical velocity is expected to scale as
Uc « /kw. Hence, it is convenient to define a reduced dimen-
sionless velocity U = U,/+/kw. To facilitate a hydrodynamic
description of the drag forces originating in the superfluid
component, we also define the superfluid drag coefficient

o 2F _OF -
b= ApsU? T Apskal?’

For laminar/potential flow of normal/superfluid components,

this reduces to
10n
; o= ol (8)
K p;

where @ is the same as above. If turbulence is triggered in
the superfluid component without any significant coupling to
the normal component, again a unique function C]S)(ZA] ) should
be observed. However, this scenario seems unlikely except
close to the critical velocity, as the action of the mutual friction
force would couple the two components when a sufficient
density of quantized vortices is produced.

In the turbulent drag regime, at velocities sufficiently above
the critical values, the normal and superfluid components are
expected to be coupled due to the mutual friction force and
contribute to the pressure drag together. In this situation, the
classical definition of the drag coefficient is applicable: Cp =
2F /(ApU?), where the total density p = p, + ps is used.
It is expected that in coupled turbulent flows, Cp will tend
towards a temperature-independent constant value of order
unity [43,50].

The total energy contained in the oscillatory motion of the
resonator and the fluid is given as £ = mefoIf /2, defining the
effective mass of the resonant mode m.g. For a quasi-one- or
two-dimensional resonator oscillating perpendicularly to its
large dimension(s), such as a thin cantilever, beam, or mem-
brane, it follows that mes = Em 4+ myp, where m is the actual
mass of the resonator and myp represents the hydrodynamic
added mass. If the hydrodynamic mass contribution can be
neglected, it is convenient to define a fluidic quality factor Qs:

L _(E) _ o&S: [npn _ opuSidn ©
Or  oE B meer ¥ 2w 2m

which can be directly linked to the resonant frequency f and
linewidth A by Of = f/(A — Ap), where Ay is the linewidth
in vacuum. Conversely, the effective mass may be expressed
from the resonant frequency in vacuum fy as meg/(Em) =
(fo/ )

The fluidic quality factor in Eq. (9) differs from the one
given in Ref. [7] (in the limit of Newtonian hydrodynamics)

=

|-

by the explicit inclusion of the flow enhancement factor oc. We
note that this factor is related to the potential flow outside the
boundary layer and is necessary not only to recover correctly
the analytical solutions obtained for the drag force acting on
an oscillating sphere or cylinder, but in fact for all oscillators
with nontrivial geometry. The fluidic quality factor Qr is
related to the drag coefficient prefactor @ by

Amegp

= —. 10
QfA(Snpn ( )

This relation may be used to extract the value of @ directly
from resonant properties of the oscillator, without precise
calibration of driving force or peak velocity. In the laminar
regime, it can also be used to infer either force or velocity,
provided that the other quantity is known, together with mg,
A, and working fluid properties.

The prefactors in the universal scaling law predicted for the
oscillators used in this work will be discussed case by case in
Sec. II1.

D. Multiple critical velocities in the superfluid

Here, we comment briefly on the transition to turbulent
drag regime observed in the superfluid at very low tempera-
tures corresponding to the ballistic regime. In oscillatory flows
under these conditions, a number of experimental studies us-
ing vibrating wires [41], grids [26,27], or tuning forks [31,51]
reported observation of more than one critical velocity of
hydrodynamic origin. Recently, we have presented convincing
evidence for three distinct hydrodynamic critical velocities
and proposed an explanation linking all the observations of
oscillatory flow in zero-temperature limit into a single frame-
work [33].

The first critical velocity, connected mostly to frequency
shifts rather than changes in the drag force, is associated with
the formation of a number of quantized vortex loops near the
surface of the oscillator, possibly forming a thin layer, which
affects the coupling to the fluid and thus the hydrodynamic
added mass. This first critical velocity is hardly observable in
the two-fluid regime above 1 K. The second critical velocity
is related to the quantized vorticity propagating into the bulk
of the superfluid, either in the form of emitted vortex loops
or, eventually, as a turbulent tangle. It is always accompanied
by a marked increase in the drag force and usually hysteresis
(detectable with amplitude sweeps). We would like to stress
that it is this critical velocity which we will be discussing later
in relation to the experiments performed in the hydrodynamic
regime above 1 K.

For completeness, there is a third critical velocity of hy-
drodynamic origin, likely associated with the development of
larger vortical structures from bundles of polarized quantized
vortices. We note that at finite temperature, such polarized
vortex bundles or rings have been studied numerically [52,53].
The mentioned critical velocity (typically above 1 ms™')
might not be relevant in the two-fluid regime at all, as classical
features would likely develop in the vortex tangle due to
mutual friction even before this mechanism can take effect.
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E. Additional dissipation mechanisms

In addition to viscous damping, losses due to sound emis-
sion through the surrounding fluid may occur, and may be
accounted for approximately [54]. In this work, acoustic
losses can be safely neglected for the fundamental mode of
both tuning forks used and represent perhaps a very small
contribution to the damping the first overtone of the custom-
made fork [55]. Based on our previous studies of acoustic
emission by oscillating objects in He II [54,55], acoustic
losses are negligible for all other oscillators used in this work.
In our experiments, no sign of cavitation and associated losses
was detected.

We also note that the above description of viscous dissi-
pation is approximate in the sense that it neglects the steady
streaming flow that is known to exist in the vicinity of the
oscillating objects and has been recently visualized in He II
in highly turbulent flow due to vibrating quartz turning fork
[38]. However, the streaming flow has negligible effect on the
drag forces measured in laminar viscous flow, as the typical
length scale associated with streaming is of order of the size
of the oscillator, while the boundary-layer thickness is at least
an order of magnitude lower in our experiments. Of course, in
turbulent flows, the pressure drag is significantly larger than
both the viscous friction and any additional drag due to the
streaming.

III. EXPERIMENTAL DETAILS

Most of the resonators used in our investigation, the wire,
the tuning forks, and the double paddle, were driven by an
Agilent A33220 signal generator, and a phase-sensitive Stan-
ford Research SR830 lock-in amplifier was used to measure
both the in-phase and out-of-phase components of the induced
signals.

The measurements presented here were performed in
Prague, mostly in a helium immersion cryostat during a
dedicated experimental run for each resonator. The helium
bath is brought down to the desired temperature using a rotary
pump and a Roots pump and stabilized on the level of few
mK either by manually adjusting the pumping speed or using
a temperature controller. The lowest attainable temperature of
1.27 K allows access to most of the hydrodynamic (two-fluid)
regime.

A. Quartz tuning forks

Quartz tuning forks are piezoelectric oscillators with a cal-
ibrated resonant frequency, often used as frequency standards
or shear force sensors for scanning optical microscopes [56].
Tuning forks are well-established probes of cryogenic helium
flow [30].

The fork is driven by applying an ac voltage V from a
function generator to the metallic electrodes deposited on the
surface of the quartz. This produces a force proportional to
the voltage which sets the two prongs oscillating in antiphase.
The distortion of the quartz induces a piezoelectric current /
which is proportional to velocity U. The relations between
force, velocity, voltage, and current are

%
F:afT [=aU, (11)

90 pm
75 um

(@) (b)

3.50 mm
90 um

10.0

o ]

19.5

19.0

FIG. 2. Schematic diagrams of the vibrating wire resonator (a),
of the quartz tuning fork (b), and the double paddle (c). The dimen-
sions of the double paddle are in millimeters. The wafer thickness is
75 pm for the tuning fork and 250 pum for the double paddle.

where a¢ is the so-called fork constant, which may be ob-
tained through calibration by deflection measurement or self-
calibration in vacuum, in which case it is given as af =
Amme AIJV, where meg is the effective mass of the fork,
and A is the measured resonant width [30] at half-height of
the (Lorentzian) peak. The effective mass [55] of the tuning
fork in vacuum is given by meg = Em = TyWiL¢ pe /4, where
pr is the density of the fork material (in our case quartz,
pr = 2650 kgm’3), and the dimensions 73, W;, L¢ stand for
the tine thickness (in the direction of motion), width, and
length, respectively. The ac current is measured using an IV
converter [57] and a SR-830 lock-in amplifier. The standard
measurement scheme used here can be found, e.g., in Fig. 1
of Ref. [33].

We have used two different forks in this work. The first is
a commercially produced fork of the following dimensions:
Ly =2.17 mm, T5; = 210 um, Wy = 100 um, and the gap
between the prongs is Df; = 120 um. Its surface roughness
is &5 um. The second is a custom-made fork with Ly =
3.50 mm, Ty = 90 um, Wy, = 75 um (original wafer thick-
ness), and Dy, = 90 um, with roughness ~1 um. A sketch
of the fork geometry including the dimensions is shown in
Fig. 2. The commercial fork resonates at 32 kHz, while with
the custom-made fork, we use two different flexural resonant
modes: the fundamental resonance at 6.5 kHz and the first
overtone at 40.0 kHz.

To describe the drag force acting on tuning forks in lam-
inar flow, unfortunately, no analytical solutions of NSE can
be obtained. However, significant effort has been invested
into studying the dynamical response of rectangular beams
immersed in viscous fluids [58,59], resorting to numerical
integration to obtain the hydrodynamic response function for
rectangular beams of arbitrary aspect ratio. These calculations
may thus be applicable to tuning forks. Although we consider
@ as a parameter to be determined experimentally for each
oscillator due to surface roughness effects, we may use the
results of Ref. [59] to obtain the approximate dependence
Cj =~ 4.67/Dn for the custom-made fork (see Appendix A).
For the commercial fork, C{) >~ 5.55/Dn is obtained in a
similar fashion, if its surface roughness is ignored.
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B. Vibrating wire resonator

Vibrating wire resonators are well-established low-
temperature probes [60]. They consist of a semicircular loop
of wire subjected to a vertical magnetic field B, as shown in
Fig. 2. A loop is used to prevent closely spaced or degenerate
modes one may observe on a straight wire.

Traditionally, the vibrating wire is described in the follow-
ing way. Passing an alternating current /(w) through the wire
forces it to oscillate due to the Lorentz force Fi. = BDI. As the
wire moves through the magnetic field, it induces a voltage
which can be determined using Faraday’s law. For a rigid
semicircular wire with leg spacing D, oscillating at a peak
velocity U, the area bounded by the loop is A = nD?/8 and
the rate of change of angle to the field is 2U,,/D. Therefore, the
induced Faraday voltage generated by a semicircular vibrating
wire loop is traditionally given by

y— 4B A ey 12
N dt 4 P (12)

Here, we argue that the traditional model does not describe
the behavior at resonance correctly, in the sense that the
energy dissipation at resonance is not equivalent in terms of
electrical quantities E.; = 1/2 VI and within the 1D mechani-
cal model Epech = 1 /2 FU,, as they differ by a factor of 7 /4.
This due to the fact that one cannot take the total Lorentz
force Fy as the driving force of the resonant mode of the
wire, but a projection of this force on the mode shape must
be considered. The remaining Lorentz force is driving other
resonant modes, as determined by its distribution along the
length of the wire, but it does not dissipate any energy, as it
is frequency mismatched with respect to those modes (in an
off-resonance condition).

A correct definition of the model force may be obtained
directly from energy dissipation, as has been done for tuning
forks [30]. We use this approach in our proposed model
that describes the vibrating wire as a doubly clamped beam.
Neglecting for a moment the curvature of the wire (a valid ap-
proximation if the wire radius is much smaller than the radius
of the loop), the resonant mode shapes may be obtained by
solving the Euler-Bernoulli equation. Using the appropriate
boundary conditions, one obtains in terms of local velocities

ur(x) {sinh(b,,x) — sin(b,x)

B [cosh(b,x) — cos(b,x)][sinh(b,L) — sin(b,L)] }
cosh(b,L) — cos(b,L)

(13)

for x € [0, L], where L is the length of the semicircular loop,
and b, = (uw?/EI)"*, with ;1 representing the mass per unit
length, w, the angular frequency of the nth mode, E the
Young’s modulus, and / the second moment of area of the wire
cross section. The resonance frequencies are determined from
the equation cosh(b,L)cos(b,L) = 1, which has to be solved
numerically.

The mode shapes can then be integrated to obtain a mode-
dependent effective mass. For n = 1, we get meir =~ 0.396m.
Now taking into account the curvature of the wire to find
the changing projected area of the loop on the direction of

B using the obtained mode shape, Eq. (12) will be replaced by
V ~ 0.690BDU,, and the driving force will be given by F' ~
0.690BDI. This is the correct projection of the Lorentz force
F (x) = Bl sin(;rx/L) on the mode shape of the fundamental
resonance, as can be verified by direct integration.

To obtain the drag force in laminar flow, we again neglect
the curvature of the loop, approximating each segment along
the length of the wire as a smooth cylinder oscillating with a
local velocity amplitude uy (x). The drag force per unit length
acting on such a cylinder is given, e.g., in Ref. [47]. Following
the procedure outlined in Sec. II C, for the fundamental mode,
the drag coefficient is given as Cj = 47§ /Dn ~ 4.98/Dn.

The vibrating wire resonator used in this study consists of
a semicircular loop of superconducting NbTi wire with a leg
spacing of D = 2 mm and a diameter of 2R = 40 um. The
wire was mounted in a brass cell submerged in the bulk super-
fluid and mounted between a pair of NdFeB permanent mag-
nets in a magnetic field of (170 £ 10) mT at room temperature.
We estimate that the field is reduced by approximately 23% at
low temperatures [61] due to spin reorientation occurring in
NdFeB at 135 K. Given the uncertainty of the magnetic field,
we have used Eq. (10) to obtain a self-calibration of the force
driving the vibrating wire.

C. Double paddle

Recent studies [36,37] have shown that double-paddle
oscillators (DPOs) may serve as promising probes to study
superfluid hydrodynamics. They have demonstrated high-
quality factors in vacuum compared to other mechanical
resonators since any vibrational losses through their base are
heavily suppressed.

Here, we reanalyze the results obtained with the silicon
DPO etched from a 0.25-mm-thick (110) wafer used by
Zemma and Luzuriaga [36], sketched in Fig. 2. The two
larger wings are approximately 10 mm x 7.5 mm and the
smaller upper paddle is 7 mm x 3 mm. The DPO was driven
magnetically by attaching a small magnet located between the
wings in the oscillator stem; its displacement was detected
capacitively. In order to generate the oscillatory motion, an
ac current was applied to a small superconducting coil fixed
to the support frame.

The complex geometry of the DPO precludes any analyti-
cal solutions of NSE, and we are not aware of any numerical
studies detailing the laminar drag experienced by a submerged
DPO.

D. Torsionally oscillating disk

The torsional oscillator consists of a 0.05-mm tungsten
wire, 32 cm long, with a borosilicate glass disk fixed to the
wire at its midpoint using a thin 0.8-mm brass capillary and
Stycast 2850 GT. The disk is 1 mm thick with a diameter of
40 mm; a schematic diagram is shown in Fig. 3. When the wire
is under tension, the disk is positioned approximately midway
between the two copper-coated, polished FR-2 plates placed
10 mm apart (both disk sides are approximately 4.5 mm
away from the FR-2 plate facing them). The deflection and
angular velocity of the disk are determined from recorded
video sequences as detailed in Appendix B.

054511-6



DYNAMICAL SIMILARITY AND INSTABILITIES IN ...

PHYSICAL REVIEW B 99, 054511 (2019)

Tungsten Wire —| 58 mm
0.8 mm
_
Glass Disc—___
—
40 mm FR-2 plates
0.05 mm

FIG. 3. Schematic diagram of the torsionally oscillating disk.

To facilitate comparison with other oscillators, we define
a drag coefficient for a thin disk torsionally oscillating in a
viscous fluid of density p, as

o 2My 14
P AP 2RY (19
where Mg is the moment of friction forces, R is the disk’s
radius, A = wR? is the surface area of one side of the disk, Qg
is the amplitude of the angular velocity, and w is the angular
frequency of oscillation. For a rationale of this definition,
and for the derivation of the Donnelly number dependence,
we refer the reader to Appendix C. In laminar flow, the drag
coefficient due to the normal component can be expressed in
terms of the Donnelly number as C{, = 2/Dn.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we present our drag force measurements
using the resonators introduced above and compare the results
against the proposed universal scaling law.

A. Tuning forks

The custom-made tuning forks used in our measurements
are fully described and characterized in Ref. [33]. By per-
forming frequency sweeps in vacuum at low temperature, the
experimental fork constant is estimated to be ar = 3.665 x
1077 C/m and a? = 1.409 x 107¢ C/m for the fundamental
mode and first overtone, respectively. We estimate that the
fork constant has an uncertainty of 10% since it was shown
that the optically measured prong velocity can be 10% lower
[62] than that determined from the electromechanical model
described in Sec. III A. The details of the commercial fork are
given in Ref. [50], where it is labeled “L2.”

Figure 4 shows typical results for the drag offered by He II
to driven oscillations of the quartz tuning fork and compares
them to the numerical results of Ref. [59]. In the left of Fig. 4,
we plot the classical drag coefficient as a function of the
peak velocity at various temperatures. As expected, the tuning
forks exhibit linear damping at low velocities at all tempera-
tures. Upon increasing the velocity, the drag coefficient tends
to a temperature-independent constant value of order unity
(Cp &~ 0.6) as one would expect for fully coupled normal
and superfluid components. The flow due to the fork then

behaves as a single classical-like fluid in the turbulent drag
regime. On decreasing temperature, the drag coefficient drops
appreciably over the range of low and intermediate velocities
as the density of the normal fluid component decreases. This
is in agreement with previous analysis [50].

To characterize the flow of the normal component, we plot
the normal fluid drag coefficient as a function of the Donnelly
number in the right of Fig. 4. At low Donnelly numbers, the
data collapse to a single dependence for each fork, before de-
viating at some critical value. Note that despite the difference
in the velocity profile and the viscous penetration depth, the
same prefactor @ in Eq. (6) is obtained for the two resonant
modes of the custom-made fork, supporting the validity of
the derived scaling law. This is due to the fact that both
modes have the same flow enhancement factor « determined
by the rectangular cross section of the prong and practically
the same effective mass megr = Em + myp with & = }1 (see
Appendix A of Ref. [55]). Furthermore, the obtained prefactor
d agrees almost perfectly (2% deviation) with Ref. [59] (see
calculation in Appendix A). Careful inspection also reveals
differences in the onset of nonlinear drag for the lowest two
temperatures (this will be further analyzed in Sec. IV E). The
commercial fork shows the same universal scaling, but the
obtained prefactor is 1.4x higher than the numerical result.
This is likely due to surface roughness effects. Comparison
to oscillations in classical liquid helium and helium gas is
shown on the commercial fork data, where Dn = Res is
used, highlighting the same form of the scaling law in both
classical and quantum fluids. As the commercial tuning fork
is hydrodynamically rough, a unique dependence C{j(Dn) is
expected in classical fluids as well as wherever the superfluid
component does not contribute to the drag force appreciably.
This is illustrated in the lower right panel of Fig. 4, as the data
obtained in He I, He gas, and at T = 2.16 K agree quite well
over the entire range of Dn. Departures from this dependence
mark drag forces originating from the superfluid component,
or arising in either component due to their coupling by mutual
friction.

B. Vibrating wire resonator

The resonant response of the vibrating wire resonator is
obtained by measuring the voltage in phase with the driving
current, as a function of frequency. In accord with previ-
ous works [41,42,60], for small drive levels, the frequency
response is of Lorentzian form. Upon increasing the drive
level, the Lorentzian shape becomes distorted and the resonant
frequency decreases. The flattening of the peak indicates
the onset of nonlinear drag forces typically associated with
turbulent instabilities in the generated oscillatory flow.

The classical drag coefficient as a function of velocity for
the vibrating wire is plotted in the left of Fig. 5. In order to
collapse the contribution of the normal fluid component to
the drag forces acting on the wire to a single dependence,
we again plot the drag coefficient for the normal component
as a function of the Donnelly number [see Eq. (6)] in the
right of Fig. 5. Universal scaling with the Donnelly number
is observed for the wire, up to critical value, which is now,
however, temperature dependent, in striking difference with
the custom-made tuning fork. We also note that the prefactor
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FIG. 4. Left: drag coefficient as function of velocity for the quartz tuning forks. Right: the corresponding normal fluid drag coefficient as a
function of the Donnelly number. Note that (i) the same prefactor for the laminar scaling is displayed for the fundamental mode and overtone
of the custom-made tuning fork, in near perfect agreement with the calculation described in the text and that (ii) for commercial fork, the same
scaling is observed in classical (He I, He gas) and quantum (He II) fluids. A slight disagreement in the prefactor with respect to the numerical
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for the laminar drag is by 10% to 15% smaller than calculated.

This is most likely due to the

uncertainty in the wire radius and

hence in its effective mass, which enters Eq. (10) that was used
to obtain the driving force from resonant properties. While the
2-mm wire loop was located in a cylindrical cavity of diameter
4 mm, we do not expect a significant effect of the container

walls on the measured drag, as the viscous penetration depth

8, is of order 1 pm.

C. Double paddle

We now apply the same analysis to results obtained using a
silicon DPO by Zemma and Luzuriaga [36]. Specifically, we
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FIG. 5. Drag coefficients as functions of the peak velocity or Donnelly number obtained for the vibrating wire.
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FIG. 6. Normal fluid drag coefficient as a function of the Don-
nelly number calculated for the silicon double paddle of Zemma and
Luzuriaga [36].

analyze the symmetric torsion mode data [35]. In vacuum at
~4.2 K, the resonant frequency of the paddle is 520 Hz, in
liquid helium at 4.2 K it is 358 Hz. The viscous penetration
depth is ~3 um. Since the lateral characteristic length scale
of the paddle is D ~ 7 mm, and the thickness is 250 pum, the
paddle is operating in the high-Stokes-number limit, justifying
our analysis.

In Fig. 6, we present the normal fluid drag coefficient
plotted against the Donnelly number. The viscous drag force
again collapses to a single dependence within an uncertainty
of £15%, demonstrating that the paddle is indeed in the high-
Stokes-number limit. The drag force offered by the normal
fluid is again described by the same universal scaling law,
even for an oscillator of significantly different shape than
a wire or tuning fork, in this case following approximately

7 = 4.55/Dn. To the best of our knowledge, no theoretical
or computational works exist that would allow a quantitative
comparison of the prefactor.

D. Torsionally oscillating disk

The torsionally oscillating disk differs from the previous
oscillators in three fundamental ways. First, as the disk oscil-
lates around its axis, it does not displace any fluid, hence, there
is no potential flow outside the boundary layer. Second, in this
case we are not able to perform measurements in a steady
state and we have to deal with slowly decaying oscillations
of the disk and of the flow due to its motion. Third, we
cannot directly measure the drag force and have to infer the
damping from the decaying amplitude of oscillation. Despite
these important differences, we seek to analyze the flow in a
manner similar to the above oscillators.

First, we have established that the intrinsic damping of the
disk is negligible compared to that due to the surrounding
helium. This was done by measurements in vacuum at room
temperature and 78 K, and already at 78 K the intrinsic
damping was far below any measured in superfluid helium.
We note, however, that the entire tungsten filament had to be
submerged in helium in order to ensure that its temperature is
sufficiently low, as it was connected to the driving mechanism

mplitude Ang. displ. (rad)
[

(rad)

viscous damping

Ang. displ. al
o

0 100 200 300 400 500 600 700 800
Time (s)

FIG. 7. Typical measurement of angular displacement of the
torsionally oscillating disk in He II as a function of time. (Top) The
signal extrema were evaluated to obtain the angular displacement
amplitude ¢,. The logarithmic plot (bottom) clearly shows two
distinct regions: exponential (viscous) decay due to laminar flow of
the normal component for ¢+ 2> 500 s and a faster nonlinear decay
at earlier times, related to turbulent drag. The position of the disk
oscillating with a period of T >~ 3.17 s is sampled at 240 Hz (see
Appendix B). The turbulent decay is typically observed on timescales
of order 100 s, whereas decays of coflow or counterflow turbulence
in He II typically in a few seconds.

at the top flange by a thin-walled stainless steel tube with no
special regards for thermal isolation.

As the moment of frictional forces Mg cannot be ob-
tained directly from the experiment, we have to infer the
drag coefficient from other measurable quantities, such as
the extremal displacements of the disk during its damped
oscillations as shown in Fig. 7. If the series of extremal
angular displacements occurring at times #, is labeled ¢,
(interleaving maxima and minima in chronological order), the
logarithmic decrements of the amplitude of oscillation «,, are
determined as o, = In(¢,—;) — In(¢,+1) and the immediate
angular frequency of oscillation is w, = 27 /(t;+1 — ti—1).
This leads to an alternative definition of the drag coefficient:

o 2la - pahqo 15
D 2 ApaR30y ~ mpaReo’ (15
iAo PnPo

where ¢y denotes the immediate angular displacement am-
plitude, and I = Iy + Igp stands for the effective moment of
inertia consisting of the moment of inertia of the disk itself
Iy, and of its hydrodynamic enhancement Iyp. If Iyp < Iy,
the simplified expression on the right-hand side of Eq. (15)
holds, where pq is the density of the disk material and /4 the
height (thickness) of the disk. The derivation can be found in
Appendix C.

We plot the drag coefficient C, measured at various tem-
peratures against the Donnelly number Dn = p,,6,Rwgg/n in
Fig. 8. At small values of Dn, the data collapse to a single
dependence illustrating the universal behavior. As the disk
is hydrodynamically smooth, we do not expect the turbulent
instability to occur at a well-defined critical value of Dn,
but we may still be able to distinguish between a classical
instability in the normal component and the onset of superfluid
turbulence by considering the dependence of the nonlinear
drag on the densities p, and ps.
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E. Analysis of instabilities

While the drag coefficients shown in the previous sections
contain, in principle, all necessary information about the flow
properties, it is useful to examine the transition to nonlinear
drag in more detail. In particular, we are interested in de-
termining which type of instability occurs upon increasing
oscillation amplitude first: a classical instability of the normal
component or the multiplication of remnant quantized vortices
in the superfluid component?

To tackle this issue, we need to analyze the first departures
from laminar drag, hence, we withdraw from the measured
drag force the part that is linear with velocity, keeping
only the nonlinear contribution. Such a quantity needs to be
normalized and plotted against parameters relevant to either
component in order to deduce the nature of the first detected
instability. It seems particularly advantageous to use the quan-
tity 1 — ®/(CDn) in a plot against Dn to describe the action
of the normal component and, analogically, 1 — ¢/ (C]SDU)
against U for the superfluid component [see Eq. (7)]. These
definitions guarantee that the result is always close to zero in
laminar flow, and approaches one as the nonlinear drag starts

Dimensionless Velocity, U

0.1 1 10

D

D

D

Dimensionless Velocity, U

FIG. 9. Turbulent instability analysis for both tuning forks and the vibrating wire resonator. Left: nonlinear drag normalized using
normal component properties versus Donnelly number. Right: nonlinear drag normalized using superfluid component properties versus
nondimensional velocity /. We note that the quantities on the ordinate axes are equivalent, as both represent the ratio of the nonlinear drag to

the total drag experienced by the oscillator.

054511-10



DYNAMICAL SIMILARITY AND INSTABILITIES IN ...

PHYSICAL REVIEW B 99, 054511 (2019)

0.5 .
Double paddle: |
—e— 208 K
04r . 20k
. 1.9K
3 03— 18K
°f 1.7K
= 02} * 16K
) 15K
R o T P2
o ®
o‘.
0‘C?01
Donnelly Number, Dn
1.0

Disc:

1-@/(C" Dn)

0.1 1 10
Keulegan-Carpenter Number, K

0.5

0)

s
D

1-6/(C

0)

s
D

1-0/(C

Dimensionless Velocity, U

FIG. 10. Turbulent instability analysis for the double paddle and the disk. Left: nonlinear drag normalized using normal component
properties versus the Donnelly number or Keulegan-Carpenter number, as applicable. Right: nonlinear drag normalized using superfluid

component properties versus nondimensional velocity U.

to dominate. For the oscillating disk, K¢ is used instead of Dn,
in agreement with the theory in Sec. II B.

Such plots are shown in Fig. 9 for the two tuning forks and
the vibrating wire resonator, with each oscillator displaying
different behavior. We consider the instability occurring at a
given departure from the linear drag, which must be above
the experimental noise level in the data acquired in laminar
flow. For the tuning forks, we use a 5% departure criterion,
for the wire, 10% seems more appropriate. To understand the
results, it is useful to consider two aspects: (i) the magnitude
and relative spread of critical values of either Dn or U
when crossing the given threshold, (ii) the rate at which the
nonlinear drag sets in.

In the top two panels of Fig. 9, the custom-made fork shows
a notably lower spread in Dn than in U, signifying that Dn
is likely to be the correct parameter governing the (classi-
cal) instability in a larger part of the range of temperatures
investigated. On the other hand, the vibrating wire resonator
(bottom two panels) displays a rather well-defined critical
value of U, while showing significant spread in Dn (except for
the two highest temperatures, for which the critical values of
Dn coincide), giving evidence of a Donnelly-Glaberson type
of instability in the superfluid component. The commercial
tuning fork (middle panels) shows a clear crossover: at tem-
peratures below 2.0 K the instability is governed by U, while
at higher temperatures it is determined by Dn. It is interesting
to note that whenever the instability is determined by U,
the onset of nonlinear drag is notably sharper. A crossover
between a classical and quantum instability might be present
in the other two oscillators as well, but is not as pronounced
as with the commercial tuning fork.

The presented interpretation is further supported by the
observed critical values of the governing parameters. For the
commercial fork, the critical dimensionless velocity Uc ~
1.2, and for the vibrating wire resonator values between
1.5 and 3 are found. However, the custom-made fork has
only U ~ 0.1 when the nonlinear drag sets in. Hence, the
Donnelly-Glaberson instability is very unlikely to occur, and
is preceded by the classical instability near Dnc = 2.5. Fur-
thermore, the (minimum) critical value of Dn characterizing
the classical instability can be obtained from measurements in
classical fluids, such as He I or He gas, or from experiments
very close to T, where the drag offered from the very low
density superfluid component can be neglected. Hence, for
the commercial fork we obtain Dn¢ & 2.5 and for the wire
we get Dntin ~ 9 from the data at 2.07 and 2.17 K. The lower
value of Dn¢ obtained for the forks is likely related to velocity
enhancement in flow past its sharp corners.

In Fig. 10 we analyze the data from the DPO and the
torsionally oscillating disk in a similar manner. For the DPO
we find a classical instability in the entire temperature range,
characterized by a critical value of the Donnelly number
Dnc & 0.1, with the rather low value again related to flow
enhancement. Indeed, in the symmetric torsion mode of the
DPO, the displaced fluid needs to move significantly faster
than the oscillator itself to flow from one side of the wings to
the other and back during one period of oscillation.

For the disk, the situation is more complex and fundamen-
tally different from the oscillators just discussed, for several
reasons. In analyzing the data, we need to bear in mind that
contrary to the other oscillators, the disk is hydrodynamically
smooth, and hence the instability should be governed by
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the Keulegan-Carpenter number K¢. Unfortunately, K¢ scales
with the fluid properties in a very similar fashion to the dimen-
sionless velocity U/, making our situation complicated. The
spread of critical values of both parameters is very similar,
and the numerical critical values are in both cases acceptable.
For comparison, if the data in the bottom left panel in Fig. 10
were plotted against Dn, the critical values would show a
very large spread between 8 and 100 (see Fig. 8). However,
since the data taken at 2.16 K (where fluid properties ought to
be dominated by the normal component) differ significantly
from the all the other series, we are led to believe that except
for this highest temperature, the instability has origins in the
superfluid component.

Furthermore, since the disk is set into motion at a high
amplitude and left to oscillate, we are dealing with a decaying
turbulent flow; this has implications for our interpretation,
if hysteresis exists at the turbulent transition. Here, we em-
phasize that temporal decays of quantum turbulence usually
observed in both coflow and counterflow geometries are typ-
ically much faster than the observed timescale of the decay
of torsional oscillations. We thus believe that the intensity
of quantum turbulence is, at all times, near its steady-state
value determined by the immediate amplitude of oscillations
of the disk. Nevertheless, the observed critical values do not
signify the first instability occurring in a laminar flow as
with the other oscillators, but rather a minimum requirement,
a necessary condition for preexisting turbulence to survive,
which might generally depend on details of the turbulent flow.
Such a requirement seems to be given by 10 < Uc < 20 for
all the investigated temperatures except for 2.16 K, where a
higher critical velocity is observed.

To the best of our knowledge, there are two possible
reasons for this behavior. First, it is likely that most of the
nonlinear drag observed at 2.16 K above Uc ~ 30 is in fact
due to the normal component which behaves independently
from the superfluid and undergoes its own instability at K¢ =
2, corresponding to Uc & 30. The nonlinear drag from the
superfluid component (still present) might then be below
our resolution. The second possibility is that at 2.16 K, the
significantly enhanced damping of the motion of quantized
vortices in He II is responsible for the dissipation of any
existing quantum turbulence (the dissipative part of mutual
friction force grows steeply with temperature close below the
superfluid transition [11]). This seems plausible especially in
a situation with no large-scale flow of the superfluid compo-
nent to provide a supply of energy, as in our case the superfluid
is not displaced by the motion of the torsionally oscillating
disk.

V. DISCUSSION

Let us summarize the experimental results on the two-fluid
He II flows due to several types of mechanical oscillators. In
all of them, the normal fluid flow (as well as the corresponding
flow of classical viscous normal He I) is characterized by high
Stokes number, and for low velocities it is laminar. In this
limit, the superflow is either potential or, in the case of the
oscillating disk, the superfluid component remains stationary
in the laboratory frame of reference (barring a low density
of pinned remnant vortices [63]). We therefore have two

(almost) independent velocity fields, and flows of the normal
and superfluid components can be treated independently. It is
therefore natural to treat the normal fluid as classical viscous
fluid and it is not surprising that the drag coefficient Cpy due
to the normal fluid displays universal scaling in terms of the
Donnelly number Dn. Assuming that the flow of the superfluid
component remains potential, upon increasing the Donnelly
number the universal scaling holds and, for hydrodynamically
rough bodies, describes instabilities in the normal flow leading
to gradual transition from laminar to turbulent drag regime
in the normal fluid flow. The normal fluid flow is no longer
laminar and the overall He II flow can be characterized as
quantum turbulence in the sense of a vortical flow occurring
in a quantum fluid, despite that there are almost no quantized
vortices present.

In some of the investigated oscillatory two-fluid He II
flows, the opposite situation appears in that the critical ve-
locity associated with the Donnelly-Glaberson instability in
the superfluid component occurs first, before the instability
in the normal fluid flow develops. This situation is not new
in superfluid hydrodynamics. Indeed, in typical experiments
with rotating superfluid *He-B the thick normal component
virtually does not move in the laboratory frame of reference
[64]. Still, below about half of the critical temperature 7. the
dissipative mutual friction coefficient falls below unity [65]
and a tangle of quantized vortices, superfluid turbulence, can
exist in the soup of a thick stationary normal fluid.

In He II experiments with oscillators described above, the
situation is different in that the quantized vorticity coexists
with the laminar boundary layer flow of the normal compo-
nent. In “He, this situation is reported and analyzed in this
work and is best illustrated for the case of He II flow due to
the vibrating wire (see Fig. 9).

Now, as the Donnelly-Glaberson instability occurs upon
reaching a critical velocity, but the instability in the normal
fluid flow is governed upon reaching a critical Donnelly num-
ber, a crossover is possible, thanks to the steep temperature
dependence of the kinematic viscosity of the normal fluid.
In other words, in the particular example of He II flow due
to the commercial tuning fork (see again Fig. 9) at high
temperatures, close to the superfluid transition temperature
T,, the classical instability in the normal fluid is reached first,
while at low temperatures the situation is reversed in favor
of the Donnelly-Glaberson instability. The existence of this
crossover is, remarkably, reported here despite the immense
effort in investigating oscillatory flows in He II, especially
during the last two decades.

Either instability eventually serves as a trigger for the
other one, mediated by the mutual friction force or fluctuating
pressure forces, until in the limit of high velocities, both fluids
are tightly coupled in the vicinity of the oscillator and He II
behaves as a single-component quasiclassical fluid.

VI. CONCLUSIONS

We have performed systematic measurements of high-
Stokes-number flows of He II due to oscillatory motion of
selected oscillators: vibrating wire resonator, tuning forks,
double paddle, and torsionally oscillating disk, over a broad
temperature range where our working fluid, He II, displays
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the two-fluid behavior. We have shown that in this class of
flows the origin of any instability in the normal or superfluid
component can be determined by complex drag force analysis,
based on which one can separate the drag offered to these
oscillators by the normal and superfluid components of He II.
For low velocities, we observe universal viscous drag scaling
in terms of the suitably defined drag coefficient C}y and the
normal fluid boundary-layer-based Reynolds number which
we call the Donnelly number Dn.

The superfluid component does not contribute to the
drag until an instability associated with extrinsic produc-
tion of quantized vorticity occurs, governed by the dimen-
sionless velocity U = U/ /kw. The underlying physics in-
volves Donnelly-Glaberson instability, i.e., self-reconnections
of quantized vortices upon reaching a critical velocity. Until
then, the flow of the superfluid component is either potential
(excepting pinned remnant vortices) with the superfluid com-
ponent playing a role of a physical vacuum, renormalizing the
hydrodynamic effective mass of the oscillators, or (in the case
of the torsionally oscillating disk) the superfluid component
remains stationary in the laboratory frame of reference.

Which instability (i.e., classical hydrodynamic instabil-
ity of laminar flow of the normal component or Donnelly-
Glaberson instability in the superfluid component) occurs first
depends both on the geometry of the oscillator and temper-
ature. We observe a crossover between these instabilities,
thanks to the steep temperature dependence of the kinematic
viscosity of the normal fluid. Upon increasing oscillation am-
plitude, either instability can live on its own until eventually it
serves as a trigger for the other one, mediated by the mutual
friction force or by pressure forces. At high velocities, both
fluids are tightly coupled in the vicinity of the oscillator and
He II behaves as a single-component quasiclassical fluid.

We believe that the described approach, i.e., treating the
flows of normal and superfluid components of He II inde-
pendently, can be extended and applied to different two-
fluid He II flows, such as different types of coflows (where
the normal and superfluid components are forced together)
but perhaps also to the more general case of counterflows
(where a nonzero difference of mean velocities of normal
and superfluid components exists), in particular to special
cases known as thermal counterflow and pure superflow. One
can find known features of these flows, such as temperature
dependence of the onset of quantum turbulence at various
geometries, which provide hints that this approach will most
likely be useful, however, dedicated detailed experiments are
needed to fully resolve the long-standing puzzles of super-
fluid hydrodynamics such as the existence of experimentally
observed [66] turbulent states TI, TII, and TIII in thermal
counterflow and pure superflow. We believe that our results
will stimulate further research of the fascinating topic of
superfluid hydrodynamics and quantum turbulence.

All data used in this paper are available in Ref. [67],
including descriptions of the data sets.
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APPENDIX A: DERIVATION OF TUNING FORK DRAG
COEFFICIENT

In Ref. [59], numerical calculations are used to evaluate the
inertial and drag forces per unit length acting on uniformly
oscillating rectangular cylinders. The cylinders are assumed
infinite, with the same cross section everywhere. The drag
force amplitude per unit length is expressed in Eq. (2) of
Ref. [59] as

T 2y2

hdl = 7°P® X WeyI'(w), (A1)
where p is the fluid density, @ the angular frequency of
oscillation, X a dominant length scale which corresponds to
the larger dimension of the beam cross section, Wy is the
displacement amplitude, and I'(w) is a complex-valued hy-
drodynamic response function. This function is then evaluated
numerically for cylinders of selected aspect ratios at selected
values of a modified Stokes number B, where B; = wd?/v,
and d = X/2. The real and imaginary parts of I'(w) corre-
spond to inertial and dissipative forces, respectively; we will
thus need to evaluate only the imaginary part Im(I"(w)). The
local energy dissipation rate is given by €, = fiu;/2, where
is the local velocity. Integrating the dissipation rate along the
length of a tine of a tuning fork, we obtain

L
E= / &dl = %pa)XZLSUszm(F(a))), (A2)
0

where £ again describes the velocity profile along the tine
[32]. This leads to the drag force and drag coefficient:

F= %przLé;‘UpIm(F(a))), (A3)
2
o — 2F . nEwX Im(F(w))_ (Ad)
PWLU? WU,

To estimate the dissipation of a tuning fork of aspect
ratio A; = T /W in the high-Stokes-number limit, we express
Im(I"(w)) as a function of the modified Stokes number f;:

Jim (I (4, ) = cAnp;'? = @/g (A5)

where c(A;) is a constant coefficient for a given aspect ratio
A; that can be obtained with sufficient accuracy from the
numerical data of Ref. [59].

Substituting for Im(I'(w)) in Eq. (A4), we get

_ mEXcADVYO  V2mEXc(A;)
B WU, ~ WRes

. (A6)

where Res = U,4/v is the boundary-layer-based Reynolds
number (equivalent to the Donnelly number in superfluid He).
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For both forks discussed here (and indeed for most tuning
forks available), we have T > W and therefore X =T or,
equivalently, X/W = A; (in the opposite case we would have
used X = W). The drag coefficient expressed for the normal
component of superfluid helium then becomes Cjj = ®/Dn,
where the prefactor ® = ﬁnéArc(Ar) is again determined
solely by the geometry of the tuning fork.

To evaluate c(A;) for the custom-made fork of aspect ratio
A; = 1.2 and the commercial fork of aspect ratio A, = 2.1, we
analyze the results obtained for the aspect ratios of 1.0, 2.0,
5.0 as given in Ref. [59], obtaining c¢(1.0) & 3.78, ¢(2.0) =~
2.41, and ¢(5.0) ~ 1.57. This gives by linear interpolation
c(1.2) & 3.51 and ¢(2.1) =~ 2.38 for our tuning forks. Using
&= %, we finally arrive at C{j >~ 4.67/Dn for the custom-
made fork and Cfj 2~ 5.55/Dn for the commercial one.

APPENDIX B: DETERMINATION OF THE POSITION AND
VELOCITY OF THE TORSIONALLY OSCILLATING DISK

Sixteen black marks around the circumference of the disk
are used to determine the deflection and angular velocity
of the disk from recorded video sequences. The motion of
the disk is recorded with a Casio EX-10 digital camera.
The recordings are acquired at the frame rate of 240 fps
with a resolution of 512 x 384 pixels. A large optical lens
is placed between the camera and the cryostat to improve
the spatial resolution. Our raw data are in the form of video
recordings of the motion of the disk during the experiments.
Because the marks on the disk have rather low contrast to the
not-entirely-uniform background, standard motion tracking
software could not be used to process the videos. Hence, fairly
complex postprocessing is required to extract quantitative and
interpretable data.

The videos are split into individual frames and de-
interlaced. The color images are converted to monochromatic
bitmaps by dynamic contrast algorithms implemented in NI
VISION software, so that the marks appear as black spots on
a white background. These monochromatic bitmaps are then
analyzed by a custom-made LABVIEW program. In the first
pass, the program localizes the black areas in each image and
evaluates their size and center of mass. In the second pass,
using only numerical data from the first pass, it then links
corresponding images of the same dot between all frames
to each other (making special arrangements for those not
reproduced in some of the bitmaps) and calculates the angular
displacement of the disk in each instant. The program uses
a self-calibration obtained from a complete revolution of the
disk around its axis. The optical distortion from the lenses and
the curved walls of the glass cryostat are negligible, as only
a 10-mm central portion of the field of view is used in the
processing.

APPENDIX C: HYDRODYNAMIC DESCRIPTION OF THE
TORSIONALLY OSCILLATING DISK

Here, we derive the equation of motion of the torsionally
oscillating disk and the relevant hydrodynamic quantities. The
motion of the harmonic torsional oscillator is given by the

equation
lo¢ + krp = M, (CH

where ¢ is the angular displacement, I, is the moment of
inertia of the disk, «; is the moment of torsion of the fiber,
and M represents the moment of drag forces due to the
surrounding fluid.

In laminar flow, with some simplification, the moment of
the frictional forces can be calculated on the basis of the
analytical solution of the Navier-Stokes equations. First, we
assume that the velocity profile u(r,t) locally corresponds
to the rotation of the rigid body modulated with the dis-
tance from the disk, u(r,t) = R(z,t) x r, where R(z,t) =
(0,0, Q(z, 1)), in which Q(z, ¢) is the instantaneous angular
velocity of the fluid at the distance z from the disk surface.
Furthermore, we assume that the radius of the disk R is
significantly greater than its thickness /4 and all other relevant
dimensions. The Navier-Stokes equation is then expressed in
the form

0z, 1) 3*Qz,t)
=V .
ot 972

(€2

where v is the kinematic viscosity. Assuming that any tempo-
ral changes of the amplitude of oscillation are much slower
than one period of oscillation, the solution of this equation
meeting the boundary conditions on the surface of the disk
(z = 0) and at infinity can be expressed in the form

Qz, 1) = Qoe ™ T, (€3)

where € is the instantaneous amplitude of the disk’s angular
velocity and 8 = /2v/w is the viscous penetration depth.
The total torque acting on the disk will be determined by
integration of drag forces over both surfaces of the disk,
neglecting the friction along its edge. The magnitude of
the local viscous drag force fi (per unit area) is given by
Jo(r,t) =nou(z,t)/dz, where n is the fluid dynamic viscos-
ity. The magnitude of the local contribution to the torque of
the viscous forces is then given as My (r,t) = rfy(r,t). The
total moment of frictional forces is given as

R 2
Mg(t) = Zf My (r,t)rd6 dr
o Jo

1 ] .
— —JTT]%Q()RAlelwt
T .
= —(1 —i)y/nwp wR e, (C4)
V2 aep ’

where Qqe = iwpoe' was used, with ¢, representing the
instantaneous amplitude of angular displacement.

The moment of the friction forces is therefore phase shifted
with respect to the angular velocity of the disk by 7 /4. By
defining a hydrodynamically induced moment of inertia /yp =

7R*/np/2w and the coefficient I' = 7R*\/npw/2, we can
rewrite the moment of the frictional forces as

Mg(t) = =T'p(t) — Inp (1), (C5)

where the two terms on the right-hand side correspond to
dissipative and inertial torques, respectively.
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The energy dissipated by the viscous forces can be ob-
tained as

R 2w
E@t)= -2 / / Re(M,(r, t))Re(2,)r do dr
0 0

7n7£2%R4 . 2
= —T[sm(a)t) cos(wt) — cos”(wt)]. (C6)

Averaging over one period, we get

_7117§2(2)R4
2008

. (C7)

Using the fact that the total energy stored in the motion
of the disk is E = IOQ(Z) /2, and its moment of inertia is given
by Iy = mR?/2 (neglecting hydrodynamic contributions), we
may define a fluidic quality factor

Qf oE mq 2

where A = wR? is the area of one side of the disk, and my is
the disk’s mass.

To define the drag coefficient, we follow the definition
used in classical steady flow: the force F' acting on a body
in steady flow is given by F = %CDA/,OU 2 where Cp is the
dimensionless drag coefficient, A’ is the cross section of the
body perpendicular to the direction of motion, p is the density
of the fluid, and U is the (homogeneous) velocity of the fluid.
In analogy, it is possible to define the drag coefficient for the
torsionally oscillating disk from

Mpgp 1 20
—— = —CpApQ;R~, 9
R 2D/OQ (C9)

where Myp = I'Q is the dissipative part of the moment of
frictional forces and we again use A = 7w R.

Finally, to define the dimensionless Donnelly number, we
use the peak velocity at the circumference of the disk U =

Ry, yielding
RQOPan
n=——.
n
Comparing with Eq. (C9), we arrive at C; = 2/Dn, where the
normal component drag coefficient C} differs from Cp only
by replacing the density p with p,.
Substituting (C5) into the dynamic equation (C1) and

dividing by the total moment of inertia I = Iy + Iyp,
we get

(C10)

¢ +2y9+wip =0, (C11)

where y = I'/21 is the damping coefficient and wé =k¢/l is
the square of the intrinsic angular frequency of the undamped
resonator. Thus, we have a standard equation of the damped
harmonic oscillator, which is satisfied by the solution

Q1) = goe "', (C12)

where the angular frequency w is related to the frequency of a
hypothetical undamped oscillator by w? = w3 — y2.

After processing the recorded videos of the disk motion,
we obtain data in the form of ¢(¢). From this, we determine the
extrema ¢ ; and the logarithmic decrements «; = In(gg i—1) —
In(¢o,.i+1), which are related to the damping coefficient y
in Eq. (C11) by y; = o;w/(27). The dissipative part of the
moment of friction forces, the first term on the right-hand
side of Eq. (CS5), is then Mpp ; = 2lwy,¢p ;. The drag coef-
ficient obtained from each experimental point may then be
expressed as

210(,‘

_. C13
TApR @ ; (€13)

D,i =

If the hydrodynamic contribution to the moment of inertia
is negligible, we may put I ~ Iy = mR?/2, where the mass
of the disk can be expressed as m = Ahqpq, Where hy is the
disk height and pq its density. The drag coefficient can then be
further simplified to

1 pahqai
7 pReo,;’

which no longer requires the precise knowledge of I or Ij.

Cp,;= (C14)
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We report an experimental study of oscillatory thermal counterflow of superfluid “He and its transition to
quantum turbulence inspired by the work of Kotsubo and Swift [ Phys. Rev. Lett. 62, 2604 (1989)]. We use a pair
of transversally oriented second-sound sensors to provide direct proof that upon exceeding a critical heat flux,
quantized vorticity is generated in the antinodes of the longitudinal resonances of the oscillating counterflow.
Building on modern understanding of oscillatory flows of superfluid “He [D. Schmoranzer et al., Phys. Rev. B
99, 054511 (2019)], we re-evaluate the original data together with ours and provide grounds for the previously
unexplained temperature dependence of critical velocities. Our analysis incorporates a classical flow instability
in the normal component described by the dimensionless Donnelly number, which is shown to trigger quantum
turbulence at temperatures below =~ 1.7 K. This contrasts with the original interpretation based on the dynamics
of quantized vortices, and we show that for oscillatory counterflow, such an approach is valid only at temperatures
above ~ 1.8 K. Finally, we demonstrate that the instabilities occurring in oscillatory counterflow are governed
by the same underlying physics as those in flow due to submerged oscillators and propose a unified description

of high Stokes number coflow and counterflow experiments.

DOI: 10.1103/PhysRevB.103.134516

I. INTRODUCTION

Quantum turbulence [1,2] in superfluid “He (He I0) in the
temperature range from ~1K to T;, where He II displays
the two-fluid behavior, is easy to generate experimentally but
challenging to understand in its entirety. In the frame of the
two-fluid model, He II consists of two components: the vis-
cous normal component of density p, carrying all the entropy
content of He II and the inviscid superfluid component of
density p,, with the total density p = p, 4+ ps. This makes
superfluid *He a complex system: One can expect an interplay
of turbulent normal component of very low kinematic viscos-
ity v,, obeying in some cases classical laws, and of inviscid
superfluid component, behaving under quantum restrictions,
with all rotational flow in the form of quantized vortices
possessing angstrom-sized cores [3]. These line singularities,
usually arranged in a complicated tangle, carry a single quan-
tum of circulation ¥ = 10~7 m?s~! each. Vortex lines mediate
the interaction between the two components via a mutual
friction force acting at all relevant length scales; moreover,
any thermal gradient in He II generates thermal counterflow.

Various forms of quantum turbulence in He II can be gen-
erated using mechanical and thermal drives [4]. Classical-like
mechanical forcing (e.g., by towing or oscillating a grid or
any bluff body such as a wire or a quartz tuning fork) usually
[4] results in a coflow, the closest analog to classical viscous
flows, in which the normal fluid and superfluid components
move, on average, with the same mean velocity in the same
direction. By combining mechanical and thermal driving, the

“midliks @0365.cuni.cz

2469-9950/2021/103(13)/134516(9)

134516-1

two components of He II can also be made to flow, on aver-
age, relative to each other [5], a situation called counterflow.
The special case of counterflow with no net mass flow in
the laboratory frame of reference called thermal counterflow
is probably the most frequently investigated quantum flow
since the pioneering experiments of Vinen [6]. In another
special case called pure superflow, only a net flow of the
superfluid component occurs in the experimental frame of
reference, while the normal component remains statistically
steady [7-9].

Additionally, as first shown by Kotsubo and Swift [10,11]
and later by Chagovets [12], quantum turbulence can be gen-
erated in He II by applying a high-amplitude second sound
in the longitudinal direction of a closed channel acting as
a second-sound resonator. Here we present a similar exper-
iment, however, with the addition of direct measurement of
vortex line density, L, in the center of the resonator. Based
on our results and subsequent analysis, taking into account
experiments described in Refs. [10-12], we point out the
close similarity of the underlying physics between quantum
turbulence generated in an oscillating flow due to a bluff
body [13,14] or U-tube oscillations [15] and by second sound,
which involves a high Stokes number oscillatory flow of the
normal component of He II in the resonator [16].

II. EXPERIMENTAL SETUP AND METHODS

The experimental volume of He II is contained in the 1-
cm-wide brass channel of square cross section 3.2-cm long,
a second-sound resonator, closed from both ends with brass
plugs. We generate two different second-sound signals which
we refer to as (i) longitudinal second sound, driven thermally
at high amplitude along the longer dimension of the resonator,

©2021 American Physical Society
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FIG. 1. Top: Photograph of the experimental brass cell with the
transversal second-sound sensor holder on its front side and the
heater and thermometer on the brass holders inserted from the left
and right sides. Bottom: Schematic of the experimental cell arrange-
ment. Longitudinal second-sound signal is generated by the resistive
heater, forming a standing wave along the resonator, and probed
by the sensitive resistance thermometer placed at the opposite end.
Transversal second-sound signal is driven in the middle of the res-
onator perpendicularly to its length by one of two capacitive sensors
acting as a generator with the opposing one used as a detector.

which is used for generation of quantized vorticity; and (ii)
transversal (or detection) second sound, driven at low am-
plitude mechanically across the center of the resonator. A
schematic view of the experiment is shown together with a
photograph of the setup in Fig. 1.

The longitudinal second sound is driven by a flat heater
of resistance R &~ 50 Q. It is made of a manganine wire and
glued to one of the brass plugs at one end of the resonator.
The applied ac voltage U = Uy cos(wt) of angular frequency
o and amplitude Uy results in radiation of a heat flux g at 2w.
In a channel of constant cross section, Ay, the time-dependent
heat flux is formally given as

2

%
IRA. [1+cosuwt)], (1)

4 = Gdc + Gac COSQut) =

resulting in radiation of (i) the ac temperature wave and (ii)
the dc heat flux. The net dc heat flux is carried away from

the heater by the normal component of He II and causes
steady thermal counterflow of some form, which we discuss
in Sec. IV.

In a conventional counterflow channel of constant cross
section, with one end open to the helium bath, from the con-
servation of energy, the counterflow velocity is found as

C}dc

STps’

where gq4. is the applied heat flux (power per unit area) and
S and T denote, respectively, the specific entropy and the
temperature of He II. The dc heat flux might generate quan-
tized vorticity. This happens above the critical counterflow
velocity vg; the intensity of generated quantized vorticity is
characterized by vortex line density, L, which follows the
experimentally established [6] power law scaling,

L— Ly = y*(T)(vcr — v0)%, A3)

where L corresponds to the remnant vortex line density [17].
The dimensional coefficient y (T") (for the so-called T II state
of thermal counterflow in relatively wide channels) has been
experimentally established with about 20% accuracy [7].

The generated longitudinal second sound is detected by a
semiconductor-based Ge/GaAs Microsensor TTR — G ther-
mometer [18-20] biased with a constant current of 1 A,
placed on the brass plug closing the opposite side of the
resonator. The thermometer signal is measured using a Stan-
ford SR830 lock-in amplifier at the expected frequency w/m,
i.e., at double frequency of the driving voltage. Under the
assumption of linear damping of the second-sound wave,
the maximum counterflow velocity reached in the antinodes
of the second-sound wave is given by a similar equation as for
steady counterflow, Eq. (2), enhanced by the quality factor Q
of the second-sound resonator.

For the detection of quantum turbulence, we have built and
further improved the traditional capacitive sensors; for details
of their construction and readout method see Refs. [8,21] and
references therein. In short, two identical sensors, serving as a
transducer and receiver, are constructed from a 10-um-thick
nuclepore membrane, coated on one side with a 30- to 60-
nm-thick layer of gold. It is stretched across a circular Delrin
holder 1 cm in diameter and lightly pressed against a brass
electrode. Its gold-plated side and the electrode constitute a
parallel-plate capacitor of typically 30 to 100 pF. The two
sensors face each other across the resonator in the middle
of its length (see Fig. 1), one being driven by an ac voltage
superimposed on a high dc bias of 100 V, while the voltage
signal from the other sensor is read using a lock-in amplifier.
Assuming a random vortex tangle, homogeneous across the
width of the channel, the vortex line density in the probed
volume is then obtained from the level of attenuation of the
standing transversal second-sound wave as

=o(A),

(@)

UCF =

A “4)

where Af and Aq are the full width (FWHM) and the am-
plitude of the second-sound signal measured without the
application of the longitudinal drive, A is the amplitude of the
attenuated signal, « is the circulation quantum, and B is the
tabulated [22] mutual friction coefficient. We note that Eq. (4)
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FIG. 2. The amplitudes of first two resonant modes of lon-
gitudinal second sound measured at 1.65 K and plotted against
the frequency of the ac driving voltage supplied to the heater.
The crossover between two different peak shapes is displayed: (i)
Lorentzian shape in the linear damping regime and (ii) flattened-top
shape caused by the generation of additional quantized vorticity by
the high-amplitude second-sound wave.

was derived for moderate values of L not requiring screening
corrections (for details, see Refs. [8,21]); the calculated L
values may therefore differ from reality by up to ~30%.

III. EXPERIMENTAL RESULTS

Figure 2 shows the voltage amplitude across the calibrated
temperature sensor [18-20] during frequency sweeps across
the resonances for the first two longitudinal resonances mea-
sured at 1.65 K for various heater powers. In agreement with
previous results of Kotsubo and Swift [10,11] and Chagovets
[12], we observe a crossover between two distinctly different
shapes of the longitudinal second-sound resonances. At low
drives, the Lorentzian shape of the resonances with the am-
plitude directly proportional to the driving power indicates a
linear damping regime. Upon increasing the drive, the shape
changes, resulting in flat-top peaks above some critical am-
plitude, as a new, nonlinear dissipation mechanism sets in. In
accord with Refs. [10,11], as the power is increased further,
the flattened peaks become broader and overall dissipation
increases as well, while the level of the flattened top remains
approximately constant. This is a signature of turbulent flow
in the resonator, as quantized vortices are generated above
the critical amplitude, over an increasingly wider frequency
range around the resonance. This behavior appears qualita-
tively similar when measured at 1.45 K and 1.83 K.

Our experimental setup allows us to present direct proof
of quantum vortex generation in oscillatory counterflow by
simultaneously tracking the in-phase amplitude of a weakly
driven transversal resonant second-sound wave. This is shown
in Fig. 3 for a few selected heater powers driving the
first longitudinal harmonic mode, in both linear and non-
linear damping regimes at 1.45 K. The true tracking of the
transversal second-sound resonance is secured via a proce-
dure described in detail in Refs. [21,23]. The attenuation of
the transversal wave due to additional quantized vorticity in
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FIG. 3. Top: Selected frequency sweeps of the first harmonic
mode at 1.45 K. Bottom: The simultaneously measured resonant
amplitude of transversal second-sound wave propagating perpen-
dicularly across the center of the resonator. The attenuation of the
transversal signal clearly corresponds to the saturation part of the
longitudinal amplitude, proving the generation of quantized vorticity
in the superfluid component. In both panels, the horizontal axis
represents the frequency of the voltage supplied to the heater.

the resonator clearly corresponds to the amplitude saturation
of the longitudinal signal.

Figure 4 compares the evolution of the peak amplitude of
the longitudinal signal with the vortex line density L in the
center of the resonator calculated using Eq. (4) at 1.45 K as
a function of the applied heater power. The top panel shows
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FIG. 4. Top: Power evolution of the peak amplitude of longi-
tudinal second sound for first three modes at 1.45 K. Amplitude
saturation implies the generation of quantized vorticity by the ac
counterflow. Bottom: The corresponding vortex line density, L, mea-
sured in the center of the channel. The black dashed line represents
the power law L o P2, for vorticity originating from the dc counter-
flow alone. The green vertical dotted line indicates the critical power
for the first mode, where both signals show generation of quantized
vortices in the antinode of the longitudinal resonance. The lack of
observation of any additional vortex line density for the second mode
confirms the antinodal localization of vortex generation.
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TABLE 1. Critical values of heat flux for turbulent transition in
oscillatory counterflow for different harmonic modes, estimated at
three temperatures.

Harmonic mode T Gerit
K mW /cm?
1.45 55
First 1.65 85
1.83 115
1.45 120
Second 1.65 195
1.83 —
1.45 175
Third 1.65 —
1.83 —

similar behavior for all three harmonic modes: the peak am-
plitude rises approximately linearly with the heating power
and then saturates. The critical power values, for which the
amplitude saturation occurs, have been found for all presented
harmonic modes at 1.45 K. For experimental reasons, it was
not possible to reach saturation with all modes at higher
temperatures 1.65 K and 1.83 K. The observation is also
partially masked by a rather strong background vortex line
density due to the dc counterflow carrying the applied power
in the resonator to the surrounding helium bath. The frequency
dependence of the critical power is clearly seen; we shall
discuss it in the next section.

All estimated values of critical heater power determined
from the onset of saturation of amplitude of the longitudinal
signal are shown in Table I. Note that critical conditions for
turbulent transition were not reached for all cases, as the
same heating power generates lower counterflow velocity at
temperatures of 1.65 K and 1.83 K than at 1.45 K, in accord
with Eq. (2).

IV. DISCUSSION

First, let us discuss possible caveats and experimental dif-
ficulties. The analysis of our data described above must be
treated as semiquantitative for the following reason. While
generating the steady-state quantum turbulence, we continu-
ously apply heat typically of order 0.1 W to the He II sample
inside the resonator, which must be carried to the surrounding
helium bath. Our resonator is made of brass with walls about
1 cm thick. Assuming that the applied heat is conducted via
brass walls, a simple estimate would lead to a temperature
difference of order 1 K between the He II sample in the res-
onator and the helium bath, about three orders of magnitude
higher than what is experimentally observed. For evidence,
see, e.g., Fig. 2 which shows only a slight shift of the res-
onance frequency of the measured second-sound harmonics
with the applied heat flux—the position of resonance would
have followed the changes of the second-sound velocity with
the increasing temperature of He II inside the resonator. We
are therefore led to conclude that the applied heat is carried
away from the He II sample in the resonator by a much more
efficient mechanism—thermal counterflow, specifically by the
normal component carrying the entropy through gaps between

the brass plugs, second-sound sensors, and the brass body of
the resonator.

It is difficult to characterize the geometry of such coun-
terflow in our experiment as well as in the experiments cited
above and to judge how much these thermally driven flows
affect our considerations below. We attempted to compensate
the steady heat flux supplied by the heater, Eq. (1), by the same
steady heat flux from an additional heater placed at the oppo-
site end of the resonator. This, however, resulted in an increase
of attenuation of the transverse second sound, indicating an
increase of effective vortex line density in the center of the
resonator. This suggests that a significant part of the heat exits
the resonator via gaps adjacent to the second-sound sensors
rather than via gaps between the brass plugs and the body of
the resonator at its ends. We therefore treat the vortex line
density in the center of the resonator generated at frequencies
of longitudinal second-sound resonances simply as a heat
flux-dependent background. Bearing in mind this caveat, we
now attempt to determine the peak counterflow velocity of the
studied oscillatory counterflow that corresponds to the applied
ac heat flux.

A. Determination of critical velocity

Two different approaches may be employed. The first one
is based on the idea that the peak counterflow velocity v,’ch
(i.e., its antinodal amplitude) is the same as that in the dc
case [given by Eq. (2)] but resonantly enhanced by the quality

factor Q, found to be of order 10:

Vs = O ®)
We stress that this approach is valid only in the linear damp-
ing regime, when the observed resonances are of Lorentzian
shape. In the turbulent regime, further increase of the peak
counterflow velocity is suppressed by the action of the mutual
friction force.

The second and perhaps more straightforward way to de-
termine the peak velocity is based on the direct measurement
of the magnitude of the temperature variations 87 in the
resonator. The same approach was used by Kotsubo and Swift
[10,11], who assumed a harmonic time dependence and spa-
tial profile of the resonant standing wave. Following the same
reasoning that leads to Eq. (13) in Ref. [11], we find the peak
oscillatory counterflow velocity as

S
o= P2 s (6)

ns,ac Us Py
where u, stands for the second-sound velocity. The amplitude
of the temperature oscillations §7 can be determined from the
ac voltage measured across the calibrated resistive thermome-
ter biased by a constant current. The velocity determined
in this manner should hold over the entire range of applied
heat fluxes, as it is calculated from experimentally observed
quantities.

On the other hand, discrepancies between the determined
values of v, . and v, . in the subcritical region and ob-
servation of an additional phase shift, which both occurred
for higher harmonics, suggest that either the thermal iner-
tia together with the Kapitza resistance at the heater or the
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FIG. 5. Left: Contribution to vortex line density due to oscillatory counterflow (difference of values observed for first and second modes),
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plotted as a function of the velocity v

line) indicates the position of the critical velocity. Right: Oscillatory counterflow velocity v
resonances via Eq. (6) plotted as a function of heating power. The onset of saturation of v
represent the fluctuations of the bias current supplied to the thermometer.

thermalization time constant of the used thermometer may
affect the measurements at frequencies higher than the first
fundamental mode, and thus may influence the tempera-
ture wave amplitude reading as well as the actual, slightly
smoothed, heat flux amplitude delivered to the liquid which
may be lower than Eq. (1) suggests. Indeed, the values of the
critical heat flux amplitude measured at 7 = 1.45K for first
three harmonics, given in Table I, grow somewhat faster than
with the square root of frequency, predicted for both classical
[24] and quantum [25-27] oscillatory flows. For these reasons,
we have limited deduction of critical oscillatory counterflow
velocities for further quantitative analysis to the data mea-
sured using the first harmonic mode, where good agreement
is obtained in the linear damping regime for both methods of
determination of the peak counterflow velocity.

Let us now discuss the critical velocities determined by
these two different approaches. In the left panel of Fig. 5, we
plot the difference of vortex line density measured for the first
harmonic mode (containing both ac and dc contributions) and
second harmonic mode (giving the dc contribution only) as
a function of v} .. The critical velocity can be determined
from the onset of vortex line density (above the noise level,
taken as 10% of the background due to dc counterflow near
the critical power) and must be directly connected to a tran-
sition in the oscillatory counterflow accompanied by a rapid
increase of quantized vortex generation. The second approach,
via directly measured temperature oscillations in the channel,
leads to the values of vlllls,ac, see the right panel of Fig. 5
showing the counterflow velocity obtained from the ampli-
tudes of longitudinal resonances as a function of heater power.
The saturation of this velocity marks the same transition as
above and, moreover, indicates the longitudinal resonance as
the energy supply for the additional vorticity, see also Refs.
[10-12]. The critical velocities are listed below in Table II,
showing quantitative agreement of the two approaches. In
both cases, we estimate the uncertainty to be of order 1 cm/s,
caused by the subjectivity of noise level determination and/or
thermometer bias current fluctuations.

The rapid increase of vortex line density above the noise level (highlighted by the green dashed

" « obtained from the amplitudes of longitudinal

I determines the critical velocity. The error bars

ns,ac

B. Comparison with other experiments

With these data at hand, we may turn to the broader
discussion of the transition to quantum turbulence in var-
ious oscillatory He II flows generated mechanically, ther-
mally, and by second sound in the frame of the two-fluid
model.

Historically, the two-fluid model description of inde-
pendent and coupled oscillatory flows of the normal and
superfluid components was already considered by Donnelly
and Penrose [15] in 1956 in an attempt to explain the experi-
mentally observed crossover between two regimes of U-tube
oscillations. Although the notion of quantized vortices and
their role for the mutual friction force was not yet widely ap-
preciated, their approach was capable of formally explaining
the existence of the two observed decay regimes, assuming
that at low velocity the two fluids move independently and
their motion becomes gradually coupled upon reaching some
critical velocity and eventually they move as a single fluid, i.e.,
in coflow. The length scale relevant to the (uncoupled) normal
flow is the viscous penetration depth 8, = /2n/p,w ~ 70 —
200 pm, where 7 is the dynamic viscosity. This scale is sig-
nificantly smaller than the diameter of the U tubes (=1 cm);
we therefore deal with flows of high Stokes number, defined
as St = D?/(§?), similarly to the counterflow experiments
presented here.

TABLE II. Critical oscillatory counterflow velocities and cor-
responding critical Donnelly numbers obtained by two different
approaches for all studied temperatures. See the text for details.

T Critical v}, . Dn!, Critical v .. Dn(}
K cm/s cm/s

1.45 17 15.6 16 14.7
1.65 12.5 15.3 13 15.9
1.83 10 13.2 11 14.5
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1. Normal fluid critical velocity

Dynamical similarity and instabilities in high-Stokes-
number oscillatory flows of He II have recently been studied
by Schmoranzer et al. [16]. It was shown, based on systematic
measurements of oscillatory He II flows due to various os-
cillators, that an instability leading to the turbulent transition
can occur either in the normal or in the superfluid component
of He II. For low velocities, only viscous drag is offered by
the normal fluid, obeying a universal scaling law in terms of
the suitably defined drag coefficient and the Donnelly number
(boundary-layer-based Reynolds number), defined as

Dn = §,v,/v,, @)

where v, is the amplitude of normal fluid velocity. Upon ex-
ceeding a certain critical value of the Donnelly number, Dn,,
the normal component undergoes a classical-like transition,
also subsequently triggering the generation of quantized vor-
tices in the superfluid component. The corresponding critical
velocity of the normal component is denoted as v, .

2. Superfluid critical velocity

Even without the classical-like instability occurring as dis-
cussed above, quantized vorticity in the superfluid component
may become generated via the Donnelly-Glaberson instability
[28-30] at a dimensionless critical velocity s ¢ = vy ¢/ /K ®,
where v; ¢, is the dimensional superfluid critical velocity. In-
deed, Hénninen and Schoepe [26,27] have argued that the
onset of quantum turbulence in oscillatory flows of superfluid
helium is universal, and can be derived from a general argu-
ment based on the “superfluid Reynolds number”. The critical
velocity scales as v, ¢; & +/k@ with only the numerical pref-
actor depending somewhat on the geometry of the oscillating
object because the flow velocity near the surface of the object
may differ from the velocity amplitude of the body. A more
detailed analysis derived from the dynamics of the turbulent
state gives the criterion [27]

Us.er N 4/ 8/((,()/,3, (8)

where the numerical factor B is about unity and depends on
the mutual friction parameters.

Hinninen and Schoepe [26] evaluated § for several tem-
peratures: § =1 below 1 K, g = 0.95 (at 1.3 K), 0.89 (at
1.6 K), and 0.79 (at 1.9 K); which implies a slow increase of
v, by about 10% and gives fair agreement with experimental
results obtained over a wide temperature range from below
0.4 K up to 1.9 K with a sphere 100 ;#m in diameter oscillating
at 236 Hz, as displayed in Fig. 3 of Ref. [26].

It must be noted that virtually the same approach was
used to analyze the turbulent instability in oscillatory coun-
terflow in Refs. [10-12] without any consideration of a
possible classical-like instability in the normal component.
This resulted in the observation of a strong and systematic
temperature dependence of superfluid critical velocities that
the employed dynamical scaling theory could not explain
[10,11], as the temperature dependence of § in Eq. (8) is too
weak to account for critical velocities differing by a factor of
4 (see, e.g., Fig. 4 in Ref. [10]).

3. Interplay of the two instabilities

Which instability, i.e., either classical hydrodynamic insta-
bility of laminar flow of the normal component upon reaching
a critical velocity v, ¢ or Donnelly-Glaberson instability in
the superfluid component upon reaching v; ., occurs first de-
pends both on the geometry of the oscillator and on the
temperature, which determines the dynamic viscosity of He II
and the densities of the two components. A crossover between
the two outlined mechanisms of turbulence generation is pos-
sible and has indeed been observed in flows due to mechanical
oscillators [16].

A similar approach may be applied to oscillatory coun-
terflow, with one distinction. In experiments on flow due to
mechanical resonators, the comparison of the two criteria
for the transition is straightforward, as in coflow, the veloc-
ities of the normal and superfluid components are practically
identical. However, in counterflow v, # vy, hence a common
dimensionless parameter must be found for both types of
instability to facilitate such a comparison. For this purpose,
the superfluid critical velocity vs may be converted to an
effective critical Donnelly number Dng; ¢ using

On Us,crPs

pﬂ v}’l

©)

Dncr, eff =

This is the same formal definition of Dn, as given below
Eq. (7), with the critical normal fluid velocity formally ex-
pressed as v, o = Ps/PnVs.cr, 1.€., as the peak normal fluid
velocity in the oscillating thermal counterflow at the very first
occurrence of the Donnelly-Glaberson instability in the super-
fluid component oscillating with the critical velocity v .

Unlike the true critical Donnelly number describing the
classical instability Dng, the critical value of Dng e is nO
longer expected to be constant. On the contrary, requiring
a constant value of the correct critical parameter, ¥, also
requires Dn.,.ss to be a function of temperature. However,
Dn,; et will be independent of the frequency of oscillations,
as both v, and v, have the same frequency dependence,
with either critical velocity o< 4/f.

We stress that, assuming no or perhaps a very low num-
ber of remnant quantized vortices at low flow velocities, this
classical-like instability is not affected by the potential flow of
the superfluid component; as mutual friction is nearly absent.
This allows us to apply the described model to oscillatory
coflows as well as counterflows and in particular to the ex-
periments discussed here.

First, using our data, we have described two different ap-
proaches to determine critical counterflow velocities v! and

ns,ac
Ups - Requiring zero net mass flow, we can calculate the
corresponding peak critical velocities of the oscillating normal
fluid. Application of a no-slip boundary condition then leads
to critical Donnelly numbers Dnl and Dnl, also given in
Table II. We note that for this calculation we naturally use
the frequency of the longitudinal second sound, i.e., twice the
frequency of the applied oscillatory heat flux. Over the tem-
perature range 1.45-1.83 K (where the normal fluid density
changes about five times) the critical Donnelly numbers are
approximately constant Dn! = Dn!l = 15 4+ 2, providing a
good quantitative characterization of the turbulent instability.
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FIG. 6. Temperature dependence of the critical Donnelly number
for oscillatory thermal counterflow as determined from this work and
the experiments of Kotsubo and Swift [10,11] and Chagovets [12].
The dashed line represents an effective Donnelly number calculated
for the instability based on the Hidnninen-Schoepe criterion, Eqgs. (8)
and (9).

Second, we calculate critical Donnelly numbers based on
the data measured for mechanically generated ac counterflow
of He II at 1.88 K by Kotsubo and Swift, Dn?rs, based on
Fig. 5 of Ref. [11], showing critical counterflow velocities
from the first two modes in their long resonator and the first
five modes in their straight resonator, covering more than a
decade of second-sound frequencies. All values of critical
Donnelly numbers obtained at this temperature fall within a
narrow interval DngS = 13 £+ 2, in fair agreement with our
measurements. Furthermore, we have used Fig. 6 of Ref. [11],
displaying the scaled temperature dependence of the critical
velocities from the first two modes measured in their short res-
onator. The calculated critical Donnelly numbers are shown
in Fig. 6, appearing approximately constant between 1.2 K
and 1.7 K, Dn®® = 17 £ 2, with a pronounced decreasing
tendency at higher temperatures.

Finally, we may compare with the critical Donnelly num-
bers Dngh for thermally generated ac counterflow of He II
estimated using the data measured by Chagovets in an epoxy
cylindrical resonator of diameter 7 mm, 3.5 cm long, at four
temperatures between 1.72 K and 2.0 K, specifically the data
series shown in Fig. 2 of Ref. [12]. For example, at T =
1.85 K we estimate the saturated amplitude of the temperature
oscillations §7 =~ 0.8 mK that starts to flatten upon reaching
about 32 mW /cm? of applied heat flux, and the fundamental
resonant frequency of second sound f = 197 Hz. Similarly,
we read the available data for 1.72, 1.98, and 2.0 K and,
using the known temperature dependence of the second-sound
velocity, we calculate the relevant frequencies of the funda-
mental mode at these temperatures. These data, together with
tabulated values of He II properties [22] allow us to calculate,
using Eq. (6), the velocity vl and, subsequently, the critical

ns,ac
Donnelly number Dng‘, also shown in Fig. 6.
It is remarkable that, within the experimental accuracy, in

the temperature range from 1.2 K to 1.7 K, three different

experiments: (i) mechanically driven second sound [10,11],
(i1) thermally driven counterflow by Chagovets [12], as well
as (iii) our own display the onset of the transition to quantum
turbulence characterized by the same critical Donnelly num-
ber Dn.; ~ 16 &£ 3. This strongly suggests that the transition
is triggered when the instability in oscillatory laminar flow of
the viscous normal component of He II is reached. In the given
temperature range, the transition thus cannot be described by
the dynamical scaling theory used in Refs. [10,11], which
deals solely with superfluid instabilities.

However, the data of Refs. [11,12] show a departure from
this value of Dn, as the temperature is increased above
~ 1.8 K, which is fully explained by the instability in the
superfluid component—production of quantized vorticity by
means of the Donnelly-Glaberson mechanism. The data are
summarized in Fig. 6, where the effective Donnelly number,
Dn.g, for this instability is shown, as calculated based on
Egs. (9) and (8). Hence, we clearly observe a crossover of two
different mechanisms of turbulence generation in oscillatory
counterflow: one related to a classical instability of the nor-
mal fluid dominating at lower temperatures in the two-fluid
regime, while the other is purely a consequence of quantized
vortex dynamics in the superfluid component and dominates
at higher temperatures.

It is interesting to note that oscillating coflow, e.g., due to a
quartz tuning fork [16], is similar in that it displays the same
general crossover between these two mechanisms. However,
the respective temperature intervals are inverted—the classi-
cal instability dominates closer to the lambda point and the
superfluid one at lower temperatures. It is naturally under-
stood that the behavior of oscillating thermal counterflow is
different in this sense, as the equation of continuity requires
that v; /v, = p,/ps, making it likely that the superfluid critical
velocity is reached first when the ratio p,/p; is large.

C. Applicability of the obtained results

We have to emphasize that the above hydrodynamic ap-
proach is applicable only in the temperature range where
superfluid “He displays the two-fluid behavior. On lowering
the temperature below 1 K, the mean-free path of phonons
grows and soon becomes greater than the size of the system
and, in the T — O limit, only the superfluid component ex-
ists, hence the very concept of thermal counterflow becomes
poorly defined. Still, transition to quantum turbulence occurs
in a variety of oscillatory flows, displaying interesting fea-
tures such as multiple critical velocities [31,32] and hysteretic
[33-35] or switching phenomena [36,37]; for reviews, see
Refs. [13,14] and references therein. These features fall out-
side the scope of this paper.

V. CONCLUSIONS

We have presented experimental work on thermally
generated oscillatory counterflow in a closed square-cylinder-
shaped second-sound resonator, and directly proven genera-
tion of quantized vortices in the antinode of the fundamental
longitudinal standing wave using the second-sound attenua-
tion technique.

134516-7
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Comparison with studies of oscillatory flows due to me-
chanical resonators in “He [16] and previous thermally and
mechanically driven second-sound experiments [10-12] re-
veal that the instabilities marking the turbulent transition in
all these flows are of the same type. Namely, (i) a classical-
like instability in the flow of the viscous normal component
occurring upon reaching the critical Donnelly number Dn,,
and (ii) the Donnelly-Glaberson instability in the superfluid
component leading to vortex multiplication due to self-
reconnections.

A crossover between these two mechanisms is observed,
while the temperature is varied across the interval correspond-
ing to the two-fluid regime. This strongly suggests, perhaps
surprisingly, that transition to turbulence in oscillatory coflow
and counterflow is governed by the same underlying physics,
although the crossover occurs in the opposite direction for
counterflow than for coflow.

We have also shown that the Hénninen and Schoepe cri-
terion for critical superfluid velocity [26,27] (relationship 8)
and similar approaches based on quantized vortex dynamics

cannot be considered universal in the two-fluid regime, as
instabilities of the normal fluid flow are not taken into account.
On the other hand, these same criteria remain useful for the
description of the superfluid instability and recover univer-
sality at very low temperatures, where the two-fluid model is
no longer applicable. However, in the two-fluid regime above
~1K, they must be complemented by a suitable description
of the classical-like instabilities of the normal component.

It remains to be seen how the present analysis extends
into dc counterflow experiments and how the two described
instabilities relate to the T-I and T-II turbulent states observed
by Tough [7], and we hope that our work stimulates further
research into this area.
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Abstract

We report the use of 60 g thick superconducting WbTi vibrating wire
resonator as a local probe of quantum turbulence in superfluid *He
(He TT). Wire resonance is driven via magneto-motive force, cxclusively
in laminar hydrodynamic regime. I'or the dctection of quantized vor-
tices, changes in the probe resonant frequency and peak amplitude are
mecasurcd in reaction to the applied external counterflow. Calibration of
the device response is obtained in thermal counterflow in the tempera-
ture range from 1.15 K to 2.1 K against sccond sound attenuation data.
The main motivation of this work is the development of local probes of
quantum turbulence suitable for use in non-homogencous systems such
as flows with spherical or cylindrical symmetry. The frequency response
of the devices is described with good accuracy at lower temperatures
by considering the balance between viscosity and mutual friction and
its cffect on the boundary layer. Under the cxperimental conditions, the
fluid-structure interaction cannot be modcled reliably by an cffective tur-
bulent viscosity and agrees better with a model of the boundary layer
modified by mutual friction. The obtained results may be cxtended to
the interaction of nanoscale devices with sufficiently densce vortex tangles.

Keywords: Superlluid helium, Vibrating wire, Local probes, QQuanium
turbulence
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1 Introduction

Following the discovery of superfluidity, this captivating phenomcenon akin to
superconductivity in solids inspired numerous scientists Lo devote their time
and effort to its deeper study and continues lo be an important parl of low
temperature phyvsies rescarch today, Soon after thie first modcels of superfluid
helium formulated by Landau and Tisza were tested experimcentally with sig-
nificant success, it becamoe apparcent that superfluids had yel another trick up
thelr sleeve: guantum turbulence.

The existence of quantized vortices in superfluid helium, first suggested
by Onsager and confirmed cxperimentally by Vinen [1] using vibrating wires
in the superfluid phase of He (He II}, changed the situation dramatically.
It became clear that new and more advanced models of superfluidity were
required, while continually iruproved cxperimental technigues provided new
insights. Today, the range of theoretical, numcrical and experimental methods
is quite certainly beyond the hopes of the founders of this field, vel many
gquestions remain unanswerced, and with more detailed understanding, new ones
frequently emerge.

It is then perhaps no surprise that more than 60 years after Vinen’s famous
experiment. [1], vibrating structures such as supcrconducting wires or their
nanorncchanical counterparts are still used in the rescarch of gquantum turbu-
lence {QT). In this work, we return o some of the original questions — how do
solid structures interact with a gquantum-turbulent flow? Can a small vibrating
device be used for local detection of a tangle of quantized vortices in He IIY

Due to the itwo fluid character of He IlI, which consists of a normal vis-
cous fluid and an inviscid superfuid componeni., we have Lo account for Lwo
lypes of turbulence rather than one: classical-like turbulent flow of noirmnal
component; and a very specific turbulent flow of superfluid component which
consists only of quantized vortices — topological line defects with circulation
k= 1077 m?s~ ! At temperatures between =1 K and 2.17 K, where the supor-
fluid transition occurs, both lypes of turbulent flow may exist based on which
flow experiences the first instability [2, 3], but typically soon after the transi-
tion. both forms of turbulence are present, as energy and momentum transtfer
between the two components Is mediated by pressure or the mutual friction
force.

While cxperimental detection of quantized vortices is generally quite chal-
lenging, many different techniques exist today. 1t is possible to directly visualize
them with the use of frozen hydrogen particles illuminated by a laser sheet
[4, 5, 6] or by hclium excimers [7]. Second sound attenuation [8] represents a
thoroughly tested techmique allowing indirect quantification of the amount. of
quantized vortices, giving the average voriex line density, L, i.e., total length
of vortex line per unit volume in the probed region. To allow the conversion
of the sccond sound signal to L, typically, homogencity and isotropy of the
probed fows are assurned.

Recent mumerical and experimcental works discussing non-homogencous

tangles of quantized vortices genecrated in thermal counterflow in various
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Fig. 1 Photographs ol long and short channel assemblies together with their schematics.
Lell: Second sound porls in the long channel are displaved lacing the viewoer, while oscillators
are installed [rom the bottom side. Permanent magnels are placed over the long channel
assembly using separale plastic holders. Right: The circular cut-out in the short channel
body serves [or direct installation of permanent maghels with grooves provided [or gluing
vibrating wire leads.

geometries (oscillatory counterflow. cylindrically or spherically symumetric
counterflow) [9. 10, 11, 3] showeased the nced for new local detectors of QT.
Local probes using sccond sound [12] represent a highly interesting choice,
offering cxcellent spatial resolution and little or no parasitic effects, but lim-
its are imposed on their sensitivity by the relatively lower resonance guality
factor that can be obtained in an open gecometry.

Vibrating wire rcsonators, in the form of supcrconducting NbTi loops,
already proved as useful QT detectors close o 1 K and al sub-kelvin temper-
alures [13, 14], where the density of normal component of superfluid helium is
negligible. Here, we report the use of 60 pon thick superconducting NbTi vibrat-
ing wire rcsonator, driven via the magneto-motive scheme exclusively in its
laminar hydrodynamic regime. For the deteetion of quantized vortices, changes
in its resonant frequency and amplitude in reaction o the applied cxternal
flow are analyscd. The probes are testcd and cvaluated in well-understood
system represented by thermal counterflow turbulence [15], with a pair of sec-
ond sound sensors placed al the position of cach probce, allowing their in situ
characterization.

2 Experimental Method

All experiments were conducted in g helium bath eryvostal with thermal PID
temperature stabilization o the level of 1 mK. Bath lemperature was measurcd
with Microsensor TTR-G type [L6] of Ge on GaAs film thermometer calibrated
lo saturatcd vapor pressure. Two brass channcls were ciuployed, cach with a
manganine resistive hcater al its closed cnd, open lo the bath on the other
side, see Figure 1.

The first channcl with inner squarc cross-section 7 mm X 7 mm and length
of 167.5 mm included slots for both types of used QT detectors: second sound
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Fig. 2 Photographs ol the vibrating wirce detectors installed on custom holders compatible

with *long” channel (lefl} and “narrow”™ channel (right). The middle photograph shows a
close-up view ol a sample vibrating wire resonator.

capacitive sensors [8]; and vibrating wires. Vibrating wires were constructed
from d = 60 pm thick barc NbTi wire in the shape of semicircular loop with leg
spacing D of 3 mm (varnish and Cu matrix were stripped in HNOg), and glued
with 2850FT Stycast o a brass holder, see Figure 2. The wire holders were
constructed in a way that the top of the loop was positioned close e the cenler
of the flow channcl, with 0.3 mm uncertainty. Pairs of sensors were installed
al two different positions, 65 mm (for wire “L2” and sensors 3,4) and 115 mm
(wire *L3” and sensors 1.,2) from the channel inlet in such a manner that cach
vibrating wire was placed in a velume probed by the sccond sound scnsors, see
Figure 1. The wire L2 was oriented so that its planc was perpendicular o the
counterflow dirccetion while L3 was parallel. The resonant frequencies of the
wires L2, L3 when immersed in superfuid helinm were 6314 Hz and 5365 Hz,
respectively, with a very small termperature-dependent variation of order 1 Hz.
An additioual TTR-G therinometer was installed 90 mm from the inlet, cxactly
midway between the positions of the two wires and close le the channel wall,
for dircet measurement of the thermal gradicnt inside the counterflow channel.

The sccond channcl with inner squarce cross-section 4 mm X 4 mm and
length of 40 mm included two vibrating wires, both oriented perpendicularly
to the counterflow dircction, at positions 12 mm {wire M2) and 20 mm (wire
M1} from the channel inlet, see Fig. 1. A Ge thermometer was mounted at
the distance of 16 mm, cxactly midway between the wires. In this channcel, no
sccond sound sensors were installed. This channcel was uscd o generale more
intense vortex tangles al higher counterflow velocitics obtained with the same
heater power. The resonant frequencies of the wires M1 and M2 were 5830 Hz
and 7250 Hz. respectively,

Driving static magnetic field B of order of 100 mT was applied for cach
wire by the pair of FeNdDB permanent magnels. Relations between the driving
force F and the driving alternating current [ as well as between the induced
Faraday voltage U and the wire velocity V that satisfy the conservation of
energy are given for scmicircular geomelry [2] as:

U{w)

Flw) =0.690 [{w)DB; Viw) = ———7—. 1
(@) ’ (c) Vi) 0.690 DB (1)
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Minor discrepancics may result from deviations of the real geomelry from a
perfect scini-circle,
Due to a universal scaling of drag forces by normal component acting on

oscillators opcrated In high Stokes number regime [2], one can calibrate the

Y
real low-temperaturce value of the magnetic field from resonance mcasurcments

in laminar flow using:

B = gprfTrngUp (2)
1 x 0.690% D1,

where € = 0.396 represents an effective mass prefactor for the fundamental
resonant mode [2], p,, I the density of the wire material, and Af, U,, I, are
the resonant width, the measured peak amplitude of the Faraday voltage and
the peak arnplitude of the applicd driving current, respectively. Both numerical
prefactors 0.690 for the force-current relationship and 0.396 for the effective
magy, are obtained by integration along the length of the wire, of the driving
force projected onlo the resonant mode profile, or of the squares of the loeal
arnplitudes of motion, respectively. see Ref. [2].

We have performed experiments al temperatlures ranging from 1.45 K o
2.1 K. covering a wide range of normal-to-superfluid componcent ratios of He IL
QT was generated by thermally driven counterflow in a slow pulse sequence
al various powcers ranging between 1 mW o and 500 mW in ascending order.
Resulting counterflow velocity vy, for the applied heat flux ¢ is given as:

q .
Gns = 7 (3)

where s and pg are the specific entropy and the density of superfluid compo-
nenl, respectively, taken al {emperature I One heater-power step cousisted of
lwo repetitions of heater-ON and heater-OFF siaics with a duration of order
100 s for cach stale. During the power series, time cvolution of the resonant
amplitude and frequency of both sccond sound and vibrating wire signals was
mecasurcd for all detectors. For this purpose, resonance was tracked with the use
of a PID algorithin stabilizing the quadrature signal component to zero (after
background correction obtained from a full frequency sweep). In Figure 3,
we show a representative measurcment of rescaled amplitudes for one pair of
detectors during the power series. The decrease of both signal amplitudes is
causcd by additional damping due to the generation of QT in counterflow and
its interaction with the wires and the sccond sound wave.

The data show that the vibrating wire detects successtully only the highest
applicd powers and its sensitivity is less than that of second sound. Data such
as those in Fig. 3 can be uscd for calibration of the wire responsc to a given
vortex line density. The resonant frequency of the wires alse shifts, as shown
in the right pancl of Fig. 3. In the following, we analysc the wire response in
more detail, estimate its magnitude from HVBK equations [17] and cvaluate
the respounse that could be cxpected for finer (nano-)mechanical structures.
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Fig. 3 Leli: Meagured time serics of second sound and vibrating wire L3 amplitude at 1.65 K
as the heater power is gradually stepped up. The heater is switched on/oll twice at each given
power. The microwire is visibly less sensitive than the second sound technigue, as expected
[ory a local, but [lairly large, mechanical probe. Right: Changes in the resonant [requency
ol the microwire L3 at 1.65 K. Tor comparison, changes in second sound [requency reach
units of percent at the highest applied powers despite operating near the local maximum
in the dependence ol second scund wvelocity on lemperalure. The inscts show details ol the
individual heater switching events.

3 Results and Discussion

First of all, it is useful to converl the obscrved resonance frequency shifts to

changes in the resonator effective mass, Amey, and then cxpress the coxtra
. . . . — .

damping due lo counterflow as an inverse quality factor () using

JAN T (f 0 Afy Ay
T (jz ) ch jo A 9 ( )

where fy and f denote resonance frequencies without and with the counter-
flow applicd. respectively, and similarly Ag and 4 represent the amplitudes of
the resonant peak, with Afy standing for the resonant linewidth in the abscuce
of counterflow. The obtained wvalucs of A are mmuch lower than the effec-
tive mass of the resonator, comparable io the mass of the viscous boundary
layer of the normal fluid attached (o its surface. Similarly, the excess damping
is usually lower than the combined background damping due to viscosity and
intrinsic dissipation in the device. For these reasons, it s important lo provide
suitable corrections for parasitic effects. These include most notably variations
of local temperature when the counterflow is applied, as the viscous damping
scales with /pn(Tn(T), where (1" Is the dynamic viscosity and g, (1) the
density of the normal componeni. At the same time, the effect of overheating
by about 10 mK (see below) on the obscrved resonance frequency is ncgligible
cxcepl very close to the lambda point.

The temperature gradient in the channel was mcasured using sensitive
TTR-G thermometers and follows the prediction of Eq. (5) below, derived from
the HVBK equations [17] assuming that the mutual friction force dominates in
thermal counterflow over both turbulent and viscous drag and that the vortex
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Fig. 4 Lefi: Temperature rise inside the channel when the heater driving the counierllow
is switched on. Right: Corrected microwire excess damping Q(ill vs. counterllow velocity.

line density is given by L = 2 (?,-'.,,_SQ — -1,1(1,,,,,,‘_#2), which in our case fits the data
slightly better than L = v2 (v, — Ucmt)z. The leading role of mmtual friction
among dissipative phenomena in counterflow experiments is cxpected from
sirnple estimates and is found {o be in agreement with a more detailed analysis
performed for spherical geometry in Ref. [18]. For the purposes of comparison,
the gradient VT given by

Bt ff-Pn"‘-’2 ?-"-ns-Q — o 1‘2
VT = g ) U (5)
250

with B¢ being the dissipative mmutual friction coefficient and p being total
helium deunsity, is converted to a finite {emperature difference using the dis-
tance of the thermomncter from the open bath, see Fig. 4, left pancl. The
agrcement is quite remarkable, considering the simplifications involved in the
derivation.

Subsequently, we can account for thermally induced changes of the viscous
damping Qt_hl al the positions of the wires using

SN pa(To)n(

where, Qid' is total hydrodyuamic viscous damnping in the absence of external
counterflow and the temperature Ty is that of the helium bath, while T is the
inferred tcmperalure al the wire locations using the gradicut obtained from
Eq. (5). The damping due to quantum turbulence may thus be expressed as
Q(_zr‘llﬂ =Qy - Q;II. We note that at all heater powers where the wire detects
an excess damping, the thermally induced coutribution is always al least an
order of magnitude lower than the one due lo quantum turbulence, for both
counterflow channels uscd. The resulting valucs of Q(}IF are shown in the right
pancl of Fig. 4.
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Fig. 5 Lell: Vortex line density obtained [rom second sound measurement in the long
channel. The observed ~ lactors in Eqg. (3) are consistent with earlier work [19-_ 20], see also
Table 1. Right: Calibralion of microwire response against the vortex line density L. The

solid blue line shows a linear relationship which is observed only in the upper decade of L,

The mean inter-vortox distance 4, = L 1/2 3 becomes equal to the diameter of the wire at

L =278 x 10% in—2, indicated by the vertical dashed line.

Additionally, sccond sound mcasuremenls were performed in the same
channel, allowing us to cstablish an approxirmately lincar calibration betwecn
the wire response and vortex line density, as Is suinmarily shown in Fig. 5. It
s evident that the wire sensitivity Is a limiting factor here and that mechan-
ical probes of this size are unseful only In highly turbulent tangles. The wires
detect no {measurable) additional damping atl vortex line densities lower than
the threshold given by the comparison of the mean inter-vortex distance with
the characteristic dimension — wire diameter d = 60 .

To test the lincarity of the calibration relationship al higher L, we repeated
the experiment in the sccond channel of smaller cross-section, where tangles
of higher density could be casily produced. The ~ factors from the above mea-
surcments were uscd o deduce vortex line density here, as direet mceasurcment
was nol available. The « values are summarized In Table 1 and the results
are shown in Fig. 6. The plot shows lwo regimes which differ by the temper-
ature dependence of the obscrved damping. At lower L, the proportionality
constanl ¢, in the relation Q(}'F = ¢l depends systematically on Lemperalure
and appears lo scale approximalcly with the superfluid density, p; (show-
ing a wnotable deviation only al 1.45 K), while at higher L the temperature
dependence is mostly suppressed, see also Table 1.

3.1 Interpretation

When the heater is switched on and thermal counterflow is generated, the
oscillating wire changes its resonant frequency as well as the damping, as
discussed above. Importantly, the frequency increases in all observed instances.

The resonant frequency wy = 2w fy is determined by the effective hydrody-
namic mass, meg, of the device and by its spring conslant, %, The resonant

frequency defined as the frequency al which maximum powcer is absorbed from
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Table 1 Values ol v used [or calculation of vortex line density in the small channel,
together with the parameler ¢ relating the inverse guality [aclor and the vortex line
density by Q(il = clL. The last coluinn contains a theoretical value [or ¢/p. based on

Eq. (23) below [ov wire NI

= 2.05HK

2
£
E [l
= : R
I . /Q : wire M2

T 0% c ef pe Cin/ Ps
(K] [10% s 2] [to=15 1n?) [10=17 mSkg—) [10717 mSkg—)
1.45 .98 4.0 3.0 (.61
1.65 1.22 1.6 1.4 0.59
1.85 1.49 1.1 1.2 0.60
2.00 1.81 0.9 1.4 0.71
2.056 2.05 0.8 1.5 0.50

103 F————— |
Eowire M1 |
|+ 145K :

10°H » 1.65K
- 1.85K :

- 10°% | » 2.00K :
F |

|

I

T A 145K
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Fig. 6 Microwire damping vs. vortex line density L in the narrow channel. The solid lines
depict linear relationships Qc_gl = cf., Two distinct reghmes are observed. Trivst, at lower
L, the damping is temperalure dependent. TFor the values ol the prelaciors ¢, see Table 1.

At higher L, the {emperalure dependence is guppressed; the linear relationship between
damping and vortex line density appcars with ¢ /& 2 X 1015 m?2,

a drive mechanism, or cquivalently, maximum velocity {rather than displace-
ment) aplitude is reached, is given by Lué = ks/Mew, irrespective of the
magnitude of the lincar damping. Generally speaking, the obscrvations in the
right pancl of Fig. 3 may be cxplained cither by an increase in the spring
conslant, or by a decrease of the effective mass.

The spring constant could change, e.g., due to vortices pinned between the
loop of the wire and its base, as long as they are nol dircected exactly parallel lo
the direction of motion, in which case only a constant vortex tension would act
on the wire. For straight vortices attached to the wire going directly towards
a pinning site al its basc, the total force projected on the direction of motion
would be given by:

FQV = ff\-‘rFl 2.’1‘-/D, (7)
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2
o b
F = Ps In —, (R)
A ap
N = LdD, (9)

where Fy stands for the force acting due to one quantized vorlex (vortex ten-
sion), ag {8 the vorlex core size, b being a cut-off distance (intervortex spacing in
the case of many vorlex problem), N denotes the estimated number of attached
vortices, x Is the immediate displaccment of the wire and f s a geometric fac-
tor of order unity. This would vicld an cnhancement o the spring consiant
due 1o quantized vortices kgy and its relative magnitude can be estimated as:

kqv D w2 Ld
=" _In{b/ap). 10
Ly 2Tl (b/ao) (10)

For T = 1.65 K and L = 3 x 10? m~? this gives kqv/ks ~ 107°
orders of magnitude oo small Lo cxplain the frequency shift obscrved in Fig. 3.

, 1.e., thrce

Similarly, following Ref. [26], one may consider quantized -circulation
around the NbTi wire itself interacting with its mirror irmage reflected through
the planc of the basc {as per boundary conditions). This interaction produces a
static Magnus force, attracting the wire towards its basc and changing its ten-
sion. However, a scmicircular loop with diameter significantly cexcceding that
of the wire s under tension only due to its curvalure. In a situation without
vortices, from the ncutral line passing through the ceniter of the wire inside,
the tension felt by the wire material is negative, while towards the outside it
is positive. An Integral of the tension taken over the full cross-section of the
wire In cquilibrium position would vield zero. Circulation trapped around the
wire may, in principle, affect this balance of tension forces, but in effect, such a
tiny change' of the tension duc lo curvalure could nol contribute significantly
towards the spring consiant, which is determined mostly by the clastic modu-
lus of the material itself, seeing as the curved half-loop behaves essentially like
a cantilever. We therefore consider it a valid approximation lo necglect these
effects for our device.

As we cannol justify the obscrved frequency shift by cousidering clastic
effects, in the following, we analysc the results under the assumption that it
is the effective mass that is changing rather than the spring constant. This
requires that al high counterflow velocitics, the effective mass of the device, or
rather, its hydrodynamic cnhancement, decreases appreciably, In an ideal fluid
(superfluid component), the hydrodynamic mass cnhancement of an oscillating
objeet s given in terms of the poteutial backflow. In a viscous fluid, the same
effect exists and additionally, the mass of the viscous boundary layer moving
with the objeet [28, 29] must be considered. For an oscillating body, the back-
flow coutribution is constanl regardless of any externally applied stationary
flow, we are thus most likely seeing effects rclated to the viscous boundary

For a nanobeam displaced 2 pum from the subsirale, the attractive torce was estimated to be
of order 10 pN in Ref. [26 . For a microwire loop of diameter 3 mm, this is expecited to be roughly
three orders of magnitude lower
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layer in the normal component. Generally, for an oscillating body in an exter-
nal stationary viscous flow, lwo iypes of boundary layers nced Lo be considered:
(i) a stationary Blasius-typc boundary layer, and (ii) a periodically changing
Stokes-type boundary laycr. The interaction of these two types of boundary
layers is presently nol understood in its entirety and represenis a challenging
topic with relevance, e.g., in the trecatment of waves in shallow water[27] or Lo
some cxlent in aeronautics, via Interacting Boundary Layer modcls.
At zero counterflow, the effective mass of the device is given by([2, 29]:

megg = Em 4+ ApV 4+ 8 Spuda, (11)

where the first term expresses the effective mass of the device in vacuum (dif-
fering from Its gravitational mass due to the profile of the resonant mode),
the second term represcenis the ideal hackflow and the last term the boundary
layer mass, with V' oand § the volume and surface area of the body, respec-
tively, 0, = +/2n/pnw Is the Stokes boundary layer thickness and the 5 and g7
are constants of order unity determined by the exacl gecomelry of the body.

In the following, we consider ouly the Stokes boundary layer, as it is relevant
to the oscillating motion of the device which we are measuring, whercas the
Blasius-tvpe boundary layer would only affect its steady stale characteristics,
which are nol probed cxperinentally. Specifically. for an oscillating cyvlinder,
the mass of the Stokes boundary layer, . given by the last term on the RHS
of Eq. (11) can be cxpressed as:

-
TR = 7,011D5n (d + 51‘1) ) (12)

and may be used Lo mormalize the observed change of the effective mass.
Naivcly, one might cxpecl that once the counterflow is switched on and tur-
bulence is created in the wmain flow, vortices will interact with the Stokes
boundary layer and cause mixing. This would, in turn lead to partial bound-
ary layer separation, reducing its contribution to the effective mass. The left
pancl of Fig. 7 shows the mass decrease obtained from the resonant frequency
change plotted as a fraction of ey, against L. First of all, we find that the
mass change s lower than {but comparable to) the boundary layer mass, mak-
ing this effect a likely cxplanation of the cxperimental data and deserving a
closer analysis.

Before proceeding further, let us turn for a moment to the origin of the
additional damping. First, let us consider this excess damping due io turbulent
motion of both fluids for a moment ag if it were a manifestation of some effective
dynamic viscosity, g, mcediating an excess force acting on the oscillator. To
begin with, let us state that this notion of an effective viscosity is conceptually
different from the usual definition based on turbulent energy dissipation given
by € = veg(rl)?, as the latter relates to dissipation of the kinctic energy of the
cxternally driven turbulent flow, whereas in our case we are interested in the
dissipation of the kinctic energy of the mechanical resonator via fluid-structure
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Fig. 7 Lell: Change in elleciive mass normalized by the mass of the Stokes boundary laver
plotted against counterllow velocity. The solid lines are calculated using the ratio of elleclive
masses (¢ — b) as obtained [rom Eq. (22), showing remarkable agreement with the data.
Right: Ratio of extra drag due to quanium turbulence, Q(_zll to the hvdrodvnamic viscous

drag in zero counterllow, Q]Td] The solid lines are obtained using the ratios (@ + b) [rom
Eq. (22). The data show higher damping than predicted, see text.

interaction. A viscous-like Dehaviour would correspond le a situation, where
quantizced vortices exist in sufficient density to effectively exchange momentum
between layers of fluid adjacent lo the body. This requires vortex spacing lower
than the boundary layer thickness, which may be cstimated from Ref. [2],
Eq. (9) in the high Stokes nuimnber limit, reprinted here for convenience using
the present notation:
0.9, Oute
2m
where o = 2 Is the flow cnhancement factor for a cylinder, 5, Is the effective
surface area incorporating roughuess, deg = /2% / pw 1s the effective viscous
penetration depth and m stands for the (full, not effective) mass of the res-

Qar = (13)

onalor. The surface area can be approximated by that of a simmooth scmicircular
loop of wire giving S, ~ w?d/)/2, while the mass of the NbTi wire is given by
m = pwod’13/8 with p, = 6550 kg in—?. Finally, we arrive al:

p 14
QQ’T‘ ,OW(Z 9 ( )

which could be usced o cxiract the experimental effective penetration depth
derp and hence the effective dynamic viscosity neg. The high Stokes numnber
lirnit manifests by the requirement d.gp << d here, with the wire diameter
d = 60 pm. The valucs of dug obtained from our data always fall below 1 pan,
requiring £ > 10" m™?2 in order for this scenario to work, which is not satisfied
in our eccperiments. In view of this cvidence, we rule out dissipation by an

effective viscous-like transfer of momentum via interactions with quantized
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vortices, although the possibility remaing that al higher drives beyvond those
investigated hiere, this mechanism may yel come into play.

Here we must consider that while quantized vortices cannol mcdiate a
viscous-like disgipation directly (and should be treated cither ballistically, or
better, within detailed numncrical simmulations of the vortex filament model),
they may still iave a non-zero nct effect on the viscous boundary layer via the
mutual friction force. As the vortex spacing cxceeds the boundary layer thick-
ness, vortices interact with the BL only sporadically, Thus, in a similar fashion
to Reyvnolds decomposition in classical fluids, one may define an mean vortex
line density in the boundary layer (L}, and scparale the HVBK equations of
motion into steady and fluctuating paris. As the experimental data obtained
using the lock-in technigue are in any case averaged over thousands periods of
oscillation of the device, we must assume that the measurements, in fact, corre-
spond to the mean valuc (L). The question arises: How s the Stokes boundary
layer effectively modified in the presence of mmtual friction? In the follow-
ing, we re-derive its properties, cxtending Stokes’ second problem — in-planc
oscillations of a planar infinite boundary — to superfluid helium.

3.2 Stokes boundary layer with mean mutual friction

Setting the pressure and temperature gradients to zero and mneglecting the
vortex tension in the HVBK equations [17], we start from

Otn Fnfls
—_— = — —~Brluv,, +nduv,, 15
£n ot 9 T8 N ’ ( )
vy Fnfls
s—— = + — Brlingyg, 16
Py 2 (16)
where vy = vy — vs. We seek solution in the forin
) . ar L tlkz—of)
tn = Ung + tni1€ y (17)
s = Usp + Va1 G-:lfkfz—w!,) ,

where z is the distance from the planc, and we require $§(k) > 0 to obtain
vanishing solutions al infinity. Both velocitics oscillate in the same direction
as the planc, ie., we are dealing with a 2D flow, sce, e.g., Ref. [28] for a
classical hydrodynamical treatment. It follows that the non-linecar iorms are
identically zero due to symmetry of the problem. The superfluid component is
cxpected Lo be sel in motion by the mean mutual friction force and the relation
between o, and oy Is obtained from the sccond equation in Egs. {16). The
vortex line density may be expressed as L = (L) + E; where L represents both
random fluctuations in the turbulent flow and oscillations at the frequency of
the resonalor, w. Focusing only on Lerms that oscillate with the frequency w,
neglecting the product {9 — '1.-'50)]_'”/ in comparison o (u, — »5) (L} as the
oscillator {8 nol cxpected te generale turbulence of its own al low drive, we
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arrive al the condition for the wavenuwmber k

(2pw)? + pup(Br (1Y)? + 2ippswBr (L)
(2pw)? + (pnBr (L1))* ’

(kén)? = 2i (19)

where we use the usual viscous penetration depth of the normal component
62 = 2n/(paw). Note that the expression Br (L) /2 = 7! represents a mean
inverse relaxation time associated with mutual friction. For (L} = 10! mfz,
the relaxation time Is 7y & 2 ms, meaning that mutual friction is sufficiently
fast Lo act in the cxperimental window given by the lock-in time conslant
typically of order 100 ms, but certainly cannol follow cach oscillation of the
device with a characteristic time given by w™' & 30 ps; hence observation of
a “mean-field effect” on the boundary layer s indeed expected. Intreducing a
dimensionless quantity w = {wnur) ™t analogical to the Weissenberg number
used for dilute classical gases, the above expression may be simplified to

L 1+ roaw? T W
(k()n)z _ 9 + Tatt” + s;_ u
1+ (zqw)?

; (20)

where w, = po/p and x5 = po/p. The argument of the complex quantity in the
fraction is alwavs between 0 and 7/2 and one may take the positive squarc
root in Eq. (19) o obtain

ko, =14+ i)(a+1ib) =a—b+ila+b), (21)

with ¢ > 1 > b > 0, satisfving the requirement that (k) > 0. The wavenum-
ber k may be substituted in Eqg. (18) to obtain the cxact velocity profiles
satisfying the boundary condition that the normal fluid moves together with
the oscillating planc al z = 0. The viscous stress al the boundary will be then
given by

s, 110

o =1 =[—(a+h +ila—b] Fe “ (22)
itz — o

where vy, exp(—iwt) is the velocity of the planar surface. Comparison of this

result with the clagsical treatment in Ref. [28] shows that the viscous dissipa-
tion will be re-scaled by the factor a +b > 1 comparcd to the case without
counterflow (and thus without mutual friction} while the added mass will be
re-scaled by g — b, in agreement with the obscervations of increasced damping
and deereased effective mass (@ — b < 1 for our experimental conditions). We
also note specifically that the phase shift between the viscous force and the
planc velocity generally differs from @/4 that is obtained in the case without
mutual friction [28], and is restored here in the limit L — 0. It may be also
noted that in order for an effective viscosity to describe this problein corrcetly,
the two prefactors ¢ + b and @ — b would have o be identical, contrary to both
this simuple model and cxperimncental obscrvations.
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In lincar approximation, the prefactors may be cxpanded in terms of L with

1 ps BrL
b~ —wr, = —

p  Aw

(23)

S
Q
'_A

In the case of flow pasi a circular cylinder, a similar trealment holds as for
the planar surface if §, << d and we may approximate its surface by planar
clements. Both terms in the stress Lensor in Eq. (22) would further contain the
flow enhancement factor o = 2 expressing the ratio between the velocity of the
cylinder surface and that of the potential How around it, but the comparison
io the case without counterflow would vicld the same ratios a + &, and a — b
for the dissipation and the effective mass, respectively.

The modification of the Stokes boundary layer by mutual friction is not
the ouly mcechanism responsible for additional dissipation in our experimnent.
Additionally, one should consider dircct momentum transfer from collisions
with quantized vortices impacting on the device. While a rough estimate may
be obtained from a siruplistic model of ballistic vorlex ring propagation that
agrees in order of magnitude with the obscrved additional damping, it cannot
be formulated preciscly without a detailed knowledge of the distribution of
sizes of vorlex rings, and a thorough analysis would require running numecrical
gimulations that would be heavily influenced by the boundary conditions at the
device surface. The experimental data follow the same temperature dependence
as given by Fq. (22), which cxhibits scaling with p; In linecar approximation,
see the right pancl of Fig. 7, but the data are consistently higher than the
theorctical prediction. Thus we cxpect that direct momentum transfer from
impacting vortex rings will also contributc to the dissipation significantly. The
results indicate that the frequency shift is indeced a safer way Lo measure the
vortex line density with similar devices.

Although we cannot ascertain that the prescnted crude model s funda-
mentally correct and further studics using different technigues are certainly
required, let us, for a moment, consider its implications for mcasurements with
nanoscale devices. The sensitivity of the nanodevice would be again given by
the prefactors expressed in Eqgs. (22,23}, which will be to some cxtent influ-
crniced by the detailed pecomeiry of the device and its density, but for a wire-like
gecomelry, it will be always inverscly proportional lo the resonance frequency.
This result may be be used to design the approximate dimecnsions and frequen-
cies of devices with a given sensitivity to quantized vortices present in flows of
superfluid hclium. For example, one may cxpect nanomechanical beams res-
onating al MHz frequencies to display a lowcr relefeve change in frequency,
while the absolute frequency shift would be approximately the same. Thus
if suitable demodulation technigues are used in the high frequencey measure-
ments, the nanoscale devices would operate cqually well as far as sensitivity Lo
the average vortex line density L is concerned. However, due lo their reduced
size, they would perform two or three orders of magnitude better in lerms
of spatial resolution, or cquivalently, the total length of vortex line that they
can dctect locally in comparison to the current, rather large, superconducting
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wire. Finally, we nole that detection of quantized vortices stubly attachked 1o
nanodevices will behave differently from the model presented here, as both the
dissipation and the frequency shifts will be dominated by different mechanismns
than discussed here.

4 Conclusion

We lhave tested several NbTi superconducting microwires as probes of quan-
tum turbulence in thermal counterflow of He II gencrated in the two-fluid
regime above 1 K. The devices respond o the counterflow, displaying changes
in damping and resonant frequency. In both cases, the effect is proportional lo
the vortex line density and the observations can be approximately described
by considering a net effect of quantized vortices modifying the Stokes bound-
ary layer due to mutual friction. The observed dissipation displays two regimes
differing by their temperalure dependence and agrees within an order of mag-
nitude with that given by the above model, but cxceeds it systematically,
leaving momentum transfer by collisions with vortex rings as a likely addi-
tional dissipative mechanism. On the other hand, the obscrved frequency shift
corresponds quite well o the modified Stokes boundary layer model, allowing
a local quantification of the mean vortex line density, cspecially after device
calibration in a well-characterised flow. This is a promising advance in view
of studics of inhomogencous flows such as cylindrically or spherically symmet-
rical thermnal counterflow and may be extended lo modern nanomechanical
devices. We hope that our results will stimnulate further work both theorctical
and cxperimental and that the simple model presented will help o provide a
basic understanding of fluid-structure interactions in turbulent superflnids.
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ABSTRACT

We present measurements of the damping experienced by custom-made quartz tuning forks submerged in *He covering frequencies from 20
to 600 kHz. Measurements were conducted in the bulk of normal liquid *He at temperatures from 1.5K down to 12 mK and in superfluid
3He-B well below the critical temperature. The presented results complement earlier work on tuning fork damping in *He, removing possible
ambiguities associated with acoustic emission within partially enclosed volumes and extend the probed range of frequencies, leading to a
clearly established frequency dependence of the acoustic losses. Our results validate existing models of damping and point toward the same
mechanism of wave emission of first sound in normal *He and liquid *“He and zero sound in superfluid *He. We observe a steep frequency
dependence of the damping ~f>-, which starts to dominate around 100 kHz and restricts the use of tuning forks as efficient sensors in quan-
tum fluids. The acoustic emission model can predict the limiting frequencies for various devices, including micro-electromechanical and
nano-electromechanical structures developed for quantum turbulence and single vortex dynamics research.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0148457

The general form of motion of quantum fluids such as superfluid
phases of helium isotopes “He and *He, quantum turbulence, has
sparked scientific interest since its discovery in the middle of the last
century. Close analogies to turbulence in classical fluids have been for-
mulated, focusing on large flow structures, while fundamental differ-
ences exist that highlight the unique nature of such flow." A significant
part of experimental research of quantum turbulence focuses today on
the use of submerged electro-mechanical resonators of micrometer
and sub-micron dimensions. The goal here is to manufacture devices
with the ability to interact with a single quantized vortex,” providing
experimental access to probing its dynamics, which holds the key to
some of the most important outstanding questions, such as how vorti-
ces interact with solid structures and how kinetic energy is dissipated
in a fluid with zero viscosity. Single vortex sensing can be achieved by
lowering the dimensions and mass of a mechanical resonator (beam,
wire, tuning fork, etc.) and probing the energy dissipation at the lowest
attainable length scales.” * Recently, this development has been made
possible by the improved accessibility of nanofabrication facilities
allowing for custom production of devices of various shapes and
dimensions™® " based on materials, such as monocrystalline silicon,
silicon nitride, quartz glass, or thin layers of superconducting metals.

When designing such a detector, it is crucial to understand the
behavior of the device itself and its interaction with the fluid in the rel-
evant dynamical regimes, especially with numerous dissipative mecha-
nisms affecting its sensitivity. First, it is necessary to evaluate the
intrinsic damping of the device, as measured in a low temperature vac-
uum. Defects in the crystal lattice, such as two-level systems,lz present
at grain boundaries or interfaces can contribute to this damping as
well as any clamping losses due to finite acoustic transmission through
supports. Submerged devices additionally experience a generally tem-
perature dependent “background” damping in the hydrodynamic'’
and ballistic regimes'“"” of the working fluid. Finally, any submerged
oscillating body emits sound waves in the fluid, and acoustic damp-
ing'®"” becomes especially important at high frequencies, imposing a
severe practical limit on the design and usability of such devices.

All the mentioned regimes were recently explored systematically
using quartz tuning forks'® in “He and to a lesser extent'” in *He. The
results for “He provide a robust validation of the models for both nor-
mal liquid and superfluid phases. Here, we provide bulk measure-
ments of acoustic damping of quartz tuning forks in *He, covering the
frequency range from 20 to 600kHz, and remove any ambiguities
associated with acoustic emission inside a partially enclosed volume
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present in the earlier study.” Furthermore, the data shown validate
the applicability of a single acoustic emission model for both *He and
He liquids, including the superfluid phases He-Il and *He-B.
Considering the differences in the behavior of the two helium isotopes
due to their bosonic (*He) vs fermionic (*He) nature, this finding
points toward similar mechanisms of acoustic wave emission in the
mentioned classical and quantum fluids.

The measurements were conducted using a custom-made” array
of quartz tuning forks'*'*"** consisting of five devices connected in
parallel, sharing electrical leads. The fundamental and the first over-
tone resonant frequencies of each fork were determined by varying the
fork length from 1.9 to 0.9 mm in order to cover a wide range of fre-
quencies while ensuring sufficient frequency spacing between the reso-
nances to avoid any crosstalk. All of the remaining dimensions, see
Fig. 1, were common for all of the forks, namely, prong width
T'=90 um, thickness W =75 um given by wafer thickness, and prong
spacing D= 90 um.

For mechanical rigidity and easy manipulation, the fork array
was glued between two Stycast 1266 impregnated papers, and an elec-
trical connection was realized via soldering device contacts to copper
leads representing also the only thermal link in the case of measure-
ments under vacuum. All vacuum measurements characterizing the
device intrinsic damping were performed using a dipstick submerged
directly into a “He transport Dewar at 4.2 K. The intrinsic damping
varied within an order of magnitude depending on the position of the
fork in the array, pointing toward the importance of the base rigidity.
For liquid *He measurements, the fork array was enclosed inside a
Stycast cell”’ shown in Fig. 2, containing also 80 silver-sintered copper
plates of the nuclear demagnetization stage, mounted on the Lancaster
advanced dilution refrigerator,”* allowing us to reach temperatures
down to 100 uK. The cell was kept at nearly zero pressure and
included vibrating wires used for thermometry.”

The basic principle of the measurements relies on the piezo-
electric properties of quartz,” and the connection scheme is illustrated
in Fig. 1. Oscillatory movement of the fork prongs, in anti-phase with
respect to each other, is induced by the driving voltage, using an
Agilent 33521A function generator with output attenuated by 60 dB.
The device response results in an ac current proportional to the veloc-
ity amplitude of the prong tip. The resulting current signal is first
amplified and converted to a voltage using a custom I-V converter’’
with gain 10° V/A and then detected by phase-sensitive lock-in ampli-
fiers SR830 or SR844, depending on the measured frequency.

Signal Generato

—
8
©
>3
T
E IV Converter
Lock-in
Amplifier

FIG. 1. Photograph of the tuning fork array and a schematic connection diagram.
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FIG. 2. Photograph of the open double-wall demagnetization cell. The inner cell
contains the tuning fork array and thermometry. Copper plates, the refrigerant of
the demagnetization stage, covered with silver sinter present in the inner and outer
cells are visible.

In order to describe the behavior of an oscillating structure sub-
merged in a liquid, it is necessary to introduce theoretical models of its
damping for all relevant flow regimes. First, it is needed to characterize
the intrinsic damping, measured in vacuum at low temperatures,
caused solely by the mechanical structure of the oscillator. Additional
temperature and frequency-independent contributions to the damping
may be considered, such as magnetic losses and eddy current heating
if using a magneto-motive driving scheme.””

In the presence of a working fluid, additional dissipation of
hydrodynamic origin appears. The intrinsic damping Af, being well
below or at most comparable to the hydrodynamic damping Afy is
typically considered a necessary condition for the device to be used as
a detector. The temperature- or frequency-dependent hydrodynamic
contributions to the total damping originate from multiple effects
and must be considered separately. In this work, we describe only the
laminar/potential flow regime of the normal/superfluid components at
velocities below any turbulent instability. It is known that losses due to
acoustic emission dominate at high frequencies.'”'” Damping of the
submerged oscillator at frequencies well below this point is well under-
stood and described either by viscous drag in the normal liquid phase
or the two-fluid regime of the superfluid phase or at even lower tem-
peratures (for *He below ~ 0.25T¢) by the frequency-independent
ballistic drag.

Although modeling the ballistic drag in superfluid *He is gener-
ally a nontrivial task due to the effects of Andreev reflection”’ reducing
the resulting damping force on a moving object, it may be derived for
the case of simplified geometries and low velocities.'” In the viscous
drag regime, both the width (corresponds to the damping) and reso-
nant frequency (linked to the mass) of the oscillator’s resonance are
affected by the fluid. The decrease in the resonant frequency fi; with
respect to its vacuum value f; is caused by the fluid back-flow and by
the mass enhancement due to the creation of a Stokes boundary
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layer."” For boundary layer thicknesses well below the oscillator
dimensions,” the solution for an incompressible liquid leads to the
square-root frequency dependence of the viscous contribution to the

resonance width,”
S 2
i = O [ ()’ m
Meff T 0

where C denotes a geometrical factor of the order of unity, S is the prong
surface area, m. is the effective mass of the oscillator, and p,; and 1 are
temperature dependent density of the normal fluid component and
helium viscosity, respectively. The model describes the system accurately
when considering the high-frequency limit, i.e., when oscillator charac-
teristic dimensions greatly exceed the viscous penetration depth J,, given
by \/1/ paifon. Further corrections accounting for large 0, are needed
when approaching the superfluid transition in *He due to a steep rise of
helium viscosity,m}o and slip effects need to be considered in transi-
tional flow between the hydrodynamic and ballistic regimes.

At high frequencies, however, the above-mentioned damping will
be negligible compared to energy losses due to the emission of acoustic
waves. In order to describe the behavior of the resonator correctly, a
suitable model of acoustic emission must be considered.'® For acoustic
emission by a tuning fork in liquid *He, a “3D” model presented in
Ref. 16 is the most successful in describing the experimental data. The
tuning fork is modeled as a linear quadrupole of planar sources with
effective strength based on the mode-dependent velocity distribution.
In the model, emission of spherical waves is considered, leading to the
following solution in form of spherical Bessel functions j,,;:

WZLZ 4 O
AP = Cop P W LS § (5 4 1)
¢ Me fo =

even

(2] (2

with the total helium density py;, sound velocity ¢, a geometrical factor
of the order of unity C;p, and an effective prong length L. In the
long wavelength limit, using Taylor expansion, Eq. (2) yields the steep
~f® dependence of the acoustic drag, which starts to dominate around
100 kHz for typical tuning forks'® in “He.

To correctly account for the velocity distribution along the prong,
it is necessary to introduce the mode-dependent prefactors &4 and
U, giving the effective mass meg = Cgm and effective length
Ler = perL. Their values for a cantilever may be derived based on Refs.
16 and 18, giving ug = 0.3915 for the fundamental resonance and
U = 0.2169 for the first overtone, while &4 = 1/4 for both modes.

In order to describe the sound emission in liquid *He, the previ-
ous work of the Lancaster group'” gives a strong hint toward the appli-
cability of the introduced model for both quantum liquids, albeit the
results clearly show an effect of the resonator confinement resulting in
the suppression of the sound emission for the part of the frequency
range coinciding with the cavity dimensions.

Finally, when discussing acoustic emission in quantum fluids, it
is necessary to distinguish between different sound modes. In bulk lig-
uid “He, the first sound is a pressure wave, and the second sound’ is a
temperature wave, which must be considered. Due to the driving
mechanism being a moving rigid wall, first sound emission is stronger

2

)
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than second sound emission by several orders of magnitude in the
described experiments, and second sound is not discussed further.
Considering the fermionic nature of *He, sound waves may be
regarded as deformations of the Fermi sphere, with first sound corre-
sponding to a symmetric “breathing” mode and the so-called Landau
zero sound mode’ being described as asymmetric deformations.
Second sound mode is strongly suppressed due to the very high viscos-
ity of the normal component. The preference for first sound or zero
sound depends on the frequency of oscillation @ and on the tempera-
ture, which affects the fluid relaxation time 7. The emission of zero
sound is relevant only in the collisionless limit’* wt > 1, and values
of wrt for the forks at 0.167T are given in Table I. In normal *He, wt
remains below 0.04 even for the highest frequency at all investigated
temperatures. Two types of zero sound are known to propagate in
superfluid *He-B: a longitudinal mode and a transverse mode. The
transverse mode is not expected to propagate at low pressures.”’ The
speed of the longitudinal mode here is 190 m s, increased from that
of first sound by 6 ms ™",

All measurements presented in this work were conducted in bulk
liquid *He. Prior to the experiments on the demagnetization refrigera-
tor, we characterized the intrinsic damping of each fork in vacuum at
~4.2 K. The vacuum widths of individual forks differed by up to one
order of magnitude, see Table I, which was caused most likely by the
differences in the rigidity of the base at each tuning fork site. The
obtained vacuum widths, with values comparable to the measurements
in ballistic regime on superfluid *He at the lowest temperature, were
subtracted from all datasets presented below. The differences in intrin-
sic damping between 4.2K and low temperatures are negligible in
comparison with the dominant acoustic or viscous losses.

In Fig. 3, we summarize the experimentally obtained resonant
widths using the fork’s fundamental and first overtone modes. Each
point in the graph results from the resonant peak fit for the resonant
frequency and full width at half height. Presented data were obtained
from the measurements at five temperatures in normal liquid *He
ranging from 1.5K down to 124 mK and 0.16 T¢ in the ballistic
regime of superfluid *He.

TABLE I. Vacuum properties of fundamental and overtone resonant modes of used
tuning forks measured at 4.2 K. The last column shows the product of the angular
frequency w and the estimated relaxation time  in superfluid °He-B at 0.16 T;. This
relaxation time represents the thermalization of individual quasiparticles to the walls
of the cell and is obtained by dividing the mean free path of order 1cm by the root
mean square group velocity determined from (vs) ~ ZUEkBT/A, where vf is the
Fermi velocity and A is the energy gap.

Fork-mode Frequency (Hz) Width (Hz) wt (T=0.16T¢)
L1-fund 22403 0.05 56.1
L2-fund 35770 5.15 89.7
L3-fund 55276 0.29 139
L4-fund 97055 3.58 243
L5-fund 159316 0.55 399
L1-over 138689 0.44 348
L2-over 220110 32 552
L3-over 337514 3.90 846
L4-over 579000 159 1450
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FIG. 3. Measured damping width minus the intrinsic contribution Afy as a function
of tuning fork frequency at five temperatures in normal liquid *He and one tempera-
ture in superfluid °He-B. Empty and filled circles represent fundamental and over-
tone resonant modes, respectively. Dashed lines correspond to the viscous drag
contribution using fitted value of the geometrical parameter C=0.65. The dotted
lines represent fits of total resonance width as a sum of viscous drag and acoustic
emission contributions. For the superfluid *He data, we obtained different geometri-
cal coefficients describing acoustic emission by fundamental resonant mode
Clind = 3.3 and overtone resonant mode C34 = 8.5.

For measurements in normal He, we have evaluated the viscous
hydrodynamic drag contribution by fitting the data to Eq. (1), shown
in Fig. 3 as dashed lines. The fits exclude points at frequencies above
100 kHz, where the acoustic damping becomes significant. Using
experimental values of resonant frequency shift in liquid fi1/fo, known
values™* of p,; and 5 for *He, and dimensions of the used tuning
forks, we can evaluate a corresponding geometric C coefficient for
each tuning fork for both resonant modes separately and at each tem-
perature. The obtained values of C coefficients vary by less than 1% for
different forks considering both their modes and by less than 3%
across all the measured temperatures. The resulting temperature and
frequency independent value C=0.65 are in reasonable agreement
with previous experiments'’ using tuning forks in partially enclosed
volumes of normal liquid *He. The constant C is determined by the
fork geometry and may be affected by the ratio of the viscous penetra-
tion depth to the tine dimensions, usually falling between 0.5 and 0.65,
with higher values possible for short, high-frequency forks.'***

Subtracting the viscous drag contribution, we have performed the
fits of the acoustic contribution based on Eq. (2), for all measured tem-
peratures in normal and superfluid *He states. We have used known
*He properties with first sound and zero sound velocities taken from
Refs. 33 and 35 and measured properties of the tuning forks, leaving
the geometric prefactor Cp as the only fitting parameter. As the two
resonant modes used have different velocity distributions along the
prong length, we consider fundamental and overtone datasets sepa-
rately. For normal liquid *He, practically, all experimental points

ARTICLE scitation.org/journal/apl

usable for the acoustic contribution evaluation come from the over-
tone mode. Only for the superfluid *He data can we distinguish the
two modes using the derived values of p.

The model describes the observed damping with good accuracy,
with values of geometrical coefficients for overtone and fundamental
resonant modes C5)} = 8.5, with deviation of 20% between the mea-
sured temperatures and C4 = 3.3, In Fig. 3, we show resulting
curves (dotted lines) describing the total measured widths as a sum of
viscous/ballistic and acoustic contributions based on the performed
fits. The value obtained for the fundamental mode agrees quite well
with results from superfluid “He,'® where C3p = 2.17 was obtained.
We note that the analysis in Ref. 18 uses the same effective prong
length us = 0.3915 for both the fundamental resonance and the first
overtone, while the data dominated by acoustic damping come mostly
from overtone measurements. After adjustment for the correct effec-
tive prong length i = 0.2169, a prefactor of Csp = 7.1 is obtained
in *He, in good agreement with the present value CJit = 8.5.

The results confirm the validity of the model of acoustic emission
by quartz tuning forks presented in Ref. 16 for the bulk normal liquid
*He and superfluid *He-B in addition to the previous results in liquid
*He. The values of geometrical coefficients representing the only fitting
parameters in the viscous drag and acoustic emission models are in
good agreement with previous results. It is important to point out that
the single value of the geometrical coefficient can describe acoustic
emission in the whole range of temperatures in both quantum liquids.
Our results, therefore, point toward the same mechanism of wave
emission of the first sound in normal *He and liquid *“He and longitu-
dinal zero sound in superfluid *He-B, expected to dominate at the
temperature and frequencies used. In addition, we showed that reso-
nant modes with different velocity profiles along the tuning fork prong
must be considered separately. Complementing previous experiments,
this work brings together proof of the general validity of acoustic emis-
sion models, derivable for resonators of various shapes and sizes.
Predictions of ballistic, viscous, and acoustic damping obtained from
the models can be expected to hold across a wide frequency range in
all classical fluids and in quantum fluids as long as the coherence
length is lower than the size of the oscillator.
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Abstract

We report a fabrication process and characterization measurements of single crys-
tal silicon micro-wire resonators to be used for study of quantum turbulence in
superfluid “He at millikelvin temperatures. Our devices are single standing goal-
post-shaped silicon structures with a width and height of the order of 7 microns.
Vapour-deposited superconducting aluminium film of 120 nm thickness is used
for magneto-motive drive of the resonators. In the window of each chip, two such
devices of different dimensions are placed 30 um to 1 mm apart, with the intent to
study interaction due to pinned quantized vortices. With resonant frequencies below
10 kHz, the devices reach quality factors of ~ 2 x 10% in cold helium vapour.

Keywords MEMS - Superfluid “He - Quantized vortices

1 Introduction

General trend of device miniaturization opens new possibilities in the research of
dynamics of quantum fluids. Reaching the nano-scale dimensions of the electro-
mechanical resonators would allow detailed characterization of quantum turbu-
lence [1] on a scale of single quantized vortices—the fundamental building blocks
of quantum turbulence. Through the coupling of resonating structures with a single
quantized vortex it will be possible to study the spectrum of Kelvin waves [2] gener-
ated on a quantized vortex, representing the dominant form of dissipation in isotopi-
cally pure superfluid “He in the limit of zero temperature.
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Therefore, various micro- and nano-electromechanical systems (MEMS and
NEMYS) in the form of wires, tuning forks, or beams are becoming widely used in
low temperature research [3—6]. These resonating structures built on silicon wafers
or SOI (silicon on insulator) wafers are used to probe a wide range of media; from
cold helium gas [7], superfluid “He down to millikelvin temperatures [5, 6] to super-
fluid *He at sub-mK temperatures [6, 8].

One of the most important features of the mentioned sensors is their extremely
low intrinsic damping resulting in the desired sensitivity. Quality factors up to 10°
were reported for nano-devices made from silicon nitride [9]. For operation in quan-
tum liquids, relatively low resonant frequencies are also important due to the steep
frequency dependence of acoustic damping [10-12].

The devices reported here satisfy such requirements, with resonant frequencies
below 10 kHz and quality factors approaching 2 x 10* already in cold, low pres-
sure helium vapour. The fabrication process is based on multiple optical lithography
steps from both sides of the chip, and the resulting structures are goal-post shaped
wires (hydrodynamically smooth for the normal component of He II), inspired by
those in the work of Collin [13], made from single crystal silicon with thin layer of
aluminium deposited on top. We report the step-by-step fabrication process of our
MEMS devices together with preliminary characterization measurements of their
resonances, at T =~ 1.3 K, in cold “He gas. We also compare the resonant frequencies
measured in vacuum with the theoretical values derived from finite element models.

2 Fabrication Process

We fabricated our MEMS devices from 300-um thick double side polished single
crystal 4 inch silicon wafers with <100> orientation and 5-10 Ohm/cm resistivity.
Before any further processes, the wafer was cleaned using RCA1 and RCA2 pro-
cedure and 75 nm thick Si;N, layer was deposited from both sides using PECVD
(plasma enhanced chemical vapour deposition) process. The schematic of the used
processes and the final chip structure are illustrated in Fig 1.

First, the windows are opened in the Si;N, layer from the top side using reac-
tive 1on etching with CHF; gas in Oxford PlasmaPro NGP 80 RIE-fluorine machine.
For the lithography, we used a 1.4 um layer of AZ5214E image reversal spin-coated
photoresist (using SUSS MicroTec RCD8 machine), which was exposed on SUSS
MicroTec MAS8 UV light (h-line) lithograph and developed using AZ726MIF/de-
ionized water 1:4 solution (~ 60 s).

Next the 120 nm thick aluminium wires are deposited in the e-beam evapora-
tor (Bestec). The dimensions of the goal-post-shaped wires are varied chip-to-chip
with nominal widths 5, 10 or 20 um, leg spacing from 0.2 to 1 mm and leg length
of 1 mm. Aluminium is deposited directly on the silicon in the previously opened
windows and partially in the region still covered with Si;N, creating the leads to
later deposited electrodes. Lift-off in 80 °C NMP bath is used in this step with
double layer resist for optical lithography. We used 0.8 um of AR-BR 5480 opti-
cally non-sensitive resist as bottom layer and 1.4 um of AZ5214E as top layer, both
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Fig. 1 Schematic of the process workflow, showing the initial state of the wafer and following fabrication
steps, which are described in more detail in Sect. 2

spin-coated. For the exposure, direct laser writing was used (Heidelberg DWL 66-fs)
with the same developing procedure as in the first step.

In following step, the 300 nm thick aluminium electrodes are deposited on the
Si5N, layer, working as a buffer layer for the mechanical strain caused during con-
tacting. The procedure was similar as for the previous deposition, but using SUSS
MicroTec MAS lithograph and negative tone of the top AZ5214E resist.

Further, the wafer was cut with a laser saw to continue with processes on single
chips. In the following step the smooth Bosch process [14] on Oxford Instruments
PlasmaPro 100 deep reactive ion etching (DRIE) machine was used to etch 5 to 9
um high wire structures in the pre-opened window in Si;N, at a temperature of 5 °C.
The recipe based on looping the steps with SFy (etching and break-through steps)
and C,Fg (deposition step) gases results in hydrodynamically smooth vertical walls
(with scallops) of the silicon wires. The result of this process is shown in the scan-
ning electron microscope (SEM) picture, see Fig. 2. We estimate, that the horizontal
depth of the scallops is of the order of 10 nm. We again used the AZ5214E photore-
sist in positive tone exposed with DWL. The width of the silicon wires was chosen
to be overlapping the aluminium lines by 1 pm at each side to ensure no metal is
exposed during the process, leaving the final width of the device to be 7, 12 or 22
um.

The final step was the DRIE Bosch process etching the window from the back
side of the chip in order to release the devices. For this purpose, we used 7-um thick
AZ10XT photoresist exposed via DWL, with the window design enlarged by 300
um. The bigger size of the back-side window was chosen to overcome the troubles
with wall screening effect resulting in non-homogeneous etch rate at higher depths
causing rounding of the walls.

Finally, we cleaned the chips in 80 °C hot NMP overnight and finished the clean-
ing in O, plasma using RIE-Fluorine machine. The resulting device is shown in
Fig. 2, under the optical microscope, where one free standing wire is shown together
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Fig.2 Left: SEM image of smooth Bosch DRIE process result, showing the scallop structure of the ver-
tical wall of the fabricated silicon wire. Middle: Optical microscope image of the final device in the open
window. a 120 nm aluminium layer on top of the substrate, b substrate, still covered with 75 nm of Si,
N,, c thin Si ledge, as a result of wall screening effect during deep back-side etching, d Si wire, with
120 nm of aluminium layer on top, freely standing in the open window e the crossbeam of the oppositely
standing wire separated by a gap of 30 um. f 300 nm thick aluminium leads. Right: SEM image of the
base of the silicon wire showing its structure. Pointers a)->d) correspond with the middle picture

with the top part of the opposing wire separated by 30 um. In Fig. 2 we show the
SEM image with a detailed view of the base of the wire, were slight leftover ledge
originating from the wall rounding during back-side etch is visible. From the analy-
sis of SEM pictures we can deduce that the variation of wire height over the length
of its leg is less than 0.5 pm.

3 Measurement Scheme and Device Characterization

To drive the oscillatory motion of the silicon wires, we use the magneto-motive
method (same as in [4]), where alternating current /(@) = [cos(wt) is passed through
the aluminium layer on top of the silicon. The resonator is placed in static mag-
netic field B 100 mT, pointing in direction along the wire‘s legs, which results in
alternating Lorentz force F(w) acting on the wire’s crossbar. The motion of the cur-
rent biased wire in a magnetic field results in the induction of Faraday voltage U(w)
proportional to the velocity V(w). In this geometry, see Fig 4, following equations
between the mechanical and electrical properties of MEMS hold:

F(w) = I(w)LB;V(w) = U(w)/LB, (1)

with L being the leg spacing.

We performed the characterization measurements of three fabricated devices.
Table 1 contains device dimensions, along with a comparison of resonant frequen-
cies measured in vacuum at room temperature to those resulting from FEM mod-
els. These experiments were performed in a simple glass desiccator connected to a
rotary pump. A sinusoidal voltage signal was supplied by an Agilent 33220A func-
tion generator. A 10 k€ resistor was connected in series to the wire to regulate the
current. Using a current of 1 pA , we observed the resonance amplitude about 0.25
uV. Induced voltage signal was measured using a Stanford Research Systems SR830
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Table 1 Dimensions of the three
. Name L h w t d -factor
wires that were tested at room Jate  Jmeas Q@

temperature, and comparison (um)  (um)  (um) (um) (um) (kHz) (kHz)
between the modeled and the
measured resonant frequencies

Gl-1 1000 1000 22 6.8 1080 4.80 4.88 388
Gl1-2 1000 900 22 6.8 1080 5.72 550 340
H3 300 1000 12 73 30 7.08 7.62 417

In this table L denotes the bar length, 4 the leg length, w the width, ¢
the thickness, and d the spacing between the two wires on the same
chip. The frequencies f,,, were calculated from the design geometry
using the finite element technique, while f, ., was measured experi-
mentally. We note that the uncertainty in the thickness ¢ of up to 0.5
pum due to uneven etching is sufficient to explain the discrepancies in
the resonant frequencies

lock-in amplifier. A detection scheme using two lock-in amplifiers will be used to
measure two wires on a single chip simultaneously, using the separation of their res-
onance frequencies to filter out cross-talk.

To construct the finite element models, the geometry of the entire chip was used,
with fixed boundaries imposed on all surfaces of the chip except for the wires. To
model anisotropic elasticity of <100> Si, values of elastic constants ¢; = 165.7
GPa, ¢, = 63.9 GPa, ¢,y = 79.6 GPa were used [15]. An adaptive mesh was applied
to the wire geometry and the first few resonant modes were obtained using fre-
quency domain analysis, see Fig. 3.

For the H3 device we also performed cryogenic measurements in low pressure
“He gas at 1.3 K in a glass cryostat, with the aim of estimating the resonance quality
factors. For mounting and heat-sinking the chips, custom-made copper plates were
used, shown in Fig. 4. Superconducting NbTi leads were anchored to the Cu plates
by GE varnish and glued to the aluminum pads using MG Chemicals 8330S silver
conductive epoxy enriched by silver powder, with resulting low temperature contact
resistance 10 mQ. The copper plate was then mounted onto a 3D-printed holder
made from colorFabb copperFill, a copper-doped PLA filament. The static magnetic
field was supplied by two permanent NdFeB magnets placed in the holder.

To estimate the intrinsic damping of the device, a series of low-drive frequency
sweeps was performed in cold helium vapour, just as liquid helium (7" = 1.3 K) was
used up in the cryostat, see Fig. 5. The device showed to be very sensitive to the vapour

MU

—

Fig. 3 First three resonant modes of the G1-1 silicon device (see Table 1). The left and middle pan-
els show flexural modes at 4.8 kHz and 12.6 kHz, while the rightmost panel illustrates the “windscreen
wiper” mode at 25 kHz. The deformation amplitudes are enhanced for clarity
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Fig. 4 Measurement scheme and the construction of the chip holder. Left: geometrical sketch of the
measurement scheme. Center: micro-wire chip mounted onto a copper backing plate. Right: the backing
plated mounted onto a 3D-printed holder, along with magnets. The letters are: A—copper backing plate;
B—micro-wire; C—3D-printed holder; D—one of the two magnets

—— f,=7673.34Hz, Q= 1376
—— f,=7673.35Hz, Q= 1560
—— f,=7673.73Hz, Q= 2406
—— f,=7673.75Hz, Q= 4283
—— f,=7673.74Hz, Q= 6874
—— f,=7673.75Hz, Q=10508

f,=7673.75Hz, Q=14541
—— f,=7673.78Hz, Q=18383

40
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Fig. 5 Resonance curves measured with the H3 device in a glass cryostat under cryogenic conditions
as the helium pressure was gradually decreasing after all superfluid helium was evaporated. The tallest
curve corresponds to the pressure of ~0.1 Torr. Subsequent measurements showed even higher quality
factors, but were affected by frequency drift due to increasing temperature. We note that at 7 > 1.3 K,
the aluminium layer was in normal state—the curves were offset to suppress the background (resistive)
contribution (Color figure online)

pressure, which is evident from the rapid rise of the Q factor during pumping. The reso-
nance with the highest measured Q factor in the experiment ~ 5 x 10*is not shown, as
the temperature of the device was already unstable at that point and caused frequency
drifts. Nevertheless, a simple estimate suggests that under true cryogenic vacuum, at
temperatures below 1 K, quality factors > 10° will be reached. Finally, we note that
measurements with these devices in superfluid helium on a dilution refrigerator are cur-
rently under way, with more results to appear in the near future.
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4 Conclusion

Novel micromechanical devices were manufactured based on the adaptation of exist-
ing designs, allowing to study the interaction of two closely spaced resonators medi-
ated by quantized vortices in superfluid helium. A detailed description of the fabrica-
tion process is presented, along with preliminary characterisation measurements of
said devices. The MEMS devices show potential for further use in quantum turbulence
research.
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