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Department: Department of Low-Temperature Physics

Supervisor: doc. RNDr. David Schmoranzer, Ph.D., Department of Low-Temperature
Physics

Abstract: In this Thesis, we present an extensive study of the dynamics of quan-
tum fluids employing the detectors in the form of mechanical resonating structures
with characteristic dimensions below 1 mm. We operate the devices in normal
and superfluid liquid phases of both helium isotopes scanning the wide range of
temperatures between 2.17 K and ≈ 150 µK. We show, that the detectors in
the form of quartz tuning forks and superconducting vibrating wires are suitable
probes in both hydrodynamic and ballistic regimes of superfluids, described by
the two-fluid model. Not only can these devices be used to trigger the turbu-
lent transition in quantum fluids by their driven motion, they can also operate
as detectors of externally generated turbulence. The observation of the initial
instability is reported in mechanically and thermally driven oscillatory flows. Its
origin in either normal or superfluid component is identified and described in
terms of suitable dimensionless parameters, solving previous discrepancies re-
garding critical velocities in oscillatory counterflow experiments. Additionally,
in steady thermal counterflow, a microwire is characterised as a local probe of
quantized vorticity and compared to second sound measurements. Finally, we
discuss the properties and potential of the MEMS and NEMS devices, advancing
from much smaller dimensions, fabricated via custom cleanroom processes and
we report the manufacture of our own device. Such detectors are able to probe
the quantum fluids on the scale of a single quantized vortex, studying its detailed
dynamics and should lead to more information about the energy dissipation in
zero temperature limit.
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Preface

This thesis aims to report and discuss cryogenic experiments conducted by the
author, with the goal to enrich current knowledge of turbulent flows in quantum
fluids. Superfluid helium (4He and 3He isotopes) are one of the best laboratory-
accessible quantum fluid systems, although temperatures of the order of units of
Kelvin (for 4He ) or even millikelvin (for 3He ) are required. As a payoff for the
higher complexity of the technical realization of the quantum flows, they offer a
plethora of fascinating physical effects, having no analogy in any classical fluids,
e.g. quantization of circulation leading to the existence of quantized vortices.
One of the most interesting tasks in the research of superfluids is the study of
flow instabilities and the development of complex turbulent flows representing
the phenomena of quantum turbulence (QT) [1–4] or A.1. Despite many distin-
guishing differences between quantum and classical turbulence, QT may be used,
under specific conditions, as a model system of classical turbulence. The study of
turbulence in quantum fluids can, therefore, lead to a better understanding even
of its classical counterpart.

Studying the drag forces acting on submerged mechanical resonators repre-
sents one of the most expanded techniques of QT research. In this configura-
tion, turbulence can be both generated and detected by the devices of various
shapes, e.g. tuning forks [5, 6] or A.2, vibrating wires [7–10] or A.2, moving
grids [11, 12], levitating spheres [13–15]. The recent expansion of accessibility
of highly equipped cleanroom facilities allowed the boom of custom MEMS and
NEMS (micro/nano electro-mechanical systems) device manufacture. The great
advantage of the local character of these detectors can be effectively used to probe
externally driven flows and is a necessary condition for the studies of systems with
spatially non-homogeneous turbulence [16–20] or A.3. Scaledown of resonator di-
mensions opens the way to significantly higher sensitivity for the devices used for
the detection. With the ability to reach nano-metric scales, it is now possible
to probe quantum liquids at the level of coherence length (in the case of 3He
). Customization of the used geometry further allows to effectively trap single
quantized vortices, now in both isotopes of superfluid helium, with the device
and study their mutual interaction. Experimental observations of single vortex
dynamics should lead to a better understanding of fundamental questions of en-
ergy dissipation in a pure superfluid regime where a viscous dissipation channel
is absent [21–26].

Manufacture of such local detectors stands on lithography processes allowing
very precise etching and layer coating procedures. Typical devices are created
from thin Si3N4 membranes or monocrystal Si wafers and covered with super-
conducting layers (aluminum, niobium, ...) used for movement induction [27–29]
or A.6. Even devices based only on superconducting metal have been reported re-
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cently [30]. The geometry of the MEMS/NEMS may be easily varied, e.g. doubly
clamped cantilevers or goal-post-shaped wires. The device position may lead to
a well-tuned distance from the substrate or other device, employing the grids of
devices [31], or alternatively, it can probe the bulk, standing in an open window.

In the first chapter 1, we present the theoretical background essential to this
Thesis and discuss the recent author‘s contribution to the understanding of quan-
tum turbulence. We further refer to more detailed works suitable for further
reading. The second chapter 2 is dedicated to the description of the turbulent
instability onset in oscillatory flows of He II, based on our experimental obser-
vations. We discuss the turbulent transition occurring in either of the He II
components and show that the cross-over between the two is possible in a single
experimental setup. In the third chapter 3, we show the measurements of the
local detection of externally driven turbulent flow in He II employing vibrating
wire resonators. We are trying to approach the theoretical understanding of the
processes, affecting the resonant frequency and amplitude of a weakly driven os-
cillator exposed to a turbulent thermal counterflow at temperatures above 1 K.
In the final chapter 4, we discuss the general use of the MEMS and NEMS struc-
tures for the detection of quantum turbulence and characterize the damping due
to acoustic emission in 3He , which may limit the detection ability of the probe.
In the end, we present the fabrication process of custom-made MEMS devices
manufactured by the author and characterize their properties at 20 mK tempera-
tures. In the end, we present the data showing a stably attached single quantized
vortex to a similar device in 3He -B and study the additional losses caused by the
vortex. A list of the most relevant publications, with the author’s contribution,
is attached in Appendix A.
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Chapter 1

Theoretical background

1.1 Quantum fluids
The study of classical fluid dynamics represents one of the most important re-
search fields with applications in everyday life. Under extreme conditions, such
as low temperatures or high pressures, fluids can behave under special quan-
tum restrictions, similar to many quantum phenomena in solid bodies. Fluids,
whose macroscopic behaviour cannot be described entirely by classical models,
e.g. Navier-Stokes equations [32], are generally called quantum fluids. The idea
of quantum fluids was introduced following the discovery of superfluidity in 4He
(independently by Kapitza [33] and Allen & Misener [34]), resulting from rapid
cryogenic development at the beginning of the twentieth century. Nowadays, the
most frequently studied quantum fluids are superfluid phases of liquid helium and
ultracold atomic gases. In this work, we restrict our interest to the former ones,
especially to the superfluid 4He .

1.1.1 Superfluid helium isotopes
Upon lowering the temperature towards absolute zero, helium remains liquid (if
high pressure is not applied) unlike all other substances, which freeze to their
solid state. It is due to the imbalance of the ground state motion energy of
the helium atoms acting against weak van der Waals forces, trying to bind the
atoms together. This allows the existence of liquid phases experiencing quantum
behaviour on a macroscopic scale. In this new liquid phase of 4He , existing
below 2.17 K, several non-classical phenomena were observed, e.g. ability to flow
through very small pores without the viscosity, formation of a thin superfluid
film, the fountain effect or thermo-mechanical effect and led to the recognition of
this phase as the superfluid 4He also denoted as He II. The full phase diagram
of 4He is displayed in Fig 1.1. The phase transition line between two helium
liquid phases (normal liquid He I and superfluid He II) is called the λ transition
line. This name comes from the shape of the heat capacity evolution across the
transition.

The superfluid phase was later experimentally discovered also in much rarer
helium isotope 3He in 1972 [35, 36]. The main technical obstacle connected with
3He superfluidity is the three orders of magnitude lower superfluid transition
temperature being of units of millikelvin. The different physical properties of
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Figure 1.1: Phase diagram of 4He . It can exist in two liquid phases, either
classical normal liquid denoted He I or in superfluid phase - He II, which consist
of normal and superfluid component. Second order phase transition between the
two, happening at around 2 K, is called superfluid or lambda transition.

these superfluids originate from the bosonic nature of 4He vs the fermionic nature
of 3He and require different theoretical approaches.

Superfluidity of 4He was first connected with Bose-Einstein condensation in
1938 by London [37] and the same idea was further used in works of Tizsa [38] in-
troducing the first two-fluid model of He II. However, this approach was criticized
by Landau, for omitting the atomic interactions, presenting his own model build
on the ideal gas of elementary excitations [39, 40]. As a result, both approaches
were shown to be complementary. Superfluid, as a quantum mechanical ground
state, consists of cca. 10% of the condensate, as measured experimentally by
neutron scattering [41]. The lower portion of the particles in the atomic ground
state comes from their interactions.

The issue with 3He superfluidity description through the mere idea of the
Bose-Einstein condensation is evident due to its fermionic nature. However, in
analogy to the Cooper pairing of the electrons in the theory of superconductivity,
a similar process works for the 3He atoms. Having an atomic spin of one-half, 3He
atom pairs created below the transition temperature form a triplet state (unlike
singlet pairing of electrons in superconductors), with possible spin projection
S z=0,±1. In addition, pair of atoms orbiting around a common centre has an
orbital spin L=1. Based on the properties of the spin-orbital space and external
parameters - pressure and magnetic field, we may observe three different bulk
phases. The first one, with all possible spin projections, is called superfluid-B
phase or 3He -B. At higher pressures, concerning a zero magnetic field for now,
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Figure 1.2: Top: Phase diagram of 3He in zero magnetic field. Superfluid tran-
sition occurs from 1 mK to 3 mK in dependence on the pressure. Two different
superfluid phases, 3He -A and 3He -B, exist in bulk at zero field. Bottom: 3D
phase diagram of 3He showing also magnetic field dependence. At higher fields,
3He -A phase is more preferable, and a new bulk phase 3He -A1 can exist.

see the phase diagram in Figure 1.2, superfluid-A phase or 3He -A exists, not
containing any S z=0 component. When higher magnetic field is applied the area
covered by in 3He -A grows rapidly. Finally, in a non-zero magnetic field we can
observe 3He -A1 phase, similar to A phase, but consisting of only S z=1 (|↑↑⟩)
spin projection component. The full 3D phase diagram of 3He superfluid phases
as a function of pressure, temperature, and magnetic field is shown in Figure 1.2.
Additional superfluid 3He phases, e.g. polar phase, exist under special topological
restrictions [42, 43], but a closer description of these is beyond the scope of this
Thesis.
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1.1.2 Two-fluid model - hydrodynamic regime
Superfluid phases of both helium isotopes can be described by the two-fluid model.
We can, therefore, describe the He II as a mixture of two inter-penetrating fluid
components. The first one is a classical-like normal component independently
acting as a viscous fluid in accordance with the Navier-Stokes equations [32].
This holds, in the high-temperature regime, between the λ transition and ≈ 0.7 K,
where normal component can be described by its hydrodynamical properties. In
the following, we discuss this hydrodynamic limit of the two-fluid regime.

The second component is called superfluid component and is responsible for
the originally observed peculiar behaviour of He II. The superfluid component
is a practical realization of compressible ideal fluid which may be described by
Euler’s equations [32]. It lacks any viscosity and does not possess or transfer any
entropy, as it represents the macroscopic quantum mechanical ground state of the
fluid. The normal component is therefore responsible for the whole entropy and
heat transfer. He II has, for these reasons, an extremely high thermal conduc-
tivity, which strongly suppresses bulk boiling as all excessive heat is effectively
transferred to the surface and lost due to evaporation.

Two-fluid nature of He II is further allowing the existence of flows that have
no equivalence in classical fluids. One can easily mechanically generate the mean
flow of whole fluid, resulting in the co-flow [44] of the components. Alternatively,
the flow of the normal fluid may be blocked by the porous plug, which does
not affect the flow of inviscid superfluid component, resulting in the pure super-
flow [45]. Finally, a flow of the two components in opposite directions, so-called
counterflow [46], may be generated either mechanically or thermally.

As purely independent flows of the components are possible, we have to in-
troduce separate densities ρn, ρs and velocity fields vn, vs, for the components of
the two-fluid model. The total density of He II ρ is only weakly dependent on the
temperature [47] and its value equals the sum of the single component densities:

ρ = ρn + ρs. (1.1)

Due to the discussed properties of the two components, it is obvious that the
ratio, or better say density, of the normal component must be decreasing with
the temperature. The local ratio of ρn and ρs is then, in the general approxima-
tion neglecting the pressure dependence, defining the temperature of He II and
vice versa. The first measurement of the normal component and superfluid com-
ponent densities as a function of temperature, proving this idea, was performed
by Andronikashvili [48] in 1946. In his experiment, a set of closely packed tor-
sional disks on a string were used as a fully-submerged oscillator. The spacing
was made small enough, smaller than the viscous penetration depth, to force the
oscillation of the normal component between the discs together with the whole
body. The changes in the oscillator period led to the determination of the tem-
perature dependence of the normal and superfluid density ratios as displayed in
Figure 1.3.

Further, in analogy to classical fluids, we should be able to build a set of
equations of motion governing the macroscopic behaviour of the fluid system
proposed by the two-fluid model. As stated above, it should be based on the
Navier-Stokes-like equation for normal component and Euler-like equation for the
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Figure 1.3: Left: Normal component density measurement performed by An-
dronikashvili [48]. Right: Temperature dependence of normal (red) and super-
fluid (blue) component density in a He II.

superfluid component. First, the mass and entropy flow inside the fluid should
be described by the equations of continuity. For the system of our two fluids, we
get:

∂(ρn + ρs)
∂t

+ ∇(ρnvn + ρsvs) = 0, (1.2)

for the conservation of the total mass, also stating that the exchange of the mass
between the components is not forbidden. And:

∂(ρS)
∂t

+ ∇(ρSvn) = 0, (1.3)

assuming only the non-dissipative flows. Here, S denotes the specific entropy.
Finally, assuming the incompressible flows, we can write the following equations
of motion, called HVBK equations (named after Hall, Vinen, Bekarevich and
Khalatnikov [49–51] ):

∂vn

∂t
+ (vn · ∇)vn = −1

ρ
∇P − ρs

ρn

S∇T + ν△vn + ρs

ρ
F, (1.4)

∂vs

∂t
+ (vs · ∇)vs = −1

ρ
∇P + S∇T + T − ρn

ρ
F, (1.5)

where ν stands for the kinematic viscosity of the normal component, P for pres-
sure, T for temperature and T for the vortex tension. We can further define the
vector difference of the component velocities as, so-called, counterflow velocity
vns = vn - vs. Finally, F represents the mutual friction force, which is responsi-
ble for the coupling of the motion of the two He II components. However, this
force is nonzero only in the presence of rotational flow in the superfluid compo-
nent, possible only due to quantized vortices, which will be closer described in
the following chapters.

When describing the superfluid 3He , the same two-fluid model having normal
and superfluid components can be applied. However, the main difference to He II
picture is the viscosity of the normal component. While normal component of
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Figure 1.4: Left: Dispersion of thermal excitations in He II. Two branches of
linear phonons and parabolic rotons, with energy gap ∆, are present. Under
critical Landau velocity (highlighted by dashed line), roton minimum gets below
zero energy line and excitation generation beaks the superfluidity. Right: Dis-
persion of thermal excitations in superfluid 3He . Superfluidity is connected with
the existence of an energy gap ∆ in the spectrum, which might be anisotropic.
The fermionic nature of the excitations leads to the necessity of distinguishing
quasiparticles and quasiholes based on the direction of the momentum and the
group velocity.

4He possesses one of the lowest viscosities, three orders of magnitude lower than
the water, the viscosity of the normal 3He is closer to that of the honey. For this
reason, in most of the experiments performed close below critical temperature T C ,
the normal component is considered to be static and only the flow of superfluid
component can be studied. However, the situation changes, if superfluid 3He is
cooled further, below approx. 0.2 T C , where normal component can be no longer
described as a continuum. For the He II it happens below ≈0.7 K. In this case,
we have to consider normal component to behave rather like a ballistic gas of
thermal excitations surrounded by ”superfluid vacuum” and we can discuss the
two-fluid model in its ballistic limit.

1.1.3 Two-fluid model - ballistic regime
At low enough temperatures, where the normal component density is too low for
it to be described by the hydrodynamic model, we have to consider a different
picture. The presented ballistic model for normal component is based on the
original phenomenological description of He II made by Landau [39, 40]. However
it is important to understand, that Landau‘s model does not restrict to a ballistic
regime and can lead to approximately correct normal and superfluid component
density in two-fluid regime in accordance with Fig 1.3.

At first, Landau intuitively correctly postulated the dispersion law, see Fig 1.4,
for the introduced thermal excitations, as was later proven by neutron scattering
experiments [52–54]. In his ideas, an ideal gas of these excitations represented
the weakly interacting atoms of the normal fluid. We can find many analogical
approaches in solid body physics, trying to describe interacting systems of the
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electrons [55]. Based on the shape of the dispersion curve, two types of excitations
may be discussed. First, at the low-energy part of the spectrum, we can see a
linear dependence of the energy E with the momentum of the excitation p = hk,
with h being the Plank constant and k the wave vector. This part of the spectrum,
in analogy with linear excitations in solids (considering only longitudinal modes
as dealing with the liquid), represents phonons, having the following dispersion
relation:

ϵ = u1p, (1.6)

defining the speed of sound u1.
The second type of the thermal excitations, having an effective mass µ, is

called rotons and occupy parabolic part 1.7 of the dispersion around the energy
minimum at p0 momentum.

ϵ = ∆ + (p − p0)2

µ
. (1.7)

The right branch of the roton spectrum, with the group velocity in the direction
of the momentum, can be denoted as R+, while the left branch, having the
group velocity direction opposite to the momentum direction, being called R−.
The energy ∆ of the excitations with the momentum p0 gives the roton energy
gap necessary for its generation in He II flow. This leads to the existence of a
critical ”Landau” velocity given as vL = ϵ(p0)/p0, being of the order of 60 m/s,
at which thermal excitations can be created spontaneously. However, typically in
experiments a different type of perturbation of the superfluid (quantized vortices,
which will be further discussed later) onsets at much lower velocities.

The population of the energy spectra of thermal excitations N phonon and N roton

is naturally strongly dependent on the temperature:

Nphonon ∼ (kBT )3, (1.8)

Nroton ∼ (kBT ) 3
2 e

− ∆
kBT , (1.9)

with kB, being Boltzmann constant.
The dispersion law in 3He differs from that of 4He , due to its fermionic nature.

It is missing the phonon part, see Figure 1.7, which results in the existence of
the energy gap ∆ in the energy spectrum. Moreover, the energy gap might be
anisotropic across the k-vector sphere. It is not the case for the 3He -B, but in 3He
-A phase energy gap disappears at the ”south and north” poles, see Figure 1.5,
having consequences regarding the anisotropy and the temperature dependence
of the excitation population in these phases. In 3He , we have to account for
the fermionic nature of the thermal excitations. Based on the momentum of the
excitation, we can divide them into quasiparticles having momentum larger than
the Fermi momentum |p| > pF in the same direction as the group velocity and
into quasiholes with |p| < pF with opposite direction of the momentum and the
group velocity. The energy of the excitation is given as [56]:

Ep =
√︄(︂ p2

2m∗ − ϵF

)︂2
+ ∆2, (1.10)
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Figure 1.5: Superfluid 3He energy gap visualization in the k-space. Left:
Anisotropic gap in 3He -A phase vanishing at the poles. Right: Fully isotropic
energy gap in 3He -B phase.

with m∗ being effective mass of the excitation and ϵF Fermi energy. The existence
of the isotropic energy gap leads to the exponential temperature dependence of
the excitation population in 3He -B phase:

Nexcit ∼ e
− ∆

kBT , (1.11)

The nature of the excitation spectrum further allows effects, which do not exist
in He II, such as screening of the excitations by the superfluid flow in the form
of Andreev reflection [57, 58].

Temperature dependence of the thermal excitation population can be effec-
tively used for the thermometry in the superfluids, especially in 3He having
exponential dependence, via measurement of the damping forces acting on a
solid resonator due to ballistic collisions [5]. In the recent work of Lancaster
group [59], employing a nano-metric resonating cantilever in He II, they experi-
mentally showed the cross-over between the hydrodynamic behaviour in the two-
fluid regime and ballistic behaviour with mainly roton contribution at higher
temperatures and mere phonon contribution at the lowest temperatures, down to
the units of millikelvins, in accordance with Equations 1.8 1.9.

1.1.4 Quantized Vortices
In previous, we have introduced, in closer detail, the description of normal compo-
nent of superfluid helium. Let’s further concentrate on the behaviour of superfluid
component of He II. As discussed above, superfluid component can be identified
with the macroscopical quantum mechanical ground state. It is therefore advan-
tageous to introduce the macroscopic wave function Ψ(r, t), as originally done by
Tizsa:

Ψ(r, t) =
√︂

ρs(r, t)eiΦ(r,t), (1.12)

with superfluid density ρs(r, t) and macroscopic phase Φ(r, t), both as a function
of time and spatial coordinate.
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Using this description, we can obtain the superfluid velocity vs(r, t), as a
fraction of superfluid mass flux J(r, t) and superfluid density, in following form:

vs(r, t) = −iℏ
2m4ρs(r, t)

[︂
Ψ∗(r, t)∇Ψ(r, t) − Ψ(r, t)∇Ψ∗(r, t)

]︂
= ℏ

m4
∇Φ(r, t) (1.13)

with m4 being a mass of helium atom. This equation should prescribe the exis-
tence of only potential flows of superfluid component making rotation of super-
fluid velocity ∇ × vs identically zero.

It is, nonetheless, possible to arrive with the rotational flow of the superfluid
component if a multiply connected region of superfluid is considered. Having this
assumption in mind, we can discuss the circulation of superfluid component Γ,
defined as the closed loop integral of superfluid velocity:

Γ =
∮︂

L
vs(r, t)dl = ℏ

m4

∮︂
L

∇Φ(r, t)dl, (1.14)

using 1.13. Considering the properties of the macroscopic wave function, being
uniquely defined in space and time, the change of its phase after passing around
any closed loop must be equal to the integer value of 2π. As a result, apply-
ing it to 1.14 leads to the condition for quantization of circulation in superfluid
component in He II 1.15 by integer number of circulation quanta κ ≈ 10−7 m2/s.

Γ = n
ℏ

m4
= nκ, (1.15)

The rotational flow may be therefore realized in superfluid component, but
only in the form of superfluid circulating around a non-superfluid singularity, as
multiply connected region is required and possessing integer number or circulation
quanta. Described structures are called quantized vortices and in He II take the
form of line topological defects of superfluid, which represent the vortex core. The
energy of the unit length of quantized vortex ϵv is then given as kinetic energy
of the superfluid component circulating around the core, having the radius a0,
see 1.16. However, with the subatomic core size, of the order of Å, it cannot be
interpreted simply as normal component. It is rather defined by the coherence
length of the macroscopic wavefunction. The spatial distribution of superfluid
density and superfluid velocity away from the vortex axis is shown in Fig. 1.6.

ϵv =
∫︂ b

a0
πρsv

2
srdr = n2ρsκ

2

4π
ln b

a0
. (1.16)

Single quantized vortex energy ϵv also weakly depends on the interaction with
the container walls or with other vortices in the volume, being in distance b. From
the equation 1.16 further follows, that in He II only singly quantized vortices exist
as they are energetically favourable. This is, however, not true in superfluid 3He
, where e.g. half-quantizes vortices or other exotic types of superfluid defects
are possible [56]. As vortex cores represent topological defects in both discussed
superfluids, there are additional important restrictions, defining their dynamical
behaviour. It is not allowed for the quantized vortex to start or end inside the bulk
superfluid. The only possible configurations are such, that place vortex ends on
the free liquid surface or present solid surface (of the container or of the submerged
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Figure 1.6: Left: Scatch of the quantized vortex with hollow core and superfluid
component circulation around it. Circulation must be quantized by κ ≈ 10−7

m2/s. Right: The structure of quantized vortex with ρs and vs spatial dependen-
cies. The dashed line represents the core’s dimension.

body) or in the form of a closed loop propagating in the bulk [60]. Another option,
also supported by the continuity of the superfluid phase, is a quantized circulation
around fully submerged bodies, e.g., nanometric cantilevers [59], substituting the
vortex core.

Similar restrictions hold for the superfluid 3He , with circulation quanta being
κHe3 = ℏ/2m3 ≈ 6.6×10−8 m2/s, as Cooper pair consists of two atoms with
the mass m3, but with more complex nature of the possible vortex structures.
Especially, in the case of 3He -A phase various vortex structures are possible, such
as ”continual unlocked vortices” having a ”soft” core, without the full suppression
of the order parameter (superfluid wave function), ”locked vortices”, 2D ”vortex
sheets” or ”singular vortices” with the ”hard” core (representing the singularity
of the A-phase order parameter), being the closest relative in 3He -A to He II
quantized vortices. Recently, also theoretically predicted half-quantum vortices
have been experimentally confirmed [61]. A more detailed description of these
vortices is far beyond the scope of this work but can be found in [62].

All possible vortex structures in 3He -B have a ”hard” core. However, the
coherence length is much larger than in the case of He II, being of order tens
of nm depending on the pressure. Quantized vortices in 3He -B are therefore
macroscopic objects, with the core being ”filled” by normal component or possibly
other superfluid phases, unlike the hollow core of vortices in He II and can also
be connected with the vortex mass [63].
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1.2 Turbulent flows in quantum fluids
Regarding fluid mechanics research, the study of turbulent flows contains some of
the most important problems with applications in everyday life e.g., aerodynam-
ics and acting drag forces, fluid transfer, energy transport in the fluid, large-scale
flows in oceans or atmosphere, and many others. In fact, most of the real flows in
nature are turbulent. However, there is still no rigorous definition of turbulence
and it is rather described by its characteristic features, namely chaotic pressure
and velocity changes, stochastic behaviour, diffusive flows and the presence of ro-
tational flows and vortex structures. In contrast with turbulent flows, we discuss
laminar or strictly potential flows. Describing the transition between the two and
characterizing the initial instability occurrence is one of the most important tasks
to understand fluid behaviour. For the first time, it was studied for the pipe flows
in 1883 by Osborne Reynolds[64]. After the initial instability, upon raising the
flow velocity, a developed turbulent flow is built up, typically containing vortex
structures on a wide range of length scales and connected with excess drag (on
submerged body) or dissipation (in the fluid). As He II may consist of two com-
ponents with very different properties, let’s first discuss the turbulent flows of
each separately.

1.2.1 Classical turbulence
Discussing the normal component of He II, as an incompressible viscous fluid, we
can simply use all classical models known for fluid mechanics [32]. The flow of
normal component must obey the Navier-Stokes equations, which for the steady
pipe flows or steady flows past the body introduce a single critical parameter,
called Reynolds number (Re). This parameter depends on both the properties
of the body or pipe, given by its characteristic dimension D; and the proper-
ties of the fluid, given by the flow velocity V and its kinematic viscosity ν. Its
value distinguishes between previously discussed flow regimes and prescribes the
instability onset as giving a ratio of inertial and viscous forces. The critical flow
parameter for classical fluid may of course differ, depending on the flow geome-
try. For example, it may be the Keulegan-Carpenter number (KC) in the case of
oscillatory flow past a smooth body [65]. Although, the presence of sharp cor-
ners or rough surface of the body leads again to Re, being the critical parameter
also in the oscillatory flow, with characteristic dimension represented by viscous
penetration depth δ =

√︂
2ν/ω, dependent on angular frequency ω. When dis-

cussing normal component of He II, this critical parameter should be referred to
as Donnelly number (Dn) A.2.

When the critical value of the flow governing parameter is reached, the transi-
tion from originally laminar flow starts and the first individual vortex structures
start to occur. In the case of a flow past the body the typical critical value of
this parameter is of the order of unity. In channel flows it is of the order of
103. When increasing the flow intensity past this transition, fully turbulent flow
containing many vortex structures of different sizes will gradually develop having
all discussed characteristic properties of the turbulence.

The developed turbulent flow of classical fluid may be further understood
describing the energy E(k) distribution, as a function of wavenumber k, in the
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Figure 1.7: Left: Classical process of energy transfer in viscous fluid. Kinetic en-
ergy is injected and stored at large scales and then transferred via dissipationless
Richardson cascade process towards Kolmogorov length scale ηK , where viscous
dissipation operate. Right: Viscous dissipation process is not present in inviscid
superfluid component. The energy stored in quantized vortices, which may at
large scales imitate the Richardson cascade, must be dissipated via different pro-
cesses, e.g., propagation of the discrete cascade of Kelvin waves on single vortices
leading to dissipation over phonon emission at high frequencies.

flow, looking at different length scales. The energy is inserted into the flow
typically at the large scales - energy-containing scale, and than transferred via
the Richardson cascade process [66], to a small scales, where it can be dissipated,
see Figure 1.7. The rate of energy dissipation ϵ, in steady state equal to energy
injection, is given by the vorticity, ω= ∇×v as:

ϵ = −dE

dt
= ν⟨ω2⟩. (1.17)

The length scale, small enough that the viscous forces overcome the inertia of the
eddies and the dissipation can take place, is called the Kolmogorov’s length scale:

ηK =
(︄

ν3

ϵ

)︄ 1
4

. (1.18)

There is no significant energy dissipation during the cascade decomposition of
the eddies towards Kolmogorov’s scale and for each step of the cascade ln/ln+1 =
const. holds [67], where l i denotes length scale of each step of Richardson cascade.
It was Kolmogorov who first introduced a detailed theory of turbulence [68, 69],
including the description of energy distribution in the non-dissipative range, also
called inertial range, of the energy spectra:

E(k) = Cϵ2/3k−5/3, (1.19)

with C being a universal Kolmogorov constant of the order of unity.
When the turbulence generation mechanism is switched off, we can observe

its temporal decay. Solving for the time evolution of the total turbulent energy E
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=
∫︁
E(k)dk. In the first stage of the decay, the energy-containing scale increases

and eventually saturates, reaching the limiting scale of the vessel dimension D.
Now, using Kolmogorov’s shape of inertial range 1.19, occupying most of the
energy spectrum and 1.17, we can get the decay of vorticity in the following
form [70, 71]:

ω(t) = D(3C)3/2

2π
√

ν
(t + t0)−3/2, (1.20)

with t0 representing the virtual decay start, being the origin time of infinitely
intense turbulence decay. Further detailed description of classical turbulent flows
can be found in various textbooks [66, 72].

1.2.2 Quantum vortex dynamics
The turbulent flow, strictly in superfluid component is much different to the
classical case due to quantum restrictions. The only possible rotational flow is
allowed in the form of quantized vortices 1.1.4. The most natural way to create
the quantized vortices is to induce a rotation to the superfluid by the external
source. Many experiments with the rotating He II vessels have been performed to
verify that superfluid component can mimic the solid body rotation by creating
the triangular mesh of straight, parallel to the axis of rotation, vortex lines [73],
see Figure 1.8. This has an analogy in superconductors of the second type with
a mesh of quantized magnetic flux vortices. The critical angular velocity Ωc for
the creation of single quantized vortex in the vessel of radius R is then given by
Feynman criterion [74]:

Ωc = κ

2πR2 ln
(︃

R

a0

)︃
, (1.21)

Further speeding of the rotation then results in the creation of the quantized
vortex mesh with the density (number of vortices per unit area) equal to 2Ω/κ.

The creation of a quantized vortex in the flow of the superfluid is connected
with the instability, typically due to a critical flow velocity. The seeding per-
turbations, which are constantly created by thermal fluctuations, may persist in
the fast flow and lead to vortex creation. Such a vortex generation mechanism,
without the existence of an already stable seeding vortex, represents the intrinsic
vortex nucleation. In the case of He II, vortex loops may nucleate at critical Feyn-
man velocity [76] (where the vortex nucleation is energetically favourable) of the
order of tens of m/s. The vortex nucleation is favourable around sharp corners in
the case of flow past a body, where the velocity is enhanced [32]. The vortex loops
may also intrinsically nucleate around fast ions flying through the superflluid [77–
79] due to quantum tunnelling, at Landau critical velocity [40, 80] (representing
a limit of superfluidity as discussed in 1.1.3), being also of the order of tens of
m/s. However, much smaller critical velocities are typically observed, because
intrinsic nucleation in He II is rarely a case in real experiments, as preparation
of remnant-vortex-free state is a non-trivial task [81, 82].

The first vortices are nucleated already during the superfluid transition. It
is partially governed by the Kibble-Zurek type mechanism[83], but more impor-
tantly due to conventional hydrodynamic mechanisms [84]. Additionally, a small
number of quantized vortices might be generated in the vessel by natural ra-
dioactivity, due to ionization of the liquid [85], or from the rotation velocity of
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Figure 1.8: Direct visualization of the uniform mesh of quantized vortices as occur
in rotating vessel [75] at velocity Ω.

the Earth. With respect to the quantized vortex core size in He II, all real sur-
faces must be considered very rough, having a great number of possible pinning
sites. It is, therefore, extremely difficult to remove remnant vortices, which are
pinned to all submerged surfaces and prepare conditions for intrinsic nucleation
in the flow. However, it does not limit the study of intrinsic nucleation by the
flying ions happening in the bulk.

This is not true if we consider the nucleation of the quantized vortices in 3He
-B. Due to the much larger coherence length - core size, the statement about the
impossibility to create a smooth surface does not hold. However, again because
of the larger core size, the critical velocity for the intrinsic nucleation is much
smaller.

If we consider the preexisting seeding loops, we may discuss an extrinsic vor-
tex generation, where the energy is transferred to existing vortices, which then
grow, rather than new vortices are being nucleated. Therefore, the possible mech-
anisms of such generation of quantized vortices are much different to previously
mentioned. The typical critical velocities for extrinsic generation of quantized
vortices in the flow of He II are the order of magnitude lower in the range of
cm/s. In the case of oscillatory flows a frequency scaling of such critical ve-
locity vc ≈

√
κ2πf was further confirmed in many experimental works [86, 87]

or A.2. One of the typical processes which are responsible for the vortex stretching
and sub-sequent emission of the vortex loops is the Donnelly-Glaberson instabil-
ity [88–90], resulting from induction of the helical wave perturbances (Kelvin
waves) on quantized vortex due to parallel passing flow.

When quantized vortices are generated in greater number, they start to inter-
act and create a chaotic bundle forming a developed turbulent flow in superfluid
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component. The same can be obtained when abruptly stopping the vessel rota-
tion. When vortices in the bundle get close to each other, they may reconnect
and exchange their segments. A single vortex may even reconnect within itself
and create a free vortex loop, which then may travel through the superfluid bulk.
A localized bundle of quantized vortices, therefore, emits free vortex loops. The
velocity of such loop depends inversely on its radius and is induced by the inter-
action of its opposite segments having anti-parallel circulation. Interaction of the
two parallel vortices with the same direction of the circulation results in joined
rotation of the quantized vortices around their common centre. If the vortex gets
to the vicinity of the solid wall, it will further interact with the mirror vortex
behind the boundary, having opposite directions of circulation. More details on
the dynamics of the quantized vortices in He II can be found in [2, 60].

In order to define the intensity of the turbulence in superfluid component, we
can use the quantity L, vortex line density, giving the total length of the vortex
cores per unit volume. Another important quantity, defined as the inverse square
root of vortex line density describes the important length scale of superfluid
turbulence called intervortex spacing l = 1/

√
L, giving the mean distance between

the vortex lines. The development of the random vortex bundle is described by
Vinen’s equation [91]:

∂L

∂t
= αχ1vnsL

3
2 − χ2κ

2π
L2. (1.22)

Here, the first term describes the generation of the quantized vortices by loop
growth in thermal counterflow. This is a rather specific mechanism and does not
apply at low temperatures in a ballistic regime. The second term describes the
decay of quantized vortices, happening upon the vortex collision and annihilation
of opposite segments in the bundle. Dimensionless constants χ1 and χ2 are of
order unity and α describes the interaction between He II components (will be
further discussed later). The temporal decay of this type of turbulent flow, re-
sulting from turning the first term of 1.22 off, is different to what we introduced
for the classical turbulence 1.20. The decrease of the vortex line density governed
by vortex annihilation in the bundle should evolve inversely with time [2, 92] as:

L(t) =
[︃ 1
L0

+ χ2κ

2π
t
]︃−1

, (1.23)

with L0 denoting the initial vortex line density of the steady-state turbulence.
The question remains, how can the energy of the single quantized vortex

be dissipated in the absence of viscosity and if a collision with other vortices
is improbable? This may happen, when helical wave perturbance - Kelvin wave,
defined by wavenumber k, is induced on the vortex line propagating along it. The
energy of the wave is then propagated towards higher frequencies in a non-linear
cascade-like process as theoretically predicted [21–25] (this may be considered
as an analogy to Richardson cascade in classical turbulence), see Figure 1.7.
At high enough frequencies the energy may then be dissipated over emission of
thermal excitations [93] in He II or excitation of core bound states [94] in 3He -B.
The experimental verification of the Kelvin wave cascade existing on quantized
vortex in superfluid 4He is still missing but recent measurements in Helsinki with
rotation-modulated wave-turbulence in superfluid 3He are pointing towards this
phenomenon [95]. Additionally, our new experiments in collaboration with the
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Figure 1.9: Schematic picture of possible energy flow in superfluid helium. Energy
input may be realized, for example, by moving oscillating object, thermally driven
flow or other, into one or both components. The mutual exchange of the energy
between the components is then mediated by mutual friction force, which may
operate in one direction only. Final loss of the energy can then be directed
to either of the dissipation channels (i) viscous dissipation in normal component
dominating at temperatures above 1 K and not existing in zero-temperature limit
(ii) energy transfer in Kelvin wave cascade terminated by phonon emission.

Helsinki ultra-low-temperature group, with a single quantized vortex trapped on
a small resonating device, see 4.4, seem to be leading to similar results, which
will be published soon.

1.2.3 Mutual friction force
Now, that we have introduced the turbulent behaviour of both components sepa-
rately, let’s discuss the more realistic situation, switching the interaction between
the components on. As mentioned before 1.1.2, there is a force F coupling the
motion of the two components, see Equations 1.4 1.5, called mutual friction force.
It originates from the scattering of normal component on the quantized vortex
core and is acting to align the flow of the components to be parallel. It was
first studied in thermal counterflow experiments [91, 96–99] introducing it in the
following approximate form, dependent on a cube of the counterflow velocity vns

and the temperature-dependent Gorter-Mellink parameter A.

FGM = Aρsρn(vs − vn)2(vs − vn). (1.24)

The geometry of the straight aligned vortex lines, existing under the rotation,
is however, more straightforward for the study of this phenomenon, as was later
done by Hall and Vinen [49, 100]. In their experiments with the helium vessel
rotating at angular velocity Ω, they arrived at:

FV H = −B
ρnρs

ρ
Ω̂ ×

(︂
Ω × (vs − vn)

)︂
− B′ ρnρs

ρ
Ω̂ × (vs − vn), (1.25)

using a coarse-grained averaging of the fluid velocities over regions exceeding the
mean inter-vortex distance. The tabulated values of experimentally determined
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mutual friction parameters B and B′ may be found in [47]. Finally, Ω̂ = Ω/Ω
represents the unity vector in the direction of the rotation. When investigating
dissipative phenomena only, the prescription of mutual friction force may be
further simplified, using experimentally shown vortex line density dependence on
the velocity, when generated in the thermal counterflow [46], and ignoring the
second term in 1.25, which represents inertial forces and thus does not lead to
dissipation of energy, to a form [74, 101]:

FL = −Bκ
ρsρn

2ρ
Lvns. (1.26)

The existence of the coupling between He II components has important con-
sequences for the dynamics of the energy flow in the fluid. In the two-fluid
regime, mutual friction allows both-way energy transfer between the components,
as schematically shown in Figure 1.9. It acts on the quantized vortices in order to
polarize the vortex bundle into large-scale eddies following the vortex structures
in the normal component and even form a Richardson cascade-like system. It
can be therefore expected, that at finite temperatures, the dominant dissipative
channel will be represented by the viscous drag in the normal component. Turbu-
lent energy stored in the superfluid component, in the form of quantized vortices,
can be transferred via mutual friction onto the normal component. However, the
flow of energy and dissipation via Kelvin wave cascade on the single vortices is
not disallowed and will dominate at low temperatures in the absence of normal
component continuum.
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1.3 Quantum turbulence
Now, that we have introduced flow regimes and their peculiarities in both com-
ponents of the superfluid separately, together with the mutual interaction be-
tween the two, we can discuss the quantum turbulence phenomena. It should
be understood as any turbulent motion in the quantum fluid and can consist of
beforehand mentioned turbulent structures. We will follow the recently published
phenomenological description of quantum turbulence A.1, with the experimental
contribution of the Thesis author, see A and bring forward the most important
ideas.

First, we have to introduce all relevant length scales. Starting from the largest,
we have a limiting dimension of the vessel size D, where no larger structures may
exist. The energy input is realized at the scale M, which may differ significantly
regarding the turbulence driving mechanism. The dissipation in normal com-
ponent happens at Kolmogorov viscous scale ηK . If M< ηK no turbulent flow
may develop in normal component. We can further introduce a new length scale
denoted quantum length scale lQ defined as:

lQ =
(︄

κ3

ϵ

)︄ 1
4

. (1.27)

It is an analogy to classical Kolmogorov scale 1.18, where circulation quantum κ
takes place of the viscosity ν, having the same dimension and even similar values
regarding the two-fluid regime of He II. The quantum length scale is comparable
to the inter-vortex distance and marks the onset of the quantum character of the
flow, where quantization of circulation becomes essential. It may be understood
as a cut-off length for any classical-like description of the flow and its presence
implies that no quantum flow may be fully described by a classical analogy. This
implies, that the full component coupling via mutual friction below the quantum
length scale is not possible. Finally, we have a smallest length scale l∗, where
dissipation processes on single vortices, as described in 1.2.2, takes place.

At finite temperatures, the developed turbulent flow of He II driven at reason-
ably large scales, M≫lQ, consists of both large-scale eddies in normal component;
and vortex bundle in superfluid component. In this case, the mutual friction force
causes the vortex bundle to polarize and form large vortex structures imitating
the normal component eddies. These structures can then follow the Richardson
cascade process resulting in the same Kolmogorov shape of the inertial range of
the energy spectra 1.19 in both components. At all scales above lQ, the system
may be in first approximation described as a single quasi-classical fluid possessing
effective viscosity νeff , dependent on the temperature and the energy dissipation
is given as ϵ=νeff (κL)2. At high temperatures, dissipation happens dominantly
by the viscous channel at ηK and the energy in superfluid component is trans-
ferred to this channel via dissipative mutual friction force. Energy dissipation by
single vortices is not important here as the Kelvin waves are heavily damped by
mutual friction. We call this turbulent system a quasi-classical or Kolmogorov
turbulence. Finally, the decay of the vortex line density in this system is similar
to the classical case [71], see equation 1.20:

L(t) = D(3C) 3
2

2πκ
√

νeff

(t + t0)− 3
2 . (1.28)
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Figure 1.10: Schematic log-log view of the energy spectra of the steady-state
of thermal counterflow, in the channel, with increasing intensity (from top to
bottom), having energy input ultimately at two different length scales, quantum
length scale and size of the channel D. The quantum length scale is represented
by k-vektor kQ = 2π/lQ and energy spectrum termination scale by k∗ = 2π/l∗.
Inertial range with Kolmogorov scaling k−5/3 develops during the temporal decay
initially of Vinen type L∝t−1 and changing to Kolmogorov type L∝t−3/2 for later
times upon this process.

However, the picture changes dramatically, if the turbulent flow is driven at
small scales of the order or smaller than lQ, e.g., by a small quartz tuning fork
with prong cross-section of (75x90) µm2 or using ultrasound. For this case driv-
ing mechanism operate at scales already smaller than ηK (as ν ≈ κ) and classical
turbulent flow in normal component cannot develop in the first place. The tem-
poral decay of such a system will be much different from the previous, as the
main dissipation mechanism would be a local decay governed by the annihilation
of the vortex lines, leading to L(t)∝t−1 as described in 1.2.2 by equation 1.23.
However, the viscous dissipation channel is still operational, at these tempera-
tures and dominates, when the density of the tangle decreases significantly. The
experimental realization of such decay is shown in Figure 1.12. This type of
turbulent system is then called ultra-quantum or Vinen type of quantum turbu-
lence. We can again introduce the effective viscosity for this turbulent fluid, where
ϵ=ν ′(κL)2, but now describing only turbulent superfluid component consisting of
the vortex bundle given as:

ν ′ = χ2ρsκ

8π2ρ
ln
(︃

l

a0

)︃
. (1.29)
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Figure 1.11: Schematic log-log view of the energy spectra of quantum turbu-
lence in zero-temperature limit. The turbulent regime depends on the interplay
between energy input scale M and quantum length scale, represented by kQ, de-
pendent on energy input. For small energy input, we will observe Vinen type
of quantum turbulence. Upon rising the energy input, quasi-classical turbulence
of Kolmogorov type develops. During the decay, energy flow decreases together
with kQ.

Both νeff and ν ′ can be obtained from the experimental realization of the tem-
poral decay of the corresponding type of turbulent flow. Discussion on the two
presented forms of quantum turbulence may be found also in [102–104].

It is further possible, to have an energy input on more scales of the spectrum
simultaneously. This situation may be realized, e.g. in channel thermal coun-
terflow, having an energy input at the level of lQ in superfluid component via
reconnection-based mechanism [105, 106] and energy input at the scale of order
channel size D via instability in normal component flow. The energy spectrum
of the steady state of such a case is illustrated in Figure 1.10. The classical
spectrum is, however, missing the Kolmogorov inertial range 1.19 as this energy
is also transferred by mutual friction to the creation of the polarized quantized
vortex structures and the coupling is not perfect [107]. Upon switching the driv-
ing mechanism off, the initial Vinen-like decay L(t)∝t−1 occurs as vortex bundle
annihilation of energy stored around quantum length scale dominates. During
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Figure 1.12: Left: Temporal decay of thermal counterflow in the channel. Initially
Vinen type L∝t−1 of decay transforms over short vortex line density increase (a
”bump”) to Kolmogorov type L∝t−3/2. At the smallest drive, 50 mW/cm2 only
Vinen type is observed as normal component does not experience flow instability,
and energy input at large scales is therefore missing. Further description can be
found in the text. Right: Temporal decay of mechanically driven turbulence at
small scales ≈ lQ around small oscillating quartz tuning fork. The decay is of
Vinen type at all times. Meaning of L0 and t0 can be found in the main text.

this time, quasi-classical cascade develops building the inertial energy range. As
the Richardson cascade develops towards smaller scales, energy input from nor-
mal component into quantized vortices causes a temporal rise of L resulting in
the ”bump” in the decay [108, 109]. Afterwards, flow has a quasi-classical en-
ergy spectrum and Kolmogorov-like decay L(t)∝t−3/2 follows until the late times.
Experimental realization of such temporal decay is shown in Figure 1.12

Finally, one may expect that getting rid of normal component, cooling the sys-
tem to a zero-temperature limit, should result in mere ultra-quantum turbulence.
However, this is not necessarily true. The resulting type of the turbulent flow in
this regime depends on the generation intensity affecting the ϵ and therefore the
value of quantum length scale lQ and on the scale at which the flow is driven M.
It is the interplay between these two scales, which resolves if quasi-classical or
ultra-quantum turbulent regime operate as schematically shown in Figure 1.11.
In the case that M<lQ there is no possible effect leading to the creation of quasi-
classical form and the turbulence is always of Vinen type. This may be obtained
when driving the flow at a low enough scale (M is small) or with low enough
energy input (lQ is big). However, if the opposite case, M being larger than lQ,
quasi-classical inertial range will develop over the polarization of the bundle of
quantized vortices resulting in Kolmogorov type of turbulence. The final dissipa-
tion channel here, in the absence of viscosity, must be the phonon emission from
single vortices at scales below l∗.
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1.4 Quantum turbulence detection
Let’s now discuss the experimental techniques, which allow us to directly or indi-
rectly visualize above described flows of quantum fluids. These techniques work
well as verification tools for the presented theoretical models. For the direct visu-
alization of the turbulent superflows, similarly to classical visualization methods,
we may use ”Eulerian” particle image velocimetry (PIV) or ”Lagrangian” parti-
cle tracking velocimetry (PTV) techniques. The difference with a classical case
is in the suitability of the tracker particles (tracers). With liquid helium having
a density of about seven times lower than water, there is a limit on the mass of
the tracers [110, 111]. In He II, micrometer-sized frozen particles of hydrogen or
deuterium are broadly being used [112–115] or alternatively an excimers He∗

2,
being neutral helium triplet molecules [116, 117] with the size of several Å. The
necessity of the optical access for this method, as tracers are typically illuminated
by the laser sheet and tracked by the high-speed camera, represents a technical
issue if very-low temperatures (below 1.2 K) are being aimed for. Having the
particles interacting with both fluid components, being pulled by normal compo-
nent and trapped by quantized vortices at the same time, and affecting the flow
itself, special care must be taken when interpreting the results. Despite these
limitations, very important results are being obtained by the visualization of the
superfluid flow. One of many such results is the first direct visualization of the
regular vortex mesh (1.2.2) in rotating vessel [75], see Figure 1.8.

Creating helium ions, using a radioactive source or sharp emission tip and
their fine manipulation by electric field can be also effectively used to probe
turbulence in superfluid component. Knowing the interaction cross-section vortex
line density may be measured, as done originally by Milliken and co-authors [118,
119]. In their experiments, they were able to measure the free decay of the vortex
bundle or characterize vortex bundle in the channel counterflow. This technique
is still being regularly used in Manchester group [104, 120, 121].

In 3He , we can benefit from an extremely powerful detection method of
nuclear magnetic resonance (NMR), thanks to the magnetic properties of the
superfluid. In analogy to spin systems in solid bodies and biomolecular systems,
we can extract very detailed information about the superfluid 3He structure from
the relaxation of its spin system. This technique is very suitable for the study of
different superfluid phases as they differ by the texture of the spin-orbital space.
Even detection of the different phase existing inside the core of the quantized
vortex is possible as shown in [122]. More information on the usability of the
NMR for superfluid 3He research might be found in [123–125].

Finally, we will mention the second sound attenuation technique, allowing
the measurement of vortex line density in superfluid component of He II and
the use of small mechanical resonators able to probe turbulent flows in both
He II components as well as in superfluid 3He . These mechanical devices allow
detection of the turbulence generated by the probe itself in the means of energy
loss or alternatively detection of externally driven turbulent flows via their mutual
interaction. We will pay detailed attention to these two techniques in the following
sections, as they represent the vast majority of detection tools used for the analysis
of the studied flows presented in this Thesis.
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1.4.1 Second sound attenuation
The hydrodynamic properties of He II in the two fluid regime, as described
in 1.1.2, allow the existence of a number of non-classical wave modes. For the de-
tection of quantized vortices, we can use a wave mode called second sound, whose
existence was experimentally confirmed by Peshkov [126]. It can be described as
a counter-oscillation of normal and superfluid components against each other.
The standing wave can be therefore understood as local oscillations of density
ratio of the components ρs/ρn or alternatively a spatial temperature or entropy
wave. However, the total density ρ distribution is not affected unlike in the case
of the first sound. Being based on the oscillatory flow of the normal component,
second sound can be advantageously used to detect the quantized vortices due to
scattering on their cores. The presence of the vortices in the probed volume can
therefore result in attenuation of the second sound wave.

The mutual interaction of second sound with quantized vortex matrix was
originally studied in rotating cryostat experiments [49, 100], finding the geomet-
rical dependence on the angle Θ between sound propagation direction and vortex
lines. The attenuation was found maximal in the perpendicular case, but being
zero if second sound propagated in parallel to the vortex cores, having sin2(Θ)
dependence. Assuming a fully random isotropic and homogeneous vortex tangle,
we can arrive at the following formula to obtain the vortex line density in the
experiment:

L ∼=
6π∆f

κB

(︃
A

A0
− 1

)︃
, (1.30)

where measurement of calibration peak in the non-vortex state (omitting now the
presence of remnant vortices), having amplitude A0 and width (FWHM) ∆f, is
necessary. When driving the turbulence, generating vortex lines, the measured
amplitude of second sound standing wave A will decrease. The mutual friction
parameter B and circulation quantum κ are described in previous sections. A
more detailed description of this detection technique can be found in [127]. In
Figure 1.13, we show the typical series of the measured second sound peaks in
gradually intensifying turbulent flow in superfluid component of He II.

Taking the described properties of the second sound wave, it may be prac-
tically driven either mechanically or thermally. In the case of the thermal gen-
eration, by sine-shaped heat pulses, there is an issue with the average DC heat
input, which might affect the studied flow. However, small localized detectors
with limited heat input are being developed [128]. It is, however, technically
more advantageous to use mechanical apparatus based on electrically driven os-
cillations of the ”superleak” - a porous wall allowing for the passage of only
superfluid component. Pair of such detectors can be used in closed-volume ge-
ometry, e.g. in the flow channel, one acting as a transducer and the second as
a receiver. A model picture of one such decomposed detector unit based on the
movable gold-coated porous membrane stretched on the brass electrode is shown
in Figure 1.14.

The second sound attenuation technique is well established for the study of
approximately homogeneous isotropic turbulent bundles, occurring for example
in channel counterflow experiments. The sensitivity of the wave mode depends
on its spatial distribution being highest in the anti-nodes, where the velocity of
the components oscillation peaks. Therefore probing more low-frequency modes
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Figure 1.13: Left: Overview of second sound resonance attenuation. Series of
in-phase (black) and quadrature (red) signal components are being attenuated as
amount of quantized vortices in volume rise. A0 denotes the original amplitude
in non-vortex state. Right: Temperature dependence of second sound velocity in
He II.

may lead to a better understanding of the quantized vortex distribution, as sug-
gested in [46, 127], and the use of high-frequency modes give the average value
of vortex line density in probed volume. Although, extra care must be taken
when interpreting the results if dealing with strongly non-homogeneous vortex
bundles. One can try to model both the spatial distribution of the bundle and
the spatial distribution of the detection mode used to find appropriate quantita-
tive results, but it would be a non-trivial task. This is being attempted for the
case of spherically symmetric thermal counterflow [20], which should contain a
strongly non-homogeneous vortex structure [16, 17, 19], existing around a point-
like heater. However, even under these conditions, if we assume that relative
vortex distribution is not changing much as the turbulence is driven harder or if
we use a ”dense” enough detection mode (high-frequency mode with many anti-
nodes), the qualitative picture of the vortex line density expressed by changes of
resonance quality factor can be approximately correct.

Another technical issue, connected with second sound attenuation technique,
is the temperature dependence of the sound propagation velocity u2, which causes
changes of resonant frequency if the helium sample is overheated by the turbulence
generation mechanism. It may be overcome, if overheating is not too severe, by
PID algorithm stabilizing the quadrature signal component, as done in A.4 or by
post-processing based on calibration peaks as described in [127]. The temperature
dependence of second sound velocity in He II was systematically measured by
Peshkov [129], see also Figure 1.13 and can be found tabulated in [47].

1.4.2 Local mechanical probes
Since the presentation of the original idea of the existence of quantized vortices
various mechanical resonators (in the form of disks, spheres, grids, tuning forks,
reeds, double paddles, wires... A.2) are being used to probe the turbulent flows of
quantum fluids. The first experiments in He II have been conducted by Vinen [7]
employing resonating string stretched through the centre of the experimental cell.
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Figure 1.14: Photo (left) and scheme (right) of capacitive second sound sensor
consisting of brass electrode and gold-plated porous membrane.

Figure 1.15: Left: Custom-made quartz tuning fork with spacing of the prongs
of 90 µm. Right: Vibrating wire resonator with leg spacing of 3 mm. The loop
is made of NbTi 60 µm thick wire.

In this experiment, it was possible to fully or partially trap a single quantized
vortex along the string and measure its precession due to the Magnus force in-
duced by the superfluid flow. As a result, Vinen was able to measure the value of
the circulation quantum κ. Similar experimental setups are still being used for
example to study the boundary conditions for the vortex movement across the
boundary at very low temperatures [130].

Another type of heavily studied mechanical resonators used to study super-
fluids is levitating spheres [13, 15, 85, 86, 131–133]. The great advantage of
this geometry is its theoretical simplicity for the hydrodynamical models and full
isolation from other surfaces, which may propagate extra remnant vortices or
additional heat onto the device. Such resonators are typically levitated in the
superfluid bulk via the use of the magnetic forces acting on light superconducting
or charged ferromagnetic spheres.

Arguably, the most used mechanical resonators to study not only the turbu-
lent flows in superfluids but working as great probes of the properties of the fluid
(such as temperature, pressure, viscosity) [5] are quartz tuning forks [6, 134–
139], see Figure 1.15. They are manufactured in mass as they are widely used
as a frequency standard in watches. The customization of the device fabrica-
tion allows for the dimensions of order tens of micrometers. Having a crystalline
structure further leads to relatively high values of quality factors Q ≈ 105 of
the resonance, which is important for the device sensitivity. Oscillation motion
is being driven by the alternating voltage U (ω) using the piezoelectric properties
of the quartz and the motion of the prongs induce current I (ω) proportional to
its amplitude. Obtaining the fork constant af =

√︂
4πmeff∆fI/U [5] by the cal-

ibration measurement in a vacuum, we get the connection between electrical and
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mechanical properties, force F and velocity v, see equation 1.31. The calibration
must be done still in the linear regime, where ∆f denotes the with (FWHM) of
the Lorenzian resonance peak and meff gives the effective mass of the fork A.2.

F (ω) = afU(ω)
2 , v(ω) = af

I(ω) . (1.31)

Last but not least, we will mention the vibrating wire resonators, being su-
perconducting wire half-loops with leg spacing D, see Figure 1.15, which are
very typically used for very-low temperature thermometry in 3He experiments,
measuring the thermal excitation gas density. However, their use is definitely
not restricted to the above and numerous experiments with quantum turbulence
generated or detected by these probes are being performed [8–10, 140–143]. The
typical driving geometry is using a magneto-motive induction. The device, placed
in the magnetic field B is driven by Lorentz force F, when alternating current
I (ω) is supplied and its movement induces Faraday voltage U (ω). Again, we
can connect electrical to mechanical properties by equations 1.32, holding as pre-
sented here for the typical case, where the magnetic field is parallel with the wire
legs and if we account for the first resonant mode shape, for more details see A.2.
More detailed discussion on mechanical resonators use at low temperatures may
be found in [144].

F (ω) = 0.69BDI(ω), v(ω) = U(ω)
0.69BD

. (1.32)

Both quartz tuning forks and superconducting vibrating wires may be effec-
tively used at a high enough drive for the generation of quantum turbulence
eventually driving turbulent flow in both components in the case of He II. This
self-generated turbulence might then be studied by the device itself, as energy
input to the flow must equal dissipation measured on the device. The laminar to
turbulent flow transition may be simply characterized by the change of resonant
peak shape, going from Lorenzian, displaying linear dependence of measured peak
velocity on driving force to a ”distorted” one tending to a quadratic behaviour
of F(v). Under more detailed analysis A.2 including also changes of resonant
frequency, a closer description of the laminar to turbulent transition may be ob-
tained. For example, the existence of multiple critical velocities in the oscillatory
flow of the tuning fork in He II was shown [6], connected with the multiplication
of vortex loops pinned on the device surface leading to effective mass enhance-
ment, next the start of loop emission with the onset of extra drag and finally
build-up of large scale turbulent wake.

The big advantage of mechanical resonators when used as quantum turbulence
probes is their local character, allowing for the study of any vortex structure.
Although, the mutual interaction with the fluid may be very complex and is typ-
ically leading to a puzzling interpretation. It is anyway a great tool to study the
self-generated turbulence and critical flow phenomena in superfluid. Mechanical
resonators might be further used to probe the externally driven turbulence. De-
vices in the form of wire loops were used in past, to study the vortex emission at
very low temperatures with the device working as a time of flight collision detec-
tor [82, 145, 146]. We believe, that the potential for the detection of externally
driven turbulent flow has not yet been fully exploited and in the following, we
present our results reaching towards this goal in the two-fluid regime also.
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Figure 1.16: Illustrative photos of chosen mechanical resonators of micro- and
nano-metric dimensions fabricated with use of lithography and other cleanroom
processes. For more details see [27, 31, 149].

Device properties and their interaction with the fluid is further limiting the
accessible sensitivity caused by the parasitic dissipation, which may be caused,
e.g., by the intrinsic material or resistive losses or excessive damping [147]. These
might be overcome by nowadays well-accessible customization of the device geom-
etry and the material choice. Using lithography and clean room processes allows
down-scaling of the device dimensions to micro-metric or even nano-metric range
and it become a fairly routine procedure. At these scales, we may already reach
the order of the coherent length of 3He -B or study detailed dynamics of the sin-
gle trapped quantized vortex [148]. In Figure 1.16, we show some of the different
types of existing devices. More generally used manufacture procedures and device
geometries may be found in [27–31, 149] or A.6.
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Chapter 2

Onset of quantum turbulence

We have already discussed the peculiarities of the developed turbulent flow of
quantum fluids resulting from their two-fluid nature. It is though, equally im-
portant to address the initial onset of the flow instabilities which also possess
complex behaviour. At low velocities, the interaction between the He II compo-
nents is weak, as only a small amount of remnant quantized vortices is present,
and we can consider the components as independent. Following the two-fluid
model, we have to account for the possible origin of the instability in either of the
components and develop an analytical approach allowing their identification. It
is, however, not a trivial task as the mutual friction force typically initiates the
transition also in the other component soon after the initial instability occurs.
At higher drives, we then deal with the combination of the developed turbulent
flow in both components, if present, as described in 1.3.

We have introduced the available detection methods 1.4, which are sensitive to
excess damping originating from either He II component, such as submerged me-
chanical resonators 1.4.2 or those that can display only the presence of quantized
vortices in superfluid component, such as the second sound attenuation 1.4.1.
A well-designed combination of these techniques can, therefore, offer comple-
mentary information on the fluid system under turbulent transition. The most
straightforward approach, to identify transition with either of components, is to
seek for the critical parameter governing the transition as it is expected to differ
for the classical instability in normal component and instability leading to vortex
creation in superfluid component, as discussed below.

In this work, we experimentally address behaviour of He II in the temperature
regime of continuous normal component above 1 K. Due to technical difficulties
connected with the realization of stationary steady flows in He II, we concentrate
on the study of the steady oscillatory motion of the fluid realized by moving
objects or by the application of alternating heat pulses. We are able to accurately
identify the origin of the instabilities and show a temperature-controlled cross-
over between the two mentioned types of instability in both experimental setups.

2.1 Normal fluid instability
To closely describe the hydrodynamic behaviour of normal component and in-
troduce the governing critical parameter, we will follow the summary offered in
the attached publication A.2, see A. All performed experiments are considered in
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high-Stokes-number (or high-frequency) limit of oscillatory flow, defined for the
body of the characteristic dimension D as St = D2/(πδ2)≫ 1. For the submerged
body oscillating at frequency ω, we consider normal component, with kinematic
viscosity ν and density ρn, to create the Stokes boundary layer of temperature-
dependent thickness δn =

√︂
2ν/ρnω. The same quantity can be analogically

introduced for the case of oscillating He II driven by the heat impulses.
The hydrodynamic behavior of normal component is described by Navier-

Stokes equations, which are in their dimensionless form governed by a single flow
parameter. The exact form of the dimensionless parameter further depends on
the surface roughness or presence of the sharp corners. For the hydrodynamically
smooth body, e.g., smooth cylinder representing clean vibrating wire, it is the
Keulegan-Carpenter number KC = 2πvn/(ωD), with vn being characteristic flow
velocity. On the other hand, if surface imperfections are present, flow character
is described merely by the value of the boundary-layer-based Reynolds number,
called Donnelly number in the context of the two-fluid model, reflecting and
honoring the work of Russell James Donnelly:

Dn = δnvn/ν. (2.1)

Upon exceeding the flow velocity of normal component beyond vn,cr leading to the
critical value of Dn it will experience first instabilities towards turbulent regime.
The specific critical value can differ for different flow geometries, in direct analogy
to different critical Re for the flow past cylinder, being of order unity and for the
pipe flow, being ≈ 103.

However, to describe scaling of viscous drag forces at low velocities, in the
laminar regime, Dn may be used regardless of the body geometry (even if having
a smooth surface). In this regime, only viscous drag is offered by the normal
fluid. The drag forces FD may be well described by means of the dimensionless
drag coefficient:

Cn
D = 2FD

AρnV 2
n

, (2.2)

using peak velocity V n and oscillators cross-sectional area A perpendicular to the
flow direction. The laminar drag then obeys the universal scaling C n

D = Φ/Dn, for
all types of bodies, with Φ being purely a geometrical parameter. Any instability
can then be associated with deviation from this scaling law.

2.2 Superfluid instability
In superfluid component, we deal with the quantum-restricted flow, and the tur-
bulent transition is connected with the start of excessive generation of quantized
vortices. Although an ideal low-velocity regime should be described by purely po-
tential flow, it is mostly the case that remnant vortex loops are already present.
They are pinned to all surfaces and exist in bulk stabilized by the Earth‘s rota-
tion. The instability is, therefore, typically not connected with the generation of
the first quantized vortices in the fluid sample but rather with the start of the free
vortex production into the bulk, originating from the seeding loops on the body’s
surface. As Schmoranzer et. al [6] showed, the multiplication of vortex loops on
the surface of the oscillator may happen prior to free vortex loop production.
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The generation of the free vortex loops from the oscillating body or from the
channel surface in the case of oscillatory counterflow is governed by vortex self-
reconnection due to Donnelly-Glaberson type of instability [89]. This transition
may be associated with the existence of the critical flow velocity vs,cr of superfluid
component, working here as the critical flow parameter. The value of the critical
velocity obeys universal scaling, given by equation 2.3, as shown in experiments
employing small 100 µm sized magnetically levitating oscillating spheres [14, 86].

vs,cr ≈
√︄

κω

β
(2.3)

The numerical factor β, dependent on the mutual friction parameters, is of order
unity and its value decreases slightly with the rising temperature. The value of
the critical velocity, therefore, varies by about 10% in temperature region above
1 K. For these reasons, it is convenient to introduce a reduced dimensionless peak
superfluid velocity as:

Vŝ = Vs√︂
κω/β

, (2.4)

which represents the true critical flow parameter.
In analogy, with classical case, we may introduce a dimensionless superfluid

drag coefficient C s
D, describing the drag forces acting in superfluid component as:

Cs
D = 2FDβ

AρsκωVŝ

2 . (2.5)

In the sub-critical regime, we should again expect the universal laminar drag
(with origin in normal component) scaling, expressed as C s

D = ϕ/Vŝ, with Φ and
ϕ relation given by equation (8) in A.2, see A.

It is important to emphasize, that in experiments employing turbulence driven
by oscillating bodies, we consider an oscillatory coflow having V n = V s, while in
the case of oscillatory thermal counterflow it does not hold.

2.3 Turbulent onset in oscillatory coflow
In the first experiments, we present measurements of drag evolution of three
mechanical resonators fully submerged in He II, scanning the temperature region
above ≈ 1.3 K. We have employed two different quarts tuning forks, commercially
made and custom-made, and one superconducting vibrating wire, each measured
separately in dedicated cooldown. The tuning forks were driven using their piezo-
electric properties and the vibrating wire was driven magneto-motivelly, in ac-
cordance with the description offered in 1.4.2. Used devices are similar to those
in Figure 1.15. Agilent A33220 signal generator was used as a source of driving
voltage/current and induced signal was measured with a phase-sensitive Stanford
Research SR830 lock-in amplifier measuring both in-phase and quadrature signal
components. In the case of tuning forks, an induced current is processed using an
I/V converter and lock-in is reading voltage signal from all oscillators. Measured
electrical quantities may be translated to mechanical ones using relations given
by equations 1.31 and 1.32.
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Specific dimensions of the used tuning forks are listed in the table 2.1. The cor-
responding resonant frequency of the fundamental mode for a commercial tuning
fork is 32 kHz, while for a custom-made tuning fork, we have used both funda-
mental and first overtone modes resonating at 6.5 kHz and 40 kHz, respectively.

Table 2.1: Listed dimensions of the two used quartz tuning forks.

Type prong length prong width prong thickness prongs spacing
commercial 2.17 mm 210 µm 100 µm 120 µm

custom 3.5 mm 90 µm 75 µm 90 µm

In Figure 2.1, we show the characteristic behaviour of quartz tuning forks
as the motion velocity is increased. Each individual point is a result of the
full frequency sweep across the resonance at a given drive and obtained peak
quantities are plotted. In the left panels, we show the velocity dependence of the
clasicall drag coefficient defined analogically to 2.2, using whole fluid density ρ
(instead ρn) and peak velocity of the device V p representing correctly V n, as we
are dealing with coflow. Temperature dependence of the laminar regime is clearly
showing that superfluid component is not contributing to the drag significantly
at these velocities. However, after the turbulent transition, showing as signature
deviation from the linear dependence, the total drag collapses towards a single,
temperature-independent, value of the drag coefficient. This manifests that the
turbulent flow develops in both He II components which are coupled together and
the system behaves as a single fluid. This is in good agreement with the model
introduced above.

The correct parameter showing the behaviour of normal component only is
one given by equation 2.2 and is plotted in the right panels of Figure 2.1 as a
function of Donnelly number. The results show very good agreement with the
presented scaling law and agree almost perfectly with approximate predictions for
values of Φ (plotted as blue dashed lines), made based on theory for rectangular
beams [150], ignoring the surface roughness. The normal flow instability can be
well identified from this picture, as a first deviation from the obtained scaling.

The very same measurements have been performed also with the vibrating
wire resonator, allowing the study of a similar system in a different geometry.
The loop is made from a single filament NbTi wire of diameter of 40 µm having
a leg spacing of ≈ 2 mm. The stationary magnetic field of (170±10) mT (room
temperature value, which should drop by ≈ 23% upon cooling) is generated by
the pair of NdFeB permanent magnets. The theoretical prediction for the value of
the scaling factor Φ for the smooth cylinder may be done exactly, following [32]
and is in reasonable agreement (regarding geometrical uncertainties) with the
measured data. The same original analysis, as for the tuning forks, is performed
and shown in Figure 2.2, obtaining the expected behavior. The significant differ-
ence, compared to quartz tuning forks, is the evident temperature dependence of
the deviation point from the laminar scaling law when plotted as a function of
the Donnelly number which will be discussed in more detail later.
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Figure 2.1: Left: Drag coefficient of the whole fluid as a function of measured
peak velocity. Right: Normal component drag coefficient as a function of Don-
nelly number. Blue dashed lines are representing the universal scaling of laminar
drag predicted based on ideas in [150]. The values of the resonant mode indepen-
dent scaling factor Φ are printed. The data are presented for two quartz tuning
forks using fundamental or first overtone resonant modes in a wide range of tem-
peratures.

2.4 Turbulent onset in oscillatory counterflow
In the second experiment, described in more detail in A.3, see A, we study the tur-
bulent transition in high amplitude second sound standing wave, which might be
understood, regarding its properties described in 1.4.1, as the oscillatory counter-
flow. As was shown in the original work of Kotsubo and Swift [151, 152], second
sound wave may generate quantized vortices, when driven hard enough, that the
peak counterflow velocity locally exceeds the critical value.

In our experiment, see schematics in Figure 2.3, we employ two perpendicular
second sound waves, propagating inside a closed brass channel (second sound
resonator), with the length of 3.2 cm and square (1x1) cm2 cross-section. The
first standing wave is driven thermally, along the channel, using a resistive heater
as the driving unit and biased (constant current of 1 µA) Ge/GaAs sensitive
semiconductor thermometer [153] for the detection of the temperature wave. This
mode is able to initialize the vortex production and we refer to it as ”longitudinal”
or ”generation” mode. The second wave is generated mechanically, between the
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Figure 2.2: Left: Drag coefficient of the whole fluid as a function of peak velocity
and Right: normal component drag coefficient as a function of Donnelly number,
measured with the vibrating wire resonator. The Blue dashed line represents
the universal scaling of the laminar drag on a smooth cylinder derived according
to [32].

pair of capacitive sensors described in 1.4.1, see also Figure 1.14, in the center of
the channel. This mode is used for the detection of generated vortex line density
and we refer to it as ”transversal” or ”detection” mode.

The longitudinal wave mode is driven via the application of alternating voltage
U = U0 cos(ωt) to the 50 Ω manganine wire heater by the Agilent A33220 signal
generator. The generated heat pulses Q ∝ U 2 result in the heat flux Q̇ = Q̇dc+Q̇ac

having a net DC component and AC thermal wave component at double frequency
of the voltage source 2ω.

Q̇ = U2
0

2R
[1 + cos(2ωt)] . (2.6)

We, therefore, have to keep in mind the parasitic steady counterflow being gen-
erated due to a DC heat component. The thermometer signal at a frequency of
the AC heat wave 2ω was measured with Stanford SR830 lock-in amplifier.

In order to identify the transition into the turbulent state, we can analyze both
of the second sound modes. Let us start with the ”longitudinal” mode, which
might be used for the self-detection of the generated vortices as it gets attenuated
in their presence also. This results in the following driving power series of full
frequency sweeps, illustrated in Figure 2.4. At low drives, no quantized vortices
are generated and the resonance has a Lorenzian shape. It is good to understand
that measured signal amplitude is directly connected with the peak velocity of
the fluid oscillations, for details see A.3. Knowing this, it is then straightforward,
that the peak amplitude cannot exceed some critical value, meaning that the
critical velocity is reached, where most of the accessible energy is injected into
the formation of the vortex bundle. This behaviour is clearly demonstrated in
Figure 2.4 as resonance peaks for higher drives change, having a ”cut-off-top”
shape. This was observed at three different temperatures exciting the first three
resonant modes of the ”longitudinal” second sound wave. However, it may seem,
that the amplitude saturation value is even decreasing with the further rise of the
drive. This was not observed in previous experiments [151, 152] with mechanically
driven ”generation” mode and is connected with additional parasitic vortex line
density having origin in net DC heat input.
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Figure 2.3: Schematic of the experimental cell arrangement. The longitudinal
second sound wave is generated thermally via the heater, along the resonator,
and probed by the sensitive resistance thermometer at the opposite end. The
transversal second sound signal is driven perpendicularly in the middle of the
resonator, between the two capacitive sensors.

Additionally, in our setup, we can verify the vortex production with the ”trans-
verse” mode. It is done in a usual way, measuring the onset of the attenuation
of the ”detection” mode propagating simultaneously in the centre of the channel.
As may be seen in A.3 (Figure 3), it exactly agrees with the amplitude satura-
tion of the first resonant mode of the ”longitudinal” wave and directly proves
the generation of the quantized vortices. This is, however, not true if a second
resonant longitudinal mode is employed, regarding the measurable saturation of
its amplitude. It is clearly showing, that the vortex generation is well localized
in the anti-nodes of the ”generation” wave, where the flow velocity is maximal.

From the simultaneous measurements of ”transversal” mode during the power
series of ”longitudinal” mode, we can identify the critical heat power and associate
it with critical counterflow velocity, as done in A.3. It is finally necessary to
emphasize, that above characterized transition is again not the observation of pure
initial instability, but rather an onset of the additional excessive vortex production
in oscillatory counterflow from already preexisting vortex loops generated at lower
velocities by present DC counterflow.

2.5 Interplay of normal and superfluid compo-
nent instabilities

In order to address the origin of the initial instabilities described previously, in
more detail, we need to present the obtained data in a convenient form. First, let
us discuss the instability onset in oscillating coflow experiments. As we presented
above, the superfluid component instability should be governed by well-defined
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Figure 2.4: Driving power series of full frequency sweeps of longitudinal second
sound wave. First two resonant modes are shown, measured at 1.65 K. Signal
values represent the full voltage amplitude measured across the biased thermome-
ter. Plotted frequencies agree with the supplied ac voltage and represent the half
frequency of resulting heat pulses. Two distinct resonance shapes are present,
depending on the power. At low drives, we observe a non-dissipative flow having
a Lorenzian peak shape. At higher drives, signal amplitude saturates and cut-
off-top peak shape is observed, meaning the production of quantized vortices.

nearly temperature-independent critical velocity vs,cr, at which deviation from the
universal linear drag dependence C s

D = ϕ/Vŝ occur. Analogously for instability
in normal component, we expect a deviation from C n

D = Φ/Dn laminar drag at
a well-defined critical value of the Donnelly number.

For this reason, it is advantageous to introduce scaled non-linear drag contri-
butions 1 - ϕ/(C s

DVŝ) and 1 - Φ/(C n
DDn) for superfluid and normal component,

respectively. These quantities are close to zero for laminar drag and exhibit a
steep rise at turbulent transition onset. In Figure 2.5, we plot these quantities
as a function of the corresponding parameter for the data measured with three
described mechanical resonators.

It is evident, that all devices are behaving in a different manner, deducing
from the relative spread of shown critical parameters and the rate of the nonlin-
earity onset. The instability presence is identified by the crossing of the dotted
horizontal line, representing the safe estimate for experimental noise levels, being
set as 5% for the tuning forks and 10% for the vibrating wire.

In the case of the custom-made tuning fork, see top panels in Figure 2.5, we can
identify the instability onset with the transition in normal component observing a
small spread for critical Dncr ≈ 2.5 at all temperatures, see the left panel. On the
other hand, the critical velocity value is clearly temperature dependent, showing
a higher spread than Dn.
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Figure 2.5: Nonlinear drag contribution for three studied mechanical resonators
showing the origin of the initial instability. Left: Drag normalized for the normal
component as a function of Donnelly number. Right: Drag normalized for super-
fluid component as a function of dimensionless velocity.

The commercial tuning fork, shown in the middle panels, exhibits a cross-
over, as for low temperatures well defined critical dimensionless velocity exists
V̂ cr=1.2, pointing to initial transition in superfluid component, but for the two
highest temperatures it does not hold and Dncr of a similar value of 2.5 is the gov-
erning parameter. The same value of Dncr is observed, when measuring in normal
helium at 4.2 K, where only classical instability is considerable, strengthening our
argumentation.

Finally, the vibrating wire, shown in the bottom panels, is exhibiting behavior
similar to the commercial tuning fork. The wide spread in critical Dn and much
sharper transition in velocity is obvious, except for the two highest temperatures,
where Dncr ≈ 9 is observed. The difference in this value has its origin in the
device geometry, as velocity flow around sharp edges of tuning forks is likely to
be enhanced, resulting in higher than measured real peak flow velocity.

Our experiments with mechanically driven oscillatory coflow have shown, that
the instability in either of the components of He II can initialize the turbulent
transition of the whole fluid. Further, there is a possible crossover in a single
experiment, depending on device geometry, between the superfluid and classical
transition, which is tunable by the temperature of the system.

We will now continue, with the discussion of the instability onset in oscilla-
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Figure 2.6: Critical Donnelly number observed for oscillatory counterflow in var-
ious experiments A.3 [151, 152, 154] as a function of temperature. The Black
dashed line follows the effective Donnelly number introduced by equation 2.7,
representing the correct governing parameter for the onset of turbulent transition
in superfluid component.

tory counterflow, although, special care must be taken, as velocity amplitudes of
normal and superfluid components are not equal, as it was in the previous ex-
periment. We, therefore, need to introduce a common dimensionless parameter,
allowing us to distinguish the two turbulent transition mechanisms. Classical
hydrodynamic instability occurring at critical normal component velocity vn,cr is
governed by the Donnelly number as introduced by equation 2.1. The generation
of quantized vortices, on the other hand, happens above the critical velocity of
superfluid component vs,cr. However, this critical velocity may be converted into
means of effective critical Donnelly number:

Dncr,eff = δnvs,crρs

ρnν
. (2.7)

using zero net mass flow condition vn = vsρs/ρn, holding for the counterflow.
The physical meaning of this parameter is the Donnelly number of normal com-
ponent flow, exactly when the critical superfluid velocity is reached and Donnelly-
Glaberson instability is initiated in the superfluid component. Substituting for
the true universally constant critical parameter v̂s, given by equation 2.3, and
considering the frequency dependence of the viscous boundary layer size δn, we
find that the value of Dncr,eff is independent of frequency, but strongly tempera-
ture dependent. This may be seen in Figure 2.6, being plotted as a black dashed
line.
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In Figure 2.6, we show the temperature dependence of the critical Donnelly
number in the oscillatory counterflow, as provided from our experiment A.3 and
reconstructed from the previous experiments of Kotsubo and Swift [151, 152] and
Chagovets [154]. Specific details can be found in A.3. It is clearly seen, that in
the low-temperature regime, a well-defined constant value of critical Dncr ≈ 17
is followed, in all experiments involving turbulence generated in oscillatory coun-
terflow driven at various frequencies. However, for temperatures above ≈ 1.8 K
results follow the Dncr,eff , representing the correct critical parameter for transition
in superfluid component.

These results show, that the crossover from classical to superfluid instability
exists in this type of flow as well, but has the opposite temperature character than
one observed in coflow, with classical transition preferred at lower temperatures.
The reason for this phenomenon is the inequality of the component velocities in
counterflow, where having a smaller density of either component leads to a much
higher flow velocity.
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Chapter 3

Local detection of quantum
turbulence in two fluid regime

Detection of the self-generated turbulent flow in the vicinity of oscillating struc-
tures plays a very important role for a better understanding of the turbulent
transition in quantum fluids and its further development towards fully turbulent
flow. However, we also need to be able to characterize the properties of exter-
nally driven flows. There is a number of probes that can address this goal, e.g.,
employment of second sound [46, 127], tracking of ions or excimers [117], and hot
wire anemometry [155], although, all have their disadvantages as described in 1.4.
The main issue, typically, is the interpretation and accessible information, when
used for the study of highly non-homogeneous turbulence, which became a rather
hot topic lately [16–20] or A.3. The need for good and reliable local probes of
quantum turbulence emerged, seeking a deeper understanding of turbulent flows
in new geometries (oscillatory counterflow, cylindrically or spherically symmetric
counterflow).

The use of second sound attenuation is providing a great tool for scanning
the average density of quantized vortex lines, although, interpretation relies on
consideration of homogeneity and isotropy. It is true, that approaches towards
local probes exist [128], but have a limiting sensitivity. However, the employment
of mechanical probes proposes a very straightforward option thanks to its very lo-
cal character and fast development of processes allowing further miniaturization.
The devices in the form of superconducting vibrating wire loops [82, 145, 146]
have proved their usability at temperatures close to and below 1 K, where the
contribution of normal component is negligible. We try to study these devices
further A.4, in the hydrodynamic limit of He II, and offer an understanding of
their mutual interaction with the quantum turbulence in a wide range of flow
intensity.

3.1 Experimental apparatus and method
Our experimental setup included two conventional thermal counterflow chan-
nels [46] of square cross-section. The first channel, denoted ”long”, had 7 mm × 7 mm
in cross-section and a length of 167.5 mm. This channel included two vibrating
wire resonators, L2 and L3, and two conventional second sound attenuation units
probing the same volume, as illustrated in the sketch, see Figure 3.1. The addi-
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tion of second sound sensors is giving us the ability to independently calibrate
our sensors against vortex line density, under rather well-understood properties
of thermal counterflow [46, 107–109]. The real situation with mechanical probes
is, however, more complex, as they are able to sense both components of He II,
providing additional information about the flow. The second channel, denoted
”short”, with a cross-section of 4 mm × 4 mm and length of 40 mm included only
the two of the vibrating wire resonators, M1 and M2 (for geometrical reasons, we
could not add a second sound unit) and was allowing for the production of much
denser vortex bundles, as the counterflow velocity vns at temperature T for given
heater power Q̇ depends on the channel area A as:

vns = Q̇

AsTρs

, (3.1)

where s and ρs have the same meaning as in 1.1.2. Both channels had additional
Ge/GaAs thermometer installed inside, to probe the real temperature as affected
by a small gradient in the thermally driven flow.

All four mechanical devices studied in our experiments were of the same form
of superconducting wire loops, as described in 1.4.2, made from the d = 60 um
in diameter thick single core NbTi wire. It was first stripped from the layers of
varnish insulation (mechanical abrasion and chemical etching) and of Cu matrix
(etched in 67% HNO3) to obtain bare superconducting half-loop with leg spacing
of ≈ 3 mm. The variations in the exact loop shape result in the difference of the
resonant frequencies, ranging between 5300 Hz and 7300 Hz. The position of the
wires in custom-made holders, see Figure 3.2, was secured with 2850FT Stycast
gluing and was made such that the top of the loop is close, ± 1 mm, to the centre
of the channel. Resonators were placed in static magnetic field B of the order of
100 mT, generated by FeNdB magnets, necessary to induce movement. The real
value of the magnetic field can be obtained based on calibration to the universal
laminar drag, described in A.2, see A.4.

In the experiments, counterflow was generated in a slow pulse sequence using
driving powers up to 500 mW. At each power two repetitions of heater-ON and
heater-OFF states were set, each step of a length of ≈ 100 s, while the response
of all detectors was measured. It is essential that all detectors are driven in a
laminar regime and do not contribute to the vortex generation. In Figure 3.3,
we show the illustrative time evolution of the scaled resonant amplitude signals
of each detector type, as the counterflow pulses with rising drive intensity are
applied. At some critical power, turbulence starts to be generated as second
sound amplitude begins to decrease. The same occurs for vibrating wires, but
only at higher heater power, showing their limited sensitivity. Together with the
resonant amplitude, we track the resonant frequency evolution of the mechanical
probes, which increases with the applied flow. The resonance is tracked using the
PID stabilization algorithm holding zero value of quadrature signal.

The attenuation of the second sound amplitude may be used to evaluate gen-
erated vortex line density L, following equation 1.30 and used for calibration of
mechanical resonator response. In our measurements, we have verified the ex-
pected counterflow velocity evolution of L [46], above the critical counterflow
velocity vns,cr of the order of cm/s:

L = γ2(vns
2 − vns,cr

2) (3.2)
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Figure 3.1: Top: Schematics and photographs of the ”long” semi-closed coun-
terflow channel, showing the open ports for the second sound sensors. Scheme
includes all the relevant dimensions in mm. Position of the second sound sensors
is such, that the exact volume occupied by vibrating wire sensor is probed. In
the centre, between the sets of probes, Ge/GaAs thermometer is placed. Bottom:
Photograph and scheme of the ”short” channel with same notation. Second sound
sensors are not included for geometrical reasons.

and evaluated the values of the γ coefficients in the whole range of probed tem-
peratures, between 1.45 K and 2.05 K. Our obtained values correspond well with
those reported in previous works with thermal counterflow [46]. The exact values
can be found in A.4, in Table 1. We consider the same γ(T ) in both channels, as
it should not be affected by the change in the cross-sectional area in the desired
range of dimensions.

Finally, we can convert measured changes of the mechanical device resonant
frequency and amplitude, upon exposure to the turbulent flow, to the hydrody-
namic quantities. We can connect the observed shifts of the resonant frequency
to the change of the probe effective mass ∆meff , neglecting any change of the
stiffness, as argued in A.4, by:

∆meff = meff

(︂f 2
0

f 2 − 1
)︂
, (3.3)

where f 0 denotes original resonant frequency and f the changed resonant fre-
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Figure 3.2: Photographs of the vibrating wire detectors installed on custom hold-
ers compatible with the ”long” channel (left) and the ”narrow” channel (right).

quency after the flow application. The effective mass meff of the oscillating
structure submerged in He II, without any external flow, may be expressed as A.2:

meff = ξm + βρV + β′Sρnδn. (3.4)

The first term describes the vacuum effective mass originating from the velocity
profile of the resonant mode. The second term represents the backflow of both
normal and superfluid components, proportional to the probe volume V. Finally,
the third term, dependent on the surface area S, gives the additional mass of
the normal fluid in the viscous boundary layer, having a temperature-dependant
thickness δn (as defined in 2.1), moving together with the oscillator. The geomet-
rical constants β and β′ are of order unity.

In a similar way, we convert the observed amplitude decrease, from original
A0 to A in the flow, to the means of additional damping due to the turbulent flow
of He II components. This can be best expressed as the inverse quality factor:

Q−1
cf = ∆f0

f0

(︂A0

A
− 1

)︂
, (3.5)

with ∆f0 being the resonant linewidth (FWHM) in the absence of the flow.
In Figure 3.4, we show the calibration of the additional damping Q−1

QT = Q−1
cf -

Q−1
th to the value of vortex line density, exhibiting the linear dependence in both

channels. The additional contribution of parasitic effects, resulting from the
temperature rise in the channel of order ≈ 10 mK maximum (as measured by
an in-channel thermometer and predicted by the theory, see A.4), was subtracted
from the data. The origin of the thermal effect Q−1

th is in the change of the viscous
drag, scaling with

√︂
ρn(T )η(T ), but was shown to be the order of magnitude

smaller than the total observed response.
Data measured in ”short” channel, reaching much higher tangle densities,

show two distinct regimes. At lower L, linear dependence prefactor c = Q−1
QT /L

depends systematically on temperature, and scales approximately with ρs. In
contrast, above L ≈ 1010 data collapse to a single dependence, hinting at the
coupling of the two components. The limited sensitivity, compared to second
sound attenuation technique, well visible from Figure 3.3, seems to be connected
with the characteristic device dimension, being the wire diameter of 60 µm, as it
roughly coincides with the mean inter-vortex spacing l at the detectable threshold
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Figure 3.3: Measured time series of second sound and vibrating wire amplitude
at 1.65 K as the heater power is gradually stepped up. The heater is switched
on/off twice at each given power. The microwire is visibly less sensitive than
the second sound technique, as expected for a local, but fairly large, mechanical
probe.

L. This, together with the well-defined linear dependence of excess damping on
the vortex line density offers additional information about the possible mechanism
of the device interaction with the flow, which must be connected to the direct or
mediated interaction with the quantized vortices.

3.2 The origin of the device response
In order to seek the origin of the measured change of the mechanical probe re-
sponse, when turbulent counterflow is driven, we have to further analyze observed
changes in its resonant frequency and amplitude. The additional damping may
be addressed by the introduction of the effective viscosity of the turbulent flow
providing the excess damping force. However, the change of the resonant fre-
quency, which, in our experiments, always rise upon flow induction (meaning the
decrease of the effective mass), is most likely connected with the boundary layer.
This is deducted from the fact, that neither vacuum effective mass nor oscillatory
back-flow contribution to effective mass, described by Equation 3.4, should be
affected by the presence of externally applied stationary flow. In further text, we
introduce these approaches, which are fully discussed in A.4.
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Figure 3.4: Left: Calibration of the vibrating wire additional damping against
the vortex line density L in the ”long” channel. The solid blue line shows a lin-
ear relationship observed in the upper decade of L. Right: Microwire additional
damping as a function of vortex line density L, deduced from the observed γ fac-
tors, in the ”short” channel. The solid lines depict linear relationships Q−1

QT = c L.
Two distinct regimes are observed, with temperature-dependent damping at low
L and temperature-independent regime at L above 1010. The mean inter-vortex
distance l = L−1/2 is equal to the wire diameter at L = 2.78 × 108 m−2, see the
vertical dashed lines in both graphs.

3.2.1 Effective viscosity based boundary layer
It is important to realize, that the nature of such effective dynamic viscosity
ηeff,QT is conceptually not equivalent with the νeff , described in 1.3, being based
on turbulent energy dissipation of the coupled turbulent flow in He II, which
is driven externally. In our case, we have to describe the extra dissipation of
the driven device kinetic energy due to the interaction with turbulent flow. The
necessary condition for such a scenario to be applicable is the sufficient density
of the vortex bundle. It is needed, that the vortex spacing is smaller than the
boundary layer thickness in order for quantized vortices to be able to mimic the
viscous-like momentum exchange in fluid layers around the body. The thickness
of this boundary layer, connected with ηeff,QT , can be estimated based on A.2,
Equation (9), leading to:

δeff,QT =
Q−1

QT ρwd

4ρ
, (3.6)

where ρw= 6550 kgm−3 denotes the density of the wire material. All of the values
of δeff,QT obtained from the measured Q−1

QT are below 1 µm. This would require
a value of vortex line density higher than 1012 m−2 to obtain an inter-vortex
spacing in the desired range. Therefore, we cannot in our experiments consider the
viscous-like interaction with the vortex bundle, but rather ballistic interactions
of the individual quantized vortices affecting the boundary layer. These events
occur randomly and sporadically, but our measuring scheme is rather providing
the mean value of ⟨L⟩ in the boundary layer, as lock-in is averaging over many
device oscillation periods. We can discuss the possible effect of these vortices on
the normal fluid boundary layer further.
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Figure 3.5: Change in effective mass normalized by the mass of the Stokes bound-
ary layer as a function of L, measured in ”short channel”. The solid lines are
calculated using the correction factor ξ1, given by Equation 3.13, representing
the change of the boundary layer affected by the mean mutual friction force. It
is showing remarkable agreement with the data.

3.2.2 Boundary layer with mean mutual friction
Having only a limited amount of the quantized vortices in the close vicinity of the
resonator, we may still consider a boundary layer to be affected by the mutual
friction force. Here, we consider only the modification of an oscillatory Stokes-
like boundary layer and omit the Blasius-like boundary layer due to stationary
flow, as it should not be experimentally probed at used frequencies. However, the
interaction of these two might be very complex and is not well understood yet.

Evaluating the full mass of the Stokes boundary layer:

mbl = π2

2 ρnDδn (d + δn) , (3.7)

we can plot the measured mass decrease ∆meff , given by Equation 3.3, normal-
ized as a fraction of mbl, as a function of L, see Figure 3.5. The mass decrease
observed from the frequency change measurement indeed represents a fraction of
the boundary layer, comparable with mbl at high counterflow velocity.

When trying to describe the oscillatory boundary layer, affected by the mu-
tual friction force, in thermal counterflow, we need to solve Stoke’s second prob-
lem [32] for the two-fluid system of He II. The flow past a circular cylinder in a
high-frequency limit may be approximated by planar elements. The equations of
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motion must originate from the HVBK Equations 1.4 1.5, but we can consider
the pressure and temperature gradients and the vortex tension to be negligible,
arriving at:

ρn
∂vn

∂t
= −ρnρs

2ρ
BκLvns + η∆vn, (3.8)

ρs
∂vs

∂t
= +ρnρs

2ρ
BκLvns, (3.9)

using the expression of the mutual friction given by equation 1.26. The solu-
tion for the flow around an in-plane oscillating planar infinite boundary can be
considered in the form:

vn = vn0 + vn1e
i(kz−ωt), (3.10)

vs = vs0 + vs1e
i(kz−ωt) (3.11)

with the z representing the perpendicular space coordinate being zero at the posi-
tion of plane. We consider both velocities to oscillate in the same direction as the
plane with the no-slip boundary condition for the normal component only. The
superfluid component motion is induced by the mutual friction force as described
by Equation 3.9.

As discussed above, we consider the mean value ⟨L⟩ of vortex line density in
the boundary layer, as decomposed from L = ⟨L⟩ + L̃, and neglect the fluctuating
term. As a result, considering only terms oscillating at the drive frequency ω, we
get the following condition for the wavenumber k:

(kδn)2 = 2i
(2ρω)2 + ρnρ(Bκ ⟨L⟩)2 + 2iρρsωBκ ⟨L⟩

(2ρω)2 + (ρnBκ ⟨L⟩)2 . (3.12)

We can estimate the mean relaxation time for the action of mutual friction by
the term τmf ≡2/(B κ ⟨L⟩), being of the order of ms for our experimental val-
ues of L. It agrees with the idea that the mutual friction is sufficiently fast to
affect the boundary layer behaviour measured during ≈ 100 ms (given by lock-in
time constant), but cannot fully follow the oscillations of the device with period
≈ 30 µs.

Following the solution for purely classical problem, see chapter §24 in [32] and
one yielded in our case when further modifying Equation 3.12 as done in A.4, we
arrive at the comparison for the resulting boundary layer thickness δn and acting
viscous stress forces σn. This approach, in the linear approximation, predicts the
correction to the classical solutions originating from the mean-field effect of the
mutual friction force in externally driven stationary counterflow:

δn,mf = δnξ1 ; ξ1 ≈ 1 − ρs

ρ

BκL

4ω
. (3.13)

σn,mf = σnξ2 ; ξ2 ≈ 1 + ρs

ρ

BκL

4ω
. (3.14)

The resulting agreement with the experimental data of effective mass decrease,
shown in Figure 3.5, is strongly supporting this scenario. However, the measured
values of additional damping Q−1

QT . see Figure 3.6, are systematically higher than
the ones predicted but scale correctly with the temperature i.e., with ρs. It shows,
that the described effect significantly contributes to the additional damping, but
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Figure 3.6: Ratio of extra drag due to quantum turbulence, Q−1
QT , to the hy-

drodynamic viscous drag in zero counterflow, Q−1
hd as function of L, measured in

”short”channel. The solid lines are obtained using the correction ξ2 to a classical
hydrodynamic solution of Stoke‘s boundary layer. The data show higher damping
than predicted and additional effects must be considered.

other mechanisms with a similar effect might be present in the flow. We can
imagine the direct momentum transfer during the events of the ballistic collision
of the device with the vortex loops. This will lead to an increase in the measured
damping, but should not affect the boundary layer significantly.

Our experiments clearly show the potential of the mechanical oscillating probes
for the local study of turbulent flows in quantum fluids, even in the hydrodynamic
regime of the two-fluid model, but further experiments are needed to fully de-
scribe their interaction with the flow. The steps towards higher sensitivity devices
should be taken through size reduction. The smaller devices reaching the nano-
metric dimensions should provide much higher sensitivity to the effects governed
by the direct momentum transfer during the collisions with the vortex loops, op-
erating at all temperatures, thanks to their very low total mass. Finally, such
devices also allow the measurement of the dynamics of single quantized vortex,
which can be stably trapped on the surface of the probe [148].
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Chapter 4

Use of micro-scaled mechanical
resonators

The physical oscillating probes have already shown their big potential for the
study of quantum fluids at a large range of temperatures reaching even below
millikelvin. The recent rise of accessibility of clean-room facilities is allowing fast
development and simplifies the customization of the device for its specific use. The
employment of optical or electron lithography processes makes designs with nano-
metric (order of hundreds of nm) critical dimensions reachable and a plethora of
etching and deposition techniques bring freedom in material and device geometry
choices. This is proven by the existence of many devices being used in various
experimental works, including studying quantum liquids properties [5, 59, 156],
the dynamical behaviour of quantum turbulence at the smallest scales [148], stud-
ies of mechanical quantum states [157], and many others. We aim for the study
of superfluid helium isotopes at the level of single quantized vortex dynamics in
zero-temperature limit. To reach this goal, we present the manufacturing pro-
cess and characterization measurements of such new device A.6, produced by the
author of the thesis, and discuss the limiting effects complicating the detection
with the required sensitivity.

4.1 General damping of mechanical resonators
In this Thesis, we are proposing the mechanical resonating devices to be used,
under various experimental conditions, as detectors of quantum turbulence. In
order to employ such a device, at first, the parasitic damping effects, other than
those under study, must be understood and characterized. Discussing the dissipa-
tion experienced by the device of micro- or nano- dimensions Ref. [147] presents
a good overview. We can categorize the damping forces into two main groups
based on their origin: intrinsic and extrinsic dissipation.

In the case of intrinsic dissipation, only the properties of the device itself
must be considered. The origin of the main contribution to the damping may
differ for the specific device properties. It can be governed by, e.g., the defects of
the single crystal lattice, the effects on the grain boundaries in polycrystals, the
internal residual stresses or other effects in multi-material devices, the existence
of the two-level energy systems or the surface effects especially important for
low dimensional devices. The characterization of these effects can be performed
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experimentally by vacuum measurements at the lowest possible temperatures over
the full intended range of amplitudes or velocities to be used in the experiments.

The extrinsic losses can be important even in the absence of the measured
media, depending on the driving mechanism. The most typical effects in the
electrically driven devices are the resistive losses, which can be suppressed by
the use of the superconducting materials or the magneto-motive losses due to
eddy currents scaling as Q−1 ∝B2. Further additional losses might be caused
by the phonon propagation through the mechanical clamps of the device in the
experiment.

Finally, we can discuss the dissipation originating from the studied media.
Some part of this dissipation is typically at the centre of the interest for the
experiment, but we have to be able to distinguish its contribution to the total
measured damping. We have already, in previous chapters, broadly discussed the
excessive dissipation resulting from the turbulent instability and its development,
which is governed by the flow velocity. This can be ruled out by the device
operation in the laminar regime well below the critical condition. In this case,
depending on the temperature, damping is offered by the hydrodynamic or the
ballistic effects in normal component. The transition between the two regimes,
reaching even temperature-independent region at the very lowest temperatures,
was demonstrated in Ref. [59], using a nano-metric doubly-clamped cantilever.
The damping in the ballistic regime depends on the population and energy of
the thermal excitations as discussed in 1.1.3. In the hydrodynamic regime, not
only damping but also an effective mass of the device is affected, as described by
Equation 3.4. For the body oscillating in the high-frequency limit (D≫ δn), we
can express the additional viscous hydrodynamic damping in the means of the
resonant width ∆f visc as [5]:

∆f visc = C
S

2ξm

√︄
ρnηf0

π

(︄
fH

f0

)︄2

, (4.1)

with f H being a hydrodynamically shifted resonant frequency, f 0 the original
resonant frequency in vacuum, and C being a purely geometrical constant of order
unity, which should be universal for the given device, despite the fluid properties.
Viscous hydrodynamic damping is, therefore, dependent on the frequency as ∝√

f and on the temperature via the √
ρnη term. Experimentally obtaining the

value of the geometrical factor C allows for the device to be used as a good
thermometer or viscometer [5].

Last, but not least, we will discuss in more detail the dissipation due to gen-
eration of acoustic waves, which can then propagate in the fluid media. The
acoustic emission can be a limiting factor for the detectors, especially ones, oper-
ating at high frequencies. Therefore, it is very important to be able to predict its
contribution in the planned device geometry. The theoretical models describing
the acoustic emission by the resonators of different geometries are presented in
Ref. [158]. The experimental verification of the model for the quartz tuning forks
in 4He was provided in Refs. [135, 159], where the tuning fork is described as
a linear quadrupole of point sources with effective strength based on the mode-
dependent velocity distribution, see Equation 4.2. In the next chapter, we show
and discuss our recent data, see A.5, of the acoustic emission by the quartz tuning
forks in normal and superfluid 3He and compare them with the results from 4He
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Figure 4.1: Photograph of the tuning fork array together with the scheme of the
piezoelectric drive and read-out circuit.

.

4.1.1 Acoustic emission in quantum fluids
In our experimental setup, we have employed an array of five custom-made quartz
tuning forks L1,...,L5. They were mounted in an experimental cell, being part of
a ”wet” dilution refrigerator with a Cu nuclear demagnetization stage, in Lan-
caster [160]. All dimensions of the tuning forks in the array, except for the
prong length Lf , were the same, namely: prong width T f = 90 µm, thickness
W f = 75 µm and prong spacing Df = 90 µm. The prong lengths were chosen
in a range from 0.9 mm to 1.9 mm to approximately uniformly cover the range
of resonant frequencies between 20 kHz and 600 kHz using the fundamental and
the first overtone resonant modes.

// In Figure 4.1, we show the picture of the tuning fork array and measurement
schematics. Driving and read-out methods are the same as described in 1.4.2. All
resonant frequencies were measured in a dedicated cell at the end of a dipstick at
cold 4.2 K vacuum, together with the resonant widths characterizing the intrinsic
(and other parasitic) damping, are listed in Table 4.1. It seems that the flexural
modes of the shared base are very important for the clamping losses, as the
vacuum width for the L2 and L4 tuning forks are an order of magnitude larger
than the others.

In Figure 4.2, we show the measured values of the resonant widths as a func-
tion of the frequency, where vacuum widths have been already subtracted. There-
fore, the presented data are representing only dissipation by hydrodynamic/ballistic
and acoustic emission losses. Each point is a result of the full resonant peak mea-
surement. The data were taken at five different temperatures between 1.5 K and
12 mK in normal 3He and at ≈ 0.16 T C in superfluid 3He -B. The tempera-
ture was measured via additional vibrating wire resonators. The dashed lines are
representing the fits of the hydrodynamic contribution, performed based on the
model given by Equation 4.1, using only the values at frequencies below 100 kHz,
where it dominates the dissipation. From the measured hydrodynamic frequen-
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Table 4.1: Vacuum properties of fundamental and overtone resonant modes of
used tuning forks measured at 4.2 K. The last column shows the product of the
angular frequency, ω, and the estimated relaxation time τ in superfluid 3He -B at
≈ 0.16 T C . In normal 3He ωτ remains below 0.04 even for the highest frequency
at all investigated temperatures.

Fork-mode Frequency Width ωτ
Hz Hz (T=0.16TC)

L1-fund 22,403 0.05 56.1
L2-fund 35,770 5.15 89.7
L3-fund 55,276 0.29 139
L4-fund 97,055 3.58 243
L5-fund 159,316 0.55 399
L1-over 138,689 0.44 348
L2-over 220,110 32 552
L3-over 337,514 3.90 846
L4-over 579,000 159 1450

cies FH , known fork dimensions, and tabulated properties of the liquid, we can
evaluate the value of the geometrical constant C=0.65, with variation less than
3% at all temperatures and for all forks separately, which is in good agreement
with the previous works [135, 159]. In the case of superfluid data, we consider
only constant ballistic contribution, as described in [159], equal to the value of
the first point.

After the subtraction of these contributions, we can analyze the dissipation by
the acoustic emission only. For this purpose, we use the same theoretical model
as derived and applied for the 4He [135, 158]:

∆f 3D = C3D
ρ

c

W 2
f L2

eff

ξm

f 4
H

f 2
0

×
∞∑︂

m=0,
even

(2m+1)
[︄
jm

(︄
πfH(2Tf + Df )

c

)︄
− jm

(︄
πfHDf

c

)︄]︄2

(4.2)
based on the spherical Bessel functions jm. It again depends on the single geo-
metrical constant C 3D of order unity and c denotes the applicable sound veloc-
ity. The effective length of the acoustic source Leff = µeffLf is however, unlike
the effective mass ξm, resonant mode dependent. The values of the prefactors
µeff = 0.3915 for the fundamental resonance and µeff = 0.2169 for the first over-
tone, can be derived based on A.2. It is, therefore, necessary to evaluate the
datasets from the fundamental and the overtone modes separately. In the case
of the overtone mode, due to its geometry, it would be more correct to consider
two separate quadrupole sources with opposite directions, shifted by a half-length
along the prong, to the maxima of the velocity. Regarding our results, see further,
the used approximation is well applicable. For the normal 3He data it is only the
overtone mode measurements, which may be used, as at the lower frequencies
viscous dissipation dominates, and acoustic emission is practically absent.

Performed fits of the acoustic emission contribution, based on Equation 4.2
including only fitting parameter C 3D, show the good agreement of the data with
the model. It is shown by the dotted lines in Figure 4.2, representing the total
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Figure 4.2: Total resonance widths (minus vacuum values) as a function of tuning
fork frequency measured at five temperatures in normal 3He and one temperature
in superfluid 3He -B. Empty and filled circles represent fundamental and over-
tone resonant modes, respectively. Dashed lines correspond to the viscous drag
contribution using the fitted value of the geometrical parameter C = 0.65. The
dotted lines represent fits of total resonance width as a sum of viscous drag and
acoustic emission contributions. Regarding 3He -B data, we obtained different
geometrical coefficients for acoustic emission by fundamental C fund

3D = 3.3 and
overtone C ovt

3D = 8.5 resonant modes.

dissipation as a sum of the fitted widths, giving hydrodynamic/ballistic plus
acoustic losses. We have observed following values of the geometrical parameter:
C ovt

3D = 8.5 for the overtone mode data and C fund
3D = 3.3 for the fundamental mode

data, measured at 0.16 T C in 3He -B. These values are in good agreement with
the experimental results observed in superfluid 4He [135] (we note that agreement
is met only after the correction for the newly derived value of µeff = 0.2169 is
used as in Ref [135] where the overtone data are treated using µeff = 0.3915).

Our results, together with the previous works [135, 159] confirm the validity
of the same acoustic emission model for the bulk of both normal and superfluid
phases of 4He and 3He . The fact, that a single model holds in the whole range of
temperatures of both quantum liquids is pointing towards the same mechanism
of wave emission of the first sound in normal 3He and in liquid phases of 4He
and longitudinal zero sound in superfluid 3He -B. In Table 4.1, we evaluate the
product of the frequency ω and fluid relaxation time τ , which determines the
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Figure 4.3: Driving circuit for custom fabricated MEMS device. The aluminum
layer (grey) was deposited over the chip body (blue) creating electrical pads and
leads (300 nm thick) and over a single crystal Si goal-post-shaped device (120 nm
thick). The low-temperature connection was realized by gluing superconducting
NbTi leads (brown) to the pads, using silver epoxy.

Figure 4.4: Schematic of the step-by-step workflow of MEMS fabrication process,
see text for more details.

collisionless limit ωτ ≫ 1, see [56]. The relaxation time τ represents the ther-
malization of individual quasiparticles to an equilibrium temperature or to the
walls of the cell. In this limit, Landau zero sound mode [161], being described as
asymmetric deformations of the Fermi sphere, is preferable. In our experiments,
the collisionless limit is reached only at the very lowest temperature.

Finally, the acoustic model for the tuning fork geometry, in a long wavelength
approximation, predicts a very steep ∝f 6 dependence of the dissipation, which
strongly limits the devices operating at high frequencies. Analogous models, pre-
dicting a lower power dependence, describing the wire or cantilever geometry can
be found in [158]. However, it is clear that acoustic emission must be considered
when designing mechanical resonating devices for detection purposes in quantum
liquids.
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Figure 4.5: Left: SEM picture of wire structure made by smooth Bosh DRIE
process. Right: SEM picture showing the resulting surface roughness of the
MEMS, having scallops of the order of 10 nm deep as a result of cyclical smooth
Bosh process. The sample is rotated by 90deg to visualize the scallops. The layer
on the top of the device (e.i. left in the picture) is remaining photoresist.

4.2 Custom MEMS fabrication
We have designed and manufactured single crystal silicon chips containing two
goal-post-shaped vibrating wire resonators, similar to those referred in [27], freely
standing in the open window. Oppositely standing MEMS (Micro-Electro-Mechanical
System) devices can differ in dimensions, being of the order of 10 µm in cross-
sectional dimensions and of the order of mm in length of the goal-post and spacing
between the devices is tuned between 1 mm and 30 µm. This design should allow
the pinning of the single quantized vortices between the two devices, securing
the vortex geometry. Used device shape leads to the resonant frequencies below
10 kHz. Aluminum film of 120 nm thickness, superconducting below ≈ 1 K,
is covering the device and allows its magneto-motive drive and electric readout,
see 1.4.2. The conversion of electrical to mechanical quantities slightly differs in
this geometry and is given as:

F (ω) = LMEMSBI(ω), v(ω) = U(ω)
LMEMSB

. (4.3)

with LMEMS being the length of the device crossbar. The measuring scheme
is illustrated in Figure 4.3. The single crystal nature of our MEMS leads to a
relatively high-quality factor Q, representing very low intrinsic damping losses.

We have built our devices starting from RCA cleaned 300µm thick double
side polished single crystal 4 inch silicon wafers with <100> orientation and
5-10 Ohm/cm resistivity. The fabrication process is based on multiple optical
lithography steps from both sides of the chip. Here, we introduce the step-by-
step fabrication process, which is illustrated in Figure 4.4. In the first step, using
the PECVD process, a 7 nm thick Si3N4 layer was deposited on both sides of the
wafer. From the top, windows were opened in the Si3N4 with the use of reactive
ion etching by CHF3 gas. In the second step, 120 nm of aluminum was deposited
by an evaporator, directly on silicon in the pre-opened window, having the shape
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Figure 4.6: Optical microscope image of the final devices in the opened window
of the H3 chip. Devices are separated by a gap of 30µm on this chip. a) 120 nm
aluminum layer on top of the substrate, b) substrate, still covered with 75 nm of
Si3N4, c) thin Si ledge, as a result of wall screening effect during deep back-side
etching, d) Si wire, with 120 nm of aluminum layer on top, freely standing in
the open window e) the oppositely standing wire separated by a gap of 30µ. f)
300 nm thick aluminum leads.

of final wire devices. Next, aluminum electrodes and leads with a thickness of
300 nm were deposited and connected (having an overlap) to the layer from the
previous step. Si3N4 layer under the pads works as a buffer for the mechanical
strain caused by electrical contacts.

The wafer was then cut to single chips (it included chips with various config-
urations of the device dimensions) using a laser or mechanical saw and further
fabrication processes continued on each chip separately. In the following step, the
silicon device structures were created by the Si etch around the aluminum wire
coating, using a design enlarged by 1 µm to each side. It was done by the smooth
Bosch process using the deep reactive ion etching (DRIE), having a height of
≈ 7 µm. The result after this step is illustrated on SEM picture in Figure 4.5, as
executed on the testing chip (with much higher etching depth and not including
the aluminum layer yet).

In the final step, devices were covered by the protective photoresist, filling
the whole window, and released by a deep DRIE etch from the back side. This
etch of the window in Si of a similar size was stopped at the moment of the de-
vice’s appearance. The protective photoresist was then cleaned by liquid chemical
solvent and photoresist residuals were removed in O2 plasma. Exact details of
each fabrication step, including photoresist type and lithography specifics, can be
found in A.6. The pictures of resulting devices are shown in Figure 4.6 as done
by optical microscope and in Figure 4.7 by scanning electron microscope (SEM).

59



Figure 4.7: SEM image of the base of the silicon wire showing its structure.
Pointers a)->d) correspond with the Figure 4.6.

Figure 4.8: Visualization of the first three resonant modes of our MEMS devices,
produced by finite element method model using the geometry of the whole chip.

4.3 Vacuum properties
In the first set, we have been able to prepare three working devices placed on two
chips. One of the chips had only one of the devices working electrically, but both
still physically present. In Table 4.2, we list the characteristic dimensions of all
used MEMS devices. In Figure 4.8, we show the models of the first three resonant
modes as a result of finite element method calculations using the geometry of
the whole chip. We have accounted for the anisotropic elasticity of <100> Si,
using following elastic constants [162], c11 = 165.7 GPa, c12 = 63.9 GPa, c44 =
79.6 GPa. These models can be used to predict the resonant frequencies of the
individual devices modes and we list the values of the first fundamental mode in
Table 4.2.

Initial experiments were performed in vacuum at room temperature, using
a glass desiccator connected to a rotary pump, in order to find the resonant
frequency of the devices and compare them with the values predicted by the
model. The results agree well with the calculations, see Table 4.2. Both chips have
been later mounted in the 4He cell on the ”wet” helium bath dilution refrigerator,
with the base temperature of ≈ 20 mK, in Prague. In order to characterize devices
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further, especially the intrinsic damping, we performed vacuum measurements
at the base temperature. The MEMS were operated in an electrical scheme
visualized in Figure 4.3, using Agilent A33220 signal generator and phase-sensitive
Stanford Research SR830 lock-in amplifier, measuring the induced voltage. The
driving current could be adjusted by the resistance of the I/V Converter and a
static magnetic field was generated by the superconducting magnet. In the case
of all here presented data, constant values of the magnetic field B = 504 mT and
I/V resistance R = 1 MΩ were used.

Table 4.2: Listed dimensions and resonant frequencies of four used MEMS devices
denoted by chip name (A->H) and position of wire on the chip (1->2). In this
table, LMEMS denotes the crossbar length, h the leg length, w the width, t
the thickness, and dMEMS the spacing between the two wires on the chip. The
frequencies f calc were calculated from the design geometry using the finite element
method model. The vacuum frequencies f 300K and f 20mK were measured in a
desiccator at room temperature and in a dilution refrigerator cell at the base
temperature (20 mK), respectively. We note that the uncertainty in the thickness
t of up to 0.5 µm due to uneven etching is sufficient to explain the discrepancies in
the resonant frequencies. The intrinsic quality factor of the MEMS resonators Q,
are evaluated from low-temperature measurements at a relatively high magnetic
field B = 504 mT. It should be noted that higher Q factors are obtained in lower
magnetic fields, see text.

Name LMEMS h w t dMEMS fcalc f300K f20mK Q-factor
(µm) (µm) (µm) (µm) (µm) (kHz) (kHz) (kHz)

G1–1 1000 1000 22 6.8 1080 4.80 4.88 4.91 1.5×105

G1–2 1000 900 22 6.8 1080 5.72 5.50 5.54 1.8×105

H3–2 300 1000 12 7.3 30 7.08 7.62 7.67 0.8×105

In Figures 4.9 4.10 4.11, we show the current drive series of the full frequency
dependence sweeps of the MEMS resonances. At the highest drive currents,
we start to operate in a non-linear Duffing regime, which is most profound for
the G1-2 device, see Figure 4.10. The transition to this regime is typical for
these devices and is described in more detail in Ref. [27]. We further evaluate
the vacuum quality factors Q of order 105, see Table 4.2, estimated based on
the fractions of resonant frequency and resonance width (FWHM) Q = f res/∆f.
For this purpose, we consider only the linear resonances at low drives. The
main contributions, which should be considered for the observed dissipation are
intrinsic, magneto-motive losses. We report the values of Q ≈ 4×105, for the
G1 devices driven at smaller fields ≈ 10 mT. Concerning the resistive losses,
we should be able to operate the MEMS in both normal and superconducting
states of the driving aluminum layer. The state of the layer can be tuned by the
temperature or more easily by the magnetic field. However, even in normal state
of aluminum, having a resistance of the order of tens of Ω, the resulting power,
in the range of used driving currents, should not exceed picowatt. Our results,
therefore, show the good potential for the further use of manufactured devices
as quantum turbulence detectors. More information on the following analysis of
the temperature and the magnetic field dependence of device characteristics in
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vacuum can be found in the Master Thesis of Maximilián Goleňa from Prague. His
work also discusses the preliminary data from the device response in isotopically
clean superfluid 4He at temperatures below 1 K.

Figure 4.9: Drive series, between 10 nA and 106 nA, of the full resonant sweeps
measured for MEMS device G1–1 in vacuum at 20 mK.
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Figure 4.10: Drive series, between 7 nA and 106 nA, of the full resonant sweeps
measured for MEMS device G1–2 in vacuum at 20 mK. The device is showing
Duffing-type non-linearity at highest used drive.

Figure 4.11: Drive series, between 7 nA and 106 nA, of the full resonant sweeps
measured for MEMS device H3–2 in vacuum at 20 mK. Lower amplitude com-
pared to the devices on G1 chip is caused by the smaller cross-bar length, as it
affects the electro-mechanical properties given by Equation 4.3.
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4.4 Detection of single quantized vortices in 3He
In our last experiment, we performed measurements employing NEMS device,
having similar geometry to the ones discussed above, submerged in 3He-B on
a rotating dilution refrigerator with a copper nuclear demagnetization stage at
Aalto University in Helsinki. This experiment was conducted in collaboration
with the ultra-low-temperature group led by Vladimir Eltsov. The used goal-
post-shaped NEMS, manufactured by Timo Kamppinen, based on a single layer of
aluminum in open window geometry is described in Ref. [30], having the following
dimensions: cross-bar length = 160 µm, leg length = 50 µm, bar width = 20 µm,
bar thickness = 250 nm. It was driven, at the resonant frequency of about
15 kHz, via magneto-motive technique, according to Equations 4.3, in magnetic
field B = 93 mT.

In Figure 4.12, we show the typical force-velocity dependence of the device,
operated at 0.15 T C at the pressure of 19 bar. We plot the peak velocity of
the NEMS, obtained from the full frequency sweeps, divided by driving force,
to better visualize different observed regimes, as a function of the driving force,
which is in a steady state equal to the sum of the drag forces. The real flow
velocity values near the device are most probably higher than measured, due to
the flow enhancement around the sharp edges. We can identify three distinct
regimes of device operation. At the lowest velocities, NEMS velocity behaves
linearly with force as expected for losses dominated by drag from ballistic quasi-
particles. At higher velocities, damping due to thermal excitations is weakened
by the screening effect of Andreev reflection [57, 58]. The thermal excitations
may be reflected in the flow field generated around the oscillating NEMS, effec-
tively decreasing their population sensed by the device. The same behavior was
observed and explained in Ref [143]. Finally, at the highest velocities, above the
critical velocity ≈ 7 mms−1, we enter the ”pair-breaking” regime [139, 143], where
the superfluidity of 3He starts to be suppressed. It is connected with a strong ex-
cess dissipation and NEMS velocity is saturating, see inset in Figure 4.12. In this
regime, the detection ability of the device is limited by this dissipation mechanism
and resonances are strongly non-linear, resembling frequency softening.

The unique geometry of the Helsinki apparatus is allowing for cryostat rotation
leading to the generation of a uniform matrix of vertical quantized vortices. The
NEMS is oriented in the experiment in such a way, that the device legs are
aligned with the vortex grid (the axis of rotation is vertical), thus cross-bar being
perpendicular (horizontal), with NEMS pointing down. In this geometry, we have
been able to prepare a device state, with a single quantized vortex stably pinned
to it. It is done by an ”abrupt” change (on a timescale of order 10 s) of the steady
rotation angular velocity, causing the vortex grid to travel towards the cell edges
and eventually decay in case of zero rotation velocity or to reorganize spatially
in other cases [163]. During this process, vortices passing the NEMS can interact
with it and get trapped, see Figure 4.13. These events can be detected as a
change in the device signal driven at a constant resonant frequency ≈ 15kHz, as
vortex trapping causes a frequency shift of order 1 Hz. In an illustrative vortex
trapping event shown in Figure 4.13, we distinguish between a vortex-free state,
having original signal values visualized by solid lines, and a vortex-trapped state,
with shifted signal values visualized by the dashed lines. Right after the rotation
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Figure 4.12: NEMS peak velocity, divided by driving force for visualization of
the linear regime at low drives (black horizontal line), as a function of driving
force, measured at 0.15 T C . The red dashed lines bound different regimes. At the
lowest velocities (i.e., lowest drives), NEMS velocity behaves linearly with force.
At higher velocities, damping due to thermal excitations is weaker than linear
caused by the screening effect of Andreev reflection. At the critical velocity, of the
order of 7 mms−1 (see inset), the pair-breaking regime is reached, limiting further
increases in velocity due to very effective dissipation. In the inset, corresponding
force-velocity dependence is shown.

is stopped, a complex interaction of the device with a number of vortices in the
system is observed, happening for ≈ 600 s, in this specific case. After this time,
the signal changes are less frequent and more stable as there are fewer vortices
remaining in the system. In the end, the vortex state is rather rare at zero or low
rotation velocities, but if created then very stable. In the presented event, there
is a vortex being trapped to the device after 1700 s from the rotation stopping
and this state then persists for the whole experimental run of the order of days.
When the vortex is trapped on the device after the vortex mesh decay is finished,
it is very stable, and the device properties affected by the vortex, containing
information about the single quantized vortex dynamics, may be studied. Vortices
are much easier to trap at higher final rotation velocities and the signal levels are
highly reproducible for multiple vortex trapping events.

In Figure 4.14, we show the difference in the drag experienced by the NEMS
in vortex-free and pinned-vortex states, as measured at 0.15 T C . At low veloci-
ties, there is no difference in the drag coefficient, and only the frequency of the
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Figure 4.13: Time trace of the NEMS device response, measuring both signal
components, after the abrupt stop of the cryostat rotation. After initial complex
interaction with many vortices in the system, two device states are observed,
based on values of signal components. Solid lines are representing the NEMS
response without the vortex and dashed lines represent the state with the trapped
vortex.

device is affected by the vortex, as discussed above. The quantized vortex is
starting to contribute to the NEMS dissipation only above some critical velocity
≈3.7 mms−1, where the two plotted data sets start to deviate. The additional
drag should be directly connected to the dissipation mechanism of the vortex in
a zero temperature limit, as discussed in 1.3. Unfortunately, we have a limited
window of velocities where it can be studied further as the ”pair-breaking” regime
sets soon after. It is also possible that the vortex shifts the velocity at which the
pair-breaking mechanism comes into effect.

Similar experiments on trapped vortices should lead to the observation of
the Kelvin wave excitations on the trapped vortex, obtaining their spectrum and
verifying the expected scaling of frequencies. The experimental work and analysis
is ongoing [164] at the moment of writing of this Thesis and the details will be
published elsewhere.
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Figure 4.14: The difference in the drag experienced by the NEMS with trapped
quantized vortex and without the vortex. The vortex is clearly causing additional
damping above the critical velocity ≈3.7 mms−1. The real critical velocity is
however different, as flow enhancement around the sharp corners of the NEMS
must be considered. The steep increase of the drag at the highest velocities is
connected with the pair-breaking regime.
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Conclusion

This Thesis brings together the main results of the Author, accumulated during
his Ph.D. studies, working in the Laboratory of Superfluidity at the Department
of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles Uni-
versity. Over the past four years, numerous experiments employing mechanical
resonating structures as tools for the study of the turbulent flows of quantum
fluids have been performed, leading to the findings summarized below.

In general, the experimental work of the Author, especially measurements
of the turbulent flows of superfluid 4He in a wide range of temperatures, has
contributed to a better understanding of the phenomenon of quantum turbu-
lence 1.3. Based on the experimental data, properties of the turbulent flows in
hydrodynamic and zero temperature limit were discussed on the phenomenolog-
ical level. Two distinct types of turbulent flow can exist at all temperatures in
He II, having different dynamical properties and coupling character of the pos-
sible turbulent structures – classical vortices and quantized vortices. We can
distinguish the quasi-classical or Kolmogorov type of quantum turbulence with
the coupled motion of normal and superfluid components and the ultra-quantum
or Vinen type of quantum turbulence consisting of a chaotic bundle of quan-
tized vortices. Further, new quantum lengthscale lQ was introduced, marking
the onset of the quantum character of the flow, where quantization of circulation
becomes essential. It may be understood as a cut-off length for any classical-like
description of the flow and its presence implies that no quantum flow may be
fully described by a classical analogy.

In Chapter 2, we have addressed the onset of quantum turbulence in oscillatory
flows of He II, i.e., in mechanically driven coflow and mechanically or thermally
driven counterflow. Two types of instability can be considered in He II, being
classical hydrodynamic instability in normal component or quantum instability
connected with the production of quantized vortices in superfluid component.
The origin of the initial transition can be identified through the analysis of the
critical flow parameters. We showed that temperature-controlled cross-over be-
tween the two mentioned types of instability can exist in a single experiment,
for both coflow and counterflow, however, having an inverse temperature trend
in these two flow types. Among other, this approach helped to explain previ-
ously observed critical velocities in oscillatory counterflow and offers a unified
framework for future discussion of flow instabilities.

The mechanical resonators in the form of superconducting vibrating wires
have been also used, as local detectors of externally driven turbulent flows, as
discussed in Chapter 3. Experiments have been conducted probing the hydrody-
namic regime of He II, above 1 K, with complex interaction of its components.
We measured the changes in resonant frequency and amplitude of the oscillator,
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driven strictly in the laminar regime, upon application of the turbulent thermal
counterflow. The changes in the device response can be connected with the change
of its effective mass and excess damping and show the linear dependence with
the vortex line density. Obtained decrease of the effective mass represents the
fraction of Stokes boundary layer and can be explained by the properties of the
boundary layer affected by mean mutual friction. However, this effect does not
explain the whole measured excess damping and other mechanisms are present,
e.g. direct momentum transfer during the device-vortex collisions.

In the final Chapter 4, we have discussed the general dissipation mechanisms
of the resonators submerged in quantum fluids and closely characterized the losses
due to acoustic emission, measured in 3He , which can limit the detection potential
of the device. Additionally, we report the fabrication process of the custom
MEMS, following the trend of miniaturization of the devices leading to much
higher sensitivity. Our devices have been characterized in vacuum at 20 mK
and show potential for further study of quantum turbulence at the level of single
quantized vortices. This goal was, nonetheless, achieved in experiments based
on collaboration with the Helsinki ultra-low-temperature group. We have shown,
that we can stably attach a single quantized vortex to a MEMS device, from the
decaying turbulence in rotating vessel in 3He -B, and measure additional losses
caused by the vortex. Further experiments with the deeper analysis are still
ongoing and will be presented elsewhere.

As a result, we have proven the potential of the employment of the mechanical
resonating structures for the study of turbulent flows in quantum liquids. Devices
of the custom dimensions and geometries can be developed for the specific experi-
ments and can probe the superfluids at all temperatures with the great resolution
and sensitivity. The use of such devices can lead to a better understanding of
the properties of fully developed turbulent flow, but also of the initial instability
onset. Finally, the MEMS and NEMS devices can be used to tackle the ques-
tions of single vortex dynamics, having unmatched spatial resolution amongst the
available detection techniques.
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Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E.
Solntsev, and D.E. Zmeev. Quartz tuning fork: Thermometer, pressure- and
viscometer for helium liquids. J. Low Temp. Phys., 146(537), 2007.

[6] D. Schmoranzer, M. J. Jackson, V. Tsepelin, M. Poole, A. J. Woods,
M. Človečko, and L. Skrbek. Multiple critical velocities in oscillatory flow
of superfluid 4He due to quartz tuning forks. Phys. Rev. B, 94(214503),
2016.

[7] W. F. Vinen. The detection of single quanta of circulation in liquid helium
II. Proc. Roy. Soc. London., Series A, 181:1524, 1961.

[8] M. Morishita, T. Kuroda, A. Sawada, and T. Satoh. Mean free path effects
in superfluid 4He. J. Low Temp. Phys., 76:387—-415, 1989.

[9] D.I. Bradley. Repetitive single vortex-loop creation by a vibrating wire in
superfluid 3He-B. Phys. Rev. Lett., 84(6):1252–1255, 1999.

[10] D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J.
Matthews, G.R. Pickett, and K.L. Zaki. Turbulence generated by vibrating
wire resonators in superfluid 4He at low temperatures. J. Low Temp. Phys.,
138:493—-498, 2005.

[11] D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, M. Holmes,
S. O’Sullivan, G.R. Pickett, and V. Tsepelin. Grid turbulence in super-
fluid He-3-B at low temperatures. J. Low Temp. Phys., 150:364–372, 2008.
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[61] S. Autti, V.V. Dmitriev, J.T. Mäkinen, A.A. Soldatov, G.E. Volovik, A.N.
Yudin, V.V. Zavjalov, and V.B. Eltsov. Observation of half-quantum vor-
tices in topological superfluid 3He. Phys. Rev. Lett., 117(255301), 2016.
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