
BACHELOR THESIS

Ondrej Lopuch

Detection of protein-ligand binding sites
using 3D Vision Transformers

Department of Software Engineering

Supervisor of the bachelor thesis: doc. RNDr. David Hoksza, Ph.D.
Study programme: Computer Science

Study branch: IPP5

Prague 2023

I dedicate this thesis to my family and my friends who have supported me
throughout my studies. I give special thanks to my partner who introduced
me to the field of bioinformatics. I would also like to thank my supervisor doc.
RNDr. David Hoksza, Ph.D. for his guidance. Last but not least, I would like
to thank everyone, who helped me with this thesis such as RNDr. Milan Straka,
Ph.D. for his great insights about model architecture and RNDr. Jakub Yaghob,
Ph.D. for his help with faculty’s GPU cluster.

Title: Detection of protein-ligand binding sites using 3D Vision Transformers

Author: Ondrej Lopuch

Department: Department of Software Engineering

Supervisor: doc. RNDr. David Hoksza, Ph.D., Department of Software Engi-
neering

Abstract: Detection of protein-ligand binding sites plays key role not only in
understanding of protein function but it also can be used for computer-aided drug
design. Improving these detection can lead to faster drug development. In recent
years, many machine learning methods were proposed for this task. Nowadays,
transformer architecture became one of the most prominent one for non-biological
data. Its extension for images, vision transformer, became comparable to state-
of-the-art algorithms. Moreover, this vision transformer can be expanded into 3D
space. The goal of this thesis is to evaluate possibilities of extending transformers
into 3D, for biological data, specifically for protein-ligand binding site detection,
exploiting the qualities of attention mechanism.

Keywords: 3D vision transformers, protein-ligand complexes, computer-aided
drug design, binding sites

Contents

Introduction 3

1 Biological background 4
1.1 Proteins . 4

1.1.1 Amino acids . 4
1.1.2 Protein structure . 4
1.1.3 Functions of proteins . 6
1.1.4 Protein structure determination 7

1.2 Protein-ligand complexes . 7
1.2.1 Binding sites . 8

1.3 Small molecule discovery . 8
1.3.1 Binding sites predictions 8

2 Transformers 11
2.1 Architecture . 11

2.1.1 Encoder . 11
2.1.2 Decoder . 11
2.1.3 Attention . 12
2.1.4 Feed-forward networks . 14
2.1.5 Embeddings and positional encodings 14
2.1.6 Pros and cons of transformers 15

2.2 Vision transformers . 16
2.2.1 Architecture . 16
2.2.2 3D vision transformers . 16

3 Implementation 19
3.1 Model design . 19

3.1.1 Programming language and libraries 19
3.1.2 Input/Output . 19
3.1.3 Preproccessing . 21
3.1.4 Embedder . 22
3.1.5 3D ViT . 22

3.2 Datasets . 26

4 Results 28

5 Discussion 30
5.1 Future work . 30

Conclusion 32

1

Bibliography 33

List of Figures 37

List of Tables 37

List of Abbreviations 38

List of Symbols 39

2

Introduction
Since its introduction, the transformer architecture has become the state-of-the-
art model for many machine learning tasks ranging from machine translation
(Vaswani et al. [2017]), question answering (Brown et al. [2020]), to object detec-
tion(Carion et al. [2020]) and video classification (Wang et al. [2018]).

Another broad field, where transformers may be applicable now and in the
future, is bioinformatics. With clever data engineering as a first step in the
process, we can easily transform various types of biological data into datasets
suitable for machine learning tasks. One of the key focus points at the moment
is proteomics, an area of biology covering the proteins. Jumper et al. [2021]

Proteins are essential to life. Chemically, they are polypeptides - they consist
of amino acids connected by peptide bonds. They interact with other molecules,
and these interactions determine their biological properties. The substance that
is bound by protein, the ligand, can be an ion, a small molecule, or even a macro-
molecule such as another protein or DNA. These protein-ligand complexes serve
a fundamental function within a cell, playing a pivotal role in providing struc-
tural integrity, defining cellular shape, and executing a wide array of functions
(Bruce Alberts [2019]). Ligands usually bind with protein at a highly specific
binding sites, changing conformation, 3D structure, and activity of the protein.

The ligand-binding process is crucial in drug design. Protein-ligand complexes
have a key role in cellular processes e.g. in replication or translation. When
using specific ligands, this activity can be modulated in different ways. This is
one of the key mechanisms in drug design. However, determining the ideal ligand
for a specific modification by conducting laboratory experiments may be very
costly. Therefore, many computer-aided methods for predicting ligand binding
sites were recently proposed. Many of them are machine learning based tools, such
as random forest classifiers (Krivák and Hoksza [2018]), graph neural networks
(Sergei A. Evteev and Ivanenkov [2023]), 3D convolutional networks (Jimenez
et al. [2017]) and deep residual neural networks (Kandel et al. [2021]).

Since transformers have proven their quality in many areas, even with biolog-
ical data (Jumper et al. [2021]), we present a 3D vision transformer model for
detecting binding sites in protein-ligand complexes. By exploiting its attention
mechanism, we believe that 3D vision transformers have a great potential for
prediction from 3D structure of the complex.

3

1. Biological background

1.1 Proteins
Proteins consists of long unbranched chains of amino acids, each of them linked to
its neighbor through a covalent peptide bond. Proteins are therefore also known
as polypeptides. Each protein has a unique sequence of amino acids, and there
are thousands of different proteins in a cell (Bruce Alberts [2017]). Amino acids
serve as the fundamental building blocks of proteins.

1.1.1 Amino acids
Amino acids are organic compounds characterized by the presence of a carboxylic
acid group1 and an amino group. They share a fundamental structural element:
a central carbon atom (Cα) linked to a hydrogen atom, an amino group (NH2),
and a carboxyl group (COOH) (Branden and Tooze [1999]). The distinguishing
factor among amino acids lies in the uniqueness of its side chain attached to the
carbon atom (Buxbaum [2015]). The side chain determines the physiochemical
properties of the amino acid. Our genetic code encodes 20 different amino acids;
however, rare cases may involve other distinct types of side chains. These amino
acids have different kind of properties resulting from their composition, such as
hydrophobicity 2, aliphaticity 3, whether they are amides4, positively charged etc.
These properties will be later used in our model as features.

With the exception of glycine, all 20 common amino acids are chiral molecules,
meaning they are not symmetrical to reflections. Consequently, they may exist in
two distinct forms: L-form and D-form. In biological systems, elaborate molecular
recognition processes are reliant on distinguishing between these chiral forms. The
translation process responsible for protein synthesis has evolved to exclusively
employ the L-form of amino acids. As a result, the amino acids found in proteins
adopt only the L-form. These 20 common amino acids are typically represented
using either a three-letter or one-letter code (see fig. 1.1).

1.1.2 Protein structure
In the study of proteins, four levels of organization in their structure are recog-
nized: primary, secondary, tertiary, and quaternary (fig. 1.2).

The primary structure refers to the linear sequence of amino acids connected
by peptide bonds. These sequences can vary in length, ranging from just a few
amino acids to thousands of them.

The secondary structure involves the formation of three-dimensional struc-
tural elements, such as α helices and β strands. They exhibit repetitive folding
patterns in three-dimensional space, and they are stabilized by hydrogen bonds.

1containing COOH group
2repelled by a mass of water
3pertaining to peptides
4derived from ammonia

4

Fig. 1.1. The 22 amino acids encoded by genes. Once incorporated
into proteins, amino acids may be further modified. Pyrrolysine has
been found only in bacteria; it is encoded by the stop codon UAG.
Selenocysteine is encoded by the UGA stop codon. Acidic groups are
marked red, basic groups blue, polar groups orange, and hydrophobic
groups green. Source: Buxbaum [2015]

5

Source: Branden and Tooze [1999]

Fig. 1.2. The amino acid sequence of a protein’s polypeptide chain
is called its primary structure. Different regions of the sequence form
local regular secondary structures, such as alpha (a) helices or beta (b)
strands. The tertiary structure is formed by packing such structural
elements into one or several compact globular units called domains.
The final protein may contain several polypeptide chains arranged in
a quaternary structure. By formation of such tertiary and quaternary
structure amino acids far apart in the sequence are brought close to-
gether in three dimensions to form a functional region, an active site

The tertiary structure describes the overall conformation of the polypeptide
chain in three-dimensional space. The final folded structure typically represents
the conformation that minimizes the protein’s free energy. The tertiary structure
is determined by various interactions, including hydrophobic interactions, Van der
Waals interactions, hydrogen bonds, salt bridges, and disulfide bonds (Buxbaum
[2015]). This three-dimensional arrangement plays a crucial role in determining
the biological function of the protein.

The quaternary structure describes the manner in which multiple polypeptide
chains, in this case known as subunits, come together to form a functional protein
complex. This level of organization highlights the interactions and arrangement
of these subunits within the overall protein structure.

1.1.3 Functions of proteins
Proteins serve a fundamental function within cells, playing a pivotal role in pro-
viding structural integrity, defining cellular shape, and executing a wide array of
functions (Bruce Alberts [2019]). The biological properties of a protein molecule
are determined by its physical interactions with other molecules (Bruce Alberts
[2017]). Their functions encompass an extensive range, including enzymatic re-
actions that facilitate covalent bond breakage, acting as structural proteins that
offer mechanical support to cells and tissues, functioning as transport proteins
responsible for conveying small molecules or ions, such as hemoglobin in the
bloodstream, and participating as hormones and growth factors, among numer-
ous other roles (Bruce Alberts [2019]). This remarkable versatility of proteins
arises from their ability to adopt a wide range of distinct conformations, allowing
for the execution of diverse cellular functions.

6

1.1.4 Protein structure determination
There are many experimental methods to determine the protein structure. In this
section, we will cover three of them that are commonly used: X-ray crystallog-
raphy, NMR (nuclear magnetic resonance) spectroscopy and cryogenic electron
microscopy (3D cryo-EM).

X-ray crystallography (XRC) is an experimental method for determination
of atomic and molecular structure of a crystal using X-ray. With the help of
the X-ray diffraction patterns, we can measure the angles and intensities of the
diffracted beams. (Ilari and Savino [2008]). This method produces a 3D image
of electron densities, and it is able to depict different chemical bonds and other
key attributes. A great advantage of this method is that the structure can be
arbitrarily large, the only condition being the ability of the protein to form a
crystal.

NMR spectroscopy is a newer approach which uses quantum-mechanical prop-
erties of the atom nuclei. These properties provide us a guidance of how atoms
are linked chemically, how close they are in space and how rapidly they move
with respect to each other (Wüthrich [1990]). It uses powerful magnets and radio
frequencies, sending them through the sample in a water solution, and measuring
the absorption. It is a non-destructive technique and generally it can provide
more information than X-ray crystallography. Moreover, it may help determine
the structure of non-crystallic molecules, such as intrinsically disordered proteins.
The main disadvantages are cost and applicability only on small molecules.

Cryogenic electron microscopy (3D cryo-EM) is a novel, alternative experi-
mental method to NMR and XRC. In this case, samples in an aqueous solution
are rapidly cooled to cryogenic temperatures. This process, also known as vitrifi-
cation, is so fast, that the water does not have time to crystallize. The sample is
applied to a grid-mesh and frozen in liquid ethane (Tivol et al. [2008]) and bom-
barded with electrons. Thin specimen then scatters the electrons. Interference
between scattered and unscattered electrons produces a phase contrast image.
The 3D structure can be obtained from a set of views at different orientations.
This method is very popular in the last years, as it is able to produce 3D struc-
tures in the best resolution possible, also thanks to better electron microscopy
hardware (Yip et al. [2020]).

1.2 Protein-ligand complexes
As mentioned above, proteins interact with other molecules and these interactions
determine their biological properties. The substance that is bound by protein can
be an ion, a small molecule or even a macromolecule such as another protein or
DNA (Bruce Alberts [2019]). We refer to this substance as the ligand. In this
thesis, we will focus only on small molecules.

Protein-ligand complex is molecular recognition5 between the protein and the
ligand. Usually, this interaction is not a process by itself, but part of functionally
important mechanism as self-replication, metabolism and information processing.
This interaction is reversible and the bonds are non-covalent. This process always
shows a very high specificity, each protein can usually bind just few molecules out

5specific interaction between two or more molecules

7

of thousands or millions of possible types. Whether the ligand binds with protein
is determined by its affinity. Affinity is the strength of the binding forces such as
hydrogen bonds, electrostatic attractions and van der Waals forces, measured by
equilibirum dissociation constant (KD). Binding of protein with ligand usually
leads to change of conformation of protein.

1.2.1 Binding sites
Binding site is a region of a protein that associates with a ligand (Bruce Alberts
[2019]). It usually consists of a cavity in the protein surface, formed by a particu-
lar arrangement of amino acids. Separate regions of the protein surface generally
provide binding sites for different ligands, allowing the protein’s activity to be
regulated in many ways (Bruce Alberts [2017]). The highest affinity of the com-
plex is achieved when molecule has a perfect mirror image of the shape of the
target surface together with a charge distribution that complements the target
surface perfectly (1.3).

1.3 Small molecule discovery
Traditional approach to drug design relies on trial-and-error testing of chemical
substances and matching apparent effects to treatments. However, this approach
may be very costly, that is the main reason for using so-called computer-aided
drug design.

Small molecule discovery via computer-aided methods can be divided into
three main categories. The first category is the exploration of new ligands. In this
approach, new ligands are built step by step with constraints provided by binding
pocket (Schneuing et al. [2023]). This method can lead to finding novel structures,
that have yet to be in any database. A second method is the optimization of
known ligands, where a software usually suggests small changes on ligand to
improve its affinity (Prihoda et al. [2022]). The last method is so-called virtual
screening. It consists of searching databases of 3D structures for potential ligands
that fit the binding pocket of given receptor, and then using docking programs
to predict affinity.

Our goal is predict residues in the complexes, which are part of binding sites.
Ideally, the computational methods will be able to predict affinity before a com-
pound is synthesised and therefore saving time and cost. In reality, there is
usually few iterations before finding the ideal compound.

1.3.1 Binding sites predictions
Identifying binding sites is the first step in structure-based drug design. Currently
there are two types of drugs on the market: orthosteric and allosteric (Nussinov
and Tsai [2012]). Orthosteric bind at the active binding sites, competing with
natural substrates or ligands. If their affinity is high, they will bind and block
the site for other molecules. Unfortunately, these drugs usually have side effects
which occur by drug binding to homologous proteins sharing a similar binding site.
Hence, they need high affinity to the target. On the other hand, allosteric drugs
bind elsewhere on the protein surface and allosterically change the conformation

8

of the protein binding site. This allows them to be far less invasive than their
orthosteric counterparts resulting in lower number of side effects(Nussinov and
Tsai [2012]).

Existing approaches

There are many methods for predicting ligand binding sites, and they can be cat-
egorized based on their main algorithm strategy into geometric, such as Fpocket,
(Guilloux et al. [2009]) which is based on Voronoi tessellation and alha spheres,
energetic, such as SITEHOUND, (Hernandez et al. [2009]) where molecular in-
teractions are used for prediction, and last but not least, conservation-based and
template-based methods. In recent years, many machine learning based tools
were proposed, such as random forest classifiers (Krivák and Hoksza [2018]),
graph neural networks (Sergei A. Evteev and Ivanenkov [2023]), 3D convolutional
networks (Jimenez et al. [2017]) and deep residual neural networks (Kandel et al.
[2021]). Some of these methods, proved to be quite efficient in mapping short
distance dependencies. However, with biological data, there are many long de-
pendencies between atoms, such as allosteric interactions. Therefore, we believe
that transformer architecture with its self-attention can better map these long
dependencies.

9

Source: Bruce Alberts [2017]

Fig. 1.3. The selective binding of a protein to another molecule.
Many weak bonds are needed to enable a protein to bind tightly to a
second molecule, or ligand. A ligand must therefore fit precisely into a
protein’s binding site, like a hand into a glove, so that a large number
of noncovalent bonds form between the protein and the ligand. (A)
Schematic; (B) space-filling model.

10

2. Transformers
A new deep learning model called the transformer emerged in 2017 (Vaswani et al.
[2017]). Following its release, the transformer swiftly established itself as the lead-
ing architecture in NLP systems. Today, variants of the transformer, commonly
referred to as transformers, find extensive application across various domains.
They are utilized in diverse tasks such as audio processing, NLP tasks including
translation and text generation (Brown et al. [2020]), as well as computer vision
tasks like image generation, image classification, and object detection. (Dosovit-
skiy et al. [2021])

2.1 Architecture
Original transformer from Vaswani et al. [2017] was used for machine transla-
tion from English to German. Its architecture consists of an encoder and a
decoder(2.1).

2.1.1 Encoder
The encoder is made up of a stack of identical layers, each having two sublayers.
The first sublayer is a multi-head attention layer, while the second sublayer is a
feed-forward neural network. Both sublayers employ residual connections1 and
layer normalization 2. The encoder takes an embedded sentence combined with
positional encoding as its input. The embeddings and positional encoding are
explained in section 2.1.5.

2.1.2 Decoder
The decoder bears strong resemblance to the encoder. It uses a stack of layers,
each of the layers featuring three sublayers. The first sublayer is akin to the one
found in the encoder, utilizing multi-head attention on embedded output tokens
combined with positional encoding, along with a residual connection and layer
normalization. The second sublayer is a multi-head attention layer that calculates
attention over the encoder’s output. The third sublayer mirrors the encoder’s
feed-forward network. Furthermore, the decoder incorporates a modified multi-
head attention mechanism with a mask, which conceals subsequent positions of
the input. Following the third sublayer, there is a linear transformation and a
softmax operation that convert the decoder’s output into predicted probabilities
for the next token.

1connection between the output of one earlier layer to the input of another future layer
several layers later

2all neurons in a particular layer have the same distribution across all features for a given
input

11

Source: Vaswani et al. [2017]

Fig. 2.1. Transformer architecture

2.1.3 Attention
The attention is a straightforward process that involves mapping following three
elements - query and key-value pairs - to produce an output (Vaswani et al.
[2017]). The input vector is used in different ways to produce the desired output.
In the query, it is compared to other vectors to get its own output yi, from the
key we obtain the j-th output (j ̸= i) and we use the value to compute the final
output vector once the weights have been established (2.2).

Scaled dot-product attention

The initial transformer model employs the scaled dot-product attention mecha-
nism. This mechanism operates on input vectors consisting of queries and keys,
both with a dimension of k, as well as values with a dimension of v. To calculate
attention, the dot-product of queries and keys is computed, and then scaled by

12

Source: https://peterbloem.nl/files/transformers/key-query-value.svg

Fig. 2.2. Illustration of the self-attention with key, query and value
transformations.

√
k. The resulting scaled dot-product is processed through the softmax function3,

generating weights for the values (2.3). The attention output is obtained by tak-
ing the dot-product of these weights and the values. In practice, this operation
is performed on matrices Q, K, and V , representing the query, keys, and val-
ues, respectively. Alternatively, additive attention can be used (Bahdanau et al.
[2015]), but the dot-product approach allows for the utilization of matrix multi-
plication, which enables faster computation and greater space efficiency. Overall
the computation results in:

Attention(Q, K, V = softmax(QKT

√
k

)V (2.1)

Multi-head attention

Incorporating the multi-head attention introduces significant advantages, includ-
ing accelerated computation. This approach entails projecting queries, keys, and
values into dimensions of k, k, and v, respectively, which is repeated h times,
where h is the number of heads. By doing this, the computations can be per-
formed in parallel. The results from the multi-head attention are then combined
through concatenation and further projected to derive the final values(2.2). The
Multi-head attention given as

MultiHead(Q, K, V) = Concat(head1, ..., headh)W O (2.2)

headi = Attention(QW Q
i , KW K

i , V W V
i)

3σ(x)i = exi∑︁K

j=1
exj

, where K represents number of classes

13

Source: Vaswani et al. [2017]

Fig. 2.3. Scaled-dot product

where the projection matrices are W Q
i ∈ Rd×k, W K

i ∈ Rd×k, W v
i ∈ Rd×V ,

W O ∈ Rhv×d and d represents output dimension of model. Vaswani et al. [2017]
uses d = 512 and h = 8.

2.1.4 Feed-forward networks
As previously stated, every layer within the encoder and decoder incorporates a
fully connected feed-forward neural network. These sublayers are composed from
two linear transformations with a ReLU activation4 function applied in between
(2.3).

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.3)

2.1.5 Embeddings and positional encodings
Nearly all sequence transduction models utilize learned embeddings to convert
input tokens and output tokens into fixed-length vectors. These embeddings
serve as internal representations of tokens for the model.

4ReLU(x) = max(0,x)

14

Source: Vaswani et al. [2017]

Fig. 2.4. Multi-head attention

Since transformers do not employ recurrence or convolution, they lack in-
herent understanding of sequence order. To address this, positional encoding is
utilized to provide information about the relative and absolute positions of to-
kens. Absolute position encodings are computed in the input layer and are then
combined with the input token embeddings. This approach, originally introduced
in the transformer model, does have a major drawback - it requires a fixed length
of the input sequence and does not directly capture the relative positions between
words. To overcome this limitation, several schemes involving relative position
encoding have been proposed (Chen et al. [2021]).

In the original transformer paper, absolute positional encoding was imple-
mented using sine and cosine functions with varying frequencies (2.4 , 2.5). Each
dimension of the positional encoding corresponds to a sinusoidal pattern (Vaswani
et al. [2017]).

PEpos,2i = sin(pos/100002i/dmodel) (2.4)
PEpos,2i+1 = cos(pos/100002i/dmodel (2.5)

2.1.6 Pros and cons of transformers
In recent years, transformers have emerged as superior models across numerous
tasks. An exemplary instance is the BERT model, which has achieved remarkable
performance in various NLP tasks(Devlin et al. [2019]). Additionally, Transform-
ers exhibit competitive results in object detection when compared to fast-RNN

15

(Carion et al. [2020]). One of the key reasons for the tremendous success of
transformers lies in their ability to recognize long-distance relationships between
tokens—a task that is challenging or computationally expensive for RNN or CNN
(Lin et al. [2021]). Moreover, Transformers are highly parallelizable, making them
more cost-effective to compute (Wang et al. [2019]).

However, Transformers do have a few drawbacks. They require vast amounts
of training data, which, in turn, leads to extended training times (Hafiz et al.
[2021]).

2.2 Vision transformers
As previously discussed, transformers are presently regarded as state-of-the-art
models for NLP tasks. However, their excellence extends beyond this category
alone. Transformers have also been utilized in computer vision tasks, such as ob-
ject detection (Carion et al. [2020]) and video classification (Wang et al. [2018]).
In 2021, researchers at Google introduced a novel model, known as vision trans-
formers, specifically designed for computer vision tasks Dosovitskiy et al. [2021].
This model relies solely on self-attention without incorporating any convolu-
tional operations. While traditional CNNs still outperform vision transformers on
smaller datasets, the latter has proven to outshine the former on larger datasets,
ranging from 14 million to 300 million images, achieving superior results across
multiple image recognition benchmarks (Dosovitskiy et al. [2021]).

2.2.1 Architecture
The standard Transformer model operates on 1D sequences of token embeddings
as input. Therefore, when dealing with an image represented as x ∈ RH×W ×C ,
where H, W , and C denote the image’s height, width, and number of channels,
respectively, the image needs to be reshaped into a sequence of flattened 2D
patches denoted as xp ∈ RN×P 2C . Here, (P, P) represents the resolution of the
image patch, and N = HW

P 2 represents the resulting number of patches, which also
corresponds to the length of the input sequence for the transformer. Throughout
all layers of the transformer, a constant vector size of D is utilized.

To retain positional information, a 1D learnable positional embedding is em-
ployed. As an encoder, the structure remains consistent with the one mentioned
in 2.1.1, encompassing multi-head attention, feed-forward networks, layer nor-
malization, and residual connections (2.5).

2.2.2 3D vision transformers
Due to the promising outcomes demonstrated by vision transformers in 2D tasks,
various 3D vision approaches have incorporated transformers into their model
designs (Xu [2021]) (Saining Xie [2018]) (Zhao et al. [2021]). Nonetheless, 3D
tasks present additional challenges that require different architectural designs
(Wang et al. [2022]).

16

Source: Dosovitskiy et al. [2021]

Fig. 2.5. Architecture of proposed Vision Transformer

3D representation

The primary distinction between 2D and 3D tasks lies in the data preprocess-
ing. Images possess an inherent natural representation characterized by pixels
on a standardized grid. However, such organized structure does not exist in 3D
geometry Lahoud et al. [2022]. Consequently, there are several commonly used
representations for 3D data, which enable the application of different deep learn-
ing algorithms: point clouds, meshes, and voxels (2.6).

A point cloud refers to a set of vertices in 3D space, represented by their
coordinates along the x, y, and z axes. Each vertex can optionally include ad-
ditional information. Unlike images, point clouds represent an unordered set of
data points.

In contrast, voxel representation provides information about data on a regular
grid in 3D space. Voxels can be seen as the 3D equivalent of pixels. Each
voxel contains its own set of features. Voxel representation can be created from
point clouds through a process called voxelization, wherein all features within a
voxel are grouped together for subsequent processing. This representation enables
the application of certain methods similar to 2D convolution. However, voxel
representation tends to be quite sparse, with many empty voxels. Handling this
sparsity becomes a specific consideration during convolution operations.

A mesh, on the other hand, is a collection of vertices, edges, and faces. This
representation shares similarities with point clouds, but meshes also include in-
formation about the object surface.

3D vision transformer design

The design of vision transformers presents a significant challenge, primarily con-
cerning the representation and processing of input data. Transformers, as a type
of model architecture, are versatile and capable of handling various data repre-
sentations. The choice of data representation impacts critical factors such as data
size, distribution, granularity, and structure (Lahoud et al. [2022]). Point clouds,
being an unordered set with a straightforward representation, provide a simple

17

Source: Lahoud et al. [2022]

Fig. 2.6. Representation of 3D object with different techniques -
point cloud, voxelization and mesh

way to utilize 3D data in transformers. To efficiently handle large point clouds
while maintaining fine resolution, they can be cropped to a specific physical size.
This cropping technique reduces the number of points processed and accelerates
attention calculations, which can be computationally intensive for large spaces
with numerous points. Another approach involves converting points into a regular
grid, where the granularity level becomes a crucial consideration.

The attention block remains a key component in 3D vision transformers (Doso-
vitskiy et al. [2021]). As previously mentioned, attention mechanisms excel at
capturing long-range dependencies that convolutional networks struggle to ex-
ploit. Transformers can be applied to sets, and point clouds naturally lend them-
selves to this representation. Similar to NLP tasks where sequences can have
varying lengths, point clouds can have different sizes. In 2D transformers, posi-
tion information is typically added to the feature information, while in 3D, the
position is naturally represented by the coordinates of points within the point
cloud. This positional information can be further processed using 3D positional
encodings (Liu et al. [2022]).

Contextual information is crucial for efficient vision applications, encompass-
ing both fine local details and global context. Attention is a well-suited mech-
anism for capturing such information; however, this often increases the compu-
tational requirements. To achieve both targets, data is commonly processed at
different scales. Transformers can be applied to local neighborhoods of points to
capture local shape information. Similar to the 2D domain, local pooling enables
processing on a different scale with a larger receptive field. Alternatively, the en-
tire 3D data structure can be used, eliminating the need for local neighborhood
sampling as the entire point cloud is processed at once.

There are two approaches to utilizing transformers: pure and hybrid. In
pure transformers, attention layers are used to extract features and generate
specific outputs. In some cases, non-attention layers can be employed to encode
the input or complement the attention mechanism. Hybrid applications involve
integrating transformers into other deep learning architectures, either replacing
extraction modules or augmenting them with non-transformer layers to extract
richer information (Hafiz et al. [2021]).

Scalability is a concern with transformers, as they tend to be computationally
expensive due to the generation of large attention maps, which have a quadratic
complexity with respect to the input size (Vaswani et al. [2017]). Given the
increased data size in 3D tasks, this can result in longer training times.

18

3. Implementation
In this chapter, we introduce our deep learning model utilizing a pure transformer
architecture for the purpose of classifying tasks. The objective is to predict
the specific residues within protein structure that constitute binding sites. This
predictive capability has the potential to enhance both the cost and time efficiency
of drug design, as outlined in chapter 1.

3.1 Model design
To our knowledge, the utilization of 3D vision transformers for the prediction
of binding sites has not been adopted in practice. Hence, this thesis adopts an
exploratory approach in investigating this novel approach.

The whole architecture is shown in picture. 3.1.

3.1.1 Programming language and libraries
The model was developed using Python 3.11.1 and relied on various external
libraries. Two prominent libraries, Tensorflow and Biopython, played crucial
roles in the implementation.

Tensorflow, a highly popular library, serves as an interface for expressing ma-
chine learning algorithms and provides their execution capabilities (Abadi et al.
[2016]). Its versatility allows for effective training and evaluation of deep learn-
ing models, including support for GPU cards. Additionally, Tensorflow offers
optimized implementations of state-of-the-art techniques such as multi-head at-
tention.

The Biopython project, another key module utilized in this thesis, comprises
open-source Python libraries specifically tailored for a wide range of bioinformat-
ics challenges. Biopython acts as an interface, allowing seamless integration of
Python with optimized C and C++ code for scientific programming (Cock et al.
[2009]). In this research, Biopython was employed for dataset preprocessing tasks.

3.1.2 Input/Output
The raw input are pdb files from protein database. Every file contains header
and atom-wise properties such as coordinates and atom type. Pdb file is linear
representation of protein-ligand complexes (3.2). From this raw files, we extracted
every atom and used it for further preprocessing.

The input for our model is numpy array, which consists of protein-ligand
complexes. Every complex consists of atoms with 41 features. The full dataset is
represented by 3 dimensional shape

(x, y, z)

where z represents number of complexes, y represents the length of complex and
z is 41 as number of features. For variable length we used ragged tensors.

The output of our model is a straightforward classification of each atom within
the complexes, categorized into two classes: those that belong to a binding site

19

Source: Author

Fig. 3.1. Architecture of our 3D Vision Transformer. Rectangles
represents files and Tensorflow layers. Diamond-shaped blocks repre-
sents our own implementation.

20

Source: Author

Fig. 3.2. Example of pdb file. Column 3 represents atom type,
columns 6 to 8 represents coordinates.

and those that do not. It is essential to highlight that, due to the inherent
characteristics of the data, the negative class vastly dominates in terms of ratio
of positive/negative samples. This ratio is approximately 15 negative examples
to 1 positive.

3.1.3 Preproccessing
The initial objective entailed creating a dataset from Protein Data Bank (PDB)
files containing protein-ligand complexes, intended for utilization as input for
our model. From these files, we built point cloud representation of the complex
in point cloud.py. For each complex, we extracted all atoms and assigned
them 41 distinct features, categorized into five groups: atom names, coordinates,
categorical features, numerical features, and neighborhood features. All features
are mentioned with description in table 3.1.

Atom names encompass a straightforward encoding of atom types, occasion-
ally accompanied by supplementary information like remoteness indicator codes
and branch indicators. Coordinates are represented by three values corresponding
to the x, y and z axes.

Categorical features are further divided into two subcategories: amino acid
features and atomic features. Amino acid features remain constant for every
atom within a specific residue and provide information regarding hydrophobic-
ity, acidity, charge, and other relevant attributes. Atomic features consist of
pharmacophoric1 annotations of cavity grid points utilized by (Desaphy et al.
[2012]). These properties include positive/negative ionizability, hydrophobicity,
aromacity, among others.

Numerical values encompass various types of propensities, such as ligand bind-
ing propensities for biologically valid and invalid ligands. Invalid ligands serve
no known biological function (Khazanov and Carlson [2013]). The propensity
is a measure of residue over-representation to explore the binding site composi-
tion(Bartlett et al. [2002]).

1An ensemble of steric and electronic features, necessary to ensure the optimal supra-
molecular interactions with a specific biological target structure and to trigger (or to block) its
biological response

21

Additionally, neighborhood features are considered. We calculated the abso-
lute number of atoms within a 6 Å2 radius of each atom, the number of protein
atoms weighted by distance, and the count of different atom types such as carbon,
oxygen, and nitrogen. These features were also calculated for a broader neighbor-
hood within a 10 Å radius. Furthermore, for the smaller neighborhood, we tallied
the number of hydrogen-bond donor and acceptor atoms. For this purpose, we
used neighbor search, implemented in Biopython module.

3.1.4 Embedder
Initially, the raw input undergoes transformation through our custom class,
known as Embedder implemented in vit.py.

1 class Embedder (tf.keras. layers .Layer):
2 def __init__ (self , dim):
3 super (). __init__ ()
4 self. atom_name_embd =
5 tf.keras. layers . Embedding (100 , dim)
6 self. numerical_embd =
7 tf.keras. layers . Embedding (500 , dim // 8)
8

9 def split_inputs (self , inputs):
10 names , coordinates ,
11 categorical , numerical , neighborhood = ...
12 return names , coordinates ,
13 categorical , numerical , neighborhood
14

15 def call(self , inputs):
16 batch_size = tf.shape(inputs)[0]
17 names , coordinates , categorical ,numerical , neighborhood =
18 self. split_inputs (inputs)
19

20 embeddings = ...
21 features = tf. concat ([embeddings , categorical ,
22 numerical , coordinates],axis =-1)
23

24 return features

This class partitions the input into columns using method
Embedder.split inputs(), which are subsequently preprocessed. The en-
coding of atom names and neighborhood values is achieved using a classic
embedding layer from Tensorflow. Other data types are directly extracted
from the dataset. Considering the potential challenges posed by protein-ligand
complexes in our dataset, which could consist of over 11,000 atoms, we aimed
to minimize the number of features. To address this, we combined atom
name embedding with neighborhood embeddings. These embeddings were
then concatenated with categorical and numerical features, as well as with
coordinates.

3.1.5 3D ViT
The resulting embedding serves as the input for our 3D vision transformer block.
We adopted an architecture similar to the original transformer with minimal

2Angstrom, 1Å = 0, 1 nm

22

modifications. For each input, we calculated positional encoding within a custom
layer called PositionalEmbedding implemented by employing sine and cosine
functions.

1 class PositionalEmbedding (tf.keras. layers .Layer):
2 def __init__ (self , dim , *args , ** kwargs):
3 assert dim % 2 == 0 # The ‘dim ‘ needs to be even to

have the same number of sin&cos.
4 super (). __init__ (*args , ** kwargs)
5 self.dim = dim
6

7 def get_config (self):
8 return {"dim": self.dim}
9

10 def call(self , inputs , batch_size , max_seq_len):
11 ...
12 positional_embeddings = ...
13 positional_embeddings_batch = tf. reshape (tf.tile(

positional_embeddings , multiples =[batch_size , 1]) , shape =[
batch_size , max_seq_len , self.dim])

14

15 return positional_embeddings_batch

A notable departure from the original paper is the omission of the decoder
component. This decision was straightforward, as our transformer solely requires
the output weights. Instead of a decoder, we employed a single dense layer with
one unit to generate predictions.

Transformer Block

The architecture of the transformer block is relatively simple (3.3), implemented
by custom layer TransformerBlock.

1 class TransformerBlock (tf.keras. layers .Layer):
2 def __init__ (self ,num_heads , ffn_size , key_dim , value_dim ,

mlp_ratio =4):
3 super(TransformerBlock , self). __init__ ()
4 self.norm1 = tf.keras. layers . LayerNormalization ()
5 self. self_attention = tf.keras. layers . MultiHeadAttention (

num_heads =num_heads , key_dim =key_dim , value_dim = value_dim)
6 self.norm2 = tf.keras. layers . LayerNormalization ()
7 self.mlp = tf.keras. Sequential ([
8 tf.keras. layers .Dense(mlp_ratio * ffn_size),
9 tf.keras. layers .ReLU (),

10 tf.keras. layers .Dense(ffn_size)
11])
12 self. dropout = tf.keras. layers . Dropout (rate=args. dropout)
13

14 def call(self , inputs):
15 ...

It begins with a sublayer utilizing multi-head attention, followed by a feed-forward
neural network sublayer consisting of two dense layers with a ReLU activation
function in between. Residual connections are employed within each sublayer.
While the original paper suggested the use of learning rate warmup (Vaswani et al.
[2017]) to facilitate convergence in the plain transformer, we used normalization
before sublayer, as proposed in a 2020 paper (Ruibin Xiong [2020]), removed

23

the need for learning rate warmup. Leveraging this insight, we eliminated the
requirement for learning rate warmup in our approach.

24

Source: Author

Fig. 3.3. Architecture of our transformer block. All used layers are
from Tensorflow library

25

Putting all of these elements together, we have the complete 3D vision trans-
former, implemented as class ViT3D:

1 class ViT3D(tf.keras.Model):
2 def __init__ (self , num_heads , ffn_size , num_layers , key_dim ,

value_dim , mlp_ratio =4):
3 super(ViT3D ,self). __init__ ()
4 self. postional_embedding = PositionalEmbedding (ffn_size)
5

6 self. transformer_blocks = [TransformerBlock (num_heads ,
ffn_size , mlp_ratio , key_dim , value_dim) for _ in range(
num_layers)]

7

8 self. normalization = tf.keras. layers . LayerNormalization ()
9

10 def get_max_length (self , tensor):
11 ...
12

13 def call(self , inputs):
14 ...

3.2 Datasets
For our prototype model, we have decided to use the HOLO4K dataset. It was
partitioned into three subsets: the train set, development set, and test set, in the
ratio of 8:1:1. This dataset consists of approximately 4000 protein-ligand com-
plexes obtained directly from the Protein Data Bank (PDB). Each amino acid
within these complexes is annotated with a classification indicating its mem-
bership in a binding site. These classifications were determined experimentally,
utilizing methods described in chapter 1. Notably, this dataset was first used by
Schmidtke et al. [2010].

26

Feature Name Description
atomName atom name from PDB file
coordinateX coordinate x in Angstroms
coordinateY coordinate y in Angstroms
coordinateZ coordinate z in Angstroms
aaHydrophobic binary attribute, 1 for hydrophobic residues
aaHydrophilic binary attribute, 1 for hydrophilic residues
aaAliphatic binary attribute, 1 for aliphatic residues
aaAromatic binary attribute, 1 for aromatic residues
aaSulfur binary attribute, 1 for residues containing sulfur
aaHydroxyl binary attribute, 1 for hydroxyl group containing residues
aaBasic binary attribute, 1 for basic residues
aaAcidic binary attribute, 1 for acidic residues
aaAmide binary attribute, 1 for amide group containing residues
aaCharge categorical attribute,

1 for positive charge, -1 for negative charge
aaHBondDonor binary attribute,

1 for H-bond donor containing residues
aaHBondAcceptor binary attribute,

1 for H-bond acceptor containing residues
aaHBondDonoAcceptor binary attribute,

1 for residues that have H-bond donor and acceptor
aaPolar binary attribute, 1 for polar residues
aaIonizable binary attribute, 1 for ionizable residues
atAromatic Volsite atomic level features
atCation Volsite atomic level features
atAnion Volsite atomic level features
atHydrophobic Volsite atomic level features
atAcceptor Volsite atomic level features
atDonor Volsite atomic level features
bfactor B-factor number of the atom from pdb file
aaHydrophatyIndex side-chain hydropathy index with values

range from -4,5 to 4,5
aaPropensities binding propensity, value from 0 to 3,1
atRawValids Ligand binding propensity for biologically valid ligands,

real number from 0 to 3
atRawInvalids Ligand binding propensity for biologially invalid ligands,

real number from 0 to 3
atSasaRawValids Ligand binding propensity for biologically valid ligands

on Solvent Accessible Surface (SAS), real number from 0 to 3
atSasaRawInvalids Ligand binding propensity for biologically invalid ligands

on Solvent Accessible Surface (SAS), real number from 0 to 3
atHydrophobicity Atom type hydrophobicity scale
atoms absolute number of protein atoms in the neighborhood

(within 6 Angstroms of the point)
atomDensity number of protein atoms weighted by distance
atomC number of carbon atoms in neighborhood
atomO number of oxygen atoms in the neighborhood
atomN number of nitrogen atoms in the neighborhood
hDonorAtom number of H-bond donor atoms in the neighborhood
hAcceptorAtom number of H-bond acceptor atoms in the neighborhood
protrusion number of all protein atoms

within 10 Angstrom radius of the point

Table 3.1

27

4. Results
We trained our 3D vision transformer on faculty’s cluster, since it is computation-
ally expensive for such huge examples. Even though we used cluster with multiple
high end GPUs such as NVIDIA Tesla V100 SXM2 32 GB and Intel Xeon Gold
5218 CPU with 16 cores and 384 GB RAM we had to remove complexes with
more than 5000 atoms. The bottleneck is caused mainly by self-attention due to
its quadratic complexity (Vaswani et al. [2017]).This modification allowed us to
run the model.

We used a batch size of 1, mainly due to attention’s quadratic complexity.
Our model has a large number of hyperparameters, which are listed in figure 4.1
with our chosen values. We intend to search for better values in the future, but
so far, due to high space complexity, we chose most of the parameters empirically.

The one parameter that we were able to optimize is learning rate. We chose
logarithmic values from 1e-2 to 1e-7. The best learning, determined by keras
tuner, was 1e-6. We also chose AdamW as the optimizer (Loshchilov and Hutter
[2019]).

We trained our model for 2 epochs, which was our intention for the prototype
version. Since the dataset is heavily imbalanced towards negative value, we use
weighted binary cross entropy as our loss function. The ratio between negative
and positive targets is approximately 15:1.

We used 9 metrics, showed in the table 4.2. We focused mostly on MCC
and F1 score, since this is common metrics used by bioinformaticians for this
task (Krivák and Hoksza [2018]). Unfortunately, our model underperformed dur-
ing our experiment in every single metric. Our MCC −0.0050 suggests that
our predictions are almost uncorrelated with real targets. It is hard to com-
pare different algorithms for this task since, they usually use different metrics
on different datasets. This can lead to misinterpretation of the results. How-
ever, our model, comparing to commonly used algorithms (Kandel et al. [2021],
Stepniewska-Dziubinska et al. [2020]) shows overwhelmingly negative results with
F1 score 0.1085 compared to Puresnet 0.66 and Kalsanaty 0.64 (4.1). This com-
parison is only illustrative, since these models where trained on different datasets,
but there is clear that our model is nor performing well enough right now.

Hyperparameters Used value
Embedding size 16
Number of heads for attention 8
Number of transformer blocks 3
Key and value size for attention 4
Feed forward network ratio 4
Learning rate 1e-6

Table 4.1. Table of hyperparameters with values used in our model

28

Metrics Description
True positives (TP) Number of correctly

predicted atoms in binding sites
True negatives (TN) Number of correctly

predicted atoms outside of binding sites
False positives (FP) Number of incorrectly

predicted atoms outside of binding sites
False negatives (FN) Number of incorrectly

predicted atoms inside of binding sites
Precision (P) P = TP / (TP + FP)
Recall (R) R = TP / (TP + FN)
Accuracy (ACC) ACC = (TP + TN) / (TP + TN + FP + FN)
F1-score (F1) F1 = 2 TP / (2TP + FP + FN)
Mathews correlation coefficient (MCC) MCC = (T P ∗T N−F P ∗F N)√

(T P +F P)(T P +F N)(T N+F P)(T N+F N)

Table 4.2. Table of measured metrics

Source: Author

Fig. 4.1. Comparison of our model with Puresnet and Kalsanaty.

29

5. Discussion
As stated in previous chapter, our model underperformed compared to other
machine learning methods for detection of protein-ligand binding sites. There
are various reasons, why this happened. We were training on very small data
size, only about 2000 protein-ligand complexes. Even with images, transformers
are not able to compete with state-of-the-art CNN on small datasets (Dosovitskiy
et al. [2021]). This disadvantage is therefore multiplied by amount of information
in 3D space.

The next problem is complexity of training. Since attention mechanism has
quadratic time complexity (Vaswani et al. [2017]), one epoch took around 5 hours
on our faculty cluster. With combination of ”data hungry” architecture, this can
rapidly increase training time.

Another limitation we have encountered is the near impossibility to make
prediction on big complexes with current available hardware. This is also caused
mostly by attention mechanism and its high space complexity. All of these factors
can significantly restrict model capacity. However, we believe that if modified,
our model can produce much better results with its insights on long dependencies
and long-distance interactions.

5.1 Future work
Even though this prototype did not provide good enough results, we believe that
this architecture can be useful after some modifications. In this chapter, we
present the next steps we aim to take in our future work.

Firstly, we would like to create dataset with smaller examples. Similarly as
in original vision transformer, we would like to use patches as small inputs for
model (Dosovitskiy et al. [2021]). This can be achieved in two ways: linear slices
and 3D slices.

Linear slices can be created from PDB file, just simply cutting protein in
arbitrary position. However, this can lead to slices that are not close together
in 3D conformation of protein. The other option, 3D slices, is more complicated
but it can solve this problem. We can create slices according to 3D coordinates
of atoms and therefore create slices that are close together and possible binding
sites. This method is similar to voxelization of the 3D space. On this slices we
can calculate local attention, but we will lose the biggest advantage of attention
mechanism - mapping of long-distance relations. This process can help with find-
ing orthosteric binding sites but can have problems with finding allosteric, since
those can change conformation of binding site from greater distance (Nussinov
and Tsai [2012]). This slicing can also increase speed of training, since the at-
tention is computed only locally and not through whole protein-ligand complex.
Also, on smaller inputs, we can utilize bigger batch size which better aproximates
gradient of loss function. The change of batch size also influences learning rate,
we can use bigger value, therefore speed up training.

To solve this kind of limitation, we can look at the complexes on a different
level of granularity instead of working only with patches. We can use protein-
ligand complexes represented not by atoms, but by whole amino acids. The

30

smallest amino acid, glycine, consists of 10 atoms, therefore, it could reduced the
dataset size roughly tenfold. Then we can exploit attention mechanism globally,
to maximize its potential. Due to lack of input data, we would like to also scrape
some well known databases for more protein-ligand complexes.

31

Conclusion
Computer-aided drug design became a popular method in recent years, thanks to
big improvement in machine learning models. Identifying bindig sites, a region
of a protein that associates with a ligand, in protein-ligand complexes is the
first step for understanding protein function and therefore crucial for possible
perturbation. Since transformers and vision transformers proved themselves as
the state-of-the-art models for many NLP and computer vision tasks, we tried to
use its attention mechanism on biological data.

In this thesis we tried to explore possibilities of using 3D vision transformer
for detection of protein-ligand complexes. We designed our prototype of 3D vision
transformer, inspired by original architecture Vaswani et al. [2017] and processed
dataset consisting of approximately of 2000 protein-ligand complexes. In com-
parison with other recent techniques, our model showed results that are nowhere
near state-of-the-art models. There are various reasons, why this model could not
compete with other methods. Transformer’s requirement for huge amount of data
proved to be the biggest problem. With high computational cost, it is impossible
to determine fully capacity of the model just with the prototype. Even though
our test results did not show any correlation, we believe that our model can be
trained to obtain better results, mainly due to few promising results during search
for optimal parameters.

32

Bibliography
Mart´ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Man´e, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vi´egas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. 2016.

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. 2015.

Gail J. Bartlett, Craig T. Porter, Neera Borkakoti, and Janet M. Thornton.
Analysis of catalytic residues in enzyme active sites. Journal of Molecular
Biology, 324(1):105–121, nov 2002. doi: 10.1016/s0022-2836(02)01036-7.

Carl Branden and John Tooze. Introduction to Protein Structure. 1999.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, , Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. 2020.

Julian Lewis David Morgan Martin Raff Keith Roberts Peter Walter Bruce Al-
berts, Alexander Johnson. Molecular biology of the cell. CRC Press, 2017.

Karen Hopkin Alexander D Johnson Alexander Johnson Julian Lewis Martin
Raff Keith Roberts Peter Walter Bruce Alberts, Dennis Bray. Essential Cell
Biology. 2019.

Engelbert Buxbaum. Fundamentals of ProteinStructure and Function. 2015.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers.
2020.

Pu-Chin Chen, Henry Tsai, Srinadh Bhojanapalli, Hyung Won Chung, Yin-Wen
Chang, and Chun-Sung Ferng. A simple and effective positional encoding for
transformers. 2021.

Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J.
Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek
Wilczynski, and Michiel J. L. de Hoon. Biopython: freely available python

33

tools for computational molecular biology and bioinformatics. Bioinformatics,
25(11):1422–1423, mar 2009. doi: 10.1093/bioinformatics/btp163.

Jeremy Desaphy, Karima Azdimousa, Esther Kellenberger, and Didier Rognan.
Comparison and druggability prediction of proteinligand bindingsites from
pharmacophore-annotated cavity shapes. 2012. doi: .org/10.1021/ci300184x.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiao-
hua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth
16x16 wordds transformers for image recognition at scale. (advising), 2021.

Vincent Le Guilloux, Peter Schmidtke, and Pierre Tuffery. Fpocket: An open
source platform for ligand pocket detection. BMC Bioinformatics, 10(1), jun
2009. doi: 10.1186/1471-2105-10-168.

Abdul Mueed Hafiz, Shabir Ahmad Parah, and Rouf Ul Alam Bhat. Attention
mechanisms and deep learning for machine vision:a survey of the state of the
art. 2021.

M. Hernandez, D. Ghersi, and R. Sanchez. Sitehound-web: a server for ligand
binding site identification in protein structures. Nucleic Acids Research, 37
(Web Server):W413–W416, apr 2009. doi: 10.1093/nar/gkp281.

Andrea Ilari and Carmelinda Savino. Protein structure determination by X-ray
crystallography, chapter Chapter 3. 2008.

J. Jimenez, S. Doerr, G. Martınez-Rosell, A. S. Rose, and G. De Fabritiis.
Deepsite: protein-binding site predictor using3d-convolutional neural networks.
2017.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Ž́ıdek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl,
Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav
Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W.
Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly
accurate protein structure prediction with AlphaFold. Nature, 596(7873):583–
589, jul 2021. doi: 10.1038/s41586-021-03819-2.

Jeevan Kandel, Hilal Tayara, and Kil To Chong. PUResNet: prediction of protein-
ligand binding sites using deep residual neural network. Journal of Chemin-
formatics, 13(1), sep 2021. doi: 10.1186/s13321-021-00547-7.

Nickolay A. Khazanov and Heather A. Carlson. Exploring the composition of
protein-ligand binding sites on a large scale. PLoS Computational Biology, 9
(11):e1003321, nov 2013. doi: 10.1371/journal.pcbi.1003321.

34

Radoslav Krivák and David Hoksza. P2rank: machine learning based tool for
rapid and accurate prediction of ligand binding sites from protein structure.
2018. doi: .org/10.1186/s13321-018-0285-8.

Jean Lahoud, Jiale Cao, Fahad Shahbaz Khan, Hisham Cholakkal, and
Rao Muhammad Anwer. 3d vision with transformers: A survey. 2022.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of trans-
formers. 2021.

Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun. Petr: Position em-
bedding transformation for multi-view 3d object detection. 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. 2019.

Ruth Nussinov and Chung-Jung Tsai. The different ways through which speci-
ficity works in orthosteric and allosteric drugs. 2012. doi: 10.2174/1381612127
99436377.

David Prihoda, Jad Maamary, Andrew Waight, Veronica Juan, Laurence
Fayadat-Dilman, Daniel Svozil, and Danny A. Bitton. Biophi: A platform for
antibody design, humanization, and humanness evaluation based on natural
anti. 2022. doi: .org/10.1080/19420862.2021.2020203.

Di He Kai Zheng Shuxin Zheng Chen Xing Huishuai Zhang Yanyan Lan Liwei
Wang Tie-Yan Liu Ruibin Xiong, Yunchang Yang. On layer normalization in
the transformer architecture. 2020.

Zeyu Chen Zhuowen Tu Saining Xie, Sainan Liu. Attentional shapecontextnet
for point cloud recognition. 2018.

Peter Schmidtke, Catherine Souaille, Frédéric Estienne, Nicolas Baurin, and Ro-
mano T. Kroemer. Large-scale comparison of four binding site detection algo-
rithms. Journal of Chemical Information and Modeling, 50(12):2191–2200, sep
2010. doi: 10.1021/ci1000289.

Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao
Du, Tom Blundell, Pietro Liò, Carla Gomes, Max Welling, Michael Bronstein,
and Bruno Correia. Structure-based drug design with equivariant diffusion
models. 2023.

Alexey V. Ereshchenko Sergei A. Evteev and Yan A. Ivanenkov. Siteradar: Uti-
lizing graph machine learning for precise mapping of protein–ligand-binding
sites. 2023. doi: .org/10.1021/acs.jcim.2c01413.

Marta M. Stepniewska-Dziubinska, Piotr Zielenkiewicz, and Pawel Siedlecki. Im-
proving detection of protein-ligand binding sites with 3d segmentation. 2020.

William F. Tivol, Ariane Briegel, and Grant J. Jensen. An improved cryogen for
plunge freezing. 2008. doi: 10.1017/S1431927608080781.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, and Lukasz Kaiser. Attention is all you need. 2017.

35

Chenguang Wang, Mu Li, Alexander J. Smola, Amazon Web, and Services. Lan-
guage models with transformers. 2019.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local
neural networks. 2018.

Yi Wang, Zhiwen Fan, Tianlong Chen, Hehe Fan, and Zhangyang Wang. Can we
solve 3d vision tasks starting from a 2d vision transformer. 2022.

K Wüthrich. Protein structure determination in solution by nmr spectroscopy.
Journal of Biological Chemistry, 265(36):22059–22062, dec 1990. doi: 10.101
6/s0021-9258(18)45665-7.

Ali Hatamizadeh; Yucheng Tang; Vishwesh Nath; Dong Yang; Andriy Myro-
nenko; Bennett Landman; Holger R. Roth; Daguang Xu. Unetr: Transformers
for 3d medical image segmentation. 2021.

Ka Man Yip, Niels Fischer, Elham Paknia, Ashwin Chari, and Holger Stark.
Atomic-resolution protein structure determination by cryo-EM. Nature, 587
(7832):157–161, oct 2020. doi: 10.1038/s41586-020-2833-4.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen Koltun. Point
transformer. 2021.

36

List of Figures

1.1 The 22 amino acids encoded by genes 5
1.2 Structure of protein . 6
1.3 Structure of protein . 10

2.1 Transformer architecture . 12
2.2 Computation of self-attention . 13
2.3 Scaled-dot product . 14
2.4 Multi-head attention . 15
2.5 ViT architecture . 17
2.6 3D representation . 18

3.1 Proposed Architecture . 20
3.2 Example of pdb file . 21
3.3 Architecture of transformer block 25

4.1 Comparison of results . 29

List of Tables

3.1 Table of features . 27

4.1 Table of hyperparameters . 28
4.2 Table of measured metrics . 29

37

List of Abbreviations
1D, 2D, 3D one-, two-, three-dimensional
XRC X-ray crystallography
NMR nuclear magnetic resonance (spectroscopy)
3D cryo-EM 3D cryogenic electron microscopy
DNA deoxyribonucleic acid
NLP natural language processing
PDB Protein data bank
XRC X-ray crystallography

38

List of Symbols
C carbon atom
N nitrogen atom
H hydrogen atom
O oxygen atom
Cα α carbon atom
COOH carboxillic acid group
NH2 amino group
Å Ångstrom, unit of distance
KD dissociation constant∑︁ sum
x ∈ X x is an element of the set X

39

	Introduction
	Biological background
	Proteins
	Amino acids
	Protein structure
	Functions of proteins
	Protein structure determination

	Protein-ligand complexes
	Binding sites

	Small molecule discovery
	Binding sites predictions

	Transformers
	Architecture
	Encoder
	Decoder
	Attention
	Feed-forward networks
	Embeddings and positional encodings
	Pros and cons of transformers

	Vision transformers
	Architecture
	3D vision transformers

	Implementation
	Model design
	Programming language and libraries
	Input/Output
	Preproccessing
	Embedder
	3D ViT

	Datasets

	Results
	Discussion
	Future work

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols

