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Introduction
The thesis is divided into three chapters. In the first chapter, we introduce basic
notions and facts that will be used in the rest of the thesis.

In the second chapter we study the symmetric affine subspaces of Z([n]
k )

p . Here
“symmetric” means that for every permutation on [n] the affine subspace is in-
variant under the naturally induced permutation on Z([n]

k )
p . First, we begin the

chapter by stating some general facts about symmetric affine subspaces. Then,
we study when do symmetric affine subspaces contain a constant. We ask whether
all symmetric affine subspaces contain a constant and answer this question in the
case k = 2 in the third section.

The last chapter contains results concerning symmetric relations in a more
general setting of Taylor algebras. We apply the results to prove that under some
conditions a Taylor algebra has a k-WNU term operation of arity n.

Theorem 47 in Chapter 2 was obtained in an unpublished work of L. Barto,
Z. Brady, M. Pinsker, and D. Zhuk. The presented proof as well as all the
other results in this chapter are original. Chapter 3 applies Brady’s technique of
stable subalgebras in a standard way. The specific results, however, were not yet
published. Lemma 53 appears to be original.
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1. Preliminaries
The definitions in the first two sections of this chapter are taken from Clifford
Bergman’s book Universal Algebra: Fundamentals and Selected Topics Bergman
[2011]. This chapter contains all the basic definitions and facts that we will need
in the rest of the thesis. First, we will discuss algebras, clones, then Taylor
algebras and finally we will introduce a notion called stability concept and prove
some of its basic properties.

1.1 Algebras
In this section, we will define algebras and related notions, such as subalgebras,
products, homomorphisms and congruences. Algebras are the main objects of
study in Universal Algebra.

Let A, B be sets, we denote by AB the set of all functions from A to B. If n
is a positive integer then we define An = A{1,...,n} which is the set of all n-tuples
of elements of A. We also define A0 = {∅}.

For any A and n as above, we call a function An → A an n-ary operation
on A. The number n is called the arity of the operation. Operations of arity 0,
1, 2, 3 are also called nullary, unary, binary, and ternary, respectively. Notice
that a nullary operation is a function c : {∅} → A, such a function is completely
determined by the value c(∅), so it can be identified with an element of A. Such
functions are also called constants.

Definition 1. Any set of symbols Σ = {f, g, h, . . . } such that to every symbol
f ∈ Σ, there is an assigned arity nf ∈ N0, is called a signature.

Definition 2. An algebra A of signature Σ is a pair A = (A, (fA)f∈Σ), where A
is a nonempty set, and fA is an operation on A of arity nf . The set A is called
the universe or the underlying set of the algebra A. The operations (fA)f∈Σ are
called basic operations of A.

A subset X ⊆ A is called a subuniverse of A, if for all f ∈ Σ, and any
elements x1, . . . , xnf

∈ X, we have fA(x1, . . . , xnf
) ∈ X. We denote this by

X ≤ A.
An algebra B = (B, (fB)f∈Σ) of signature Σ is called a subalgebra of A, if

B is a subuniverse of A and fB = fA ↾ Bnf , for all f ∈ Σ. We denote this by
B ≤ A.

Examples of algebras include groups, modules, rings, monoids, lattices, semi-
lattices and many others.

Definition 3. Let A = (A, (fA)f∈Σ) be an algebra of signature Σ and X ⊆ A.
We say that X generates A, if the only subuniverse of A that contains X is A.

Definition 4. Let I be a nonempty set, Ai be algebras of signature Σ, for all
i ∈ I. Then we define the product A = ∏︁

i∈I Ai of the algebras to be the algebra
of signature Σ with the universe ∏︁

i∈I Ai, for all f ∈ Σ, g1, . . . , gnf
∈ ∏︁

i∈I Ai

we define the operation fA as fA(g1, . . . , gnf
)(i) = fAi(g1(i), . . . , gnf

(i)). For an
algebra A, we denote by AI the product ∏︁i∈I A.
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With notation as above, suppose that the subset X ⊆ ∏︁
i∈I Ai generates∏︁

i∈I Ai. Define a map πj : ∏︁i∈I Ai → Aj as πj(h) = h(j). Then πj(X) gen-
erates Aj, for any j ∈ I. If it did not, then there exists a subuniverse U ≤ Aj

such that πj(X) ⊆ U ⊊ Aj. But then ∏︁i∈I Xi is a proper subuniverse of ∏︁i∈I Ai

containing X, where Xi = Ai for j ̸= i ∈ I, and Xj = U . That is a contradiction
with the fact that X generates ∏︁i∈I Ai.

Definition 5. Let A, B be algebras of the same signature. A map f : A → B is
called a homomorphism, if for every k-ary operation symbol g, and x1, . . . , xk ∈
A, we have

f(gA(x1, . . . , xk)) = gB(f(x1), . . . , f(xk)).
We denote this by writing f : A → B.

A bijective homomorphism is called an isomorphism. If A = B and f is an
isomorphism, then it is also called an automorphism.

It can be easily checked that, if Ai are algebras of the same signature for all
i ∈ I, then πj : ∏︁i∈I Ai → Aj is a homomorphism, for any j ∈ I. It is also
easy to see that composition of homomorphisms is a homomorphism, and that
the inverse of an isomorphism is also an isomorphism.

Definition 6. Let A be an algebra of signature Σ. A congruence θ on A is an
equivalence relation on A such that for all f ∈ Σ

x1 θ y1, . . . , xnf
θ ynf

=⇒ fA(x1, . . . , xnf
) θ fA(y1, . . . , ynf

).

The congruences A × A, and {(a, a) ∈ A × A|a ∈ A} are called trivial.

The notion of a congruence generalizes the notions of normal subgroups in
the case of groups, and ideals in the case of rings.

Definition 7. An algebra is simple if it has only trivial congruences.

This definition corresponds to the definition of a simple group.

Definition 8. Let A be a set, and f be an n-ary operation on A. We say that
f is idempotent if f(a, . . . , a) = a for all a ∈ A. We say that an algebra A is
idempotent if all its basic operations are idempotent.

Definition 9. Let A1, . . . , An be algebras, and R ⊆ A1 × · · · × An. We say that
the relation R is subdirect in A1 × · · · × An, and write R ≤sd A1 × · · · × An, if
R ≤ A1 ×· · ·×An, and πi(R) = Ai, for all i ∈ {1, . . . , n}, where πi(x1, . . . , xn) =
xi.

Next, we introduce the notion of a term.

Definition 10. Let X be a set of variable symbols and Σ a signature. The set T
of terms over the set of variables X and signature Σ is defined as the smallest
set satisfying the following conditions:

• every variable is a term, i.e. X ⊆ T ,

• if n ∈ N0, t1, . . . , tn are terms, and f ∈ Σ is an n-ary operation symbol,
then f(t1, . . . , tn) ∈ T .
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Example. If we take Σ = {·,−1 , 1}, X = {x, y, z} then (y ·x−1) · (z−1 ·1) is a term.
We can use terms to obtain operations.

Definition 11. Let t ∈ T be a term over the set of variables X = {x1, . . . , xk}
and signature Σ. Let A = (A, (fA)f∈Σ) be an algebra in the signature Σ. Then
we define a k-ary term operation tA : Ak → A in the natural way:

• if t = xi, then tA(a1, . . . , an) = ai,

• if t = f(t1, . . . , tn), where f ∈ Σ is n-ary, then

tA(a1, . . . , an) = fA(tA
1 (a1, . . . , an), . . . , tA

n (a1, . . . , an)).

A polynomial operation p : Am → A on A is an operation given by a term in
which we can use elements of A as nullary operations.

Term operations are of interest to us because clones are sets of term operations.

Proposition 12. Let A, B be algebras of the same signature Σ. Let t be a term
over the set of variables X = {x1, . . . , xk} and signature Σ. If f : A → B is a
homomorphism, then

f(tA(a1, . . . , ak)) = tB(f(a1), . . . , f(ak))

for all a1, . . . , ak ∈ A.

Proof. We prove this by induction on the complexity of the term t. If t is
just a variable the the equality obviously holds. Otherwise let g ∈ Σ, and t =
g(t1, . . . , tng), where t1, . . . , tng are terms for which the equality already holds.
Then

f(tA(a1, . . . , ak)) = f(gA(tA
1 (a1, . . . , ak), . . . , tA

ng
(a1, . . . , ak))) =

= gB(f(tA
1 (a1, . . . , ak)), . . . , f(tA

ng
(a1, . . . , ak))) =

= gB(tB
1 (f(a1), . . . , f(ak)), . . . , tB

ng
(f(a1), . . . , f(ak))) = tB(f(a1), . . . , f(ak)).

Which is what we wanted to prove.

Proposition 13. Let A be an algebra that is generated by the set X ⊆ A. Then

A = {t(x1, . . . , xk)|k ∈ N ∧ x1, . . . , xk ∈ X and t is a k-ary term operation}.

Moreover if X = {x1, . . . , xk}, then

A = {t(x1, . . . , xk)|t is a k-ary term operation}.

Proof. This follows from the fact that X generates A and the set on the right
is obviously a subuniverse containing X, since composition of term oprations is
again a term operation.
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1.2 Clones
In this section we will define the notion of a clone. This is a central notion in
Universal algebra.

Definition 14. Let A be a set, and C a set of operations on A of arity at least
one. We say that C is a clone, if C contains all the projections, and is closed
with repect to the generalized composition: If g ∈ C is k-ary, f1, . . . , fk ∈ C are
n-ary, then the operation

g(f1, . . . , fk)(x1, . . . , xn) = g(f1(x1, . . . , xn), . . . , fk(x1, . . . , xn))

must be in C. We denote by Cn all the n-ary operations in C, for n ∈ N.

Definition 15. Let A be a set and C, D be two clones on A. We say that D is
a subclone of C if D ⊆ C.

Definition 16. Let A be an algebra, we define Clo(A) to be the set of all term
operations on A of arity at least one.

It is obvious, from the definition of a term, that Clo(A) is a clone. Next, we
define identities.

Definition 17. Let A be an algebra and t, s ∈ Clon(A) = Clo(A) ∩ AAn. We
say that A satisfies the identity

t ≈ s

if for all x ∈ An we have that
t(x) = s(x).

1.3 Taylor algebras
In this section we will present an important class of algebras called Taylor algebras
and prove some of its properties. Taylor algebras will be used in the third chapter.
First we will introduce the notion of a Taylor operation. With that we will define
Taylor algebras. Afterwards we will prove some properties of Taylor algebras.
Taylor algebras will be used in the third chapter.

Definition 18. Let A be an algebra. We say that t ∈ Clo(A) is a Taylor opera-
tion if the following identities hold

t(x, ∗, . . . , ∗) ≈ t(y, ∗, . . . , ∗),

...
t(∗, . . . , ∗, x) ≈ t(∗, . . . , ∗, y),

where the positions marked by ∗ stand for arbitrary variables.

Definition 19. An idempotent finite algebra A is said to be Taylor if there exists
t ∈ Clo(A) such that t is a Taylor operation.

Definition 20. An algebra A is an affine module if Clo(A) is the set of all
idempotent term operation of some R-module for some ring R.
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Definition 21. An algebra A is abelian if for every term operation t of arity
n + 1 it holds that

∀x, y ∈ A∀u, v ∈ An : t(x, u) = t(x, v) ⇒ t(y, u) = t(y, v).

Theorem 22. A Taylor algebra is abelian if and only if it is an affine module.

Proof. The theorem follows from results in Hobby and McKenzie [1988]. It is
stated as Theorem 2.4 in Barto et al. [2023].

Definition 23. An algebra A is called minimal Taylor if it is Taylor and every
proper subclone of Clo(A) does not contain a Taylor operation.

Let A be an algebra, then by Con(A) we denote the set of all congruences on
A.

Proposition 24. If an algebra A is minimal Taylor, then A/θ is also minimal
Taylor for all θ ∈ Con(A).

Proof. This follows from Proposition 5.4. in Barto et al. [2023].

The following proposition is a crucial ingredient of the proof of Theorem 55,
which is one of the most important results of this thesis.

Proposition 25. If A is a simple minimal Taylor abelian algebra, then Clo(A) =
Clo(A; x−y+z), where +, − are abelian group operations on A and |A| is a prime
number.

Proof. Algebra A being Taylor abelian implies that it is an affine module by
Theorem 22. From the assumption that it is minimal Taylor, it follows that
Clo(A) = Clo(A; x − y + z), because x − y + z is a Taylor operation. The group
is simple because A is simple. Indeed, if there existed a nontrivial congruence
θ ∈ Con(A; +, −, 0), then it would we closed under all t ∈ Clo(A; x − y + z) =
Clo(A), so it would be a congruence in A. Therefore (A; +, −, 0) is isomorphic
to Zp for some prime number p. This proves the proposition.

Remark. Let a + V be an affine subspace of Zn
p . Then this occurs if and only if

a + V ≤ (Zp; x − y + z)n.

Indeed this is true because an affine space is closed under all affine combinations
and Clo(Zp; x − y + z) is a set of all affine combinations.

Let A = (A, (fA)f∈Σ) and B = (B, (fB)f∈Π) be two algebras. We say that A
is a reduct of B if A = B, Σ ⊆ Π and fA = fB for all f ∈ Σ.

Proposition 26. Every Taylor algebra has a minimal Taylor reduct.

Proof. It is stated as Proposition 5.2. in Barto et al. [2023].
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1.4 Stability concept
In this section we introduce the notion of a stability concept and prove some of
its properties. Stability concept will be used in the third chapter. The definition
of stability concept is taken from Brady [2022].

Let K be a class of algebras in the same signature, then by H(K) we denote
the class of all algebras which are isomorphic to a quotient of an algebra from K.
By S(K) we denote the class of all algebras which are isomorphic to a subalgebra
of an algebra from K. By Pfin(K) we denote the class of all algebras which are
isomorphic to a finite product of algebras from K.

Definition 27. Let A be a finite idempotent algebra, V = HSPfin(A). We
say that a binary relation ≺ on V is a stability concept on V if it satisfies the
following

• If C ≺ B then C ≤ B

• If D ≺ C ≺ B then D ≺ B

• If C, D ≺ B and C ∩ D ̸= ∅ then C ∩ D ≺ B

• If f : B → C is a surjective homomorphism then

– if D ≺ B then f(D) ≺ C
– if E ≺ C then f−1(E) ≺ B

• If C, D, E ≺ B are such that C ∩ D ̸= ∅, C ∩ E ̸= ∅ and D ∩ E ̸= ∅, then
C ∩ D ∩ E ̸= ∅.

• If B ∈ V , |B| ⪈ 1, then either

– there is some C ≺ B such that C ̸= B or
– there is some proper congruence θ ∈ Con(B) such that B/θ is an

abelian algebra.

We say that a subalgebra C ≤ B is stable if C ≺ B.

Theorem 28. Let A be a minimal Taylor algebra. Then there exists a stability
concept on HSPfin(A).

Proof. This follows from Theorem 3.15.18. in Brady [2022].

Next we prove some basic properties of a stability concept. The following
three lemmas are taken from Brady [2022]. Let C ≤ A and R ≤sd A × B, then
by C + R we mean the set {b ∈ B|∃a ∈ C : (a, b) ∈ R}. Let n ∈ N, by [n] we
denote the set {1, . . . , n}.

Lemma 29. Let ≺ be a stability concept on HSPfin(A), C ≺ B, R ≤sd A × B
be a subdirect relation. Then C + R ≺ B.
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Proof. Let π1 : R → A, π2 : R → B be the restriction of the projec-
tion homomorphisms to R. Then we have that π−1

1 (C) ≺ R because of the
fourth axiom from the definition of a stability concept. And now we get that
C + R = π2(π−1

1 (C)) ≺ B by the same axiom.

Lemma 30. Let ≺ be a stability concept on HSPfin(A), C1, . . . , Cn ≺ B ∈
HSPfin(A), Ci ∩ Cj ̸= ∅ for all i, j ∈ [n]. Then ⋂︁n

i=1 Ci ̸= ∅.

Proof. We will prove this by induction on n. For n = 3 it follows from the
definition of stability concept. Let n ≥ 4. Set B′ = Cn and C′

i = Ci ∩ Cn for
i < n. Then from the definition of stability concept we have that C′

i ∩ C′
j =

Ci ∩ Cj ∩ Cn ̸= ∅ for all i, j < n. Again from the definition of stability concept
we get C′

i = Ci ∩ Cn ≺ Cn = B′ for all i < n. Now we can apply the induction
hypothesis to get ⋂︁n

i=1 Ci = ⋂︁n−1
i=1 C′

i ̸= ∅.

Let R ≤ B1 × · · · × Bn, then by Rij we denote the set

{(x, y) ∈ Bi × Bj|∃a ∈ R : ai = x ∧ aj = y}.

Lemma 31. Let ≺ be a stability concept on HSPfin(A), R ≤sd B1 × · · · × Bn,
Ci ≺ Bi for all i ∈ [n] and

Rij ∩ (Ci × Cj) ̸= ∅

for all i, j ∈ [n]. Then R ∩∏︁n
i=1 Ci ̸= ∅.

Proof. From the definition of stability concept we get that π−1
i (Ci) ≺ R. From

our assumptions we have that π−1
i (Ci) ∩ π−1

j (Cj) for all i, j ∈ [n]. Therefore
Lemma 30 implies that ⋂︁n

i=1 π−1
i (Ci) ̸= ∅, which proves what we wanted.
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2. Symmetric Affine Subspaces

Definition 32. R ⊆ Z([n]
k )

p is symmetric if for all permutations π : [n] → [n] and
all a ∈ R it holds that b ∈ R, where bπ(I) = aI , for all I ∈

(︂
[n]
k

)︂
. We denote b by

π(a). By Sn we denote the set of all permutations π : [n] → [n].

In this section, we are going to study the symmetric affine subspaces of Z([n]
k )

p .
First we are going to present general facts about symmetric affine subspaces.
Then we are going to reduce the question of whether every symmetric affine
subspace of Z([n]

k )
p contains a constant to a question about the symmetric vector

subspaces of Z([n]
k )

p . After that, we are going to characterize all symmetric vector
subspaces of Z([n]

1 )
p × Z([n]

0 )
p and using that result, we will characterize all the

symmetric vector subspaces of Z([n]
2 )

p . Lastly, we are going to characterize, when
every symmetric affine subspace of Z([n]

2 )
p contains a constant.

Let a ∈ Z([n]
k )

p and K ⊆ [n], then we define

aK :=
∑︂

K⊆I∈([n]
k )

aI ,

where by
(︂

[n]
k

)︂
we mean the set of all subsets of [n] of size k.

Let Sym(n, k, p) be the set of all symmetric vector subspaces of Z([n]
k )

p . Let
V ∈ Sym(n, k, p), then we define

S(V ) = {W ∈ Sym(n, k, p)|W ⊆ V, dim(V ) = dim(W ) + 1},

E(V ) = {W ∈ Sym(n, k, p)|V ⊆ W, dim(W ) = dim(V ) + 1}.

Let X ⊆ Z([n]
k )

p , then by ⟨X⟩S we denote the subspace generated by {π(x)|x ∈
X ∧ π ∈ Sn}. We say that ⟨X⟩S is symmetrically generated by X.

2.1 General facts

Lemma 33. Let a + V be a symmetric affine subspace of Z([n]
k )

p , then V is a
symmetric (vector) subspace of Z([n]

k )
p .

Proof. Let x ∈ V and π ∈ Sn. Then π(a + x) = π(a) + π(x) ∈ a + V . So there
exists w ∈ V such that

π(a) + π(x) = a + w.

This implies that
π(a) − a + π(x) − w ∈ V.

But since a, π(a) ∈ a + V , it follows that π(a) − a ∈ V . And from this follows
that π(x) − w ∈ V . Therefore

π(x) ∈ V

10



because w ∈ V . This is what we wanted to prove.

Let W ≤ V be vector spaces, then by V
W

we denote the factor space of V by
W .

Lemma 34. Let V be a symmetric subspace of Z([n]
k )

p . Then τ defined by

τ(a + V ) = ⟨a⟩S + V

is a mapping from the set of symmetric affine subspaces of Z([n]
k )

p with the space
of vectors V which do not contain 0 to the set E(V ). Moreover ker(τ) = {(a +
V, b + V )|a, b /∈ V, ∃i ∈ Zp \ {0} : b = ia}.

Proof. The map τ is well defined because a + V = b + V implies that a − b ∈ V .
Hence a = b + (a − b) ∈ ⟨b⟩S + V , and since ⟨b⟩S + V is symmetric, we have that
⟨a⟩S + V ⊆ ⟨b⟩S + V . The opposite inclusion follows similarly.

Because a + V is symmetric, we have that a − π(a) ∈ V for all permutations
π. This means that

dim(⟨a⟩S + V

V
) = 1,

in other words ⟨a⟩S + V ∈ E(V ).
If b = ia, then ⟨b⟩S + V = ⟨a⟩S + V , so (a + V, b + V ) ∈ ker(τ).
Let (a + V, b + V ) ∈ ker(τ), then ⟨b⟩S + V = ⟨a⟩S + V . So b ∈ ⟨a⟩S + V .

Therefore
b + V ∈ ⟨a⟩S + V

V
,

which is generated by a + V . Therefore b + V = ia + V for some i ∈ Zp \ {0}. It
follows that b − ia ∈ V , which implies that the affine spaces ia + V and b + V are
equal.

The following proposition is needed to prove Proposition 36. Let n ≥ 2k

and Bi = {i, i + 1} for i = 1, 3, 5, . . . , 2k − 1. Define λk ∈ Z([n]
k )

p as follows:
λk({b1, . . . , b2k−1}) = (−1)b1+···+b2k−1 , where bi ∈ Bi, otherwise λk(I) = 0 for all
other coordinates I ∈

(︂
[n]
k

)︂
. Here, for clarity, we use the notation λk(I) instead

of (λk)I .
We denote

Λk = {a ∈ Z([n]
k )

p |∀I ⊆ [n] : |I| ≤ k − 1 ⇒ aI = 0},

Σk = {a ∈ Z([n]
k )

p |a∅ = 0}.

Proposition 35. If n ≥ 2k, then Λk = ⟨λk⟩S.

Proof. We prove this by induction on k. For k = 1, we have that Λ1 = Σ1 and
λ1 = (−1, 1, 0, . . . , 0). So we just have to prove that Σ1 is symmetrically generated
by (−1, 1, 0, . . . , 0). Indeed, if we take any vector v = (v1, . . . , vn) ∈ Z([n]

1 )
p , then

11



by adding multiples of permutations of the vector (−1, 1, 0, . . . , 0) to v, we can
get the vector (v1 + · · · + vn, 0, . . . , 0). Therefore if v ∈ Σ1, then this vector is
zero.

(⊇) It is enough to show λk ∈ Λk because Λk is symmetric. Let I ⊆ [n] be such
that |I| ≤ k − 1. If I ⊈ B1 ∪ · · · ∪ B2k−1 or there exists i ∈ {1, 3, . . . , 2k − 1} such
that Bi ⊆ I, then we clearly have that λk(I) = 0. If for all i ∈ {1, 3, . . . , 2k − 1}
we have that |Bi ∩ I| ≤ 1, then λk(I) = 0 follows from induction hypothesis,
because λk(I) = ±λk−|I|(∅), this fact is clear from the definition of λk.

(⊆) Let 0 ̸= a ∈ Λk. We will prove that a ∈ ⟨λk⟩S by adding multiples of
elements of ⟨λk⟩S to a and in the end getting zero. This will prove that a ∈ ⟨λk⟩S.
Let x ∈ [n] so that there exists I ∈

(︂
n
k

)︂
such that x ∈ I and aI ̸= 0. Without

loss of generality, we can assume that x = 2k. Then we define b ∈ Z( [n]
k−1)

p as
follows. Let J ∈

(︂
n
k

)︂
be such that x ∈ J , then we define bJ\{x} = aJ , and as 0 on

all the other coordinates. If we perform this procedure on λk, we will get λk−1.
This is important, because if we can reduce b to zero by adding to it elements of
⟨λk−1⟩S, then we can add elements of ⟨λk⟩S to a so the aI = 0 for all I ∈

(︂
[n]
k

)︂
which contain x. We claim that b ∈ ⟨λk−1⟩S. If K ⊆ [n] is such that there exists
I ∈

(︂
[n]
k

)︂
which contains x and K ⊆ I, then bK = aK∪{x} = 0. For all other K,

we have that bK = 0 from the definition of b. It follows that b ∈ Λk−1 = ⟨λk−1⟩S.
Therefore by adding multiples of elements of ⟨λk⟩S, we can make sure that aI = 0
for all I containing x. This can change a on other coordinates, but this does
not matter to us. We can repeat this process until we are left with only 2k − 1
elements of [n] that we did not yet consider. These elements satisfy that if x ∈ [n]
is not among them, then there does not exist I ∈

(︂
[n]
k

)︂
containing x such that

aI ̸= 0.
Let J ∈

(︂
[n]

2k−1

)︂
be the set of these elements, and let I ∈

(︂
J
k

)︂
. Then we have

that
0 =

k−1∑︂
i=0

(−1)i
∑︂

K∈(J
i)

aK = aI .

The first equality holds because a ∈ Λk and all the sets K in the sum are of size
at most k − 1. The second equality holds because aI is contained as a summand
only in a∅. While if we take any other L ∈

(︂
J
k

)︂
, then (J \ I) ∩ L ̸= ∅. Let

l = |(J \ I) ∩ L|, then aL appears in the sum

l∑︂
i=0

(−1)i

(︄
l

i

)︄
= 0

times. So we have proved that a can be reduced to 0 by adding to it elements of
⟨λk⟩S, which means that a ∈ ⟨λk⟩S.

We say that a subset X ⊆ Z( [n]
k−1)

p × · · · × Z([n]
1 )

p × Z([n]
0 )

p is symmetric, if for all
a ∈ X, we have that b ∈ X, where πi(b) = σ(πi(a)) for any σ ∈ Sn and πi is the
projection on the i-th coordinate for i ∈ {k − 1, . . . , 0}.

The following proposition is crucial in order to reduce the study of symmetric

12



vector subspaces of Z([n]
k )

p to the study of symmetric vector subspaces of

Z( [n]
k−1)

p × · · · × Z([n]
1 )

p × Z([n]
0 )

p .

This reduction is achieved via a linear map

φk : Z([n]
k )

p → Z( [n]
k−1)

p × · · · × Z([n]
1 )

p × Z([n]
0 )

p

defined as follows

φk(a) = ((aK)
K∈( [n]

k−1), (aK)
K∈( [n]

k−2), . . . , (aK)
K∈([n]

1 ), a∅).

It is obvious that Ker(φk) = Λk.
Let V ≤ Zn

p , then we define

V ⊥ = {x ∈ Zn
p |∀v ∈ V : x · v = 0},

where by x · v we mean the sum
n∑︂

i=0
xivi.

From Linear algebra, we know that if V ≤ W , then W ⊥ ≤ V ⊥, (V ⊥)⊥ = V and
dim(V ⊥) = n − dim(V ).

Proposition 36. Let n ≥ 2k and V ∈ Sym(n, k, p). Then either Λk ⊆ V or
V ⊆ Λ⊥

k .

Proof. If V ⊆ Λ⊥
k , then we are done. Suppose V ⊈ Λ⊥

k , then there exists a ∈ V
such that a · π(λk) ̸= 0 by Proposition 35. Without loss of generality we may
suppose that π = id and a · π(λk) = 1. If it did not equal 1, then we could just
divide a · π(λk) to get 1. We claim that

x :=
∑︂

(i1,...,ik)∈{0,1}k

(−1)i1+···+ik(12)i1(34)i2 . . . (2k − 1, 2k)ik(a) ∈ V

is equal to λk or −λk, where by (12) etc. we mean the transposition which
switches 1 and 2. Let I ∈

(︂
n
k

)︂
, then

xI =
∑︂

(i1,...,ik)∈{0,1}k

(−1)i1+···+ika(12)i1 (34)i2 ...(2k−1,2k)ik (I).

If there exists i ∈ {1, 3, . . . , 2k − 1} such that Bi ∩ I = ∅ or Bi ⊆ I, then one
of the transpositions fixes I. Without loss of generality, let that transposition be
(12). The for any i2, . . . , ik we have that

(12)0(34)i2 . . . (2k − 1, 2k)ik(I) = (12)1(34)i2 . . . (2k − 1, 2k)ik(I).

But the corresponding two summands have opposite signs, therefore xI = 0. Now
let |Bi ∩ I| = 1 for all i ∈ {1, 3, . . . , 2k − 1}. Then

(12)i1(34)i2 . . . (2k − 1, 2k)ik(I) ∈
(︄

[n]
k

)︄

13



give us all the coordinates J ∈
(︂

[n]
k

)︂
such that λk(J) ̸= 0. Moreover λk(α(J)) =

−λk(J), where α is one of the permutations (12), (34), . . . , (2k − 1, 2k). Since

a · λk =
∑︂

{b1,b3,...,b2k−1}
(−1)b1+···+b2k−1a{b1,...,b2k−1},

where the sum is taken over the sets {b1, b3, . . . , b2k−1} such that bi ∈ Bi for all
i ∈ {1, 3, . . . , 2k − 1}. It follows that xI = ±λk(I)(a · λk) = ±λk(I). This proves
that x = ±λk. Therefore Λk ⊆ V by Proposition 35.

2.2 Constants
The following lemma will allow us to reduce the question of whether symmetric
affine subspaces contain a constant to a question about symmetric vector sub-
spaces.

Denote
Ek = ⟨(1, . . . , 1)⟩ ≤ Z([n]

k )
p .

Lemma 37. A symmetric affine subspace a + V of the vector space Z([n]
k )

p such
that Ek ⊈ V contains a nonzero constant if and only if ⟨a⟩S + V contains a
nonzero constant.

Proof. (⇒) This is true since a + V ⊆ ⟨a⟩S + V .
(⇐) From the assumption and Lemma 34 we have that ⟨a⟩S + V = Ek ⊕ V .

Since a ∈ ⟨a⟩S + V = Ek ⊕ V , we have that a = i + v for some i ∈ Ek, v ∈ V .
Hence i = a−v ∈ a+V . If i = 0, then a = v ∈ V . Therefore a+V = V contains
a nonzero constant and so Ek ⊆ V , which is a contradiction.

The following proposition gives us a way to check that every symmetric affine
subspace contains a constant just by looking at Sym(n, k, p).

Proposition 38. Every symmetric affine subspace of Z([n]
k )

p with the space of
vectors V contains a constant tuple if the following conditions are true.

1. If Ek ⊆ V , then |E(V )| = 0,

2. if Ek ⊈ V , then |E(V )| = 1.

Proof. Let a+V be a symmetric affine subspace of Z([n]
k )

p which does not contain
a constant. Then V is a symmetric vector subspace of Z([n]

k )
p by Lemma 33. Since

a + V does not contain a constant, in particular we have that a + V ̸= V . If
Ek ⊆ V , then |E(V )| = 0 by our assumption. But τ(a+V ) ∈ E(V ) by Lemma 34,
which is a contradiction. If Ek ⊈ V , then |E(V )| = 1 by our assumption. Since
Ek ⊕ V ∈ E(V ) we have that E(V ) = {Ek ⊕ V }. Therefore ⟨a⟩S + V = Ek ⊕ V
because τ(a + V ) ∈ E(V ) by Lemma 34. It follows that ⟨a⟩S + V = Ek ⊕ V
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contains a constant nonzero tuple. By Lemma 37, a + V also contains a constant
nonzero tuple, which is a contradiction.

Corollary 39. Every symmetric affine subspace of Z([n]
k )

p contains a constant
tuple if the following conditions are true for every V ∈ Sym(n, k, p).

1. If Ek ⊆ V , then |E(V )| = 0,

2. if Ek ⊈ V , then |E(V )| = 1.

Proof. This follows immediately from Proposition 38.

The following lemma will help to further reduce the work of studying the
spaces in Sym(n, k, p) to only studying V ∈ Sym(n, k, p) which contain Λk.

Lemma 40. Let V ∈ Sym(n, k, p). Then W ∈ E(V ) if and only if W ⊥ ∈ S(V ⊥).
In particular, |E(V )| = |S(V ⊥)| for all V ∈ Sym(n, k, p).

Proof. If W ∈ E(V ), then we have that V ⊆ W and dim(W ) = dim(V ) + 1.
It follows that W ⊥ ⊆ V ⊥ and dim(V ⊥) = dim(W ⊥) + 1, which means that
W ⊥ ∈ S(V ⊥).

If W ⊥ ∈ S(V ⊥), then W ⊥ ⊆ V ⊥ and dim(V ⊥) = dim(W ⊥) + 1. It follows
that V ⊆ W and dim(W ) = dim(V ) + 1, which means that W ∈ E(V ).

The following lemma assures us that for n large enough the spaces Λk and Λ⊥
k

are sufficiently separated.

Lemma 41. There exists n0 ∈ N such that dim(Λk) ≥ dim(Λ⊥
k )+2 for all n ≥ n0.

Proof. We have dim(Λk) ≥ dim(Λ⊥
k ) + 2 if and only if dim(Λk) ≥ 1

2

(︂
n
k

)︂
+ 1

because dim(Λ⊥
k ) =

(︂
n
k

)︂
− dim(Λk). We also have that

dim(Λk) ≥
(︄

n

k

)︄
− 1 − n −

(︄
n

2

)︄
− · · · −

(︄
n

k − 1

)︄

because Λk is defined by 1 + n +
(︂

n
2

)︂
+ · · · +

(︂
n

k−1

)︂
equations. So we want that(︄

n

k

)︄
− 1 − n −

(︄
n

2

)︄
− · · · −

(︄
n

k − 1

)︄
≥ 1

2

(︄
n

k

)︄
+ 1

which is equivalent to

1
2

(︄
n

k

)︄
− 1 − n −

(︄
n

2

)︄
− · · · −

(︄
n

k − 1

)︄
− 1 ≥ 0.

The limit of the expression on the left is infinity and that is what we wanted to
prove.

15



Let Lk be the set of all symmetric vector subspaces of Z([n]
k )

p containing Λk.
Let V ∈ Lk, then we define σ(V ) = S(V ) ∩ Lk and ϵ(V ) = E(V ) ∩ Lk.

Lemma 42. If n is such that n ≥ 2k and dim(Λk) ≥ dim(Λ⊥
k ) + 2, then for all

V ∈ Lk it holds that ϵ(V ) = E(V ) and σ(V ) = S(V ).

Proof. The fact that ϵ(V ) = E(V ) is clear. If W ∈ S(V ), then dim(W ) + 1 =
dim(V ) ≥ dim(Λk) ≥ dim(Λ⊥

k ) + 2 by our assumption. Therefore dim(W ) ⪈
dim(Λ⊥

k ), so we cannot have that W ⊆ Λ⊥
k . It follows that Λk ⊆ W by Proposi-

tion 36, which means that W ∈ σ(V ).

The following proposition gives us a convenient way to check that every sym-
metric affine subspace contains constant just by looking at Lk.

Proposition 43. Let n ∈ N be such that n ≥ 2k and dim(Λk) ≥ dim(Λ⊥
k ) + 2.

Then every symmetric affine subspace of Z([n]
k )

p contains a constant tuple if the
following conditions are true for every V ∈ Lk.

1. If Ek ⊆ V , then |ϵ(V )| = 0,

2. if Ek ⊈ V , then |ϵ(V )| = 1,

3. if V ⊆ Σk, then |σ(V )| = 0,

4. if V ⊈ Σk, then |σ(V )| = 1.

Proof. For the sake of contradiction, let a + V be a symmetric affine subspace
of Z([n]

k )
p such that it does not contain a constant. Then V is a symmetric vector

subspace of Z([n]
k )

p by Lemma 33.
If V ∈ Lk and Ek ⊆ V , then |ϵ(V )| = 0 by our assumption. Then, we have

that |ϵ(V )| = |E(V )| = 0 by Lemma 42.
If V ∈ Lk and Ek ⊈ V , then |ϵ(V )| = 1 by our assumption. Then, we have

that |ϵ(V )| = |E(V )| = 1 by Lemma 42. So if V ∈ Lk, this proves that a + V
contains a constant by Proposition 38, which is a contradiction.

Now let V /∈ Lk. Then V ⊥ ∈ Lk by Proposition 36. If Ek ⊆ V , then V ⊥ ⊆ Σk

and |σ(V ⊥)| = 0 by our assumption. Therefore |E(V )| = |S(V ⊥)| = |σ(V ⊥)| = 0
by Lemma 42 and Lemma 40. If Ek ⊈ V , then V ⊥ ⊈ Σk and |σ(V ⊥)| = 1 by
our assumption. Therefore |E(V )| = |S(V ⊥)| = |σ(V ⊥)| = 1 by Lemma 42 and
Lemma 40. This again proves that a + V contains a constant by Proposition 38,
which is again a contradiction.
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2.3 Case k = 2
Now we prove a lemma which allows us to characterize symmetric affine subspaces
of Z([n]

2 )
p . Recall that we have a linear map φ : Z([n]

2 )
p → Z([n]

1 )
p × Z([n]

0 )
p given by

φ(a) = ((a{1}, . . . , a{n}), a∅).

It is clear from the definition that Ker(φ) = Λ2.

Lemma 44. Im(φ) = {((a1, . . . , an), b) ∈ Z([n]
1 )

p × Z([n]
0 )

p |∑︁n
i=1 ai = 2b}

Proof. (⊆) This obviously holds because in the equation ∑︁n
i=1 a{i} = 2a∅, we

have every coordinate a{k,l} twice on each side.
(⊇) Let n = 3. If p = 2, then we have the equation

a1 + a2 + a3 = 0.

It follows that |{a1, a2, a3} ∩ {1}| is even. Let |{a1, a2, a3} ∩ {1}| = 0, then
φ(0) = 0 and φ((1, 1, 1)) = ((0, 0, 0), 1). Let |{a1, a2, a3} ∩ {1}| = 2, without loss
of generality suppose that a1 = a2 = 1 and a3 = 0. Then φ(1, 0, 0) = ((1, 1, 0), 1),
where 1 in (1, 0, 0) is at the coordinate {1, 2}. And φ(0, 1, 1) = ((1, 1, 0), 0), where
1 in (1, 0, 0) is again at the coordinate {1, 2}.

Let p ≥ 3. We have that φ(x, y, z) = ((a1, a2, a3), b), where x is at coordinate
{1, 2}, y at {1, 3} and z at {2, 3}, if and only if the following equations hold

x + y = a1,

x + z = a2,

y + z = a3,

x + y + z = b.

These equations have a solution

x = a1 + a2 − a3

2 ,

y = a1 − a2 + a3

2 ,

z = −a1 + a2 + a3

2 .

Now let n ≥ 4. We have the equation ∑︁n
i=1 ai = 2b. It follows that (a1 − a4 −

a5 − · · · − an) + a2 + a3 = 2(b − a4 − a5 − · · · − an). So from the case n = 3, we
now get that there exists x ∈ Z([3]

2 )
p such that

(a1 − a4 − a5 − · · · − an) = x{1},

a2 = x{2},

a3 = x{3},

b − a4 − a5 − · · · − an = x∅.

Now by setting a{1,2} = x{1,2}, a{1,3} = x{1,3}, a{2,3} = x{2,3}, a{1,i} = ai, for
i = 4, . . . , n, and 0 at all other coordinates we get what we wanted.
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Remark. From the previous lemma it follows that n = dim(Im(φ)) = dim(Z([n]
2 )

p )−
dim(Λ2). This implies that dim(Λ2) =

(︂
n
2

)︂
−n. Therefore if we want the inequality

dim(Λ2) ≥ dim(Λ⊥
2 ) + 2

to be satisfied, we want (︄
n

2

)︄
− n ≥ n + 2

to be satisfied. So in this case we can choose n0 = 6 in Lemma 41.

In the following, by a symmetric subspace of Z([n]
1 )

p ×Z([n]
0 )

p we mean a subspace
V such that for all x ∈ V , we have that y ∈ V , where πi(y) = σ(πi(x)) for all
i = 0, 1 and σ ∈ Sn. By πi we mean the projection

πi : Z([n]
1 )

p × Z([n]
0 )

p → Z([n]
i )

p

on the i-th coordinate. In other words, we just permute x coordinatewise.

Theorem 45. If V is a symmetric subspace of Z([n]
1 )

p × Z([n]
0 )

p , then it is one of
the spaces in the following list

1. 0,

2. 0 × Z([n]
0 )

p = {(v, c) ∈ Z([n]
1 )

p × Z([n]
0 )

p |∀i ∈ [n] : vi = 0},

3. ⟨((1, . . . , 1), m)⟩ = {(v, c) ∈ Z([n]
1 )

p × Z([n]
0 )

p |v1 = v2 = · · · = vn ∧ v1 = mc},
for m ∈ Zp,

4. ⟨(1, . . . , 1)⟩ × Z([n]
0 )

p = {(v, c) ∈ Z([n]
1 )

p × Z([n]
0 )

p |∀i, j ∈ [n] : vi = vj},

5. Σ1 × 0 = {(v, c) ∈ Z([n]
1 )

p × Z([n]
0 )

p |c = 0 ∧∑︁n
i=0 vi = 0},

6. Z([n]
1 )

p × 0 = {(v, c) ∈ Z([n]
1 )

p × Z([n]
0 )

p |c = 0},

7. (Σ1×0)⊕⟨((m, 0, . . . , 0), 1)⟩ = {(v, c) ∈ Z([n]
1 )

p ×Z([n]
0 )

p |v1+v2+· · ·+vn = mc},
for m ∈ Zp \ {0},

8. Σ1 × Z([n]
0 )

p = {(v, c) ∈ Z([n]
1 )

p × Z([n]
0 )

p |∑︁n
i=0 vi = 0},

9. Z([n]
1 )

p × Z([n]
0 )

p .

Proof. Let V be any symmetric subspace. Let (v, c) ∈ V be any element. If v
is not constant, then we can switch the two unequal coordinates and substract
the result from (v, c), which gives us that Σ1 × 0 ⊆ V . This follows from the fact
that Σ1 is symmetrically generated by (−1, 1, 0, . . . , 0) as we have proven above.
Therefore dim(V ) is n − 1, n, or n + 1. If dim(V ) = n − 1, then Σ1 × 0 = V
because dim(Σ1 ×0) = n−1. If dim(V ) = n, then there exists (v, c) ∈ V \(Σ1 ×0)
and

V = (Σ1 × 0) ⊕ ⟨(v, c)⟩.
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If c = 0, then V = Z([n]
1 )

p × 0. If c ̸= 0 and ∑︁
vi = 0, then V = Σ1 × Z([n]

0 )
p .

Otherwise
V = (Σ1 × 0) ⊕ ⟨(v, c)⟩,

where c ̸= 0 and ∑︁n
i=1 vi ̸= 0. Dividing by c, we get that V = (Σ1 × 0) ⊕ ⟨(v, 1)⟩

and ∑︁n
i=1 vi ̸= 0.

Suppose that v, u ∈ Z([n]
1 )

p are such that
n∑︂

i=1
vi =

n∑︂
i=1

ui.

Then v − u ∈ Σ1. It follows that in this case we have

V = (Σ1 × 0) ⊕ ⟨(v, 1)⟩ = (Σ1 × 0) ⊕ ⟨(u, 1)⟩.

Therefore
V = (Σ1 × 0) ⊕ ⟨((i, 0, . . . , 0), 1)⟩,

for some i ∈ Zp \ {0}. This space is symmetric because as we have shown Σ1
is symmetrically generated by (−1, 1, 0, . . . , 0) so we can move i to any other
coordinate.

If for all (v, c) ∈ V we have that v is constant, then V ⊆ ⟨(1, . . . , 1)⟩ × Z([n]
0 )

p .
Therefore dim(V ) ≤ 2. If dim(V ) = 2, then V = ⟨(1, . . . , 1)⟩ × Z([n]

0 )
p . If

dim(V ) = 1, then V = ⟨(v, c)⟩ for (v, c) ̸= 0. If v = 0, then V = 0 × Z([n]
0 )

p .
If v ̸= 0, then V = ⟨((1, . . . , 1), i)⟩ for some i ∈ Zp. If dim(V ) = 0, then V = 0.

In the next corollary we provide a full classification of symmetric vector sub-
spaces of Z([n]

2 )
p . We list only the spaces which contain Λ2. The rest is obtained

as the orthogonal spaces to the spaces in the list.

Corollary 46. Let n ≥ 4. The symmetric subspaces of Z([n]
2 )

p are the following
and their orthogonal spaces.

If p = 2 and n is even:

• Λ2

• {a ∈ Z([n]
2 )

p |∀i ∈ [n] : a{i} = 0} = φ−1(0 × Z([n]
0 )

p )

• {a ∈ Z([n]
2 )

p |a∅ = 0 ∧ ∀i, j ∈ [n] : a{i} = a{j}} = φ−1(⟨((1, . . . , 1), 0)⟩)

• {a ∈ Z([n]
2 )

p |∀i, j ∈ [n] : a∅ = a{i} = a{j}} = φ−1(⟨((1, . . . , 1), 1)⟩)

• {a ∈ Z([n]
2 )

p |∀i, j ∈ [n] : a{i} = a{j}} = φ−1(⟨(1, . . . , 1)⟩ × Z([n]
0 )

p )

• Σ2 = φ−1(Σ1 × 0)

• Z([n]
2 )

p
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If p = 2 and n is odd:

• Λ2

• {a ∈ Z([n]
2 )

p |∀i ∈ [n] : a{i} = 0} = φ−1(0 × Z([n]
0 )

p )

• Σ2 = φ−1(Σ1 × 0)

• Z([n]
2 )

p

If p is odd:

• Λ2

• {a ∈ Z([n]
2 )

p |a∅ = n
2 ∧ ∀i, j ∈ [n] : a{i} = a{j}} = φ−1(⟨((1, . . . , 1), n

2 )⟩)

• Σ2 = φ−1(Σ1 × 0)

• Z([n]
2 )

p

Proof. This follows directly from Lemma 44 and Theorem 45. Since Ker(φ) =
Λ2, φ induces an isomophism

Z([n]
2 )

p /Λ2 → Im(φ).

This tells us that the spaces in L2 are in a bijection with the symmetric subspaces
of Im(φ). So we just look at the spaces in the list in the statement of Theorem 45,
which are contained in Im(φ) and take their preimages.

The following theorem gives a characterization of when all the symmetric
affine subspaces of Z([n]

2 )
p contain a constant. This is one of the most important

results of this thesis.

Theorem 47. Let n ≥ 6, p be a prime number. Then p does not divide n
(︂

n
2

)︂
if

and only if every symmetric affine subspace of Z([n]
2 )

p contains a constant tuple.

Proof. This follows directly from Proposition 43 and Corollary 46. As we have
already seen, n ≥ 6 implies that dim(Λ2) ≥ dim(Λ⊥

2 ) + 2, so Proposition 43
applies.

(⇒) If p = 2, then all the symmetric subspaces contained in Im(φ) by Corol-
lary 46 are

0, 0 × Z([n]
0 )

p , Σ1 × 0, Im(φ).
Therefore

L2 = {φ−1(0), φ−1(0 × Z([n]
0 )

p ), φ−1(Σ1 × 0), φ−1(Im(φ))}.
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It is clear that if V, W ∈ L2 and V ⊆ W , then

dim(W

V
) = dim(φ(W )

φ(V ) ).

The only V ∈ L2 such that E2 ⊆ V are φ−1(0 × Z([n]
0 )

p ) and φ−1(Im(φ)). In both
cases we clearly have that |ϵ(V )| = 0. It follows that the spaces V ∈ L2 such that
E2 ⊈ V are φ−1(0) and φ−1(Σ1 × 0). In both cases we have that |ϵ(V )| = 1. The
spaces V ∈ L2 such that V ⊆ Σ2 are φ−1(0) and φ−1(Σ1 × 0) = Σ2. In both cases
we have that |σ(V )| = 0. The spaces V ∈ L2 such that V ⊈ Σ2 are φ−1(0×Z([n]

0 )
p )

and φ−1(Im(φ)). In both cases we have that |σ(V )| = 1. This proves the result
for p = 2.

Now let p be odd. All the symmetric subspaces contained in Im(φ) by Corol-
lary 46 are

0, ⟨((1, . . . , 1), n

2 )⟩, Σ1 × 0, Im(φ).

Therefore

L2 = {φ−1(0), φ−1(⟨((1, . . . , 1), n

2 )⟩), φ−1(Σ1 × 0), φ−1(Im(φ))}.

The only V ∈ L2 such that E2 ⊆ V are φ−1(⟨((1, . . . , 1), n
2 )⟩) and φ−1(Im(φ)). In

both cases we clearly have that |ϵ(V )| = 0. It follows that the spaces V ∈ L2 such
that E2 ⊈ V are φ−1(0) and φ−1(Σ1 × 0). In both cases we have that |ϵ(V )| = 1.
The spaces V ∈ L2 such that V ⊆ Σ2 are φ−1(0) and φ−1(Σ1 × 0) = Σ2. In
both cases we have that |σ(V )| = 0. The spaces V ∈ L2 such that V ⊈ Σ2 are
φ−1(⟨((1, . . . , 1), n

2 )⟩) and φ−1(Im(φ)). In both cases we have that |σ(V )| = 1.
So the result follows from Proposition 43.

(⇐) Let p divide
(︂

n
2

)︂
. Then E2 ⊆ Σ2 and (1, 0, . . . , 0) + Σ2 is a symmetric

affine subspace which does not contain a constant. Indeed v = (1, 0, . . . , 0) is not
in Σ2 because v∅ = 1. Further, we have that π(v)∅ = v∅, therefore v − π(v) ∈ Σ2.
This tells us that v + Σ2 is a symmetric affine subspace that does not include a
constant because v + Σ2 ̸= Σ2 and E2 ⊆ Σ2. That is a contradiction.

Let p divide n, then

⟨((1, . . . , 1), 0)⟩ ⊆ Σ1 × 0 ⊆ Im(φ).

Therefore
U = φ−1(⟨((1, . . . , 1), 0)⟩) ⊆ Σ2.

In other words, we have that
E2 ⊆ U⊥.

Define

(χK)I =
⎧⎨⎩1 K ⊆ I

0 K ⊈ I,

for any K ⊆ [n] and I ∈
(︂

[n]
2

)︂
. Then we have that χK · a = aK for all a ∈ Z([n]

2 )
p .

Therefore χ{1} ∈ Λ⊥
2 but χ{1} /∈ U⊥ because

U = {x ∈ Z([n]
2 )

p |x∅ = 0 ∧ x{1} = x{2} = · · · = x{n}}.
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Therefore the affine space χ{1} + U⊥ ̸= U⊥. Moreover, we have that π(χ{1}) =
χπ({1}). Therefore χ{1} − π(χ{1}) ∈ U⊥ for all π ∈ Sn. So the affine subspace
χ{1} + U⊥ is symmetric but does not contain a constant since E2 ⊆ U⊥.
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3. Symmetric Operations and
Relations
In this section, we are going to study symmetric relations and relate them to the
existence of a k-WNU term operation of arity n. We are going to use results
of the previous chapter to prove that under some conditions, a Taylor algebra
has a 2-WNU term operation of arity n. First, we begin with the definition of a
symmetric relation. After that, we will define a k-WNU term operation.

Definition 48. R ⊆ A([n]
k ) is symmetric if for all permutations π : [n] → [n] and

all a ∈ R it holds that b ∈ R, where bπ(I) = aI , for all I ∈
(︂

[n]
k

)︂
. We denote b by

π(a). R ⊆ (A([n]
k ))A2 is called symmetric, if for all x ∈ R, we have that y ∈ R,

where (y)(a,b) = π((x)(a,b)) for all (a, b) ∈ A2. We also denote y = π(x).

Definition 49. An algebra A is said to have a k-WNU term operation of arity
n if there exists t ∈ Clo(A) such that for all (a, b) ∈ A2 and for all x, y ∈ {a, b}n

we have that t(x) = t(y), whenever |{i : xi = a}| = |{i : yi = a}| = k.

Now we define elements, which will allow us to relate the existence of a k-
WNU term operation to the existence of a constant in the algebra generated by
these elements. Let x1, . . . , xn ∈ (A([n]

k ))A2 be such that

((xi)(a,b))M =
⎧⎨⎩a i ∈ M

b i /∈ M

for all (a, b) ∈ A2 and M ∈
(︂

[n]
k

)︂
. Then we have that σ(xi) = xσ(i) for all i ∈ [n]

and σ ∈ Sn. Indeed
σ(xi)(a,b) = σ((xi)(a,b)).

So we need to prove that

σ((xi)(a,b)) = (xσ(i))(a,b).

This is true becasue

(σ((xi)(a,b)))M = ((xi)(a,b))σ−1(M)

and we have that

((xσ(i))(a,b)))M =
⎧⎨⎩a σ(i) ∈ M

b σ(i) /∈ M
.

Since we have that σ(i) ∈ M if and only if i ∈ σ−1(M), the result follows.
An element x ∈ An is said to be constant if all its coordinates are equal. An

element x ∈ (A([n]
k ))A2 is called constant if x(a,b) is constant for all (a, b) ∈ A2.

In the following proposition we relate the existence of a k-WNU term operation
to the existence of a constant in a certain relation.

Proposition 50. An algebra A has a k-WNU term operation if and only if the
subalgebra of (A([n]

k ))A2 generated by x1, . . . , xn contains an element c such that
(c)(a,b) is constant for all (a, b) ∈ A2.

23



Proof. (⇒) This direction is clear.
(⇐) Let B be the subalgebra generated by x1, . . . , xn containing a constant

c ∈ B. Then we know by Proposition 13 that B = {t(x1, . . . , xn)|t ∈ Clon(A)}.
This says that there exists a term operation t of arity n such that for all (a, b) ∈ A2

and for all x, y ∈ {a, b}n we have that t(x) = t(y), whenever |{i : xi = a}| = |{i :
yi = a}| = k. And this means that t is a k-WNU term operation.

In the following proposition, we prove that if all symmetric subalgebras con-
tain a constant, then the subalgebra generated by x1, . . . , xn contains a constant.
This is equivalent to the existence of a k-WNU term operation on A by the
previous proposition.

Proposition 51. Let A be a finite algebra, such that every symmetric subalgebra
C ≤ A([n]

k ) contains a constant. Then the subalgebra B of (A([n]
k ))A2 generated by

x1, . . . , xn contains an element c such that (c)(a,b) is constant for all (a, b) ∈ A2.

Proof. Let π(a,b) : (A([n]
k ))A2 → A([n]

k ) be the projectin on the coordinate (a, b).
We claim that the projection π(a,b)(B) is symmetric. This is true because as we
said for all i ∈ [n] we have that σ(xi) = xσ(i). Then, since these generators are
symmetric, we have that B is symmetric, therefore π(a,b)(B) is symmetric. Since
π(a,b)(B) is just a projection of B and π(a,b)(B) contains a constant tuple by our
assumption for all (a, b) ∈ A2, there is an element z ∈ B such that π(a,b)(z) is
constant. Since A is idempotent, C = {x ∈ (A([n]

k ))A2|π(a,b)(x) = π(a,b)(z)} is a
subuniverse of (A([n]

k ))A2 . Let (c, d) ∈ A2 be such that π(c,d)(z) is not constant.
Since B is symmetric, we have that C is symmetric. Therefore π(c,d)(C) is sym-
metric and it contains a constant by our assumption. So now we get y ∈ B such
that π(c,d)(y) is constant and π(a,b)(y) is constant. We can continue like this until
we get what we want.

The following lemma is needed to prove Lemma 53. If X is a set, then by
(︂

X
k

)︂
we denote the set of all subsets of X of size k.

Lemma 52. Let n, l ≥ 2k + 1, X be a set of size n, M, N ∈
(︂

X
k

)︂
, (p1, . . . , pl) ∈

{0, . . . , k − 1}l. Then there exist sets

M = M0, M1, M2, . . . , Ml = N

which are all in
(︂

X
k

)︂
and |Mi−1 ∩ Mi| = pi for all i ∈ {1, . . . , l}.

Proof. We prove this by induction on k. If k = 1, then the statement is clear.
Let k > 1. Without loss of generality let X = [n]. If pi < k − 1, we set p′

i = pi.
If pi = k − 1, we set p′

i = k − 2.
We can find sets M1 and M2 such that |M ∩ M1| = p1, |M1 ∩ M2| = p2,

M2 ̸= N and M2 ∩ N ̸= ∅. Indeed, first suppose that M = N , then we can find
M1 such that |M ∩ M1| = p1. Secondly, we find p2 elements in M1 and add them
to M2, if needed we find an element in M = N and add it to M2. Then we find

24



the remaining elements in [n]\ (M1 ∪N) and add them to M2. Now suppose that
M ∩N = ∅. Then we will find M1 such that |M ∩M1| = p1 and M1∩N ̸= ∅. Then
we find M2 such that |M2 ∩ M1| = p2 and M2 ∩ N ̸= ∅ and M2 ̸= N . Therefore,
without loss of generality, we may suppose that M ̸= N and M ∩ N ̸= ∅, because
we apply the induction hypothesis to a set of size k − 1, so we can decrease l by
2 if we need to.

It follows that, without loss of generality, we may find 1 ∈ M ∩ N and
2 ∈ X \ (M ∪ N). These elements exists because M ∩ N ̸= ∅. Now we use
induction hypothesis on M ∩ {3, . . . , n}, N ∩ {3, . . . , n}, the set X = {3, . . . , n}
and (p′

1, . . . , p′
n). So we get a sequence of subsets of X

M ∩ {3, . . . , n} = M0, M1, M2, . . . , Ml = N ∩ {3, . . . , n},

such that |Mi−1 ∩ Mi| = p′
i for all i ∈ {1, . . . , n}.

Now we add 1 and 2 in the obtained sets to get what we want. First we add
1 in M0. If p′

1 ̸= p1, then we add 1 in M1, otherwise we add 2 in M1. Further
if p′

2 ̸= p2, then we add the element in M1 ∩ {1, 2} to M2, otherwise we add the
other element. Now, we continue doing the same with the other sets. If, after
completing this procedure, we end up with N , then we are done. Otherwise, we
choose 1 ∈ M \ N and 2 ∈ N \ M . These elements exists because M ∩ N ̸= ∅.
Now we add 2 in Ml instead of 1. This will give us what we want.

Let I, J, K, L ∈
(︂

[n]
k

)︂
be such that |I ∩ J | = |K ∩ L|. Let R ⊆ A([n]

k ) be a
symmetric relation, and (x, y) ∈ RI,J . Then there exists a ∈ R such that aI = x
and aJ = y. There also exists a permutation π ∈ Sn such that π(I) = K,
π(J) = L and π(I ∩ J) = K ∩ L. It follows that b = π(a) ∈ R, and that
bK = aI = x, bL = aJ = y. Therefore (x, y) ∈ RK,L. So we have proved that if
|I ∩ J | = |K ∩ L|, then RI,J = RK,L.

The following lemma is crucial in order to prove Theorem 55.

Lemma 53. Let ≺ be a stability concept on HSPfin(A), C ≺ B such that
C ̸= B, R ≤ B([n]

k ) be a symmetric subdirect relation for n ≥ 2k + 1. Then there
exist sets I1, J1, . . . , It, Jt such that D = C + RI1,J1 + · · · + RIt,Jt ̸= B and for any
I, J ∈

(︂
[n]
k

)︂
we have that (D + RI,J) ∩ D ̸= ∅. Moreover we have that D ≺ B.

Proof. If there does not exist I, J ∈
(︂

[n]
k

)︂
such that (C + RI,J) ∩ C = ∅, then

we are done. Otherwise set I1 = I and J1 = J . In particular we have that
C + RI,J ̸= B. Now we can continue doing the above with C + RI,J . Lemma 52
and the discussion above assures us that the procedure will end after at most
2k + 1 steps. Indeed, suppose that

D = C + RI1,J1 + · · · + RIt,Jt .

First notice that

C + RX1,Xm ⊆ C + RX1,X2 + · · · + RXm−1,Xm .

This follows directly from the definition. Now let M, N ∈
(︂

[n]
k

)︂
be any sets and

define pi = |Ii ∩ Ji| for all i ∈ {1, . . . , t}. From Lemma 52, we obtain subsets of
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[n] of size k
M = M1, M2, . . . , Mt, Mt+1 = N,

such that |Mi ∩ Mi+1| = pi for all i ∈ {1, . . . , t}. Then from the discussion above,
we have that RIi,Ji

= RMi,Mi+1 . Hence

D = C + RM1,M2 + · · · + RMt,Mt+1 .

Therefore C + RM,N ⊆ D. In particular, this means that D + RI,J cannot be
disjoint from D, for all I, J ∈

(︂
[n]
k

)︂
, because they both contain C + RM,N for all

M, N ∈
(︂

[n]
k

)︂
.

The fact that D ≺ B, follows from Lemma 29.

Definition 54. We call a triple (n, k, p) ∈ N3, where p is a prime number and
k ≤ n, suitable, if every symmetric affine subspace of Z([n]

k )
p contains a constant.

The next theorem is one of the most important results of this thesis.

Theorem 55. Let n ∈ N be such that n ≥ 2k + 1. If an algebra A is Taylor
and (n, k, p) is suitable for all prime numbers p such that p ≤ |A|. Then A has
a k-WNU term operation of arity n.

Proof. Without loss of generality, we may assume that A is minimal Taylor, oth-
erwise we can pass to a minimal Taylor reduct by Proposition 26. By Theorem 28,
there exists a stability concept ≺ on HSPfin(A). To prove that there exists a
k-WNU term operation of arity n we just have to prove that every symmetric
subalgebra of A([n]

k ) contains a constant by Lemma 51 and 50.
We prove the this by induction on |A|, the case |A| = 1 is clear. So let

R ≤ A([n]
k ) be a symmetric relation. Without loss of generality, we may suppose

that R is a subdirect relation. Because if it isn’t, we can take R ∩ R
([n]

k )
I ≤ R

([n]
k )

I

for any coordinate I and then use induction hypothesis on the algebra R
([n]

k )
I and

relation R∩R
([n]

k )
I which is again symmetric. (RI = RJ for all I, J ∈

(︂
[n]
2

)︂
because

R is symmetric.)

(Case 1) There exists B ≺ A such that B ̸= A.
Then we may find C ≺ A such that (C + RI,J) ∩ C ̸= ∅ for all I, J ∈

(︂
[n]
k

)︂
by

Lemma 53.
Notice that RI,J ∩ (C × C) ̸= ∅ if and only if (C + RI,J) ∩ C ̸= ∅. So by

Lemma 31, R ∩ C([n]
k ) ̸= ∅. And now we can use the induction hypothesis on

R ∩ C([n]
k ) ≤ C([n]

k ).

(Case 2) There is some proper congruence θ ∈ Con(A) such that A/θ is an
abelian algebra.

Then, since A is finite, we can find a maximal congruence η/θ ∈ Con(A/θ).
Then

(A/θ)/(η/θ) ≃ A/η
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is abelian simple minimal Taylor. The fact that it is simple follows from the
fact that η/θ is maximal, it is abelian because quotients of abelian algebras are
abelian and it is minimal Taylor by Proposition 24. This means that Clo(A/η) =
Clo(A/η; x−y+z), where +, − are abelian group operations, and |A/η| is a prime
number by Proposition 25. From the remark after Proposition 25, it follows that
we can consider R/η to be a symmetric affine subspace of Z([n]

k )
p , where by R/η

we mean the set of all equivalence classes of the relation where two elements of R
are related if all their coordinated are related by η. Since (n, k, p) is suitable for
all p ≤ |A|, we have that R/η contains a constant. The quotient R/η contains a
constant, it follows that there exists a tuple a ∈ R such that all its coordinates
are in one equivalence class [c]η. Because A is idempotent, [c]η is a subuniverse
of A. So we can restrict R to [c]η, the restriction is again symmetric, and use
induction hypothesis.

Corollary 56. If an algebra A is finite Taylor and n ∈ N satisfy the following:

1. n ≥ 6,

2. if p is a prime number such that p ≤ |A|, then p does not divide n
(︂

n
2

)︂
,

then A has a 2-WNU term operation of arity n.

Proof. This follows directly from Theorem 55 and Theorem 47.
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Conclusion
In this thesis we studied symmetric relations and symmetric affine subspaces of
Z([n]

k )
p . For k = 2 we have obtained satisfying answers. In the other cases the

problem is more complicated and we have not been able to solve it.
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