
MASTER THESIS

Michal Jurčo

Data Lineage Analysis Service for
Embedded Code

Department of Distributed and Dependable Systems

Supervisor of the master thesis: doc. RNDr. Pavel Parízek, Ph.D.
Study programme: Computer Science

Study branch: Software and Data Engineering

Prague 2023

I hereby declare that I have authored this thesis independently, and that all sources
used are declared in accordance with the “Metodický pokyn o etické přípravě
vysokoškolských závěrečných prací“.
I acknowledge that my thesis (work) is subject to the rights and obligations arising
from Act No. 121/2000 Coll., on Copyright and Rights Related to Copyright and
on Amendments to Certain Laws (the Copyright Act), as amended, (hereinafter as
the “Copyright Act“), in particular § 35, and § 60 of the Copyright Act governing
the school work.
With respect to the computer programs that are part of my thesis (work) and
with respect to all documentation related to the computer programs (“software“),
I hereby grant the so-called MIT License. The MIT License represents a license
to use the software free of charge. I grant this license to every person interested
in using the software. Each person is entitled to obtain a copy of the software
(including the related documentation) without any limitation, and may, without
limitation, use, copy, modify, merge, publish, distribute, sublicense and / or sell
copies of the software, and allow any person to whom the software is further
provided to exercise the aforementioned rights. Ways of using the software or the
extent of this use are not limited in any way.
The person interested in using the software is obliged to attach the text of the
license terms as follows:
Copyright (c) 2023 Michal Jurčo
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software“), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sub-license, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the Software. THE SOFTWARE
IS PROVIDED “AS IS“, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-
INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

In Prague date .
Author’s signature

i

This way I would like to thank my supervisor, doc. RNDr. Pavel Parízek, for his
guidance, help and motivation while working on this thesis.
Thanks should also go to RNDr. Lukáš Hermann for his invaluable assistance
regarding MANTA Flow platform and mentorship.
I am especially grateful to my fiancée, Kristýna, who has shown her never-ending
support and love throughout my studies that helped me get this far.
Last but not least, I want to thank my family and my cats for always providing
comfort when I needed it.

ii

Title: Data Lineage Analysis Service for Embedded Code

Author: Michal Jurčo

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Pavel Parízek, Ph.D., Department of Distributed and
Dependable Systems

Abstract: Data integration tools often use embedded code for data manipulation
tasks. Popular examples of such tools include AWS Glue data integration service,
Databricks platform, Snowflake data cloud or SQL Server Integration Services
(SSIS). Embedded code is typically written in programming languages such as
Python, Java, C# or JavaScript. Manta Flow is an automated platform that can
analyze data lineage in database models, data pipelines of data integration tools,
and in application source code, but it lacks the ability to analyze embedded code.
In this work, we discussed potential ways to extend the capabilities of Manta Flow
with the ability to analyze data lineage in embedded code. We created a general
design of a reusable Embedded Code Service that leverages the existing potential
of data flow analysis of source code, and uses it to analyze embedded code. We
implemented a specialization of this service for the Python programming language,
and to demonstrate its usefulness, we designed and implemented a prototype
of data lineage scanner for AWS Glue data integration service. This scanner
extensively uses the service to analyze data lineage in embedded Python scripts,
which we demonstrated on a realistic example.

Keywords: data lineage data flow embedded code python AWS Glue

iii

Contents

1 Introduction 3
1.1 Data lineage . 4
1.2 Embedded code . 5
1.3 AWS Glue . 6
1.4 Goals . 6
1.5 Glossary . 6
1.6 Outline . 7

2 Manta Flow platform 8
2.1 Manta Flow overview . 8
2.2 Manta graph . 9
2.3 Scanners . 9

2.3.1 Connector . 10
2.3.2 Dataflow Generator . 10

2.4 Dataflow Query Service . 11
2.5 Programming Language Scanners 14

2.5.1 Data flow analysis of source code 14

3 Requirements and Analysis 20
3.1 Purpose of embedded code analysis 20
3.2 Requirements from Manta . 21

3.2.1 Functional requirements 21
3.2.2 Qualitative (non-functional) requirements 23

3.3 Source technology analysis . 24
3.3.1 Embedded code usage philosophy 29

3.4 Embedded Code Service analysis 30
3.4.1 Merging graphs together 31
3.4.2 Specifying runtime configuration 33
3.4.3 Caching . 33

4 Design And Implementation Of Embedded Code Service 35
4.1 Embedded Code Service design 35

4.1.1 Multiple programming languages 35
4.1.2 Orchestration . 37
4.1.3 Result . 37

4.2 Python scanner changes . 39
4.2.1 Spring framework . 39
4.2.2 Running the scanner without scenarios 40
4.2.3 Python scanner design and Spring configuration 40
4.2.4 Interfaces . 41
4.2.5 Components . 41
4.2.6 Insight and Outsight . 45

4.3 Python Embedded Code Service implementation 47
4.3.1 Interface . 47
4.3.2 Result . 48

1

4.3.3 Orchestration . 48
4.3.4 Testing . 49

5 AWS Glue Scanner 50
5.1 Motivation . 50
5.2 AWS Glue analysis . 50

5.2.1 Overview . 50
5.2.2 Data lineage in AWS Glue 53
5.2.3 AWS Glue API . 54
5.2.4 ETL job metadata . 55
5.2.5 Data Catalog metadata . 56
5.2.6 Analyzing ETL jobs . 58
5.2.7 Analyzing Data Catalog 60

5.3 Design of AWS Glue scanner . 60
5.3.1 Connection scope . 61
5.3.2 AWS Glue Connector design 61
5.3.3 AWS Glue Dataflow Generator design 63

5.4 Implementation of AWS Glue scanner 64
5.4.1 Extraction . 64
5.4.2 Manta Flow integration 65
5.4.3 Plugin for awsglue library 65

6 Evaluation 66
6.1 ETL job example . 66
6.2 Limitations and Future Work . 68

6.2.1 Other programming languages 69
6.2.2 AWS Glue scanner . 69
6.2.3 Python scanner improvements 69

7 Conclusion 74

List of Figures 77

A Attachments 78
A.1 User Documentation . 78
A.2 Contents of the Attachment . 78

2

1. Introduction
Prior to the advent of computers, data processing was predominantly a manual

task that involved a considerable amount of time, effort, and the potential for
human errors. Organizations, particularly businesses, faced challenges in han-
dling large volumes of data efficiently and accurately. This led to a demand for
automated systems that could streamline data processing and eliminate the limi-
tations associated with manual methods. The development of computers offered a
solution to these challenges by providing a means to automate data-related tasks.
It allowed storing and processing larger amounts of data than ever before.

A couple of decades later, data is one of the most important resources for many
companies. It helps them run their business more efficiently and make better
business decisions. Data pipelines have emerged as crucial components in modern
business infrastructures. In general, a data pipeline refers to a system or framework
that facilitates the flow of data from various sources to its destination, typically
for processing, analysis, storage, or visualization. It is a series of interconnected
steps or processes that enable the extraction, transformation, and loading (ETL)
of data, ensuring that it moves efficiently and reliably through the pipeline.

A simple example of a data pipeline might be saving contents of a form filled
by a customer on a web page to a database. Another, a more complex one might
be a preparation of marketing success report where data from recent sales stored
in an accounting system are correlated with a list of latest advertising campaign
exported from a marketing tool and compared with customer satisfaction form
result which might be stored in a database as in the previous example. It is easy
to see that these pipelines might become long and complex and that they can
be chained one after the other. Less obvious is that they are often facilitated by
multiple systems. It would be easier to manage if they were facilitated by one,
but there are often reasons why that is not possible. There is no universal tool,
each serves a different purpose. A database is great for storing data and fast
queries over large data sets, ETL tools are good in data transformations, reporting
tools are great for data visualization and analytic and machine learning tools are
essential for data science. There might even be a legacy system that cannot be
easily migrated to a different platform. They all compose a data environment
which serves one purpose - to run business more effectively and make good business
decisions.

As the Greek philosopher Heraclitus said, the only constant in life is change.
This statement is fitting for data environments, because they always change. A
new column is added to a schema, two are removed, a new process is introduced
or an existing one needs to be modified or fixed etc. A change may span across
multiple systems or a modification in one of them may influence others that
depend on it. Planning it can become a nightmare, because even if there is a
support for impact analysis in each system, there is none environment-wide and
has to be prepared manually. That is why additional processes were developed
that help making changes with predictable outputs, without causing errors and
that ensure data correctness afterwards. One of such processes is called data
lineage.

3

1.1 Data lineage
Data lineage is a process of mapping and visualizing data flows within a

data environment. It tracks data as they flow from various sources to their
destinations and their transformations with aim to help manage and develop data
environments. It provides a comprehensive understanding of how data is acquired,
manipulated, and utilized within an organization. Data lineage offers several
benefits to businesses and data professionals. Firstly, it enhances data governance
and regulatory compliance by ensuring transparency and traceability of data. It
enables organizations to meet the requirements of various regulations such as
GDPR or CCPA. Secondly, data lineage improves data quality and accuracy by
identifying data inconsistencies, errors, or gaps in the data flow. This helps in
identifying and rectifying issues promptly, leading to reliable and trustworthy data
insights. Additionally, data lineage facilitates data discovery, data integration,
and data analytics processes, as it provides a clear understanding of data origins
and transformations. It enables faster troubleshooting and root cause analysis,
reducing the time and effort required for resolving data-related issues. Overall,
data lineage plays a crucial role in maximizing the value of data assets and ensuring
data integrity, trust, and accountability within an organization.

Data lineage can be obtained by hand from teams of analysts that map data
environments or, more recently, using one of the automated systems that are
being developed. Manual data lineage analysis is time- and labor-intensive, so
developing automated solutions can provide more up-to-date results and decrease
costs.

Manta Flow is an automated data lineage platform. It can analyze complex
data environments consisting of various databases, data integration and reporting
tools and applications in Java, C# or Python. Using metadata extracted from
each connection to a system, Manta Flow computes data lineage graphs where
vertices represent data sources and directed edges represent data flows between
them. At first, a graph is constructed and stored for each individual connection.
When the data lineage is visualized, the graphs are retrieved from the repository
and combined together to show a graph of the entire environment.

Figure 1.1: An example of a combined data lineage graph

To illustrate this with an example, let us have an ETL tool which contains a
pipeline writing data into table A of database XYZ and a reporting tool which
visualizes data from this table in a report. The analysis would produce three

4

graphs:

• an ETL tool graph which contains data pipeline data flow ending with a
write to table A,

• a database XYZ graph which represents table A and its columns,

• a reporting tool graph that contains data read from table A into a report.

These graphs would be visualized as one unified data lineage, as seen in Figure 1.1.

1.2 Embedded code
Various data processing, management and analytic tools have been developed to

allow their users to extract important pieces of information from the vast amounts
of data they collect. These tools often provide graphical interface for creating data
pipelines consisting of commonly used data sources and transformations. Using
such tool opens data pipeline management to a wider, less technically proficient
audience, so business-oriented employees can be involved more closely in the
development. An example of such tool may be AWS Glue platform where users
may define their ETL pipeline using graphical interface with multiple data sources,
transformations and joins without having to write a single line of code. However,
data can be very dynamic and different and it would be difficult to define every
possible data transformation that the users might require. In such cases these
tools often allow extending the pipeline with embedded code.

Embedded code is a piece of code provided by the user that is safely executed
in the context of the tool and can perform (almost) any desired task. It is often
a function or a script. Popular examples of tools that support embedded code
include already-mentioned AWS Glue, but also Databricks platform, Snowflake
data cloud or SQL Server Integration Services (SSIS) etc. Programming languages
used in embedded code often include the popular and well-known ones such as
Python, Java, Scala or C#.

Embedded code can be used to perform a data transformation in an ETL
pipeline that is not included in the standard toolbox, read data from an unsup-
ported data source or to create a user-defined database function that cannot be
written efficiently in SQL.

Data flow analysis of embedded code is a crucial missing link in Manta Flow.
It can analyze both data pipeline metadata and standalone Python, Java or C#
applications, but there is no support when such a piece of code is a part of the
pipeline. Missing embedded code data lineage causes logical gaps in the holistic
data lineage and decreases its usability, because these gaps have to be filled in by
hand. Following the recent surge in demand for data science and machine learning
solutions where especially Python is the programming language of choice, the
number of enterprises that use embedded code in their data environment has also
risen significantly. This drives the market demand for data lineage solutions that
can cope with it. As there are currently no solutions that can reliably provide
such data lineage, extending the current capabilities of Manta Flow to analyze
data lineage in application source code with the ability to also analyze embedded
code shall provide it a significant competitive advantage.

5

1.3 AWS Glue
AWS Glue is a serverless data integration service that makes it easier to

discover, prepare, move, and integrate data from multiple sources for analytics,
machine learning and application development. It performs data processing on
Apache Spark engine in a cloud environment. Data pipelines are defined using
embedded code, supported programming languages are Python and Scala. They
can also be created from the GUI, where the tool generates the corresponding
pipeline code. This service is especially convenient for companies that already use
other AWS services as it can efficiently use such resources.

AWS Glue has been on top of the list of technologies to be supported by
Manta Flow based on customer enquiries. There is currently very limited support
for automated AWS Glue data lineage on the market, so offering it provides a
competitive advantage. As the pipelines consist of embedded code, analyzing
it is the best, although a very difficult way to extract data lineage information.
However, Manta Flow can already analyze Python and Bytecode (Scala is compiled
into Bytecode) applications. Providing support for embedded code analysis is
therefore a direct prerequisite for a successful AWS Glue data lineage solution.

1.4 Goals
The goal of this thesis is to design a data lineage analysis service for embedded

code in Manta Flow that will enable integration of data lineage graph from
data processing and analytic tools with the data lineage graph derived from the
embedded code.

One of the main tasks is to create a solid design of the service that should
be easily extendable with support for new tools and their embedded code in the
future. Benefits and usefulness of this design will be then demonstrated on a
prototype implementation of the service for AWS Glue and the embedded code
written in Python.

Other specific tasks include a proof-of-concept implementation of a metadata
extractor for AWS Glue and modifications to the existing Python scanner. A
very important aspect of the service is high performance, because it will be called
many times during a run of the Manta Flow analysis platform, specifically every
time the analysis processes a statement that executes a piece of embedded code.

1.5 Glossary
Let us define a few important terms that are often used in this work.

• Data flow refers to the path and direction of data movement, capturing
the sequence of transformations and processing steps that data undergoes
throughout its lifecycle.

• Data lineage is the record of the origin, transformations, and movement of
data, providing a clear and traceable path from its source through various
processes and systems to its destination.

• Manta Flow is a state-ot-the-art automated data lineage analysis platform.

6

• We will use the term data technology to uniformly reference databases, ETL
and reporting tools. This term shall simplify naming all systems, frameworks,
platforms and tools that can be used for data processing and management
in the work.

• Manta scanner is a component of Manta Flow specialized to perform data
lineage analysis for one data technology.

• Embedded code is a piece of code (a script, a class, a package) embedded
in a data technology that is executed in a specific runtime environment to
perform a specific task.

• Metadata refers to descriptive and contextual information about data, en-
compassing details such as data source, format, structure, meaning, and
other attributes.

• In the context of embedded code analysis, source technology is the data
technology that uses embedded code, or from a different point of view, a
data technology that is the source of embedded code.

• Embedded Code Service is a service for data lineage analysis of embedded
code.

1.6 Outline
This thesis is split into several chapters. In introduction we briefly describe

the motivation and the goal of the thesis. In the second chapter we describe
important aspects of MANTA Flow platform with which the service developed
in this thesis is integrated in. Chapter 3 is dedicated to a detailed problem
analysis and we formulate our requirements there. Chapter 4 delves into design
and implementation of embedded code service and changes that were made to
Python scanner. In chapter 5 we take a look at the design and proof-of-concept
implementation of AWS Glue scanner, which uses Embedded Code Service for
data flow analysis of embedded Python code. In chapter 6 we demonstrate
the functionality of implemented features on several examples and discuss the
limitations of the implementation. Finally, in conclusion we sum up what we
achieved in this work and how we did it.

7

2. Manta Flow platform
Before we get into the details of data lineage analysis service for embedded code,

let us first introduce and describe Manta Flow platform. It is the platform that the
service is integrated with and influences many of the design and implementation
decisions. It also gives some examples of solutions to similar problems we will
encounter, which we will use as an inspiration in our solutions.

2.1 Manta Flow overview
Manta Flow is an automated data lineage platform that scans data environment

to build and visualize a graph of all data flows (as seen in Figure 2.1) within
it. This graph enables its users to get better visibility and control of their data
processes. The emphasis is on automation, Manta Flow requires little intervention
apart from configuration and can perform data lineage analysis in a matter of
hours to days, compared to manual analysis which can take weeks to months, so
the visualization provides up-to-date information.

Data lineage analysis is based on the analysis of metadata and scripts extracted
from the connected systems. Metadata contain information about schema and
structure of internal entities and their relations. Scripts contain data processing
and transformation logic applied on these entities. It is not possible to construct
complete data lineage from just one of these sources.

Manta Flow is made up of three major components.

• Manta Flow CLI is a Java command line application that extracts all
metadata and scripts from source data technologies, analyzes them, sends
all gathered metadata to the Manta Flow Server, and optionally, processes
and uploads the generated export to a target metadata database.

• Manta Flow Server is a Java server application that stores all gathered
metadata inside its metadata repository, transforms it to a form suitable for
import to a target metadata database, and provides it to its visualization or
third-party applications via API.

• Manta Admin UI is a Java server application providing a graphical and
programming interface for installation, configuration, updating, and overall
maintenance of Manta Flow.

Each data environment consists of a different set of data technologies. Each
data technology stores its internal data in a different metadata structure and
provides a different API to access it. To be able to analyze the entire environment,
Manta Flow CLI uses a wide range of proprietary scanners, currently there are
over 40. Each scanner can connect to and analyze data lineage of a single data
technology to accommodate its specific structure. It produces a common metadata
output uploaded to Manta Flow Server’s repository. This architecture allows an
easier support of a new data technology by developing a new scanner.

8

Figure 2.1: An example of data lineage visualization in Manta Flow

2.2 Manta graph
The common output of all scanners is a data structure called Manta graph. It

allows to capture both data environment structure and data flows within it. A
graph consists of nodes (vertices) and edges between them. A node may represent a
data source or a transformation, e.g., a database table column, a report dimension
or a union of columns. Edges are directed and represent data flow from one node
to the other.

Nodes have a layered structure to allow representation of a logical hierarchy.
This is expressed in a child-parent relationship between nodes, e.g., a server node
could be a parent to several database nodes, each database node would have table
node children and in each table there would be column node children. However,
only the nodes on the lowest level can be connected with data flow edges (e.g.
columns). This hierarchy is important for visualization to simplify grouping of
related nodes such as all columns of a table and to define node paths.

Each node is identified by a unique path derived from its name and names of
its ancestor nodes, which enables merging the same entity and associated data
flows in different graphs. For example, if an MSSQL database table is a source
of a view in that same database and is also used in a report in SSRS reporting
tool, a node representing it will be created with the same identification in MSSQL
scanner output and in SSRS scanner output. Manta Flow Server is then able to
merge these outputs to visualize one node with two distinct data flows. This can
be seen in Figure 2.1 where SSRS nodes are framed in a different shade of green
than those belonging to MSSQL.

2.3 Scanners
Scanners are important building blocks of Manta Flow. The role of a scanner

is to analyze data lineage in systems of a particular data technology. Ins and outs
of each data technology are different, so each scanner does its job in a different
way, but they all have a similar structure. They consist of two main components,
a Connector and a Dataflow Generator.

9

2.3.1 Connector
The purpose of a Connector component is to facilitate a connection to the

analyzed system and prepare metadata for analysis. That consists of two steps,
metadata extraction and creation of a general model from the extracted metadata.

Extractor

Metadata extraction is performed by the Extractor sub-component of the
Connector. Its goal is to connect to the analyzed system using the configured
connection options (URL, credentials or access tokens) and extract all metadata
required for data lineage analysis. Metadata can contain information such as
database schema, definition of reports with all dimensions and facts that are
used in them or enumeration of ETL pipelines with their sources, destinations
and individual transformations. Other artifacts could be extracted, too, such as
scripts of any kind, configuration etc. All extracted resources are stored locally in
one place so that the analysis can be executed in offline mode, that is, without
requiring an active connection to any of the systems. The format in which they are
stored is not important, however most often the format of raw extracted metadata
is used.

Database scanners usually go one step further and create a so-called data dic-
tionary from the extracted metadata. Data dictionary stores schema of extracted
database resources in a universal data structure that is able to accommodate
different hierarchical arrangements of databases. It is a kind of pre-processing so
this information can be readily used by other scanners in the later stages of the
analysis should they need it. Extraction is always executed before other stages of
data flow analysis for all scanners.

Reader

The other sub-component of a Connector is called Reader. Its purpose is to
read extracted metadata and create a general model that can be used for data flow
analysis. This model serves as an interface between a Connector and a Dataflow
Generator. It helps to create an abstraction of metadata, because its format or
the way it is read may change in time.

2.3.2 Dataflow Generator
Dataflow Generator discovers data flows in target systems using the extracted

inputs. The output of such analysis is a Manta graph. There are multiple steps in
this process and the specifics vary between different scanners. Usually it includes
translating structured metadata into nodes and edges following data flow rules.
Suppose that we have created a report in a tool such as Tableau. We used a
database view as our data source and we visualized one of the columns as a
dimension in the report. Furthermore, we computed another dimension from two
other columns. Dataflow Generator would create nodes for the view columns,
nodes for the dimensions in the report and then add edges between the columns
and dimensions in question.

10

Database scanners also analyze queries and scripts present in databases. There
are Data Definition Language (DDL) scripts which define database objects (tables,
views, triggers, stored procedures etc.). Analyzing them is more complicated than
creating data flows based on metadata. The algorithm for processing database
queries and scripts is based on parsing a well-defined language. For example, a
database view is created from a database query, so first, the query is resolved, the
columns of the tables included in the query are created and then connected with
the corresponding view columns.

2.4 Dataflow Query Service
Sometimes, a scanner for one data technology runs into a database query that

defines a data source. It is a common feature of many reporting and analytic
tools. It would not make sense to include a support for each SQL dialect in all
such scanners, firstly because it is quite complicated, but also because there are
scanners that can process it already. Furthermore, there might not be enough
information in the context of this scanner to resolve such query. Take for example
a query SELECT * FROM TABLE_A. The scanner doesn’t know the columns present
in TABLE_A, so it is not possible to provide an accurate representation.

Dataflow Query Service is a component that was introduced to help with
processing of embedded SQL queries. It provides a unified service interface, which
allows launching execution of a database scanner on a small input, that can be
used by other data technologies. It works by selecting the appropriate scanner
for the provided input, executing data flow analysis and merging the resulting
sub-graph into the graph of the original data technology scanner.

One of the main benefits of this service is that it uses data dictionaries created
by each scanner in the extraction phase, therefore it has access to extracted
database schemas, which allows it to resolve exact columns for queries such as
SELECT * FROM TABLE_A. It is also useful in situations when details about the
target systems are unknown or unresolved, the service has the ability to deduce
columns from available information and to choose the appropriate scanner from
the provided connection details.

Overview

In general, there are three pieces of information needed to analyze an SQL
query:

• Connection data - connection type, connection string, server hostname (at
least connection string or server name is needed).

• Default data - default database, default schema, connecting user (as appli-
cable) in case connection data is not available or not recognized.

• Query or embedded script text.

If the data technology scanner has all of the above information, it constructs
a Connection object directly, otherwise it is expected to perform connection
mapping by retrieving the required data from manual configuration. Connection

11

and query text are inputs for Dataflow Query Service. Next, dictionary mapping is
performed, that is, an appropriate target scanner and a persisted data dictionary
is selected based on Connection data. The selected scanner is invoked with
query text, data dictionary and defaults, which provides the result in form of a
DataflowQueryResult. The data technology then uses this result to connect the
result nodes to the relevant nodes in the host graph and to merge these graphs
together.

External connections

One of the main purposes of DataflowQueryResult is to perform connection
to external nodes. The purpose of embedded queries is to provide data for further
processing, therefore we would like to connect the nodes of the query objects with
other nodes in the lineage, e.g., connect database columns with data fields in a
report. These connection points are unknown to the query scanner and the host
scanner doesn’t understand the query in advance, so the result graph contains
extra nodes called pin nodes.

Pin nodes represent an input to a node representing query parameter or an
output from a query resultset column. After the query is analyzed and its graph
is created, the service adds these pin nodes and connects them with appropriate
edges to the result nodes. Then, the host scanner might provide a mapping from
pin nodes to nodes in the host graph. The service creates new edges from pin
nodes to host graph nodes (and vice versa, depending on the direction) based on
the provided mapping and then contracts the pin nodes, thus effectively connecting
the resultset column node or a parameter node with the host graph node. Should
any pin node remain unmatched, it is filtered out in the filtering task later in the
process. Pin node mapping is depicted in Figure 2.2.

Figure 2.2: A diagram of the pin node mapping process

12

Architecture

DataflowQueryService is a common interface that provides methods for client
scanners for analyzing SQL queries or creating hierarchical database structures.
This interface is implemented by:

• Individual database query services that contain logic for providing data
flows or hierarchical database structures.

• Proxy class called DataflowQueryServiceImpl that wraps all other individ-
ual query services. It is a classic implementation of a proxy class that chooses
a specific query service based on information provided in the connection
from the caller and delegates the operation.

A simplified class diagram is depicted in Figure 2.3.

Figure 2.3: A simplified class diagram of Dataflow Query Service

13

2.5 Programming Language Scanners
It might seem that analyzing all databases, ETL, reporting and analytic tools

could yield a complete data lineage of an environment, but the fact is that these
are not all data technologies that take part in data pipelines. There are also other
applications, often developed by the companies themselves that engage in data
processing. As these applications are unique, the only thing they have in common
with other applications is the programming language used to write the source
code. Therefore, the only universal way to analyze them is to perform the data
flow analysis of the source code.

Programming language scanners are one of the most complex scanners in Manta
Flow. There are currently three of them: Bytecode scanner, C# scanner and
Python scanner. The scope of processes that can be expressed in a programming
language is much greater and more complex compared to other data technologies.
These scanners perform static code analysis to analyze data flows in the application
and construct data lineage graph.

Static code analysis is a method of analyzing source code without executing it.
It involves examining the code’s structure, syntax, and logic to observe certain
properties. Often it is used to improve code quality and detect issues that could
lead to runtime errors or security vulnerabilities, but it can have many other
use-cases.

There are other ways to analyze the code, but they are not suitable in the
situations where Manta Flow is used. We cannot run the code for the analysis
purposes, because it causes side effects (the pipeline would be executed). We
also don’t want to force the customers to modify the source code to record the
events that are happening for the purposes of data lineage analysis, because often
there are hundreds to thousands of code files that they want to analyze. It would
be very labour intensive and minimizing labour is one of the reasons they use
Manta Flow. We can only look at the code, so static analysis remains as the most
suitable option.

The goal of this static analysis is to find where data is read into the application,
track it across all transformations and then find where it is written out. This proved
to be a difficult task. There are several approaches for static code analysis, but none
of them is aimed at data lineage, so a custom algorithm had to be developed. It uses
symbolic analysis and an iterative approach along with multiple optimisations to
produce limited results in a limited environment. These limitations are computing
power, memory space and time. Manta Flow is expected to run in a common
enterprise environment on a machine with a standard multi-core CPU, a reasonable
RAM size (e.g. 32GB). Furthermore, the analysis is expected to end in the span
of hours up to a few days. Due to that the output focuses on visualizing data
reads and writes and data flows between them but it does not show details of
intermediate transformations.

2.5.1 Data flow analysis of source code
Let us describe how this analysis works in more detail. It will help us un-

derstand problems and solutions later in this work. All programming language
scanners follow a similar workflow, but they implement each step in a little dif-

14

ferent way due to the differences between the languages. Let us focus more on
the details of Python scanner as it will be more relevant for the rest of this work.
The structure of programming language scanners is also a bit different from other
scanners, the core of the data flow analysis is performed by the Reader component
as opposed to Dataflow Generator in other scanners. We shall explain why later
in this section when more context is provided. A workflow diagram can be seen
in Figure 2.4.

Figure 2.4: A simplified diagram of Python scanner workflow

Let us use the following simple Python program called json_to_csv.py shown
in Figure 2.5 as an example. The program converts a JSON file to CSV format.
Firstly, a JSON file is read using a built-in Python library json. Then, using a
popular Python library for data manipulation called pandas, the contents of a
JSON file are converted to a data frame, which is an abstraction of tabular data.
Finally, the data frame is written to a file in CSV format. Clearly, the data flow
in this program is pointing from the JSON file to the CSV file. Let us now take a
look what at happens inside the Python scanner to this program.

1 import pandas as pd
2 import json
3

4 # Loads json from file
5 def get_customer_data () :
6 with open ("customer_data.json") as file :
7 return json . load (file)
8

9 customer_data = get_customer_data ()
10 df_customer = pd . json_normalize (customer_data)
11

12 df_customer . to_csv ("customer_data.csv")

Figure 2.5: Sample Python program json_to_csv.py

Source code extraction

The first step is source code extraction. Before the analysis can begin, all
inputs need to be collected and arranged in the form they are expected to be in.

15

The applications usually consist of the application code and of external libraries.
The user only needs to provide the source code they wrote (so in our example only
json_to_csv.py). The code of supported 3rd party libraries (json or pandas)
that are used is added by the scanner as it stays the same across different use
cases. When the files are collected and arranged, an extraction configuration is
generated which captures the structure of the input and allows the user to specify
which functions or modules should be considered as analysis entry point.

Analysis entry point is the routine that shall be considered as a starting point
of a program execution. Usually, it can be the main method in Java or C# or the
module containing __main__ block in Python, but in general it can also be any
other function, method or module. This defines the starting point of the analysis,
and from that point, function invocations and variable assignments are tracked.
In our example, it would be the json_to_csv.py module.

Source code extraction is a standalone step and represents metadata extraction
for programming language scanners. It is a part of Extractor component.

Input processing

Now we are moving to Reader component of Python scanner. In this initial
step of data flow analysis, the extracted inputs are read from file system and
pre-processed. In Python, this involves parsing of the source code into a convenient
internal representation. There are a few data structures that need to be created
in this step because they are used in the following ones.

One of these structures is class hierarchy, which helps with the detection of
invocation targets (this is implemented in Bytecode and C# scanners, but not yet
in Python scanner). The other, more important for the algorithm is call graph.
It captures caller-callee relationship between executables (functions, methods,
modules) in the application. A caller is the executable that invokes another
executable in its body, a callee is the executable that is being invoked by another
executable. Call graph helps to find which other executables need to be analyzed
again after the analysis of one, because its result might influence the callers and
callees. This will be explained in more detail later.

Alias analysis

Aliases are different expressions that might reference the same value. It is
important to analyze assignments in the application to resolve these aliases,
because a value assigned into one of these expressions has to be propagated into
all aliases. Similarly, if a value in an expression is modified, so it is in all of the
aliases. An alias could be understood as a synonym to a reference, but it tracks a
few more cases than just references. Figure 2.6 shows how an alias can be created.

1 foo = "Hello World!
2 bar = foo # bar now aliases the same value as foo does

Figure 2.6: An example of an alias

16

Symbolic analysis

With all the preparatory steps done, we now have everything ready for symbolic
analysis, which is the core of the data flow analysis. It is based on an iterative
analysis of executables and propagating data flows between symbolic expressions
as defined by assignments and function invocations.

Data flows (or shortly just flows) represent a meaningful data lineage informa-
tion in the source code. We can split flows into two groups. Metadata flows are
flows that represent any form of data flowing in the program, for example data
read from a database, file etc. These do not represent a concrete value, but rather
its meta representation, e.g. a column in a database table. The other group are
value flows which track a possible runtime value of a variable. Even though we
mentioned that we do not execute the code, we need to track string values in code,
because they can be used for identification of resources, such as file or column
names. In our example, these values contain names of the files that the data is
read and written to.

To find the data flows, the algorithm analyzes executable invocations. An
invocation consists of the body of an executable (instructions) and arguments.
The arguments contain the flows for function parameters that the function was
invoked with and in Python also flows of global variables, which can be also
accessed. If the same function is called with two different sets of arguments, they
are two different invocations.

The invocations are analyzed in an order defined by a worklist (an enhanced
queue) in a loop until it is empty. At first, it contains the entry point. At the
beginning of each loop, the first invocation is removed from the worklist and
analyzed. When an invocation is analyzed, a so-called executable summary is
computed. This summary contains flows of expressions at each instruction in the
executable. Consider this part of the example code:

customer_data = get_customer_data()

Firstly, the flow of the return value of the get_customer_data() call is resolved
and assigned to its corresponding symbolic expression. Next, this flow is looked
up and assigned to the flow of the expression customer_data etc. When the
processing of an invocation is finished, a complete executable summary is stored
in a cache.

To keep the algorithm going, we need to add new invocations into the worklist.
When the analysis finds an instruction representing an invocation, it is not
processed recursively. After all, the point of using a worklist is to avoid recursion
which can cause stack overflow very easily. Instead, it has to be looked up. At this
point, it matters whether the invoked function comes from application code or
from a library. For application functions, the summary of the invocation is looked
up in the cache. If it has been already computed, it is used to resolve the flow of
the return value. If not, it is added to the worklist and will be computed later.

If the function comes from library code, it is not analyzed at all. The goal is
to analyze application source code, not the code of the libraries. Library code is
known to us in advance, so instead of analyzing it instruction after the instruction,
we can directly create the returned data flow. Python scanner contains many data
flow plugins which implement flow propagations for different libraries and they
are the main area of improvements of the scanner. Of course, it is not possible

17

to cover each function in each library, so plugin development is aiming at those
libraries that are most widely used. If such function is not covered by a plugin,
there is a fallback identity handler. It propagates flows of the arguments to the
return value. It is not the most accurate propagation, but it keeps the algorithm
going.

Getting back to how worklist is filled, new invocations of application executables
are added at its end. When there were such invocations, the current invocation
is also added to the worklist so when the new invocations are computed, the
current invocation could be updated with their summaries. Also, if its summary
has changed from the last time it was computed, it is necessary to recompute
its callers, that is, invocations that called it. They might not be anymore in the
worklist, but the changed summary of the current invocation may have an effect
on them so they need to be recomputed. We can easily find callers from the call
graph that was computed in input processing phase.

When there are no more changes to the summaries, the algorithm has reached
a stable point and the symbolic analysis is considered to be over.

Output transformation

The result of symbolic analysis contains a lot of executable summaries. That
is however not the result we can call a data lineage graph. We need to transform
the result of data flow analysis to a data lineage graph. During the symbolic
analysis, when we come across an invocation that represents a data input or an
output such as database select or file write, on top of propagating the flow in the
summary we also register it. Then, to transform the result into a graph, all we
need to do is to iterate over the summaries and find the registered flows.

Flows are implemented in such a way that they track their origin, so an output
flow contains the source of the data that is written out. Not all output flows
contain a valid input, so some filtering has to be applied during the transformation,
but eventually nodes for inputs and outputs are created along with corresponding
edges. It might seem that we only need to register output flows and we can find
the input flows in them, but we also register input flows in case there is an unused
one (an unused input can still cause an error during program execution).

The result of the transformation is called a connector output. It is not yet a
Manta graph, but rather a boilerplate for creating it. It contains the information
about nodes that should be created and which nodes should be connected with
edges. The reason for it is that all programming language scanners create a very
similar output so creating a Manta graph from such output can be implemented
once and used by all scanners.

Generating Manta graph

Finally, the last step of the analysis is to generate a Manta graph from a
connector output. This happens in Dataflow Generator component and as already
mentioned, there is one common generator for all programming language scanners.
All analytic work has already been done, so the generator simply reads the
connector output and creates corresponding nodes in the Manta graph. Should
there be any SQL queries, it uses Dataflow Query Service to resolve them. The
graph that is created is considered the output of the scanner. A visualization of

18

the data lineage graph created from the json_to_csv.py example can be seen in
Figure 2.7.

Figure 2.7: Visualization of the data lineage from the example

19

3. Requirements and Analysis
Following the description of Manta Flow platform, we now have enough

information required to understand and discuss the problem of embedded code
analysis in its context. In this chapter we will first present a motivational example
for embedded code analysis, discuss requirements set by Manta Flow stakeholders,
analyze multiple data technologies that support embedded code and finally we
will discuss how to integrate embedded code analysis into scanners.

3.1 Purpose of embedded code analysis
We have already briefly explained what embedded code is and why it makes

sense to analyze it in Manta Flow. Let us present an example that will support
this explanation. It can help us build a better understanding of the motivation
and illustrate some of the challenges that we need to overcome.

This example is based on a real customer inquiry. A company has decided to
move a part of their systems from self-hosted solution to a cloud-based solution.
The migrated system cleans, pre-processes and combines data from multiple
sources to create a high-quality data source for business analyses. They decided to
use AWS (Amazon Web Services) as their cloud service provider. The new pipeline
uses Amazon S3, Amazon Redshift and AWS Glue. Amazon S3 is a cloud object
storage which is often used to store files used by other services. Amazon Redshift
is a data warehousing service based on PostgreSQL database and optimized for
scalability and big data processing. AWS Glue is an ETL tool which we have
already introduced and will work with later in the thesis. The transformation
jobs in AWS Glue are written in Python. The new pipeline that the customer
developed roughly follows these steps (shown in Figure 3.1):

1. Files containing raw unprocessed data are uploaded to Amazon S3.

2. An AWS Glue job is executed which reads these files and normalizes the
data - fills empty values, normalizes column names, etc. and stores it in a
common data format under curated files on Amazon S3.

3. Other AWS Glue jobs can be executed which read one or several curated
files, combine the data and store it in a table in Amazon Redshift.

4. Amazon Redshift is the final destination of this data pipeline. It is then
used as a data source for visualisations and analytics.

Figure 3.1: A diagram of data flows in the pipeline

20

Projects of this magnitude may take several months to complete, involve tens
of employees who spend hundreds to thousands of man-days working on it. At
this scale, it is important to keep a good overview on the progress to complete the
project successfully. The customer has previously used Manta Flow to analyze
different systems and would like to use it on this project as well. They would
like to use it initially to watch the migration process and ensure that the new
pipeline behaves correctly and no processes have been missed. After the project is
over, they would like to continue using it to help with maintenance and problem
resolution. The final dataset is a source for important financial and customer
behavior analyses which directly impact many business decisions, so it is critical
that the data is assembled correctly and data lineage visualization can help in
that effort.

A careful reader might ask how data lineage analysis of embedded code can
help the customer. The pipeline consists of two data storage technologies, Amazon
S3 and Amazon Redshift, which are only the locations where data is stored. In
order to see how values of, for example, the average_price column in the Sales
table are computed, we need to look at one of the AWS Glue ETL jobs. An
AWS Glue job runs a Python or Scala script on Apache Spark engine, which is a
popular engine for large-scale data analytics. Therefore to provide the data lineage
graph, we must run data flow analysis of the job’s embedded code. When the
analysis is successful, we just need to click on the average_price column node in
the visualized graph to see the data lineage of how its value is computed. Without
it we would have to locate and inspect the job manually, which might not be easy
among 10s or 100s of them.

3.2 Requirements from Manta
As this work was commissioned by and developed in cooperation with Manta,

the company that develops the Manta Flow platform, they have set certain
requirements that the final solution should fulfill. In this section we will first state
a requirement and then we will follow-up with a discussion about its motivation
and implications. We will also use a new term source technology. In the context
of embedded code analysis, the source technology is the data technology that uses
embedded code. In the previous example, the source technology is AWS Glue
which uses Python embedded code.

3.2.1 Functional requirements
These requirements define what the solution needs to and needs not to do.

Embedded code analysis

Provided a code script (string/file, not important implementation detail) and
configuration, the service analyzes the script and delivers lineage graph for that
script. This requirement is pretty straight-forward, it describes what is to be
delivered.

Firstly, we shall discuss why a service is required. Service is a wide term and
its concrete meaning depends on the context. There is already Dataflow Query

21

Service present in Manta Flow which handles the analysis of embedded database
queries and scripts. In its core it is a Java bean (a class that encapsulates one
or more objects into a single standardized object) which uses specific parts of
database scanners to process the queries. It is called a service, because it is a
reusable component (a bean) that can be used by any scanner and it provides its
services through a standardized interface with a specific input and output. The
solution described in this work, Embedded Code Service, is in many ways similar
to Dataflow Query Service so it is expected to be used similarly.

The service shall accept embedded code as one of its inputs. That is different
from how scanners in Manta Flow usually work, because they collect their inputs
themselves. It shall also accept configuration. What will it be used for? Scanners
in Manta Flow have many configurable properties which influence their execution,
users may modify them in Manta Admin UI. It must be possible to configure how
embedded code is analyzed using these properties, too. Additionally, from the
description of embedded code we know that it is executed in the environment
provided by the data technology. This environment can differ from standard
runtime environment, so any differences (e.g. environment variables, pre-included
libraries) need to be passed to the service in some way - in the configuration.

The last part of this requirement describes that the service shall perform data
flow analysis of the input and provide the data lineage graph on the output for
further processing. Contrary to the standard scanner workflow, the Manta graph
should not be uploaded to Manta Flow Server, but returned in the return value.

Graph merging

The service can merge the lineage graph with the lineage graph of parent data
technology when provided a node to be merged with. This requirement extends the
previous one and describes what is to be done with the output.

Each scanner produces one Manta graph for one input. When it uses a service
to process a part of the input that creates other graphs, they need to be merged.
Furthermore, edges can be created only between nodes present in the graph, so
if there is a data flow between the objects in the source technology graph and
objects in the embedded code graph, they need to be merged into one so that
the edge representing the data flow can be added. The merge operation is not
a trivial process, so it shall be the responsibility of the service to implement it.
The benefits are easy to see, no need to implement it each time the service is
used across different scanners, which improves maintainability of the solution and
also there is no need to understand it outside of the service. The developers may
simply use the service interface to merge the results.

Multi-purpose service

The service can support multiple parent data technologies - technologies that
support usage of user-defined embedded code. This requirement states that the
service is multi-purpose, so there is one such service available instead of there
being many services for processing embedded code in each data technology.

22

3.2.2 Qualitative (non-functional) requirements
On top of the definition of functionality of the solution, there are also some

requirements defining its qualities.

Optimized for scanning

The service should be optimized to handle tens to hundreds of scripts for a
specific combination of technology-scanner in one analysis - the limitation should
be the speed of the scanner, not the speed of the service. In general, the service
can be expected to be used multiple times by one scanner when it processes
one connection, there may be several embedded code scripts. It is important to
keep that in mind in its design. The service is intended to facilitate data lineage
scanning and most of its execution time should be spent doing so. All other work
that the service needs to do shall be reasonably optimized so that this overhead
does not add up to a lot when it is called multiple times. This requirement does
not intend to include specific scanner optimizations that can be made to improve
the overall execution time of the service as they shall be evaluated after this
solution is implemented and are outside of the scope of this work.

Extendibility

Extending supported data technologies should be simple, adding the support for
a new data technology should only include collecting its configuration in the data
technology scanner and implementing this configuration in Embedded Code Service.
It is expected that the list of the scanners that use the service will grow in time
based on customer requirements and available development capacity. The service
shall be designed in a way that promotes extendibility so that the effort required
to add the support for a new data technology is minimised. This can be done by
splitting the code base to a common and a specific part so that it is obvious what
needs to be added or modified in order to extend the service.

Code reuse

Maximize code reuse. Reuse the existing scanners and logic. Scanners for
analyzing programming language source code are very complex. We shall use
the existing scanners and make only the necessary modifications to be able to
analyze embedded code. Developing one scanner for analyzing both applications
and embedded code is a preferred way from resource allocation perspective.

Code duplication

Minimize code duplication, no logic should be written on more than one place.
One of the purposes of the service is to hide repeating blocks of code that are tied
with its usage. Deduplication improves maintainability, because when a process
needs to be changed, it only needs to be changed in one place instead of in multiple
location. One of the examples of such practice is graph merging logic mentioned
in one of the previous requirements.

23

3.3 Source technology analysis
Before we dive further into the analysis, we need to examine which source

data technologies, whether currently supported by a scanner in Manta Flow or
planned, use embedded code. Limiting to these technologies is driven by business
requirements, it does not make sense to support analysis of embedded code in a
data technology that is not used by any current or prospective customer. This
overview will give us a better understanding of the range of embedded code
use-cases, their similarities and differences.

Hive

Hive is a distributed data warehouse system that allows users to read, write and
manage big volumes of data using SQL. Starting from version 0.13.0, it supports
writing user-defined functions in Java which accept parameters and return a value.
The function is implemented in a class that extends a Hive UDF base class. Base
classes define methods that shall be implemented by the function implementation
and will be invoked in specific order on SQL query execution. The function class
is then supposed to be packaged in a JAR that will be dynamically loaded into
the Hive environment. The function is declared using CREATE FUNCTION SQL
statement which references the JAR [1]. An example of a user-defined function
implementation that turns a string into lower case can be seen in Figure 3.2.

1 package com . microsoft . examples ;
2

3 import org . apache . hadoop . hive . ql . exec . Description ;
4 import org . apache . hadoop . hive . ql . exec . UDF ;
5 import org . apache . hadoop . io . ∗ ;
6

7 @Description (
8 name="ExampleUDF" ,
9 value="returns a lower case version of the input string."

10)
11 public class ExampleUDF extends UDF {
12 // Accept a string input
13 public String evaluate (String input) {
14 // If the value is null, return a null
15 if (input == null)
16 return null ;
17 // Lowercase the input string and return it
18 return input . toLowerCase () ;
19 }
20 }

Figure 3.2: An example of a Hive user-defined function written in Java [2]

Microsoft SQL Server

Microsoft SQL Server enables users to implement stored procedures, triggers,
user-defined types, user-defined functions (scalar and table valued), and user-
defined aggregate functions using any .NET Framework language, including

24

Microsoft Visual Basic .NET and Microsoft Visual C#. They can be implemented
by arbitrary classes and methods as long as they are properly annotated. These
annotations facilitate the lookup and binding between SQL Server and embedded
code. Compiled code is distributed in DLL and loaded into the environment using
SQL syntax [3].

SQL Server Integration Services (SSIS)

SSIS is a platform for data integration and transformation solutions. It provides
graphical tools for building ETL workflows, but it is also possible to create custom
objects programmatically in C# or Visual Basic. These include tasks, connection
managers, log providers, enumerators and data flow components. Implementations
of custom objects are expected to extend one of the base classes provided by SSIS,
to override required methods and to use proper attributes. These objects are
then distributed as a compiled class library. This is a similar approach as that of
MSSQL [4].

1 using System ;
2 using System . Data ;
3 using Microsoft . SqlServer . Dts . Pipeline . Wrapper ;
4 using Microsoft . SqlServer . Dts . Runtime . Wrapper ;
5

6 [Microsoft . SqlServer . Dts . Pipeline .
SSISScriptComponentEntryPointAttribute]

7 public class ScriptMain : UserComponent
8 {
9 public override void CreateNewOutputRows ()

10 {
11 // Accessing input column values
12 string inputColumnValue = string . Empty ;
13 if (Variables . MyInputColumn != null && Variables .

MyInputColumn . Length > 0)
14 {
15 inputColumnValue = Variables . MyInputColumn [0] . ToString ()

;
16 }
17

18 // Performing some transformation on the input column value
19 string outputColumnValue = inputColumnValue . ToUpper () ;
20

21 // Creating new output rows
22 Output0Buffer . AddRow () ;
23 Output0Buffer . MyOutputColumn = outputColumnValue ;
24 }
25 }

Figure 3.3: An example of an SSIS script component written in C#

In an example shown in Figure 3.3, a script component is defined as a
class which inherits from the UserComponent base class provided by SSIS. The
CreateNewOutputRows method is overridden to implement the desired logic.
Within it we can access the input column values using the Variables object, which
provides access to the input columns. In this example, the value of the first input

25

column (MyInputColumn) is retrieved and stored in the inputColumnValue vari-
able. Next, a transformation is performed on the input column value (in this case,
converting it to upper case), and the result is stored in the outputColumnValue
variable. Finally, a new output row is added using the OutputBuffer object, and
the transformed value is assigned to the output column (MyOutputColumn).

Snowflake

Snowflake Data Cloud is a cloud-based data storage and analytics service. It
is common to use SQL to interact with data in Snowflake and embedded code is
integrated in a similar way in the form of functions and stored procedures. Apart
from SQL, these can be written in multiple programming languages - Java, Scala,
JavaScript or Python. Each language used has (slightly) different capabilities and
requirements. In case of JavaScript, it can be used to execute SQL statements and
interact with the result to provide a return value. Java, Scala and Python scripts
have to contain a function or a method with the first argument of type Session
from Snowflake’s Snowpark library. This argument will be populated by Snowflake
when the procedure or the function is invoked and is used for interaction with
Snowflake platform [5].

1 CREATE OR REPLACE PROCEDURE my_stored_procedure (param1 STRING ,
param2 INT)

2 RETURNS STRING
3 LANGUAGE PYTHON
4 AS
5 $$
6 import snowpark as sp
7

8 @sp . session
9 def my_snowpark_function (session) :

10 # Create a DataFrame using the provided parameters
11 df = session . range (0 , param2) . select (sp . lit (param1) . alias (’

Value’))
12

13 # Perform some transformations on the DataFrame
14 transformed_df = df . withColumn (’Length’ , sp . length (df [’Value

’]))
15

16 # Convert the transformed DataFrame to a Pandas DataFrame
17 pandas_df = transformed_df . toPandas ()
18

19 # Generate a summary string
20 summary = pandas_df . describe () . to_string ()
21

22 return summary
23

24 # Call the Snowpark function with the provided parameters
25 return my_snowpark_function (param1 , param2)
26 $$;

Figure 3.4: An example of a Snowflake stored procedure written in Python

In an example shown in Figure 3.4, we are creating a stored procedure written
in Python that takes two parameters, a string and an integer. The body of

26

the stored procedure contains a Python function named my_snowpark_function.
This function uses the Snowpark session decorator to establish a session with
Snowflake. Within the function, we create a Snowpark DataFrame and perform
some transformations on it. In this example, we add a new column Length that
calculates the length of the Value column. Next, we convert the transformed
Snowpark DataFrame to a Pandas DataFrame and generate a summary string
from it. Finally, the stored procedure calls the my_snowpark_function function
with the provided parameters and returns the summary string.

Databricks

Databricks is a web-based data platform that combines data warehouses and
data lakes with analytics build on Apache Spark and IPython-style notebooks.
These notebooks are interactive computational environments. They consist of
a sequential combination of cells which may contain rich text, embedded code,
data visualization etc. Embedded code cells may be written in Python, Scala,
SQL or R and it is possible to combine cells written in different languages in one
notebook. During a notebook execution, cells written in the same language are
executed in the same runtime environment and may interact with the runtime
environments for other languages using the shared context of Apache Spark [6].

Let us have a notebook consisting of a Python cell (shown if Figure 3.5) and
an SQL cell (shown in Figure 3.6). The Python cell sets the value of the shared
variable which is then printed to the standard output. The SQL cell showcases
how to access the shared variable within an SQL statement using the $ symbol. In
this example, we update the value of the column1 column using the value stored
in the shared variable.

1 # Define a shared variable
2 dbutils . shared . notebook . set ("my_shared_variable" , "Hello , Databricks

!")
3

4 # Access the shared variable
5 shared_value = dbutils . shared . notebook . get ("my_shared_variable")
6 print (shared_value)

Figure 3.5: Python cell of a Databricks notebook

1 -- Update a table using the shared variable in SQL
2 UPDATE my_table
3 SET column1 = $my_shared_variable
4 WHERE condition ;

Figure 3.6: SQL cell of a Databricks notebook

AWS Glue

AWS Glue is a fully managed ETL service provided by Amazon Web Services
(AWS). It simplifies the process of preparing and loading data for analytics, data

27

warehousing, and other data-related tasks. With AWS Glue, we can create and
schedule ETL jobs to automate the data transformation and loading process. It
handles the execution, monitoring and orchestration of these jobs. ETL jobs
leverage the underlying Apache Spark framework for distributed data processing.
Each job is defined in a script written in Python or Scala. This script can be
written manually or the job’s workflow is built in an interactive GUI and the
code is generated automatically. Compared to other data technologies, AWS Glue
is built entirely on embedded code. That means that each ETL job is executed
entirely by a single Python or Scala script as opposed to only parts of data
operations in other data technologies [7].

The example in Figure 3.7 shows the code of an ETL job that performs
data processing and transformation, combining data from different sources and
storing the result in an Amazon S3 bucket. Firstly, we read data from the
specified database and tables into dynamic frames on which we perform data
transformations. The products frame is modified by dropping certain fields and
renaming one. Multiple joins are applied to the frames, first between products
and purchases, and then between the resulting frame and suppliers. The
resulting frame is written to an S3 location in the parquet format.

1 import sys
2 from awsglue . transforms import Join
3 from pyspark . context import SparkContext
4 from awsglue . context import GlueContext
5

6 glueContext = GlueContext (SparkContext . getOrCreate ())
7

8 db_name = "main_db"
9 output_dir = "s3://glue-example/output/supply_chain"

10

11 # Create dynamic frames
12 products = glueContext . create_dynamic_frame . from_catalog (database=

db_name , table_name="products_json")
13 purchases = glueContext . create_dynamic_frame . from_catalog (database=

db_name , table_name="purchases_json")
14 suppliers = glueContext . create_dynamic_frame . from_catalog (database=

db_name , table_name="suppliers_json")
15

16 # Keep the fields we need and rename some
17 products = products . drop_fields ([’color’ , ’identification’]) .

rename_field (’name’ , ’product_name’)
18

19 # Join the frames
20 result = Join . apply (Join . apply (products , purchases , ’id_product’ , ’

product_id’) , suppliers , ’supplier_id’ , ’id_supplier’)
21

22 # Write out the frame into parquet file
23 glueContext . write_dynamic_frame . from_options (frame = result ,

connection_type = "s3" , connection_options = {"path" : output_dir
} , format = "parquet")

Figure 3.7: An example of an embedded script in AWS Glue

28

PostgreSQL

By default, PostgreSQL supports functions written in C, but theoretically
users may use any language, as long as it can be made compatible with C, e.g.
C++. However, that is often difficult due to different calling conventions, so its
safe to assume C language is used. The function definitions are supposed to use
macros from postgres.h header file, but otherwise are common C functions. The
code is compiled and dynamically loaded into the environment using SQL. There
is currently no plan to support analyzing C language, so this data technology
is mentioned only for completeness and to illustrate that there are also other
ways [8].

Other data technologies

Besides the data technologies already described, there are others that provide
embedded code integration and are supported in Manta Flow. They follow similar
principles as some that were already described before, so we will not cover them
in detail. However, we list them below for completeness:

• Talend supports extending the functionalities of a Talend Job using custom
Java commands [9].

• Google BigQuery supports defining functions written in JavaScript [10].

• StreamSets allows creating custom StreamSets processors in Java [11].

• Informatica supports creating custom components with Java [12].

• Azure Data Factory supports creating Custom activity with own data
movement or transformation logic in C# that can be added to a pipeline [13].

• SAS supports running Python statements within a SAS session [14]. Addi-
tionally, there are multiple Python packages for interacting with SAS from
Python.

3.3.1 Embedded code usage philosophy
Based on the description of embedded code usages, we can observe a few

repeating patterns that will help us design Embedded Code Service.
We can see that database systems use embedded code in the form of user-

defined functions or stored procedures. They can then be invoked as a part of
an SQL query or an SQL script. They often return a value and may receive
arguments.

Another common use-case is to define a custom transformation or a task in
an ETL workflow. The details of this use-case vary more than those in database
systems but in general they implement a specific interface. The methods of the
interface are invoked in a pre-determined order by the data technology.

The next observation concerns the programming language being used. Java,
Scala, .NET languages (mainly C# or Visual Basic) and Python are the most
used programming languages. JavaScript is used occasionally and there is one

29

case of R and C, but we shall ignore them as there isn’t currently a language
scanner implemented in Manta Flow for them.

In compiled static-typed languages (Java and C#), it is common to tag the
classes that shall be used as embedded code and require a rigid interface, either by
extending a base class or using annotations. The code is distributed in compiled
form and loaded dynamically. Interaction with the data technology is facilitated
through an object that is provided as a method argument or a property of a base
class.

As Python is interpreted and not compiled, it is possible to inject the embedded
code into a different code to create a new script. That allows use-cases where some
code is executed before embedded code which defines some variables, functions,
classes etc. The embedded code may then directly read these identifiers without
having to declare them, which is used to provide interface for interacting with data
technology. To successfully analyze such approach, it is important to understand
and simulate these assignments.

3.4 Embedded Code Service analysis
Based on the requirements set by Manta and the analysis of data technologies

that use embedded code, in this chapter we are going to focus on the analysis
of problems related to the implementation of Embedded Code Service in a more
specific manner.

Let us first summarize what we have learned so far. Embedded Code Service
is responsible for analyzing data lineage in code embedded in various data tech-
nologies and merging its lineage graph to that of the source technology. Similarly
to Dataflow Query Service, it enables merging of data lineage of two cooperating
technologies into one graph utilizing the existence of separate scanners for each of
the respective technologies. It provides a way to compose a more complete lineage
for the given technology without the need to implement the specifics of analyzing
the embedded code within the source technology scanner.

We have mentioned the similarity to Dataflow Query Service so many times
that we finally need to explain why it does not also handle the analysis of embedded
code. They both analyze some form of embedded scripts. It would be possible to
modify it for such use-case, but it would not be practical for several reasons.

Firstly, the situations in which they are used are different. Dataflow Query
Service is used to analyze queries without requiring much information about them.
When a query is used outside of a database, it is not always easy to detect what
kind of database is being queried. Dataflow Query Service polls every scanner to
decide if it can process the query and lets the first one that answers positively to
do so, so this logic does not need to be implemented each time the service is used.
When analyzing embedded code, this information is always known so there is no
need for such process.

Secondly, the interfaces of the services do not overlap. To analyze a script,
Dataflow Query Service requires connection details whereas Embedded Code
Service requires a configuration object. Furthermore, interface of Dataflow Query
Service contains a lot of methods used to deduce database objects. That is not
needed or wanted in case of embedded code.

30

Due to these two reasons a decision was made to create a new service for the
analysis of embedded code. Having only one would not be practical and would
not bring any reasonable benefits. However, that does not mean that they have to
be completely different. There are a few great solution in Dataflow Query Service
that we can use so that we do not reinvent the wheel. There are quite a few more
problems that we need to address before we can move on with the design and
implementation. Here is the list for an overview:

1. Merging embedded code graph to the enclosing technology graph

2. Specifying runtime configuration - available libraries etc.

3. Caching

Let us now take a closer look at each of them.

3.4.1 Merging graphs together
The graphs contain a set of nodes and a set of edges between them. When two

graphs are merged, the easy part is copying the nodes and edges from one graph
to the other. Sometimes, embedded code uses data or data source originating in
the pipeline of the source technology. We have already shown that in the SSIS
example shown in Figure 3.3. In the code of the example, the function reads the
input dataset and writes data to the output dataset. To create a complete lineage
when merging two graphs, we also need to correctly map certain nodes of the
embedded code graph to the equivalent ones in the source technology graph. This
is the difficult part when two graphs are merged.

The problem is that there is not always enough information in the embedded
code to resolve the input or the output. In the example, the exact structure
or origin of the input dataset is not known, we only know that it contains the
MyInputColumn column. Similarly, we only know that the output dataset has
the MyOutputColumn column. We can easily create the column nodes from this
information and connect them with an edge respecting the data flow, but the
column nodes cannot exist on their own, they need to have a parent node that
represents the dataset. A naive solution would be to add specific nodes representing
input and output datasets of SSIS script transformation and assign them as the
parents of column nodes. In the source technology scanner, we could locate such
nodes in the embedded code graph and merge them together with their equivalent
node (essentially, moving all edges from old node to the new node by changing
edge starting or ending points). This approach would work, but is too specific.
The programming language scanner needs to create specific nodes for each source
technology endpoint, each source technology has to locate specific nodes and with
each extension a lot of new code has to be added into both scanners. We would
prefer a more generic approach.

Dataflow Query Service introduces a concept of pin nodes which is described
in Section 2.4. This concept is well-suited to be also used in our service, although
with a couple of modifications. All nodes created in a query graph are a part of
the query so pin nodes serve only as external connection points which may or
may not be used. In embedded code, we would like to use them as placeholders
for nodes we do not know but we know they exist, so we can connect an edge to

31

them. These nodes could be created by a programming language scanner when it
processes a data flow with unknown origin. This would alleviate the struggle to
create a new type of node for a new source technology endpoint, because a generic
pin node will be created each time. We have to make sure we do not create two
identical pin nodes for different connection points. Pin nodes can be distinguished
by their name (each node in a graph must have a name) and they only exist
until the embedded code graph is merged, so they only need to be unique while
embedded code is analyzed which can easily be checked by the scanner.

We have solved creation of data flows between nodes with unknown origin in
embedded code, but we still need to find out how we can connect source technology
graph to correct pin nodes. A naive solution could encode pin node details
into its name, for example SSIS_PIN_NODE_SCRIPT_COMPONENT_INPUT_DATASET_-
MyInputColumn_COLUMN. The source technology scanner could enumerate all pin
nodes that need to be mapped, decode their names and connect them with their
equivalents. This is a feasible solution, but it lacks a bit of finesse, because
serializing and deserializing information into strings is a tedious process.

Figure 3.8: A diagram of the pin node mapping process in Embedded Code Service

What if instead we could pass a bit of information about the input to the
programming language scanner and also retrieve some information about its
execution after it ends? Such mechanism would help us to create a more precise
graph for embedded code, because it would provide the scanner with better
contextual information, but it would also allow us to pass information about the
created pin nodes without having to serialize it in their names. This mechanism
requires changes to be made in programming language scanners which we would
like to avoid if we can, but it turns out that such mechanism can bring great
benefits. The mechanism is called Insight and Outsight and was developed by
other developers outside of the scope of this thesis. We shall describe it in more
detail later when we discuss the design and implementation. For now we only
need to know that the information about created pin nodes is passed to the source

32

technology in an Insight which is used to easily map them.
The mapping process is depicted in Figure 3.8. Code shown in Figure 3.3 was

used for this diagram. It shows how the embedded code graph would look like
when pin nodes are involved, how they are mapped using an Insight and the result
after contracting pin nodes.

3.4.2 Specifying runtime configuration
When embedded code is executed in the source technology, the technology

prepares the runtime environment in which it executes the code. This environment
can often be configured by the user at which point it is necessary to propagate
this information to the scanner. More importantly, some data technologies allow
specifying other libraries to be included at runtime (AWS Glue, Databricks). The
embedded code does not contain these libraries, they are managed by the source
technology, but they can be imported and used which requires them to be included
in the analysis. It means that the Extractor for the source technology needs to
extract these libraries and they need to be provided to Embedded Code Service
in configuration as well as the values of configurable properties.

Currently, programming language scanners are expecting that all analyzed
code is present in one directory after the extraction. Because there might be
additional files, which need to be analyzed, included in the configuration, the
service needs to perform input orchestration. The goal of input orchestration is to
organize the files in input directory as they would be organized in the runtime
environment of the source technology. The Extractor of the programming language
scanner can then use the input orchestrated in this way to produce an input for
the Reader. When orchestrated successfully, the Reader would not be able to
recognize any difference and would be able to analyze the code correctly.

In general, it is difficult to estimate what properties need to be passed about
the runtime configuration for all technologies and languages. Furthermore, it
is also not possible to perform the orchestration in a general way due to the
differences of each source technology. However, we don’t need to specify that in a
general way. This information is only relevant for the source technology scanner,
which needs to prepare the configuration, because it knows what can and needs to
be provided. Embedded Code Service does not need to know the details outside
input orchestration, which will be different for each data technology. Therefore,
the configuration contract only needs to exist between the source technology
scanner and the input orchestration component, so it can be highly customizable.
Using polymorphism for the runtime configuration seems like a good choice as it
can provide both a type-safe and a customizable interface.

3.4.3 Caching
It is also necessary to address the possibility of caching intermediate data. It

can be expected that we will need to analyze multiple instances of embedded code
in one go (multiple scripts within the source technology analysis). These instances
have a lot in common. Since they are embedded, they rely on some part of the
environment to be provided by the source technology and this part is often the
same. It is therefore valid to consider if some analysis parts can only be computed

33

once and then cached and reused to improve performance.
Sadly, we were not able to find a universal answer and solution that can be

implemented by Embedded Code Service. There can be some small opportunities
in particular cases but we have not found a general solutions. However, these
particular cases should be reviewed for each programming language scanner to
see whether they can bring valuable performance benefits.

First opportunity is during input orchestration. As we mentioned earlier, part
of the runtime is often the same, so when it is generated and prepared for the first
time, it can be stored so it does not need to be generated again. This approach
can be beneficial when the common runtime is considerably larger compared to the
size of the embedded code and the duration of the analysis. For example, currently
in Python scanner, parsing the standard library, which consists of approximately
2000 files, takes longer than performing the analysis of a short script (<100 LOC).
In a situation when there are tens or hundreds of such scripts, the improvement
could save customer a lot of time. The standard library is available for each script,
therefore it could be parsed once and reused. On the other hand, for Bytecode
and C# the input needs to be compiled, so each entry point has to be prepared
individually.

The other reviewed opportunity is during the analysis. Since we often use
the same dependencies, we could cache some intermediate results when analyzing
flows in them. However, this optimization is already implemented within the
scanners themselves. They use plugins for libraries that mimic the propagation
of data flows in library functions and methods, so essentially, no library code is
analyzed. Additionally, the execution of the worklist algorithm used for static
analysis of the code is highly dependent on the inputs, so it behaves differently for
each entry point and therefore there are no shared data between two entry points.

In conclusion, when implementing a new combination of technology-language
in Embedded Code Service, it is advised to review the possibility of caching
a part of input preparation as it can influence the overall performance of the
source technology scanner. This recommendation will be a part of guidelines for
implementing input orchestration for a new source technology.

34

4. Design And Implementation Of
Embedded Code Service

Based on the analysis conducted in the previous chapter, we now have a clear
understanding of what Embedded Code Service is, what is its purpose and how it
is going to solve the outlined problems. In this chapter, we are going to introduce
and reason about its design. We are also going to explain what changes need to be
done to programming language scanners in order for them to be integrated with
Embedded Code Service. At the end of the chapter we will present interesting
parts of the implementation based on this design.

4.1 Embedded Code Service design
Firstly, let us summarize the steps that Embedded Code Service has to execute,

because it might not be clearly obvious from previous chapters. The goal of the
service is to perform data flow analysis of embedded code using one of the already
existing scanners to create a data lineage graph of that code which will then be
merged with the graph produced by a source technology scanner. A programming
language scanner works in three steps: extraction of the input, data flow analysis
and generating Manta graph. Embedded Code Service needs to perform input
orchestration using the provided configuration, then launch all three stages of a
scanner and after that, help to merge the graphs. The workflow looks as follows
(active components are written in parentheses):

1. Input orchestration (Embedded Code Service)

2. Input extraction (scanner’s Extractor)

3. Data flow analysis (scanner’s Reader)

4. Generating lineage graph (Intermediate Dataflow Generator)

5. Merging graphs (source technology scanner with the help of Embedded Code
Service)

4.1.1 Multiple programming languages
The first decision we have to make is whether we want to implement one

universal service that can analyze embedded code written in any programming
language or whether we want to have specific implementations for each program-
ming language. This decision will greatly influence how the interface of the service
is designed.

An initial idea seems to be a universal service, because that is how Dataflow
Query Service is implemented. A common service promotes code reuse as multiple
parts of the problem will be solved in a similar way regardless of used programming
language and data technology, such as merging the graphs of embedded code and
source technology. We can also find similarities between the data technologies
(e.g., stored procedures written in embedded code in databases) regardless of the

35

programming language used. One service also means that only one component will
need to be maintained. The downside of having one service is that its interface
needs to be universal, so if one programming language has a different requirement
or requires a specific modification, these changes will have to be reflected for other
programming languages as well.

One could argue that another benefit of one service is that we have access to
the analysis of any embedded code we may find, but that turns out not to be as
beneficial as it may sound. In reality, the language of embedded code is always
known, so it is easy to use a specific service to analyze it. Having a universal
service is crucial in case of Dataflow Query Service, because it supports recognition
of the SQL dialect used in the query, but in case of Embedded Code Service
such feature is not needed. When implementing specific services, we can still
reach similar code reuse by grouping common logic in base classes, which makes
one less argument in favor of a common service. An important advantage that
multiple services provide is that they not only allow the interfaces to be tailored
to the needs of the programming language scanner, but they also allow different
development pace for each service. The fact is that a service for Python is much
more preferred by the stakeholders because of its potential and thus a lot more
resources are dedicated to working on it.

Comparing the two approaches, we chose specific implementations as a more
suitable solution. The last argument carries great significance due to its profound
impact on the development process, so we decided to implement multiple services,
each dedicated for one programming language.

Figure 4.1 shows how a specific service processes embedded code as well as
components that is utilizes. The diagram is generic for any programming language.

Figure 4.1: Diagram of Embedded Code Service workflow

36

4.1.2 Orchestration
All contemporary programming languages use some form of import mechanism

where the developers can import additional libraries and frameworks. We can
see that in embedded code too, often there is a mechanism for adding external
libraries to be imported and used by the code. For example in AWS Glue, it
is possible to define an argument of an ETL job that specifies an Amazon S3
location of a custom Python library. When AWS Glue executes a Python job,
firstly it checks the S3 location and when it conforms to the required format, it
copies the files to the internal working directory next to the job script. When
the job is started, Python import mechanism is able to find and import these
additional libraries to be used in the job script.

Additionally, some technologies (e.g. SAS, Databricks) perform additional
orchestration to run the embedded code correctly, such as injecting it in a well-
defined class, so this envelope does not have to be written by the user every
time, adding the desired imports and only then the embedded code is run on the
execution engine used by that technology. This process has to be mimicked by
Embedded Code Service before the programming language scanner analyzes the
code to provide an equivalent of the actual code that is executed.

The orchestration process would generally be different for each technology and
programming language, but there are some common steps and some repeating
patterns. This needs to be reflected in the design of orchestration so the part that
needs to be implemented anew when the support for a new source technology is
added is clearly distinguished from common parts. We can use template method
design pattern that implements common parts of the process in the base class and
lets extending classes redefine the specific parts. That way we clearly define what
can and needs to be implemented.

4.1.3 Result
When the analysis of embedded code is finished, the service shall return the

result to the source technology scanner. The result is a graph that needs to be
merged with another graph and may contain pin nodes that need to be connected.
Rather than returning an unfinished graph, we shall return an object that wraps
it and provides an interface for connecting pin nodes and merging two graphs.
The justification is simple, this graph is not always in a valid state so it should be
hidden from plain view and unwanted modifications.

Pin node mapping

First thing to be done with the result is pin node mapping. This process was
described in Section 3.4.1. Pin nodes can be found in the graph by enumerating its
nodes and filtering those with pin node type. Each pin node can be distinguished
from others by its name.

The source technology scanner performing the mapping should receive the
information about created pin nodes from an Insight. A mapping simply contains
a pin node and a node to be mapped to. We might want to connect pin nodes
by iterating over them and for each one we create a mapping or we might want
to iterate over records in an Insight, retrieve the pin node by its name and then

37

create the mapping. Each approach is better in different situations, so the result
shall support both operations.

When a mapping is created, it is important to specify whether the pin node is
an input node or an output node (relatively to embedded code). The direction
decides the orientation of the edge when a pin node is merged to the source
technology graph.

During the mapping process, the mapping information is stored and merging
is deferred until the end so that the graph remains unchanged throughout the
process.

Merging

After all pin nodes are mapped, a merge operation can start. This operation
can be done only once, because it changes the source technology graph. If it was
done multiple times, the graph could be damaged.

Figure 4.2: The process of merging and contracting a pin node

The merging process starts by adding the pin node into the source technology
graph along with an edge that connects it to the mapped node. After that, pin
node needs to be contracted and removed. That is done by first enumerating its
incoming and outgoing edges and adding new edges starting at the starting points
of incoming edges and ending at the end points of outgoing edges. After that, pin
node and all edges associated with it are removed. A process of contracting a
node can be seen in Figure 4.2.

38

When an edge is added to a graph, both its nodes are also added if they were
not already present in the graph. After all pin nodes are added to the source
technology graph and contracted, all remaining nodes and edges are added and
the merging is complete.

4.2 Python scanner changes
With the design of Embedded Code Service now covered, we need to solve one

more issue before we can talk about its implementation. Programming language
scanners were not initially designed for running embedded code so we need to
review them and design any required changes in order for them to be used in
Embedded Code Service. We will be focusing on changes to Python scanner,
because in this work we implemented only Embedded Code Service for Python.
Other services were not marked as priorities by the stakeholders in scope of this
thesis. However, since all programming language scanners follow a very similar
design, the changes done on Python scanner may in the future be (with small
tweaks) applied also to the remaining scanners.

4.2.1 Spring framework
Before we start with scanner changes, let us have a more detailed look on Manta

Flow CLI implementation. It will help us understand some reasons for the changes.
Manta Flow CLI is based on the Spring framework. This framework provides
a comprehensive set of features and libraries that facilitate the development of
robust and scalable Java applications. Among other essential features, we shall
look at three of them that we need to understand before following further.

The first important feature is configuration. Spring applications typically
start with a configuration phase, where developers define the application’s beans,
dependencies, and other settings. A bean is an object that is managed by Spring.
A bean represents a reusable and configurable component of an application. It can
be any Java object, ranging from plain Java objects to more complex components.
Spring supports two types of configuration, XML-based configuration and Java-
based configuration using annotations. Most of the components in Manta Flow
CLI use XML-based configuration, however there are several new components in
Manta Flow that already use the modern annotation approach.

Second key feature of the Spring framework is its support for dependency
injection. It allows us to define the dependencies between different components
(beans) of the application, and Spring takes care of injecting these dependencies at
runtime. This promotes loose coupling and makes the application more modular
and easier to maintain.

Lastly, the Spring framework follows the principle of inversion of control, which
means that the framework is responsible for managing the lifecycle and execution
flow of the application. In simpler terms, the application delegates control to the
Spring framework, and the framework takes care of executing the appropriate
components at the right time.

In Figure 4.3 we can see an example of two beans configured in XML:
userService and userRepository. The userService bean demonstrates de-
pendency injection by specifying the userRepository bean as a constructor

39

1 <!−− Define a Spring bean for a simple UserService −−>
2 <bean id="userService" class="com.example.UserService">
3 <!−− Inject a dependency using constructor injection −−>
4 <constructor−arg ref="userRepository" />
5

6 <!−− Set a property value −−>
7 <property name="maxUsers" value="100" />
8 </bean>
9

10 <!−− Define another Spring bean for UserRepository −−>
11 <bean id="userRepository" class="com.example.UserRepository" />

Figure 4.3: An example of a Spring bean XML configuration and dependency
injection

dependency. When the userService bean is created, the Spring container
will automatically inject the userRepository bean into it. Additionally, the
userService bean showcases property injection by setting the maxUsers property
to a value of 100. The maxUsers property is assumed to be a property of the
UserService class.

4.2.2 Running the scanner without scenarios
Each execution of Manta Flow CLI starts a scenario. A scenario consists of a

list of tasks required to complete a certain goal. There are many different scenarios,
some are used by scanners. for example various extraction and data flow scenarios,
some are used for management of metadata repository in Manta Flow Server.
Python scanner consists of two scenarios, Python Extractor Scenario and Python
Dataflow Scenario. Extractor scenario is launched to extract input for Python
scanner, dataflow scenario performs data flow analysis and generating lineage
graph. Each scenario consists of generic code handling startup and completion of
a scenario and specific code performing a dedicated task.

Components of Python scanner, Extractor and Reader, as well as Intermediate
Dataflow Generator are currently designed specifically to be started and managed
by a scenario. It is desired to modify their design and structure to enable starting
the scanners from Embedded Code Service. These modifications should not be
big (the scanners are already quite well designed), but they need to be finished
before a language scanner can be added to the Embedded Code Service.

4.2.3 Python scanner design and Spring configuration
Python Scanner is designed to analyze user inputs. The source code is stored

on the file system by users and its location together with other settings is provided
in Spring configuration of the scenario when it is launched. Embedded Code
Service also receives the source code, but the configuration is different for each
input. As Embedded Code Service is also configured only once at the start of
a scenario, this configuration has to be built at runtime, specifically in input
orchestration phase.

Upon analyzing the configuration of Python scanner components we can con-
clude that they were designed as single-purpose components. They are constructed

40

with all functional elements and input configuration that they need to perform
their task. Therefore, the lifecycle of such component ends when it finishes its task
and a new component has to be constructed for a new task. This is feasible when
Python scanner is executed from a scenario, because each scenario executes each
task once. With Embedded Code Service the expected lifecycle of components
is different. The service is constructed once but can be used for multiple inputs
(e.g., analysis of multiple scripts that are a part of one ETL pipeline).

There are two ways how we can modify current components to support both
approaches (service and CLI) efficiently. We can modify the component to become
stateless. A stateless component does not hold any internal state and can be
used repeatedly. Input configuration and state is managed in an instance of a
task context class which is passed to the invocation of any method. The context
instance can be constructed at runtime or it can be configured as a bean and
injected as a dependency. This approach is best suited for components that have a
single entry-point - a single method that is invoked to complete the task, but it is
not a condition. In such cases the context object is passed as a method parameter
during the execution.

The second approach is to create a factory (using Factory design pattern) for
a component which will be configured in Spring to store the functional elements
for the construction of the component (dependencies). The factory will allow
passing the input configuration values as parameters to the factory method which
constructs a new component. This approach is suitable for components which
hold a complex internal state and it would be costly to refactor them to become
stateless component. Also, it is a cheap modification, there are no changes required
in the existing code, we just need to add the implementation of the factory class
and this change needs to be reflected in Spring configuration.

4.2.4 Interfaces
We need to consider one more thing. The components were designed to be used

by scenarios in Manta Flow CLI and are customized for that purpose. Often their
interface contains a single method execute that performs all the steps required
by the scenario. Such interface does not provide the functionality we need in
Embedded Code Service, because scenarios often require additional tasks to be
done that are not required by the service, e.g. serializing connector output on
disk. It would be useful to decouple implementation of the functional component
from the scenario interface so the functional component can be used by a scenario
and Embedded Code Service but it can have its own interface to perform required
tasks.

4.2.5 Components
There are three major components in Python scanner: Extractor, Reader and

a shared Intermediate Dataflow Generator. These are the components that need
to be modified so that they can be used both by scenarios and Embedded Code
Service. Let us have a closer look at each of them and the changes that we made.

41

Extractor

Extractor component was already designed in a convenient way. There is a
clear separation between the extractor task implementation used in the scenario
(implemented in the ExtractorTask class) and the functional component used
for the extraction (implemented in the Extractor class). The task uses the
functional component to perform the extraction and itself implements all necessary
interfaces. The design of the Extractor class almost satisfies our conditions, it is
designed as a stateless component with the task context defined in a separate class
(ExtractorConfiguration), the only difference is that this context is passed to
Extractor instances in the constructor and stored. The context instance does not
necessarily need to be stored in the Extractor instance, it was only convenient
to do so in the original implementation.

The context contains several file paths pointing to the location of the input or
the location of extraction folder that are read-only and need to be available only
during the extraction. This component can be easily refactored to conform to the
stateless component approach by removing the context from the Extractor class
and instead providing it as a parameter to the extract method that performs
the extraction. When used in a scenario, the context instance is already stored
in the task instance that contains both context and extractor, so there are
no Spring configuration changes needed apart from omitting the context as a
dependency of an extractor. When used in the service, the context instance can
be easily instantiated at runtime using the file paths that the service uses for
input orchestration, an extractor will be injected as a dependency of the service.

Reader

Python scanner’s Reader is a highly state-dependent component. It requires
some effort to remove all input-specific information and collect it in a single
context instance. Additionally, the current implementation requires refactoring
as it does more things than it should. Reader is currently one component that
implements both task interface for scenario purposes as well as data flow analysis
of Python code done in the scenario.

The increased complexity of the component would make it an ideal candidate to
be reworked using the factory approach, but after a deeper analysis we concluded
that using this approach would only postpone important changes. The component
does two tasks that are demanded by the scenario, but only the analysis needs to
be done for embedded code, the other task is serialization of intermediate results
for logging and debugging purposes which is not required by Embedded Code
Service. Therefore also this interface needs to be fragmented at which point it is
worth the time to make a complex refactoring and convert the component to a
stateless one. To satisfy all required conditions we need to:

1. Decouple task interface from the Reader implementation

2. Identify stateless functional sub-components of Reader that can be reused

3. Identify state information that needs to be stored in a task context instance
of Reader

42

We have split the original PythonReader class implementation into three
new classes: PythonReader, EntryPointAnalyzer and AnalyzerConfiguration.
EntryPointAnalyzer is a stateless functional component that performs data flow
analysis of a single entry point. In Python data flow analysis, an entry point
is a module or a function where data flow analysis begins. When analyzing
embedded code, there is always only one well-defined entry point, in application
analysis there may in general be multiple entry points. This component will
be a reusable dependency of both Reader and Embedded Code Service used for
analyzing individual entry points. To analyze an entry point, it requires an entry
point specification and an analyzer configuration.

AnalyzerConfiguration is a component holding context which is used by
EntryPointAnalyzer. It is like a small toolbox that the analyzer uses during the
analysis. A new configuration has to be provided for each input, not for each
entry point. The reason is that there are certain components that can be shared
across multiple entry points of one input to improve performance, such as service
for parsing Python code as the code files are common for all entry points, thus
they only need to be parsed once. A new analyzer configuration has to be created
for each input of Embedded Code Service, only one is required in a scenario.

Lastly, PythonReader class has been modified to work as an implementation
of Reader component used by data flow scenario. Internally it uses an entry point
analyzer and its own analyzer configuration to analyze all entry points one after
the other defined in the input.

With these modifications, the Spring configuration had to be split in two
parts so that the dependencies can be correctly resolved. First one is a general
configuration that provides an EntryPointAnalyzer bean. The other is a scenario-
specific configuration that creates the AnalyzerConfiguration bean and injects
it to a PythonReader bean along with an imported analyzer bean.

Intermediate Dataflow Generator

Intermediate Dataflow Generator is a shared component that can be configured
and used by any of the programming language scanners. We had to make sure
that it keeps this property after all the changes. Generator has been recently
refactored and the new implementation already follows many of the principles of a
stateless component. However, converting it to a stateless component was not the
main focus of the mentioned refactoring so we still need to do a few additional
changes. There is a similar problem as in Reader that the TransformationTask
class implements both a task for the scenario and generating data lineage graph.
By splitting it into two classes, one for the purposes of the scenario and the other
for generating data lineage graph, we can easily create a stateless component
which can also be used by Embedded Code Service.

After the refactoring, a new DataflowGenerator class is the stateless compo-
nent of Intermediate Dataflow Generator. ProgramConfiguration is a new class
introduced to hold the context information about the input. Lastly, the refactored
TransformationTask class is now just the implementation of the scenario task,
previously it represented all of these new components.

While these changes of Intermediate Dataflow Generator required little code
modifications, it resulted in big changes in its Spring configuration. The Spring
configuration of Intermediate Dataflow Generator is layered into multiple levels

43

to introduce modularity. This modularity is important as there are currently
3 programming language scanners that utilize the generator and each of them is
slightly different. Moreover, with the introduction of Embedded Code Service,
there is another use-case with different needs. The new design reduces the amount
of beans that it depends on to a bare minimum and avoids the need to define
beans that are unused.

Currently, there are two possible configuration compositions. One is for
scanners that are not supported in Embedded Code Service and the other for
those that are. For that purpose the configuration of common beans is split in two.
Base configuration sets up the stateless functional DataflowGenerator component
that can also be used by Embedded Code Service. The other configuration sets
up also context beans and scenario task bean that is required for CLI integration.
These configurations are then included in scanner-specific configuration that
provides scanner-specific beans.

When Embedded Code Service is not implemented for the programming
language, the situation is simple as Generator is only used from a scenario, so only
the scanner-specific beans need to be provided. In Figure 4.4 we can see that the
configurations are layered one on top of another. Each layer creates new beans
using the beans provided by the previous one, as seen in composition diagram. In
dependencies diagram we can see what beans the configuration provides to the
others and which it depends on. An arrow shows that a bean is available in the
configuration at its beginning and is required by the configuration at its end.

Figure 4.4: Composition and dependencies of Generator configurations when
Emebedded Code Service is not supported for that programming language scanner

When Embedded Code Service is involved, there needs to be one configuration
that satisfies the scenario use-case and there can be another one that satisfies
Embedded Code Service needs. Embedded Code Service does not need the scenario
beans, in fact, they add useless functionality for such use-case, so its best to avoid it.
Moreover, in this use-case there could be multiple program configurations passed

44

to Intermediate Dataflow Generator during its lifecycle which cannot be defined
statically in Spring. To satisfy these needs the scanner-specific configuration is
split in two parts. First part is the configuration of common beans for both
use-cases and then there are two specializations that utilize common beans -
scenario (scanner) and service specialization.

Figure 4.5 shows a different, more complex composition of individual configu-
rations. Similarly to the previous case, dependencies diagram shows what beans
the configuration provides to the others and which it depends on.

Figure 4.5: Composition and dependencies of Generator configurations when
Embedded Code Service is supported for that programming language scanner

4.2.6 Insight and Outsight
There is one more change that we would like to present. Even though it was

not implemented as a part of this work, it is a part of the required scanner changes
to facilitate its usage in Embedded Code Service, so it makes sense to mention it.
We are talking about Insight and Outsight mechanism that is used for pin node
mapping, but can in general be used to send metadata for embedded code analysis
from the source technology scanner as well as to receive additional metadata
generated during such analysis to be used by the source technology scanner.

Insighter

Python Insighter is a way to provide insight to Python code analysis for
external consumers. The main idea is to collect events that are important for

45

the external consumer, but which otherwise should not affect Python analysis.
Each external consumer has to implement its own Insighter specialization together
with collaborative propagation modes needed for the specific data technology.
Collaborative propagation modes do not propagate data flows, but instead record
events into the specialized Insighter. After the analysis is complete, an immutable
Insight object is created which contains the recorded events and can be used by
an external consumer.

We can categorize events into data events and lineage events. They need to be
handled differently based on their category. Data events are events where we need
to know an exact data value regardless of its origin, e.g. SQL query, database
connection string etc. For the consumer, the concrete value is the important part,
which is recorded in the Insight object. Lineage events are the opposite to data
events. The exact value is not important in this case, but rather we track these
events to create data lineage graph, e.g. reading from a file or a database. The
difference from data event is that on top of recording the event into the Insighter,
a pin node is created and registered as well. After the analysis ends, the external
technology can utilize the recorded information to map pin nodes.

Outsight

To propagate external information for Python analysis, we can use the In-
sighter idea and apply it in a reversed manner. Outsight object represents events
propagated into the analysis. It can use collaborative propagation modes to
convert external events and values into Python data flows. For example, Outsight
can be used to create input pins or set values of variables configured in an outside
environment.

Figure 4.6: Workflow of using Insighter along with Embedded Code Service in
Databricks scanner

46

Workflow

Let us present the workflow of this mechanism as it is used in the scanner for
Databricks. This scanner was developed along with Embedded Code Service and
uses it for analyzing Python code cells in Databricks notebooks.

Figure 4.6 shows how Insighter objects are created and used in Databricks
scanner when calling Embedded Code Service. Before embedded code is analyzed,
Databricks scanner prepares analyzed script and stores any contextual information
needed for its analysis in an Outsight object. It also creates a new Insighter.
These arguments are passed into the Embedded Code Service call, Insighter and
Outsight are a part of configuration. After the call is complete, Embedded Code
Service produces a result object. At this point, Databricks scanner can get an
Insight object from the Insighter and use it to merge the result into its data lineage
graph.

4.3 Python Embedded Code Service implemen-
tation

Changes implemented in Python scanner were a direct prerequisite to enable
an implementation of Python Embedded Code Service. Without them the service
would not be able to run embedded code analysis. Having explained these changes,
we can now discuss interesting details of the implementation of this service.

Python Embedded Code Service is implemented as a standalone service in-
tended to analyze Python embedded code. It implements two important steps -
orchestrating the input in a digestible format for Python scanner and merging the
resulting Python graph into the graph of the source technology. The rest of the
process is delegated to Python scanner.

4.3.1 Interface
The interface of Python Embedded Code Service contains only one method:

getDataflow. This method consumes name of the script, the content of the script,
script parent node and configuration. It returns PythonEmbeddedCodeResult
object which contains the data lineage graph of the analyzed script. The purpose
of the arguments is explained in the list below:

• Name of the script is used for identifying script nodes in the graph and also
for debugging purposes.

• Contents of the script can be provided in a file or in a string. A typical
workflow of a source technology would prepare such scripts during its ex-
traction and store them in files. These files can be directly used as the input
or, if they are not Python source files, the code can be provided in a string.

• Parent script node is the node that represents the script in the source
technology graph. All nodes in the embedded code graph will use this node
as their parent for proper identification.

47

• The configuration stores the runtime and environment configuration for the
current script. One script could be run in different environments, with differ-
ent parameters or with additional user-provided libraries. Configuration that
changes between scripts (is not same for each script of given technology) can
be passed in this parameter. The specialized implementation of configuration
only needs to implement a method that tells its kind (for safe type casting),
the rest of it can be freely implemented for source technology needs.

4.3.2 Result
The return value of Python Embedded Code Service is implemented in the

PythonEmbeddedCodeResult class. It is implemented in a similar fashion as the
return value of Dataflow Query Service. It does not provide the result graph
directly but instead provides an interface for connecting the two graphs. This
interface contains methods for the lookup of pin nodes in the result and creating
pin node mappings. After all the mappings are created, we can call the mergeTo
method which merges result graph with source technology graph provided as an
argument. After this operation, the result is considered to be consumed and
cannot be used again.

4.3.3 Orchestration
The orchestration component prepares the input for data flow analysis. This is

done in three steps: input orchestration, extraction and processing of the extracted
input.

The component is implemented using the template method pattern. This
pattern allows creating a template for a method where some of its steps can be
reimplemented and the rest is constant. The pattern was chosen to encapsulate
differences in input preparation for different source technologies into individual
classes. The method works as follows:

1. Common: a temporary input directory is created. In this directory there is
space for preparation of the input for the extractor as well as space for the
extractor output.

2. Specific: input preparation. A specific orchestrator for data technology
prepares the input based on the configuration.

3. Common: the service creates a new Extractor context and runs extraction
using Python Extractor and the context. The extracted output is placed in
the temporary directory.

4. Common: the service processes the extracted input by locating the entry
point and creating a new analyzer configuration.

Entry point location and analyzer configuration are the outputs of orchestration
and are used by entry point analyzer to analyze data flows.

48

4.3.4 Testing
Python Embedded Code service is covered by a set of unit and integration

tests.
Unit tests verify functionality of individual classes, e.g. orchestrators storing

files in correct locations or that pin node mapping is done correctly.
Integration tests verify that all components of Python Embedded Code Service

are integrated and cooperate correctly. These tests run the service on different
inputs and check that the data lineage graph looks as expected after the analysis
and merging.

Code coverage by tests reaches 64% according to SonarQube, a code quality
tool used in Manta. This number can be considered lower than standard, but we
need to look why that is. The bulk of the uncovered lines are bodies of equals
or toString methods along with logging messages which do not require code
coverage. In combination with a low amount of code lines in Python Embedded
Code Service it results in a lower coverage percentage, but the service can be
considered sufficiently covered by tests.

49

5. AWS Glue Scanner
The previous chapters were devoted to Embedded Code Service. In this chapter,

we will cover the details of the development of AWS Glue scanner prototype. AWS
Glue is one of the data technologies that uses embedded code, so we will see how
Embedded Code Service service can be used in data lineage analysis. To begin,
we will describe AWS Glue and discuss it in terms of data lineage analysis. Next,
we discuss and justify the design of a minimum viable product (MVP) of AWS
Glue scanner. Finally, we will look at its implementation.

5.1 Motivation
We have already briefly introduced AWS Glue in Section 3.3. Before we dive

deeper into its analysis, we shall explain why we picked AWS Glue to demonstrate
Embedded Code Service capabilities.

The decision to implement Embedded Code Service in Manta Flow was moti-
vated by the demand to analyze embedded code in several data technologies. Out
of the existing programming language scanners in Manta Flow, Python scanner
seemed to be the most prospective one to offer attractive value to customers for
two reasons: it is widely used and the scanner yielded promising data lineage
results.

At this point, there were two options for selecting the data technology for
MVP implementation. We could either choose an already supported one that
uses embedded Python code to extend its capabilities, or create a new scanner for
an unsupported data technology. For the first option, we could choose SAS, but
there was no demand for such feature as Python support has only recently been
added into it. For the second option, there have long been plans for AWS Glue
and Databricks scanners based on customer demand, both of which use Python
extensively. Out of these two, AWS Glue uses Python in a more straight-forward
way as AWS Glue jobs are in fact complete Python scripts, which was close to
what Python scanner could already analyze with limited results.

5.2 AWS Glue analysis
Before we can start designing the scanner, we need to analyze how AWS Glue

works, how it processes data, what metadata it stores and how we can read it etc.

5.2.1 Overview
AWS Glue is a cloud-based data integration service for discovering, cataloging

and transforming data. It is a serverless service, which means that there is no
dedicated server which requires setup or maintenance. Each execution is managed
by AWS Glue which allocates computing capacity on the machines present in a
data center, executes the task and then frees the resources for any other task.
The customer does not need to perform any maintenance, they only pay for used
computing capacity and instead may focus on developing their data processes.

50

AWS Glue provides its users with several key features:

1. Data Catalog: AWS Glue includes a centralized metadata repository,
known as Data Catalog. It stores metadata information about the data
sources, tables, and schemas, making it easier to discover and understand
the available data.

2. ETL jobs: AWS Glue allows users to define and run ETL jobs using a visual
interface or by writing custom code. ETL jobs enable data transformations
such as filtering, aggregating, and joining data from different sources.

3. Data crawling: AWS Glue can automatically discover and catalog data
from various sources, including databases, data lakes, and file systems. It
uses crawlers to scan the data sources, infer schemas, and create tables in
the Data Catalog.

4. Data preparation: AWS Glue provides capabilities for cleaning and
preparing data before it is used for analysis. It offers built-in transformations
and mappings to standardize and transform data, as well as options for
creating custom transformations using Python or Scala.

5. Integration with other AWS services: AWS Glue integrates with other
AWS services, such as Amazon S3, Amazon Redshift, and Amazon Athena,
allowing users to seamlessly move and transform data between these AWS
services.

These features are split into two modules: Data Integration and ETL and Data
Catalog.

Data Integration and ETL

The core of data integration in AWS Glue are ETL jobs executed on Apache
Spark. Apache Spark is an open-source, distributed computing system that
enables fast and flexible processing and analysis of large-scale data sets. It utilizes
in-memory computing to accelerate iterative computations, making it ideal for big
data workloads. With its distributed architecture, Spark can seamlessly distribute
data and processing tasks across a cluster of computers, enabling parallel execution
and efficient resource utilization. Spark provides a rich set of libraries and APIs for
various data processing tasks available in several programming languages including
Python and Scala.

AWS Glue ETL jobs always contain a job script written in Python or Scala
which is executed on Spark cluster configured in AWS Glue. Besides writing your
own code, AWS Glue provides a tool with graphical user interface for creating
ETL jobs. They can be created using transformations and data sources from the
tool’s toolbox. The tool auto-generates Python script based on the visualization.
This script code can then be authored, but after that it can no longer be modified
in the graphical tool. We can see an example of an ETL job created in this tool
in Figure 5.1. This job reads a table from Data Catalog, renames some of the
columns and filters out others and stores the result in a JSON file on Amazon S3,
creating a Catalog table for it. Figure 5.2 shows the code generated by the tool
and illustrates how ETL jobs written in Python look like.

51

Another part of data integration is a scheduler for running jobs periodically
or on custom triggers. The jobs can also be organized in a Workflow, which is
a different form of scheduling where multiple jobs can be executed in the order
defined in the Workflow including various conditions and triggers.

Figure 5.1: An example of an ETL job created in the graphical tool of AWS Glue

1 import sys
2 from awsglue . transforms import ∗
3 from awsglue . utils import getResolvedOptions
4 from pyspark . context import SparkContext
5 from awsglue . context import GlueContext
6 from awsglue . job import Job
7

8 args = getResolvedOptions (sys . argv , ["JOB_NAME"])
9 sc = SparkContext ()

10 glueContext = GlueContext (sc)
11 spark = glueContext . spark_session
12 job = Job (glueContext)
13 job . init (args ["JOB_NAME"] , args)
14

15 # Script generated for node S3 bucket
16 S3bucket_node1 = glueContext . create_dynamic_frame . from_catalog (
17 database="example_db" , table_name="wdicountry_csv" ,

transformation_ctx="S3bucket_node1"
18)
19

20 # Script generated for node ApplyMapping
21 ApplyMapping_node2 = ApplyMapping . apply (
22 frame=S3bucket_node1 ,
23 mappings=[
24 ("country code" , "string" , "country code" , "string") ,
25 ("short name" , "string" , "short name" , "string") ,
26 ("table name" , "string" , "table name" , "string") ,
27 ("long name" , "string" , "full name" , "string") ,

52

28 ("2-alpha code" , "string" , "2-alpha code" , "string") ,
29 ("currency unit" , "string" , "currency" , "string") ,
30] ,
31 transformation_ctx="ApplyMapping_node2" ,
32)
33

34 # Script generated for node S3 bucket
35 S3bucket_node3 = glueContext . getSink (
36 path="s3://examplebucket/wdi_country_filtered/" ,
37 connection_type="s3" ,
38 updateBehavior="UPDATE_IN_DATABASE" ,
39 partitionKeys =[] ,
40 enableUpdateCatalog=True ,
41 transformation_ctx="S3bucket_node3" ,
42)
43 S3bucket_node3 . setCatalogInfo (
44 catalogDatabase="example_db" , catalogTableName="

wdi_country_filtered"
45)
46 S3bucket_node3 . setFormat ("json")
47 S3bucket_node3 . writeFrame (ApplyMapping_node2)
48 job . commit ()

Figure 5.2: Code script generated in AWS Glue for the ETL job created in a
visual tool shown in Figure 5.1

Data Catalog

Data catalog is a centralized metadata repository than can not only be used
in AWS Glue, but also in other AWS services. The purpose of Data Catalog is to
organize many different data sources in a comprehensible catalog which improves
data discovery and utilization. In big data environments and especially in cloud,
there are many different data sources with different access rules, structure, format
and schema. Data Catalog extracts this metadata from each of the data sources
and stores it in an abstract structure consisting of databases, tables and columns.
A user of Data Catalog then has the ability to uniformly browse and examine
them regardless of the actual data source type. Data Catalog can also be used in
ETL jobs to simplify reading or writing data, because each resource from Data
Catalog is treated the same way in code.

New resources can be added to Data Catalog manually, but its core feature is
automated data crawling and classification. Crawling is the process of exploring
resources stored in a data source and classification is the process of inferring data
schema in each of the resources. A common use case is to periodically crawl a
bucket in Amazon S3 to discover new files and add their schema to Data Catalog
using a classifier. AWS Glue provides crawlers and classifiers for most of the
common data sources and formats, but it is also possible to write custom ones or
use the community-provided ones from AWS marketplace.

5.2.2 Data lineage in AWS Glue
To correctly analyze data lineage in AWS Glue, we must first explore which

parts of it participate in data pipelines and may contain data flows. It is easy to
see that we must analyze ETL jobs as they contain ETL pipeline code, and Data

53

Catalog which contains metadata of data sources that could be used in ETL jobs.
It turns out that this is all that we need for complete data lineage.

While Workflows seem like they could participate in data lineage, in fact they
are used just for job scheduling. If jobs in a Workflow depend on each other, we
can see it from just analyzing the jobs, because they would use common data
sources through which they would be connected in the data lineage graph. The
order in which they are executed does not play any role in data lineage analysis.

Crawlers and classifiers in Data Catalog may also contain executable code, but
this code just enumerates resources present in a data source in case of crawlers
and infers data schema of these resources in case of classifiers. There are no data
flows in the sense of data lineage analysis, no values are moving from one place to
another. They do not need to be analyzed, but we can read the results of their
work in Data Catalog.

5.2.3 AWS Glue API
Now that we know which entities of AWS Glue we want to analyze, let us

have a look at how we can get access to their metadata which we will need
for the analysis. AWS Glue is usually managed from AWS console, which is a
web application for controlling any AWS service. For programmatic access AWS
services also provide rich API. It is common that any action that can be made
in AWS console has an equivalent support in API. AWS is one of the biggest
providers of cloud services worldwide so it should not be a surprise that there
are many available SDKs (software development kits) for popular programming
languages that support using APIs of AWS services. These SDKs are released
under Apache License so we are free to use and distribute them and we can even
modify them should we need to do so.

As Manta Flow scanners are developed in Java, naturally the first option was
to explore SDK for Java. AWS Java SDK is currently in version 2.x. This SDK
contains multiple packages for each AWS service including AWS Glue. There is
a comprehensible API reference and documentation for this SDK available on
AWS Glue website as well as a library of examples available on GitHub which
explains common usage of the SDK. Overall, this SDK is suitable to fulfill our
requirements and needs. We can use it to extract all necessary metadata from
AWS Glue.

Security and access permissions

It is important to understand how security and access permissions work in AWS
Glue. The scanner has to read metadata of sensitive resources. It is important
that it can do so in a secure way, otherwise Manta Flow users will not be willing
to provide required permissions. Additionally, we need to be able to explain the
users exactly what credentials and permissions we need to set up a connection for
AWS Glue.

AWS provides a web service called AWS IAM (AWS Identity and Access
Management) that helps managing access to AWS resources securely. IAM allows
controlling and managing user identities, permissions, and access to various AWS
services and resources within an organization.

54

With IAM, one can create and manage IAM users, groups, and roles. IAM
users are specific identities that represent individuals or applications that interact
with AWS services. IAM groups are collections of users with similar permissions,
making it easier to manage permissions for multiple users. IAM roles are used
to delegate access permissions to entities outside of organisation’s AWS account,
such as other AWS accounts or services.

IAM enables setting fine-grained permissions for users, allowing to control
which actions they can perform and which resources they can access. It follows
the principle of least privilege, which means users are granted only the permissions
necessary to perform their tasks, enhancing the security of organisation’s AWS
infrastructure.

Overall, AWS IAM allows organisations to create tailored permissions for
accessing only those AWS Glue resources that they want to analyze in Manta
Flow, which builds their trust in this solution.

It is necessary to generate programmatic user credentials to be able to access
AWS services from the SDK. These credentials consist of an access key ID and a
secret key. This has to be done by organisation’s AWS administrator.

5.2.4 ETL job metadata
Let us have a look at what ETL job metadata is available in SDK so we can

determine what we can use for data flow analysis. Below is a comprehensive
list of interesting properties of job metadata that are relevant for data lineage
analysis. We decided to omit some non-relevant ones as the complete list is too
extensive [15].

• Name – string that identifies a job.

• Command – A JobCommand object containing detail about the executed
command.

– Name – string identifying command type. There are 3 command types:
glueetl is a standard Spark job, pythonshell is a job using standard
Python shell (without Spark), gluestreaming is a streaming Spark job
that runs continuously consuming data from streaming sources such as
Apache Kafka.

– ScriptLocation – string specifying the Amazon S3 path to a script
that runs a job.

– PythonVersion – string specifying the Python version being used to
run a Python shell job. Python scanner only supports Python version
3.

• DefaultArguments – A map array of key-value pairs where each key and
value are strings. Contains the default arguments for every run of this job.

• NonOverridableArguments – A map array of key-value pairs. Contains
arguments that cannot be overriden.

• Connections – A list of connections used for this job.

55

• GlueVersion – string specifying AWS Glue version which determines the
versions of Apache Spark and Python available in a job.

Each ETL job has a unique name that can be used for its identification. A
job executes a specific command that consists of the environment, job script and
arguments.

There are 3 different command types but none of them influences how Python
scanner analyzes the script. Presence or absence of Spark environment can be
inferred from the script. When Spark functions are used, we can expect that
Spark is available, otherwise the script would fail.

Each script is stored in Amazon S3 which means that we need to download
it from there in order to analyze it. Users are required to provide sufficient
permissions for this action when configuring credentials.

Each ETL job can be parameterized by arguments which consist of default,
non-overridable and standard arguments defined on a job run. A complete set of
arguments used to run a job can only be found by examining the history of job
runs. Arguments can be accessed in the script by calling a dedicated function.
Some of the arguments can be used to set up the script environment for the jobs
and job runs. There are 4 of them which we need to be aware of:

1. --additional-python-modules specifies a list representing a set of Python
packages to be installed. It is possible to install packages from PyPI (Python
Package Index) or provided in a custom distribution. A custom distribution
entry is the Amazon S3 path to the distribution. These packages are available
to be used in the job script.

2. --extra-files contains a list of Amazon S3 paths to additional files, such
as configuration files that AWS Glue copies to the working directory of the
script before running it. These files can be referenced in the script using a
relative path.

3. --extra-py-files contains a list of Amazon S3 paths to additional Python
modules that AWS Glue adds to the Python path before running the script.
These modules are available to be used in the job script.

4. --scriptLocation contains an Amazon S3 location where the ETL script
is located. This parameter overrides the script location set in job metadata.

Lastly, jobs can use certain Connections defined in Data Catalog. Only the
Connections specified in this job parameter can be used. We will explain what
they are in the following section.

5.2.5 Data Catalog metadata
We shall also look at available metadata for Data Catalog. There are three

types of entities that are useful for data lineage analysis: databases, tables and
connections. Firstly, let us list important properties of database metadata [16]:

• Name - string containing the name of the database.

• CatalogId - the ID of the Data Catalog in which the database resides.

56

The following list contains important properties of table metadata [17]:

• Name - string containing the table name.

• DatabaseName - string specifying the name of the database where the
table metadata resides.

• StorageDescriptor - StorageDescriptor object describing the physical
storage of table data.

– Columns – An array specifying columns of the table.
– Location – Location string containing URI of the physical location of

the table.

• CatalogId - the ID of the Data Catalog in which the table resides

Finally, a list enumerating important properties of connection metadata:

• Name – string containing the name of the connection definition.

• ConnectionType – string specifying the connection type, one of JDBC,
SFTP, MONGODB, KAFKA, NETWORK, MARKETPLACE, CUSTOM.

• ConnectionProperties - a map array of string key-value pairs. These
key-value pairs define various parameters of the connection, e.g. HOST,
JDBC_CONNECTION_URL etc.

Data Catalog itself is identified by Catalog ID, which is the same identifier as
the 12-digit ID of the AWS account to which it belongs. AWS account could be
understood as organisation’s account under which all AWS resources are grouped,
although it is possible for organisations to have multiple accounts. In general,
an AWS account can use one AWS Glue service instance in each AWS region
(geographical regions specifying data centers) and each service instance has a
single Data Catalog. It is not possible to use Data Catalogs in different regions,
but it is possible to use Data Catalogs belonging to different AWS accounts. A
Data Catalog is therefore uniquely identified by Catalog ID (AWS account ID)
and AWS region.

A Catalog contains databases which represent a logical grouping of tables.
Since Data Catalog is a metadata repository, it directly does not contain any
data, it just contains metadata about data sources. Data Catalog databases are
just containers containing any arbitrary grouping of tables which may describe
resources stored in different locations.

Tables represent a collection of related data organized in columns and rows.
Each table maps to a data source for which it provides connection details, so it is
possible to trace the real data location, which is crucial to provide complete data
lineage. Such data source may be a relational database table, a structured file or
any other data source for which there is a connector available. The benefit of a
Catalog table is that no connection details have to be provided when such table is
used in an ETL job or other AWS service and it also contains schema information,
which is especially helpful for resources that do not directly provide it (e.g. files).

Connections can be used to store connection details for commonly used data
sources such as databases. They allow secure storage of connection credentials

57

so they do not need to be specified in plain-text in code. This connection also
becomes a single source of truth for connection details, so if its settings change,
they only need to be changed in one place. A connection is specified by its type,
which defines the connector that AWS Glue will use to load and save data, and
a collection of connection properties. Analyzing Connections is an important
metadata information for data lineage analysis, because when they are used in
code, the connection details are unknown and have to be provided externally.

5.2.6 Analyzing ETL jobs
We now have enough information to think about how we can analyze data

lineage in ETL jobs. The process looks rather simple. ETL jobs consist primarily
of the job script, which we can analyze using Embedded Code Service. Additional
metadata about the execution environment can be passed in the configuration
argument of the service. This configuration shall contain argument values as well
as certain Data Catalog metadata which are necessary to successfully recognize
data sources used in the script. AWS Glue does not process any data outside of
job scripts so at this point we will not need to map any pin nodes.

Python scanner improvements

There are certain Python scanner improvements required to support analyzing
AWS Glue scripts. The scanner is already capable of analyzing Spark code as it
supports the analysis of PySpark library (Python API for Apache Spark) function
calls, but AWS Glue introduces an extension of this library called awsglue. This
library provides additional functionality for working with Spark in AWS Glue
environment and for using other features of AWS Glue such as Data Catalog.
Figure 5.2 contains several function calls from this library. The scanner needs to
be extended with a plugin for handling these function calls.

The main feature of this library is the DynamicFrame class, which is similar
to PySpark’s DataFrame. It can be created from AWS Glue Data Catalog table,
connection or some other data source available in AWS and it can be converted
from and to a DataFrame. It supports common operations over data frames such
as filtering, mapping, joining, etc. There are also custom ETL transformations
defined for these frames, so the users do not need to convert to DataFrame for
common use-cases. These transformations are used when the code is generated
from graphical tool in AWS Glue.

The AWS Glue getResolvedOptions(args, options) utility function gives
access to the arguments that are passed to the script when a job is ran. Job
arguments are a useful tool that makes a job dynamic and modular and are
therefore used quite often. We do not have direct access to the contents of
the args argument (that is usually supplied from sys.argv - command line
arguments), but using Outsight we can supply it from AWS Glue scanner. Job
metadata contain default arguments, it is also possible to analyze job run history
and collect the different values with which the job was executed, or simply allow
users to provide these values in a handy format. With this Outsight, we can
simply construct a dictionary in the collaborative propagation mode containing
the keys defined in the options argument, which is usually a list containing string
constants. Figure 5.3 demonstrates the usage of this function.

58

1 import sys
2 from awsglue . utils import getResolvedOptions
3

4 args = getResolvedOptions (sys . argv , [’JOB_NAME’ , ’day_partition_key’
, ’hour_partition_key’ , ’day_partition_value’ , ’
hour_partition_value’])

5

6 print "The day-partition key is: " , args [’day_partition_key’]
7 print "and the day-partition value is: " , args [’day_partition_value’

]
Figure 5.3: Usage of getResolvedOptions function

GlueContext object wraps the Apache Spark SparkContext object, and
thereby provides a mechanisms for interacting with the Apache Spark platform.
It contains functions for creating data sources and data frames, working with
datasets in Amazon S3, managing transactions and writing data. We are mostly
interested in the functions that create and write data frames as they provide
inputs and outputs of the ETL jobs. GlueContext can create DynamicFrames
or DataFrames from Data Catalog or from options. The Data Catalog way is
quite simple as only the database and table name is provided. These values are
enough to match the table in the Data Catalog. Creating a frame from options
is a bit trickier as there are multiple types of available connections and each of
them consumes different options. However, these options are string values for
which we already have a handful of mitigation strategies. Writing methods allow
writing data frames in a similar way as reading them. It is possible to write
both DynamicFrames and DataFrames to Data Catalog by providing name of the
database and table. In advance to that, DynamicFrame can also be written from
options or using a stored JDBC connection.

Transformation classes are a different approach to apply transformations to
DynamicFrames. Internally, they call the relevant function on the frame. A difficult
problem to solve is how the transformation is applied. Each transformation is
inheriting from parent class GlueTransform, which declares a couple of class
methods. Most of them are not interesting and only provide information to user
about themselves. The interesting one is the apply(cls, *args, **kwargs)
method, which applies the transformation with given arguments. This method
is not overridden in child classes. Basically what it does internally is creating
an object of the inheriting class type using the cls parameter. As it is a class
method, this parameter is auto-filled by Python and contains the reference to the
current class. Then, this object is invoked with the remaining arbitrary arguments,
which in fact means that the__call__ method of the child class is invoked. This
is where the transformation method is invoked on the data frame object with the
right arguments. This creates a tricky situation where each transformation uses
the same apply method, so the current algorithm for invocation target resolution
cannot reliably solve this issue. An additional improvement could be to resolve
invocations based on the calling object, and if that object turns out to be a class,
we can only look for the methods of that class. This solution is a mitigation
strategy for an imperfect algorithm for invocation target resolution, but can be
implemented rather easily.

59

5.2.7 Analyzing Data Catalog
It is obvious that since Data Catalog tables are used as data sources and

sinks in ETL jobs, they are an integral part of the data flow. Less obvious is the
fact that mapping from a table to data location (Location is the name of the
metadata attribute containing URI to data location) also needs to be visualized.
Take for example a situation where one process produces data and stores it on
Amazon S3 in a file called foo.csv and another pipeline reads the data from Data
Catalog table mapped to the S3 location of foo.csv, applies transformations and
stores the result to a different Data Catalog table. Without the link between the
data location and Data Catalog table, the graph would be disjointed.

It is also important to review whether the nodes for Data Catalog tables should
exist in graph. Since the tables themselves only represent a different data source,
we could replace the table node with the node of the data sources directly in the
graph. While such representation would be technically correct, it would hide the
semantics of using a Data Catalog table. Those users that are aware of the usage
of Data Catalog tables but are unaware of the underlying data sources will not
understand the graphs correctly. There may also be scenarios where only the Data
Catalog tables are used in data pipelines and the underlying data source is never
referenced directly. In such scenarios replacing the table node would be confusing.
As we can’t confirm that such situations would not occur, we cannot hide this
information in the graph, therefore both nodes and the edge between them need
to be created. An example of how such data lineage could be visualized is shown
in Figure 5.4. This example is based on the code shown in Figure 5.2. Blue nodes
represent actual files, green nodes represent Data Catalog tables for these files,
yellow nodes are a part of Python data lineage.

Figure 5.4: An example of data lineage graph containing Data Catalog tables

5.3 Design of AWS Glue scanner
The analysis from the previous section creates a strong foundation upon which

we can build the design of AWS Glue scanner. We were thinking ahead when
creating this design so it covers not only the features implemented in the MVP
included in this work, but also the features that while not required for the purposes
of the MVP, need to be implemented in near future to create a full-fledged scanner.

AWS Glue scanner is designed in a standard way consisting of two main
components: Connector and Dataflow Generator. The task of the Connector is
to connect to AWS Glue, extract all required metadata and transform it into a

60

general model that can be used for data flow analysis. Dataflow Generator uses
this model to analyze data flows and create a data lineage graph.

5.3.1 Connection scope
Each scenario executed in Manta Flow CLI analyzes a single connection to a

data technology. The first thing we need to specify is the scope of a connection in
AWS Glue, that is, what entities are analyzed in one scenario execution. Usually,
this scope is defined by connection URL (where available) and credentials. A
scenario then analyzes everything it has access to using these connection settings.
It makes sense to use this approach in AWS Glue as well. A connection in AWS
Glue scanner is defined by credentials and the AWS region. This pairing uniquely
identifies the AWS Glue service instance (a service instance can be identified by an
AWS account ID, which we can obtain from credentials, and by an AWS region).
This connection provides access to a set of ETL jobs and Data Catalog, which
together represent the connection’s scope of the data flow analysis. The access
can be restricted by permissions set in AWS IAM service.

5.3.2 AWS Glue Connector design
AWS Glue Connector takes care of extracting and storing metadata from AWS

Glue and resolving the inputs for data flow analysis. The connector is divided
into 4 main components, as is common with other scanners:

1. Extractor which extracts metadata from AWS Glue

2. Model which contains the definition of the general model of the input

3. Resolver which is an implementation of the general model

4. Reader which reads extracted metadata into the model used by Dataflow
Generator

Extractor

The extractor connects to the AWS Glue service instance and extracts all
required metadata, saving them on the file system. To extract the metadata, AWS
Java v2 SDK is used. The SDK returns data in its own Java objects. We need to
extract Data Catalog metadata and ETL job metadata including job scripts. We
must not forget that we also need to extract additional libraries and files which
are specified in job arguments.

Extracted metadata must be stored in a convenient format and in a well-defined
hierarchy on the file system so that it can be correctly loaded into the model
used in the data flow analysis. It is common to store metadata in the format in
which it was extracted from data technology. In a situation where retrieval of
a particular artifact fails (due to insufficient rights or other error), the user can
provide it manually. Users can export AWS Glue metadata in multiple formats
(using aws-cli, a command line tool for interacting with AWS services), so we
chose JSON format for convenience.

61

The file hierarchy for extracted metadata has to be unambiguous so that the
Reader can read it correctly. We designed the file hierarchy shown in Figure 5.5.
Names enclosed in < > represent variable names based on the actual name of
the entity described between < > (<job1> would be replaced by the actual name
of the first extracted ETL job etc.). The hierarchy intentionally uses <region>
and <account-id> top-most directories. While a connection can only extract
metadata in a single region, the name of the region is not a part of any metadata,
but is required for correct naming of resources, so we store this value in the name
of the directory. Account ID can be inferred from Catalog ID stored in table and
database metadata, but this value is not present in job metadata and we need it
to correctly resolve which Data Catalog is used in job scripts (if no Catalog ID is
used when accessing Data Catalog resources, the default one is used), so we stored
it in the directory name as well. However, it has another reason. It is possible to
use Data Catalog belonging to another AWS account in ETL jobs, so when its
metadata is extracted, it is stored in a different directory under that account’s ID.
Then there are two directories, jobs directory containing ETL job metadata and
data_catalog directory containing Data Catalog metadata. ETL job metadata
consist of metadata JSON file and script file, if the job uses additional libraries or
files, they would also be stored here. Data Catalog metadata contain JSON files
of databases and tables.

Figure 5.5: File hierarchy of extracted AWS Glue metadata

62

Model, Resolver and Reader

Model component defines a common data interface of the entities of the general
model of AWS Glue input following the principle of loose coupling.

Resolver component contains implementations of Model interfaces. Classes
are designed to be immutable so the input for the data flow analysis cannot be
accidentally modified.

Reader component takes care of reading the extracted metadata and creating
its object representation using the classes defined in Resolver.

5.3.3 AWS Glue Dataflow Generator design
AWS Glue Dataflow Generator analyzes data flows in the extracted inputs

and creates a data lineage graph. Analyzing ETL jobs is fairly simple, all that
the Generator needs to do is to call Embedded Code Service. After that it merges
the result graph into the AWS Glue graph containing a node representing the job
and the work is done. A more interesting problem is the analysis of Data Catalog
metadata.

The goal of Data Catalog analysis is to create data flow edges between the
nodes representing Data Catalog tables and the nodes representing the actual
data sources as well as adding edges when these tables are used in ETL jobs.
There are two possibilities how we can achieve that.

The first approach can create a more precise data lineage, but this lineage is
only created when Data Catalog is used from AWS Glue (other AWS services can
also use Data Catalog, for example AWS Athena can use Data Catalog tables
in SQL queries). When ETL jobs are analyzed by Embedded Code Service, the
resulting graph shall contain pin nodes representing reads and writes to Data
Catalog tables. Then, Dataflow Generator would create the node for this table
and map the pin node to the table node. Dataflow generator would also create
data source node that the table is mapped to and link it with the table node. In
case of Python, table schema could be passed directly to Python analysis using
Outsight to provide a more detailed column-level lineage.

The second approach is a more general solution. Firstly, Data Catalog metadata
would be stored in a data dictionary so it could be accessed by Dataflow Query
Service. Since mapping between the data source and Data Catalog table is
visualized as a data flow, it is also possible to create these flows in an extra data
flow scenario. Such scenario would create data flows from data sources to Data
Catalog tables for all tables present in extracted metadata. Python scanner would
use Dataflow Query Service to resolve Data Catalog accesses without the need
to create any extra data flows to data sources, because they would already exist.
However, since there would be only dataflows from data sources to catalog tables,
edges in the other direction (backlinks, when data is written to Data Catalog
table) would have to be added in a postprocessing scenario.

The second solution provides more value and the lineage can also be reused
for other scanners, that is why we prefer it. However, it implies that several new
components need to be developed, namely:

1. Data dictionary mapping scenario for mapping Data Catalog metadata into
a data dictionary

63

2. Data Catalog data flow scenario for creating data flows between Data Catalog
tables and their data sources

3. Specific Dataflow Query Service implementation for AWS Glue Data Catalog

4. Backlink mapping configuration for adding a missing edge between Data
Catalog table and data source when data is written to the table

5.4 Implementation of AWS Glue scanner
In this work we implemented the MVP of AWS Glue scanner. The goal of

this MVP was not to create a full-fledged scanner, but to be able to demonstrate
the functionality of Embedded Code Service. The prototype can be extended in
the future following the presented design. As some of the designed features are
implemented in the MVP and some are not, here is a comprehensive list that
sums it up:

• Implemented features

– Extraction of ETL job metadata and scripts
– Data flow analysis of ETL jobs
– Creating data lineage graph
– Integration with Manta Flow
– Configuration in Admin UI
– Plugin for analyzing awsglue library function calls in Python scanner
– Agent for AWS Glue

• Unimplemented features

– Extraction of Data Catalog metadata
– Extraction of additional files
– Data flow analysis of Data Catalog

Let us mention interesting parts from the implementation of some of the
features.

5.4.1 Extraction
AWS SDK used for metadata extraction always provides responses to requests

deserialized in the form of a Java object. We have stated that we want to store
metadata in a serialized JSON format. To avoid implementing serialization logic,
we developed a response interceptor (the GlueClientExecutionInterceptor
class) that intercepts a HTTP response before it is deserialized. At this point, the
body of the response contains the metadata in the desired JSON format, so we
copy it and let the response be deserialized, because it is also convenient to read
some of the metadata from the provided response object.

64

We have also implemented a Manta Flow Agent specialization for AWS Glue
extraction. Manta Flow Agent is an application for metadata extraction. In enter-
prises, it is common to limit access to certain networks for security reasons. Agent
was created to allow extracting metadata from systems that are not accessible
from the same network as Manta Flow Server.

5.4.2 Manta Flow integration
AWS Glue scanner is fully integrated with Manta Flow. It is released as

one of so-called preview scanners which can be used only in preview mode. The
scanner can be configured using Admin UI as all other scanners. The configuration
includes specification of credentials and filtering expressions for ETL job names
that should be included in the analysis.

5.4.3 Plugin for awsglue library
While not directly a part of AWS Glue scanner, we have developed a plugin for

Python scanner that analyzes function calls in awsglue library. This plugin was
important to be able to analyze Python code used in AWS Glue as the function
calls are often present in it. We have conducted the analysis of this library in
Section 5.2.6, which sums up the range of propagation modes that need to be
implemented. We have implemented the functional base of the plugin that handles
the extraction of this library and invocation of its propagation modes. We have
also developed two propagation modes.

The first propagation mode handles create_dynamic_frame_from_options
function. This function is used to read external data specified by the options
into a DynamicFrame. The options are key-value pairs of string values and define
the connection details of the data source. The propagation of this function is
implemented in CreateDynamicFrameFromOptionsPropagationMode. The prop-
agation mode works by trying to resolve the connection options in the best-effort
way. We can split the options into two sets: stream connection options and
database connection options. The propagation mode creates data read flow when
it matches at least a part of the connection details and provides placeholder
values for missing properties. If no option can be resolved, no flow is created.
That is because we have no information about whether a stream or a database
is accessed. This flow is wrapped in a flow representing an unknown column of
a DynamicFrame and propagated to the target, which is the return value of the
function.

The other propagation mode handles the toDF function of DynamicFrame class
that converts this frame into PySpark DataFrame. Developers often prefer PySpark
frames to AWS Glue frames, because they are used to them and are more capa-
ble. First, the propagation mode DynamicFrameToDataframePropagationMode
discovers all flows representing a column in a DynamicFrame and transforms them
to a flow representing a DataFrame column, preserving column name and the
source of the data in the column. Transformed flows are propagated to the target,
which is the return value of the function. These flows can then be used by the
plugin that handles function calls of PySpark library to resolve any function calls
on the returned data frame.

65

6. Evaluation
In this chapter, we evaluate the outcomes of the implementation presented in

the preceding chapters. The primary goal of our work was data flow analysis of
embedded code in the context of Manta Flow and we need to assess whether our
proposed solution achieved its intended objectives.

In this evaluation, we will use an example of an AWS Glue ETL job. This
example demonstrates the usage of Python Embedded Code Service for data flow
analysis of embedded code in AWS Glue. It makes sense to evaluate both of these
components together, because that is how they are intended to be used. We will
present and explain the source of the example and then we will show and assess
the resulting data lineage with respect to the predefined objectives.

Note that the presented example was created to showcase the implemented
functionality and might not be a real representation of an AWS Glue job. However,
it does not mean that the data flow makes no sense or that actual scripts would
be completely different, but rather that they would be structured differently
and contain additional logic for logging etc. The example is also limited by
unimplemented features because some function calls that would be used in a
production code are not yet supported in Python scanner.

6.1 ETL job example
The example that we are going to use for evaluation demonstrates a simple

ETL job for data transformation using AWS Glue. The script code is shown in
Figure 6.1. It showcases several features implemented in this work as well as
some common features of Manta Flow to show that the implemented solution is
well-integrated. At the same time, we tried to keep the example reasonable so it
is similar to how ETL jobs are usually implemented.

The example is a simple ETL job defined without job arguments. It uses AWS
Glue to facilitate data reading, but it does not use Data Catalog. The pipeline
that we created reads data from an Amazon Redshift view into a DynamicFrame.
This frame is converted to PySpark DataFrame for convenience. Next, we apply
a simple data transformation to the DataFrame. We just added a new column,
the exact transformation does not matter because its details would not be shown
in the graph anyway. Python scanner does not show details about internal
transformations. The transformed DataFrame is stored on the local file system in
the CSV format. Finally, the CSV file is uploaded to Amazon S3. In more detail:

• Lines 1–4 contain library imports. In our example we need awsglue and
pyspark libraries which we have already introduced and boto3 library which
is a Python library for working with AWS services.

• Line 6 defines a JDBC URL for the Redshift database that we use.

• On lines 8–18 we define the get_df function that uses AWS Glue context
object to read data from the Redshift database. It is common to use this
context to read or write data, because AWS Glue can safely facilitate this
data connection using a Redshift connector. The returned data frame is

66

converted from AWS Glue DynamicFrame to PySpark DataFrame. This
conversion is also used often as developers are more familiar with PySpark
library rather than AWS Glue and it is also far more capable.

• On lines 20–21 we define data transforming function transform_df. As
we already mentioned, the actual transformation is not important for this
example, because it does not showcase any feature implemented in this work.
The function is supposed to represent any set of data frame transformations.

• Lines 23–32 are the main body of the script. Firstly, we initialize Spark and
AWS Glue contexts. We then retrieve input data frame using the get_df
function and apply the transformations on it. On line 29 we store the data
frame to a local CSV file using PySpark CSV writer. Because the job is
executed in a serverless environment of AWS Glue, this file would be erased
together with the job’s working directory when the execution ends. To
preserve the created file, we upload it to Amazon S3 on line 32. Although
AWS Glue provides a more convenient way for working with S3 resources,
many developers prefer using this common Spark approach.

1 from awsglue . context import GlueContext
2 from pyspark import SparkContext
3 from pyspark . sql . functions import lit
4 import boto3
5

6 jdbc = "jdbc:redshift://dev.eu-central -1.redshift.amazonaws.com
:1234/automated_test"

7

8 def get_df (jdbcurl , table) :
9 my_conn_options = {

10 "url" : jdbcurl ,
11 "dbtable" : table ,
12 "user" : "masterUsername" ,
13 "password" : "masterUserPassword" ,
14 "redshiftTmpDir" : "s3://testdir/testbucket" ,
15 "aws_iam_role" : "glue_execution_role"
16 }
17 df = glueContext . create_dynamic_frame . from_options (

connection_type="redshift" , connection_options=my_conn_options)
18 return df . toDF ()
19

20 def transform_df (df) :
21 return df . withColumn ("PROFIT" , lit (None))
22

23 if __name__ == "__main__" :
24 sc = SparkContext . getOrCreate ()
25 glueContext = GlueContext (sc)
26

27 in_df = get_df (jdbc , "sales_view")
28 csv_df = transform_df (in_df)
29 csv_df . write . csv ("sales_data.csv")
30

31 s3_client = boto3 . client ("s3")
32 s3_client . upload_file ("sales_data.csv" , "mysalesbucket" , "

sales_data.csv")
Figure 6.1: Source code of an ETL job demonstrating embedded code analysis

67

The created data lineage graph can be seen in Figure 6.2. Figure 6.3 shows
the same graph zoomed in on its left side, Figure 6.4 is zoomed in on the right
side. Figure 6.5 shows the left part of the graph when entire Redshift database is
also visualized to demonstrate that the scanner provides data lineage integrated
with other data technologies. The visualized object is the AWS Glue ETL job
shown in black border. The purple border represents the job script. Yellow nodes
represent Python data lineage, green nodes represent files stored on a file system
and red nodes represent Redshift data lineage.

We can see that the graph contains a complete data lineage as described by the
example. Redshift data flows into the node representing data reading operation in
Python code and into the node representing write operation. The data is stored in
a file sales_data.csv located on localhost from where it is uploaded to Amazon
S3. The data flow operation of uploading the CSV file to S3 consists of two Python
nodes, because the file is first read from the file system and then uploaded to S3.

We can see that the data lineage does not contain the exact information about
propagated columns. It is due to the implementation of Python scanner that
currently cannot use schema information during data flow analysis. It works with
a concept of unknown columns in propagations and external data source nodes
are only added in Dataflow Generator.

Lastly, we would like to present performance data from data flow analysis.
This data was not measured using any precise profiling technique, but rather
collected by observing the logs that were produced during the execution. There
are 4 interesting timestamps in the log:

1. 16:44:16.847 - AWS Glue data flow scenario started

2. 16:44:16.959 - Python scanner started analyzing embedded code

3. 16:45:02.380 - Python scanner finished analyzing embedded code

4. 16:45:02.938 - AWS Glue data flow scenario ended

We can observe that it took a little over 0.1s to initialize the AWS Glue scenario
and perform input orchestration in Embedded Code Service. Python analysis took
approximately 45.4s. After that, in less than 0.6s the graphs were merged, at which
point the execution of Embedded Code service has finished, and the finalization
steps of the scenario were executed. In conclusion, the execution of AWS Glue
scanner and Embedded Code Service code took around 0.7s cummulatively (1.5%
of the overall time) while the execution of Python scanner took around 45.4s
(98.5% of the overall time). These results are not very precise, but we can see
that Embedded Code Service is sufficiently optimised and does not create a major
performance bottleneck. The effort to speed up the overall analysis should be
focused mainly on Python data flow analysis.

6.2 Limitations and Future Work
As demonstrated on the example, Python Embedded Code Service designed

and implemented in this work can be integrated with other data technology
scanners and is capable of analyzing embedded Python code.

68

6.2.1 Other programming languages
We have only been able to implement the service for embedded Python code.

The analysis of C# and Java code is not yet supported by any Embedded Code
Service. While the implementation was not set as our goal, we have provided a
comprehensive guide how these services can be developed should they be required.

6.2.2 AWS Glue scanner
We have developed a prototype of AWS Glue scanner that can analyze data

lineage in basic ETL jobs. The range of developed features was sufficient to
demonstrate the capabilities of Embedded Code Service, but is not yet sufficient
to analyze any inputs provided by customers.

We have designed several more features that will need to be implemented
in the future in order to cover basic capabilities of AWS Glue. Data Catalog
analysis is a promising feature to unlock data lineage discovery in AWS Glue. The
plugin for awsglue Python library has to be significantly extended to cover more
commonly used functions and methods. The further development of the scanner
will be a subject to prioritization based on customer preferences.

6.2.3 Python scanner improvements
We have implemented only a few improvements of Python scanner. We needed

to redesign several components so the scanner can be integrated with Embedded
Code Service and we developed an awsglue library plugin. These changed allowed
us to analyze the example script used in this evaluation.

To provide a better value, Python scanner will need to be optimized in the
future for the analysis of embedded code. We have observed that embedded
Python code is often parameterized, e.g. using job arguments in AWS Glue.
Python scanner currently provides poor interface for processing external values
and is not optimized to analyze large sets of parameters.

69

Figure 6.2: Data lineage graph created by analyzing the demonstration script

70

Figure 6.3: Left part of the data lineage graph

71

Figure 6.4: Right part of the data lineage graph

72

Figure 6.5: Right-most node of the data lineage graph together with a part of
Redshift data lineage

73

7. Conclusion
In this work, we managed to successfully develop Python Embedded Code

Service for data flow analysis of embedded Python code as well as a prototype
of AWS Glue scanner, which uses this service to analyze ETL job scripts. The
scanner is fully integrated in Manta Flow production deployment.

The service currently supports only AWS Glue, but can easily be extended to
support other data technologies by implementing specific orchestration process for
that technology. The analysis of embedded code is currently limited to Python
code, but we have explained clear steps and necessary changes that need to be
made to scanners and the service in order to support a different programming
language in the future.

AWS Glue scanner prototype is able to extract and analyze data flow lineage
in ETL jobs. We have conducted the analysis and designed how the scanner can
be extended to also support analyzing data flows in Data Catalog.

We have extended Python scanner with a basic implementation of the plugin
for analyzing function calls in awsglue library often used in AWS Glue ETL
jobs. The plugin is ready for development of new propagation modes for function
commonly used in ETL jobs.

In the last chapter we have shown that AWS Glue scanner is able to successfully
analyze embedded code using Python Embedded Code Service to create a data
lineage graph for AWS Glue, internally employing Python scanner for data flow
analysis.

The future development should focus on finishing the unimplemented features
in AWS Glue scanner to make it a full-fledged scanner and to optimize Python
scanner along with Embedded Code Service to be more effective in analysis of
embedded code.

74

Bibliography
[1] Hive UDF. url: https://cwiki.apache.org/confluence/display/Hiv

e/LanguageManual+DDL#LanguageManualDDL-CreateFunction. (accessed:
June 07, 2023).

[2] Use a Java UDF with Apache Hive in HDInsight. url: https://learn.
microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-hive-
java-udf. (accessed: July 14, 2023).

[3] CLR integration in MSSQL. url: https://learn.microsoft.com/en-
us/sql/relational-databases/clr-integration/common-language-
runtime-integration-overview. (accessed: June 07, 2023).

[4] Developing Custom Objects for Integration Services. url: https://learn.
microsoft.com/en-us/sql/integration-services/extending-packa
ges-custom-objects/developing-custom-objects-for-integration-
services?view=sql-server-ver15. (accessed: June 07, 2023).

[5] Stored Procedures Overview. url: https://docs.snowflake.com/en/sql-
reference/stored-procedures-overview. (accessed: June 07, 2023).

[6] Language-specific introductions to Databricks. url: https://docs.databr
icks.com/languages/index.html. (accessed: June 07, 2023).

[7] Program AWS Glue ETL scripts in PySpark. url: https://docs.aws.
amazon.com/glue/latest/dg/aws- glue- programming- python.html.
(accessed: June 07, 2023).

[8] C-language functions in PostgreSQL. url: https://www.postgresql.org/
docs/current/xfunc-c.html. (accessed: June 07, 2023).

[9] Talend custom code. url: https://help.talend.com/r/en-US/7.3/java-
custom-code/java-custom-code. (accessed: June 07, 2023).

[10] CREATE FUNCTION statement. url: https://cloud.google.com/bi
gquery/docs/reference/standard-sql/data-definition-language#
create_function_statement. (accessed: June 07, 2023).

[11] Creating a Custom StreamSets Processor. url: https://github.com/
streamsets/tutorials/blob/master/tutorial-processor/readme.md.
(accessed: June 07, 2023).

[12] Developing a Custom Component in Java. url: https://docs.informatic
a.com/data-integration/b2b-data-transformation/10-4-0/engine-
developer-guide/custom-script-components/developing-a-custom-
component-in-java.html. (accessed: June 07, 2023).

[13] Custom activities in Azure Data Factory. url: https://learn.microsoft.
com/en- us/azure/data- factory/transform- data- using- custom-
activity. (accessed: June 07, 2023).

[14] Python procedure. url: https : / / documentation . sas . com / doc / en /
pgmsascdc/v_017/proc/n0asd2rsj9aedgn1828aptww56of.htm. (accessed:
June 07, 2023).

75

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateFunction
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateFunction
https://learn.microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-hive-java-udf
https://learn.microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-hive-java-udf
https://learn.microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-hive-java-udf
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration/common-language-runtime-integration-overview
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration/common-language-runtime-integration-overview
https://learn.microsoft.com/en-us/sql/relational-databases/clr-integration/common-language-runtime-integration-overview
https://learn.microsoft.com/en-us/sql/integration-services/extending-packages-custom-objects/developing-custom-objects-for-integration-services?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/integration-services/extending-packages-custom-objects/developing-custom-objects-for-integration-services?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/integration-services/extending-packages-custom-objects/developing-custom-objects-for-integration-services?view=sql-server-ver15
https://learn.microsoft.com/en-us/sql/integration-services/extending-packages-custom-objects/developing-custom-objects-for-integration-services?view=sql-server-ver15
https://docs.snowflake.com/en/sql-reference/stored-procedures-overview
https://docs.snowflake.com/en/sql-reference/stored-procedures-overview
https://docs.databricks.com/languages/index.html
https://docs.databricks.com/languages/index.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python.html
https://www.postgresql.org/docs/current/xfunc-c.html
https://www.postgresql.org/docs/current/xfunc-c.html
https://help.talend.com/r/en-US/7.3/java-custom-code/java-custom-code
https://help.talend.com/r/en-US/7.3/java-custom-code/java-custom-code
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_function_statement
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_function_statement
https://cloud.google.com/bigquery/docs/reference/standard-sql/data-definition-language#create_function_statement
https://github.com/streamsets/tutorials/blob/master/tutorial-processor/readme.md
https://github.com/streamsets/tutorials/blob/master/tutorial-processor/readme.md
https://docs.informatica.com/data-integration/b2b-data-transformation/10-4-0/engine-developer-guide/custom-script-components/developing-a-custom-component-in-java.html
https://docs.informatica.com/data-integration/b2b-data-transformation/10-4-0/engine-developer-guide/custom-script-components/developing-a-custom-component-in-java.html
https://docs.informatica.com/data-integration/b2b-data-transformation/10-4-0/engine-developer-guide/custom-script-components/developing-a-custom-component-in-java.html
https://docs.informatica.com/data-integration/b2b-data-transformation/10-4-0/engine-developer-guide/custom-script-components/developing-a-custom-component-in-java.html
https://learn.microsoft.com/en-us/azure/data-factory/transform-data-using-custom-activity
https://learn.microsoft.com/en-us/azure/data-factory/transform-data-using-custom-activity
https://learn.microsoft.com/en-us/azure/data-factory/transform-data-using-custom-activity
https://documentation.sas.com/doc/en/pgmsascdc/v_017/proc/n0asd2rsj9aedgn1828aptww56of.htm
https://documentation.sas.com/doc/en/pgmsascdc/v_017/proc/n0asd2rsj9aedgn1828aptww56of.htm

[15] AWS Glue Jobs API documentation. url: https://docs.aws.amazon.
com/glue/latest/dg/aws-glue-api-jobs-job.html. (accessed: May 30,
2022).

[16] AWS Glue Data Catalog Database API documentation. url: https://
docs . aws . amazon . com / glue / latest / dg / aws - glue - api - catalog -
databases.html. (accessed: May 30, 2022).

[17] AWS Glue Data Catalog Table API documentation. url: https://docs.aws.
amazon.com/glue/latest/dg/aws-glue-api-catalog-tables.html.
(accessed: May 30, 2022).

76

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-job.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-tables.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-tables.html

List of Figures

1.1 An example of a combined data lineage graph 4

2.1 An example of data lineage visualization in Manta Flow 9
2.2 A diagram of the pin node mapping process 12
2.3 A simplified class diagram of Dataflow Query Service 13
2.4 A simplified diagram of Python scanner workflow 15
2.5 Sample Python program json_to_csv.py 15
2.6 An example of an alias . 16
2.7 Visualization of the data lineage from the example 19

3.1 A diagram of data flows in the pipeline 20
3.2 An example of a Hive user-defined function written in Java [2] . . 24
3.3 An example of an SSIS script component written in C# 25
3.4 An example of a Snowflake stored procedure written in Python . . 26
3.5 Python cell of a Databricks notebook 27
3.6 SQL cell of a Databricks notebook 27
3.7 An example of an embedded script in AWS Glue 28
3.8 A diagram of the pin node mapping process in Embedded Code

Service . 32

4.1 Diagram of Embedded Code Service workflow 36
4.2 The process of merging and contracting a pin node 38
4.3 An example of a Spring bean XML configuration and dependency

injection . 40
4.4 Composition and dependencies of Generator configurations when

Emebedded Code Service is not supported for that programming
language scanner . 44

4.5 Composition and dependencies of Generator configurations when
Embedded Code Service is supported for that programming lan-
guage scanner . 45

4.6 Workflow of using Insighter along with Embedded Code Service in
Databricks scanner . 46

5.1 An example of an ETL job created in the graphical tool of AWS Glue 52
5.4 An example of data lineage graph containing Data Catalog tables 60
5.5 File hierarchy of extracted AWS Glue metadata 62

6.2 Data lineage graph created by analyzing the demonstration script 70
6.3 Left part of the data lineage graph 71
6.4 Right part of the data lineage graph 72
6.5 Right-most node of the data lineage graph together with a part of

Redshift data lineage . 73

77

A. Attachments
A.1 User Documentation

To run metadata extraction and data flow analysis of AWS Glue scanner, you
are required to have a computer with:

• runtime environment for Java 11 or newer installed,

• Manta Flow, version R40 or newer installed and configured.

Manta Flow requires a license to be successfully configured. Licenses are available
only to Manta customers and developers, which might be a problem for the reader.

The installer for Manta Flow contains a wizard for its configuration. After the
installation is successfully finished, Manta Flow can be launched.

After logging into Manta Flow Admin UI, it is necessary to create AWS Glue
connection, which is listed under Data Integration tools. The connection needs
to be named uniquely and requires AWS Glue credentials. The user needs to
generate programmatic credentials for the AWS user that will be used to access
AWS Glue. It is also possible to specify a regular expression, which filters the
analyzed ETL jobs.

With connection set up, we need to create a workflow for extraction and data
flow analysis. In process manager, create a new workflow and drag Extraction and
Analysis steps into the workflow. They should contain your AWS Glue connection.
When the workflow is created, execute it and watch the process manager to see
when it completes.

After the workflow finished, you may log into Manta Flow Viewer to visualize
the analyzed data lineage. In the Viewer, select the latest revision and choose,
which objects you would like to visualize. Then, click Visualize button and explore
the data lineage.

A.2 Contents of the Attachment
The list below describes the contents of the attachment:

• The source-code folder contains the source code developed within this work.
There are only classes and other files produced in their entirety as a part of
this work. Note that the source code of related Manta Flow components is
not included. The source code is provided in the hierarchical structure as it
appears in the development source code management tool.

• The diff folder contains two files in diff format (format used to store
differences between two files) that shows the changes that were made to
files not included in the source-code folder, but were a part of this work.
The changes include the refactoring of Python scanner components for the
purposes of integration with Embedded Code Service.

• The tex-source contains the source files used to generate PDF version of this
text. It contains the original version of the diagrams and pictures shown

78

in figures in this work. Should any of them be difficult to read, you can
examine them in better resolution.

79

	Introduction
	Data lineage
	Embedded code
	AWS Glue
	Goals
	Glossary
	Outline

	Manta Flow platform
	Manta Flow overview
	Manta graph
	Scanners
	Connector
	Dataflow Generator

	Dataflow Query Service
	Programming Language Scanners
	Data flow analysis of source code

	Requirements and Analysis
	Purpose of embedded code analysis
	Requirements from Manta
	Functional requirements
	Qualitative (non-functional) requirements

	Source technology analysis
	Embedded code usage philosophy

	Embedded Code Service analysis
	Merging graphs together
	Specifying runtime configuration
	Caching

	Design And Implementation Of Embedded Code Service
	Embedded Code Service design
	Multiple programming languages
	Orchestration
	Result

	Python scanner changes
	Spring framework
	Running the scanner without scenarios
	Python scanner design and Spring configuration
	Interfaces
	Components
	Insight and Outsight

	Python Embedded Code Service implementation
	Interface
	Result
	Orchestration
	Testing

	AWS Glue Scanner
	Motivation
	AWS Glue analysis
	Overview
	Data lineage in AWS Glue
	AWS Glue API
	ETL job metadata
	Data Catalog metadata
	Analyzing ETL jobs
	Analyzing Data Catalog

	Design of AWS Glue scanner
	Connection scope
	AWS Glue Connector design
	AWS Glue Dataflow Generator design

	Implementation of AWS Glue scanner
	Extraction
	Manta Flow integration
	Plugin for awsglue library

	Evaluation
	ETL job example
	Limitations and Future Work
	Other programming languages
	AWS Glue scanner
	Python scanner improvements

	Conclusion
	List of Figures
	Attachments
	User Documentation
	Contents of the Attachment

