
MASTER THESIS

David Šosvald

Optimizing Super Mario game tree
search

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Jakub Gemrot, Ph.D.
Study programme: Computer Science

Study branch: Visual Computing and Game
Development

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor Mgr. Jakub Gemrot, Ph.D. for leading this
thesis even though he already had a lot on his plate. I would also like to express
gratitude to my family and friends for all their support and encouragement.

ii

Title: Optimizing Super Mario game tree search

Author: David Šosvald

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Jakub Gemrot, Ph.D., Department of Software and Computer
Science Education

Abstract: Super Mario Bros. is still actively used as a model game for research in
level generation. Every year, the most recent techniques are applied and tested.
This lately includes various deep learning and reinforcement learning methods.
Many of the level generators use an artificial agent to test levels’ playability or to
gather playthrough metrics. Therefore, the performance of the level generators
is undeniably tied to the performance of the artificial agent used, both in level
validation and the computing time needed.

In our previous work, we created a new state-of-the-art agent for Super Mario
Bros. as a proof of concept when we implemented a more efficient forward model
(world simulation) for the Mario AI framework. In this work, we continue in that
work and focus on optimising how the agents explore the game tree by devising
domain-specific heuristics and running extensive parameter searches to tune the
agents as much as possible.

Thanks to these improvements, a new state-of-the-art agent was created. This
new agent should be capable of beating every standard Super Mario Bros. level
and it requires less time to solve levels than previous agents. We also present
a proof of concept agent that is capable of solving maze-like levels, which is
something none of the previous agents was capable of.

Keywords: artificial intelligence, game tree, domain-dependent heuristics, Super
Mario

iii

Contents

1 Introduction 3
1.1 Problem statement . 3
1.2 Goals . 3
1.3 Structure of the text . 4
1.4 Copyright . 4
1.5 Acknowledgement . 4

2 Theory 5
2.1 Super Mario Bros. 5
2.2 Artificial agents . 5

2.2.1 Artificial agents for Super Mario Bros. 5
2.3 A* algorithm . 6

2.3.1 Cost function . 8

3 Technological background 9
3.1 Mario AI framework . 9
3.2 Forward model . 9
3.3 MetaCentrum . 9

4 Analysis 11
4.1 Challenging level types . 11

4.1.1 Branching . 11
4.1.2 Mazes . 12

4.2 Ideas . 14
4.2.1 Parameter tuning . 14
4.2.2 Bidirectional search . 15
4.2.3 Tile constraints . 15
4.2.4 Suggested moves . 16
4.2.5 Grid utilization . 16
4.2.6 Waypoints . 18

5 Implementation 19
5.1 MFF A* parameter tuning . 19
5.2 Grid search . 19

5.2.1 A* for a platformer game 20
5.2.2 Mario physics . 21
5.2.3 Implementation . 23

5.3 MFF A* Grid agent . 29
5.3.1 Cost function . 29

5.4 MFF A* Waypoints agent . 31
5.4.1 Implementation . 33
5.4.2 Summany . 35

1

6 Evaluation 36
6.1 Experiment setup . 36

6.1.1 Testing environment . 36
6.1.2 Level packs . 36
6.1.3 Unsolvable levels . 37

6.2 MFF A* agent parameter search 38
6.2.1 Win rate . 40
6.2.2 Nodes evaluated . 40
6.2.3 Other metrics . 41
6.2.4 Best agent . 41

6.3 Grid search correctness . 42
6.4 MFF A* Grid agent . 42

6.4.1 Win rate and distance travelled 43
6.4.2 Only won levels . 44
6.4.3 Run time, planning time, total plannings, nodes evaluated,

most backtracked nodes 44
6.4.4 Game ticks . 45
6.4.5 Representative agents . 46

6.5 Agent comparison . 46
6.5.1 All levels . 47
6.5.2 krys levels . 48
6.5.3 Only won levels . 50

6.6 The most universal agent . 51

7 Related works 53

8 Conclusion 54

Bibliography 55

List of Figures 57

List of Tables 59

List of Listings 60

2

1. Introduction
This thesis follows up on our work concerning the Super Mario Bros. video
game. In our previous work [1] we have revisited the Mario AI framework [2], for
which we implemented a significantly better forward model. To prove the new
forwards model’s usefulness, we also created a new state-of-the-art Super Mario
Bros. artificial agent.

We have further experimented with the artificial agents and published our
work at the ICTAI 2021 conference [3], and even though the agents created were
able to complete most of the Mario levels they were tested on, we still see room
for improvement.

The reason why we want to make the agents better, even though they already
achieved more than 98% overall win rate and over 93% win rate on the most
complex level generator, is that there is still active research concerning the Super
Mario Bros. game to this day, especially in the area of level generation [4][5][6][7].
All level generators need a way of testing that the generated levels can be finished
– and here the artificial agents are used. The problem is that if the agent used
is not performant enough, we might end up discarding levels that are perfectly
playable – and possibly quite interesting since a simple agent was not able to
finish them.

As we discovered during a literate review [3], many level generator authors
have used an old A* agent by Robin Baumgarten (e.g. [4]), which we significantly
outperformed. We believe that using more capable agents might open possibilities
to generate and validate more interesting and complex levels, as such might be
the hardest ones for an artificial agent to complete.

You can learn more about how artificial agents are used in scientific works
concerning level generation in Chapter 7.

1.1 Problem statement
The existing agent [3] is very performant and can complete most levels flaw-
lessly, but it is not perfect. Especially, it struggles in complex scenarios, where
backtracking or choosing the correct path is required. And in our opinion, these
scenarios are one of the most interesting ones. Therefore, we decided to improve
our agent to be able to solve all of these situations, which will make it a perfect
choice as a level validator. The concrete set of levels that we aim to solve will be
discussed in Section 6.1.2. It should be noted that we decided not to deal with
brick-breaking, as described in Section 6.1.3.

1.2 Goals
Our goal is to create a new state-of-the-art agent, which will be able to solve
all of the levels we have available (1015 levels from 10 different generators plus
15 original Super Mario Bros. levels). We will focus on efficiently solving all of
the problematic level features, such as branching and maze-like level segments.
Furthermore, we want to optimize the way the agent explores the game tree, thus

3

making it more performant – solving the levels while exploring fewer nodes and
taking less time to do so, compared to the current state-of-the-art agent [3].

1.3 Structure of the text
We start the text with two introductory chapters – Chapter 2 introduces the
theoretical background of our work and Chapter 3 introduces the technical back-
ground. Following this, Chapter 4 presents an analysis of the problems that we
aim to solve and introduces the various ideas that we had to solve them.

Chapter 5 documents all of our implementation work – the grid search (this is
what we call a tile-level search throughout the text), the parameter searches and
the new state-of-the-art agent. Chapter 6 evaluates our work and compares it
with the previous results. It also selects the new best agent for the Super Mario
Bros. game.

In Chapter 7, our work is put into context with previous work concerning
Super Mario Bros. and artificial agents for the game, and also with work that
uses the agents in the context of level generation. Chapter 8 concludes our work
and presents possible future improvements and extensions.

All of the source code for this work, along with data from the experiments and
instructions for using our agents and replicating our experiments can be found at
https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar.

1.4 Copyright
Nintendo owns all rights to the Super Mario Bros. game and all its graphical
assets. This thesis is not endorsed by Nintendo and uses the framework on a
non-commercial basis for research purposes only. Information about the creators
of the framework can be found in Chapter 7.

1.5 Acknowledgement
Computational resources were provided by the e-INFRA CZ project (ID:90254),
supported by the Ministry of Education, Youth and Sports of the Czech Repub-
lic. Specifically, the MetaCentrum1 computational nodes were used to run the
experiments for this thesis.

1https://metavo.metacentrum.cz

4

https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar
https://metavo.metacentrum.cz

2. Theory
This chapter will be a brief introduction to the theoretical background of our
work. For a more detailed theoretical background, please refer to our previous
work [1].

We will introduce the Super Mario Bros. game in Section 2.1, artificial agents
in Section 2.2 and the A* algorithm in Section 2.3.

2.1 Super Mario Bros.
As we have already described the game in our previous work [1], we will now only
focus on the aspects of the game that are important for our current work.

Super Mario Bros. is a 2D platformer game originally featuring 15 levels.
Many level generators were created for the game, thus we can now have hundreds
of levels of various types. But the goal for every level remains the same – to get
to the finish.

The convention is that the playable character – Mario – spawns at the left
border of the level and that the finish is at the right border. In its base state,
the character can move left or right, it can jump and it can also sprint instead of
walking to move at a greater speed. As we essentially never reach an upgraded
state of the character, we do not have to deal with that.

There are three obstacles that can prevent Mario from reaching the goal.
First, he may run out of time, but this basically never happens. Second, he can
get killed by an enemy (by colliding with it). And third, Mario will die if he falls
out of the level bounds (by falling into a pit).

As for the levels, they are made of out square blocks (tiles) and they are
always 16 blocks high. Most levels are approximately 150-200 blocks wide.

Figures 2.1 and 2.2 show examples of two different Super Mario Bros. levels.

2.2 Artificial agents
This work focuses on creating and improving artificial agents for the Super Mario
Bros. game. An artificial agent is a program that perceives its environment and
acts upon it using a set of available actions with the intent to reach a defined
goal.

In the context of Super Mario Bros., the agent perceives its environment
using a forward model (described in Section 3.2), acts upon it by performing a
combination of the five available actions (each action is mapped to a key, and
that is either pressed or not; some actions can be combined, e.g. moving left and
sprinting) and tries to reach the finish, which gets it to a game state where the
level is won.

2.2.1 Artificial agents for Super Mario Bros.
The Mario AI framework that we are using runs the Super Mario Bros. game at 30
frames per second and at every frame it prompts the agent to provide the actions

5

Figure 2.1: A standard Super Mario Bros. level with a few different enemies
shown.

that Mario will perform at the next game update. The agent receives the current
state of the game (in the form of a forward model) and it has approximately 33
milliseconds to make its decision.

The agents that we are using in our work are all search-based, which means
that we are using some sort of a search algorithm (A* in our case) to search
through the states of the game, starting at the provided one, to find a state
where the level is won. The transitions between the states (nodes of the search)
are done via currently available Mario’s actions. For more details, see our previous
work [1], the forward model description 3.2 and the next section about the A*
algorithm.

2.3 A* algorithm
The algorithm that we are using as the basis for our agents is the A* algorithm.
A* is a search algorithm designed primarily for finding the shortest path between
two nodes in a weighted graph. To do so, it begins at the start node and iteratively
expands the most promising node available. For this, it keeps a priority queue
of found nodes, and also a list of already visited nodes to avoid visiting a node
twice.

6

Figure 2.2: An aerial level type featuring a lot of jumps and no solid ground.

To know which node is the most promising one, the algorithm needs a cost
function that can assign a value to each node to determine how promising the
node is. The cost function consists of two parts – cost of the path from the start
node to the evaluated one, and a heuristic function.

The heuristic function is a function from a node to a numerical value, and it
estimates the cost of the path from the evaluated node to the goal one. For the
algorithm to find the optimal path, the heuristic function needs to be admissible,
which means that the estimated path cost can never be overestimated (more than
the lowest cost possible).

The pseudocode of the A* algorithm can be seen in Listing 2.1.

Listing 2.1: A* algorithm
function A*(startNode, goalNode) {

opened.add(startNode)
visitedCosts.init() // lowest known path costs to each node
while (opened.size > 0) {

current = opened.remove(); // node from opened with the
lowest cost

if (current == goalNode)
return getPathToNode(current);

for (action : getPossibleActions(current)) {

7

newState = current.clone();
newState.advance(action);
newState.cost = pathCost + heuristic(newState);
if (visitedCosts[newState] != unknown) {

if (newState.cost >= visitedCosts[newState])
continue;

}
visitedCosts[newState] = newState.cost;
opened.add(newState);

}
}
return fail; // path not found

}

2.3.1 Cost function
In the standard version of A*, the cost function consists of the path cost and the
heuristic function, each of them having the same weight.

But this does not need to be true. We can use a different weight for the
heuristic function (or the path cost), e.g. to make the heuristic function stronger
to force the search to explore states closer to the finish sooner. This version of
the A* algorithm is called Weighted A* and we will be using it a lot in our work.

It needs to be noted that with the weighted version of the algorithm, we may
not get optimal paths. Formally, if the cost of the optimal path is C∗ and the
weight of the heuristic function is W (greater than 1) while keeping the weight
of the path cost at 1, we will get paths with a cost between C∗ and W × C∗ [8].

Also, we can include more parts in the cost function than just the two men-
tioned. For instance, we may have some problem-specific ratings of the nodes that
we want to use to improve the search. Such extra information may be regarded
as a domain-specific heuristic function and we will be using it in our work, e.g.
to implement the MFF A* Grid agent 5.3.

8

3. Technological background
In this chapter, we will describe the technologies and frameworks used in our work.
First, we will talk about the Mario AI framework in Section 3.1, then we will
summarize the forward model that we created for the framework and used in this
work in Section 3.2, and finally, we will talk about the MetaCentrum organisation
whose computing infrastructure we used for our experiments in Section 3.3.

3.1 Mario AI framework
The Mario AI framework was created to facilitate the development of artificial
agents and level generators for the Super Mario Bros. game. It is an open-
source Java implementation of the game, which also features an API for creating
custom Super Mario agents and level generators. More about the framework and
the Super Mario Bros. game can be found in our previous work [1]. For the
purposes of creating real-time artificial agents, the framework provides us with
an important feature – a forward model.

3.2 Forward model
A forward model is essentially a simulation of the game which, given an action
that we want Mario to perform, can tell us the next game state. Apart from this
world update function, the forward model should also be able to efficiently clone
the game state. Both these forward model functions are vital for the implemen-
tation of search-based agents, since we need a way of searching through game
states.

The original forward model present in the framework was a simple wrapper
of the whole game implementation, which made it quite inefficient, since it was
simulating a lot of elements that are not important for an artificial agent (e.g.
graphics). It was also cloning very inefficiently because it was copying all of the
static level blocks, which can not change during a playthrough. The problems of
the original forward model are discussed in more depth in our previous work [1].

To solve this, we previously implemented a more performant and optimized
forward model that allowed us to create more efficient agents, capable of finishing
more Super Mario Bros. levels in real-time. This new framework is more than
300× faster at cloning itself and takes about 20% less time on its updates that
the previous one. And this is the forward model that we used for all of the agents
in this work.

3.3 MetaCentrum
Our work involved searching for optimal parameters for the implemented agents.
To do this, we needed to run a lot of different agent configurations on a large
number of game levels and algorithm parameter configurations. As this took
hundreds of days of CPU time, it would be very impractical to run these ex-

9

periments on our devices, therefore we utilized the services of the MetaCentrum
organisation.

MetaCentrum is a Czech organisation that provides computing and storage
services for researchers and students in the Czech Republic. It operates in the
mode of grid computing, where individual users can dispatch their jobs to appro-
priate queues and the scheduling system will run them when enough resources
are available.

The jobs can be generated using Bash [9] scripts, which allowed us to spawn
arbitrary amounts of jobs, each with a different set of parameters. The jobs were
then dispatched to many computational nodes, thus enabling them to be run in
parallel.

10

4. Analysis
This chapter will first discuss the level segment1 types that we identified as the
hardest ones to solve in Section 4.1. Section 4.2 then talks about all of the ideas
that we had to solve such segments. Some of these ideas were used in the final
agent implementation, others were not, but we still believe it might be useful to
talk about them and explain why we decided not to implement them.

4.1 Challenging level types
When we published our previous work [3], we also went over all of the levels that
our agents did not manage to solve. We have analysed these levels to find the
types of situations that are problematic for search-based agents. Let us now go
over the identified segment types, so that we will know what we are dealing with
in the rest of this text.

4.1.1 Branching
Most of the level segments that appear hard for a search-based agent to solve
have one thing in common – they do not have an apparent linear path through
them, which forces the agent to explore a big amount of game states. And if the
agent fails to explore enough states to find the correct way through the level, it
can end up failing by becoming stuck or falling out of level bounds.

Most of the challenging level segments could essentially be categorized as some
sort of branching. See Figure 4.1 for an example. Here, the agent might start
exploring the game states either in the bottom part or in the top part of the
segment, but only one of these paths allows the character to progress further into
the level. If the agent does not manage to calculate the correct path in the limited
time period it has for its decision-making, it might end up going the bottom path
and subsequently having a problem with progressing further, as it will be forced
to backtrack – and backtracking can be very problematic as the agents’ plans can
be quite long and there is a big branching factor in the game.

Backtracking

As foreshadowed in the paragraph above, an agent might happen to initially
choose the wrong path. This then means that the only way forward is to first
return to a point where the level split into more possible paths, and here choose
the correct one.

Backtracking may be very hard for some agent types, especially if they feature
a heuristic function that makes them prefer states that are closer to the goal –
which always means to the right in Super Mario Bros. This way, if they need to
backtrack to the left, it is almost impossible for them due to the nodes on the
path back having very large costs because of the heuristic function.

1We use segment to refer to a (usually) small part of a level.

11

Figure 4.1: An example of a branching level segment. The correct path is marked
in yellow, while the wrong path that would require backtracking is marked in red.
Mario is luckily currently on the right path.

Trap pits

Some levels present in our testing set feature a special kind of branching – there is
a pit present, which, if jump in by the character, is too deep to be escaped from.
This means that if an agent, or a player, makes the wrong decision when choosing
a path, they will no longer be able to complete the level. For an agent, this also
means a huge performance hit when testing a big amount of levels, because it can
not tell that it became stuck and will continue trying to find a way forward until
it times out.

An example of such trap pit, as we decided to call it, can be seen in Figure 4.2.
Here, if the agent decides to jump upwards from the left-side platform, instead
of jumping down on the brick ground, it ends up trapped in a pit of solid bricks.
As you can see, there is no way to get out.

4.1.2 Mazes
In our opinion, maze-like level segments or even whole maze-like levels are the
most challenging feature to deal with. From some point of view, a maze-like

12

Figure 4.2: An example of a trap pit. If Mario falls inside, there is no way to
escape. Mario, unfortunately, did just that.

segment is just a combination of branching, backtracking and dead ends, but
combined in a more complex scenario.

Even the best agents from our previous work (see the MFF-A* agent [3]) stood
no chance of solving maze-like levels. To show that we were able to solve maze-like
levels, we created a special showcase level, a part of which can be seen in Figure
4.3. The whole level is a huge maze, although with a straightforward path (at
least for a human player). The path through the level snakes from left to right
and all the way back, alternating these directions through very long corridors
(more than 100 tiles long). At the end of every corridor, we can always reach one
block higher in the maze, until finally we reach the top row and can jump out of
the maze right into the finish.

The catch is that most search-based agents use a goal-based heuristic, which
in the case of Super Mario Bros. just tells them to always go right – towards the
finish. Thus, when having to go very far to the left, all of our previous agents fail
and end up hugging the right wall in the bottom row of the maze.

13

Figure 4.3: A manually created showcase level. The whole level is a huge maze
and requires the agent to alternate running left and right through over 100 blocks
long corridors. At the end of each corridor, the agent can ascend one floor up,
until it finally gets to the top and can escape the maze and reach the finish.

4.2 Ideas
In the following section, we will talk about all of the ideas that we had for solving
problems described in the previous section. They include mostly tweaks to the
A* algorithm and domain-dependent heuristics. Our goal with these ideas was
to create an agent capable of solving all levels, including the challenging ones
that we just discussed, and to do so as effectively as possible, meaning that we
wanted to optimize the exploration of the game tree. Some of these ideas were
not implemented, and for those, we will explain why we decided not to implement
them.

4.2.1 Parameter tuning
The cost function of the MFF-A* agent (the current state-of-the-art agent [3])
consists of two parts, each of which can be assigned a different weight. We
believe that tuning these weights may lead to performance improvement of the
agent.

14

Moreover, some of the agents we are planning to implement will have even
more parameters that can be tweaked, thus we plan on doing extensive parameter
searches in order to make the agents as performant as possible.

4.2.2 Bidirectional search
One of the first ideas we had was to use bidirectional search. Instead of a single
search starting at the beginning of the level or current Mario’s position, we would
have two searches going on at the same time. One would start at the same place
as the initial one-way one and the other would start at the finish of the level.

This improvement was meant to reduce the number of nodes that we would
need to explore, since if the distance to the goal is d and the branching factor
is b, a standard one-way search (without heuristic) will explore bd nodes, but a
bidirectional search only needs bd/2 + bd/2 nodes, which is significantly less. And
even when employing a heuristic function, this might greatly reduce the number
of visited nodes. Moreover, some levels might be easier to solve when running
from right to left.

However, we realised that it would be very hard and impractical to implement
a backwards search for Super Mario Bros., as we would need a backward version
of the forward model 3.2, which is not easy to implement.

There are three main reasons for this. The first one is that the environment
of the game is dynamic (e.g. enemies moving) and therefore searching from the
finish to the start would not sync well and enemies would have different positions
than anticipated when executing the path from the start.

The second reason is that not all paths that Mario can take can be taken both
ways. Imagine the backward search jumping down from a high wall. When we
would attempt to follow this path in the opposite way, we would not be able to
get up on the wall.

The final reason is that we would get a series of Mario inputs that should be
taken to go from the finish to the start, but we need to reverse these inputs to go
from start to finish. The problem is that the search might have calculated with
some momentum when jumping over a pit, let us say when going from right to
left. This means it accelerated before the pit, on its right side, then it jumped
over, and finally, upon landing on the left side, it slowed down.

If we simply reversed the left and right inputs, we would slowly approach the
pit from the left side and attempt to jump over it. But since we did not accelerate,
we might end up not making it to the other side. To put it more generally, it
would be very hard, if not impossible, to translate the actions from one direction
into the other.

4.2.3 Tile constraints
Since the Super Mario Bros. game is tile-based, we came up with the idea of
marking the tiles with different information. More concretely, if we had a way of
knowing the approximate path or corridor leading to the finish, we could mark
such tiles and try to stay on them or close to them. This might help with avoiding
dead ends and stop us from exploring useless game states. And we could also use
this information in two modes – as a soft or as a hard constraint.

15

For an idea of how to get the information about the approximate path through
the level, please see the section about grid utilization 4.2.5.

Soft constraint

In the soft constraint version, we could adjust a search node’s cost based on its
distance from the corridor that we want the agent to follow (using the distance
from the intended path as a domain-specific heuristic function). The farther the
agent would be from the path, the more it would get penalized. And the distance
scaling of the penalization does not need to be linear, we could experiment with
many different variants of it. This way the agent’s node exploration would be
guided towards states that lie close to the approximate path.

This idea is one of those that ended up being implemented and it has proven
extremely helpful in solving the branching issues. And since the agent could
always choose the correct path, we would not have to deal with backtracking at
all. The details can be found in Section 5.3.

Hard constraint

In the hard constraint version, instead of guiding the agent away from unwanted
nodes by adjusting the cost function, we could simply forbid the agent from
entering game states where Mario is too far away from the approximate path.

We would need to leave some manoeuvring room in the tiles close to the path
to allow the agent to dodge enemies, but the tiles that would be far away from the
path could be considered a dead end and completely removed from the agent’s
search – if a state at such tile would be opened, it would be discarded.

We did not end up implementing this idea as the soft version of the tile
constraint proved to work very well and it is much more flexible.

4.2.4 Suggested moves
When the search expands a node (a state of the game), it creates new nodes by
applying all of possible Mario’s moves (e.g. run right, jump right, run left). If
we knew which way we want to go next, we could use this to know which Mario
actions to try first and thus prioritize the corresponding new nodes in the search,
making the exploration of the game tree search more efficient.

For one option of how to know which actions to prioritize, please see the
following section.

4.2.5 Grid utilization
We were trying to come up with a way of solving the higher-level navigation
problem in the levels. We knew that the agents are basically perfect at managing
local-level navigation and dodging enemies, but they can struggle in branching
and maze-like scenarios. Therefore, we have decided to try utilizing the fact that
the Super Mario Bros. levels are made out of tiles.

Each of the levels is 16 tiles high and usually around 200 tiles wide. We
thought that we might first find a path in the level grid, marking the subsequent

16

tiles that an agent should follow, and then use this to guide the actual search –
a similar idea is used in hierarchical path-finding.

Since there are only a few thousand tiles in a level, finding a path in this
search space would be way easier than searching through the individual game
states, where Mario might only move a few pixels per step, making such search
space larger by several orders of magnitude.

This turned out to be the best idea we had. We used a grid-level A* algorithm
to find a rough path and then utilized it to guide the agent. The implementation
details can be found in Section 5.2 and a new agent based on this idea – MFF A*

Grid – is described in Section 5.3.
From now on, we will refer to the tile-level path as a grid path, and to the

process of obtaining it as a grid search.
Figure 4.4 shows how the grid path might look like for the branching level

segment shown in Figure 4.1. Let us now consider how the grid path could be
used to implement some of the ideas presented above.

Figure 4.4: The black line visualises the grid path that our implementation of
the grid search returned. Notice that it completely avoids the lower part of the
level segment, because it does not lead any further.

17

Tile constraints implementation using the grid path

As mentioned in the description of the tile constraint idea 4.2.3, we would first
need a way of getting an approximate path through the level. And since we
just proposed utilizing the grid that creates the Super Maro Bros. levels to
find a grid path, such path is exactly what we need, and what we used, for the
implementation of tile constraints.

Suggested moves implementation using the grid path

Suppose that we now have the grid path available. That means we can now tell
which moves to prioritize by looking at where the next tile of the path is and
selecting the move that will get us there. Thanks to this we could implement the
suggested moves idea 4.2.4.

The problem is that this would only work well when the agent occupies a tile
that is a part of the found grid path. When the agent is not on the grid path,
it is not clear which tile of the path it should navigate to (e.g. there could be a
wall between the agent and the tile we would choose).

There might be a workaround to this, but since we had all of the levels solved
before this was implemented using other ideas, we decided that this idea is no
longer worth using.

4.2.6 Waypoints
The last idea, specifically targeted to solve maze-like environments 4.1.2, involves
creating sub-goals throughout the levels and using them to have more control
over the agent’s navigation through the level.

We could utilize the grid path presented in the previous section 4.2.5 to sample
the waypoints from it. We could simply create a navigation point every few
blocks of the grid path and the agent would then navigate between the individual
waypoints.

This would reduce the (sub)goal distances that the agent would have to travel,
which may prevent it from getting stuck. We could tweak the cost function to
take the current waypoint that we are trying to reach into account or to even
consider more waypoints at a time. We could also experiment with the waypoint
density.

This idea was used to create the MFF A* Waypoints agent 5.4.

18

5. Implementation
In this chapter, we will talk about the artificial agents that we implemented. We
will start by trying to find the best parameters for the MFF A* agent (the best
agent from our previous work [3]) in Section 5.1. Then, we will explain how we
implemented the grid search in Section 5.2 and explain how we used it to create
a new agent in Section 5.3. Finally, in Section 5.4 we will try to tackle maze-like
environments.

The source code of the implementation can be found at https://gitlab.
com/gamedev-cuni-cz/theses/super-mario-astar.

5.1 MFF A* parameter tuning
MFF A* is the best artificial agent that we created in our previous works. It
was created as a part of our work at improving the forward model for Mario AI
framework [1], where it is also described in more detail. The general idea is that
it uses the A* algorithm to search through the states of the game, each node of
its search representing a state (a tick) of the game.

As it uses the A* algorithm 2.3, it needs a cost function, which assigns costs
to individual nodes of the search. Our cost function sums the depth of the node
(distance from the start in ticks) and the minimal distance to the goal (given
running in a straight line at maximal speed, also in ticks). The question is, what
weights to assign to the node depth and the time to finish components.

In our previous work, we used a node depth weight (NDW) of 1.0 and time
to finish weight (TTFW) of 1.1, but in order to reduce the search space, we also
used a trick to apply each selected action three times to get a new state, while
only incrementing NDW once. This means that the value of NDW was effectively
1
3 , making the heuristic very strong.

We wanted to revisit these parameters and use the MetaCentrum computa-
tional resources to run a parameter search to help us optimize the parameters –
both for the number of levels solved and for run time.

We have decided to try values from 0.2 to 4.0 with a step of 0.2 for NDW.
For TTFW, we used values from 0.2 to 2.0 with a step of 0.2. We have tried all
combinations of these parameters, meaning 200 parameter sets in total, covering
a big range of different parameter ratios.

We have tested each of the parameter sets on 1015 levels – 100 levels per level
generator we have available and the 15 original Super Mario Bros. levels. For
each parameter set, we sent a job to the MetaCentrum cluster. The evaluation
of the parameter search as well as the best parameter set can be found in Section
6.2.

5.2 Grid search
As already mentioned 4.2.5, utilizing the grid of tiles that composes the Super
Mario Bros. levels was the greatest improvement we made to the search-based
agents. The improvement consists of two steps – finding the grid path, and using

19

https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar
https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar

it to guide the agents’ search. In this section, we will go over the details of
implementing the grid search.

As we mentioned earlier 2.1, every Super Mario Bros. level is made of square
tiles (blocks) of the same size. Some of them are solid and make up the ground
and walls, some of them are empty, and some of them are special (jump-through
platforms). The levels are always 16 tiles high, and generally around 200 tiles
long. Mario, the character we control, starts on the left side of the level. The
goal we want to reach, represented by a flag, is on the right side of the level.

Our goal here is to implement an algorithm that will receive the tiles of a
given level and mark the tile-level path from the start (Mario’s initial position)
to the goal flag. For illustrations of a start position, a goal flag and a segment of
a level, please see Figures 5.1 and 5.2.

The correctness of the grid search is tested in Section 6.3.

(a) The start of a level with Mario’s
spawn position,

(b) The end of a level featuring a goal
flag.

Figure 5.1: The start and the end of level 4 from the original level pack.

5.2.1 A* for a platformer game
The way we are going to implement the grid search is by using the A* algorithm
2.3, but we need to solve the fact that Super Mario Bros. is a platformer game
that, as opposed to a top-down game, does not allow deliberate movement in all
directions. We can not always go up, because to move up we need to perform
a jump and to do so, we either need to be standing on the ground or already
performing a jump and not having reached its peak yet. It is also not always
possible to move down, as most of the blocks we might be standing on are solid.

We have considered solving the problems with vertical movement using a jump
force method, where we would remember how many times can we move upwards
before having to start falling down, but we soon realized that Mario’s movement
will require a more complex solution. Therefore, let us first talk in detail about
how Mario’s movement works in the game before we get to the implementation
itself.

20

Figure 5.2: An example of a level segment from level 4 of the original level
pack.

5.2.2 Mario physics
We want the grid path, which will guide our search, to match the way Mario
would move through the level as precisely as possible. To be able to achieve
that, we first need to analyse how Mario’s movement works and which moves and
transitions between moves are possible.

Speed and momentum

The first issue we need to deal with is that while Mario is running, he progressively
speeds up (up to a certain point) and he carries this momentum when he jumps
or falls. This means that Mario is able to jump way further if he first runs for
the distance of 10 blocks than if he starts jumping from a standstill. We have
manually tested the distances that Mario can jump given different amounts of
blocks to gain momentum. Some of the results can be found in Table 5.1. When
measuring the horizontal jump distance, we were always landing at the same
height as the one where the jump began.

For the implementation of the grid search, we have decided to use the jump
force that corresponds to running 2 blocks before jumping. The reasons are that

21

Blocks ran before jump Jump distance (gap size)
1 block 7 blocks
2 blocks 9 blocks
4 blocks 10 blocks
14 blocks 11 blocks

Table 5.1: The distances that Mario can jump over while landing at the same
vertical level. The left column shows how many blocks did Mario run before

initiating the jump. The right column shows how many blocks can be jumped
at maximum.

in most cases there are at least 2 blocks for Mario to gain speed before the jump
and that this jump distance already means jumping so far that we do not see
where we are landing (by quite a lot).

Jump manoeuvering

Jumping is even more complex because we might not only want to jump forward,
but also upwards. And we might also want to change the direction of the jump.

As jumping up is concerned, the maximum height that Mario can jump is 4
blocks, meaning that Mario will get to a block that is 4 blocks higher than the
block he was at when the jump started.

We will often want Mario to jump diagonally, therefore we manually measured
how far can Mario jump while also landing higher than where he started. All of
these measurements were already taken with the 2 tile start for gaining speed.
The results are in Table 5.2.

How many blocks up do we jump How far can we jump (gap size)
0 blocks 9 blocks
1 block 8 blocks
2 blocks 7 blocks
3 blocks 6 blocks
4 blocks 5 blocks

Table 5.2: A table showing how big of a gap can we jump over given that we
also want to ascend. This measurement is done using the 2-tile start for gaining

speed.

Figure 5.3 visualises these measurements by showing which tiles can Mario
reach from his initial position, assuming the 2 tile start.

We have also tested how much can we manoeuvre midair. It is almost impos-
sible to change the direction of the jump once it started because we immediately
lose all momentum and do not really gain any in the opposite direction before
we land. The only exception is jumping up on a block at the same horizontal
position as where we start the jump. This move is very important in some cases
and requires starting the jump in one direction and ending it in the other. An ex-
ample can be seen in Figure 5.4. We took care in the grid search implementation
to enable this move.

22

Figure 5.3: This figure visualises which positions can Mario reach by jumping
from a 2-tile running start. The black squares represent tiles where Mario could
land if there was a block underneath.

Free-falling

Besides jumping, we also looked at how we can control Mario when he is falling
down. If Mario has no initial sideways energy, it takes a very long time to gather
some, making it very hard to travel horizontally. If Mario starts falling with a
decent amount of sideways energy, he can travel a few blocks before landing, if
the fall is long enough. Attempting to change the sideways direction of falling
makes Mario start falling straight down, but we will not manage to travel in an
opposite direction before landing.

All of this taken into account, the free-falling behaviour is quite restrictive. In
our implementation of the grid search, we have made the free-falling a bit more
powerful to ensure that all levels can be solved.

5.2.3 Implementation
The implementation of the grid search is done using the A* algorithm. But
because of the complexity of Mario’s movement that we just described, we have
decided to approach the state advancing of the A* search using a custom state
diagram, which can also be thought of as a deterministic finite automaton. The
high-level idea of the algorithm can be seen in Listing 5.1.

Listing 5.1: Grid search using the A* algorithm
function findGridPath() {

while (opened.size > 0) {

23

current = opened.remove(); // node from opened with the
lowest cost

if (finished(current)) {
return getPathToNode(current);

}
for (action : getPossibleActions(current)) {

newState = advance(current, action);
heuristicValue = goal.X - newState.X;
newState.cost = newState.depth + heuristicValue;
if (visitedCosts[newState] != unknown) {

if (newState.cost >= visitedCosts[newState])
continue;

}
visitedCosts[newState] = newState.cost;
opened.add(newState);

}
}
return getPathToNode(furthestNode); // path to goal not found

}

Figure 5.4: Visualisation of the path Mario will take to jump up higher while
landing on the same horizontal position.

24

We needed to model the complex Mario’s movement possibilities concerning
his momentum and air manoeuvrability. For that, we created a state diagram. In
each node of the search (each tile), we would know which movement state Mario
is in and based on that we could determine his possible actions and advance the
state. Besides the movement state, we also tracked a few other variables, such as
jump height or horizontal distance travelled, to help us accurately simulate the
movement that we described in Subsection 5.2.2.

The state diagram is unfortunately too complex to be drawn reasonably, but
the implementation of it can be found in the source code repository1 in the
file GridSearch.java. It is implemented using the switch expressions, which
actually makes the source code of it quite well-readable.

In the rest of this section, we will go over some of the implementation details
that we needed to handle.

Jump up on the same horizontal position

As we found out during the analysis of Mario’s jump manoeuvrability 5.2.2 and
as is illustrated in Figure 5.4, we needed to allow this special kind of jump in our
search.

Since we did not allow changing the direction of a jump midair, we had a
special state called WALKED_OFF_AN_EDGE to tell us that Mario left solid ground.
In this state, we did not yet define the direction of the jump, but rather left a
possibility to continue the movement straight up. During this movement up, the
jump direction still did not need to be decided. Finally, when the search would
go to move left or right, we would define the jump direction and only continue
this way.

Now, by first going into the WALKED_OFF_AN_EDGE state when leaving solid
ground, then jumping straight up and landing on the same horizontal position,
but a few blocks higher, we can accurately simulate the desired move.

Running over a 1 block wide pit

When we were done implementing the search, we noticed it failing in a situation
shown in Figure 5.5. Here, Mario needs to get over a 1 block pit, but can not
jump up because of the low ceiling. Even though one might consider this situation
unsolvable, if Mario gathers enough speed, he can use his momentum to run over
the pit.

Once again, this situation was solved using the WALKED_OFF_AN_EDGE state,
from which we allowed the search to move one block to the side to reach solid
ground again.

Jump boost

As shown in Table 5.1, Mario can jump further if he gathers speed over longer
periods of running forward before the jump. And although we have decided to
implement the jump strength in our search as if Mario would always have 2 tiles to
gather momentum, we wanted a way to increase the jump strength on demand. To
enable this, the GridSearch class can be initialized with a horizontalJumpBoost

1https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar

25

https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar

Figure 5.5: A situation that might seem unsolvable at first, but if Mario gathers
enough momentum, he can run over the pit.

parameter that specifies how much further we want Mario to be able to jump
compared to the standard jump distance we use.

This can be used to simulate giving Mario more blocks to gather speed before
each jump. Even though this option is present in our implementation, we never
had to use it to solve a level, since no sane level would force a player to jump
so far (because from a certain point, the landing spot is far outside the visible
screen).

Semisolid Platform

Most blocks in Super Mario Bros. are either solid, meaning that they block
movement from all sides, or empty, and can be walked in from any direction. But
there is a special type of blocks that we need to deal with – semisolid platforms.
These are blocks that block movement when approached from above (therefore
function as solid blocks), but can be passed through from below. The usual
scenario is that Mario jumps up through the semisolid platform from below to
get on top. These semisolid platforms can also be walked in from a side, given
they are placed on top of another solid block.

When implementing the grid search, we employed special checks when gather-

26

ing available moves in a state to ensure that we handle semisolid blocks correctly.

Enemies

In the grid search, we completely ignore enemies. Their positions are not even
passed into the search. As the grid path is meant to guide the agent’s search in
a more high-level way, it is not needed to handle enemy dodging here at all, as
the low-level search can handle that really well.

Heuristic function weight

As the grid search is implemented using the A* algorithm, it uses a heuristic
function. The heuristic function is implemented as the distance from the current
tile to the goal one. Let us look at the difference between using a heuristic
function of weight 1.0 (standard value) and 2.0 (weighted A*). We tested the
grid search on the first level from the original level pack, which consists of the
original levels present in the game.

With a heuristic function weight of 1.0, the grid search visited 15 339 nodes
to reach the goal. With a heuristic function weight of 2.0, the search only needed
to expand 440 nodes. This might lead us to the conclusion that greater weight is
better, but let us first compare the paths found. The first interesting segments
are compared in Figure 5.6 and the second interesting segments are compared in
Figures 5.7 and 5.8.

(a) The grid path found with heuristic
function weight of 1.0.

(b) The grid path found with heuristic
function weight of 2.0.

Figure 5.6: A comparison of the grid paths found with different heuristic function
weights settings in the grid search.

We can see that with a weight of 1.0, the path tends to nicely approach jumps
up on a pipe or a pyramid, but unnecessarily walks down from them rather than
jumping forward. With a weight of 2.0, the path sometimes hugs a pipe before
jumping onto it, but it has better jumps forward when leaving higher ground.
For our agents, we ended up using the value of 1.0, since we do not mind taking

27

Figure 5.7: The grid path found for the final segment of the first Mario level by
a grid search with heuristic function weight of 1.0.

Figure 5.8: The grid path found for the final segment of the first Mario level by
a grid search with heuristic function weight of 2.0.

a bit longer once to find the grid path when initializing, and since the differences
in the paths are not significant.

Comparison to Mario physics

The correctness of the grid search is tested in Section 6.3. But we also want to
look at how accurately we managed to model Mario’s physics. We dare to say
that we managed quite well. The most data-supported evidence is that an agent

28

utilizing the grid path was able to solve all levels in our test pack, and did so in
very good times as well (for details, see 6.4).

Apart from that, we can say that from our observations of the paths produced
by the algorithm, they appear exactly as we hoped to and as we imagined an
agent or a player would navigate the levels. As far as we know, the only mismatch
between the grid paths and actual Mario physical capabilities is free-falling. Here,
we ended up allowing the grid search to be a bit stronger – letting it change
directions more easily, to ensure that it always finds a path to the goal. We are
not aware of this ever causing problems in the levels we experimented with.

5.3 MFF A* Grid agent
With the grid search implemented, we can now utilize the grid path that we
made available to implement a new agent. This agent is based on the previous
state-of-the-art agent called MFF A*, which is described in detail in our previous
work [1]. It is an A*-based agent that searches among game states, starting from
the current tick and trying to reach a state where the level is finished. It uses
Mario’s actions as state transitions.

The core of the agent implementation is the same as for the MFF A* agent.
The agent is called every tick and required to return an action that Mario will
take. The game runs at 30 frames per second, thus the search gets approximately
33 milliseconds to produce an answer. Every time, a new search is initialized,
starting at current Mario’s position. After time runs out, we look at the farthest
position towards the right that Mario has reached in any of the visited nodes of
the current search, compare it with the farthest one we had found so far, and save
the actions sequence that leads to the further one. Then we return the action
leading towards the farthest found state.

A trick that we employ is to not apply an action only once when advancing
to a new state but to apply it 3 times. This leads to a significant reduction of the
search space, and it allows Mario to change the action he is performing 10 times
per second, which is still at a superhuman level.

The main change we made to the MFF A* agent to get our new MFF A* Grid
agent was to change the cost function of the search nodes so that it utilizes the
grid path that we can now obtain using the implemented grid search.

5.3.1 Cost function
First, we will talk about how the cost function was implemented in the MFF A*

agent, and then we will present the implementation for the MFF A* Grid agent.

MFF A* cost function

Listing 5.2 shows how the MFF A* agent from our previous work calculates the cost
of a node. We use timeToFinish as a heuristic function, which is calculated as
the horizontal distance from Mario’s current position to the goal position divided
by Mario’s maximal horizontal speed. As a result, we obtain the time in game
ticks that Mario would need to reach the goal if he ran at maximal speed in a

29

straight line. This heuristic function is admissible, as it represents the lowest
possible time to reach the goal.

Listing 5.2: The node cost calculation of the MFF A* agent.
float calculateCost(node) {

timeToFinish = (exitTileX - node.state.marioX)
/ maxMarioSpeedX;

return node.depth + timeToFinish * 1.1;
}

To obtain the node cost, our previous work multiplies the heuristic function
by 1.1 to make the search prefer states that are closer to the goal (this means that
we are using weighted A*), and sums it with the node’s depth, which corresponds
to the number of ticks we took to reach the node from the origin of the search.

As the action selected for the transition to the next state is applied 3 times,
but this is not compensated in the cost function, the weight of the node cost is
effectively 1

3 , which makes the heuristic very strong.
Now that we know how the cost function was calculated for the MFF A* agent,

let us now utilize the grid path to improve the agent and obtain the MFF A* Grid
agent.

MFF A* Grid cost function

We will use the grid path as a corridor leading to the goal state, which we will
try to stay close to. The cost function calculation is shown in Listing 5.3.

Listing 5.3: The node cost calculation of the MFF A* Grid agent.
float calculateCost(node) {

timeToFinish = (exitTileX - node.state.marioX)
/ maxMarioSpeedX;

pathDistance = calculateDistance(node);
if (pathDistance <= distanceTolerance)

distanceFromGridPathCost = 0;
else

distanceFromGridPathCost =
(pathDistance - distanceTolerance)
* distanceMultiplicativePenalty
+ distanceAdditivePenalty;

return nodeDepthWeight * node.depth
+ timeToFinishWeight * timeToFinish
+ distanceFromGridPathCost;

}

The cost function of MFF A* Grid consists of three parts: node depth, time
to finish heuristic and distance from grid path heuristic. The first two parts are
calculated in the same way as for the MFF A* agent. The distance from grid path
heuristic works as a penalty, which is applied when the agent is too far away from
the path.

First, pathDistance is calculated as the distance from the nearest block that
lies on the grid path. Then, there is a distanceTolerance parameter that we

30

use to simulate different widths of the path corridor. If the parameter is set to 0,
the agent needs to be present directly on the path to not get penalized. If we set
the parameter to 1, the path is effectively 3 tiles wide, therefore the agent can be
1 tile away from the original path and still will not get penalized. It works the
same for bigger values of the parameter. Finally, if the agent is too far away from
the path, even with the tolerance taken into account, it gets penalized (otherwise,
the value of distanceFromGridPathCost is set to 0).

We have two types of penalties. First, a distanceAdditivePenalty is applied
whenever the agent is too far away from the path. This penalty is applied once no
matter how far away the agent is. Second, there is a distanceMultiplicative-
Penalty. This penalty is multiplied by the pathDistance reduced by distance-
Tolerance, so it is applied per every tile that the agent is beyond the corridor
created by the distanceTolerance parameter.

Note that path distance is calculated as the distance of the agent to the
original single-tile-wide grid path, that is why we subtract distanceTolerance
from it to obtain the actual distance from the simulated path.

Parameter optimization

In the MFF A* Grid cost function description, we mentioned the three parameters
that specify the distanceFromGridPathCost calculation – distanceTolerance,
distanceAdditivePenalty and distanceMultiplicativePenalty. There are
two more parameters in the cost function – nodeDepthWeight and timeTo-
FinishWeight. In total, this is a set of 5 parameters that influence the behaviour
of the agent and the strength of the heuristic functions.

We decided to run an extensive parameter search to optimize these 5 para-
meters. As with the parameter search for MFF A*, we sampled various parameter
sets and tested them on the 1015 levels we have available (100 per level generator
for the Mario AI framework and the 15 original Super Mario Bros. levels). We
tested all possible combinations of the following parameter values:

• nodeDepthWeight: { 0, 0.5, 1, 1.5, 2, 3 }

• timeToFinishWeight: { 0, 0.5, 1, 1.5, 2 }

• distanceTolerance: { 0, 1, 2, 3, 4, 5, 7, 10, 15, 20 }

• distanceAdditivePenalty: { 0, 1, 2, 3, 5, 10, 20, 50 }

• distanceMultiplicativePenalty: { 0, 1, 2, 3, 5, 7, 10, 20, 50 }

This meant a total of 21 600 parameter sets. For each of them, a job was sent
to the MetaCentrum cluster. The results are evaluated and discussed in Section
6.4.

5.4 MFF A* Waypoints agent
Even though the new MFF A* Grid agent manages to tackle all of the standard
levels really well (as we will see in Chapter 6), it is not able to solve large mazes
as its heuristic function pushes it to always go to the right. This is completely

31

usable for standard levels, where the path goes mostly straight from left to right
– and that is the case for both the original 15 Super Mario Bros. levels, as well
as for all of the 10 level generators we use to test our agents on.

But to enable an agent to solve large maze-like environments, we need to adapt
it further. This section will present a proof of concept that such agent could be
created by tweaking the MFF A* Grid agent. We have created a showcase level
specifically to test this proof of concept agent – a level that does not flow straightly
from left to right throughout the playthrough, but it requires long periods of going
to the left. It is also essentially a huge maze, therefore the agents need to know
which direction to go, or else they might get stuck somewhere inside. The level
was already presented in Subsection 4.1.2, but we show how it looks once more
in Figure 5.9.

Figure 5.9: The showcase level created to test how agents can handle maze-like
environments.

Only a part of the level can be seen, but the rest of the level looks in the same
manner. There are hallways of alternating directions, which are more than 100
tiles long. The agent starts at the bottom left corner and needs to get to the top
right corner to escape the maze and reach the finish. To do so, it must alternate
running to the right and to the left while reaching one floor higher every time it
can.

32

5.4.1 Implementation
To solve this level, we needed to tweak the way that the MFF A* Grid agent works
to allow it to navigate through the maze in the correct order. The main trick is
to introduce waypoints, which is why the new agent is called MFF A* Waypoints.
The pseudocode of the agent’s search loop can be seen in Listing 5.4.

Listing 5.4: The main loop of the agent’s search.
while (opened.size > 0 && remainingTime > 0) {

current = opened.remove(); // get current node
if (isGoalState(current.state)) {

return (getPathToNode(current));
}
if (getDistance(current, nextWaypoint) < bestDistance) {

furthestNode = current;
bestDistance = getDistance(current, nextWaypoint);

}
if (waypointReached(current,

WAYPOINT_HORIZONTAL_DISTANCE_TOLERANCE,
WAYPOINT_VERTICAL_DISTANCE_TOLERANCE)) {
deleteGridPathToWaypoint(nextWaypoint);
nextWaypoint = getNextWaypoint();
furthestNode = current;
bestDistance = getDistance(current, nextWaypoint);

}
for (action : getPossibleActions(current)) {

newState = current.clone();
newState.advance(action);
if (newState.isMarioAlive() == false)

continue;
float newStateCost = calculateCost(newState);
if (getnewStateOldCost() != unknown && newStateCost >=

getnewStateOldCost())
continue;

saveNewCost(newStateCost);
opened.add(newState);

}
}
furthestSafeState = getFurthestSafeState(furthestNode);
return getPathToNode(furthestSafeState);

The waypoints represent subgoals that help lead the agent in the correct
direction. A waypoint is simply a position in the level. The waypoints are
sampled from the grid path that we have available, starting from the initial
Mario’s position, creating a waypoint every few blocks of the grid path until
we reach the finish. The waypoints are always sampled to be on the ground so
that the agent does not need to collect them mid-air. We can see an example
of where the waypoints might be in Figure 5.10. Here, we sample a waypoint
every 8 blocks. Mario is currently pursuing the waypoint to his right and after
he reaches it, the subgoal will shift to navigate him to the next waypoint. The
pseudocode of the waypoint sampling can be seen in Listing 5.5.

33

Listing 5.5: Pseudocode of waypoint sampling.
void initializeWaypoints(gridPath) {

int waypointsSpacing = WAYPOINT_DENSITY - 1;
for (node : gridPath) {

waypointsSpacing++;
if (waypointsSpacing < WAYPOINT_DENSITY)

continue;
if (isOnGround(node)) {

waypoints.add(new Waypoint(node.X, node.Y))
waypointsSpacing = 0;

}
}
if (waypoint.contains(lastGridPathNode) == false) {

waypoints.add(lastGridPathNode); // include goal tile
}

}

Figure 5.10: A visualisation of how waypoints may be sampled from a grid path.

The waypoint density of 8 is what we actually used in our implementation.
The value was manually selected. The reason for sampling the waypoints this
often is to avoid problems in a situation where the next waypoint would be

34

directly above the agent, but on a different floor. If the waypoints are close
enough to each other, the search can handle such a situation.

Heuristic changes

Because the agent still utilizes the grid path distance heuristic when navigating
to a waypoint, we use another trick to make this more efficient. When a waypoint
is reached, the grid path from the previous waypoint up to the currently reached
one is deleted. This helps to keep the agent on the right path, as the tiles in the
opposite direction will have even higher penalization because the grid path is no
longer present there.

Another thing that we needed to change was the calculation of the timeTo-
Finish component of the cost function. Instead of calculating the time necessary
to reach the goal of the level, we return the time necessary to reach the next
waypoint. By this, we eliminate the agent’s urge to always run right.

Waypoint tolerance

Because forcing the agent to reach an exact position could be problematic, there is
a tolerance of how far from the waypoint can an agent be for it to count as reached.
We set these tolerances to 16 pixels (width of 1 tile) horizontally and 4 pixels
vertically. The vertical tolerance is lower because we do not want to accidentally
reach a waypoint on a different floor. At the same time, the horizontal tolerance
is small enough to not allow picking up a waypoint over a thin wall.

Planning

The last change is to not start the search from the current Mario’s position,
but from the farthest position reached last search (towards the next waypoint).
This allows us to preplan our path more ahead and gives us more time to handle
branching. We take care to not necessarily take the furthest node, but the furthest
one that is safe (where Mario is on the ground) to ensure that the new search
can start without any trouble. A similar idea was used in an agent called MFF A*

- dynamic planning, which is described in our previous work [1].

5.4.2 Summany
This agent can handle the showcase level described above flawlessly, as the only
agent we have available, thus proving that solving even non-standard levels is
possible using our approaches. However, as this agent is only a proof of concept,
it was not tweaked to perfection, therefore it may fail on some of the standard
levels.

One upgrade that we think might help would be to reset the search algorithm
once a new waypoint is reached, because reaching a new waypoint changes the
costs of nodes and we may potentially have quite a lot of nodes opened that have
their cost calculated using an old waypoint. Another step might be to experiment
with waypoint density, waypoint distance tolerances, and all the parameters that
we have inherited from MFF A* Grid.

35

6. Evaluation
In this chapter, we will evaluate all of our work. First, we will present the testing
environment setup in Section 6.1. We will then look into the parameter search
for the MFF A* agent in Section 6.2. Following that, we will test the correctness
of the grid search that we implemented in Section 6.3.

The MFF A* Grid agent archetype created using the grid search is evaluated
and its best parameters are chosen in Section 6.4. After that, we will try to find
the most universal Super Mario Bros. agent in Section 6.6.

The experiment data that this chapter is based on can be found at https:
//gitlab.com/gamedev-cuni-cz/theses/super-mario-astar.

6.1 Experiment setup
This chapter will first describe the testing environment, then it will present the
level packs that we will be using to test agents’ performance. It will also address
the fact that, as we found out, some of the levels in our previous tests [3] were
not solvable.

6.1.1 Testing environment
As described in Chapter 3, we used the computational resources of the MetaCen-
trum organisation to run our experiments. We needed to ensure that all of the
experiments were run on the same hardware to allow for a fair comparison among
individual parameter sets and also with the previous state-of-the-art agent.

We achieved this by selecting the computational nodes that we wanted for
our experiments and requesting them using the options of the PBS (portable
batch system) through which we submitted the jobs. We evaluated all of our
experiments on gita nodes with a SPEC CPU® 2017 [10] rating of 5.1 points.

6.1.2 Level packs
This section will present the levels that we use to evaluate the agents. We use
the 15 levels that are originally part of the Super Mario Bros. game, and then 10
different levels generators, from each of which we use 100 generated levels. That
means we are using 1015 test levels in total. We refer to each of the level sets
that comes from a single source as a level pack.

Let us now talk about the individual level packs.

Mario/original

These are the 15 levels originally present in the Super Mario Bros. game. We
refer to them as the original levels or as the Mario levels.

The Mario levels are simple in the sense that they do not feature any branching
or maze-like parts. There are two types of them – let us call them ground and
aerial. The ground levels have most of the floor solid, occasionally featuring
a pit that needs to be jumped over, but they feature quite a lot of different

36

https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar
https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar

enemies. The aerial levels are made up of individual platforms with no solid
ground below, so they are more jump intensive.

krys

The krys level generator works by stitching together manually created level seg-
ments. The pool of the segments is quite large and it features a lot of interesting
problems, including small maze-like parts. The level pack is also quite hard for
a human player, as it features intricate parts with little manoeuvring space and
many enemies.

Because of this, we will pay special attention to agents’ performance on this
level pack.

ge

This level pack is very easy as the levels are mostly narrow with little enemies
and only a few jumps.

hopper

Another easy level pack – the levels mostly consist of platforms and sometimes
a big group of enemies appears. But beware, because this level pack can get
unexpectedly tricky, where it rarely happens that the path branches and only
one of the paths leads to the finish, while the other is a dead end.

notch, notchParam, notchParamRand

Levels with a single mostly straight path, featuring easy jumps and few enemies.

ore

These levels often contain two parallel paths above each other, mostly made out
of platforms. It seldom happens that only one of the paths is correct.

patternCount, patternOccur, patternWeightCount

For most of the levels, there is a huge amount of small gaps between blocks.
At the end of the levels, it sometimes happens that extremely long jumps are
necessary.

6.1.3 Unsolvable levels
From our previous work [3] we knew that not all of the levels present in the frame-
work are solvable. The levels were generated using various level generators, and
we noticed that some of them tend to generate levels that can not be completed.
We have gone through all of the levels and fixed those that needed it, trying to
change the levels as little as possible.

We have fixed 1 krys level, 21 patternCount levels, 26 patternOccur levels
and 17 patternWeightCount levels. All of the agents present in this work will be
tested on these fixed levels, including the best agent from our previous work [3],

37

which will be used for comparison (and whose parameters were tuned as a part
of this work, see Section 5.1).

Levels requiring brick breaking

Some levels from the krys level pack contained a segment that required the agent
to break a destroyable brick in order to proceed. Since Mario is only able to break
bricks after collecting a power-up, and collecting power-ups is something we do
not interest ourselves with at all, we have decided to remove such obstacles from
the test levels completely.

We have edited the 6 krys levels (out of 100 generated) that contained the
mentioned breakable brick segment, always doing so in the same manner by
removing one of the bricks, not editing the levels any further. Figure 6.1 shows
how this edit looks in one of the levels.

(a) Level segment before edit, path
further is not possible without block
breaking.

(b) Proceeding further is now possible
without block breaking.

Figure 6.1: The level editing we did for the krys levels to remove the need to
break blocks.

6.2 MFF A* agent parameter search
As described in Section 5.1, we wanted to find the best parameters for the MFF
A* agent. The two parameters that we are optimizing are node depth weight
(NDW) and time to finish weight (TTFW). We are testing values from 0.2 to
4.0 with a step of 0.2 for NDW and values from 0.2 to 2.0 with a step of 0.2 for
TTFW. As already mentioned, we use each selected action three times, which
means that the NDW value is effectively divided by 3. We decided not to change
the implementation in order to be consistent with our previous works.

We tested 200 parameter sets in total (all possible combinations of tested
weight values). For each of the parameter sets, we ran the agent on the 1015
levels that we have available – 100 per level generator and 15 Super Mario Bros.
ones. The following metrics were collected for each level:

38

• win/fail – whether the agent completed the level.

• travel % – percentage of distance travelled from start to goal.

• run time – the total time of the test, including agent searches and game
updates.

• game ticks – the number of ticks the agent needed to win/fail the level.

• planning time – total time of the agent searches.

• total planning – number of agents searches executed.

• nodes evaluated – total amount of nodes the agent explored.

• most backtracked nodes – the largest amount of nodes evaluated before
a new furthest state towards the goal was found.

The correlation matrix of the parameters and the metrics across all levels and
all parameter sets can be seen in Figure 6.2. We will now look at the results for
the various metrics collected.

Figure 6.2: Correlation matrix of the MFF A* agent’s parameters and metrics
across all levels and all parameter sets.

39

6.2.1 Win rate
The lowest win rate (on all 1015 levels in total) was 97.34 and the highest was
99.21 (rounded to 2 decimal places). Surprisingly, all of the configurations did
quite well and the differences in win rate are really low. Please note that these
win rates can not be directly compared with our previous results, as we have fixed
some levels to be solvable.

As for the dependence of win rate on the parameters, the correlation of win/fail
and node depth weight is 0.27 and the correlation of win/fail and time to finish
weight is −0.00 (rounded), therefore the influence of both of the parameters can
be seen as negligible. This comes as a big surprise, but really, both for the highest
and the lowest win rates, there are significantly different weight ratios right next
to each other in the results.

A complete overview of the win rate for different parameter sets can be seen
in Figure 6.3.

Figure 6.3: A graph showing the total win rate for all of the parameter sets tested.

6.2.2 Nodes evaluated
The best result for nodes evaluated (average over all levels) was 49 689 nodes,
and the worst result was 71 924. This difference can be significant, as the number
of nodes that need to be evaluated influences the run time of the agents.

The correlation of nodes evaluated and node depth weight is −0.26 and the
correlation of nodes evaluated and time to finish weight is 0.05 (rounded). Once

40

again, we do not see a strong correlation. From looking at the data more closely,
we have observed that the 15 parameter sets with the lowest amounts of nodes
evaluated all have NDW higher than TTFW, most of them more than twice as
big.

This goes against our idea of higher TTFW meaning fewer nodes evaluated,
thanks to the heuristic function being more aggressive, but it is important to note
that the difference between the best and the worst evaluated nodes result is not
that significant, as we will see agents with much lower and much higher average
evaluated nodes win all of our test levels.

6.2.3 Other metrics
Let us now look at the remaining metrics and their correlation to the parameters.

If we look at the correlation matrix 6.2, the first thing to notice is that the
TTFW parameter was completely insignificant in influencing the metrics. The
reason might be that as the NDW parameter is effectively one-third of its value,
the TTFW parameter is always somewhat significant, as its lowest value is 0.2.
It seems that even if the heuristic function is quite small, it is still enough for
the agent to be successful, and a significant increase in its strength does not
necessarily mean that the agent will be more performant.

Looking at the correlation of the NDW parameter with the metrics, we can see
that increasing the parameter has a non-negligible effect on decreasing run time,
planning time and total plannings. Checking with the data, the first 11 parameter
sets when filtering for the lowest run time really do have NDW significantly
greater than TTFW.

The last metric we want to comment on is game ticks – the range of values
for game ticks in our results is between 370 and 375. This means that none of
the agents was able to find significantly faster paths through the levels.

6.2.4 Best agent
Out of the 200 different parameter sets that we have, it would be nice to know
which of the agents can be considered the best one. To pick such an agent, which
will later be used in a comparison with the other ones, we have decided to pick
an agent with the lowest run time, given it also has a very good win rate.

Given these requirements, we choose the second-best parameter set when it
comes to both run time and win rate. We could have chosen the one with the
best run time and still the second-best win rate (the win rates are equal), but we
liked the chosen agent’s parameters more when it comes to their interpretation.

Therefore, the agent we will be using for the representation of the MFF A*

agent archetype is the one with NDW of 4.0 and TTFW of 1.2. As mentioned
many times, because of the implementation, the NDW is effectively one-third of
its input value, so if we adjust the parameters we can think of the agent as if
it had NDW of 1.3 and TTFW of 1.2. We like this choice because it is close to
being a standard A* (no weighted heuristic).

41

6.3 Grid search correctness
With grid search 5.2 implemented, we needed to test its correctness – that is, if it
can solve levels reliably. For that, we ran the grid search on 100 levels per each of
the 10 level generators we have available and also on the 15 original Super Mario
Bros. levels. The grid search was able to solve all of these levels.

Moreover, we wanted to explicitly test some of the Mario moves that we
wanted the grid search to be able to perform. For that, we manually created a
few custom levels. They are available in the repository of this project1. The grid
search solved all of these levels too.

Since we did not find any level that the grid search could not solve according
to our expectations, we consider it to be correct.

6.4 MFF A* Grid agent
In this section, we are going to talk about the results of the parameter search
that we ran for the new MFF A* Grid agent.

The agent was tested on the same 1015 levels as the MFF A* agent in the
previous section, but the number of parameters was higher. As we know from the
implementation of MFF A* Grid 5.3, apart from the node depth weight (NDW)
and time to finish weight (TTFW) parameters, which it inherited from MFF A*,
it has three more parameters that influence the grid path heuristic – distance
from path tolerance (DPFT, referred to as distanceTolerance in the previous
text), distance from path additive penalty (DFPAP, referred to as distance-
AdditivePenalty in the previous text) and distance from path multiplicative
penalty (DFPMP, referred to as distanceMultiplicativePenalty in previous
text).

We have tested all possible combinations of the following parameter values:

• nodeDepthWeight: { 0, 0.5, 1, 1.5, 2, 3 }

• timeToFinishWeight: { 0, 0.5, 1, 1.5, 2 }

• distanceTolerance: { 0, 1, 2, 3, 4, 5, 7, 10, 15, 20 }

• distanceAdditivePenalty: { 0, 1, 2, 3, 5, 10, 20, 50 }

• distanceMultiplicativePenalty: { 0, 1, 2, 3, 5, 7, 10, 20, 50 }

This yields 21 600 parameter sets in total, but not all of them finished in the
20 hour limit that we set for the jobs. We have to note that for the number
of jobs sent to the cluster to be manageable, each of the jobs had the first 4
parameters from the list above set and was testing all the 9 possible values for
the DFPMP parameter. Therefore, it is possible that some parameter sets that
would have finished on their own in the 20/9 (= 2.2) hours time limit were lost
because another setting took too long, but we do not think that this loss was
significant for the overall results.

1https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar/-/tree/master/
Mario-AI-Framework/levels/test

42

https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar/-/tree/master/Mario-AI-Framework/levels/test
https://gitlab.com/gamedev-cuni-cz/theses/super-mario-astar/-/tree/master/Mario-AI-Framework/levels/test

Out of the 21 600 parameter sets, 15 696 finished. Out of the finished ones,
none of them has the TTFW value of 0, which means that no parameter set test
with TTFW of 0 finished. This is understandable, as without the run to the right
part of the heuristic, the search was not directed towards the goal enough. It can
also be seen as losing the heuristic part of A*, which makes it work as a BFS
(Breadth-first search) algorithm, and that apparently could not manage to solve
the levels fast enough, even with the grid path heuristic.

The metrics we collected are the same as for the MFF A* agent. Figure 6.4
show the correlation matrix of the parameters and the metrics. We can notice
that as opposed to MFF A*’s correlation matrix, the correlation of parameters with
other parameters (especially NDW and TTFW) is not 0. This is caused by the
fact that not all of the parameter set tests finished.

Figure 6.4: Correlation matrix of all the parameters and metrics, across all levels
and all parameter sets.

6.4.1 Win rate and distance travelled
The most important thing to say is that many of the parameter sets reached a
win rate of 100%. This means that we have successfully solved all of the test
levels. As a matter of fact, 119 parameter sets reached 100% win rate.

If we look at which parameters correlate with win rate the most, we can see
that NDW positively correlates with it and that DFPT negatively correlates with
it. As to why there is a negative correlation with DFPT, the problem is that when
we set DFPT too high, we are effectively removing this part of the cost function

43

(because the simulated width of the path corridor is so wide that it loses its
informational value) and thus we lose the benefit of the grid path heuristic.

As for the positive correlation with NDW, it still applies that because of the
implementation details, the value of NDW is effectively one-third of the parameter
value, therefore the closer the value gets to 3.0, the closer it effectively gets to
1.0, and as the data show us, this is apparently the way to go.

Distance travelled, also noted as % travelled, is extremely correlated with
win rate, as it denotes the average distance ratio that the agent travelled between
a level’s start and goal. Therefore, the same observation about the influence of
NDW and DFPT applies.

6.4.2 Only won levels
As we have 119 agent versions that won all of the test levels, we have decided
to do the metrics analysis only on these levels, as their data are not skewed by
failing levels.

The reason why failing levels can skew the data is that if the agent fails at
the very start of a level, its run time is recorded as really low, even though it did
not achieve anything. Or the agent can get stuck and time out, which skews the
run time in the opposite direction. And these are only a few examples of why the
data of agents that won everything are more reliable.

Let us first look at the correlation matrix after filtering out all agents that
did not win all levels. The matrix is shown in Figure 6.5.

We will now discuss the remaining metrics and try to explain why they may
be correlated to some of the parameters.

6.4.3 Run time, planning time, total plannings, nodes
evaluated, most backtracked nodes

As all of these metrics strongly correlate, we will discuss them together. These
metrics have a very small positive correlation with NDW and a strong positive
correlation with DFPAP.

For run time and planning time (which basically equal, as the overhead is
very small) the fact that they increase with increasing DFPAP can be easily
explained. When the agent follows the grid path, it is rewarded for staying
within the DFPT (which, by the way, is never more than 4 for the agents that
won all levels and is mostly equal to 1). But sometimes, staying on the path is
not possible, usually because the agent needs to dodge an enemy. This necessarily
means leaving the path to proceed further, but with a high DFPAP penalty, the
search is immediately strongly penalized for trying to do so.

Therefore, the agent needs to explore a lot of nodes that stay on the path and
inevitably fail before it finally gets to continue (leaving the path temporarily). As
we just mentioned that the agents need to explore a lot of nodes before proceeding,
this also explains the positive correlation between DFPAP and nodes evaluated.

The explanation for why run time, planning time and nodes evaluated slightly
increase with increasing NDW might be that as NDW increases, TTFW becomes
weaker in comparison, and therefore there is less drive for the agent to prefer

44

Figure 6.5: Correlation matrix of the parameters and the metrics, across all levels,
but only for the parameter sets that won all levels.

states closer to the goal state. But this is just a speculation and the NDW
correlation is rather small.

For the correlation of total plannings and DFPAP, we would say that if it
takes the agent more time to find the goal state, it may not find it in the time
allocated and so it has to start a new search next tick, thus increasing the number
of total plannings.

Most backtracked nodes metric is probably correlated with DFPAP for the
very same reason as all of the other metrics – as the agent might struggle to
temporarily leave the path (to reach further states), it explores a lot of nodes
before reaching a new farthest position, thus increasing the most backtracked
nodes metric.

6.4.4 Game ticks
The game ticks metric is strongly negatively correlated with NDW and weakly
positively correlated with TTFW. As the game ticks metric represents the time
that an agent needs to reach the goal, lower values mean shorter paths.

It is expected that the average amount of game ticks needed to finish a level
will decrease as NDW increases because the NDW parameter influences exactly
the weight of the number of game ticks that we have taken so far to reach a state.
Therefore, if this part of the cost function is more important, the paths found
will be closer to optimal ones.

45

At the same time, if the TTFW parameter increases, the search is more biased
towards states that are closer to the goal, not taking the number of game ticks
required to reach the state into account that strongly. In other words, by using
the TTFW parameter higher than NDW, we are using a weighted version of the
A* algorithm, which may produce non-optimal paths.

6.4.5 Representative agents
Finally, we need to select the parameter sets that will represent the MFF A* Grid
agent archetype in the comparison with other agents.

We have decided to include 3 agents in the final comparison. All of them have
a 100% win rate and they were selected to represent various amounts of success
when it comes to effectively exploring the game tree, which is represented by the
number of nodes explored.

Therefore, the 3 selected agent configurations are:

• Best Nodes Evaluated (BND) – the agent with the least average amount
of nodes evaluated (14 408). Parameter values: NDW: 1, TTFW: 2, DFPT:
1, DFPAP: 5, DFPMP: 5.

• Worst Nodes Evaluated (WND) – the agent with the largest amount of
nodes evaluated (214 830). Parameter values: NDW: 1, TTFW: 0.5, DFPT:
1, DFPAP: 20, DFPMP: 1.

• Average Nodes Evaluated (AND) – the agent with the mean amount of
nodes evaluated (33 919 – the 60th agent of the 119 that won all levels
when ordered by nodes evaluated). Parameter values: NDW: 1, TTFW: 1,
DFPT: 1, DFPAP: 10, DFPMP: 1.

Please note that the BND agent is also the 4th best one in terms of run time
out of the agents with 100% win rate.

6.5 Agent comparison
In this section, we are going to compare the new agents with the previous state-
of-the-art one [3]. We will be comparing the following 5 agents:

• MFF A* 1,1.1 – the previous state-of-the-art agent with NDW of 1.0 and
TTFW of 1.1, retested on the same levels as all of the other agents.

• MFF A* 4,1.2 – the best agent from the MFF A* parameter search 6.2.

• BND, WND, AND – the representative agents for the MFF A* Grid archetype
selected in Section 6.4.5.

We will first compare the agents on all of the 1015 test levels, then we will
compare them only on the krys level pack, which we find the most interesting,
and finally, we will compare them only on the levels that the MFF A* 1,1.1 won.
We will only be comparing their win rate, run time and nodes evaluated metrics,
as those are the most interesting ones and the rest of the metrics mostly behaves
according to them (see the correlation matrices).

46

6.5.1 All levels
We have gathered the results of the 5 agents on all of the 1015 test levels that we
are using. Table 6.1 shows the agents’ win rates (total for all the levels), Table 6.2
shows the agents’ total run times (summed for all of the levels) and the relative
comparison with the previous state-of-the-art agent (MFF A* 1,1.1), Table 6.3
shows the same for average nodes evaluated (across all levels).

Win rate

Agent Levels won (%) Levels won (count)
BND 100% 1015
WND 100% 1015
AND 100% 1015
MFF A* 4,1.2 99.11% 1006
MFF A* 1,1.1 98.62% 1001

Table 6.1: The total win rates of the agents on all of the levels.

As we already know, many of the MFF A* Grid agent configurations won all
of the levels. And even if the improvement over the win rate of the MFF A* 1,1.1
agent is not that significant, we believe that the reliability of the MFF A* Grid
agents is much higher. Also, this is probably the first time that an A* agent has
solved all of these levels.

Run time

Agent Total run time (s) MFF A* 1,1.1 comparison
BND 288 44%
WND 3 991 613%
AND 620 95%
MFF A* 4,1.2 588 90%
MFF A* 1,1.1 651 100%

Table 6.2: Total run times (summed across all levels, in seconds) of the agents.
The last column shows a comparison of the times with the previous state-of-the-
art agent – MFF A* 1,1.1. The values have been rounded.

And while the improvement in the win rate might not seem that impressive,
the improvement in the run time is definitely significant. The BND agent has
solved all of the levels twice faster than any MFF A* agent could, even with its
parameters optimized.

We can also see that the choice of the parameters for the MFF A* Grid agent
is very important, as the run times of the three MFF A* Grid agents differ a lot.

47

Agent Average nodes evaluated MFF A* 1,1.1 comparison
BND 14 409 25%
WND 214 831 369%
AND 33 920 58%
MFF A* 4,1.2 58 769 101%
MFF A* 1,1.1 58 176 100%

Table 6.3: The average amount of nodes evaluated (across all levels) for the
compared agents. The last column shows a comparison with the previous state-
of-the-art agent – MFF A* 1,1.1. The results are rounded.

Nodes evaluated

In terms of nodes evaluated, we can see that the MFF A* agents are four times
worse than the BND agent, as opposed to two times worse run times. This diffe-
rence will get even bigger when comparing only at more complex (krys) levels.

It is important to keep in mind that the metric is a bit influenced by the fact
that the agents did not win all of the levels, and we will see how this changes
when comparing only on levels that the MFF A* agents won.

6.5.2 krys levels
We consider the krys level pack to be the greatest challenge when it comes to
navigating it efficiently. Because of that, we present the same comparison as for
all of the levels, but only on levels from this level pack.

But instead of using the same MFF A* Grid configurations as for all levels, we
found the best, worst and average parameter set of the agent for the krys level
pack (out of those that won all of the levels). The configurations are as follows:

• BND-krys – the agent with the least average amount of nodes evaluated
on the krys level pack (21 319). Parameter values: NDW: 0, TTFW: 1.5,
DFPT: 0, DFPAP: 2, DFPMP: 2.

• WND-krys – the agent with the largest amount of nodes evaluated on the
krys level pack (530 526). Parameter values: NDW: 3, TTFW: 1, DFPT:
5, DFPAP: 3, DFPMP: 1.

• AND-krys – the agent with the mean amount of nodes evaluated on the
krys level pack (236 128). Parameter values: NDW: 0.5, TTFW: 2, DFPT:
0, DFPAP: 50, DFPMP: 0.

Table 6.4 shows the win rates, Table 6.5 shows the run times and Table 6.6
shows the nodes evaluated metric.

Win rate

Even though we consider the krys level pack to be the most interesting and hard
for a human player, all of the agents have managed to beat it. But the interesting
part is going to be the comparison of run times and nodes evaluated.

48

Agent Levels won (%) Levels won (count)
BND-krys 100% 100
WND-krys 100% 100
AND-krys 100% 100
MFF A* 4,1.2 100% 100
MFF A* 1,1.1 100% 100

Table 6.4: The agents’ win rates on the krys level pack.

Run time

Agent Total run time (s) MFF A* 1,1.1 comparison
BND-krys 42 12%
WND-krys 876 253%
AND-krys 481 139%
MFF A* 4,1.2 358 103%
MFF A* 1,1.1 347 100%

Table 6.5: The agents’ total run times on the krys level pack. The last column
shows a comparison with the previous state-of-the-art agent – MFF A* 1,1.1.
The results are rounded.

As foreshadowed, the krys levels are the most intricate to navigate efficiently,
therefore we can see much higher differences in the performance of the agents.

The BND-krys agent is more than eight times more performant than the MFF
A* agents, and the difference is even greater for the AND-krys and WND-krys
agent, once again showcasing that the selection of the best parameters possible
is critical.

We can also see that the MFF A* 4,1.2 agent performed slightly worse than
the MFF A* 1,1.1 agent, most probably because its heuristic is weaker.

Nodes evaluated

Agent Average nodes evaluated MFF A* 1,1.1 comparison
BND-krys 21 320 7%
WND-krys 530 527 176%
AND-krys 236 129 78%
MFF A* 4,1.2 321 649 107%
MFF A* 1,1.1 301 549 100%

Table 6.6: The agents’ average nodes evaluated on the krys level pack. The last
column shows a comparison with the previous state-of-the-art agent – MFF A*

1,1.1. The results are rounded.

Finally, comparing the amounts of nodes evaluated, we see that the BND-krys
agent (of the MFF A* Grid archetype) is a huge improvement over the MFF A*

agent archetype, being 14–15 times more efficient in exploring the game tree.

49

6.5.3 Only won levels
As we have previously mentioned, comparing on levels where any of the agents
failed might skew the results – in both ways. If the agent dies very early in the
level, its run time and amount of nodes evaluated are recorded as really low; if
it gets stuck, its run time and amount of nodes evaluated might be very high,
skewing the results from other levels.

To address this issue, we present the agent comparison once more, this time
only on levels that all of the agents won. To get these levels, it was sufficient
to remove the levels that the MFF A* 1,1.1 agent failed on. We have removed 4
hopper levels, 3 ore levels, 3 patternCount levels, 2 patternOccur levels and 2
patternWeightCount levels.

As presenting the win rates makes no sense, since they all are 100%, let us
look just at the run times and nodes evaluated. Also, let us only compare the
BND agent with the two MFF A*-based ones, because we are mainly checking the
consistency of the results for all levels. The result can be seen in Tables 6.7 and
6.8.

Run times

Agent Total run time (s) MFF A* 1,1.1 comparison
BND 256 50%
MFF A* 4,1.2 425 82%
MFF A* 1,1.1 515 100%

Table 6.7: The total run times of the agents on levels that the MFF A* 1,1.1
agent won. The results are rounded.

The BND agent still outperforms the MFF A* agents quite significantly, but we
can see that the difference is a bit smaller, therefore the scenario where the MFF
A* agent got stuck on its failed levels probably occurred and thus skewed the
agent’s run times a bit towards higher values.

Nodes evaluated

Agent Average nodes evaluated MFF A* 1,1.1 comparison
BND 12 825 28%
MFF A* 4,1.2 39 787 86%
MFF A* 1,1.1 46 233 100%

Table 6.8: The average nodes evaluated of the agents on levels that the MFF A*

1,1.1 agent won. The results are rounded.

For nodes evaluated, we can see the same trend as for the run times – the
difference between the BND agent and the MFF A* agents is a bit smaller, but still
significant.

50

6.6 The most universal agent
We have established that the BND parameter configuration of the MFF A* Grid
agent is the best one in terms of nodes evaluated – out of the agents that won all
levels (it is also the 4th best in terms of run time).

But this was evaluated based on metrics over all of the levels together. Thus,
it may happen that the agent is actually quite bad for some level type and it
makes up for it by being really good for a different level type.

For this reason, we wanted to find an agent that would be somewhat good for
every level type. We have decided to focus on the performance in terms of nodes
evaluated, dismissing the win rate, because all of the agents have really good win
rates and we want to find an agent that is overall the most performant. Also
searching only among agents that won all levels would be a bit problematic, as
we will explain later.

We look for the most universal agent by first finding the best agent in terms
of nodes evaluated for every level pack. That means that for every level pack, we
found the parameters with which the MFF A* Grid agent had the lowest nodes
evaluated score. Table 6.9 shows the parameters and the average nodes evaluated
for the best configuration found for each level pack.

Level pack Best parameters Nodes evaluated
ge 0.0, 2.0, 1.0, 0.0, 3.0 130.19
hopper 2.0, 2.0, 2.0, 3.0, 10.0 145.41
krys 0.0, 2.0, 1.0, 5.0, 3.0 19 093.65
Mario 0.5, 2.0, 1.0, 0.0, 2.0 364.00
notch 1.0, 2.0, 1.0, 0.0, 5.0 155.25
notchParam 1.0, 1.5, 2.0, 0.0, 20.0 159.16
notchParamRand 0.5, 1.5, 2.0, 5.0, 10.0 150.46
ore 1.0, 2.0, 0.0, 0.0, 3.0 307.33
patternCount 3.0, 2.0, 3.0, 10.0, 3.0 3 568.66
patternOccur 1.5, 1.0, 3.0, 1.0, 10.0 7 273.66
patternWeightCount 0.5, 2.0, 1.0, 0.0, 7.0 313.93

Table 6.9: For each level pack, this table shows which parameter set of the MFF
A* Grid agent achieved the lowest average amount of nodes evaluated and the

amount itself.

To obtain the most universal agent, we did the following for every parameter
set of MFF A* Grid – for each configuration, we calculated the mean square error
between its nodes evaluated metric and the best nodes evaluated result that we
found, for each level pack. We then averaged the resulting mean square errors.

The parameter set which achieved the lowest average mean square error could
be proclaimed the most universal parameter configuration, as there is no level
pack where it would perform significantly poorly. It is the following parameter
set:

• NDW: 0.0, TTFW: 1.0, DFPT: 0.0, DFPAP: 0.0, DFPMP: 2.0.

The search for the most universal parameter set was not restricted to parame-
ter sets that won all levels, as this would make the search problematic. An agent

51

that had the best nodes evaluated score on a given level pack might not have won
all levels of a different level pack, so the search would not make sense.

Let us call this most universal agent with the found parameter as MFF A*

Grid Universal (Universal for short).
But before we proclaim this agent as the best choice for testing levels with

previously unknown properties, let us look at Table 6.10, which shows the agent’s
average nodes evaluated per level pack compared to the BND agent, and at Table
6.11, which shows the agent’s performance on all of the levels compared with the
BND agent.

Taking all of these data into consideration, we would choose the BND agent
over the Universal one, but it is up to every user of our agents to make their
pick.

Level pack Universal - NE BND - NE Ratio
ge 6 963 372 1 871%
hopper 723 179 403%
krys 31 164 91 394 34%
Mario 7 072 13 797 51%
notch 191 171 111%
notchParam 190 185 102%
notchParamRand 166 172 96%
ore 6 414 2 058 311%
patternCount 15 412 10 306 149%
patternOccur 44 856 38 981 115%
patternWeightCount 6 960 358 1 939%

Table 6.10: This table shows the average amount of nodes evaluated per level
pack for the Universal and the BND agent. The Ratio column shows a relative

comparison of the agents on each level pack, computed as (Universal - NE /
BND - NE) * 100. The values are rounded.

Agent Win rate Run time Nodes evaluated
Universal 98.82% 567.76 11 244.47
BND 100% 283.91 14 408.73

Table 6.11: Overall comparison of the agents’ win rates, total run times and
average nodes evaluated.

Please note that the Universal agent might have fewer nodes evaluated in
Table 6.11 because it did not win all levels. It is actually the 8th best agent in
terms of nodes evaluated (from all of the parameter sets, including configurations
that did not win all levels).

52

7. Related works
Mario AI framework, Robin Baumgarten’s agent, our previous work

The first version of the Mario AI framework was created by Karakovskiy and
Togelius [11]. After 10 years, it was improved by Khalifa [12]. In our previous
works we created a new forward model for the framework [1] and also new state-
of-the-art artificial agents for Super Mario Bros. [3].

Works dealing with A* improvements

A paper by Chen and Sturtevant [13] presents various priority functions, while
Foead et al. [14] did a literature review of A* pathfinding – we have gathered a
lot of ideas from both of these papers, e.g. to thoroughly experiment with how
different parts of an A* cost function are weighted.

We did not find any papers dealing specifically with A* improvements for
platformer games.

Works using Super Mario agents

In this section, we want to demonstrate why our work in creating better artificial
agents for Super Mario Bros. is meaningful. We will list a few works using such
agents and describe what the work is about and how it uses an artificial agent.

Please note that Robin Baumgarten’s agent is the best agent of the 2009 Mario
AI Competition [15], which has since been used in many works – and we have
significantly outperformed this agent in our previous work [3] and even more in
this one.

Before we get to the list of a few selected works, we would like to mention that
the literature review that we did for our previous work [3] found 29 Super Mario
articles working with A* explicitly and 13 articles using the Robin Baumgarten’s
agent. The list of works using Super Mario Bros. artificial agents includes:

• Intentional Computational Level Design (2019) [16] – Super Mario
level generation using evolutionary algorithms; uses Robin Baumgarten’s
agent as a model of a perfect agent to evaluate level segments.

• Evolving Mario Levels in the Latent Space of a Deep Convolu-
tional Generative Adversarial Network (2018) [17] – level generation
using GANs; uses Robin Baumgarten’s agent to determine the playability
of a given level.

• Super Mario as a String: Platformer Level Generation Via LSTMs
(2016) [5] – generation of levels using LSTMs; uses a closer unspecified tile-
level A* agent to gather path information for LSTM training.

• Mario Level Generation From Mechanics Using Scene Stitching
(2020) [7] – level generation by composing pre-generated scenes; the scenes
are labelled with the mechanics that Robin Baumgarten’s agent triggers
while playing them.

53

8. Conclusion
Our goal was to optimize the game tree search for the Super Mario Bros. game,
which should allow us to create new state-of-the-art agents.

We started by analyzing the challenging types of levels and coming up with
different ideas of how to solve them. During the analysis, we also noticed that
some of the levels were not solvable, therefore our work also includes fixing such
levels. After the analysis, we implemented several new artificial agents.

First, we have improved the existing MFF A* agent by tuning its parameters,
which yielded the MFF A* 4,1.2 agent that beat more levels that the previous
state-of-the-art agent of this archetype. Then, we implemented the grid search
and used the grid paths that were now available to us to create a new agent
archetype – MFF A* Grid, which utilizes the grid path to navigate levels more
efficiently. The parameters of the new agent were also tuned by searching for the
best parameter set using the MetaCentrum cluster.

Finally, we selected the best parameter sets for both agent archetypes and
compared them in various scenarios, both between each other and also with the
previous state-of-the-art agent. Based on the evaluation, we can confidently say
that we managed to create new state-of-the-art agents that significantly outper-
form the previous ones and which should now be the best choice for any Super
Mario Bros. work (e.g. level generation) that requires level playability evaluation.
The best agent is the MFF A* Grid agent with the BND parameter configuration.

Future works may include either further improvement of the agents, where we
still see more potential in solving maze-like levels, or the creation of agents for
games similar to Super Mario Bros. (2D platformers), potentially trying to come
up with a more general agent architecture that could easily be used for a wider
range of such games.

54

Bibliography
[1] David Šovald. Efficient forward model for Super Mario AI framework. Uni-

verzita Karlova, Matematicko-fyzikální fakulta, Katedra softwaru a výuky
informatiky, 2021. URL http://hdl.handle.net/20.500.11956/127957.

[2] Julian Togelius, Sergey Karakovskiy, Jan Koutnik, and Jurgen Schmidhu-
ber. Super Mario Evolution, 2009. URL http://julian.togelius.com/
Togelius2009Super.pdf.

[3] David Šosvald, Michal Töpfer, Jan Holan, Vojtěch Černý, and Jakub Gem-
rot. Super Mario A-Star Agent Revisited. In International Conference
on Tools with Artificial Intelligence, ICTAI, volume 2021-November, pages
1008–1012, 2021.

[4] Frederik Schubert, Maren Awiszus, and Bodo Rosenhahn. TOAD-GAN: A
Flexible Framework for Few-Shot Level Generation in Token-Based Games.
IEEE Transactions on Games, 14(2):284–293, 2022.

[5] Adam Summerville and Michael Mateas. Super Mario as a String: Platformer
Level Generation Via LSTMs. First International Conference of DiGRA and
FDG, 2016.

[6] Eduardo Hauck and Claus Aranha. Automatic Generation of Super Mario
Levels via Graph Grammars. In 2020 IEEE Conference on Games (CoG),
pages 297–304, 2020.

[7] Michael Cerny Green, Luvneesh Mugrai, Ahmed Khalifa, and Julian To-
gelius. Mario Level Generation From Mechanics Using Scene Stitching. In
2020 IEEE Conference on Games (CoG), pages 49–56, 2020.

[8] Stuart J. Russell and Peter Norvig. Artificial intelligence: A Modern Ap-
proach. Pearson Education, Harlow, 4rd edition, 2020. ISBN 978-1-29202-
420-2.

[9] GNU. Free Software Foundation. Bash [Unix shell program]. URL https:
//www.gnu.org/software/bash/.

[10] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. SPEC
CPU2017: Next-Generation Compute Benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineering,
ICPE ’18, page 41–42. Association for Computing Machinery, 2018. URL
https://doi.org/10.1145/3185768.3185771.

[11] Sergey Karakovskiy and Julian Togelius. The Mario AI Bench-
mark and Competitions, 2012. URL http://julian.togelius.com/
Karakovskiy2012The.pdf.

[12] Ahmed Khalifa. Mario AI Framework, 2019. URL https://github.com/
amidos2006/Mario-AI-Framework.

55

http://hdl.handle.net/20.500.11956/127957
http://julian.togelius.com/Togelius2009Super.pdf
http://julian.togelius.com/Togelius2009Super.pdf
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://doi.org/10.1145/3185768.3185771
http://julian.togelius.com/Karakovskiy2012The.pdf
http://julian.togelius.com/Karakovskiy2012The.pdf
https://github.com/amidos2006/Mario-AI-Framework
https://github.com/amidos2006/Mario-AI-Framework

[13] Jingwei Chen and Nathan R. Sturtevant. Necessary and Sufficient Condi-
tions for Avoiding Reopenings in Best First Suboptimal Search with General
Bounding Functions. Proceedings of the AAAI Conference on Artificial In-
telligence, 2021. URL https://doi.org/10.1609/aaai.v35i5.16485.

[14] Daniel Foead, Alifio Ghifari, Marchel Budi Kusuma, Novita Hanafiah, and
Eric Gunawan. A Systematic Literature Review of A* Pathfinding. Procedia
Computer Science, 2021. URL https://doi.org/10.1016/j.procs.2021.
01.034.

[15] Julian Togelius, Sergey Karakovskiy, and Robin Baumgarten. The
2009 Mario AI Competition, 2010. URL http://julian.togelius.com/
Togelius2010The.pdf.

[16] Ahmed Khalifa, Michael Cerny Green, Gabriella Barros, and Julian Togelius.
Intentional Computational Level Design, 2019. URL https://arxiv.org/
pdf/1904.08972.pdf.

[17] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon Lucas, Adam Smith, and
Sebastian Risi. Evolving Mario Levels in the Latent Space of a Deep Convo-
lutional Generative Adversarial Network, 2018. URL https://arxiv.org/
pdf/1805.00728.pdf.

56

https://doi.org/10.1609/aaai.v35i5.16485
https://doi.org/10.1016/j.procs.2021.01.034
https://doi.org/10.1016/j.procs.2021.01.034
http://julian.togelius.com/Togelius2010The.pdf
http://julian.togelius.com/Togelius2010The.pdf
https://arxiv.org/pdf/1904.08972.pdf
https://arxiv.org/pdf/1904.08972.pdf
https://arxiv.org/pdf/1805.00728.pdf
https://arxiv.org/pdf/1805.00728.pdf

List of Figures

2.1 A standard Super Mario Bros. level with a few different enemies
shown. 6

2.2 An aerial level type featuring a lot of jumps and no solid ground. 7

4.1 An example of a branching level segment. The correct path is
marked in yellow, while the wrong path that would require back-
tracking is marked in red. Mario is luckily currently on the right
path. 12

4.2 An example of a trap pit. If Mario falls inside, there is no way to
escape. Mario, unfortunately, did just that. 13

4.3 A manually created showcase level. The whole level is a huge maze
and requires the agent to alternate running left and right through
over 100 blocks long corridors. At the end of each corridor, the
agent can ascend one floor up, until it finally gets to the top and
can escape the maze and reach the finish. 14

4.4 The black line visualises the grid path that our implementation
of the grid search returned. Notice that it completely avoids the
lower part of the level segment, because it does not lead any further. 17

5.1 The start and the end of level 4 from the original level pack. . . 20
5.2 An example of a level segment from level 4 of the original level

pack. 21
5.3 This figure visualises which positions can Mario reach by jumping

from a 2-tile running start. The black squares represent tiles where
Mario could land if there was a block underneath. 23

5.4 Visualisation of the path Mario will take to jump up higher while
landing on the same horizontal position. 24

5.5 A situation that might seem unsolvable at first, but if Mario gath-
ers enough momentum, he can run over the pit. 26

5.6 A comparison of the grid paths found with different heuristic func-
tion weights settings in the grid search. 27

5.7 The grid path found for the final segment of the first Mario level
by a grid search with heuristic function weight of 1.0. 28

5.8 The grid path found for the final segment of the first Mario level
by a grid search with heuristic function weight of 2.0. 28

5.9 The showcase level created to test how agents can handle maze-like
environments. 32

5.10 A visualisation of how waypoints may be sampled from a grid path. 34

6.1 The level editing we did for the krys levels to remove the need to
break blocks. 38

6.2 Correlation matrix of the MFF A* agent’s parameters and metrics
across all levels and all parameter sets. 39

6.3 A graph showing the total win rate for all of the parameter sets
tested. 40

57

6.4 Correlation matrix of all the parameters and metrics, across all
levels and all parameter sets. 43

6.5 Correlation matrix of the parameters and the metrics, across all
levels, but only for the parameter sets that won all levels. 45

58

List of Tables

5.1 The distances that Mario can jump over while landing at the same
vertical level. The left column shows how many blocks did Mario
run before initiating the jump. The right column shows how many
blocks can be jumped at maximum. 22

5.2 A table showing how big of a gap can we jump over given that we
also want to ascend. This measurement is done using the 2-tile
start for gaining speed. 22

6.1 The total win rates of the agents on all of the levels. 47
6.2 Total run times (summed across all levels, in seconds) of the agents.

The last column shows a comparison of the times with the previ-
ous state-of-the-art agent – MFF A* 1,1.1. The values have been
rounded. 47

6.3 The average amount of nodes evaluated (across all levels) for the
compared agents. The last column shows a comparison with the
previous state-of-the-art agent – MFF A* 1,1.1. The results are
rounded. 48

6.4 The agents’ win rates on the krys level pack. 49
6.5 The agents’ total run times on the krys level pack. The last column

shows a comparison with the previous state-of-the-art agent – MFF
A* 1,1.1. The results are rounded. 49

6.6 The agents’ average nodes evaluated on the krys level pack. The
last column shows a comparison with the previous state-of-the-art
agent – MFF A* 1,1.1. The results are rounded. 49

6.7 The total run times of the agents on levels that the MFF A* 1,1.1
agent won. The results are rounded. 50

6.8 The average nodes evaluated of the agents on levels that the MFF
A* 1,1.1 agent won. The results are rounded. 50

6.9 For each level pack, this table shows which parameter set of the
MFF A* Grid agent achieved the lowest average amount of nodes
evaluated and the amount itself. 51

6.10 This table shows the average amount of nodes evaluated per level
pack for the Universal and the BND agent. The Ratio column
shows a relative comparison of the agents on each level pack, com-
puted as (Universal - NE / BND - NE) * 100. The values are
rounded. 52

6.11 Overall comparison of the agents’ win rates, total run times and
average nodes evaluated. 52

59

List of Listings
2.1 A* algorithm . 7
5.1 Grid search using the A* algorithm 23
5.2 The node cost calculation of the MFF A* agent. 30
5.3 The node cost calculation of the MFF A* Grid agent. 30
5.4 The main loop of the agent’s search. 33
5.5 Pseudocode of waypoint sampling. 34

60

	Introduction
	Problem statement
	Goals
	Structure of the text
	Copyright
	Acknowledgement

	Theory
	Super Mario Bros.
	Artificial agents
	Artificial agents for Super Mario Bros.

	A* algorithm
	Cost function

	Technological background
	Mario AI framework
	Forward model
	MetaCentrum

	Analysis
	Challenging level types
	Branching
	Mazes

	Ideas
	Parameter tuning
	Bidirectional search
	Tile constraints
	Suggested moves
	Grid utilization
	Waypoints

	Implementation
	MFF A* parameter tuning
	Grid search
	A* for a platformer game
	Mario physics
	Implementation

	MFF A* Grid agent
	Cost function

	MFF A* Waypoints agent
	Implementation
	Summany

	Evaluation
	Experiment setup
	Testing environment
	Level packs
	Unsolvable levels

	MFF A* agent parameter search
	Win rate
	Nodes evaluated
	Other metrics
	Best agent

	Grid search correctness
	MFF A* Grid agent
	Win rate and distance travelled
	Only won levels
	Run time, planning time, total plannings, nodes evaluated, most backtracked nodes
	Game ticks
	Representative agents

	Agent comparison
	All levels
	krys levels
	Only won levels

	The most universal agent

	Related works
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Listings

