
MASTER THESIS

Drahomı́r Hanák

Meeting the challenges of k-nearest
neighbour search implementation for

GPU accelerators

Department of Distributed and Dependable Systems

Supervisor of the master thesis: doc. RNDr. Krulǐs Martin, Ph.D.
Study programme: Computer Science

Study branch: Software Systems

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor, doc. RNDr. Krulǐs Martin, Ph.D., for his
invaluable advice, constructive criticism, and the time he dedicated to helping
me write this thesis.

ii

Title: Meeting the challenges of k-nearest neighbour search implementation for
GPU accelerators

Author: Drahomı́r Hanák

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Krulǐs Martin, Ph.D., Department of Distributed and
Dependable Systems

Abstract: Similarity search is a commonly used technique in databases for finding
objects similar to a query. It finds applications in content-based retrieval of
complex objects like images, information retrieval, and statistical learning. Our
thesis focuses on the implementation and optimization of the k nearest neighbours
(kNN) algorithm on a GPU, a commonly used technique in similarity search.
We analyze and evaluate several existing GPU kNN implementations in various
configurations and propose the best algorithm for each configuration. We also
suggest optimizations of k-selection. In particular, we suggest a small k-selection
approach, which achieves up to 80% of peak theoretical throughput on a typical
configuration used in many applications of kNN and is faster than the current
state-of-the-art. We implemented a fused algorithm, which solves kNN without
materializing the distance matrix, and a large k-selection, which outperforms an
optimized, parallel sorting of the whole database by a significant margin.

Keywords: kNN top-k parallel GPU CUDA

iii

Contents

1 Introduction 3
1.1 Taxonomy . 4
1.2 Distance function . 4

1.2.1 Cheap distance functions 5
1.2.2 Compute-intensive distance functions 5

1.3 Outline . 7

2 GPU Programming 8
2.1 Architecture . 8

2.1.1 Thread hierarchy . 8
2.2 Memory hierarchy . 9

2.2.1 Registers and local memory 9
2.2.2 Shared memory . 10

2.3 Programming model . 10
2.3.1 Runtime API . 11
2.3.2 Host synchronization . 13
2.3.3 Synchronization of GPU threads 14

2.4 Programming guidelines . 15

3 Analysis 17
3.1 Problem definition . 17

3.1.1 Sequential solutions . 17
3.1.2 Indexing for nearest neighbours 17

3.2 Parallelization . 18
3.3 Distance computation on GPUs 18

3.3.1 Distances based on a dot product 19
3.3.2 Specialized kernels . 19
3.3.3 Other distance functions 20

3.4 Selection using sorting on GPUs 20
3.4.1 Bitonic sort . 21
3.4.2 Merge path . 22
3.4.3 Radix sort . 24

3.5 Partial sorting . 26
3.5.1 Partial Bitonic sort . 26
3.5.2 Limitations of partial sorting methods 27

3.6 Incremental selection . 28
3.6.1 Data parallel selection on GPUs 28
3.6.2 Merge queue . 29
3.6.3 Warp Select . 30

3.7 Selection . 32
3.7.1 Sample Select . 32
3.7.2 Radix Select . 33

3.8 Conclusion . 34

1

4 Optimizations 35
4.1 Single-pass selection . 35

4.1.1 Bitonic sort optimizations 36
4.1.2 Shared memory mapping 37
4.1.3 Transposed memory layout 38
4.1.4 Bitonic sort implementation details 38
4.1.5 Global memory throughput 39
4.1.6 Analysis . 41

4.2 Fused distance computation with selection 42
4.2.1 Applicability . 42

4.3 Multi-pass selection . 43
4.3.1 Partitioning . 44
4.3.2 Single-stage selection . 44

5 Evaluation 46
5.1 Methodology . 46
5.2 Common distance functions . 46
5.3 Selection optimizations . 48

5.3.1 Bitonic sort . 48
5.3.2 Buffering . 48
5.3.3 Global memory throughput 49

5.4 Single-pass selection . 50
5.4.1 Multi-query selection . 50
5.4.2 Single-query selection . 52
5.4.3 Fused kernel . 53

5.5 Multi-pass selection . 56
5.5.1 Sample select . 56
5.5.2 Partitioning algorithms . 57

5.6 Final kernel . 58
5.6.1 Comparison with a CPU implementation 59

6 Conclusions 61

Bibliography 62

A Attachments 66
A.1 Structure . 66

2

1. Introduction
Similarity search is a general technique used in databases to find objects similar
to a query based on a similarity between pairs of objects. It is often employed
in large-scale databases of complex objects such as images to facilitate content-
based retrieval. Similarity search finds applications in many other fields, including
information retrieval, statistical learning, and data visualization, among others.
For example, web search engines use similarity search to rank web pages based
on their similarity to a query.

The k nearest neighbour (kNN) algorithm is one technique often used in sim-
ilarity search. Given a database of objects, a query object and a similarity func-
tion, we want to find the k closest objects to the query according to the similarity
function. While a serial implementation of this algorithm is quite simple, the
dataset size might render this approach entirely infeasible. Hence, better imple-
mentations, which can utilize the parallelism of modern hardware, are required.
In particular, many-core architectures, such as graphics processing units (GPUs),
have been used for this purpose [29, 26, 22].

GPUs were originally intended for processing graphics where it is necessary
to compute values of individual vertices of 3D models or pixels in a massively
parallel fashion so that the whole frame composed of millions of pixels is processed
in order of milliseconds. GPUs have thus been optimized for throughput rather
than the latency of individual operations. The programming model of GPUs
has been extended since their first introduction so that they can be used for
general-purpose computations.

The problem of kNN is, at least in part, well suited for GPUs since dis-
tance computations can be solved using a data-parallel approach which benefits
from GPU architecture. However, an efficient implementation of kNN on modern
GPUs is non-trivial and requires utilizing many aspects of the hardware archi-
tecture. Moreover, GPU architecture is dissimilar to its CPU counterpart, so
specialized algorithms have to be developed to take full advantage of hardware
resources.

A large body of work has been done on this topic. However, an optimal
implementation depends on the configuration of the problem. The size of the
database and the magnitude of k, for instance, both have a substantial impact
on performance and can vary widely depending on the domain of the application.
To the best of our knowledge, no publication has done a complex performance
overview of the problem for various configurations.

The contribution of this thesis is twofold:

• We evaluate existing GPU kNN implementations for various configurations
of the problem and propose the best method for each tested configuration.

• We analyze GPU implementations of kNN and propose optimizations for
several parts of the problem. We show that an algorithm proposed by
Krulǐs et al. [29] can be modified using ideas from Tang et al. [44] to perform
better than the current state-of-the-art for small k. We also present a fused
kernel based on the work of Krulǐs et al. [30], which solves the kNN problem
without materializing the distance matrix. This approach is not only faster

3

than the previously mentioned method in some instances, but it also has
a lower memory footprint. The latter point is especially important on GPUs
which have a very limited amount of available memory.

1.1 Taxonomy
There are several variants of the kNN problem [36]. Structureless solutions com-
pute all distances between query and database points. The result is then used
to find the k closest objects. Another option is to create an indexing structure.
Indexing structures usually utilize properties of the distance function to compute
the lower bound of the actual distance so that some distance computations from
objects far away from the query can be avoided.

Exact kNN algorithms find the true k nearest neighbours. In some applica-
tions, it can be sufficient to find only an approximate result which has some small
quantifiable error or an approximate result which is correct with some probability.
An advantage of this approach is that an approximate algorithm can be faster,
and it usually employs some indexing technique.

Another distinction is in query type. A single-query solution processes one
query at a time. However, a significant increase in throughput can be gained
if we use a multi-query approach. Since there are no dependencies between dif-
ferent queries, they can be processed in parallel. Furthermore, queries are often
evaluated on the same database, so database objects, once loaded from memory,
can be used for more than one distance computation. In some problems, the set
of queries is the whole database. This is sometimes called All-kNN in literature,
and it can be used, for example, in kNN graph construction.

The magnitude of k plays an essential role in kNN. Algorithms for small k
may assume that the top k list fits into the cache or even into registers. For
k = 1, the problem reduces to finding a minimum. In these cases, the overhead of
updating an intermediate top k result could be pretty low, and implementation
might be limited by other factors. On the other hand, for large k, the top k
list does not fit into an on-chip memory (such as registers or local cache). It
might be beneficial to use more sophisticated algorithms and data structures
which would have prohibitively high overhead in the small kNN case. For large k,
sorting the whole list of distances might be more efficient than using a complicated
incremental approach.

1.2 Distance function
The efficiency of any kNN implementation is heavily influenced by the compu-
tational complexity of the distance function. Suppose a computationally cheap
distance function is used. In that case, the computation might be limited by
other factors, such as the speed of memory transfers or the selection of the top k
distances. For expensive distance functions, top k computation and memory
transfers take a relatively short time, so it is more important to speed up the dis-
tance computation or outright avoid some distance computations using indexing.

4

1.2.1 Cheap distance functions
The two most prominently used functions, Euclidean distance (also known as the
L2 distance) and cosine similarity (Definition 1.2; ⟨x, y⟩ denotes the dot product),
are among the computationally cheap distance functions. Euclidean distance is
a particular case of the more general Lp distance (Definition 1.1) for p = 2. If we
set p = 1, we get the Manhattan distance. Another example of a common, cheap
distance function is the Hamming distance which compares strings. Hamming
distance between two strings is the number of positions in the two strings in
which the strings differ.

(︄
n∑︂

i=1
|xi − yi|p

)︄ 1
p

(1.1)

⟨x, y⟩
∥x∥ · ∥x∥

(1.2)

Since the computation of these distance functions requires only a small number
of operations, it is usually limited by memory throughput. The multi-query
approach is advantageous in these cases because a database object, once loaded
in an on-chip memory (such as cache or registers), can be used for multiple
distance computations, which limits the total number of memory transfers.

Matrix multiplication

Distance computation of the commonly used distance functions in a vector space
can be viewed as matrix multiplication [32, 37]. Let Q ∈ Rq×d be a matrix of
query vectors, and P ∈ Rp×d be a matrix of database vectors where q denotes the
number of queries, p is the number of database vectors, and d is the dimension of
all the vectors. A standard matrix multiplication D = QP T computes the dot
product between the query and database vectors. The dot product can be viewed
as a distance function since it is a cosine similarity without length normaliza-
tion (Definition 1.2). However, matrix multiplication is not limited to distance
functions derived from the dot product. For example, a matrix multiplication
algorithm can compute the squared Euclidean distance if we replace the multi-
plicative operator with ⊗(x, y) = |x− y|2. Several other commonly used distance
functions can be obtained using a similar approach. The benefit of using ma-
trix multiplication is that there are several well-optimized matrix multiplication
libraries [7, 2].

1.2.2 Compute-intensive distance functions
Compute-intensive distance functions have much higher computational complex-
ity. They can benefit from parallelization of a single distance computation and
caching since a computation of a single distance usually requires significantly
more passes over the data, unlike, for example, Euclidean distance, which can
be computed in a single pass. Compute-intensive functions include, for exam-
ple, Levenshtein’s distance [16] which computes the distance of two strings as
the minimum number of operations (insertion, deletion, and substitution of char-
acters) required to transform one string to the other. Another example is the

5

Earth mover’s distance [41] (EMD) designed to compare histograms, and Signa-
ture quadratic form distance (SQFD) [17]. Both SQFD and EMD can be used to
compare signatures extracted from multimedia content such as images.

Indexing

Due to the complexity of distance computations, it is undesirable to compute
these functions for each database object. Properties of the distance function can
be used to quickly prune database objects which are too far from the query [21].
A typical assumption is that the distance function is a metric (Definition 1).

Definition 1. Let M be a set and d a function d : M2 → R such that it satisfies
the following properties. Then d is called a metric.

1. ∀x, y ∈M : d(x, y) = d(y, x) (symmetry)

2. ∀x, y ∈M : d(x, y) ≥ 0 ∧ d(x, y) = 0⇔ x = y (non-negativity)

3. ∀x, y, z ∈M : d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality)

For example, pivot-based methods [20] select a subset of database objects
as pivots. Distances between pivots and the rest of the database objects are
precomputed. The triangle inequality can be used to derive a lower bound of the
distance between a query and a database point. For a query q, database object
x, and a pivot p, it can be derived from triangle inequality and symmetry that
d(q, x) ≥ |d(x, p)− d(q, p)|.

Using a distance lower bound is the main idea of some popular indexing
techniques for kNN, such as the Linear Approximating and Eliminating Search
Algorithm (LAESA) [34]. In LAESA, a lower bound of a distance between a query
q and a database object x is computed as L(q, x) = maxp∈P{|d(x, p) − d(q, p)|},
where P denotes the set of pivots. The search algorithm has to compute distances
between the query and all pivots d(q, p) only.

The base LAESA finds only the nearest neighbour. The algorithm iterates
over the database objects in order of increasing lower bound L. It maintains the
nearest neighbour candidate, which is initialized to the nearest pivot at the start
of the search. In each iteration, the distance to a database object is computed,
and if the database object is closer than the current candidate, the candidate is
replaced. The search ends when the algorithm encounters a database object whose
lower bound L is higher than the distance to the nearest neighbour candidate.

LAESA can be easily extended to kNN [35]. k-LAESA maintains an interme-
diate top k result, and the stopping criterion is modified to compare the distance
lower bound L with the actual distance to the kth nearest neighbour found so
far.

In order to make the search easily parallelizable, prefiltering methods based
on LAESA do not sort the database [27]. A sequential scan of the database is
used instead, which computes the lower bounds and filters out objects too far
from the kth nearest neighbour found so far. The distance function is computed
for candidates who pass the first step only, and the computed distances are used
to update the intermediate top k result. One issue with this approach is that,

6

in many cases, a single distance computation does not fully utilize all processing
cores. We have to compute multiple distances in parallel in order to achieve max-
imal throughput. Ideally, the intermediate top k result would be updated after
each distance computation, but since this is not possible in a parallel implemen-
tation, it may lead to unnecessary distance computations.

Space-splitting indexing structures split the space (usually, a vector space is
assumed) using a geometrical object. A kd-tree [39] is an example of an indexing
structure for d-dimensional data. It is a binary tree where each node splits the
vector space into two parts according to a selected axis (i.e., it uses axis-aligned
hyper-planes to split the vector space). The splitting axes are cycled so that on
level i of the tree, i mod d axis is used. Other notable indexing structures in this
category include variants of the R-tree [19] like R+-tree [43] or R∗-tree [15], which
partition the vector space using hyper-cubes, and M -tree [21], which partitions
the data using hyper-spheres.

1.3 Outline
The rest of this work is organized as follows. In Chapter 2, we introduce the
GPU programming model and architecture. Chapter 3 analyzes kNN implemen-
tation, parallelization of the problem and mapping of kNN to GPU architecture.
In Chapter 4, we explore several optimizations of kNN kernels. Chapter 5 evalu-
ates GPU implementations of kNN for various configurations of the problem. We
also evaluate the effectiveness of our optimizations and compare them with the
state-of-the-art implementations. Chapter 6 summarizes our findings.

7

2. GPU Programming
In this Chapter, we describe principles of GPU programming relevant to an effi-
cient, parallel k nearest neighbours implementation. The first section introduces
the programming model and hardware architecture of GPUs. The rest of the
Chapter focuses on details of running a code on a GPU and available APIs that
can be used for communication and synchronization of GPU threads.

2.1 Architecture
This section introduces the programming model and architecture of GPUs. We
decided to use CUDA terminology as it is the most prominent platform for
general-purpose computations on GPUs at the time of writing. However, al-
ternative platforms such as OpenCL or Vulkan have very similar concepts, which
are named differently.

Graphics processing units (GPUs) are devices connected to a host system
usually using a PCIe bus [3]. Originally, GPUs were intended for graphics com-
putations but can also be used for general-purpose computations. GPUs usually
have a large number of cores, but they are specialized for numeric computations.
Unlike CPU cores, which dedicate many transistors for optimizing control flow
using complicated scheduling, branch predictors, and large caches, GPU cores are
much simpler in this regard.

GPUs are designed for data parallelism. The same code processes multi-
ple data elements in a massively parallel fashion. This is implemented in prac-
tice by executing one function called a kernel on different data by many GPU
threads. Compared to CPU threads, creating and scheduling GPU threads is
more lightweight. Moreover, many more threads are used than on a typical CPU.

2.1.1 Thread hierarchy
While CPU cores work largely independently, GPUs take a different approach.
Threads are assigned to GPU processors (called Streaming Multiprocessors, SM s)
in large groups of threads called thread blocks. Each SM has its own registers,
a shared L1 cache, and processing cores. Once a thread block is assigned to an
SM, it runs its kernel until all threads in the block finish their computation.

The size of a thread block is limited because all threads assigned to an SM
share resources of the processor. For this reason, a kernel can be executed by
more than one thread block, which can run on different SMs in parallel. A group
of thread blocks that execute the same kernel is called a grid.

CPU and GPU threads significantly differ when it comes to scheduling and
running a code. A CPU thread is scheduled on a processor core where it runs for
a while and then is preempted so that other threads can run. Different CPU cores
usually execute different instructions. On a GPU, each thread block is assigned
to an SM, and it is subsequently divided into smaller pieces called warps1 which
are scheduled on processing cores. Code is executed using the Single Instruction

1Warp size is usually 32 threads on modern GPUs.

8

Multiple Threads (SIMT) model. In SIMT, cores execute the same instruction,
but each core has its own set of registers so that they can work on different data.
When any thread is stalled, the whole warp is switched for another warp which
is ready to run.

Code branches are supported by masking. All threads execute all divergent
branches in a warp. Threads which should not execute a branch are disabled
for all instructions in that branch. This situation limits parallelism since indi-
vidual branches are executed by a warp serially. It can sometimes be avoided
by reorganizing data to create a balanced workload for all threads and to avoid
unnecessary data-dependent conditional statements within a warp.

Preemption of threads is another difference between CPU and GPU. Preemp-
tion of CPU threads is usually a somewhat complicated operation. On GPUs,
thread blocks allocate all resources they need before execution, including regis-
ters. It limits the number of threads that fit onto an SM but allows SMs to
quickly switch out a warp if an instruction stalls (e.g., due to a memory transfer
or a complicated operation).

2.2 Memory hierarchy
A code running on a GPU cannot directly access data in a host system memory.
Instead, all threads have to use global memory. Global memory serves a similar
purpose to the main memory of a CPU. It is physically located on the GPU, and
its size is in order of gigabytes. Data has to be transferred to global memory,
usually from host system memory, via a PCIe bus before computation, and it
has to be transferred back after computation. Data transfers to and from global
memory can overlap with other computations on GPU.

Global memory is accessed in transactions which operate on large blocks of
memory. Transactions have to be aligned to their size (i.e., the first address of a
transaction has to be divisible by the transaction size). When a warp executes a
global memory read or a write, an appropriate number of transactions is executed
to cover all accessed addresses. In an ideal situation, all threads in a warp access
subsequent addresses in an adequately aligned block of memory. A single global
memory transaction is used in this situation. On the other hand, if threads
in a warp access seemingly random addresses, multiple transactions have to be
created. In this case, a large portion of data accessed by the transactions could
be transferred in vain.

2.2.1 Registers and local memory
SMs have a large number of registers (thousands of 32-bit registers). The register
file is the fastest memory available on a GPU. They are allocated and managed by
the compiler. Variables in a kernel are usually stored in registers, but a compiler
can decide to spill registers to local memory due to high register pressure.

Local memory is a part of global memory reserved for a thread. Large variables
such as big structures or arrays can be stored in local memory instead of registers.
Local arrays, which are addressed dynamically (i.e., the index of an element is
only available at runtime), have to be stored in local memory because registers
are not dynamically addressable.

9

2.2.2 Shared memory
Shared memory is a special memory located in each SM. It is similar to an on-
chip CPU cache, but unlike CPU caches, it is programmer-managed. It has lower
latency and higher throughput than global memory, so it can be used to manually
cache frequently used values to avoid costly global memory transactions.

When a kernel is called, it requests a size of shared memory allocated for each
thread block. Threads in a thread block can use shared memory to communicate.
The memory is divided into banks (memory modules). Banks can be accessed
in parallel. Accesses to a single bank, however, have to be serialized. Shared
memory is mapped to address space so that consecutive words 2 are mapped to
different banks. The number of banks is usually high enough for all threads in
a warp to access their own bank. A bank conflict occurs when an instruction
causes more than one thread from a warp to access different words from the same
memory bank. However, if two or more threads from a warp request the same
word, the instruction is only performed once, and the result is broadcasted to all
requesting threads.

Figure 2.1: Linear access to shared memory banks (no bank conflicts).

Figure 2.2: Broadcasts in shared memory (no bank conflicts).

Figure 2.3: Strided access to shared memory.

Figure 2.3 shows an example of a bank conflict. Each thread accesses an
element with index 2i, where i is the thread index within its warp. Odd banks are
not utilized in this example; even banks have to process two requests. Figure 2.1
shows an example of linear access in which all threads in a warp access a different
bank. This example does not contain a bank conflict. A situation in Figure 2.2
also does not contain a bank conflict if all threads read the same address since
the values from banks 7 and 23 are broadcasted to requesting threads.

2.3 Programming model
GPUs execute special C++ functions called kernels. Kernels are functions marked
by an extended syntax of C++. When a GPU C++ compiler is used (e.g., the

2Usually, 32 or 64 bit words are used on modern GPUs.

10

CUDA compiler nvcc), it compiles these kernel functions separately to a code
that can run on a GPU.

A kernel is executed in parallel by many threads. The total number of threads
should far exceed the number of cores physically available on the GPU so that
if some threads are stalled on an instruction, other threads can be scheduled
instead. The number of threads that execute a kernel is usually determined by
the input size (e.g., one thread could be used to process four input elements).

Listing 1 shows an example of a CUDA kernel which takes a list of floats
as an input and computes the hyperbolic tangent of all elements in the input
list. The global keyword marks the function as a kernel. Furthermore, each
thread has a unique index accessible in code. The following predefined variables
are available in a kernel:

• threadIdx: index of a thread within its thread block

• blockIdx: index of a thread block in the grid

• blockDim: number of threads in each thread block

• gridDim: number of thread blocks in the grid

In Listing 1, each thread is assigned one data element so its index can be
computed using the formula in line 3.

1 __global__ void kernel(const float* input, float* output, int n)
2 {
3 int global_idx = threadIdx.x + blockIdx.x * blockDim.x;
4 if (global_idx < n)
5 {
6 output[global_idx] = tanh(input[global_idx]);
7 }
8 }

Listing 1: Example of a CUDA kernel that computes a hyperbolic tangent of a
vector.

Threads are organized into up to three-dimensional thread blocks and grid
for convenience (Figure 2.4). Hence we have to use the x property (the first
dimension) of threadIdx and blockIdx in Listing 1.

2.3.1 Runtime API
Launching a kernel is very similar to calling a function. CUDA extends the
standard C++ syntax of function calls to include configuration parameters. The
configuration always contains the number of thread blocks and the number of
threads in each thread block that will execute the kernel and a few other optional
parameters. Listing 2 shows an example of launching the kernel from Listing 1.

Since GPUs cannot directly access system memory (Section 2.2), it is nec-
essary to allocate global memory and transfer data from system (host) memory
to the global memory of the GPU before running a kernel. CUDA API has

11

thread block (0, 0) thread block (1, 0) thread block (2, 0)

thread block (0, 1) thread block (1, 1) thread block (2, 1)

thread (0, 0) thread (0, 1) thread (0, 2) thread (0, 3)

thread (1, 0) thread (1, 1) thread (1, 2) thread (1, 3)

thread block (1, 1)

Grid

Figure 2.4: Thread blocks in a grid.

cudaMalloc and cudaFree functions to allocate and free a continuous block of
global memory (lines 6 and 7 in Listing 2).

The cudaMemcpy function transfers data between the host and global mem-
ory. The last parameter of the function determines the direction of the transfer.
The cudaMemcpyHostToDevice flag tells the function to transfer data from host
memory to the GPU, and the cudaMemcpyDeviceToHost flag tells it to transfer
data from the GPU to host memory. In Listing 2, the code at line 9 transfers the
input to the GPU and the code at line 16 transfers the computed result to the
host memory.

Most CUDA API functions return an error code. The last error code can be
obtained by calling the cudaGetLastError() function. The cudaGetErrorString
returns a string with a description of the given error. Listing 2 does not handle
errors for brevity.

Kernels can also access mapped memory. Mapped memory resides in the host
memory space but is also accessible from the GPU through a separate pointer.
When a kernel accesses the memory, the data are transferred implicitly [3]. Uni-
fied memory is an alternative memory management technique. It provides a
memory space accessible from GPUs and the host system. The data transfers
are done automatically and on demand. We will not elaborate on this further
as it is not relevant to our work. Additional details can be found in the CUDA
Programming Guide [3].

12

1 float *gpu_input, *gpu_output;
2 int n = 1000;
3 std::vector<float> cpu_input(n);
4 std::vector<float> cpu_output(n);
5 // allocate global memory on the GPU
6 cudaMalloc(&gpu_input, n * sizeof(float));
7 cudaMalloc(&gpu_output, n * sizeof(float));
8 // transfer data from system memory to the GPU
9 cudaMemcpy(gpu_input, cpu_input.data(), n * sizeof(float),

10 cudaMemcpyHostToDevice);
11 // run 4 thread blocks, 256 threads in each one
12 int num_threads = 256;
13 int num_blocks = (n + num_threads - 1) / num_threads;
14 kernel<<<num_blocks, num_threads>>>(gpu_input, gpu_output, n);
15 // transfer the result from GPU to system memory
16 cudaMemcpy(cpu_output.data(), gpu_output, n * sizeof(float),
17 cudaMemcpyDeviceToHost);
18 // deallocate memory
19 cudaFree(gpu_input);
20 cudaFree(gpu_output);

Listing 2: Example of calling a CUDA kernel from a C++ code.

2.3.2 Host synchronization
The cudaMemcpy function is blocking. CPU thread is blocked until the memory
is transferred. It has an asynchronous variant cudaMemcpyAsync. Asynchronous
functions start the operation and then return before the operation finishes. Call-
ing a kernel is an asynchronous operation. However, different CUDA calls are
executed sequentially, so the memory transfer at line 16 in Listing 2 waits for the
kernel to finish. The cudaDeviceSynchronize function can be used to wait for
all preceding CUDA calls.

Modern GPUs are capable of executing several kernels at the same time. Data
transfers to and from GPU and kernel execution can be performed concurrently.
CUDA uses streams for overlapping work. A stream is a sequence of commands
(API function calls like data transfers and kernel calls). Commands in the same
stream are executed sequentially. However, commands from different streams can
overlap. The cudaStreamSynchronize function waits for all preceding commands
in the stream to finish but does not affect commands in other streams.

All CUDA functions which support streams use stream 0 by default. The
default stream is unique in that adding a command to the default stream causes
an implicit global synchronization. Preceding commands in all streams have to
be finished, and subsequent commands in any stream have to wait.

Events provide another way to synchronize CUDA commands. Events are
markers that can be used for timing and fine-grained synchronization within a
stream or in between two streams. The cudaEventRecord function marks a
location in a stream. Programs can wait for all commands preceding an event by
calling the cudaEventSynchronize function.

13

2.3.3 Synchronization of GPU threads
Threads in the same thread block can communicate through shared memory
(Section 2.2) and synchronize access using the syncthreads() function. The

syncthreads() function is a barrier [3]. Threads have to wait until all other
threads from their thread block reach this point in code. The function also acts
as a memory fence. It makes sure that all shared and global memory operations
made by the threads calling the syncthreads() function are visible to other
threads.

Warp-level synchronization

source lane: 0 1 2 3 4 5 6 7

destination lane: 0 1 2 3 4 5 6 7

Figure 2.5: Example of a warp shuffle using shfl xor sync() with mask 8.

Threads in a warp can communicate using warp instructions which should be
faster than shared memory. Warp shuffles exchange variables between threads
in a warp. To identify threads within a warp, they have a unique index called
a lane ID. There are several warp shuffle instructions that differ in addressing.
Figure 2.5 shows an example of a warp shuffle instruction that computes the
target lane ID as a bitwise xor with the current lane ID.

Another way to communicate within a warp is to use vote functions. Vote
functions perform a reduction and broadcast to all threads in a warp. They all
take a mask and a predicate as arguments. The mask is a bitmask with one
for each thread that should participate in the operation. The predicate is an
integer value that should be reduced. The following list summarizes available
vote functions.

• all sync returns non-zero if and only if predicate is non-zero for all
participating threads.

• any sync returns non-zero if and only if predicate is non-zero for any
participating thread.

• ballot sync returns a mask with one for each participating thread for
which the predicate is non-zero.

Atomic operations

Atomic instructions provide safe read-modify-write operations when multiple
threads access the same address in shared or global memory. If two or more
threads access the same address, an atomic operation will be finished before
any other thread can access the address. CUDA provides basic operations such
as addition atomicAdd (atomicSub), increment atomicInc (atomicDec), min-
imum atomicMin (atomicMax), and bitwise operations (atomicAnd, atomicOr,

14

atomicXor). More complex operations can be implemented using a compare-and-
swap instruction atomicCAS(addr, compare, value) which stores the value to
the address addr if the old value at that address matches compare. All atomic
instructions work on 32 or 64-bit integers. The addition also works on floats.

The performance of atomic instructions depends on the number of collisions.
They perform well if threads mainly access independent addresses. However, their
performance degrades if all threads access a shared address. On the other hand, a
kernel that uses other communication mechanisms instead of atomics might also
use more registers, resulting in worse performance.

Cooperative groups

Cooperative groups provide an abstraction for a group of threads. The abstraction
includes functions for partitioning the groups, synchronization, and communica-
tion of threads in the group. Additionally, it provides a way to synchronize the
whole grid from within a kernel. All functions and types are in the namespace
cooperative groups.

The thread group type represents a generic group of threads. Its sync
method synchronizes threads using an appropriate synchronization primitive (e.g.,
if the group represents a thread block, syncthreads() will be used). The size
of the thread group and index of the current thread within the group can be
queried using the size and thread rank methods, respectively.

There are types which represent specialized groups. The this thread block()
function returns a group which represents the current thread block, this grid()
represents the whole grid, and coalesced threads() represents currently active
threads within a warp (i.e., non-disabled threads in a conditional branch).

Thread groups can be partitioned using the tiled partition(group, size)
function, which returns a group of threads within a warp. It has methods for
warp shuffles and other warp communication mechanisms. The mask parameter
of warp communication methods is derived from the thread group automatically.

2.4 Programming guidelines
In this section, we summarize the most important implications of GPU architec-
ture for performance and provide general guidelines for GPU programming.

• Kernels should be executed with enough threads so that if a warp is stalled
on an instruction, another warp can be scheduled instead.

• The size of shared memory and the number of registers limits the number
of warps that can fit onto a single Streaming Multiprocessor (Section 2.1).
Register and shared memory usage should therefore be limited. However,
there is a tradeoff between the efficiency of memory access optimizations
(which might use more registers or shared memory) and the latency-hiding
mechanisms used by CUDA (which require more threads on the same SM),
so careful benchmarking is necessary.

• Global memory is accessed in transactions (Section 2.2). Threads in warps
should avoid random access to global memory. Ideally, a warp would access
consecutive addresses in an adequately aligned memory block.

15

• Frequently used data can be manually cached in shared memory or registers,
which are faster than global memory.

• Each thread in a warp should access its own bank when working with shared
memory to avoid bank conflicts (Section 2.2). Consecutive words (usually,
32-bit words are used) are mapped to different banks. There are enough
banks for all threads in a warp to access their own bank.

• We should try to organize data to avoid data-dependent branches in a warp
and create a more balanced workload for each thread in a warp.

• Streams (Section 2.3.2) should be used to overlap data transfers with kernel
execution.

We will refer to these guidelines when we describe optimizations of CUDA
kernels in our work.

16

3. Analysis
In this chapter, we first define the problem of kNN. We introduce and analyze
parallel kNN approaches. We focus especially on algorithms for GPUs.

3.1 Problem definition
The kNN problem can be formulated as follows. Given a collection of database
objects p1, . . . , pn from a set D, a set of query objects Q ⊆ D, a distance function
d : D2 → R, and k ∈ N, find k objects from p1, . . . , pn for each query q ∈ Q
with the smallest distance to q according to the distance function d. That is,
for each query q ∈ Q, find different indexes i1, . . . , ik such that d(pi1 , q) ≤ · · · ≤
d(pik

, q) ≤ d(pj, q) for all j ∈ N, 1 ≤ j ≤ n, j ̸∈ {i1, . . . , ik}.

3.1.1 Sequential solutions
Nearest neighbours can be found using a simple sequential scan algorithm. Each
object is read from a database once, and a distance is computed from the object
to a query. The distance, together with an object identifier, is inserted into a
priority queue. At most k objects are maintained in the priority queue at a time.
When it exceeds this threshold, the largest object (i.e., the object with the largest
distance) is removed. After processing all database objects this way, the priority
queue contains the k nearest neighbours of the query.

The priority queue is usually implemented as a binary or a d-ary heap, a
generalization of a binary heap where each node has d children. An advantage
of a d-ary heap is that the parameter d can be chosen so that all children of a
node reside in the same cache line. A practical implementation might also use a
simple sorted array as a priority queue if k is sufficiently small.

Another straightforward approach is to compute all distances and sort them.
This solution is easy to implement since databases often have an efficient sorting
procedure already. However, it can be very inefficient if k is much smaller than
the number of database objects, which is often the case in many applications of
kNN.

3.1.2 Indexing for nearest neighbours
An alternative way to answer kNN queries is to build indexing data structures.
Section 1.2 mentioned space-splitting data structures, which can be used for spa-
tial indexing. However, the performance of these data structures degrades for
large dimensions due to the curse of dimensionality [46]. Even with moderately
small dimensions d > 10, kNN queries in these structures visit most objects in the
database. Moreover, due to a non-trivial overhead of search algorithms, queries
often perform worse than a simple sequential scan.

Pivot-based methods have been used successfully for kNN indexing with compute-
intensive distance functions [28]. These methods compute a lower bound of an
actual distance between the database object x and a query object y. The lower
bound is defined by L(x, y) = maxp∈P{|d(x, p) − d(y, p)|} where P is the set of

17

all pivots. The d(x, p) term can be precomputed. However, it is necessary to
compute d(y, p) for all pivots p ∈ P . For common distance functions such as
Euclidean distance, lower bound computation and subsequent prefiltering have
a cost comparable to directly computing the distance function d(x, y) in many
cases.

3.2 Parallelization
For the parallelization of kNN, we will look at the two parts of kNN (distance
computation and k-selection) separately. Distances from a query have to be
computed for all database objects if we do not use any precomputed indexing
structure. Since there is a wide variety of distance functions, there is no general
approach that would work for all of them. However, for the most common distance
functions, such as Euclidean distance or cosine similarity, the problem reduces to
matrix multiplication (Section 1.2) [32], so parallel matrix multiplication libraries
can be used.

The goal of k-selection is to find k nearest neighbours given distances that have
been computed already. For a multi-query problem, each query can be processed
independently by a separate thread using the sequential scan approach. For a
single-query problem, we could have one shared priority queue and use a similar
algorithm. However, using one shared data structure would require a complex
synchronization that would hinder the computation. The database is instead
divided into equally sized parts. Each part is processed by a different thread
independently of the other threads using a local priority queue. Once all threads
finish their computation, the k nearest neighbours are found by merging the
partial results.

3.3 Distance computation on GPUs
A GPU implementation of matrix multiplication can be modified to compute Lp

distances or cosine similarities [32] instead of dot products. There are several
matrix multiplication libraries for GPUs, such as CUBLAS [2] or MAGMA [7].
However, the CUBLAS library is not open source and its API is not flexible
enough to allow for this change. The MAGMA library can be easily modified.

The modification replaces the × operator and possibly also the + operator.
The resulting matrix multiplication algorithm is unchanged otherwise. The entry
in row i and column j of A · B where A and B are matrices of size n × k and
k ×m, respectively, is (A ·B)ij = (Ai1 ⊗B1j)⊕ · · · ⊕ (Aik ⊗Bkj) where ⊕ is the
new addition operator and ⊗ is the new multiplication operator.

For example, to compute Euclidean distances (or Lp distances for any p), we
replace the ×(x, y) operator with ⊗(x, y) = |x − y|p. The + operator remains
unchanged. An important difference between a regular matrix multiplication and
the modified version is that ⊗(x, y) is not associative and does not distribute over
the addition operator, an assumption often made in theory when working with
matrices. However, practical implementations of matrix multiplication, like the
one in the MAGMA library, usually have a far more relaxed set of requirements.

18

3.3.1 Distances based on a dot product
Euclidean distance and cosine similarity can be defined in terms of a dot product
(Equation 3.1 shows the decomposition of Euclidean distance) [26]. Moreover,
the dot product is the most computationally demanding operation for both func-
tions since it has to be computed for all pairs of database and query vectors.
An alternative approach to distance computation is to run a matrix multiplica-
tion kernel (e.g., using CUBLAS), which produces the dot products, and then
run a kernel for postprocessing. The CUBLAS API also allows multiplying the
result by a constant so the whole term −2⟨x, y⟩ can be computed using only a
single CUBLAS call.

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩ (3.1)
Euclidean distance postprocessing includes L2 vector norm computation (∥x∥2

and ∥y∥2 from Equation 3.1) and the addition of the norms to the result of matrix
multiplication. Since norm computation has to be done for only n + q vectors
where n is the number of database vectors and q is the number of query vectors,
we can split the postprocessing into two kernels. One kernel computes the norms,
and another kernel adds them to the result of matrix multiplication. Moreover,
if only the ranking of objects is necessary as an output of kNN and not actual
distances, we can avoid computing norms of query vectors since they will not
change the order of kNN results [26]. Similarly, we can avoid computing the
square root as it is an increasing function, so it does not change the order. The
postprocessing for cosine similarity is almost identical, except the dot product is
divided by the vector norms.

3.3.2 Specialized kernels
Other approaches in literature use specialized kernels for distance computation
[31, 30]. Kuang et al. [31] partition the distance matrix into tiles which are
assigned to thread blocks. It is similar to matrix multiplication kernels but does
not cache subtiles in registers, unlike optimized matrix multiplication kernels such
as the kernel from the MAGMA library [7].

A distance computation kernel due to Krulǐs et al. [30] uses a different par-
titioning of the distance matrix. Each thread block computes distances from
assigned queries to all database vectors so the thread block can immediately
process queries. In its original formulation, it finds a minimum distance for k-
means clustering, but it is possible to modify the kernel to compute k nearest
neighbours instead. Furthermore, since the distances are processed in place, the
distance matrix does not have to be stored in global memory.

The algorithm uses shared memory and registers for caching. Figure 3.1 sum-
marizes the caching strategy. Each thread block starts by loading query vectors
assigned to it from global memory to shared memory. Query vectors remain
cached in shared memory for the whole duration of the computation (the shaded
region in matrix W at the top of Figure 3.1). Database vectors are loaded to
shared memory using a sliding window (the X matrix at the bottom of Fig-
ure 3.1).

The kernel is intended for L2 distance computation. Similar distance functions
(e.g., cosine similarity or Lp) can be computed with slight modifications. Each

19

Figure 3.1: Caching strategy of a distance kernel implemented by Krulǐs et al. [30].

thread computes an rq × rp submatrix of distances in registers. The rp and rq

parameters are configurable template constants so that the distance submatrix
of each thread can be stored in registers. The distance computation iterates
over the vector dimension. For each dimension, rq vector components from query
vectors and rp vector components from database vectors are loaded from shared
memory to registers. For each pair of values, a square of a difference is computed
and added to the corresponding entry in the distance submatrix (visualized in the
middle of Figure 3.1). When all database vectors in shared memory are processed
this way, the window moves to the next batch of database vectors.

3.3.3 Other distance functions
For computationally demanding distance functions, the computation time of dis-
tances dominates the overall computation time of kNN. Indexing and approximate
algorithms are usually employed, which is beyond the scope of our work. How-
ever, for Euclidean distance and other typical distance functions, the k-selection
step takes a significant portion of the overall computation time of kNN. We will
therefore focus on the parallelization of this step in the following sections.

3.4 Selection using sorting on GPUs
Sorting can be used directly for k-selection (Section 3.2). However, even if it
is not used to sort the whole list of distances, many CUDA implementations of
kNN [26, 23, 29, 32, 44] use sorting as a fundamental building block. Hence, an
efficient, parallel implementation is necessary.

A typical approach to parallel sorting on a CPU is to use a variant of the
Merge sort algorithm. The input array is divided into small blocks sorted in

20

parallel using an efficient, sequential sorting algorithm. Neighbouring blocks are
then recursively merged until the whole input is sorted. An efficient GPU im-
plementation has to use a parallel merge implementation that properly utilizes
all GPU threads [42]. Furthermore, we can utilize fast on-chip memory to sort
small arrays in the base case of Merge sort. Sorting networks like Bitonic sort
have proven to be very efficient in this context [26, 31].

3.4.1 Bitonic sort
Sorting networks [13, 33] provide an alternative way to parallelize sorting. A fun-
damental building block of a sorting network is a comparator which implements
a compare-and-swap operation. Given two inputs, the values are swapped if the
first input is greater than the second input. Otherwise, the values are copied in
their original order to the output. We visualize sorting networks using horizontal
lines to represent values and vertical lines connected to two values to represent
comparators (Figure 3.2).

Bitonic sort is a sorting network. Its fundamental idea is to sort Bitonic
sequences (Definition 2), which can then be used to sort an arbitrary sequence.
Bitonic sequences are sorted using a component called a separator. Separator
gets as an input a Bitonic sequence x0, . . . , x2n−1 and produces a permutation of
this sequence a0, . . . , an−1, b0, . . . , bn−1 such that:

1. a0, . . . , an−1 and b0, . . . , bn−1 are Bitonic sequences

2. ∀i, j ∈ {0, . . . , n− 1} : ai ≤ bj

Definition 2. Sequence x0, . . . , xn−1 is Bitonic if there exists a rotation of the
sequence such that a prefix of the rotated sequence is non-decreasing and the rest
of the sequences is non-increasing. That is, there exists a j ∈ {0, 1 . . . , n − 1}
such that xj, x(j+1) mod n, . . . , x(j+n−1) mod n can be split into two parts:

• a non-decreasing part of size k — xj, x(j+1) mod n, . . . , x(j+k−1) mod n

• a non-increasing remainder — x(j+k) mod n, . . . , x(j+n−1) mod n

In Figure 3.2, S4 illustrates two separators for four values. A Bitonic sequence
is sorted by a recursive splitting into smaller Bitonic sequences using separators
until sequences of length one are reached. At this point, it follows from the
properties of separators that the whole sequence is sorted. Moreover, all compare
and swap operations within a separator are independent and can be done in
parallel. Bitonic sequences can therefore be sorted using log2 n layers of separators
where n is the length of the input sequence (assumed to be a power of two).

A general sequence (i.e., not necessarily a Bitonic sequence) is sorted using
an observation that two sorted sequences can be easily merged into one Bitonic
sequence. If one of the sorted sequences is reversed and concatenated to the
other, the result is a Bitonic sequence, and the process described in the previous
paragraph can be used to sort such sequences. At the start, sequences of length
one are trivially sorted. Neighbouring sequences are merged and sorted using
the described algorithm, which produces sorted sequences of length two, and the

21

whole process is repeated until the whole input is sorted. In total, the process
has to be repeated log2 n times where n = 2m is the length of the input, and
each iteration has a logarithmic number of layers. The total number of separator
layers can be computed using Equation 3.2.

log2 21 + log2 22 + · · ·+ log2 2m = 1 + · · ·+ m = (1 + m)m
2 ∈ Θ(log2

2 n) (3.2)

We will denote by M2i a merge component which, given two sorted sequences
of size i, produces one sorted sequence of size 2i. As discussed in the previous
paragraph, M2i is built using separator layers. However, one of the inputs to M2i

has to be reversed to make the input a Bitonic sequence. Instead of reversing
one of the inputs, we can change the first separator layer of M2i to use different
indexing.

M2 M4 M8

S4R2 R4 R8S2 S2

Figure 3.2: Bitonic sort for 8 values. The input is on the left.

Figure 3.2 shows the whole process of sorting eight values using Bitonic sort.
The input is on the left of the figure. M2i denotes a Bitonic merge component,
Sj is a separator layer, and Rj is a reversed separator layer.

One disadvantage of Bitonic sort in the context of GPUs is that if the input
array is too large to fit into registers or shared memory of a thread block, a large
number of passes over the slow global memory have to be made (an order of
log2

2 n) compared to other sorting algorithms. However, it has been used success-
fully to sort small arrays in one thread block [26, 44, 29] where a low latency,
high bandwidth shared memory can be used or when the whole array fits into
registers of one thread block.

3.4.2 Merge path
Merge path [38, 24, 32] is a parallel merge implementation. Assume we have
two arrays sorted in ascending order, A and B. A sequential merge algorithm
keeps a pointer to the first unprocessed element in A and B, respectively (initially
set to the first element of each array). Elements at the pointers are compared,
the smaller element is added to the output, and the corresponding pointer is
incremented.

The Merge path algorithm looks at the sequential algorithm as a matrix (Fig-
ure 3.3). Each row corresponds to an element from sequence A, and each column

22

Figure 3.3: Intersection of a cross diagonal with a merge path in merge matrix.

corresponds to an element from sequence B. Progress of the merge algorithm can
be viewed as a path starting in the top left corner of the matrix. If the current
element from sequence A is greater than the current element from sequence B,
the path moves to the right. Otherwise, the path moves down (the blue line in
Figure 3.3). The path moves from the top left corner to the bottom right corner
of the matrix.

If the matrix is filled with values of function 3.3, it is called a merge matrix.
It can be seen that every cross diagonal (i.e., a diagonal which moves from the
bottom left to the top right of the matrix; the yellow line in Figure 3.3) intersects
the merge path at exactly one point.

M(i, j) =
⎧⎨⎩1 A[i] > B[j]

0 otherwise
(3.3)

The Merge path algorithm does not explicitly compute the merge matrix. It
is only helpful as a conceptual model. The parallel merge has two stages:

1. Partition. The merge matrix is partitioned using equally spaced cross di-
agonals. Each thread is assigned a cross diagonal and runs a binary search
on this diagonal to find the intersection with the merge path.

2. Merge. Each thread uses the cross diagonal intersection from the previous
stage as a starting point for a sequential merge.

The first stage essentially splits the merge path into equally sized, non-overlapping
segments, so no synchronization is necessary for the second stage, and the work-
load is balanced among the threads.

Merge path implementation

The MGPU library [8, 14] implements the parallel merging of large arrays using
the Merge path algorithm by running a coarse-grained partitioning stage in global
memory. This stage splits the merge path into large, equally sized segments.

23

thread block

t0 t1 t2 t3 t4 t5 t6 t7 t8

t9

t10

t11

Figure 3.4: Coarse and fine grained partitioning of the Merge path.

Each segment is subsequently assigned to a thread block, and relevant parts of
the arrays from global memory are loaded to shared memory. The Merge path
algorithm is then used on the data in shared memory with much smaller spacing
between cross diagonals. Each thread in this fine-grained partitioning stage finds
the merge path intersection and runs the second stage of the Merge path algorithm
(sequential merge) for a small number of steps.

Figure 3.4 illustrates this approach for a hypothetical thread block with 12
threads. The blue path is the merge path which is unknown at the start of the
algorithm. The large yellow cross diagonals split the merge path to segments
assigned to thread blocks. Figure 3.4 illustrates only one thread block, but each
segment is assigned to a different thread block. Since the path intersection is
known for each thread block’s top left and bottom right corner, and the merge
path only moves right or down, fine-grained partitioning can be done on much
smaller cross diagonals in shared memory.

Parallel sorting based on the Merge path algorithm can be implemented using
the merge sort approach. Small segments of the input array are assigned to thread
blocks and sorted in registers or shared memory, for example, using Bitonic sort.
Sorted segments are then repeatedly merged until the whole array is sorted.

3.4.3 Radix sort
Radix sort is an alternative to Merge sort. Unlike Merge sort, Radix sort does
only a constant number of passes over the data assuming the size of keys is a
constant. The general idea of Radix sort is to represent keys as d-digit numbers
in radix r [42]. The input is sorted by each digit, starting from the least significant
digit and ending with the most significant digit. The reason to represent keys in
radix r is that each digit can have a small range. Values with a small range can
be efficiently sorted using a Bucket sort:

1. Count. Compute the histogram of digit values (i.e., for each digit value,
count how many keys have the same digit).

24

2. Scan. Compute an exclusive prefix sum of all histogram bins. The result of
this operation is the offset of each bin in the output array.

3. Scatter. Write each value to the output array using the computed offset of
its digit as a starting point. The relative order of values in each bin has to
be preserved so that the sorting is stable.

To parallelize the first step of the Bucket sort algorithm using GPUs, we could
have one histogram in global memory, assign non-overlapping segments of input
to thread blocks, and let each thread block increment histogram buckets using
atomic instructions. However, this approach would introduce a large number of
collisions as the number of buckets is small. Instead, Satish et al. [42] propose to
use privatized histograms. Each thread block computes its own histogram based
on its assigned segment of the input in shared memory.

0 1 2 3 4
histogram buckets

0

1

2

3

..
.

n

th
re

ad
 b

lo
ck

s

Figure 3.5: Histogram with 5 bins for each thread block in Radix sort.

The privatized histograms are written to global memory in a striped arrange-
ment where all values of bin 0 are written to memory first, then values of bin 1,
etc. (Figure 3.5; the histogram table is written to global memory in column-major
order). An exclusive prefix sum of the whole histogram table is computed, which
gives the algorithm a global offset of each thread block within each histogram
bin. Prefix sum (scan) is a fundamental operation which can be parallelized. For
example, the CUB library [1] provides several efficient, parallel CUDA implemen-
tations of a prefix sum.

The scatter step of Bucket sort, as we described it, could introduce a large
number of global memory transactions per warp because neighbouring keys could
easily fall into different histogram bins. Satish et al. [42] propose to split all
values into small blocks. Each block is assigned to a thread block, and all values
from the block are first scattered to shared memory. This operation groups values
from the same bin to consecutive addresses in shared memory, which are written
to global memory at the end of the scatter step. This reduces the number of
discontinuities in a warp as consecutive threads are more likely to write values to
the same bin and, thus, to consecutive addresses in global memory.

25

Parameter selection in radix sort

The choice of radix r affects global memory accesses. There is an inverse rela-
tionship between radix r and the number of Bucket sort passes over the slow
global memory. On the other hand, as r increases, so does the size of privatized
histograms, so more computation is needed for the prefix sum. Additionally, the
coalescing issue discussed in the previous paragraph is more pronounced.

An optimal choice of radix r might not divide the key size evenly. In this
case, a naive Radix sort implementation would effectively use a smaller r for the
last iteration. However, using a drastically different parameter value for the last
iteration might not be optimal. For example, the Radix sort implementation in
the CUB library [1] uses two values for r (r and r − 1).

Radix sort for floating point numbers

For kNN, keys in Radix sort are often distances stored in a float or a double
(using the binary IEEE 754 representation: sign bit, exponent, mantissa). Com-
paring positive floats using their binary representation as unsigned integers pre-
serves the natural order of floats [25, 45]. If there are negative floats, we can
use a one-to-one mapping m from 32-bit floats to 32-bit unsigned integers such
that for all floats a, b, a ≤ b (comparison of floats) if and only if m(a) ≤ m(b)
(comparison of unsigned integers).

The required mapping m always flips the sign bit; if the float is negative, it
also flips all the other bits [25, 45]. The rationale for this mapping is that image of
a positive number should always be greater than an image of a negative number.
Since the sign bit is the most significant bit, we can achieve this by flipping the
sign bit. One remaining issue is that more negative values have higher absolute,
so the order of negative values has to be reversed. This can be achieved by flipping
all bits of exponent and mantissa for negative floats.

3.5 Partial sorting
Partial sorting kNN algorithms utilize parallelized sorting to sort segments of
size k. Neighbouring segments are merged, and only the lower half of the values
from the two segments is kept in the next level. Each such iteration halves
the number of values. After a logarithmic number of iterations, the algorithm
produces the global top k values. Figure 3.6 illustrates this process for k = 4.

Li et al. [32] suggested implementing partial sorting using the Merge path
algorithm (Section 3.4), which can be used directly to implement the merge steps.
Other sorting algorithms, such as Bitonic sort, can be used to implement partial
sorting.

3.5.1 Partial Bitonic sort
The partial Bitonic sort algorithm [29] utilizes Bitonic sort [13] for sorting and
merging. Two sorted segments of size k can be merged using Bitonic sort by a
logarithmic number of layers (Section 3.4.1, using a component we labelled M2k).

The memory-optimized version of this algorithm [29] evaluates multiple kNN
queries in parallel. It uses one thread block for each query. Each thread block

26

1

2

3
4

5

6

7

8

9

10

11

12

13

14

15

16

1
2

3
4

5

6

7

8

9
10

11

12

13

14
15

16

merge

merge

1
2
3
4

top 4:

5
7

sort

sort

sort

sort

1
2

8
11

3
4

merge

Figure 3.6: Parallel partial sorting method which finds the top 4 values.

keeps two segments of objects of size k in shared memory. The first two seg-
ments are initially loaded from global memory to shared memory and sorted
using Bitonic sort. The rest of the input is processed in the following way:

1. All objects in the two sorted segments in shared memory are split into the
lower and upper halves using the reversed separator R2k from Bitonic sort
(Figure 3.2).

2. The second segment, which now contains k objects with the highest dis-
tance, is replaced with a new segment from global memory.

3. Both segments are sorted using Bitonic sort. The first segment is a Bitonic
sequence because it is the result of R2k (this follows from the properties
of separators in Section 3.4.1). The first segment can therefore be sorted
by log2 k layers of separators. The order of the second segment can be
arbitrary, so a full Bitonic sort has to be used.

These steps are repeated until the whole input is processed, at which point, the
top k distances are in the first segment. This version of the algorithm exposes less
parallelism than what would the approach depicted in Figure 3.6 allow. However,
the whole computation can be done in fast shared memory instead of global
memory.

3.5.2 Limitations of partial sorting methods
Partial sorting exposes a large degree of parallelism. However, k-selection is a
memory-bound problem. Reducing the number of slow global memory accesses
at the cost of fewer opportunities for parallelism may be worth it. Furthermore,
partial sorting may potentially do a lot of unnecessary work. Threads do not use
an intermediate top k result to avoid unnecessary computation. Consequently,
input segments with comparatively large distances have to be sorted and merged
(e.g., the bottom two segments in Figure 3.6).

27

3.6 Incremental selection
Incremental k-selection maintains an intermediate top k result. This section fo-
cuses on the multi-query k-selection (Section 1.1). The main reason for this is
that incremental solutions often require fast shared memory to store the interme-
diate result and lightweight synchronization. A thread block is the largest group
of GPU threads with these characteristics. Because one thread block would not
saturate all cores of a GPU, the multi-query approach is required to achieve high
throughput.

Single-query problems can be adapted for the multi-query algorithms dis-
cussed here. The general strategy is to split the list of objects into blocks. Each
block is assigned to a thread or a group of threads (depending on an algorithm,
a group of threads could be anything from a warp to a whole thread block). Each
thread or a group of threads updates its intermediate top k result. The partial
results are merged when all threads finish their computation.

3.6.1 Data parallel selection on GPUs
The most straightforward adaptation of sequential k-selection is to assign each
query to a GPU thread. Each thread keeps its own intermediate top k result in
a priority queue. The priority queue contains the k nearest neighbours when the
computation is done.

Distance matrix memory layout

If one thread is used per query, consecutive threads load distances from different
queries. The distance matrix (Section 1.2) has to be stored in a column-major
layout for optimal global memory utilization. For database objects p1, . . . , pn, all
distances from p1 to all queries are stored in memory first, then distances from
p2, etc. If the columns are aligned properly (Section 2.4), all values from global
memory transactions are utilized with this layout. The alternative row-major
layout is the worst possible memory layout for this problem, as each thread would
have to create its own global memory transaction with every read instruction.

Priority queue memory layout

The priority queue can be stored in shared memory or registers if k is small.
However, for large k, there is not enough memory in a thread block for all pri-
ority queues. Even if all priority queues fit into shared memory or registers,
excessive memory usage limits the number of thread blocks per SM, which hurts
performance (Section 2.4).

An alternative is to store the priority queues in global memory. An optimal
memory layout depends on the data structure used to implement the priority
queues. If we use a simple sorted array, a column-major layout, like in the
previous section, is optimal because reading several priority queues by a warp
is coalesced.

28

Issues with a GPU implementation

One of the main disadvantages of the naive data parallel approach on GPUs is
that it suffers from high thread divergence (Section 2.4). It can easily happen that
only one thread from a warp has to insert a new object into its priority queue.
At the same time, the remaining threads have to wait as the distance they loaded
from global memory is larger than the largest distance in their priority queue so
far. More sophisticated incremental kernels hence try to utilize a larger group of
threads (at least a warp) to answer a query with one shared priority queue for
the whole group.

3.6.2 Merge queue
The merge queue algorithm [44] addresses issues of the data parallel approach
(Section 3.6.1) by using the whole thread block for each query. It maintains a
queue of top k objects, which is shared by all threads in a thread block.

0 1 2 3 4 5 6 7 8 9 10 11

level 2 level 3

Figure 3.7: Merging two Merge queue levels of size 4 and 8 using Bitonic sort.

Merge queue is a priority queue implementation designed for parallelization
on GPUs. It is a hierarchical data structure with multiple levels. Each level is
a sorted list (in decreasing order). The first level and the second level have the
same size, which we denote by m. m is a parameter of the algorithm, and we
assume it is a power of two. Subsequent levels have size m · 2l−2 where l > 2 is
the level (i.e., the size of each subsequent level is double the size of the previous
level).

Merge queue has two invariants:

1. Distances at each level are sorted in decreasing order.

2. Level heads (the largest object at each level) are sorted in decreasing order.

Objects are inserted into the first level using the insertion sort approach.
The largest object on the level is pushed out. Note that the largest object on
the first level is also the largest object in the whole data structure (this follows
from the Merge queue invariants). If an insert breaks the second invariant, all
objects on both levels are merged using Bitonic merge (Section 3.4.1). Figure 3.7
illustrates this operation for two levels of different sizes. No additional memory
is necessary for merging because Bitonic sort can be implemented as an in-place
sorting algorithm. However, merging two levels can break the invariant on lower
levels, so it has to be checked and fixed recursively.

Figure 3.8 shows an example. We try to insert 36 into the queue.

29

43 23 17 8

41 22 14 11

37 35 29 25 20 19 5 4

36

41 36 23 22

17 14 11 8

37 35 29 25 20 19 5 4
level 2 and 3

level 1 and 2

merge

merge

41 36 23 22

37 35 29 25

20 19 17 14 11 8 5 4

Figure 3.8: Fixing Merge queue invariants after insertion.

1. The algorithm inserts 36 to the second position and the largest object on
the first level (43) is removed.

2. 36 is now the largest object on the first level, so the algorithm has to check
the second invariant. Because 36 < 41, the Merge queue invariant is broken.
The first two levels are merged.

3. After this merge, the largest object on the second level (17) is smaller than
the largest object on the third level (37), so the algorithm has to merge
levels two and three.

4. After this operation, the data structure invariant is fixed and the algorithm
ends.

Buffered search

Tang et al. [44] first insert all objects into a fixed-sized buffer. When the buffer
fills up, it is sorted, and objects from the buffer are inserted one by one into the
Merge queue, starting with the smallest object. If an object in the sorted buffer
is larger than the largest object in the Merge queue, the insert operation can stop
without processing the rest of the buffer. The kernel can thus avoid inserting
objects that would be almost immediately removed if it did not use a buffer.

3.6.3 Warp Select
The Warp Select method [26] uses a warp for each query. The intermediate state
is a warp-wide, sorted register array called a warp queue. Each thread from a
warp stores several values from the warp queue. Additionally, threads maintain
a thread queue which is also stored in registers. The thread queue is a sorted list
of candidates. It serves as a buffer for new values.

30

Thread queues are sorted from the largest value to the smallest value. The
warp queue is sorted in the opposite direction (the smallest values first). More-
over, the whole data structure maintains the following invariants [26].

1. The largest object in each thread queue is not in the top k.

2. The largest object in each thread queue is greater than all objects in the
warp queue.

3. All processed objects so far, that are in the top k, are either in the warp
queue or in a thread queue.

The list of objects is processed according to the following algorithm to main-
tain these invariants. Figure 3.9 shows a visualization of this process.

lane 0

lane 1

lane 31

m
erg

e

W0

W1

W31

W32

Wk-1

thread queue warp queueinput

t0 t1 t2 t3
0 0 0 0

t0 t1 t2 t3
1 1 1 1

t0 t1 t2 t3
31 31 31 31

Figure 3.9: WarpSelect overview [26].

1. Threads in a warp load consecutive objects from global memory.

2. Each thread compares its loaded object v with the first object in its thread
queue t (i.e., the largest object in its thread queue).

3. If v is smaller than t, it is inserted into a proper position in a thread queue
so it is still sorted. This operation removes the largest value, t, from the
thread queue.

4. Each thread checks the second invariant. Threads use the ballot instruction
to communicate whether any of them broke the invariant.

5. If any thread from the same warp breaks the invariant, the thread queues
are interpreted as one big warp-wide register array, and it is sorted using
Bitonic sort (Section 3.4.1). The sorted objects from all thread queues are
then merged with the warp queue using Bitonic merge. After this operation,
the warp queue has the k smallest objects, and thread queues contain the
remaining objects. Finally, thread queues are reversed so that they are
sorted in descending order.

31

The warp queue W0, W1, . . . , Wk−1 is split among threads so that consecutive
threads store consecutive values. The thread in lane i is assigned values Wi+32·j,
where j is an index of the value within the lane, and 32 is the warp size (warp
queue in Figure 3.9). Compare-and-swap operations in Bitonic sort are performed
using warp shuffle instructions. For Bitonic sort strides that are a multiple of the
warp size, the values are available locally in each thread, so no synchronization
is necessary.

Warp Select uses a modification of Bitonic sort, which can sort arrays of sizes
that are not a power of two. The modification is derived by padding the array
so that its size is a power of two and using a standard Bitonic sort algorithm,
as described in Section 3.4.1. Any compare-and-swap operation which has as an
input a value from the padding can be left out. This modification is helpful in
Warp Select because it allows for an arbitrary thread queue size which is vital for
performance.

3.7 Selection
Selection techniques are mostly probabilistic algorithms to find the kth smallest
distance in an unsorted list in linear time on average. Probably the most well-
known algorithm in this category is the Quickselect algorithm. Once the kth
smallest distance is known, the top k objects (distances with corresponding iden-
tifiers) can be retrieved trivially by scanning the list of objects. In this section,
we will discuss adaptations of the Quickselect approach for parallel architectures
and for GPUs in particular.

3.7.1 Sample Select
The Sample Select [40] method is an adaptation of the Quickselect algorithm for
GPUs. The general idea is very similar to Bucket sort (Section 3.4.3), summarized
in the following list.

S0 S1 S2 S3

4 7 113 4

offsets: 3 7 14 25

the 10th value is in this bucket

Figure 3.10: Sample select iteration with 4 splitters and k = 10.

1. Pick splitters from the list of objects and sort them.

2. Count. The splitters partition R into buckets (Figure 3.10). Assign each
object to a bucket and count how many objects fall into each bucket.

3. Scan. Compute the prefix sum of histogram buckets.

4. Select. Find the bucket with the kth object (using the prefix sum), subtract
the bucket offset from k, and repeat these steps with objects from the
bucket.

32

The splitter search in the Count step can be parallelized using a data-parallel
approach. Each thread is assigned an object, and it uses a binary search on
the sorted array of splitters (in shared memory) to determine the bucket of the
object. Each thread block has its own privatized histogram to avoid global syn-
chronization. Threads increment histogram bins in shared memory using atomic
instructions.

The privatized histograms are written to global memory in the Scan step in
column-major order, and a parallel prefix sum implementation is used to find the
offset of each bucket, just like in Radix sort (Section 3.4.3). Unlike the Radix
sort, we are only interested in one bucket in the Select step (the bucket with
the kth smallest object). Objects from this bucket are written to consecutive
addresses in global memory using offsets computed in the previous step, and the
whole process is repeated recursively.

Small lists in the base case are sorted using a parallel implementation of
Bitonic sort (Section 3.4.1) within one thread block. In the context of GPUs, we
consider a list to be small if it fits into shared memory or registers of a thread
block.

Partitioning

In an ideal situation, the splitters in the Pick splitters step would produce ap-
proximately equal-sized buckets. The optimal ith splitter, si, is i/b percentile,
where b is the number of buckets. The percentiles are approximated by selecting
a random sample from the list of distances. The sample is sorted, and appropri-
ate percentiles from the sample are chosen as splitters. Random samples can be
selected on GPUs using the cuRAND library [4]. An issue with this approach
is that the memory access pattern is inherently random, so, in general, a new
transaction has to be created for each global memory read. However, we assume
that the number of splitters is small, so the overhead of inefficient global memory
accesses is minimal.

The splitters have to be searched to identify the bucket for each object in the
Count step of the algorithm. A binary search can be used to find the bucket for
each value because the splitters are sorted. However, since the binary search index
calculations are complicated, Ribizel et al. [40] proposed to build an implicit,
complete binary search tree in shared memory. The nodes are organized in an
array as in a binary heap. The node at index i has its children at indices 2i + 1
and 2i + 2. Leaf nodes in this tree represent different buckets.

3.7.2 Radix Select
Radix sort (Section 3.4.3) represents objects (distances in case of kNN) as d-
digit numbers in radix r. Radix digits partition objects to buckets similarly to
splitters from the Sample Select algorithm [12]. Radix Select works the same
as Sample Select (Section 3.7.1), except it uses radix digits to partition keys to
buckets instead of splitters. The most significant radix digit is used in the first
iteration. At the end of each iteration (the Select step from Sample Select), the
kernel finds the bucket (radix digit) with the kth smallest object and recursively
searches objects in this bucket. Since the most significant radix digit is the same

33

for all objects in this bucket, the next radix digit is considered for partitioning in
the recursive call.

Small lists (lists which fit into registers or shared memory of a thread block)
in the base case are sorted using Bitonic sort (Section 3.4.1). The distance of
the kth smallest object can be found trivially in this case. If the list of objects
is too large to fit into a thread block, even after considering all radix digits, the
algorithm stops. In this case, there are several objects with the same distance
from a query, and we can choose any of them as the kth smallest.

An advantage of Radix partitioning is that a bucket for each object can be
identified in constant time. However, bucket distribution depends on the distri-
bution of distances. If the whole dataset consists of objects with a small distance,
for example, the first few iterations will needlessly iterate over the whole dataset,
as the most significant digit would be the same in this example for all objects.
This can be partly prevented if the kernel keeps track of the largest distance in
the list and rescales all distances if necessary. However, bucket size distribution
may still be imbalanced if the dataset is skewed towards particular radix digits.

3.8 Conclusion
We analyzed several approaches to the parallelization of both parts of kNN (dis-
tance computation and k-selection) on GPUs. Computation of the most com-
mon distance functions can be reduced to matrix multiplication using either re-
expression of the distance function in terms of a dot product (Section 3.3.1) or
modification of matrix multiplication kernels (Section 3.3). We can use highly
optimized matrix multiplication kernels for both approaches. However, special-
ized kernels developed specifically to compute Euclidean distances (Section 3.3.2)
can be used to answer kNN queries with only one fused kernel.

A naive implementation of k-selection using sorting is inefficient if k is much
smaller than the database size, as is often the case in many kNN applications in
practice. Partial sorting methods (Section 3.5) try to address this inefficiency by
only sorting blocks of size k. Incremental selection algorithms (Section 3.6) are
a further optimization of partial sorting which avoids some expensive merge op-
erations by maintaining an intermediate top k result. As an alternative method,
algorithms derived from the Quickselect algorithm (Section 3.7) can be used to
find the kth smallest object quickly. A simple filtering pass over the database can
then be used to retrieve all top k objects.

34

4. Optimizations
This chapter discusses some optimizations of kNN we explored. In particular, we
propose a kernel for small k-selection, a kernel for small k-selection fused with
distance computation, and a kernel for large k.

4.1 Single-pass selection
In this section, we describe our multi-query, small k-selection kernel (assuming
k ≤ 2048). We focus on multi-query instances as they allow us to achieve high
throughput using a fast incremental algorithm. However, this approach can also
be used to parallelize single-query problems (Section 3.6). Moreover, because we
assume a small k, we can find k nearest neighbours in a single pass (i.e., each
distance is read from global memory exactly once). We start by introducing the
general idea of our kernel. Further sections discuss implementation details.

The kernel is derived from the partial sorting method proposed by
Krulǐs et al. [29]. We take inspiration from the Merge queue algorithm [44] (Sec-
tion 3.6.2) and the Warp Select algorithm [26] (Section 3.6.3) for optimizations.
Each query is processed by a single thread block. Threads load distances from
the distance matrix. If the loaded distance is smaller than the kth smallest value
found so far, it is inserted into a shared buffer (which resides in shared memory)
using the atomicAdd instruction. When the buffer fills up, it is merged with the
intermediate top k result. The kth smallest distance used for prefiltering is up-
dated whenever the buffer is merged. After reading all distances from the input,
the kernel runs one final merge to get the final result.

We tried several parallel strategies for inserting objects (distance, label pairs)
into the shared buffer. One approach is to count objects that have to be inserted
in each thread and run a parallel (thread block-wide) prefix sum to find an offset
in the shared buffer. However, this solution performs worse than a simple atomic
add on a shared variable because the number of objects inserted into the buffer
is typically small.

Compared with the other multi-query, small k-selection kernels, using one big,
shared buffer has the advantage of aggregating objects for the merge operation.
Instead of doing several inserts like in the Merge queue, all objects in the buffer
are inserted simultaneously using a parallelized Bitonic merge. Moreover, the
buffer is only merged with the intermediate result if it is filled with new objects.
In Warp Select, thread queues have to be merged whenever an invariant of any
thread queue is violated. An advantage of thread queues is that they are local,
so operations with thread queues require no synchronization. Moreover, the in-
termediate top k result is potentially updated more frequently, so the distance
used for prefiltering can be more effective. On the other hand, the size of thread
queues is limited, it allocates many registers, and frequent merging can waste a
lot of work if most thread queues still contain a lot of old objects when the merge
occurs.

35

4.1.1 Bitonic sort optimizations
Sorting and merging the buffer with an intermediate top k result is computation-
ally the most intensive operation of this kernel. A rudimentary implementation
of a thread block-wide Bitonic sort can keep all values in shared memory. Each
compare-and-swap operation on the data first loads both distances to registers
compares them, and writes the result back. If the values are close together (within
one warp), Bitonic sort steps can be implemented using warp shuffle instructions.

One issue with this implementation is that all operations on the data have to
load values from shared memory to registers, execute the operation, and store the
result back. This is inefficient because one stage of Bitonic sort might produce a
result that the next stage could directly use without using shared memory.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

t0 t1 t2 t3 t4 t5 t6 t7

Figure 4.1: Mapping of Bitonic sort steps (S16, S8, S4, S2) to thread arrays with
8 threads.

t0 t1 t2 t3 t4 t5 t6 t7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

Figure 4.2: Mapping of the first reversed Bitonic sort stage (R16) to 8 threads.

36

In our kernel, the whole array is stored in registers of a thread block similar
to Warp Select. Unlike Warp Select, each thread stores several consecutive values
from the array. Figure 4.1 shows the mapping of Bitonic sort steps to thread
arrays. Bitonic steps on the lowest levels are performed on thread local data by
each thread without synchronization. Higher levels use warp shuffles or shared
memory if the Bitonic sort stride exceeds the boundaries of warps.

The reversed separator from Bitonic sort can similarly be mapped to thread
arrays (Figure 4.2). However, some thread arrays have to be reversed so that the
values align correctly for the operation (all arrays in the yellow-shaded region are
reversed). Specifically, an array has to be reversed if it participates in a compare-
and-swap operation as the second operand. This operation cannot be solved
simply by different indexing in code because thread arrays must be addressed
using compile-time constants. Hence, we reverse some thread-local arrays before
the operation to avoid branching within a warp during computation.

4.1.2 Shared memory mapping
Some large Bitonic sort strides cannot be implemented with warp shuffles because
we use the whole thread block to sort the arrays (buffer and the top k result).
We could store the whole array in shared memory for large strides and run the
Bitonic steps there. However, since each thread typically stores more than one
value from the array, it could be processed in parts to reduce the shared memory
usage of the kernel.

Figure 4.1 shows our mapping of objects from an array (top of the figure) to
thread local arrays (the table at the bottom of the figure). Each column of this
table is a thread-local array of objects. The rows of this table contain objects
from different threads. If each thread stores t objects, the shared memory usage
of the kernel can be reduced by a factor of t by using the following observation.
For strides larger than or equal to t, Bitonic operations can be used on the ith
row (the table at the bottom of Figure 4.1) independently of Bitonic operations
on the other rows.

For example, consider eight threads, each of which stores two objects (Fig-
ure 4.1). The array and compare-and-swap operations of the Bitonic sort are
depicted at the top of the figure. The table at the bottom of the figure shows the
same operations. Only one row of this table has to be in shared memory at once.
However, a thread compares and swaps two objects from each row. In order to
employ all threads from a thread block, we store two consecutive rows from the
table to shared memory. Each thread block is thus required to allocate space for
2b objects in shared memory, where b is the number of threads in a thread block.
In our small example, we would have to load the whole table to shared memory.
However, in general, the table could be bigger, and the kernel would still only
have to allocate space for 2b objects.

Our implementation does not have any shared memory bank conflicts. We
write the grid rows to shared memory one after the other, so thread i writes
a value to index i and i + b. Bitonic sort steps in shared memory also do not
introduce any bank conflicts because the smallest Bitonic sort stride we use in
shared memory is the warp size, and thus threads from the same warp load
consecutive objects.

37

4.1.3 Transposed memory layout
Each thread stores consecutive elements in the layout we described. Alternatively,
we could transpose the whole memory layout. In the transposed layout, thread
i stores elements ai, ai+b, ai+2b, . . . where b is the thread block size. A similar
layout is notably used in the Warp Select kernel (Section 3.6.3).

An advantage of the transposed layout is that writing the registers to global
memory in sorted order is coalesced. It works well in the Warp Select kernel
because all threads are in the same warp. One disadvantage of the transposed
layout with the whole thread block is that it forces the kernel to use shared
memory for small strides.

Let w be the warp size, b the thread block size, n the length of the input list
to be sorted (assumed to be a power of two), and t = n

b
the number of items per

thread (size of thread local arrays). Bitonic separators Si or Ri (Section 3.4.1)
where w < i ≤ b have to be processed in shared memory in the transposed layout.
For comparison, in the layout we propose, separators Si or Ri such that w · t < i
have to be processed in shared memory. Separator Si or the reversed variant Ri

is used in Bitonic sort log2
n
i

+ 1 times (Figure 3.2). Hence it is better to use
shared memory for large strides as they are less common in Bitonic sort. Our
proposed layout is thus better for our kernel in this regard. A disadvantage of
the proposed layout is that writing values to global memory is not coalesced.
However, we only write the array to global memory once at the end of the kernel,
and this inefficiency was insignificant in our tests.

4.1.4 Bitonic sort implementation details
Algorithm 1 shows our implementation of Bitonic sort. It implements the steps
depicted in Figure 4.1 (i.e., it sorts Bitonic sequences). All for loops have to
be unrolled so that the thread arrays are addressed using compile-time constants
and can be stored in registers. The t, w, s parameters are powers of two, and we
provide them as template parameters so that they are compile time constants as
well.

Parallelism is hidden in Bitonic sort steps in the innermost body of the for
loops. Bitonic sort steps for small strides are implemented using warp shuffle
instructions. Value of the thread with lane ID i is compared with the value of
the thread with lane ID i ⊕ j, where ⊕ denotes the bitwise xor operation and
j is a stride from Algorithm 1. The values can be exchanged between threads
using, for example, the shfl xor sync intrinsic. Both threads in lanes i and
i⊕ j perform the same comparison and replace their local value if necessary.

In shared memory, each thread loads and compares two distances. Contrary
to the warp shuffle operation in the previous paragraph, the index of a thread
within its thread block is treated as an index of a compare-and-swap operation
rather than an index of an element. Let i be the thread index within its thread
block, j a Bitonic sort stride from Algorithm 1 (hence, j is always a power of
two), and a mask m = j − 1. Then each thread has to compare and swap values
at indices L = ((i & ∼m)≪ 1) | (i & m) and R = L + j where ∼ denotes bitwise
negation, | denotes bitwise or, and ≪ is a bit shift to higher order bits. The
expression for L inserts a 0 bit at the log2 jth position in a binary representation
of i. The rationale is that with stride j, we can group the array values to blocks

38

of size j. If we number these blocks starting from 0, every value from an even
block is used as a first operand of a compare-and-swap operation. This can be
seen, for example, on the blue operations in Figure 4.1.

Algorithm 1: Optimized Bitonic sort steps S2s, Ss, Ss/2, . . . , S2

Input: items per thread t, warp size w, stride size s
Input: subsequences of size s are Bitonic
Result: subsequences of size 2 · s are sorted
if s ≥ t · w then // use shared memory

for i← 0; i < t; i← i + 2 do
store row i and i + 1 to shared memory // grid in Figure 4.1
for j ← s/t; j ≥ w; j ← j/2 do

run Bitonic separator with stride j (S2j) in shared memory
load row i and i + 1 from shared memory back to registers

s′ ← min{ s
t
, w

2 }
if s′ ≥ 1 then // use warp shuffles

for i = 0; i < t; i← i + 1 do
for j ← s′; j ≥ 1; j ← j/2 do

run Bitonic separator on row i with stride j (S2j) using warp
shuffles

s′ ← min{s, t
2}

for j ← s′; j ≥ 1; j ← j/2 do
run Bitonic separator with stride j (S2j) on the thread local array

Algorithm 2 implements the reversed Bitonic sort separator (Figure 4.2). The
index of the first operand of each compare-and-swap operation is computed in
precisely the same way as in Algorithm 1, and it is denoted by L. Index of the
second operand is computed as L⊕ (2s−1) where s is a stride from Algorithm 2.

4.1.5 Global memory throughput
Our k-selection kernel is memory bound. It spends a significant portion of time
waiting for global memory reads. In order to fully utilize global memory band-
width, it has to keep enough memory transactions in flight.

Each thread issues multiple read instructions in each iteration to achieve high
global memory utilization. Any instruction that would use the result is moved
after this step, so a warp can only be stalled on a global memory read after it
starts several transactions. This solution requires additional registers to hold the
results of multiple reads.

We also tried to start memory transactions using the prefetch instruction
(prefetch.global.L2) in addition to the previous solution. The instruction
loads the requested address to the L2 cache, so no additional registers have to be
allocated for the result before it is needed. L2 cache is shared by all SMs on the
GPU, and its size is rather small. However, this approach could serve at least a
small portion of global memory transactions from the L2 cache.

39

Algorithm 2: Reversed Bitonic sort separator R2s

Input: items per thread t, warp size w, stride size s, ID of this thread
within the thread block tid

Input: subsequences of size s are sorted
Result: subsequences of size 2 · s are bitonic
if s ≥ t · w then // use shared memory

if tid & s
t
̸= 0 then

reverse register array
for i← 0; i < t; i← i + 2 do

store row i and i + 1 to shared memory // grid in figure 4.2
run reversed Bitonic separator with stride s/t (R2s/t) on the rows
load row i and i + 1 from shared memory back to registers

if tid & s
t
̸= 0 then

reverse register array
else if s ≥ t then // use warp shuffles

lane← tid mod w
if lane & s

t
̸= 0 then

reverse register array
for i← 0; i < t; i← i + 1 do

run reversed Bitonic separator with stride s/t (R2s/t) on row i
using warp shuffles

if lane & s
t
̸= 0 then

reverse register array
else // local operations without any synchronization

run reversed Bitonic separator with stride s (R2s) on the local array

40

An alternative way to achieve high global memory utilization is to spawn more
threads per SM. If a warp is stalled on a global memory read, SM can schedule
another warp which starts the next memory transaction. However, we cannot
afford to do that in our kernel because the number of threads per SM is limited
by the high number of registers used by each thread.

4.1.6 Analysis
The majority of the work of our kernel is in adding values to the shared buffer
and merging the buffer with an intermediate top k result. In this section, we
compute an upper bound on the expected number of values added to the buffer
during the whole computation assuming a random permutation of the input list
of distances.

Complexity analysis is very similar to the analysis of the Warp Select [26]
method, but it is easier because there is only one shared buffer. Let d1, . . . , dn

be a random permutation of the list of distances. In the following analysis, we
find the top k distances from d1, . . . , dn using the described kernel with a buffer
of size k.

Observation 1. If a distance di is added to the buffer, it is in the top 2k of
d1, . . . , di.

Proof. If i ≤ 2k, the implication is satisfied trivially. For i > 2k, assume, for a
contradiction, that the rank of di is greater than 2k in d1, . . . , di and it is added to
the buffer. Denote by dm, m < i, the last element where a buffer merge occurred
and r the kth smallest value in d1, . . . , dm. Note that such an m exists because,
technically, the kernel merges the buffer after it reads the first k distances. There
can be at most k values smaller than r in dm+1, . . . , di as we assumed that m is
the latest merge point. Hence, the rank of r in the larger list d1, . . . , di can be
at most 2k. Since the kernel only adds values smaller than the current radius to
the buffer, the rank of di in d1, . . . , di has to be less than or equal to 2k, which is
a contradiction.

Let Ii denote an indicator that di is in the top 2k of d1, . . . , di (i.e., Ii = 1 if
di is in the top 2k of d1, . . . , di, and it is zero otherwise). Probability P (Ii = 1)
is given by Equation 4.1. The first 2k values are in the top 2k. For subsequent
values, exactly 2k elements from i are in the top 2k.

P (Ii = 1) =
⎧⎨⎩1 i ≤ 2k

2k/i i > 2k
(4.1)

Let N denote the total number of values added to the buffer during the whole
computation. Using the previous observation, we can bound N from above as
N ≤ ∑︁n

i=1 Ii. Equation 4.2 computes expected value of the upper bound using
linearity of expectation. Hn denotes the nth harmonic number defined as Hn =∑︁n

i=1 1/i.

EN ≤
n∑︂

i=1
EIi = 2k + 2k ·

n∑︂
i=2k+1

1/i = 2k · (1 + Hn −H2k) (4.2)

41

For this analysis, we also want to compute M , the total number of buffer
merges. Since the buffer is merged whenever it is filled, the expected number
of merges, EM , can be computed using Equation 4.3. We use ln n as a rough
approximation for the nth harmonic number Hn in the last step.

EM = E⌈N/k⌉ ≤ 1 + 2 · (1 + Hn −H2k) ≈ 3 + 2 ln(n/k) (4.3)
The expected number of buffer merges is in O (1 + log(n/k)), and the expected

number of values added to the buffer is in O (1 + k log(n/k)). If k is much smaller
than n, adding values to the buffer is infrequent, which might be the reason why
our strategy of allocating buffer slots using atomics on a shared variable performed
better than other more complicated mechanisms.

4.2 Fused distance computation with selection
The k-means clustering kernel implemented by Krulǐs et al. [30] (Section 3.3.2)
performs a computation similar to k nearest neighbours in a single kernel call. It
computes Euclidean distances and then finds a minimum for k-means clustering.
Instead of finding a minimum, we can use the approach from the previous section
for k-selection. That is, we add the computed distances to a shared buffer. When
the buffer fills up, it is merged with the sorted top k array.

The original kernel computes distances from several queries in a single thread
block. In order to preserve this flexibility in our modification, we place several
buffers and top k arrays in one thread block. All buffers are sorted and merged
with the top k arrays whenever any buffer fills up. This complicates the imple-
mentation of the kernel, and it allocates a lot of additional registers depending
on the value of k. However, we observed that the kernel performs better with
multiple queries per thread block.

Our Bitonic sort implementation can be used to sort several small arrays in
parallel. The arrays are treated as one big, block-wide register array, and all
Bitonic sort procedures stop at a certain stride length (when the stride reaches
the size of the small arrays). An advantage of this implementation is that, for
a small k, Bitonic sort steps are implemented using only thread-local operations
and warp shuffles. This is an additional benefit of the memory layout we use for
sorting in Section 4.1.3.

We store the buffers in a row-major layout in shared memory (i.e., all values
from the first buffer are stored at the lowest addresses, followed by all values of the
second buffer etc.). Depending on the parameters of the kernel, each thread has
to load several consecutive values from a buffer during the merge operation. If a
thread loads t values, it can cause a t-way bank conflict with this layout. However,
indexing in an alternative memory layout that is bank conflict-free is significantly
more complicated. The more straightforward layout with bank conflicts performs
on par with the conflict-free layout or even better in some instances.

4.2.1 Applicability
An obvious advantage of the fused kernel is that the distance matrix is never
stored in global memory. Depending on the dimension of input vectors, the

42

size of the database, and the number of queries, the distance matrix can easily
be the largest single piece of memory needed for kNN computation. Especially
considering that dimension of input vectors should be fairly small since Euclidean
distance is not a good distance function for high-dimensional data [11, 46]. As a
result, the fused kernel has much lower memory footprint and can handle larger
instances than the kernel from the previous section in some cases. Furthermore,
distance computation and k-selection are done using a single kernel invocation.

A disadvantage is that the kernel uses a large amount of shared memory and
registers. The shared memory requirements grow with input dimension and with
k. The kernel is mainly suited for vectors with small dimensionality. Moreover,
multiple queries have to be processed by each thread block. Because register
requirements grow with k, we found that the fused kernel is mainly suited for
small k ≤ 64.

4.3 Multi-pass selection
Previous kernels cannot be used for large k when the top k list does not fit
into a thread block. Other completely different solutions are required if k is given
as a percentage of the total number of database objects. However, sorting the
whole database is excessive even in these cases.

We adapted the Sample Select [40] method (Section 3.7.1) for large k, multi-
query top k-selection. Compared to our single-pass kernel, multi-pass selection
has to read some distances from global memory several times. It is, therefore,
inherently slower than a single-pass selection since the problem is limited by
memory throughput, but it works for much larger k.

Similarly to our small k-selection kernel, each query is assigned to one thread
block. The kernel has two stages. The first stage finds the kth smallest distance,
and the second stage gathers all objects in the top k (distances and object indices)
in an output array. We use a single kernel call for both stages. In the first stage,
distances are partitioned into buckets using Sample Select iterations:

1. Select a random sample of distances and pick splitters from this sample.

2. Create a histogram of buckets from the distances (splitters from the previous
step define buckets).

3. Find the bucket which contains the kth smallest distance.

4. Subtract the bucket offset from k and repeat these steps recursively with
the distances in the bucket from step 3.

We use the cuRAND library [4] to select a random sample (step 1) which
is sorted using our implementation of Bitonic sort. The splitters are selected
the same way as in Sample Select (i.e., we pick appropriate percentiles from the
sample as splitters).

We stop the recursion when all distances fit into a thread block. All distances
are sorted using Bitonic sort in the base case. The kth smallest distance can be
found trivially in the sorted array. The second stage is a simple filter pass over

43

the data. It finds all top k objects given the kth smallest distance found by the
first stage.

The result of the described kernel is unsorted. Its size can be larger than k if
there is more than one value with the same distance. Radix sort (Section 3.4.3)
implementation (e.g., from the CUB library [1]) can be used to sort the top k
objects. We use Radix sort in our implementation because it uses a constant
number of passes over global memory, unlike, for example, Merge path or Bitonic
sort.

4.3.1 Partitioning
The first stage is a recursive search for the kth smallest distance. It has to write
all distances from the target bucket to consecutive addresses in global memory
(step 4) so that the search can continue recursively. However, it cannot overwrite
distances in the input array because they are used in the second stage. We use
an auxiliary global memory buffer. The first iteration reads from the input array
and writes the distances to the auxiliary global memory buffer. All subsequent
iterations work in the buffer only.

In step 4, all distances are first added to a shared memory buffer. When the
buffer fills up, it is written to global memory. The size of the shared memory
buffer is larger than the size of a global memory transaction. All global memory
writes are thus coalesced.

Buffering values

We use a thread block-wide prefix sum from the CUB library to allocate positions
in the shared buffer. Each thread counts how many values it has to insert into
the buffer. An exclusive prefix sum of these values gives the kernel an offset in
the shared buffer for each thread.

Alternatively, buffer positions could be allocated using atomicAdd (Section 2.3.3)
on a buffer size in shared memory. However, if the bucket with the kth value is
large, most threads will have to insert a value into the buffer, and the performance
could degrade due to a large number of collisions.

Temporary storage

An auxiliary global memory buffer of the size of the input is needed for the
partitioning. The first stage cannot overwrite the input array with distances
because the second stage uses the values. However, the auxiliary memory can be
merged with the output array so that only O(n−k) additional memory is needed
per query where n is the database size.

4.3.2 Single-stage selection
It is possible to find k nearest neighbours in a single stage. The modified kernel
differs from the two-stage approach in step 4. It partitions the whole input
(distances and labels) into two parts. One part contains objects from the bucket
with the kth smallest distance, just like in the previous kernel. The other part
contains objects from all lower buckets.

44

A disadvantage of this approach is that the partitioning cannot be imple-
mented with a simple buffered write, as in the previous section. Moreover, labels
have to be moved together with distances. In the two-stage kernel, most of the
computation (the first stage) works with distances only, so we can afford to allo-
cate larger buffers and more registers to optimize memory accesses of the kernel
better. We implemented both approaches, and we will evaluate them in the next
chapter.

45

5. Evaluation
In this chapter, we evaluate current state-of-the-art exact kNN GPU kernels. The
two parts of kNN (distance computation and k-selection) are evaluated separately
except in the case of fused kernels, which compute both parts in a single kernel
call. We also evaluate the effectiveness of optimizations proposed in the previous
chapter.

5.1 Methodology
All kernels were evaluated on an NVIDIA Tesla V100 SXM2 32 GB (Volta archi-
tecture with compute capability 7.0). We used CUDA version 12.0 on a Rocky
Linux server with a 16 core processor Intel Xeon Gold 5218. All tests record the
execution time of CUDA kernels.

We repeat each measurement 20 times. The first ten measurements are dis-
carded as a warmup. We use an arithmetic mean to combine the measurements.
Results are mainly presented as a throughput (number of distances computed per
second in case of distance kernels and number of distances processed per second in
case of k-selection kernels). To evaluate our optimizations, we show the speed-up
of the optimized kernel when compared with a baseline without the optimization.
Speed-up is computed as the arithmetic mean of baseline measurements divided
by the average of measurements of the optimized kernel. For both speed-up and
throughput, higher values indicate a better solution. All error bars presented
in this chapter show one standard deviation. Our measurements should only be
used to compare GPU kernels within one figure.

The tested dataset is a (uniformly) random dataset on a d-dimensional cube
[0, 1]d. When we compare several kernels, we use the same random generator seed
for all of them to test all kernels on the same input.

5.2 Common distance functions
In this section, we evaluate distance computation kernels discussed in Section 3.3.

• A specialized kernel proposed by Kuang et al. [31] (Section 3.3.2), which
partitions the distance matrix to tiles assigned to thread blocks. Tiles from
the input matrices are cached in shared memory.

• A distance computation method using the cuBLAS library (Section 3.3.1),
which expresses the distance function in terms of a dot product. The dot
product can be computed using a matrix multiplication kernel. This ap-
proach requires two additional kernels. One kernel computes the norms
of all database vectors, and another kernel adds the norms to the distance
matrix. Norms of query vectors are not computed (i.e., the kernel computes
∥x∥2 − 2⟨x, y⟩ where x is a database vector and y is a query vector).

• A modified matrix multiplication kernel from the MAGMA library, which
directly computes squared Euclidean distances. We use a kernel imple-
mented by Li et al. [32]. However, we modified the kernel so that it can be

46

2 4 8 16 32 64 128
108

109

1010

1011

1012 single query

2 4 8 16 32 64 128

8 queries

2 4 8 16 32 64 128
108

109

1010

1011

1012 128 queries

2 4 8 16 32 64 128

1024 queries

T
hr

ou
gh

pu
t

[d
ist

an
ce

s/
s,

lo
g]

Dimension
Kuang et al.
Modified MAGMA kernel

baseline
cuBLAS GEMM + postprocessing

Figure 5.1: Throughput of squared Euclidean distance computation.

used on matrices of arbitrary size with user-defined operators, and we fixed
some overflow errors with large matrices.

We use two different memory layouts for input matrices: column-major and
row-major. Given n vectors with dimension d, matrices in the row-major layout
store vectors consecutively in memory (i.e., all d elements of the first vector are
stored at the lowest addresses, then elements of the second vector, etc.). The
column-major layout is transposed row-major layout. The memory layout of
input matrices depends on what is optimal for a given kernel. The baseline
kernel and the modified MAGMA kernel have input matrices in the column-
major layout. The kernel by Kuang et al. [31] expects both input matrices to
be in a row-major layout. The cuBLAS matrix multiplication kernel was not
affected significantly by the memory layout in our experiments. However, it is
optimal to use the column-major layout for the matrix of database vectors in
our postprocessing kernels. The distance matrix (output of the distance kernels)
stores all distances from the first query at the lowest addresses, then distances
from the second query, etc. This is an optimal layout for all k-selection kernels
tested in this chapter.

Figure 5.1 shows the throughput (number of distances computed per second)
of the kernels for different numbers of queries q. The y-axis is logarithmic. The

47

size of the database n is chosen so that the amount of work (n × q × d where
d is the dimension of vectors) is constant for different numbers of queries q and
dimension of vectors d. If the matrices would not fit into the memory of our
GPU, we limit the database size (n) to a maximal admissible power of two.

Single-query instances do not benefit from caching as vector components, once
loaded in an on-chip memory, are never reused. Therefore, it is difficult to beat
the baseline kernel, which outperformed all other tested kernels for q = 1. As
the number of queries increases, it becomes useful to cache some vectors to limit
the number of global memory transactions. The kernel by Kuang et al. [31]
outperformed other kernels for a small number of queries because it caches small
parts of the input vectors in shared memory. The MAGMA kernel also caches
parts of the input. However, the cached tiles are larger when compared to the
previous kernel, which seems to be detrimental for a very small number of queries.

For a moderate number of queries (starting at q = 128), the modified MAGMA
kernel outperformed all other kernels for small dimensions d ≤ 128. The cuBLAS
approach caught up with the MAGMA kernel at d = 128, outperforming the
kernel for higher dimensions. However, Euclidean distance or the more general
Lp distance is not a good distance function for high dimensional data [11, 46]. In
practice, dimensionality reduction techniques [18], such as Random projection or
Principal Component Analysis, are often used.

5.3 Selection optimizations
This section evaluates the effectiveness of k-selection optimizations proposed in
Chapter 4. We evaluate Bitonic sort optimizations, the speed-up of buffering
when compared with a partial sorting kernel, and global memory prefetching.

5.3.1 Bitonic sort
We evaluate Bitonic sort optimizations on a partial sorting kernel because it
spends the majority of time sorting and merging. We empirically determined an
optimal thread block size for this kernel to be 128 for k ≤ 512 and 256 for larger
values of k.

Figure 5.2 shows the effectiveness of Bitonic sort optimizations. The baseline
kernel implements Bitonic sort in shared memory without warp shuffles. Warp
shuffle instructions helped for a small k, but its effectiveness degrades with grow-
ing k because the portion of Bitonic sort steps implemented with warp shuffles
is decreasing. Our final implementation of Bitonic sort in registers achieved a
consistent speed-up of about two for all tested values of k.

5.3.2 Buffering
We added buffering to the previous partial sorting kernel (Section 4.1). Figure 5.3
shows the speed-up of buffered k-selection when compared with our implemen-
tation of the partial Bitonic sort. Buffering improved the performance of the
kernel significantly as the most computationally intensive operation (sorting and
merging the buffer) is significantly less common (Section 4.1.6).

48

128 256 512 1024 2048
Nearest neighbours — k

0

1

2

3

Sp
ee

d-
up

baseline
warp shuffles

sort in registers

Figure 5.2: Bitonic sort optimizations effectiveness.

128 256 512 1024 2048
Nearest neighbours — k

0

1

2

3

4

5

Sp
ee

d-
up partial sorting

with buffering

Figure 5.3: Speed-up of buffering in the memory optimized version of partial
Bitonic sort.

There are instances in which this optimization would not perform as well.
For example, if the list of distances was sorted in descending order, the kernel
would degenerate to partial sorting (Section 3.5) as it would have to sort and
merge every segment of k consecutive distances. We tested buffering on a uni-
formly random distribution of vectors in a d-dimensional cube. However, buffering
needs a randomly shuffled list of distances to be effective, which is a less strict
assumption.

5.3.3 Global memory throughput
We keep enough global memory transactions in flight by starting several global
memory reads per thread in each iteration and using prefetch instructions (Sec-
tion 4.1.5). Figure 5.4 shows speed-up compared to a kernel which reads only one
value per thread. The kernel with prefetching is identical to the kernel without
prefetching, except it inserts prefetch instructions in addition to multiple reads

49

per thread. The prefetching kernel thus starts twice as many reads. However,
half of the reads only store the values in the L2 cache, which might be evicted
from the cache before the kernel processes the values.

Multiple reads per thread notably improved the throughput of our kernel in all
cases, even for large k = 2048. We saw a speed-up above two in some instances.
Register pressure turned out to be less of a problem than we expected. Inserting
prefetch instructions in addition to multiple items per thread slightly improved
the computation time. However, the difference gets smaller as we increase the
number of items per thread.

0 4 8 12 16
0

1

2

3

4

Sp
ee

d-
up

k = 32

0 4 8 12 16

k = 256

0 4 8 12 16
Items per thread

0

1

2

3

4

Sp
ee

d-
up

k = 1024

0 4 8 12 16
Items per thread

k = 2048

No prefetch Prefetch

Figure 5.4: Speed-up of prefetching and multiple reads per thread.

5.4 Single-pass selection
In this section, we evaluate single-pass k-selection kernels. Single-pass kernels
read all distances from global memory only once. These solutions use on-chip
memory (registers, shared memory, or L1 cache) for temporary storage for the
computation. The parameter k is expected to be fairly small (k ≤ 2048) in
order for auxiliary data structures to fit into an on-chip memory. However, this
requirement is not a limiting factor for most kNN applications.

5.4.1 Multi-query selection
We begin by evaluating multi-query selection because these solutions can effec-
tively leverage all cores of a GPU. However, algorithms evaluated here can be

50

used to solve single-query problems using the approach discussed in Section 3.6.
We will evaluate the effectiveness of this approach later.

The input of all kernels is a q × n distance matrix (32-bit IEEE 754 float)
where q is the number of queries and n is the database size. The label of each
database object is given implicitly as an index of the corresponding distance in
the distance matrix. The expected output is two q × k matrices: top k distances
and corresponding labels (32-bit integers) for all queries.

We evaluate the Warp select method (Section 3.6.3) from the FAISS library,
buffered Merge queue (Section 3.6.2) from the fgknn library, and our Bitonic Se-
lect (bits) kernel (Section 4.1), which uses all threads of a thread block to evaluate
each query. Additionally, we included the Block select method from the FAISS
library, a variant of the Warp select method. It uses the whole thread block for
each query such that each warp processes a subset of input data, and the par-
tial results from all warps are merged at the end of the kernel. Straightforward
adaptations of the serial kNN algorithm, such as the data-parallel approach (Sec-
tion 3.6.1), performed significantly worse than other solutions, so they are not
included in the results presented here.

We ran all kernels with varying database sizes from 32 thousand to one million
objects. The number of queries was chosen so that the whole computation fits into
our GPU’s global memory, and the size of the distance matrix remains constant
in all runs.

Warp select parameters

We noticed that the default configuration of the Warp select method (Section 3.6.3)
from the FAISS library [6] could perform better on our GPU. We ran top k selec-
tion using the kernel with several thread queue sizes 2, . . . , 10. For bigger thread
queues, the register pressure becomes an issue (especially for large k).

Figure 5.5 shows the throughput of the Warp Select kernel with a database
of one million vectors and two thousand queries. We only show the best config-
uration for each k for clarity. The numbers above each data point indicate the
thread queue size used for that value of k. The default configuration is shown as
a dashed line in the figure. The best alternative thread queue size from this test
significantly improves the computation time for 64 ≤ k ≤ 128.

Comparison

Figure 5.6 shows the throughput (number of distances processed per second) of
the tested kernels. The second scale for the y-axis on the right shows throughput
as a portion of a peak theoretical throughput of our GPU 1.

For clarity, we did not include the default configuration of WarpSelect and
BlockSelect from the FAISS library. However, in all cases, our tuned parameters
performed on par with or better than the default parameters.

Implementation of our bits kernel outperformed all other tested kernels in all
configurations. The throughput of the bits kernel approaches 80% of peak theo-
retical throughput. It performed best on large databases with a relatively small
number of queries q ≤ 2048. This is coincidentally the configuration where we

1Tesla V100 has advertised memory bandwidth of 900 GiB/s [9].

51

32 64 128 256 512 1024 2048
Nearest neighbours — k

2
3
4
5
6
7
8
9

0

T
hr

ou
gh

pu
t

[d
ist

an
ce

s/
s]

×
10

10 2 2 6 2

5 9

10

Thread queue:
adjusted default

Figure 5.5: Parameter selection for Warp Select on Tesla V100. The numbers
above the data points denote the best thread queue size for each k.

saw the best throughput for Euclidean distance computation using the modified
MAGMA kernel (Figure 5.1).

5.4.2 Single-query selection

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of partitions

0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t

[d
ist

an
ce

s/
s]

×
10

10

nearest neighbours – k
32
64
128
256
512
1024
2048

Figure 5.7: Evaluation of single-query bits kernel.

All kernels from the previous section would use only one thread block for single-
query problems. This is suboptimal as most GPU cores would not be utilized.
We adapted our multi-query bits kernel for single-query problems using the ap-
proach described in Section 3.6. The list of distances is split into multiple smaller

52

partitions, which are assigned to different thread blocks. Once all thread blocks
find their top k, the partial results are merged by one final pass over the partial
results using the bits kernel. While this is not a single-pass kernel, we can achieve
throughput similar to our multi-query bits kernel on large databases.

Figure 5.7 shows the throughput of the single-query bits kernel on a database
with 128 million vectors with varying numbers of partitions. Choosing the correct
number of partitions is crucial for performance as it scales only up to a certain
point. The kernel had a peak throughput with 128 and 256 partitions for k ≥ 1024
and k ≤ 512, respectively, on Tesla V100.

5.4.3 Fused kernel
We compare the fused kernel (Section 4.2) with the best-performing multi-query
k-selection kernel from the previous section (the bits kernel) and the best-performing
distance kernel for small dimensions (the MAGMA kernel modified to compute
L2 distances, Section 5.2). The time to compute distances and the time to pro-
duce the top k result is added, and throughput is computed from this total time
in the case of the two-stage approach.

Figure 5.8 shows the throughput (number of distances computed and pro-
cessed per second) of our fused kernel and the two-stage approach with a database
of half a million vectors and eight thousand queries. In the two-stage solution, the
smallest k is k = 32 (the warp size). The dashed line in the figure extrapolates
the result for k = 32 to smaller values of k. In the fused kernel, one thread block
processes more than one query, so there is enough work for all threads, even if k
is smaller than the warp size.

The fused kernel performed better than the two-stage solution for small di-
mensions d ≤ 32 and especially for small k ≤ 64. The two-stage solution is better
for larger values of the parameters. However, the fused kernel requires less mem-
ory since it does not store the distance matrix. As a result, it can answer queries
in larger databases, so it may be useful even in cases where it performed slightly
worse than the two-stage approach.

An essential difference between the kernels is that the fused kernel requires
more queries than the bits kernel to utilize all GPU cores fully. This is because the
fused kernel processes several queries in one thread block, so it naturally creates
fewer thread blocks than the bits kernel. Figure 5.9 compares the performance
of the kernels with varying numbers of queries and database size. The dimension
of vectors and the number of nearest neighbours is fixed at d = 16 and k = 32,
respectively. The fused kernel achieved its peak performance with at least eight
thousand queries.

53

32 64 128 256 512 1024 2048
0

10

20

n = 32k, q = 32k

32 64 128 256 512 1024 2048

n = 64k, q = 16k

32 64 128 256 512 1024 2048
0

10

20

n = 128k, q = 8k

32 64 128 256 512 1024 2048

n = 256k, q = 4k

32 64 128 256 512 1024 2048
0

10

20

n = 512k, q = 2k

32 64 128 256 512 1024 2048

n = 1024k, q = 1k

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100T
hr

ou
gh

pu
t

[d
ist

an
ce

s/
s]

×
10

10

T
hr

ou
gh

pu
t

[%
of

pe
ak

]

Nearest neighbours — k
Theoretical peak throughput
BlockSelect with tuned parameters
Merge queue

WarpSelect with tuned parameters
bits (our implementation)

Figure 5.6: Evaluation of single-pass k-selection methods with q queries and
n vectors in the database.

54

4 8 16 32 64 128
0

10

20

30
dimension = 8

4 8 16 32 64 128

dimension = 16

4 8 16 32 64 128
0

10

20

30
dimension = 32

4 8 16 32 64 128

dimension = 64

T
hr

ou
gh

pu
t

[d
ist

an
ce

s/
s]

×
10

10

Nearest neighbours — k
fused kernel MAGMA distance + bits

Figure 5.8: Comparison of the fused kNN kernel with bits and MAGMA kernel
for distance computation.

2k 4k 8k 16k 32k
Number of queries

0

5

10

15

T
hr

ou
gh

pu
t

[d
ist

an
ce

s/
s]

×
10

10

fused kernel MAGMA distance + bits

Figure 5.9: Throughput of the fused kNN kernel with d = 16, k = 32, and varying
number of queries.

55

5.5 Multi-pass selection
Multi-pass kernels can read a distance from global memory several times. They
are inherently slower than single-pass kernels, but they can find k nearest neigh-
bours for much larger values of k. This category includes sorting kernels and
kernels based on the Quick Select algorithm discussed in Section 4.3 (Sample
Select and Radix Select).

5.5.1 Sample select

10% 20% 30% 40% 50% 60% 70% 80% 90%
Nearest neighbours — k [% of database size]

0

1

2

3

4

5

T
hr

ou
gh

pu
t

[p
ai

rs
/s

]

×1010

CUB sort
single-stage (sorted)
single-stage (unsorted)
two-stage (sorted)
two-stage (unsorted)

Figure 5.10: Comparison of different k-selection approaches in Sample Select with
million objects in database and a thousand queries.

This section compares single-stage and two-stage implementations of the kNN
method derived from the Sample Select algorithm (Section 4.3). Both methods
receive two q×n matrices (n is the number of database vectors and q is the number
of queries) — one with precomputed distances and one with object indices. They
produce two q × k matrices — top k distances and corresponding indices. The
output for each query is sorted using the segmented radix sort implementation
from the CUB library [1].

As a baseline kNN implementation, we use radix sort from CUB to sort the
distances. We use several CUDA streams2 in the baseline to fully utilize all cores
of our GPU when sorting distances from several independent queries. The CUB
library also contains a segmented radix sort explicitly intended for sorting several
arrays in parallel. However, it performed worse on a database of a million objects
than using the single array implementation with CUDA streams.

2We empirically determined an optimal number of streams to be 8.

56

Figure 5.10 shows the throughput (number of distance and index pairs pro-
cessed per second) of each tested configuration. We show both the throughput
without sorting the top k result and with sorting. The throughput of the sorted
kernels was better than the optimized CUB radix sort procedure (visualized as a
dashed line in Figure 5.10) for k ≤ 30% of the database. When k is more than
half of the database, sorting the whole database is faster. The single-stage kernel
was slightly faster than the two-stage kernel for small k, although the difference
is negligible.

Both kernels performed significantly better than CUB radix sort if the output
is not required to be sorted. However, it is important to note that in this case,
the output for each query could be larger than k in case several distances are
precisely equal to the kth smallest distance.

5.5.2 Partitioning algorithms

10 20 30 40 50 60 70 80 90
0

1

2

3

4

T
hr

ou
gh

pu
t

[p
ai

rs
/s

]

×1010 n = 32k, q = 32k

10 20 30 40 50 60 70 80 90

n = 128k, q = 8k

10 20 30 40 50 60 70 80 90
0

1

2

3

4

T
hr

ou
gh

pu
t

[p
ai

rs
/s

]

×1010 n = 512k, q = 2k

10 20 30 40 50 60 70 80 90

n = 2048k, q = 512

Nearest neighbours — k [% of database size]
CUB sort
Radix select (sorted)
Radix select (unsorted)

segmented CUB sort
Sample select (sorted)
Sample select (unsorted)

Figure 5.11: Evaluation of multi-pass k-selection methods.

Section 3.7 discusses different algorithms for partitioning distances which lead
to two k-selection kernels: Sample Select and Radix Select (Section 3.7.2). In this
section, we compare the kernels in various configurations. The Radix Select ker-
nel is very similar to the Sample Select kernel, except it uses radix digits for

57

partitioning distances to buckets. We also show the throughput of simply sorting
the database using two optimized radix sort procedures from the CUB library [1].
The segmented CUB radix sort, which is specifically tailored to sort several ar-
rays in parallel, and an ordinary single-array CUB radix sort implementation in
multiple CUDA streams as described in the previous section.

Figure 5.11 shows our results for different sizes of the database n and the
number of queries q. Sample Select and Radix Select performed significantly
better than our baseline implementation if sorting the result is optional. For
sorted top k results, the Sample Select method performed better than simply
sorting the database for k ≤ 30% of the database on large databases (a database
with at least half a million vectors) and for k ≤ 50% of the database on small
databases (a database with less than a quarter of a million vectors). The Sample
Select kernel performed better than Radix Select in all configurations except for
a small database with only 32 thousand vectors.

5.6 Final kernel
Previous sections evaluated kernels for parts of the kNN problem in specific cir-
cumstances. We now use a broader approach that compares final kNN kernels
using the best-performing kernels for distance computation and k-selection from
this chapter.

Figure 5.12 shows the throughput of multi-query kNN kernels, including dis-
tance computation using the modified MAGMA kernel for squared Euclidean
distances. The time to compute distances and time to select the top k results
is added, and throughput is computed from this total time except in the case of
the fused kernel. All kernels were given a database of 128 thousand vectors and
8 thousand queries. We compare the best-performing kernels from this chapter:

• the fused kernel (Section 4.2), which computes Euclidean distances and
finds the top k in one kernel call.

• the Sample Select kernel (Section 4.3), an adaptation of the Quick Select
algorithm for GPUs (produces an unsorted result).

• Our Bitonic Select (bits) kernel (Section 4.1).

• A variant of the bits kernel, which keeps the top k result in global memory,
so it works for larger values of k (produces an unsorted result).

The rate at which small k-selection kernels process distances is roughly equal
to the rate of computing the distances for small dimensions. However, as the di-
mension grows, the rate of producing distances drops below all k-selection kernels
including the unsorted multi-pass Sample Select kernel (at d = 128).

We can summarize our results as follows. Given q queries, k nearest neigh-
bours, dimension of vectors d, and size of the database n, the fused kernel out-
performed other kernels if d ≤ 32, k ≤ 64, q ≥ 8000. Otherwise, the bits kernel
performed best for k ≤ 2048 for multi-query and single-query problems. The bits
kernel can be modified to store the top k result in global memory. This modifi-
cation worked best if k = 4096 but it was quickly outperformed by the Sample

58

109

1010

1011

1012 d = 16 d = 32

8 32 128 512 204
8

819
2

327
68

109

1010

1011

1012 d = 64

8 32 128 512 204
8

819
2

327
68

d = 128

T
hr

ou
gh

pu
t

[d
ist

an
ce

s/
s,

lo
g]

Nearest neighbours — k
Sample Select (unsorted)
bits

bits in global memory (unsorted)
fused kNN

Figure 5.12: Throughput of multi-query kNN kernels.

Select kernel (k ≥ 4096). However, the Sample Select kernel was faster than the
Radix Select algorithm only in sufficiently large databases (n ≥ 100000). The
Radix select algorithm performed better in smaller databases.

5.6.1 Comparison with a CPU implementation
We implemented a parallel kNN kernel on a CPU. The kernel expresses distances
in terms of a dot product, computed using a matrix multiplication algorithm
(Section 3.3.1). We used the Eigen library [5] to compute the distances. The top k
selection is implemented with a binary heap and parallelized using OpenMP [10].
We evaluated the kernel on a database with two million vectors and one thousand
queries.

The speed-up of a GPU kNN implementation (modified matrix multiplication
from the MAGMA library and our bits kernel) when compared with our parallel
CPU implementation is shown in Figure 5.13. It does not factor in data transfers.

59

4 8 16 32 64
Dimension

0

20

40

60

80

100

G
PU

Sp
ee

d-
up

Nearest neighbours – k
512
1024
2048

Figure 5.13: Speed-up of GPU kNN (MAGMA distance and the bits kernel) when
compared with a parallel CPU implementation.

Figure 5.14 shows a ratio of the mean kNN computation time to the mean
data transfer time. Data transfers include transferring the input to the GPU and
transferring the output to the main memory of the CPU. Data transfers take a
relatively short time for small dimensions, but they quickly become a limiting
factor of the computation. However, in a typical configuration, the matrix of
database vectors is the largest block of memory needed to be transferred to the
GPU. If we use the same database to process multiple batches of queries, we only
have to transfer the matrix once.

4 8 16 32 64
Dimension

0

1

2

3

4

C
om

pu
ta

tio
n

/
Tr

an
sfe

rs
ra

tio

Nearest neighbours – k
512
1024
2048

Figure 5.14: The ratio of the computation time to the data transfer time.

60

6. Conclusions
While a naive implementation of a k nearest neighbours algorithm on a CPU
is straightforward, an efficient, parallel implementation on a GPU requires a
customized solution to utilize hardware resources fully. Moreover, an optimal
approach to kNN depends on the problem’s parameters, like the database size,
the number of nearest neighbours, and the used distance function, among others.
In this work, we evaluated GPU implementations of kNN with various config-
urations. We evaluated both parts of the problem (distance computation and
k-selection) separately and considered fusing them into one kernel.

No general approach to distance computation would work for all distance
functions. However, the most common distance functions like Euclidean distance
or cosine similarity reduce to matrix multiplication [32]. A modification of the
matrix multiplication kernel from the MAGMA library [7] outperformed other dis-
tance kernels for multi-query kNN problems with a sufficient number of queries.
Single-query kNN problems with a simple distance function like Euclidean dis-
tance do not benefit from complicated caching strategies as no vector component
from the input vectors is used more than once.

We suggested some optimizations in several areas of the top k selection. In
particular, we implemented an incremental, multi-query top k selection algorithm
based on Bitonic sort [13], which we call bits. We also tried to fuse distance
computation with top k selection. The fused kernel combines the distance com-
putation approach proposed by Krulǐs et al. [30] with our bits implementation.
Lastly, we adapted the Sample Select [40] algorithm for kNN with a large value
of k and compared several partitioning strategies.

Our implementation of the bits kernel reached up to 80% of peak theoretical
throughput on Tesla V100 with a typical configuration (an extensive database,
a relatively small number of queries, and k ≤ 128). It outperformed other state-
of-the-art multi-query k selection kernels in all tested configurations and can
effectively find an answer for single-query problems with a slight modification. We
also showed that the kNN problem can be implemented as a fused kernel, which
outperformed our bits kernel in some configurations (small dimension d ≤ 32
and k ≤ 32 with sufficient queries q ≥ 8000). The bits kernel and most GPU
k-selection kernels in literature only work for small k (k ≤ 2048). The modified
Sample Select kernel can be used for larger values of k, and it outperformed
a brute force solution (sorting the whole database) by a significant margin when
the top k output does not have to be sorted. Even if we sort the top k result,
the Sample Select method outperformed the brute force solution when k was at
most 30% of the database size.

We looked at the exact kNN algorithm implementation on a GPU and found
some room for improvement. In the future, a similar survey can be done for
related problems like approximate kNN and parallel indexing methods for kNN
to avoid the computation of costly distance functions.

The prototype implementation of all kernels presented in our work is publicly
available1 for reproduction of experiments and further use.

1https://gitlab.mff.cuni.cz/hanakdr/knn

61

https://gitlab.mff.cuni.cz/hanakdr/knn

Bibliography
[1] CUB. https://nvlabs.github.io/cub/. Accessed: 2021-08-02.

[2] cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html. Accessed:
2021-08-02.

[3] CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html. Accessed: 2021-08-08.

[4] cuRAND. https://docs.nvidia.com/cuda/curand/host-api-overview.
html. Accessed: 2022-04-30.

[5] Eigen. https://eigen.tuxfamily.org/. Accessed: 2023-06-15.

[6] FAISS. https://github.com/facebookresearch/faiss. Accessed: 2021-
08-08.

[7] MAGMA. https://icl.cs.utk.edu/projectsfiles/magma/doxygen/
routines.html. Accessed: 2021-08-02.

[8] moderngpu 2.0. https://github.com/moderngpu/moderngpu. Accessed:
2021-08-08.

[9] NVIDIA Tesla V100. https://images.
nvidia.com/content/technologies/volta/pdf/
tesla-volta-v100-datasheet-letter-fnl-web.pdf. Accessed: 2022-05-
27.

[10] OpenMP. https://www.openmp.org/. Accessed: 2023-06-15.

[11] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior
of distance metrics in high dimensional space. In International conference
on database theory, pages 420–434. Springer, 2001.

[12] T. Alabi, J. D. Blanchard, B. Gordon, and R. Steinbach. Fast k-selection al-
gorithms for graphics processing units. Journal of Experimental Algorithmics
(JEA), 17:4–1, 2012.

[13] K. E. Batcher. Sorting networks and their applications. In Proceedings of
the April 30–May 2, 1968, spring joint computer conference, pages 307–314,
1968.

[14] S. Baxter. moderngpu 2.0. https://github.com/moderngpu/moderngpu/
wiki, 2016.

[15] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An
efficient and robust access method for points and rectangles. In Proceedings
of the 1990 ACM SIGMOD international conference on Management of data,
pages 322–331, 1990.

62

https://nvlabs.github.io/cub/
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/curand/host-api-overview.html
https://docs.nvidia.com/cuda/curand/host-api-overview.html
https://eigen.tuxfamily.org/
https://github.com/facebookresearch/faiss
https://icl.cs.utk.edu/projectsfiles/magma/doxygen/routines.html
https://icl.cs.utk.edu/projectsfiles/magma/doxygen/routines.html
https://github.com/moderngpu/moderngpu
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://www.openmp.org/
https://github.com/moderngpu/moderngpu/wiki
https://github.com/moderngpu/moderngpu/wiki

[16] D. Bednárek, M. Brabec, and M. Krulǐs. Improving matrix-based dy-
namic programming on massively parallel accelerators. Information Systems,
64:175–193, 2017.

[17] C. Beecks, M. S. Uysal, and T. Seidl. Signature quadratic form distances
for content-based similarity. In Proceedings of the 17th ACM international
conference on Multimedia, pages 697–700, 2009.

[18] E. Bingham and H. Mannila. Random projection in dimensionality reduc-
tion: applications to image and text data. In Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 245–250, 2001.

[19] M. Boston et al. A dynamic index structure for spatial searching. In Pro-
ceedings of the ACM-SIGMOD, pages 547–557, 1984.

[20] B. Bustos, G. Navarro, and E. Chávez. Pivot selection techniques for prox-
imity searching in metric spaces. Pattern Recognition Letters, 24(14):2357–
2366, 2003.

[21] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method
for similarity search in metric spaces. In Vldb, volume 97, pages 426–435.
Citeseer, 1997.

[22] V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest neighbor search
using GPU. In 2008 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, pages 1–6. IEEE, 2008.

[23] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud. K-nearest neigh-
bor search: Fast GPU-based implementations and application to high-
dimensional feature matching. In 2010 IEEE International Conference on
Image Processing, pages 3757–3760. IEEE, 2010.

[24] O. Green, R. McColl, and D. A. Bader. GPU merge path: a GPU merg-
ing algorithm. In Proceedings of the 26th ACM international conference on
Supercomputing, pages 331–340, 2012.

[25] M. Herf. Radix tricks. http://stereopsis.com/radix.html, 2001. Ac-
cessed: 2022-04-21.

[26] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with
gpus. IEEE Transactions on Big Data, 2019.

[27] M. Krulǐs, S. Kirchhoff, and J. Yaghob. Perils of combining parallel distance
computations with metric and ptolemaic indexing in knn queries. In Inter-
national Conference on Similarity Search and Applications, pages 127–138.
Springer, 2014.

[28] M. Krulǐs, J. Lokoč, C. Beecks, T. Skopal, and T. Seidl. Processing the signa-
ture quadratic form distance on many-core gpu architectures. In Proceedings
of the 20th ACM international conference on Information and knowledge
management, pages 2373–2376, 2011.

63

http://stereopsis.com/radix.html

[29] M. Krulǐs, H. Osipyan, and S. Marchand-Maillet. Optimizing sorting and
top-k selection steps in permutation based indexing on gpus. In East Euro-
pean Conference on Advances in Databases and Information Systems, pages
305–317. Springer, 2015.

[30] M. Krulǐs and M. Kratochv́ıl. Detailed Analysis and Optimization of CUDA
K-Means Algorithm. In 49th International Conference on Parallel Processing
- ICPP, ICPP ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[31] Q. Kuang and L. Zhao. A practical GPU based kNN algorithm. In Proceed-
ings. The 2009 International Symposium on Computer Science and Compu-
tational Technology (ISCSCI 2009), page 151. Citeseer, 2009.

[32] S. Li and N. Amenta. Brute-force k-nearest neighbors search on the GPU.
In International Conference on Similarity Search and Applications, pages
259–270. Springer, 2015.

[33] M. Mareš. Pruvodce labyrintem algoritmu. CZ. NIC, zspo, 2021.

[34] M. L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour
approximating and eliminating search algorithm (AESA) with linear prepro-
cessing time and memory requirements. Pattern Recognition Letters, 15(1):9–
17, 1994.

[35] F. Moreno-Seco, L. Micó, and J. Oncina. Extending LAESA fast nearest
neighbour algorithm to find the k nearest neighbours. In Joint IAPR Inter-
national Workshops on Statistical Techniques in Pattern Recognition (SPR)
and Structural and Syntactic Pattern Recognition (SSPR), pages 718–724.
Springer, 2002.

[36] N. Nodarakis, A. Rapti, S. Sioutas, A. K. Tsakalidis, D. Tsolis, G. Tzimas,
and Y. Panagis. (A) kNN Query Processing on the Cloud: A Survey. In
International Workshop of Algorithmic Aspects of Cloud Computing, pages
26–40. Springer, 2016.

[37] C. J. Nolet, D. Gala, E. Raff, J. Eaton, B. Rees, J. Zedlewski, and T. Oates.
Semiring Primitives for Sparse Neighborhood Methods on the GPU. arXiv
preprint arXiv:2104.06357, 2021.

[38] S. Odeh, O. Green, Z. Mwassi, O. Shmueli, and Y. Birk. Merge path-parallel
merging made simple. In 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum, pages 1611–1618.
IEEE, 2012.

[39] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter. Bkd-tree: A dy-
namic scalable kd-tree. In International Symposium on Spatial and Temporal
Databases, pages 46–65. Springer, 2003.

[40] T. Ribizel and H. Anzt. Approximate and exact selection on GPUs. In 2019
IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pages 471–478. IEEE, 2019.

64

[41] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a met-
ric for image retrieval. International journal of computer vision, 40(2):99–
121, 2000.

[42] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms
for manycore GPUs. In 2009 IEEE International Symposium on Parallel &
Distributed Processing, pages 1–10. IEEE, 2009.

[43] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: A Dynamic
Index for Multi-Dimensional Objects. Technical report, 1987.

[44] X. Tang, Z. Huang, D. Eyers, S. Mills, and M. Guo. Efficient selection
algorithm for fast k-nn search on gpus. In 2015 IEEE International Parallel
and Distributed Processing Symposium, pages 397–406. IEEE, 2015.

[45] P. Terdiman. Radix Sort Revisited. http://codercorner.com/
RadixSortRevisited.htm, 2000. Accessed: 2022-04-21.

[46] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In VLDB,
volume 98, pages 194–205, 1998.

65

http://codercorner.com/RadixSortRevisited.htm
http://codercorner.com/RadixSortRevisited.htm

A. Attachments
The attachements contain a prototype implementation of all kernels presented in
our work. The impementation is also available online 1.

Prerequisites include cmake version at least 3.17, C++ compiler that sup-
ports C++20, and CUDA. The following commands download dependencies and
compile all kernels from our work:

1. git submodule update --init --recursive

2. mkdir build-release

3. cmake -B build-release -DCMAKE BUILD TYPE=Release
-DCMAKE CUDA ARCHITECTURES=70 .

4. make -C build-release

The build process creates an executable program knn, which can run our
benchmarks. A description of implemented benchmarks can be found in README.md.
We assume a Volta architecture. A different value of CMAKE CUDA ARCHITECTURES
has to be used for other architectures.

A.1 Structure
• src/distance includes implementation of distance kernels.

• src/topk/singlepass includes implementation of single-pass k-selection
kernels and the fused kernel.

• src/topk/multipass includes implementation of multi-pass k-selection ker-
nels.

• doc/05-evaluation contains bash scripts for running all experiments (run-*.sh).
All bash scripts contain a SLURM configuration to run the experiments in
KSI clusters.

1https://gitlab.mff.cuni.cz/hanakdr/knn

66

https://gitlab.mff.cuni.cz/mff/hpc/clusters
https://gitlab.mff.cuni.cz/hanakdr/knn

	Introduction
	Taxonomy
	Distance function
	Cheap distance functions
	Compute-intensive distance functions

	Outline

	GPU Programming
	Architecture
	Thread hierarchy

	Memory hierarchy
	Registers and local memory
	Shared memory

	Programming model
	Runtime API
	Host synchronization
	Synchronization of GPU threads

	Programming guidelines

	Analysis
	Problem definition
	Sequential solutions
	Indexing for nearest neighbours

	Parallelization
	Distance computation on GPUs
	Distances based on a dot product
	Specialized kernels
	Other distance functions

	Selection using sorting on GPUs
	Bitonic sort
	Merge path
	Radix sort

	Partial sorting
	Partial Bitonic sort
	Limitations of partial sorting methods

	Incremental selection
	Data parallel selection on GPUs
	Merge queue
	Warp Select

	Selection
	Sample Select
	Radix Select

	Conclusion

	Optimizations
	Single-pass selection
	Bitonic sort optimizations
	Shared memory mapping
	Transposed memory layout
	Bitonic sort implementation details
	Global memory throughput
	Analysis

	Fused distance computation with selection
	Applicability

	Multi-pass selection
	Partitioning
	Single-stage selection

	Evaluation
	Methodology
	Common distance functions
	Selection optimizations
	Bitonic sort
	Buffering
	Global memory throughput

	Single-pass selection
	Multi-query selection
	Single-query selection
	Fused kernel

	Multi-pass selection
	Sample select
	Partitioning algorithms

	Final kernel
	Comparison with a CPU implementation

	Conclusions
	Bibliography
	Attachments
	Structure

