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Introduction

Pre-training language models [Howard and Ruder, 2018, Peters et al., 2018, De-
vlin et al., 2019] has resulted in a change of paradigm in the world of NLP.
The prevalent strategy to achieve good performance on downstream tasks is now
to use a pre-trained model and fine-tune it on the downstream task data [De-
vlin et al., 2019, Howard and Ruder, 2018]. Furthermore, if the pre-training
data is modified to have data from various languages, the models are capable of
achieving surprising cross-lingual learning abilities [Conneau et al., 2020, Con-
neau and Lample, 2019]. This can happen without having to explicitly provide
cross-lingual learning signals, i.e., there is no need for parallel data. However,
there are certain conditions that need to be met in order for these cross-lingual
learning abilities to arise [Wang et al., Dufter and Schütze, 2020]. Among them,
a non-overparameterized model, overlap in vocabulary and/or syntax similarities
in the multiple languages. Finally, performance of the model in downstream tasks
can degrade as more languages are added to the model [Conneau et al., 2020],
this phenomenon was coined the curse of multilinguality.

Considering the above, Pfeiffer et al. [2022] propose an architecture, which
relies on modularity of languages making use of adapters [Houlsby et al., 2019],
as a solution to the curse of multilinguality; they call this approach X-MOD. This
architecture promotes the arising of shared representations as it adds language-
dependent adapters at each layer, which should transform the output of each layer
to be specific to that of the relevant language. The authors propose a method to
seamlessly add languages to an original pre-training of X-MOD. One of the main
claims in the work is that it makes little difference in downstream performance
whether a language was part of the original pre-training or whether it was added
post-hoc. Moreover, the authors also claim that the approach has the potential
to cover all languages in the world.

In this work, we aim to analyze these claims and try to identify crucial con-
ditions under which they hold. We do this by, firstly, replicating the experiments
presented in the paper. We also simulate low-resource language scenarios and try
to ascertain whether/where claims break down. Specifically, we:

• Limit the number of training steps in the language adaptation phase

• Artificially limit the overlapping vocabulary in languages

• Restrict available monolingual data for languages to be added

We find that the number of steps and available data are important conditions
that, if not met, could break down the claims in the original work.
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Finally, we test the model on a real so-called low-resource languages and test
their performance when compared to available baselines for zero-shot cross-lingual
transfer of knowledge on these low resource languages.

Our main objective is to provide guidelines for making the best use out of
X-MOD when confined to a low-resource scenario, which tends to be the case for
the majority of languages spoken in the world, since research is only carried out
in a few languages for which resources are readily available [Joshi et al., 2020]. A
secondary objective is to move away from square one research Ruder et al. [2022],
i.e., focusing only on one aspect of performance, fairness, and computational
efficiency. This work aims to focus on all aspects and tries to pave the way for
future research to do the same.

Finally, we also reanalyze criteria for determining whether a language is re-
lated to another, as we feel the original publication could be improved on this
analysis. We leave the results of this analysis as preliminary, and they will be
refined in future work.
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Chapter 1

Background and Related Work

In this chapter, we provide the necessary background in order to understand and
motivate the contents of this thesis. In section 1.1, we cover language models,
their evolution to neural approaches, and transfer learning. In section 1.4, we
discuss multilingual language models and their development over recent time. In
section 1.5, we discuss the phenomenon of cross-lingual transfer learning. In sec-
tion 1.6, we cover strategies on how to efficiently, but still effectively, train modern
language models. Finally, in section 1.7, we elaborate on modular multilingual
models, and we motivate why they are the focus of this work.

1.1 Language Modeling
Language models (LMs) have, in recent years, become the base model from which
a lot of natural language processing (NLP) solutions depart from. Language
modeling as a task has evolved over time in its approaches and solutions. In this
section, we discuss such developments and what consequences they have had on
the field.

1.1.1 Language Models
The language modeling task, in principle, assigning a probability to a sequence
of words [Manning and Schutze, 1999]. The task is classically presented as the
prediction of the next word given the previous words, the history, i.e., estimate
the probability distribution:

P (wt|wt−1, . . . , w1)
Actual approaches of estimating these probability functions rely on estimates

derived from the maximum likelihood estimate from an often large dataset using
counts:

P (wt, . . . , w1) = C(wt, . . . , w1)
N

(1.1)

P (wn|wn−1, . . . , w1) = C(w1, . . . , wn)
C(w1, . . . , wn−1) (1.2)
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Where N represents the number of training examples, C is a function that
represents the frequency of the word sequence that is passed as an argument.
This frequency corresponds to the frequency in the dataset used for estimating
our probability functions.

However, there is no straight-forward way of capturing the information for
all possible histories. In fact, it is impossible in practice, as language constantly
evolves. Classically, a Markov assumption was made, which allows models to only
take into account a local history as opposed to a complete one. This results in
n-gram language modeling. Where n is usually in the order of units, i.e., a very
local history. This means that the above equations would change to reflect this
local history:

P (wt, . . . , w1) ≈ P (wt, . . . , wt−n+1) = C(wt−1, . . . , wt−n+1)
# of n-grams (1.3)

P (wt|wt−1, . . . , w1) ≈ P (wt|wt−1, . . . , wt−n+1) = C(wt, . . . , wt−n+1)
C(wt−1, . . . , wt−n+1) (1.4)

Other approaches of limiting the space that needs to be modeled, is by at-
tributing every word a class. This results in the space being reduced, assuming
of course that the number of classes selected is lower than the vocabulary size of
the language being modeled.

These models, although powerful, have a serious limitation in the form of
what is called the curse of dimensionality: in order to be able to generalize,
the model needs to grow in the number of sequences it has seen. This in turn
will increase the model size and training time significantly.

Further considerations need to be made for this approach to work in practice,
such as smoothing, setting a vocabulary, limiting the corpus to said vocabulary,
etc. Furthermore, its limitations are obvious in terms of capabilities, as data
sparsity is a real issue Manning and Schutze [1999].

1.1.2 Evaluating Language Models
When working with language models, it is often necessary to be able to evaluate
them on their intrinsic ability to solve the task, without evaluating a downstream
task Manning and Schutze [1999].

In most scenarios, cross-entropy or perplexity is used to evaluate language
models. Perplexity is usually defined as follows:

perplexity(X, m) = bH(X,m) (1.5)
Where X is a distribution of tokens, b is the base we are working on (usually

2 or e), m is the model we are evaluating and H is the cross-entropy between the
empirical distribution and the distribution learned by the model.

1.1.3 Neural Language Modeling
Bengio et al. [2003] propose to learn a distributed representation of words, such
that knowledge gained from each training also extends to semantically similar se-
quences. This addresses one of the main drawbacks of classical language models
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based on n-grams; the curse of dimensionality, which was discussed in the pre-
vious section. This new shared representation approach is the basis for modern
language models. The neural language model learns a dense representation for
each word while also learning the probability function for sequences Bengio et al.
[2003].

Though there are many ways to formulate the language modeling problem, the
formulation does not change from what we’ve described in the previous section.
We will call this specific formulation of the task causal language modeling (CLM).

The dense representations are learned in a completely different way than clas-
sical language models. Equation 1.6 describes how the prediction for a word wt

is obtained from the network using a softmax operation. Equation 1.7 describes
the operations performed by the network to arrive at each yi in equation 1.6.

P̂ (wt|wt−1, . . . , wt−n+1) = eywt∑︁
i eyi

(1.6)

y = b + Wx + U tanh(d + Hx) (1.7)
The neural network is trained by maximizing the log-likelihood of the data

using a gradient descent1 approach by implementing a forward and a backward
pass.

θ ← θ + ϵ
∂ log P̂ (wt|wt−1, . . . , wt−n+1)

∂θ
(1.8)

L = 1
T

∑︂
t

log f(wt, wt−1, . . . , wt−n+1; θ) + R(θ) (1.9)

Where ϵ is the learning rate, or step size, in the gradient descent algorithm;
L is our log-likelihood; θ is the set of parameters of the network; f is the network
itself; and R(θ) is a regularization term over the parameters.

This fresh approach is not without issues. As with any modern neural ap-
proach, the model needs large amounts of data. Processing times were therefore
intractable when this approach was proposed. Furthermore, the training process,
iterative in nature, requires significant amounts of computational power and time.
Part of the main focus in the original publication is on training efficiency due to
these factors.

1.2 The Transformer Architecture
was first proposed in Vaswani et al. [2017]. Previous to it, recurrent neural
networks (RNNs). In particular, LSTMs [Hochreiter and Schmidhuber, 1997]
were used to model examples with a temporal aspect to them, i.e., sequence
modeling. The main drawback of RNNs is their need of sequentially processing
inputs in order to go through the training phases. This disallows parallelization
at training time. The transformer architecture, as seen in Figure 1.1, addresses
this by being able to process the input sequence at once using only an attention

1More recent formulations minimize the negative log-likelihood which has a direct corre-
spondence.
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Figure 1.1: The transformer architecture as depicted in the original publication,
reprinted from Vaswani et al. [2017].
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Figure 1.2: Examples of intuitive transfer learning, reprinted from Zhuang et al.
[2020]. Note that domains are related or similar in nature.

[Bahdanau et al., 2014] mechanism. The authors call this approach self-attention,
as any word can attend to any other word in the input in just one time-step.
The dot product attention mechanism the author’s use for their self-attention
mechanism is formally represented as:

Attention(Q, K, V ) = softmax
(︄

QKT

√
dk

)︄
V (1.10)

where Q represents a set of queries grouped in a matrix, K and V repre-
sent keys and values, and

√
dk is a normalization constant that depends on the

dimensionality of the model.
Originally, the transformer was a proposed solution for a machine translation

problem, i.e., a sequence to sequence problem. Modern language models however
may consist of only encoder layer blocks, only decoder layer blocks or both.

1.3 Pre-training and Transfer Learning
As stated in the previous section, compute power and time constraints were a
major hurdle for dense neural approaches in the language modeling task. In
recent years, inspired by the success of transfer learning in the computer vision
field, work arose that attempted to pre-train a model in order to be used as a
“base” model for future downstream tasks Howard and Ruder [2018], Peters et al.
[2018], Devlin et al. [2019]. In this section, we will elaborate on this technique
and how it has evolved.

Transfer learning is the process in which knowledge from a model in a,
usually, general domain is transferred to another learner in a different, often,
more specific domain. Figure 1.2 shows some examples of intuitive knowledge
transfer learning scenarios. Formally, Zhuang et al. [2020] define transfer learning
as leveraging information from a source domain, given mS ∈ N+ examples from
the source domain, DS, to improve the performance in a target domain decision-
making, fTj (j = 1, . . . , mT ), given some mT ∈ N+ examples from the target
domain. This formalization allows us to clarify some important points: Firstly,
it is not necessary for tasks to be related, this is merely a desire as it would most
likely lead to better leveraging of the knowledge from the source task. Secondly,
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Figure 1.3: The various ways in which transfer learning can happen across differ-
ent domains and training techniques. Reprinted from Han et al. [2021].

there are no explicit restrictions on the number of examples for each task, which
allows us to be able to leverage a large mS, i.e., number of examples from the
source task, while potentially only having access to a low mT number.

Pre-training is the process of training a model, from a random state, on a
general task with the aim of being able to transfer the knowledge learned from
the source task to other tasks in potentially other domains, i.e., downstream
tasks. The source task and training process can vary depending on the domain,
e.g., training an image classifier on thousands of classes for a computer vision
domain, or training a language model on large amounts of text for a natural
language processing domain. These examples are the most common choices for
the domains mentioned. The main goal of pre-training is to obtain a model
that has acquired knowledge that is not task specific. For instance, in computer
vision, early layers contain information on linear filters or color blobs Yosinski
et al. [2014]. In NLP, earlier layers have information on syntactical structure
Rogers et al. [2021]. These features are not task specific, but rather general to
the domain. After obtaining the pre-trained model, transfer learning is usually
accomplished by fine-tuning the model. The general knowledge should ideally be
preserved. Figure 1.3 shows the many paradigms under which transfer learning
is possible, naming specific examples for each of the approaches. It is important
to note that the pre-training phase can differ in its type. In the NLP field, a
self-supervised training objective is the common choice, as depicted in the figure.

BERT The transformer architecture, along with increasing computation ca-
pabilities, have contributed to a dramatic trend in NLP. Modern language models
are trained with a transformer architecture [Devlin et al., 2019, Liu et al., 2019,
2020b, Brown et al., 2020, inter alia]. Among them, BERT [Devlin et al., 2019]
has inspired a lot of analysis and has been consistently built upon.

[Devlin et al., 2019] is an encoder only transformer model trained on a masked
language modeling task. Masked language modeling differs from causal language

10



Figure 1.4: BERT model in its pre-training and fine-tuning stages. Reprinted
from Devlin et al. [2019]. In the pre-training phase (left) a subset of tokens
is masked, which the model must learn to predict. In the fine-tuning phase,
the model must learn useful representations of the sequences, depending on the
downstream task.

modeling in how probabilities are attributed to a sequence. In causal language
modeling, the model assigns a probability distribution over the vocabulary de-
pending on how each item is likely to appear as the following token given a specific
history. In masked language modeling, a portion of the tokens in a sequence are
masked, i.e., become unknown to the model. The model learns to predict which
words should appear in these masked portions of the sequence. This allows for
taking advantage of the transformer architecture and its parallelization capa-
bilities. Furthermore, much like CLM, the MLM objective is a self-supervised
task. This means that no labeling efforts are needed in order to gather the data
necessary to train the model. Finally, the model was also trained on a next sen-
tence prediction (NSP) objective. The setup for this objective was to aggregate
a representation from two sequences being fed into a single vector and predicting
whether the first sequence preceded the second one originally.

In Figure 1.4, the different phases of the usage of BERT are depicted. In
the pre-training phase, the model learns to predict masked tokens and to encode
the prediction of the NSP objective into the output of the first token. At fine-
tuning time, depending on the downstream task, the model learns to encode its
prediction at specific locations of the sequence. For sequence classification, the
prediction is encoded in the CLS token, i.e., the first in the sequence. For sequence
labeling, the prediction is encoded for each token.

Later work has improved upon the training process of the original proposed
model [Liu et al., 2019] by changing the training objective, namely removing
the NSP objective from the training; by trying a different architecture [Raffel
et al., 2020], which includes both encoder and decoder blocks in order to form an
encoder-decoder model; or by simply utilizing decoder blocks only and expanding
in size [Brown et al., 2020]. These efforts have continued to push the limits of
what can be achieved using language models.

Additional considerations. PLMs are usually fine-tuned by updating all
parameters on downstream data, and are able to achieve better performance than
training from scratch by making use of this transfer learning [Peters et al., 2018,
Howard and Ruder, 2018]. However, it has been shown that their training might
be unstable due to different factors such as vanishing gradients [Mosbach et al.,
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2020]. Furthermore, Popel and Bojar [2018], Liu et al. [2020a] show that the
warm-up stage is crucial when fine-tuning transformers, as removing it results in
divergence and instability. Moreover, measures are taken in order to motivate the
model to perform the knowledge transfer successfully, i.e., avoiding catastrophic
forgetting, such as gradually unfreezing layers as the training progresses Howard
and Ruder [2018].

1.4 Multilingual Language Models
There are over 7,000 languages spoken on Earth. Despite this fact, Ruder et al.
[2022] found that 70% of papers at a major conference only evaluated their ap-
proach on the English language, other studies have found similar results [Joshi
et al., 2020]. This is evidence for there being a clear need for language technologies
and research to cover more languages.

Shortly after pre-trained language models were proposed, [Devlin et al., 2019]
tried training their language model using an MLM training objective except they
included data from multiple languages, namely 100 languages using Wikipedia2

data. The resulting model was coined mBERT. The goal of this type of multi-
lingual model is to have a base model that can be readily fine-tuned on different
language models.

Shortly after, more multilingual models arose [Conneau et al., 2020, Liu et al.,
2019, 2020b, Xue et al., 2020]. All of these languages displayed a phenomenon
called cross-lingual transfer learning (discussed in detail in section 1.5 which
allows the model to leverage knowledge acquired from one language and apply-
ing it to another. These models were trained using similar strategies and all
performed well across the different languages. XLM-R [Conneau et al., 2020],
in particular, proves to outperform mBERT significantly in various downstream
tasks across most languages. The authors achieved this by:

1. Gathering significantly more diverse data in larger quantities than previous
approaches

2. Scaling the model according to the number of languages

3. Scaling the vocabulary size according to the amount of data

4. Simplifying tokenization by using a Sentence Piece3 [Kudo and Richardson,
2018] tokenizer

The XLM-R proponents focused on scaling multilingual language models, both
in terms of quantity and diversity. The authors were also the first to fully doc-
ument the curse of multilinguality, which states that there is a trade-off
between downstream performance of cross-lingual learning for low-resource lan-
guages and the number of languages that the model supports. This phenomenon
is discussed in detail in section 1.5.

2https://en.wikipedia.org/wiki/List_of_Wikipedias
3A sub-token tokenization technique that is language agnostic and allows training on raw

text data.
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1.5 Cross-lingual Transfer Learning
The ability of leveraging of information gained from one language and applying
it to another language is called cross-lingual transfer learning. It follows the
same definition of transfer learning we present in section 1.3, with a small caveat.
In cross-lingual transfer learning, the learner usually remains the same and can
run inference on multiple languages. When inference is run in a domain and/or
language that has not seen a training example, we deem it zero-shot inference.

Curse of multilinguality. Conneau et al. [2020] propose the concept as the
following trade-off: “[support for] more languages leads to better cross-lingual
performance on low-resource languages up until a point, after which the overall
performance on monolingual and cross-lingual benchmarks degrades”. In their
experiments, the authors experience a significant degrading in results across all-
languages after adding enough languages to a model with fixed capacity. They
find similar effects on a high versus low-resource language level, where the sam-
pling rate of languages affects performance in a trade-off manner between high
and low-resource languages.

1.5.1 Understanding Cross-lingual Transfer Learning
Wu and Dredze [2019] first document the zero-shot cross-lingual capabilities of
mBERT [Devlin et al., 2019]. Since then, further work has gone into investigating
this phenomenon [Wang et al., Dufter and Schütze, 2020, Conneau et al., 2020,
Pires et al., 2019]. The main aim of these models is, after all, to support various
languages and thus allow for a single model to be a foundation model for various
tasks and various languages and cross-lingual learning provides additional benefits
to them.

Collectively, cross-lingual learning research has determined crucial elements
for the phenomenon to occur.

Model Capacity, Structure, and Architecture

Dufter and Schütze [2020] conclude that there needs to be a ceiling and to the
model size such that there is enough capacity available to model all relevant
languages and not too much such that over-parameterization occurs, and thus
no shared representation is encouraged. Similarly, Conneau et al. [2020] conclude
that there needs to be a floor on the model capacity, as this will act as a mitigating
effect against the curse of multilinguality.

In terms of architecture, transformer models dominate the current LM space.
Recently, work has gone into adding adapters to models creating modular ap-
proaches [Pfeiffer et al., 2022, 2020, 2023]. These approaches will be discussed in
a future section (section 1.7.

Training Objectives

MLM as a training objective is ubiquitous in NLP. However, it is important to
study how it might affect cross-lingual abilities. Wang et al. [2019] first studied
the effect of the NSP objective originally used by BERT [Devlin et al., 2019]. They
find that not only NSP affects monolingual performance, but also cross-lingual

13



abilities even more drastically. heir experiment setup consisted of eliminating
conflating factors by building artificial languages. They test on language pairs
that consist of natural languages and artificial languages. They found the effect
occurred for all language pairs.

Dufter and Schütze [2020] investigate how auxiliary cross-lingual signals can
be provided in a slight modification of the MLM training objective. Instead of
masking with random words, masking with related words in another language
may boost cross-lingual transfer learning performance.

Maronikolakis et al. [2021] show that care needs to be taken when picking
the size of the vocabulary for each language that will be supported by the multi-
lingual model. The authors posture that these compatible vocabulary sizes may
encourage multilingual representation spaces in the model. They also propose
a metric that may aid future work to select the size of the vocabulary for each
language.

Finally, Deshpande et al. [2022] find that zero-shot downstream performance
is directly correlated to embedding alignment. Thus, encouraging this alignment
through an auxiliary training objective or an objective that seeks anchoring lexical
overlap may boost cross-lingual capabilities.

Data and languages

In Dufter and Schütze [2020], the authors argue that lexical overlap is not nec-
essary for cross-lingual learning to arise. However, they note that syntax simi-
larity is necessary if there is no lexical overlap. Deshpande et al. [2022] study
how domain similarity may encourage cross-linguality. Their results show that
comparable corpora, even without parallel sequences, encourages a shared repre-
sentation in the model. Parallel sequences perform the best, even without any
pairing. These results are compatible with the findings of Dufter and Schütze
[2020] who ran a similar experiment using the bible as its example corpus.

A number of studies has been done on determining whether language similarity
influences cross-lingual abilities [Dufter and Schütze, 2020, Deshpande et al., 2022,
Xu et al., 2022, inter alia]. The experimental setups are similar across the studies:
a set of artificial languages based on natural languages are created. These artificial
languages include modifications to their structure, e.g., inversion, transliteration,
syntax modification. As more modifications are applied, the worse the model
performs on the language pair.

Finally, work has gone into investigating how much lexical overlap may influ-
ence performance. Though preliminary research suggested that sub-word overlap
was paramount for cross-linguality to occur, it has been shown that it is not abso-
lutely necessary and might not contribute to performance as previously thought
[Dufter and Schütze, 2020, Wang et al., 2019].

1.6 Efficient Fine-tuning
While PLMs show a lot of promise, the fine-tuning process usually results in up-
dating the weights for the whole model. As these models are trained on massive
amounts of data, their size, and thus number of parameters, have increased sig-
nificantly over the past years. This means that fine-tuning on downstream data is
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Figure 1.5: Adapters as originally presented. Reprinted from Houlsby et al.
[2019]. At fine-tuning time, attention layers and feed-forward layers are frozen;
only the bottleneck adapters are updated.

relatively inefficient and computationally expensive. This is particularly relevant
for communities of languages which do not have access to a lot of resources, which
often occurs on both the data and the hardware front [Ahia et al., 2021]. It is,
thus, of uppermost importance for these communities, that proposed approaches
are efficient in their implementation.

Houlsby et al. [2019] propose a method to fine-tune a model by adding small
module adapters to the model. These adapters are added after pre-training has
happened, they are not present during pre-training. These modules only contain
few parameters, as illustrated in Figure 1.5. Their structure relies on a bottleneck
feed-forward subnetwork. The rate of this bottleneck is a hyperparameter that
must be found, though the original authors provide general recommendations.
Their proposed approach to fine-tuning involves only updating the weights of the
adapters, as opposed to updating 100% of the parameters in the model. This
results in a significant reduction of parameters that must be updated. Further-
more, the impact on performance is not drastic and, thus, this approach can be
very valuable for resource-constrained communities.

More recent approaches allow for models to perform downstream tasks without
updating parameters [Brown et al., 2020]. These approaches however will not be
covered further in this work and are mentioned for completion’s sake.

1.7 Modular Multilingual Language Models
The problem of inefficient fine-tuning of models also affects multilingual language
models, with the added challenge that one needs to fine-tune models without
disrupting the shared representations and thus avoiding catastrophic forgetting.
Pfeiffer et al. [2022] propose using individual bottleneck adapters, each exclusive
to each language supported by the model, at every layer of the model. These
modules are added even at pre-training time, unlike what is originally proposed
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Figure 1.6: X-MOD as presented originally. Reprinted from Pfeiffer et al. [2022].
The adapters are added at, and therefore are part of, the pre-training phase.

in Houlsby et al. [2019].
Figure 1.6 shows where adapters are added. These adapters are added at

each layer of the encoder block. From the figure, we can also see that each
adapter corresponds exclusively to one language, i.e., these adapters are language-
dependent.

Figure 1.7 illustrates how X-MOD is trained and adapted depending on which
stage is occurring. At pre-training time, these adapters are also trained. When
adding a new language to the model post-hoc, i.e., after pre-training is done,
a new embedding matrix is trained and a new set of adapters is trained. The
rest of the layer parameters are frozen and thus not trained, we shall call these
parameters the shared parameters. Finally, at training time, adapters are frozen,
and the shared parameters are updated. This implies that modules will remain
compatible across each other after fine-tuning. When running inference, the data
examples are routed through the relevant language-dependent modules.

Similar proposals have also been released, such as MAD-X [Pfeiffer et al.,
2020]. A crucial difference with the MAD-X approach is that not only are there
language-dependent adapters, there are also task-dependent adapters. Pfeiffer
et al. [2022] show that in some contexts, stacking these adapters might not be
optimal, as the increase in performance is marginal and the number of parameters
rises significantly.

Finally, Pfeiffer et al. [2023] propose a similar modular multilingual model:
modular multilingual T5 (mmT5). In their work, the authors propose a modular
alternative to the mT5 [Xue et al., 2021] model. The original mT5 model is a
sequence-to-sequence model that performs cross-linguality really well. However,
at generation time, it can generate the correct semantic meaning, but it has issues
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Bolded edges represent the focus at each stage.
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generating in the correct language. This problem is called the language source
hallucination problem. The authors of Pfeiffer et al. [2023] add language-
dependent adapters at pre-training time. The authors claim that they raise the
rate of generating in the right language from 7% to 99% when compared against
the original mT5.
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Chapter 2

Methodology and Hypotheses

In this chapter, we look into the experimental setup and claims in Pfeiffer et al.
[2022]’s work. We cover what was tested in their work and what was not tested.
Our work focuses on analyzing the claims proposed in Pfeiffer et al. [2022] in
more robust settings by trying to introduce controls. We also attempt to qualify
in more precise conditions when the claims in the original work hold. This chapter
is structured as follows:

• Training setup in Pfeiffer et al. [2022]: here we address how X-MOD
is pre-trained, adapted for more languages and fine-tuned for downstream
tasks.

• Experimental setup in Pfeiffer et al. [2022]: we address the exper-
iment setup used by the authors in order to support their claims. These
are not meant to be exhaustive sections explaining all of their experiments,
only those that are relevant to the claims this work attempts to quantify.

• Claims in Pfeiffer et al. [2022]: in this section, we discuss the claims
made in the original publication and select a subset of them to be investi-
gated by this work further.

• Hypotheses: we present and detail the hypotheses to be tested in our
work.

2.1 X-MOD Training Setup
Adapters are commonly added only at fine-tuning time, [Houlsby et al., 2019,
Pfeiffer et al., 2020]. The resulting model of Pfeiffer et al. [2022], henceforth X-
MOD, however adds them at pre-training time. In this section, we discuss this
and other decisions made when establishing the training setup for X-MOD. This
section covers the variations of X-MOD extensively, but not comprehensively. All
information has been extracted from Pfeiffer et al. [2022], unless stated otherwise.

2.1.1 Model Details
X-MOD is an extension of mBERT [Devlin et al., 2019] and XLM-R [Conneau
et al., 2020]. Both are multilingual models pre-trained on an MLM objective
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Model Size # train steps # langs
X-MOD.base.13.125k BERT-base 125k 13
X-MOD.base.30.125k BERT-base 125k 30
X-MOD.base.30.195k BERT-base 195k 30
X-MOD.base.60.125k BERT-base 125k 60
X-MOD.base.60.265k BERT-base 265k 60
X-MOD.base.75.125k BERT-base 125k 75
X-MOD.base.75.269k BERT-base 269k 75
X-MOD.base BERT-base 1M 81
X-MOD.large.prenorm BERT-large 500k 81

Table 2.1: List of models released by Pfeiffer et al. [2022]. Most models use
the BERT-base architecture, which features 110 million parameters, whereas the
BERT-large architecture features 340 million parameters.

and have shown great cross-lingual abilities. These models are discussed in more
detail in chapter 1. The extension made to these base models is the addition of
the bottleneck feed-forward adapters, as described in section 1.7. One adapter
per language is added. This means that with every language that is added to
the model, the number of parameters increases linearly. It is important to note
that, since data examples are routed through their specific modules depending
on the language, the computational cost, measured in FLOPs, remains constant.
Furthermore, the authors decided to place modules after the layer normalization
stage in each transformer block. Finally, a residual connection is placed to al-
low for adapters to learn a modification to the representation obtained from the
transformer block. This modification to be learned can be the equivalent of a
NOP, i.e., no change is applied. This allows for knowledge to traverse the network
directly if no language-dependent alterations are needed.

Table 2.1 details the models that were released by the original authors. The
varying values for training steps and number of languages is discussed in later
sections.

2.1.2 Data
The pre-training dataset used for the experiments is CC-100 [Conneau et al.,
2020, Wenzek et al., 2020]. Conneau et al. [2020] followed the filtering process of
Wenzek et al. [2020], which relies on filtering according to the perplexity of a lan-
guage model contrasted with a high-quality domain such as Wikipedia, to obtain
monolingual corpora of what they call “high quality” by filtering CommonCrawl1.
This filtering of CommonCrawl results in larger amounts when compared to us-
ing only data from Wikipedia while maintaining similar quality. This approach
of gathering data for the pre-training task differs from that of mBERT [Devlin
et al., 2019] which used only Wikipedia data.

Table 2.2 depicts the amount of data available for a subset of languages used
in the original experiment setup. We can see from the table that even the lower
resourced languages used to test the relevant claims have millions if not hundreds

1https://commoncrawl.org/about/
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Language Size (GiB) Tokens (M)
English 301 55,608
German 67 10,297
Spanish 54 9,374
Bulgarian 58 5,487
Greek 47 4,285
Turkish 21 2,736
Urdu 6 730
Korean 54 5,644
Japanese 69 530
Hindi 20 1,715
Russian 278 23,408
Ukrainian 85 6.5

Table 2.2: Information on CC100 for some relevant languages in the experimental
setup of Pfeiffer et al. [2022]. Size is rounded up to the nearest gigabyte. For the
full table, see Wenzek et al. [2020].

Stat Size (GiB) Tokens (M)
Average 23.94 2950.92
Median 4.75 337.50
Stdev 48.03 7132.01
Max 300.80 55608.00
Min 0.10 5.00

Table 2.3: Token and size statistics for CC100 languages. Tokens are show in
millions and dataset size.

or thousands of millions of tokens available for pre-training. It is very likely that
so-called low-resource languages may not have as much data available [Ahia et al.,
2021]. Furthermore, although the table does not show quantitative examples, we
can infer from the source of the data that it is diverse, containing different styles
and domains as it is the result of crawling the web.

As mentioned in section 1.5.1, the method of gathering data used is of great
benefit as it features two key aspects: the amount of data is large, and data is
diverse in domain.

2.1.3 Languages
The CC100 corpus contains data for 100 languages. Table 2.2 shows a small subset
of these languages. The magnitude of the amount of data can be appreciated in
this table.

Table 2.3 elucidates how much data is available per language in the CC100
corpus. The smallest language counts on roughly 5 million tokens for its (pre-)
training, which in its encoding equates to 100 megabytes worth of data. The
media language features a lot more data: around 337 million tokens, which,
depending on encoding, roughly equates 5 gigabytes of space.
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In terms of language diversity, the set is typologically diverse. 23 different
families are featured in the set of 100 languages. Of these 23 families, 8 are Indo-
European. Although only 8 families are Indo-European, most of the languages in
the dataset belong to these families. Table 2.4 depicts the exact distribution of
the languages and their families.

One of the main ways in which Pfeiffer et al. [2022] support one of their
claims relies on an experiment which separates languages based on their language
typology. Further, they list a set of languages which have no family in common
with the rest of the languages. Those languages are: Vietnamese, Thai, Korean,
Japanese, Greek, and Turkish. Previous work [Dufter and Schütze, 2020] has
shown that despite there being no lexical overlap, similar syntactical structure
in languages may allow for cross-lingual transfer learning. We theorize that this
conclusion may be extended to say that the typology of the language is not
as relevant as syntax similarity or lexical overlap. A preliminary analysis may
conclude that the syntax of the languages with a unique language family may be
similar to other languages.

2.1.4 Training Details
The authors of Pfeiffer et al. [2022] share a non-exhaustive description of how
their training is carried out. All the training is performed using the fairseq
library [Ott et al., 2019]. Most models extend the base transformer architecture,
which consists of 12 layers and a dimensionality of 768. Furthermore, the language
adapters have a bottleneck factor of 0.5. This results in modules representing only
around 2.5% of the total number of parameters. Some details change depending
on the phase the model is being trained on.

At pre-training time. The tokenizer used when pre-training is the original
XLM-R tokenizer [Conneau et al., 2020]. The learning rate has a linear schedule
and peaks at 7e-4. At this stage, all parameters are trained and updated.

Adapting new languages. The tokenizer is trained from scratch for the
new language. The vocabulary size is set at 30, 000. The learning rate peaks at
1e-4. Finally, only the new embedding matrix and the new language modules are
updated at this stage. This means that all transformer blocks, i.e., the shared
parameters, are frozen. It is important to note that tokens that overlap with
the original vocabulary are not initialized randomly, but with the values of the
pre-trained representation. It is theorized that this shared vocabulary will act as
an anchor between the two arising representations.

Fine-tuning to downstream task. The tokenizer and embedding matrix
used depends on the language that is being fine-tuned on. These parameters are
however frozen at this stage. The learning rate is found through a hyperparam-
eter search and is dependent on the task itself. At this stage, only the shared
parameters are updated. The embedding matrix and the language modules are
frozen and thus not updated.

The number of training steps at pre-training time is something Pfeiffer et al.
[2022] experimented with. They found that guaranteeing the same number of ex-
amples per language worked best. This invariably resulted in training for longer.
It is, however, unclear from the publication, for how long at each of the other
stages the model is trained for. For the fine-tuning stage, only the number of

23



epochs for each task is provided.

2.2 Tasks

2.2.1 Natural Language Inference (NLI)
The NLI task consists on evaluating two sequences (the premise and the hypoth-
esis) and determining whether a relation exists, namely an entailment as defined
in formal semantics, and of which type it is.

It is usually framed as a classification problem, where the possible predic-
tions/labels are: entailment, neutral, contradiction.

Several datasets have been proposed to evaluate this task. Most prevalent is
MultiNLI [Williams et al., 2018], which includes examples from multiple domains.
XNLI [Conneau et al., 2018] is an extension of MultiNLI, where MultiNLI exam-
ples were manually translated to other languages. How these translations are
done may impact the quality of the data as they might introduce artifacts, such
as leaking information in the premise or hypothesis by using the same vocabulary
choices, etc. [Artetxe et al., 2020a].

AmericasNLI [Ebrahimi et al., 2022] is yet another extension. This time, the
authors gather translations of the Spanish translations in XNLI to obtain training
examples for the NLI task for language indigenous to the Americas.

2.3 X-MOD Experimental Setup
In this section, we explain the setup for three of the main experiments in Pfeiffer
et al. [2022]. These are the experiments that were used to back up the main
claims of the paper.

2.3.1 Language Adaptation and Zero-Shot Performance
In this experiment, the authors want to show how well languages added post-hoc,
i.e., after pre-training is done, perform on the downstream task in a zero-shot
scenario.

Languages are added to a version of X-MOD pre-trained on 60 languages for
265k steps. The set of languages being added is relatively typologically diverse:
Bulgarian, German, Greek, Spanish, Turkish, Urdu, Mandarin. The authors con-
trast X-MOD against a version of the model which only features a single adapter
for all languages. This single adapter is scaled such that each language retains
the same capacity when compared against X-MOD. They test zero-shot perfor-
mance on three tasks: NER [Rahimi et al., 2019, Pan et al., 2017], NLI [Williams
et al., 2018, Conneau et al., 2018] and SQuAD [Rajpurkar et al., 2016, Artetxe
et al., 2020b, Lewis et al., 2020]. The authors find that X-MOD outperforms the
alternative model on all tasks and languages.

2.3.2 Language Adaptation vs. Pre-training
For this experiment, the authors divide a set of languages into two groups. They
then pre-train two models, one for each set of languages, along with the rest of
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the 60 languages that are part of the 60 language version of X-MOD. After this,
they extend the model to support languages from the group, on which the model
was not pre-trained on. The splitting of languages takes into account the family
of languages. When evaluating each language, they test zero-shot performance
for languages added post-hoc and those that were part of the pre-training set.
Their results show that there is no significant difference between pre-training and
adding post-hoc.

2.3.3 Language Relatedness
For this experiment, the setup remains the same as the above experiment. They,
however, include languages of unique families in the two sets of languages. They
test performance on these particularly diverse languages in a zero-shot scenario.
The results show that these languages can also perform at the same level regard-
less of whether they were part of the pre-training or were added post-hoc.

2.4 Claims in Previous Work
We believe that some claims in Pfeiffer et al. [2022] need further exploring, as they
are supported by experiments in a restricted scenario: the languages on which
they tested are fairly high-resourced and mostly Indo-European. In particular,
the claim we focus on is the following:

• Coverage Claim: Because of the above claim, the authors further claim
that “X-MOD has the potential to cover all languages of the world,
as the model has the capability to be adapted to new languages
post-hoc”. Part of the reasoning used to support this claim is a secondary
claim, which follows.

• Pre-training vs. Adding Claim: Pfeiffer et al. [2022] further claim
that “the per-language performance is on par when pre-training vs. when
adding the language post-hoc.” We will briefly address this supporting claim
in Section 4.6.

This work will mainly focus on the Coverage Claim.

2.5 Analysis of Previous Experimental Setup
Pfeiffer et al. [2022] back the claims from the previous section by running a series
of experiments in very specific scenarios. In this section, we go over what those
settings are. In order to analyze properly what limitations the experiments have,
we have to consider two perspectives: the data used and the languages used.
These were covered in previous sections. We find the following issues with the
claims and experiments that support them:

Coverage Claim Most languages that were added or pre-trained on to
X-MOD, had a great amount of data of decent quality. In a real life scenario,
this may not always be a reality. Furthermore, it is possible that confounding
factors were introduced as the similarity between languages was only analyzed at
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a typological level. Finally, as the authors point out, testing X-MOD on real-life
low-resource languages is something they have left for future work.

Pre-training vs Adding Claim The language setup for testing this claim
might involve a lot of confounding factors. Since the set of languages to pre-train
on in this experiment is quite large, it was difficult to ascertain whether there are
no related languages to the languages of unique origin. Relatedness and family
isolation are concepts that need to be well-defined in order for this claim to be
exploitable.

2.6 Hypotheses
The hypothesis of this work is that the main claims from Pfeiffer et al. [2022] are
under-specified and need to be quantified. That is, the claims do not hold in all
settings and thus need to be better defined. We hypothesize that:

• The effectiveness of the model relies on the quantity and quality of the
pre-training data. We hypothesize that there is a lower limit to X-MOD’s
usability. We test our hypothesis in Chapters 3 and 4.

• The initialization of the new embeddings with anchoring overlapping vocab-
ulary could be paramount in X-MOD’s performance. As an overlap may not
always take place, we propose to evaluate how much this overlap influences
performance. We test this hypothesis in Chapter 3

• Further, we hypothesize that family genealogy is not as important as similar
syntactical features and lexical overlap in languages when trying to predict
performance of an added language. We briefly address this in Section 4.6.
We will leave its thorough analysis to future work.

• Finally, we hypothesize that restricting the claims to a more constrained
scenario might aid in better guidelines emerging of when to make use of
this model. We address this in Chapter 4.

With this work, we also aim to motivate further research in modular multi-
lingual models analysis.
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Chapter 3

Analysis Experiments

In this chapter, we present and discuss experiments that attempt to elucidate
which concepts of traditional cross-lingual learning apply to modular cross-lingual
learning. Furthermore, we aim to replicate the main results of the X-MOD pub-
lication [Pfeiffer et al., 2022]. The chapter discusses the following experiments
and results:

1. A reproduction of original main language adaptation for X-MOD. Carrying
out this first experiment allows for an experiment pipeline to be established
and allows for easier experimenting in later stages of the thesis work.

2. Experiment on the number of training steps necessary for cross-lingual
transfer learning to kick in and be successful. With this experiment, we
evaluate how sensitive performance is to the number of training steps.

3. We evaluate using perplexity as a parameter for picking a checkpoint for
the language adaptation step.

4. We evaluate whether and how much the vocabulary overlap between the new
language and the pre-training vocabulary affects final downstream perfor-
mance.

5. We simulate a low-resource setting by limiting how much data is available
in the language adaptation step.

We will discuss further details about the training data that were not included
in the previous section, as they are findings separate from previous work. Finally,
we also outline the main conclusions and findings for each experiment accordingly.

3.1 Hardware and Computation Time
We run our experiments on single nodes of 8 A100 GPUs. We fix a batch size of
2048 on average. Training time every 10,000 steps ranges from 8 to 12 hours.

Experiments were conducted using a university infrastructure, which is located
in a country which has an average carbon efficiency of 0.19 kgCO2eq/kWh.1

We estimate the carbon footprint using the ML CO2 IMPACT [Lacoste et al.,
2019] tool. Total emissions are estimated to be 0.57 kgCO2eq. per experiment.

1https://ourworldindata.org/co2/country/germany
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3.2 Main Experiment Reproduction
One of the main results presented by Pfeiffer et al. [2022] are their results on
performance for languages added post-hoc. In this section, we present the pipeline
defined when attempting to replicate their results.

3.2.1 Implementation and Setup
The overall language adaptation pipeline can be described as follows:

Obtain monolingual data for the relevant languages. In the case of this
experiment replication pipeline, we simply rely on using the CC100 dataset [Con-
neau et al., 2020]. Documents are pre-separated and come from diverse sources.
Section 2.1.2 includes more information on this dataset. It is important to note
that the amount of data available for each language varies.

Train a tokenizer using the gathered monolingual data. We follow the
setup of Pfeiffer et al. [2022] to define the vocabulary size: a fixed 30, 000 tokens
for every new language added. We call this new vocabulary Vadd. It is unclear
from the paper how this number was picked. For our training, we used the
official SentencePiece implementation2. We limited the number of sentences to
be used to 10 million. These sentences are drawn at random from the monolingual
corpus. This is done as it is intractable to train the tokenizer on the amount of
monolingual data that some languages have available. Further, we use 40 threads
and use a model type of bpe. These options all should preserve the quality of the
tokenizer as used by the original authors of X-MOD and proponents of XLMR
and SentencePiece.

Tokenize the data with the trained tokenizer and binarize it so that fairseq
[Ott et al., 2019] can process it. At this stage, we also shard3 the data. For this
pipeline, we split the data into 40 shards. This allows for seamless loading of the
data in scenarios with constrained resources.

Load pre-trained model and freeze shared weights, i.e., any weight that
is not part of the language modules and the embedding layer. This model will
contain an embedding matrix Epre ∈ VXLM-R. It’s worth noting that positional
embeddings are also left unfrozen, meaning they will be updated. At this stage
we also initialize the new embedding layer to be trained by doing the following:

• Create a new embedding matrix of the appropriate size: R|Vadd|×d

• Iterate over the elements of Vadd

• For each w ∈ Vadd that is present in the original vocabulary VXLM-R, we
initialize the embedding value for w with the value present in Epre

It is important to note that the dimensions of Epre and Eadd differ. However,
this is not a problem since they only differ in the size of vocabulary and both
use d as their dimensionality to represent each sub-token. For this reason, the
integrity of the traversal of the data remains intact.

2https://github.com/google/sentencepiece
3Split the data into several files on disk so that fairseq loads each individually and the GPU

memory does not get filled trying to load the data.
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Train language adapters and embeddings. For the training of these
parameters, we train on the MLM task. We mask at the originally recommended
masking rate of 15% [Devlin et al., 2019]. The learning rate is linearly scheduled
with a peak of 1e-4. We experiment with the number of training steps and warm
up steps, as they are not explicitly reported in Pfeiffer et al. [2022]. Table 3.1
shows our results for varying numbers of training steps. We decide on a small
range of steps due to hardware and time limitations. Our range goes from 1,000
to 10,000, both for final number of steps and for checkpoint evaluation. We also
run a single experiment up to 50,000 steps, which took over 50 hours to finish. As
the number of experiments and languages on which we test is large, we decide to
limit future experiments to 10,000 steps. Further, due to the nature of the low-
resource double bind [Ahia et al., 2021], we decide that 10,000 steps is a good
threshold, as resources might not be readily available for low-resource language
communities.

Fine-tuning on MultiNLI [Williams et al., 2018] data. This step is completely
asynchronous with the rest of the pipeline as long as it happens before the final
evaluation. We fine-tuned the pre-trained version of X-MOD we are using on data
of the downstream task, in this particular case, MultiNLI. We fine-tune on English
data only in this pipeline. This fine-tuning is done with a fixed learning rate of
1e-5. This hyperparameter differs from the originally recommended learning rate
in Pfeiffer et al. [2022], which was an order of magnitude larger than the value
we used. This change reflects the different batch sizes we used due to constraints
in hardware available. It is unclear what batch size was used in the original fine-
tuning, however it can be inferred that this number was 2048, as that was the size
used for the other phases of training. We repeat this step for 3 different seeds.

Zero-Shot Evaluation on the downstream task. This phase involves:

• Loading both the fine-tuned model and the model with the additional lan-
guage adapters and new embedding matrix

• Replacing in the fine-tuned model the embedding matrix and adding the
new language adapters

• Route every data point to be evaluated zero-shot to the right language
adapters. This mainly involves passing an extra argument per example
that signals to which language the example belongs.

After getting the predictions, we evaluate using accuracy. We repeat this process
for the three difference seeds of the fine-tuned models. This is the metric used by
Pfeiffer et al. [2022] and will allow us to directly compare our results. We average
our results and report both the average and the standard deviation.

3.2.2 Results
Table 3.1 shows the results obtained by our pipeline. We run our pipeline by
adapting for 4,000 steps and for 10,000 steps. The best final average accuracy
value reflects similar performance to the results obtained by Pfeiffer et al. [2022].
There are however some crucial differences. We hypothesize that these differences
are due to the differences in hyperparameters.
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Language Ours (4k) Ours (10k) Pfeiffer et al.
German 68.1 ± 1.58 71.8 ± 1.18 75.4
Spanish 76.5 ± 0.21 76.5 ± 0.06 78.5
Bulgarian 70.8 ± 0.51 73.7 ± 0.15 77.4
Greek 73.1 ± 0.19 73.6 ± 0.14 76.2
Turkish 57.9 ± 0.91 62.7 ± 1.15 72.4
Urdu 58.8 ± 1.13 60.9 ± 1.11 64.9

Table 3.1: Zero-shot accuracy obtained on the XNLI task when reproducing
experiments from Pfeiffer et al. [2020]. Our results represent an average over
three seeds. Pfeiffer et al. [2022] report their results for 5 seeds and do not report
standard deviations.

Parameter Pfeiffer et al. [2022] Ours
Learning rate 1.00E-04 1.00E-04
Batch size 2048* ∼3000
Training steps Not reported 2,000 - 10,000
Warm-up steps Not reported 10%

Table 3.2: Experimental hyperparameters in both works. (*) means we have
inferred the value. The precise number in batch size differs from language to
language in our setup, hence the range for this parameter in the table.

Table 3.2 presents the hyperparameters that differ from the original publica-
tion. We can infer from our results that adapting for a larger number of steps
leads to better performance in the downstream task. As it is unclear for how
many steps the original authors trained, this could be the only factor separating
our obtained performance with their reported performance. We investigate this
effect further in a future section.

Previous work Dufter and Schütze [2020] has shown that the number of pre-
training steps must be large for cross-lingual abilities to arise. Pfeiffer et al. [2022]
posture that this may also apply to X-MOD in its pre-training phase, but do not
specify if this reasoning could also apply to the language adaptation stage.

3.2.3 Conclusion
From our results, we can safely conclude that our pipeline has been set up sat-
isfyingly, as the results obtained heavily reflect the performance obtained by the
original work, bar some differences due to hyperparameter variety. This pipeline
will be the base for all experiments presented in this work.

3.3 Effect of Number of Training Steps
In this section, we investigate the sensitivity of X-MOD’s language adaptation
step to the number of training steps. In the previous section, we presented results
for two different training steps: 4,000 and 10,000. In this section, we, again, train
our language adapters and a new embedding layer for the German language. We
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do this for up to 10,000 steps, with a single experiment of up to ∼50,000 steps.
This step count marks the end of a single epoch over the available German data
from the CC100 dataset.

3.3.1 Setup
The setup for this experiment is simple: train for N steps in the language adapta-
tion step, save checkpoints for every 1,000 training steps, and evaluate on them.

However, despite the simple setup, some considerations must be made in order
to understand the limitations of such a setup:

• As we are using a linear scheduler for the learning rate, evaluating at n
steps and training for n steps might yield different results

• The larger N is set to, the more checkpoints that will be evaluated during
the warm-up stage

Due to resource constraints, we choose to report results with this basic setup.
In order to address the concerns, we also train for a limited number of steps and
evaluate only on the final checkpoint. This means that each evaluation point will
be at the end of the learning rate schedule and not in different phases of it.

We set N = 10, 000 for our initial evaluation (every 1,000 steps).
Additionally, we define a set of Nk where k ∈ {4000, 6000, 8000, 10000} for

the second part of this analysis. Where the sub-index indicates the final number
of steps used for training, i.e., we train for k steps for each Nk. For all runs, the
number of warm-up steps corresponds to 10% of Nk.

Furthermore, we train for 50,000 steps without storing checkpoints every 1,000
steps as this results in lower storage demands and faster overall training.

For this training, we use the same hyperparameters as the reproduction ex-
periment, i.e., those recommended by the original publication of X-MOD.

Finally, we evaluate on three seeds of the fine-tuned version of X-MOD on the
NLI task. This fine-tuning is done on English data. This is the same setup as in
the previous section.

3.3.2 Results
Figure 3.1 shows the results of this experiment. The results show that perfor-
mance increases with the number of steps. The increase in performance seems
to be directly correlated with the rate of change of the parameters in the model
are changing, i.e., the learning rate. We use Spearman’s correlation coefficient to
measure this correlation and obtain an rs = 0.92857. While this is completely
expected, it may impact our checkpoint evaluation setup.

Additionally, one can see that the effect continues past the 10,000-step mark as
evidenced by the 50,000 training step experiment. After training for 50,000, the
model achieved the highest accuracy. When contrasted to the accuracy obtained
by Pfeiffer et al. [2022]: 75.4, it is entirely possible that the discrepancy between
our results in Section 3.2 lies only in the number of training steps. However,
an effect of diminishing returns can be seen in the results. Though there are,
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Figure 3.1: Performance for German zero-shot accuracy behavior as number of
training steps increases. This is done in the same training with linear learning
rate. Evaluation happens using checkpoints every 1,000 steps (checkpoint evalu-
ation). We also evaluate, separately, runs with different total number of training
steps and evaluate the last checkpoint (final step evaluation).

potentially, 5 accuracy points to be gained when comparing 10,000 steps and
100,000+, most of those gains are made during the first 50,000 steps if not fewer.

To investigate the relationship between learning rate, total number of updates,
and final performance, we perform an additional sub-experiment.

The results of this experiment are also shown in Figure 3.1. We can see
how the performance for each Nk, i.e., each training run with k total number of
training steps performs slightly worse than evaluating the model corresponding
to the longer training at the checkpoint which corresponds with k.

3.3.3 Conclusion
As we had hypothesized, the number of training steps does influence performance
significantly. Some additional insights were gained in this experiment:

• Training for longer and obtaining intermediate checkpoints might be more
efficient than training for a smaller number of steps

• There are diminishing returns after a certain number of steps. We leave
determining this threshold for future work.

• It is unclear how repetitions over the monolingual data may affect these
results, as our experiment setup only covered 1 epoch.

From these insights, we may conclude that X-MOD is sensitive to the number
of training steps hyperparameter. More work needs to go into determining what
number would be a good baseline for different amounts of available pre-training
data. A bias towards larger numbers of training steps would be recommended
according to our results.
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Language Absolute overlap Overlap (percentage)
Bulgarian 10,787 35.95%
German 11,479 38.26%
Greek 6,770 22.57%
Spanish 12,154 40.51%
Turkish 10,677 35.59%
Urdu 7,419 24.73%

Table 3.3: Language overlap in vocabulary presented as absolute numbers and as
percentages. All the languages have a new vocabulary of 30,000 elements.

k rk Effective overlap
0 0 0%
1 0.1 4.5%
2 0.25 10.1%
3 0.5 20.25%
4 0.75 30.35%
5 1.00 40.51%

Table 3.4: Effective keep rates for each rk tested in this experiment. It is impor-
tant to realize that the keep rate does not equate to the final overlap with the
original vocabulary, but what portion of the original overlap is kept.

3.4 Effect of Vocabulary Overlap
Previous work [Pires et al., 2019, Wu and Dredze, 2019] has shown that an overlap
in lexicon is crucial to cross-lingual transfer learning, as explained in more detail
in Section 1.5.1. Conversely, related work [Dufter and Schütze, 2020, Wang et al.,
2019] has shown that this may not necessarily be the case.

In this experiment, we aim to further understand modular cross-lingual trans-
fer learning by experimenting with different overlapping rates of vocabulary.

3.4.1 Original Overlap
We first analyze the overlap in vocabulary of the languages added in the pre-
vious experiment (Section 3.2). The overlaps in lexicon for these languages are
presented in Table 3.3. Overlap percentages range from 22% to 40%. A Pear-
son correlation analysis indicates that there is only some non-significant positive
correlation between the downstream performance and the vocabulary overlap
(r(4) = 0.405).

3.4.2 Artificially Reducing the Overlap
We now take Spanish, the language with the highest overlap and highest NLI
performance, and artificially reduce the overlap between its vocabulary and the
original XLM-R vocabulary. We do this by setting a keep rate rk. We randomly
draw a value and decide based on it, if it is smaller rk, whether an overlapping
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Figure 3.2: Overlap in vocabulary initialize using original embedding matrix vs.
performance. The x-axis represents what rate of words are not discarded, i.e., not
randomly initialized.

sub-token is initialized with the values from the original embedding matrix or at
random. This means that rk represents the rate of sub-tokens kept, i.e., handled
as normal. The lower the rate, the more randomly initialized sub-tokens there
are.

Table 3.4 shows the effective rates after applying the keep rate for the different
rk values. It is important to note that an overlap of 4.5% is far below the average
overlap rate for the languages tested in the previous experiments. With these
aggressive rates, we try to test whether X-MOD can handle extreme cases of low
overlap, which may be the case for distant from high-resource languages.

Figure 3.2 shows the results of this experiment when testing for three different
keep rates. We include the baseline case of not discarding any vocabulary items
in this analysis. The resulting numbers for this baseline case are taken from the
reproduction experiment results described in Section 3.2.

Discarding elements, regardless of the rate, has an appreciable negative impact
in performance. However, we can see from the results that even drastic discarding
of overlapping elements in the vocabulary (i.e., as low as r1 = 0.1), performance
does not different significantly when compared against results for other keep rates.
There is no clear pattern in the slight variability in performance. The standard
deviation increases once we start discarding elements, but even variability remains
stable throughout the keep rates after a certain threshold. For this reason, it may
be worth fine-tuning more models (with different seeds) in order to maximize the
probability of obtaining the best performance possible, especially if the overlap
is low. Defining a specific threshold remains something outside the scope of this
work.

Figure 3.3 shows how the validation perplexity evolves as training continues
for the different vocabulary restricted models. Our results show that as long
as there is some overlap present, perplexity will plateau around the same value.
However, it may take models a different number of steps to reach this convergence,
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Figure 3.3: Perplexity against the number of training steps for the different arti-
ficially limited models. (log-log scale)

depending on the overlap. The exception to the previous statement is the model
for which there is no overlap. This model plateaus at a slightly higher value and
takes longer to reach it. It remains unclear how training for longer might affect
this behavior.

Due to the initialization method of the new embedding matrix, a bigger ef-
fect is expected as the keep rate varies. This finding indicates that an overlap,
regardless of how minimum it is, and its small size will not affect performance
heavily. Though cross-lingual learning happens even when no overlap is found,
performance degrades significantly.

3.4.3 Conclusion
From the experiments, we can conclude that a large overlap with the original
XLM-R vocabulary is not an element that is absolutely necessary to make X-MOD
work. This may be good news for languages that do not have a big lexicon overlap
with high-resource languages usually used for pre-training, such as the ones used
to pre-train X-MOD. However, at least a minimal overlap is desired, as our results
show that disallowing an overlap significantly affects the downstream performance
negatively. Ways of inducing even a minimal overlap remains something to be
explored in future work. We hypothesize that domains where borrowed words
or code-switching often occur may be good sources of monolingual data for the
language adaptation step if no sufficient overlap is otherwise found.

The above finding coincides with previous cross-lingual learning analysis in
non-contextual embeddings [Artetxe et al., 2017, Smith et al., 2016].

However, from our experiments, we can also infer that a higher overlap does
not hurt performance and might even aid it slightly. For this reason, it may be
the case that, when training a tokenizer, the sub-token inclusion decision process
could be informed with overlap information. i.e., give sub-tokens that overlap
with the pre-training vocabulary a higher weight in their chance of being added
to the vocabulary. We leave the exploration of this possible enhancement to
X-MOD for future work.
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Fraction Size (MB) Tokens (M)
Spanish 1 82,000.00 9,374
centiSpanish 1/100 836.00 93
miliSpanish 1/1000 84.00 9
microSpanish 1/10,000 8.40 0.9
nanoSpanish 1/100,000 0.85 0.09

Table 3.5: Variations of restriction in amount of data for the Spanish language.
Sizes and counts presented here are for tokenized data.

Our experiment aims to quantify the Coverage Claim from Section 2.4. We
propose that X-MOD can significantly support languages that have at least min-
imal overlap in vocabulary with the original XLM-R tokenizer.

3.5 Simulating a Low-resource Setting
X-MOD was tested originally only on languages that have an abundant amount of
data. In Chapter 2 we show that the average number of tokens for the languages
tested is of around 2 billion tokens and a median of 300 million tokens.

The X-MOD proponents claim that X-MOD could potentially cover all lan-
guages of the world. We call this the Coverage Claim in the previous section.
They however did not test the performance of adapting languages with little data
to the model. Low-resource languages usually have orders of amount of fewer data
than what the languages of X-MOD have to offer. In this experiment, we explore
the limits of data scarcity in the language adaptation step in order to quantify
the original claim.

3.5.1 Setup
For this experiment, we take Spanish and simulate having significantly fewer data
available for it than originally. We pick Spanish for the following reasons:

• Spanish is one of the languages with the largest number of tokens available
in the CC100 dataset, with over 9 billion tokens present.

• The quality of the Spanish CC100 data is something that the authors of
this work can directly verify

• Spanish has high quality data and is diverse in content

For these factors, we believe that selecting Spanish reduces the number of con-
founding factors in this experiment. In less constrained scenarios, all languages
would be tested. We leave this further exploration to future work.

We limit the amount of data artificially by sampling sentences at random from
the corpus. Table 3.5 shows the fraction of data used for each variation of data
available. As sentences are drawn randomly, the exact rates and sizes do not
reflect the fraction exactly. This is mostly the case for the smaller quantities.
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Figure 3.4: Perplexity (logarithmic scale) for each limited version of Spanish as
training steps progress.

The smallest fraction of data for this experiment is roughly 1/100, 100th of
the original available data. This equates roughly to 90,000 tokens available for
training.

Using the limited amount of data for each variation, we train a new tokenizer
using only the data available. This further simulates a real scenario where the
limited amount of data is the only available data for all parts of the process.
However, all vocabularies are of size 30,000.

Regardless of the available data, we train for 10,000 steps using the same
hyperparameters from the main reproduction experiment. The batch size however
is influenced by the amount of data available once all examples available all fit in
one batch of distributed training. At this point, the batch size will be limited by
the available data.

We use the same validation set as for the original reproduction experiment in
this setup. This means that we will be evaluating against the same distribution.
However, perplexity values are not directly comparable, as we are using a different
vocabulary for each model.

3.5.2 Results
Figure 3.4 shows how perplexity evolves as we keep training. We can see that
after a certain threshold, the validation perplexity begins to rise. It also stabilizes
after a certain number of steps. This divergence point varies across the different
language variations. The centiSpanish and miliSpanish variations do not suffer
from this divergence. Perplexity continues to decrease as the training continues,
albeit very slowly. This is not unlike what is observed for training Spanish with
all available data.

Due to this divergence effect, we decide to evaluate the best checkpoint (per
validation perplexity), and the last checkpoint of the model after training is done.

For inference, we use the same checkpoints for three different seeds of the
fine-tuned model. This makes the downstream performance entirely dependent
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Figure 3.5: Downstream performance measured in zero-shot accuracy for each
amount of data available in 1/100,000ths of the original data. This would make
the first data point nanoSpanish, and so on. For the first two data points, the
last and the best checkpoint are one and the same.

on the language adaptation step of X-MOD, which aims to add a language to the
model.

In Figure 3.5 we show the results of zero-shot accuracy following the setup of
the original reproduction experiment.

We can see from the results that the “best” checkpoint, as per validation
perplexity, does not always translate to better downstream performance. In fact,
in both instances, the “last” checkpoint performs slightly better despite perplexity
higher perplexity.

3.5.3 Conclusion
When fixing the number of steps to be trained for in the language adaptation
step, the amount of data available has a direct impact on performance. This
impact might be drastic when reaching the lowest amounts of possible data (less
than 1 million tokens).

On the lower end of the spectrum of data availability, unexpected behavior
occurs: the perplexity performance of the language model does not necessarily re-
flect performance on the downstream task. The model might even start diverging
soon after training begins.

On the higher end of the spectrum, however, gains obtained by adding more
data start to decrease. Assuming the monolingual data is of good quality, vali-
dation perplexity will continue to decrease as the training continues.

We can directly relate these experiments to the Coverage Claim from Section
2.4. It is unclear how many of the world’s languages would reach the thresh-
old necessary to experience the expected behavior of X-MOD. Our experiments
suggest that this threshold lies somewhere between 1 and 10 million tokens in
monolingual data. This assumes quality and diversity, as this is what was ob-
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served on the Spanish data used for the experiment. Thus, we can conclude that
the claim must be restricted in terms of available data and its quality.
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Chapter 4

Low-resource Setting
Experiments

In Chapter 3, we simulate a low-resource scenario by arbitrarily and artificially
restricting available data and other parameters. In this chapter, we present ex-
periments and our analysis on using X-MOD on a set of languages, for which
there is not abundant monolingual data available. The chapter is structured in
the following way:

1. We introduce the languages to be tested on and their properties

2. An analysis of the quantity and quality of the data available for the lan-
guages

3. We naively test an adaptation strategy and try to apply findings from pre-
vious chapters

4. We test an alternative adaptation strategy proven successful in other con-
texts

5. We present recommendations on using X-MOD with low-resource languages

4.1 Languages
In this work, we will deal with languages from the Americas, namely those which
were studied and for which data was collected in the AmericasNLI work [Ebrahimi
et al., 2022]. In this section, we present the languages and their main attributes
that are relevant to this work.

Table 4.1 shows a summary of the languages presented. When possible, we
use the local name for each of the languages, much like it is done in the main
AmericasNLI publication [Ebrahimi et al., 2022]. We adapt summaries for each
language from Ebrahimi et al. [2022].

Aymara Aymara is a language spoken in Bolivia, Chile, and Peru. It has
around 2 million speakers. Due to the terrain in the region, the language has
many dialects. The AmericasNLI data was translated into the Aymara La Paz
dialect specifically. The language features an SOV word order in main clauses.
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Language ISO Family Regions

Aymara aym Aymaran Bolivia, Peru, Chile, Argentina
Asháninka cni Arawak Peru, Brazil
Bribri bzd Chibchan Costa Rica
Guarańı gn Tupi-Guarańı Paraguay, Bolivia, Argentina, Brazil
Nahuatl nah Uto-Aztecan Mexico
Otomı́ oto Oto-Manguean Mexico
Quechua quy Quechuan Throughout Andes Mountains
Rarámuri tar Uto-Aztecan Mexico
Shipibo-Konibo shp Panoan Peru
Wixarika hch Uto-Aztecan Mexico

Table 4.1: AmericasNLI [Ebrahimi et al., 2022] languages, their ISO code, lin-
guistic family, regions where the languages are spoken.

Asháninka This language is spoken in Peru and has around 70,000 speakers.
It features VSO word order. The language spoken in a small region delimited by
the Andes mountains and the Amazon River.

Bribri Bribri is a tonal and endangered language spoken in the southern
part of Costa Rica. It is only spoken by roughly 7,000 people. It features SVO
word order. Much like with other indigenous languages of the Americas, there ex-
ist several orthography standards for the language. To further complicate things,
sometimes the same diacritics are encoded differently depending on the author.
The AmericasNLI team worked on standardizing these discrepancies in their re-
leased data. They translated the data into the Amubri dialect.

Guarańı Guarańı is one of the biggest languages analyzed in this work. It
features an SVO word order and is the language of 6 to 10 million speakers. It
has an official orthography standard.

Nahuatl Nahuatl is regarded as a language family with around 30 different
variants spoken in Mexico. It is spoken by over 1 million people. It features SVO,
VSO and SOV word order depending on the emphasis of the sentence. It has no
orthography standard. The AmericasNLI team translates their data into the
central dialect of Náhuatl de la Huasteca. They also normalize the orthography
to a version “close to Classic Nahuatl”.

Otomı́ Otomı́ is a language spoken in Mexico and has 9 different variants.
The AmericasNLI standardized their translations to a dialect spoken by fewer
than 100 people. Otomı́ is a tonal language and is spoken by around 300,000
speakers. It features an SVO word order.

Quechua Quechua is a language family as opposed to an individual language.
It is mainly spoken in Peru and is spoken by over 8 million people. The language
uses an SOV word order. The AmericasNLI examples were translated to the
Quechua Chanka dialect.

Rarámuri Rarámuri is a language spoken in Mexico and has around 90,000
speakers. It features SOV word order. The AmericasNLI examples are translated
into the Highlands variant and orthographically standardized.

Shipibo-Konibo Unlike other languages, Shipibo-Konibo has an official
orthography standard, which the AmericasNLI examples adapt. This language is
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Language Size (KB) Tokens (K)

Aymara 1,100 155.9
Asháninka 346 39.5
Bribri 386 59.3
Guarańı 4,600 660.1
Nahuatl 3,400 462.7
Otomı́ 608 99.4
Quechua 15,000 1,729.3
Rarámuri 858 123.2
Shipibo-Konibo 684 91.0
Wixarika 565 98.3

Table 4.2: Monolingual data available for the languages used in AmericasNLI.
The size is given in kilobytes and the number of tokens in thousands.

spoken in Peru by around 35,000 speakers. It has SOV word order.
Wixarika Wixarika, or Huichol, has 4 variants spoken in Mexico by approx-

imately 48,000 people. It features SOV word order. The AmericasNLI examples
are translated into the Northern variant. They adopt what seems to be the more
common orthography standard.

These languages cover an almost continuous territory from Mexico to Ar-
gentina. Languages are diverse in their morphology: we have languages for all
analytic, polysynthetic, and agglutinative types. Similarly, their syntax varies
greatly. For a more exhaustive description of the languages, refer to our main
source of the summaries in Ebrahimi et al. [2022].

4.2 Available Data
In this work, we aim to compare our results with the results obtained in Ebrahimi
et al. [2022]. For this reason, we aim to use only the data provided by them.

For their adaptation experiments, the AmericasNLI team gathered parallel
data for translation augmentation of data. They restrict themselves to using
only the monolingual data from this parallel set to further adapt XLM-R.

For this reason, we restrict ourselves to using only this dataset. Table 4.2
shows the amount of data available for each language that on which we test in
this section. As AmericasNLI represents a true low-resource scenario, we can see
how available data is orders of magnitude smaller than for the languages of the
CC100 dataset.

The way to collect data varies depending on the language. As the authors
gathered parallel data, they relied on sources of different domains. For Bribri,
for instance, spontaneous conversations were recorded and translated [Solórzano,
2017]. For other languages, translations of books or news are used as a source,
e.g., Aymara uses parallel data from Global Voices 1. Table A.4 shows a sample
sentence per language. There appears to be a variety of tokenization standards,
sentence lengths, and overall quality. With these differences, it is hard to evaluate

1https://globalvoices.org/about/
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the quality of the data. We can determine that religious, historical and official
texts are predominant in the data, which may harm diversity and, in turn, overall
quality.

It is important to note that all languages are closest to our nanoSpanish
variant from Section 3.5. We therefore expect to see some of the same effects we
saw in previous experiments.

4.2.1 AmericasNLI
The AmericasNLI project [Ebrahimi et al., 2022] is a collaborative effort to extend
XNLI [Conneau et al., 2018]. This entails that XNLI data is translated into
new languages, in this case to the indigenous languages of the Americas. This
translation were manually done by human translators. The source language for
the translation was Spanish, as most translators are speakers of Spanish. A
domain restriction was also applied in order to avoid code-switching and borrowed
words from Spanish to be prevalent in the data.

The resulting AmericasNLI dataset consists of 750 NLI examples for most
languages, with an even split among each class of the NLI problem. This means
that the random baseline would lie around 33%.

The AmericasNLI team also experimented with different zero-shot approaches
to the high-level task of NLI using their gathered data. They were able to gain
significant accuracy points over the random baselines.

In this work, we will be comparing our performance against the variant of their
results called XLM-R+MLM (en). This variant entails further adaptation of XLM-
R using monolingual data for each of the AmericasNLI languages. They then
fine-tune XLM-R on the English data for NLI. Finally, they evaluate, zero-shot
on the target language.

4.3 Adaptation
In this section, we will discuss the adaptation phase, i.e., adding the AmericasNLI
languages to X-MOD. More specifically, we will naively add languages to different
versions of X-MOD to evaluate how X-MOD performs when the languages added
are “truly low-resource” languages [Ebrahimi et al., 2022].

4.3.1 Setup
For the adaptation stage, we follow the same steps as Section 3.2 with a few
modifications:

1. Restrict monolingual data to that used by the AmericasNLI team

2. Train tokenizers using a vocabulary size of 15,000. Some languages do not
have enough data to train a tokenizer with a vocabulary of 30,000 tokens.

3. Run the language adaptation step as usual with the same hyperparameters,
i.e., add language modules at each layer and initialize a new embedding
layer to be trained as outline in previous chapters.
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ISO Overlap Overlap (%)

aym 5219 34.79%
bzd 1958 13.05%
cni 1343 8.95%
gn 5457 36.38%
hch 1554 10.36%
nah 2824 18.82%
oto 2566 17.10%
quy 2605 17.36%
shp 1466 9.77%
tar 1585 10.57%

Table 4.3: Lexical overlap between AmericasNLI languages and the vocabulary
published for XLM-R. We present the numbers in raw form and in percentage.

4. Our language modeling validation data is drawn from the validation set of
the AmericasNLI dataset. Meaning, we evaluate directly the perplexity in
the AmericasNLI domain.

For evaluation, we evaluate using the AmericasNLI released dataset, readily
available on the HuggingFace website 2.

4.3.2 Vocabulary Overlap
In previous sections, we discuss the effect the lexicon overlap has on the per-
formance of X-MOD. For this reason, we evaluate the lexicon overlap between
the different indigenous languages relevant to this paper and the languages of
XLM-R. We utilize the same setup as in Section 3.4.1.

Table 4.3 shows the overlap between the original XLM-R vocabulary and the
vocabulary obtained after training a tokenizer with a vocabulary size of 15,000.
Larger amounts of data available does not seem to directly translate to higher
overlap percentages.

Most overlapping rates are, as expected, lower than for languages that are part
of the CC100 dataset. According to our findings in Section 3.4, however, some
overlap is needed for X-MOD to perform well. All languages from AmericasNLI
seem to have some existent overlap.

We leave experimenting on artificially limiting the overlap for these languages
as an experiment for future work.

4.3.3 60-language X-MOD
So far in this work, we have worked with a variant of X-MOD that was pre-trained
on 60 languages. What is particularly interesting about this, in the context of
testing indigenous languages from the Americas, is that Spanish is not part of
this 60-language version. We hypothesize that this will hurt performance.

2https://huggingface.co/datasets/americas_nli
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Figure 4.1: Performance for zero-shot accuracy on the AmericasNLI test set. We
show results when evaluating with the best checkpoint, the last checkpoint, and
the reported AmericasNLI numbers [Ebrahimi et al., 2022]. The languages are
ordered by amount of data available in ascending order.

Figure 4.1 shows the results obtained. We evaluate on the last checkpoint, on
the best checkpoint (as per validation perplexity) and the results reported by the
AmericasNLI team, specifically the XLM-R+MLM (en) approach.

We report performance on both checkpoint selection approaches, as the amount
of data available for all languages is significantly low. We saw in the previous
chapter that performance may vary between the two approaches. Furthermore,
we saw that the last checkpoint performs better than the best one according to
validation perplexity. We see the same effect with AmericasNLI data.

Despite all languages being able to significantly beat a random baseline (of
33%), none of the models were able to surpass the performance reported by the
AmericasNLI team.

4.3.4 81-language X-MOD
For this experiment, we add the Americas languages to the 81-language version
of X-MOD. It is worth noting that this model has the same capacity as the
60-language version. The only additional capacity pertains to the 21 additional
languages. Since we will only be using the shared parameters for our experiments,
the additional capacity is not used.

This version of X-MOD features Spanish as one of the 81 languages. The ISO
codes for the other 20 additional languages are the following: as, br, bs, fy, gd,
jv, kn, mg, mr, om, or, pa, su, xh, yi, bg, de, el, es, tr, ur, zh.

Figure 4.2 shows our results for this experiment. We see from these results
that adding the AmericasNLI languages to the 81-language version of X-MOD
helps to bridge the gap between our previous results and the results reported by
the AmericasNLI team. Figure 4.3 further corroborates this by directly presenting
the difference between our results and the XLM-R+MLM (en) results from Ebrahimi
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Figure 4.2: Performance for zero-shot accuracy on the AmericasNLI test set
when adapting the 81-language version of X-MOD. Again, we show results
when evaluating with the best checkpoint, the last checkpoint, and the reported
AmericasNLI numbers [Ebrahimi et al., 2022]. The languages are ordered by
amount of data available in ascending order.
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Figure 4.3: Difference between our achieved performance and the reported per-
formance in Ebrahimi et al. [2022]. Lower is better. The languages are ordered
by amount of data available in ascending order.
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Figure 4.4: Perplexity (in a logarithmic scale) when adapting languages to the
81-language version of X-MOD. All 10 languages of Ebrahimi et al. [2022] are
shown. We also annotate the number of tokens available for each language.

et al. [2022]; we can see how the delta decreases when comparing the 60-language
version and the 80-language version in almost every case. In some cases, such as
for the case of Otomı́ and Wixarika, we surpass the reported results. In other
cases, such as Guarańı, Nahuatl, and Quechua, we only bridge the gap but do
not surpass the results. Coincidentally, the latter languages are languages that
have some of the highest data availability from the AmericasNLI languages.

4.3.5 Conclusions
From these adaptation experiments, we can infer some conclusions about how
X-MOD performs on low-resource settings.

• The findings from our artificial setup from Chapter 3 seem to apply to real
life low-resource settings.

• Adapting the model to new languages might require more than 10,000 steps,
as seen in previous sections. It is unclear if this is the reason for the gap
between our results and those reported in Ebrahimi et al. [2022].

• The phenomena found in Chapter 3 applies to the monolingual corpora used
in this chapter. This might mean that the quality of the data might not be
as important to these factors as the quantity.

• As seen in Figure 4.4, the behavior of perplexity seems explicitly linked
to the quantity of data. Languages that have more data than or close to
the amount of microSpanish from the previous section, seem to escape the
perplexity divergence phenomenon.
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4.4 Merged Adaptation
In the previous section, we run the language adaptation phase in a naive and
direct way. We do not deviate from previous setups. In this section, we attempt
to adapt our X-MOD models using multilingual adaptive fine-tuning (MAFT)
[Alabi et al., 2022]. This approach shows great promise in African languages,
which are not high-resource languages. In the original MAFT approach, the
language is adapted as a whole. The authors also experimented with a modular
approach, but this was used after the language adaptation phase was done, i.e.,
the modular approach made use of the adapted pre-trained language model.

4.4.1 Setup
In this experiment, we attempt to run the language adaptation phase on all
languages at once. That is, our adaptation data is a combination of all data
available for all languages available. This entails adding only one adapter, which
handles multiple languages, to the model at each layer. The capacity of the
adapter shall remain the same as for previous experiments. We do this in two
ways:

• Merged Adaptation We naively combine data by concatenating all
datasets and randomizing their order. We do this in hopes of guaranteeing
a mix of languages per batch.

• Balanced Merged Adaptation We combine data, but we try to mitigate
imbalances in the proportion of data available per language. This is done
because some languages have significantly more data than others. With this
approach, we try to prevent a subset of languages to dominate the language
adaptation phase.

We also exclusively combine AmericasNLI languages in this experiment with-
out mixing in any high-resource languages, as done in the original proposal of
MAFT. We do this because we experiment with both the 60 and the 80-language
version of X-MOD. Experimenting with combining languages from the 21 lan-
guages with languages of the Americas may be something worth exploring, and
we leave this as possible future work.

4.4.2 Results
Figure 4.5 shows the obtained results. There are no clear trends that indicate the
MAFT approach surpasses individual adaptation. However, this approach poses
an advantage in terms of computational resources, as one single adaptation run
results in all languages being added. The performance, however, seems to drop
for some languages significantly.

The bridge between the best results in Ebrahimi et al. [2022] and our merge
approach grows for the languages that have the most resources. Finally, it is
worth noting that this merging contrasts with the original purpose of X-MOD,
which is to isolate languages into modules and combat the curse of multilinguality.
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Figure 4.5: Performance for zero-shot accuracy on the AmericasNLI test set. We
show results for our simple merge approach (Merge) and our balanced merge
approach (B-Merge) on the two different versions of X-MOD, the 60 and the 81
language versions, and the reported AmericasNLI numbers. The languages are
ordered by amount of data available in ascending order.

4.5 Summary of Results
In Table 4.4, we present a summary of our results. We show the average zero-
shot accuracy across all languages for all seeds for each approach. We can see
that our X-MOD setup was not able to surpass the best results presented by the
AmericasNLI team. Using the last checkpoint of the adaptation phase of the 81-
language version of X-MOD performs best in our setup. Although our setup was
unable to beat the average performance, it was able to surpass the performance
of Ebrahimi et al. [2022] in some individual languages, like Otomı́ and Wixarika.

4.6 Recommendations on Using X-MOD in Low-
resource Scenarios

Through our experiments, we have gained insights into how to best use X-MOD
in low-resource scenarios. In this section, we present these insights in the form of
recommendations on how to best make use of X-MOD.

1. As with other methods, gathering monolingual data is of paramount im-
portance. Our experiments show that 10 million tokens should suffice to
achieve the expected performance.

2. If absolutely no vocabulary overlap is found, artificially introducing it would
be ideal. This could happen by gathering more monolingual data or crafting
sentences that include some overlapping vocabulary.

49



Approach X-MOD Version Avg. Accuracy

Naive (last) 60 39.65%
Naive (best) 60 38.01%
Naive (last) 81 42.68%
Naive (best) 81 41.36%
Merge 60 36.72%
Balanced Merge 60 36.69%
Merge 81 38.20%
Balance Merge 81 38.01%
Ebrahimi et al. [2022] N/A 43.70%

Table 4.4: Summary of results for all approaches tested. Average zero-shot ac-
curacy across all seeds and languages are reported. The best approach is bolded
and the best result in each subdivision is underlined.

3. Defaulting to a very large number of training steps is desired, i.e., a number
in the order of dozens of thousands, hundreds of thousands if resources allow
for this.

4. Use the last checkpoint from the adaptation step to obtain the parameters
for the language modules and embedding matrix, despite what the valida-
tion perplexity may indicate. This is especially true if you do not have
abundant monolingual data for the language modeling task.
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Conclusion

In this work, we have analyzed X-MOD and have tried to quantify the claims in
the original work. Here we summarize our main findings.

Summary and Discussion
We test X-MOD in contexts where it was not originally tested by artificially
changing the available data. We find that a high vocabulary overlap may not
be paramount to good cross-lingual transfer learning, though some overlap must
be present for performance to not degrade drastically. We also find that specific
amounts of monolingual data may result in X-MOD not behaving as expected,
namely that, despite divergence in the language adaptation step, the model may
still successfully learn representations of the language that allows for cross-lingual
transfer learning to happen.

Furthermore, we explore its sensitivity to hyperparameters, such as total train-
ing steps and checkpoint selection strategies. We find that the number of final
number of steps is an important hyperparameter due to the nature of the learning
rate scheduler. We show that picking an intermediate checkpoint at the n-th step
performs better than training for n steps for low values of n.

Additionally, we test X-MOD in a real-life low-resource scenario. We observe
similar phenomena from our artificially restricted scenario. This further indicates
that X-MOD is sensitive to the quantity of data. However, we may also observe
that X-MOD is sensitive to the quality of the data in the adaptation stage; the
nanoSpanish experiment shows that limited amounts of data of high quality can
perform significantly better than comparable amounts of poor data.

Finally, we compile a set of recommendations on how to best use X-MOD,
specifically in a low-resource scenario, by taking into account data and resource
limitations. These can be summarized as gathering at least 10 million tokens
worth of monolingual data for the adaptation phase. These 10 million tokens
need not be of optimal quality. Some word overlap is desired, even if it’s not
large. If there is no word overlap, introducing some could be very beneficial to
performance. Training for tens of thousands of training steps of possible is ideal
for the best performance, even if not a lot of data is available.

Here, we repeat the second claim introduced in Chapter 2:
Coverage Claim: “X-MOD has the potential to cover all languages of the

world, as the model has the capability to be adapted to new languages post-hoc”,
from Pfeiffer et al. [2022].

We are successful in quantifying and constraining these claims as per our
recommendations above. The X-MOD approach remains promising given the
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right application and context, and when using the right hyperparameters.
We leave further quantifying of the claims to future work.

Future Work
Among other factors, we leave to future work repeating these same analyses on
larger numbers of training steps, for different tasks (such as NER) and applying
the different restrictions to more than one language.

Due to time constraints, the Pre-Training vs Adding Claim from Chapter 2
remains to be analyzed further. Here, we repeat the Pre-Training vs. Adding for
reference:

“It makes little difference in downstream performance whether there are re-
lated languages or not in the pre-training set of languages when adding a language
post-hoc.”, from Pfeiffer et al. [2022].

In the following section, we present a preliminary analysis on language simi-
larity that goes beyond language family as analyzed in Pfeiffer et al. [2022].

Language Similarity Analysis
Previous work Dufter and Schütze [2020], Conneau et al. [2020], Wang et al. has
shown that language similarity might not be crucial to successful cross-lingual
abilities, but rather lexical overlap and syntactical similarities may have a bigger
impact in performance. These factors can not always be controlled for by simply
analyzing genealogy.

In this analysis, we discuss the results of exploring language similarity beyond
language family. For this work, we make use of a newly released dataset of
structural features in languages Skirg̊ard et al. [2023]. 40 of the features from
GramBank were used to compute our similarity scores. The list of features used
is available in Appendix A. We use these vectors to represent each language as
a 40-dimensional vector. The similarity between two vectors was then calculated
by using the hamming distance:

(H(e, f))i =
{︄

1 if ei = fi

0 if ei ̸= fi

Where e and f are vectors of the languages to be compared. Finally, average
the dimensions of the vector representing the similarity of the two languages.

We analyze languages that were relevant to the experiments in Pfeiffer et al.
[2022], in particular experiments that support the claim.

Figure 4.6 shows our preliminary results. Our results indicate how syntactical
features can result in high similarity scores for unrelated languages (e.g., Japanese
and Korean).

With this preliminary result, we motivate further exploration of language
similarity and its effect on X-MOD and related models.
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Figure 4.6: Language similarity scores calculated using a collection of GramBank
Skirg̊ard et al. [2023] features.
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Appendix A

A.1 Language Similarity Features

Feature Question
Are there definite or specific articles?
Are there prenominal articles?
Are there postnominal articles?
What is the order of numeral and noun in the NP?
What is the order of adnominal demonstrative and noun?
Is there a gender distinction in independent 3rd person pronouns?
Is there a dual or unit augmented form (in addition to plural or augmented)
for all person categories in the pronoun system?
Are there three or more distance contrasts in demonstratives?
Do demonstratives show an elevation distinction?
Do demonstratives show a visible-nonvisible distinction?
Is there productive overt morphological singular marking on nouns?
Is there productive morphological dual marking on nouns?
Is there productive morphological plural marking on nouns?
Is there a productive morphological pattern for deriving an action/state noun
from a verb?
Is there a productive morphological pattern for deriving an agent noun from
a verb?
Is there a productive morphological pattern for deriving an object noun from
a verb?
Is there a gender/noun class system where sex is a factor in class assignment?
Is there a gender/noun class system where shape is a factor in class assign-
ment?
Is there a gender/noun class system where animacy is a factor in class assign-
ment?
Is there a gender/noun class system where plant status is a factor in class
assignment?
Are there numeral classifiers?

Table A.1: Features used for language similarity analysis. Part I

65



Feature Question
What is the pragmatically unmarked order of adnominal possessor noun and
possessed noun?
Are there morphological cases for non-pronominal core arguments (i.e.
S/A/P)?
Are there morphological cases for pronominal core arguments (i.e. S/A/P)?
Are there morphological cases for oblique non-pronominal NPs (i.e. not
S/A/P)?
Are there prepositions?
Are there postpositions?
Is there productive infixation in verbs?
Is there overt morphological marking of present tense on verbs?
Is there overt morphological marking on the verb dedicated to past tense?
Is there overt morphological marking on the verb dedicated to future tense?
Can the S argument be indexed by a suffix/enclitic on the verb in the simple
main clause?
Can the S argument be indexed by a prefix/proclitic on the verb in the simple
main clause?
Can the A argument be indexed by a suffix/enclitic on the verb in the simple
main clause?
Can the A argument be indexed by a prefix/proclitic on the verb in the simple
main clause?
Can the P argument be indexed by a suffix/enclitic on the verb in the simple
main clause?
Can the P argument be indexed by a prefix/proclitic on the verb in the simple
main clause?
Are variations in marking strategies of core participants based on TAM dis-
tinctions?
Are variations in marking strategies of core participants based on verb classes?
Are variations in marking strategies of core participants based on person
distinctions?
Is there a benefactive applicative marker on the verb (including indexing)?
Is there an instrumental applicative marker on the verb (including indexing)?
Can standard negation be marked by an affix, clitic or modification of the
verb?
Is there directional or locative morphological marking on verbs?
Is there a phonologically bound reflexive marker on the verb?
Is there a phonologically bound reciprocal marker on the verb?

Table A.2: Features used for language similarity analysis. Part II
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Feature Question
Do verbs classify the shape, size or consistency of absolutive arguments by
means of incorporated nouns, verbal affixes or suppletive verb stems?
Are there serial verb constructions?
Is verb compounding a regular process?
Is incorporation of nouns into verbs a productive intransitivizing process?
Is there an existential verb?
What is the pragmatically unmarked order of S and V in intransitive clauses?
Is a pragmatically unmarked constituent order verb-initial for transitive
clauses?
Is a pragmatically unmarked constituent order verb-medial for transitive
clauses?
Is a pragmatically unmarked constituent order verb-final for transitive
clauses?
Is there a morphological antipassive marked on the lexical verb?
Is there a morphologically marked inverse on verbs?
Is there clause chaining?

Table A.3: Features used for language similarity analysis. Part III
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tâ

yg
uá
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há
pe

m
ba

ra
ka

.
hc

h
m

et
a

y+
wa

+
ka

m
+

pa
+

m
ep

ei
yu

rie
ka

i,
na

h
¿

T
le

n
to

na
lli

ya
lh

ua
?

ot
o

ra
B’

on
do

M
’o

nd
a

,n
uu

a
qu

y
N

ita
q

ni
yc

hu
lla

ki
nm

an
ta

ha
yk

ap
ik

am
a

w
ill

ak
un

an
m

an
ta

pa
s.

sh
p

M
oá
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