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Abstract: Modern compilers apply a set of optimization passes aiming to speed
up the generated code. The combined effect of individual optimizations is often
unpredictable. Thus, changes to a compiler’s code may hinder the performance
of generated code as an unintended consequence. Due to the vast number of
compilation units and applied optimizations, it is difficult to diagnose these re-
gressions.

We propose to solve the problem of diagnosing performance regressions by cap-
turing the compiler’s optimization decisions. We do so by representing the ap-
plied optimization phases, optimization decisions, and inlining decisions in the
form of trees. This thesis introduces an approach utilizing tree edit distance
(TED) to detect optimization differences in a semi-automated way. Since the
same source code may be inlined in different contexts and optimized differently
in each, we also present an approach to compare optimization decisions in dif-
ferently inlined code. We employ these techniques to pinpoint the causes of
performance problems in various benchmarks of the Graal compiler.
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Introduction

Compilers rely on optimizations to generate efficient machine code. Optimiza-
tions are transformations on the level of intermediate representation (IR) [1] aim-
ing to speed up the code. Modern dynamic compilers use elaborate heuristics
incorporating profiling feedback to determine which transformations are bene-
ficial [2, 3]. Such compilers canmake speculative decisions [4] to further improve
compilation outcomes. The quality of optimization decisions is a crucial factor
in determining the speed of a compiled program.

Compilers under active development, such as Graal [5], have several changes
merged every day. Well-written commits contain atomic changes with clear in-
tentions, e.g., to add a feature or to fix a bug. However, the actual effects of the
changes may be unclear due to the interplay of individual optimizations and the
system’s overall complexity. Therefore, there may be additional unintended ef-
fects of each commit. As a result, the quality of generated codemay be negatively
impacted. In this thesis, we refer to the quality of generated code as compiler
performance. Thus, the unintended effects of changes pose the risk of compiler
performance regressions. The Graal compiler undergoes automated regression
testing [6] to identify performance-affecting commits. The computation-time
costs of regression testing [7] are significant and thus cannot be conducted for
each commit. Instead, compiler performance is measured [6] across one or more
merge commits.

When a performance regression is identified, it is necessary to determine its
cause. However, it has been observed that the root cause is often unrelated [6] to
the changed code. There may be too many code changes to inspect, and it is hard
to predict their effects. Moreover, a regression may not manifest itself in each
invocation of the virtual machine (VM) due to the inherent non-determinism of
the environment.

Performance problems are often related to frequently executed code. To in-
vestigate a regression, a compiler engineer might profile the workload [8] to
identify those native methods where most execution time is spent. A native
method represents one compilation unit. A compilation unit in Graal consists
of a root method and up to hundreds of inlined methods. The collected profiles
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sometimes uncover which compilation units take longer to execute after the re-
gression. The cause of the regression is likely to be rooted in such a compilation
unit.

Compiler performance regressions can often be traced down to individual
optimizations. For example, the cause of a regression might be that a potentially
beneficial optimization was not applied. Therefore, performance diagnosis con-
sists of inspecting the optimizations in the affected compilation unit. However,
the existing techniques to investigate the differences in optimization decisions
are limited. Typical IR graphs contain thousands of nodes and undergo hundreds
of transformations. The options include viewing and comparing the IR of indi-
vidual compilation units [9] and miscellaneous logs produced by the optimizer.

Another source of complexity is that compilation units do not have a simple
one-to-one mapping across VM invocations. The set of methods compiled as a
compilation unit is not invariant. The methods are selected for compilation by
non-deterministic execution counters, and inlining decisions [3] are not deter-
ministic either. One method may be part of several compilation units and may
be optimized differently in each. As a result, it is often infeasible to compare how
a single method is optimized across VM invocations.

To diagnose these regressions, we propose capturing the compilation and ex-
ecution of an application. During compilation, we track the optimization deci-
sions, including the execution flow of the optimizer, represented as an optimiza-
tion tree. Additionally, we build an inlining tree, which represents the structure
of inlined code and associated inlining decisions. These two trees reflect the
optimizations performed in a compilation unit.

Inlining often enables new optimization opportunities in a compilation unit.
To represent these relationships, we propose linking optimization decisions to in-
lined code. To this end, we introduce the optimization-context tree, which shows
optimization decisions in inlining contexts.

As a dynamic step, we profile the running application to estimate the execu-
tion time share of each compilation unit. We refer to the data from the compila-
tion and execution steps collectively as an experiment.

We present profdiff, which is an approach to compare two experiments. We
can leverage profdiff to compare two experiments compiled by different compiler
versions, e.g., before and after a regression. Profdiff highlights the differences
between optimization decisions in hot code. We identify these differences by
semantically comparing inlining, optimization, and optimization-context trees
using 1-degree [10] tree edit distance (TED).

Due to inlining [3], a single method may be part of several compilation units
Conversely, several methods may be inlined into one compilation unit. There-
fore, it is not sufficient to compare only pairs of compilation units. We introduce
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compilation fragments to compare optimization decisions in hot methods com-
piled in different contexts.

There are several additional use cases for our approach. Besides the regres-
sion scenario, Graal workloads compiled just-in-time (JIT) often exhibit multi-
modal performance distribution. In order to stabilize such workloads, it is es-
sential to identify which optimization decisions are indispensable to achieving
peak performance. With profdiff, we can find the optimization decisions that
differ between the well-performing and poorly-performing compilations. An-
other use case is bridging the gap between Graal’s ahead-of-time (AOT) and JIT
capabilities. Comparing an AOT compilation with a JIT compilation of the same
application allows us to identify missed optimization opportunities in the AOT
compilation.

We implemented the described methods for the Graal compiler [5]. The im-
plementation1 is available in the open-source compiler repository. We evalu-
ated our tool with several engineers from the Graal compiler team and with
industry-standard benchmark suites. We describe three workloads in which we
pinpointed several suboptimal inlining decisions. The findings were validated by
overriding the inlining decisions made by the compiler and observing a speed-up
of about 8% to 30%.

In summary, we present a novel approach that automatically identifies opti-
mization differences between two experiments in frequently executed code. This
thesis contributes the following:

• We propose capturing the dynamic execution flow of a compiler including
the performed optimization decisions, the performed inlining decisions,
and optimization decisions in inlining contexts in the form of trees.

• We propose comparing optimization decisions in frequently executed code
by applying 1-degree TED to compute the differences between these trees.

• We propose a technique to compare optimization decisions performed in
hot methods that are inlined in different contexts.

• We present an extensive evaluation of the tool with industry-standard
benchmarks showing it can identify performance-affecting optimization
decisions.

1https://github.com/oracle/graal/blob/master/compiler/docs/Profdiff.md
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Chapter 1

Background

This chapter provides the necessary background related to performance tracking
for dynamic compilers. We focus on the Graal compiler [5], which is an example
of a modern compiler for the Java platform [11]. Graal compiles Java bytecode
to machine code. It can operate either as a JIT compiler (part of GraalVM [12])
or an AOT compiler (part of Native Image [13]). We introduce Graal in the con-
text performance tracking. For a broader introduction, we recommend reading
“Simulation-Based Code Duplication in a Dynamic Compiler” by Leopoldseder
[14] or “Partial Escape Analysis and Scalar Replacement for Java” by Stadler [15].

In contrast to native applications, dynamic environments pose a challenge
for performance evaluation. Modern VMs often utilize an interpreter and mul-
tiple JIT compilers [16]. Due to this and also other factors, JIT-compiled work-
loads often exhibit performance fluctuations [17] during or between VM invoca-
tions. Section 1.1 introduces the relevant aspects of GraalVM. The VM’s inherent
non-determinism complicates performance tracking. Section 1.2 explains how
Graal’s performance is tracked and analyzes potential causes of performance re-
gressions.

Native Image [13] is interesting in the context of this thesis, as it enables us
to run identical workloads in much contrasting settings and analyze the differ-
ences. The technology makes it possible to create native executables from Java
applications. The advantage of Native Image is minimal startup time of the com-
piled application and reduced resource usage. This is particularly beneficial for
short-lived applications, such as serverless cloud applications. Moreover, we can
expect fewer performance fluctuations. As Java is a dynamic language, there is
an additional constraint: Native Image must know all reachable classes and uses
of dynamic features at compile time. Neither the bytecode nor JIT compilers are
available at runtime, which hinders speculative optimization.
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1.1 GraalVM
GraalVM is a Java Virtual Machine (JVM) based on the Java HotSpot Virtual
Machine [18]. As a result, much of the information presented here applies to
both HotSpot and GraalVM. The primary difference is that in GraalVM, the Graal
compiler [5] replaces HotSpot’s server compiler [19].

GraalVM utilizes tiered compilation [16] comprising an interpreter and two
just-in-time compilers. The execution of a method starts in the interpreter. The
interpreter collects profiling information [20], such as execution counters and
type profiles for indirect calls. When the number of method invocations exceeds
a threshold, the method is typically compiled with a modest optimization level
by the client compiler [21]. The client compiler generates instrumented code
that also collects profiles. After the method-invocation counter passes another
threshold, the method is compiled by the Graal compiler [5], striving for peak
performance. The reverse step is also possible: execution may be transferred
from compiled code to the interpreter (deoptimization). Figure 1.1 sums up the
execution transfers between the interpreter and compiled code. Note that Fig-
ure 1.1 is a simplification, and the actual compilation policy [16] is more complex.

interpreter client compiler Graal compiler

threshold 
reached

threshold 
reached

profiling profiling

assumption violated (deoptimization)

Figure 1.1 Tiered execution and execution transfers in GraalVM.

Tiered compilation leads to a warm-up phase [17] in some applications. It has
also been shown that some workloads do not reach a steady state at all [17]. The
JIT compiler and the garbage collector, which run in parallel with application
code, have been linked to inconsistency during a single VM run. The workloads
are also subject to instability across multiple invocations of the VM [22]. To
measure the performance of a workload, it is necessary to invoke the VM several
times and also repeat the workload during a single VM invocation [7, 17].

The interpreter and code compiled by the client compiler collect profiles that
guide optimization decisions [2, 3, 23] during subsequent compilation. For ex-
ample, the profiles are used to estimate the relative probability of an instruction
[2]. This is useful to assess the benefit of an optimization given its cost (e.g.,
considering the code-size increase). Type profiles allow the inliner [3] to devir-
tualize indirect call sites. Thus, the quality of generated code depends [23] on
the quality of the profiles. However, the profiles are sampled from a limited time
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window. When the characteristics of the input data change, the profiles become
inaccurate [23]. The window during which profiles are collected is also subject
to factors such as the timing of compilation jobs or deoptimization [24].

Deoptimization [24] allows JIT compilers to optimize aggresively based on
speculative assumptions. For example, consider the Java method in Listing 1.

1 int first(Object[] objects) {
2 return (Integer) objects[0];
3 }

Listing 1 Method first returns the first array element cast to an integer.

As mandated by the language specification [25], the above method performs
an implicit bounds check, cast check, and two null checks. If a check fails, the
method throws an exception. In case the VM does not record a failed check,
the compiler speculatively assumes the check never fails. Thus, the compiled
code only checks the condition and deoptimizes on failure. Listing 2 illustrates
how a speculative compiler might translate the example (with explicitly marked
deoptimization).

1 int first(Object[] objects) {
2 if (objects == null) {
3 deoptimize;
4 // The interpreter throws a NullPointerException.
5 }
6 if (objects.length == 0) {
7 deoptimize;
8 // The interpreter throws an ArrayIndexOutOfBoundsException.
9 }

10 Object temp1 = objects[0];
11 if (!(temp1 instanceof Integer)) {
12 deoptimize;
13 // The interpreter throws a ClassCastException.
14 }
15 Integer temp2 = (Integer) temp1
16 if (temp2 == null) {
17 deoptimize;
18 // The interpreter throws a NullPointerException.
19 }
20 return temp2.intValue();
21 }

Listing 2 Method first with explicit deoptimization.
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When an assumption is violated, the compiled code transfers control (deop-
timizes) back to the interpreter. The VM records the violated assumption, and
the interpreter proceeds with execution. In our example, the interpreter throws
the appropriate exception. Later, the compilation policy may decide to recom-
pile the method. This time, however, the JIT compiler does not make the same
speculative assumption.

In the context of performance evaluation, deoptimization is yet another
source of non-determinism. The VM may resume profiling after deoptimiza-
tion is triggered. Deoptimization occurs at a seemingly random time. The
recompiled code may be optimized differently and exhibit different performance
characteristics.

1.2 Performance Regressions
There are several changes merged to the Graal compiler daily. Compiler de-
velopers track changes in metrics such as wall clock time, compile time, code
size, and resident set size [26]. In this thesis, we focus on the wall clock time
to execute a representative workload [27]. Graal uses an automated pipeline to
test for performance changes [6] regularly. Workloads from benchmark suites
such as Renaissance [27] are repeated several times for selected compiler config-
urations and target platforms. The challenges of performance tracking include
handling warm-up [17] of the JIT compiler and various sources of variance. For
these reasons, performance tracking incurs a high cost in terms of machine time.
Statistical methods are employed [7] to detect performance changes in either
direction.

Detecting a regression is the first part of the problem. Finding the cause of the
regression is the task that follows. However, this is complicated due to the large
size and number of compilation units, the non-determinism of the environment,
and the lack of suitable data from the compiler.

In a typical Renaissance [27] workload, there may be hundreds to thousands
of compilation units. Usually, only few of these compilation unit characterize the
performance of the workload. Compiler engineers may determine which compi-
lation units take most of the execution time using a profiler. These characterics
may change between VM invocations due to the instability of inlining decisions.
Additionally, performance anomalies may manifest randomly only in some VM
invocations. As a consequence, all information that may be needed must be col-
lected from a single VM invocation and analyzed after the fact.

The options to collect relevant information from the compiler include
general-purpose log messages, structured inlining decisions, and IR graphs.
There are no tools to integrate profiles with either of these options to high-
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light essential compilation units. Although the log messages are organized in
trees, they are purely textual and do not follow a common pattern. The inlining
decisions are structured as call trees, where each call site is associated with
relevant inlining decisions. Such trees are suitable for comparison based on
tree-matching algorithms.

Lastly, the compiler has an option to serialize the IR graphs of compilation
units. These graphs are viewable in Ideal Graph Visualizer [9], which can also
compare them. The drawbacks are the size of the graphs, a relatively low level
of abstraction, and method inlining [3]. This is because a compilation unit may
contain thousands of IR nodes and some high-level optimizations produce many
IR-level changes. For example, consider the IR-level difference resulting from
loop unrolling [28]: the graph difference comprises all nodes in the loop’s body.
Moreover, method inlining involes replacing a call node with the body of the
target method. Thus, it may be difficult to compare compilation units that inlined
different methods.

Consider how a commit merged to the compiler affects the performance of
compiled code. In the simplest case, a commit may directly change the rules
or heuristics that dictate when an optimization is applied. These changes may
cause a regression such that an optimization is not applied when it should be
or applied when it should not be. A compiler engineer might investigate this
by identifying the optimization decisions that changed in a particular workload
after the regression is detected. This is the primary use case for the automated
detection of changed optimization decisions.

True reasons for performance changes are not always [6] directly related to
the committed code. A change to a dynamic compiler may result in unexpected
consequences. For example, changes to one optimization phase influence all suc-
cessive phases. A manual search for indirect effects is difficult because it might
be unclear what effects to look for. Therefore, automated optimization difference
detection is a great fit for these scenarios.

Due to the non-determinism of the VM, a performance problemmay notman-
ifest itself in each invocation of the VM. We observe this as performance fluctua-
tions between VM invocations. Every time a workload is executed, compilation
outcomes are different and performance deviations may be significant. Perfor-
mance distribution could shift as changes are merged into the compiler, i.e., the
workload would regress on average. A compiler engineer can try to diagnose
such problems by repeating the workload several times and classifying each run
as fast or slow. The optimization differences that are consistent between fast and
slow runs are likely related to the cause of the performance instability. However,
pinpointing consistent differences using the available tools is challenging.
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Chapter 2

Profdiff

This chapter introduces profdiff, an approach to capture and compare optimiza-
tion decisions. We provide an implementation for the Graal compiler, which is
available1 in the open-source Graal repository.

We have extended the Graal compiler with an option to collect and store op-
timization logs. The optimization logs contain an inlining tree (Section 2.2) and
an optimization tree (Section 2.1) for each compilation unit. The inlining tree
is a call tree that describes inlining decisions in a compilation unit. The opti-
mization tree shows optimization decisions structured according to the dynamic
execution flow of the optimizer. We can also associate optimization decisions
with the application code they affect using the optimization-context tree (Sec-
tion 2.3). The optimization-context tree is built from the collected optimization
and inlining trees.

Our focus is the peak performance of a workload. Therefore, we capture logs
from Graal, which is the top-tier compiler. A top-tier compiler compiles only
methods whose execution counters exceed predefined thresholds. In JIT termi-
nology, these methods are considered hot. Our approach is based on the observa-
tion that a suboptimal optimization decision is likely to prolong the compilation
unit’s execution time. Additionally, the impact of suboptimal optimization is am-
plified in compilation units where a significant portion of time is spent. Thus,
the transformation causing the performance degradation is likely to be found in
a frequently executed compilation unit.

To identify the hottest compilation units, we profile the executing program
using proftool [8], a profiler based on perf.2 Proftool samples the execution time
spent in the VM and in the generated code. Profdiffmarks a configurable number
of compilation units with the highest execution shares as hot.

1https://github.com/oracle/graal
2https://perf.wiki.kernel.org/
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Figure 2.1 shows how two runs (experiments) of the same workload are
executed and compared using profdiff. We run the same workload twice on
GraalVM. The workload may be executed with different VM or compiler ver-
sions. Profdiff compares the trees of hot compilation units to identify the differ-
ent optimizations applied in two runs of the same workload. The comparison
is restricted to hot compilation units to avoid reporting likely unimportant
differences.

GraalVM rev. 1

profiler profile (1)

profiles

optimization 
logs (1)

writes

reportprofdiff

writes

reads

GraalVM rev. 2

workload

profiler profile (2)

profiles

optimization 
logs (2)

writes

writes

writes

executes

executes

Figure 2.1 Executing and comparing two experiments.

The scenario in Figure 2.1 depicts a comparison of two JIT experiments. Op-
timization logs in an AOT scenario are collected similarly, except we profile the
built executable instead of the VM. The structure of JIT and AOT logs is equiva-
lent. As a result, profdiff can compare an AOT experiment with a JIT experiment
or two AOT experiments.

Figure 2.2 illustrates how profdiff compares two experiments. Compilation
units in each experiment are grouped by their root methods. The figure displays
the sampled execution shares relative to the execution share of all compiled code.
Compilation units marked as hot are highlighted in red.

The goal is to determine what optimization decisions differ in compilations of
the same code. Several compilation units may be rooted in the same method due
to speculative assumptions and consequent recompilations. Consider method
𝑚1 from Figure 2.2, compiled in both runs. Profdiff compares all hot compila-
tion units of 𝑚1 in experiment 1 with those of 𝑚1 in experiment 2. In long-
running workloads, later compilations that define the performance of the work-
load eclipse the initial compilation units.

Two compilation units are compared using their inlining, optimization, or
optimization-context trees. We apply 1-degree TED [10] with some pre- and
postprocessing to compare the trees. The result of the comparison is another
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Experiment 1

Method m1

Compilation unit c1; 50%

Compilation unit c2; 0%

Method m2

Compilation unit c3; 20%

Compilation unit c4; 15%

Method m3

Compilation unit c5; 10%

Experiment 2

Compilation unit c1; 60%

Compilation unit c2; 35%

Compilation unit c3; 5%

Compilation unit c4; 0%

compare

compare

compare

Method m1

Method m2

Method m3

no compilations

Figure 2.2 Comparing hot compilation units.

tree that conveys which optimizations the compilations have in common and
which optimizations are different. Section 2.4 explains this process in detail.

In the presence of inlining, comparing just pairs of compilation units is insuf-
ficient. For example, suppose that 𝑚3 from Figure 2.2 is inlined in compilation 𝑐1
in experiment 2. The problem is that we are not comparing the dedicated com-
pilation of 𝑚3 (compilation 𝑐5 in experiment 1) with 𝑐1 in experiment 2. The code
of method 𝑚3 is in both of these compilation units. Compilation units 𝑐5 and 𝑐1
might have optimized the code of method𝑚3 differently. Therefore, it is desirable
to compare these optimization decisions. We solve this by creating compilation
fragments, which we describe in Section 2.5.

2.1 Capturing Optimization Decisions
Compilers use an IR to represent the semantics of the compiled program. The
Graal compiler uses a graph-based IR [1]. Throughout this text, we illustrate
compiler transformations by listing Java code, although Graal performs these
transformations on IR graphs.

This section talks about transformations, optimizations, and optimization
phases. A transformation is an operation that changes the IR. An optimization
is a kind of transformation aiming to speed up generated code. An optimization
phase is a procedure that applies optimizations or invokes other optimization
phases.

We capture the decisions to perform optimizations (i.e., optimization deci-
sions) because changes in these decisions are often linked to changes in code
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quality. Changes in optimization decisions are frequent between compiler ver-
sions or even successive VM invocations. Moreover, some of these decisions are
based on estimates or inaccurate data. Thus, suboptimal decisions are expected
and may lead to performance regressions.

Complex optimization phases, e.g., duplication [2] or inlining [3], decide
whether a transformation is worth applying by estimating its cost and benefit.
These estimates are prone to instability as described in Section 1.1. The cost is
linked to the increased code size. The benefit comprises direct effects (e.g., re-
moving call overhead) and enabled optimization opportunities (e.g., conditional
elimination). The benefit also depends on the execution frequency of the affected
code, and the execution frequency is in turn estimated from the collected profiles.

The optimization phases in Graal follow a phase plan, which comprises a list
of optimization passes that run in a preset order. Selected phases run iteratively
and apply other phases. A phase may be applied more than once in a phase
plan. The performance of the generated program is sensitive to which phases
are applied in what order. Thus, compiler developers may tune the phase plan
between compiler revisions. This motivates capturing the dynamic phase plan
for each compilation. The dynamic phase plan reflects the execution flow of the
optimizer. Additionally, we associate optimization decisions with the phases that
performed them.

Optimization phases are composable, i.e., an optimization phase may invoke
another optimization phase. Consider the example in Figure 2.3a. The second if-
statement (lines 7–9) is duplicated to the branches of the preceding if-else state-
ment (lines 2–6). After that, the duplication phase applies a dedicated conditional
elimination phase [28], which identifies one of the duplicated conditionals to be
false. Finally, a dedicated phase performing local optimizations simplifies the
control-flow graph. The optimized code is illustrated in Figure 2.3b.

Figure 2.4 shows the relationship between the duplication phase and the sub-
sequent optimization phases. The duplication phase modifies some input graph
𝐼𝑅1, and the result is graph 𝐼𝑅4. Each arrow in Figure 2.4 is a graph transforma-
tion applied by a particular optimization phase. The first duplication (leftmost
arrow) is directly applied by the duplication phase. Then, the duplication phase
invokes the conditional elimination phase, which applies a conditional elimina-
tion (middle arrow). In the end, the duplication phase invokes the canonicalizer
phase, which performs a local IR simplification (rightmost arrow).

An applied transformation often enables new optimization opportunities.
An example of this is duplication enabling conditional elimination, as we have
shown in Figure 2.3a and Figure 2.3b. Local IR simplifications may enable ad-
ditional IR simplifications. Such self-enabling phases may be applied iteratively
until there are no more optimization opportunities. To improve interpretability,
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1 int foo(int i) {
2 if (i > 0) {
3 i += 1;
4 } else {
5 i = 0;
6 }
7 if (i > 7) {
8 i += 1;
9 }

10 return i;
11 }

(a) Unoptimized code.

int foo(int i) {
if (i > 0) {
i += 1;
if (i > 7) {
i += 1;

}
} else {
i = 0;

}
return i;

}

(b) Optimized code.

Figure 2.3 Example of a duplication and subsequent optimizations.

duplication

IR1 IR2

conditional 
elimination

IR3

simplification

IR4

canonicalizer 
phase

cond. elim. 
phase

duplication 
phase

Figure 2.4 Composition of optimization phases.

we capture the order of the applied optimizations and also associate them with
the dynamic phase plan. The position of an optimization (phase) in the phase
plan may explain its purpose, e.g., to clean up after duplication.

2.1.1 Optimization Tree
In order to preserve optimization decisions, their order, and the phases that ap-
plied them, we represent them as an optimization tree. The optimization tree is
an ordered tree, where each node corresponds to either a phase or an optimiza-
tion decision. The children of a phase are the phases and optimizations that the
phase applied.

We illustrate the optimization tree using a running example, shown in List-
ing 3. The code reads lines from the standard input and interprets each line as
a JSON literal. The program prints true if all JSON literals are equal and false
otherwise. The first program argument determines the number of lines read. If
no arguments are provided, the program does not read any line. The example is
slightly contrived to demonstrate various optimization opportunities.
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1 class Example {
2 public static void main(String[] args) {
3 int limit = 0;
4 if (args.length > 0) {
5 limit = Integer.parseInt(args[0]);
6 }
7 System.out.println(literalsEqual(limit));
8 }
9 static boolean literalsEqual(int limit) {

10 Scanner scanner = new Scanner(System.in);
11 Object first = null;
12 for (int i = 0; i < limit; i++) {
13 String line = scanner.nextLine();
14 Object literal = JSONParser.parse(line);
15 if (i == 0) {
16 first = literal;
17 } else if (!literal.equals(first)) {
18 return false;
19 }
20 }
21 return true;
22 }
23 }

Listing 3 Running example: prints whether all JSON literals are equal.

For example, it might be worth peeling [28] the loop at line 12. Loop peeling
involves pulling the first loop iteration in front of the loop. Listing 4 illustrates
the result of loop peeling (omitting the rest of the method). The line numbers in
Listing 4 represent the lines from which the code originates. Loop peeling opens
an additional optimization opportunity: the condition i == 0 always holds in
the peeled iteration.

We store a descriptive name of the transformation for each optimization de-
cision. For some decisions, we store additional key-value properties. After per-
forming the loop peeling shown in Listing 4, the compiler records the following
information.

LoopPeeling line 12 with {peelings: 1}

The line above illustrates the content of the logs, which are stored in a struc-
tured format. The key-value property peelings: 1 informs that this is the first
peeling of the loop. These properties further disambiguate the kind of performed
transformation.

Optimization decisions are associated with positions in the source code. In
Listing 4, the line numbers serve as the positions. The positions and properties
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12 int i = 0;
12 if (i < limit) {
13 String line = scanner.nextLine();
14 Object literal = JSONParser.parse(line);
15 if (i == 0) {
16 first = literal;
17 } else if (!literal.equals(first)) {
18 return false;
19 }
12 i++;
12 for (; i < limit; i++) {
13 line = scanner.nextLine();
14 literal = JSONParser.parse(line);
15 if (i == 0) {
16 first = literal;
17 } else if (!literal.equals(first)) {
18 return false;
19 }
20 }
20 }

Listing 4 After peeling the loop at line 12 from the running example (Listing 3).

not only improve interpretability but also establish whether profdiff considers
two optimization decisions equivalent.

We obtain the position of an optimization by using the position of a node
affected by the optimization. Compilers usually have mechanisms to track these
positions. For simplicity, the positions in the example are line numbers. In our
implementation, we use the offset of the bytecode instruction, which is more
fine-grained than line numbers. For optimizations that affect more than one
node, such as loop transformations, we record the position of one of the affected
nodes (e.g., the node modeling the beginning of a loop). The positions must be
assigned consistently, which will become important later when we compare two
optimization trees.

Listing 5 shows a snippet of an optimization tree produced by compiling
literalsEqual from the running example. The root of the tree is the root phase.
The root phase applied the loop-peeling phase, and the loop-peeling phase peeled
the loop at line 12. After that, the loop-peeling phase invoked the canonicalizer
phase, which performs local IR simplifications. The canonicalizer phase replaced
the increment of the induction variable i + 1 with the constant 1 in the peeled
iteration. Similarly, the condition i == 0 in line 15 is trivially satisfied in the
first iteration. Thus, the equals (==) node was replaced with the constant true.

When only onemethod is compiled, the line number (or an instruction offset)
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RootPhase
LoopPeelingPhase

LoopPeeling line 12 with {peelings: 1}
IncrementalCanonicalizerPhase

CanonicalReplacement line 12 with {replacedNodeClass: +,
canonicalNodeClass: Constant}

CanonicalReplacement line 15 with {replacedNodeClass: ==,
canonicalNodeClass: LogicConstant}

Listing 5 Optimization tree of literalsEqual from the running example
(Listing 3).

might sufficiently represent the position. In the presence of method inlining, it
is necessary to capture the inline call stack relative to the root method. As an
example, assume we compile method main from Listing 3 and inline the call to
literalsEqual. After peeling the inlined loop, the compiler logs the following
information.
LoopPeeling line {Example.literalsEqual(int): 12,
Example.main(String[]): 7} with {peelings: 1}

The interpretation of the above example is that the loop originates in method
literalsEqual at line 12, which is inlined in main at line 7. If main additionally
invoked literalsEqual at a different line, different positions would distinguish
the optimizations in the inlined code.

2.1.2 Inlining and Optimization Trees
Graal may parse a method, optimize it, and then inline it in a different method.
To ensure that the optimization decisions performed in the inlined callee are
preserved, we build an optimization tree for each IR graph. Whenever a callee
is inlined, we copy the callee’s optimization tree to the optimization tree of the
caller. It is necessary to update the positions of optimization decisions in the
copied tree so that they reflect the new context.

For example, suppose that the compiler first peels the loop in Listing 3 and
then inlines the method into main. A snippet of the possible optimization tree
for method main is shown in Listing 6. The listing shows that the compiler at-
tached the optimization tree of literalsEqual to the InliningPhase, which
performed the inlining.
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RootPhase
InliningPhase

RootPhase
LoopPeelingPhase

LoopPeeling line {Example.literalsEqual(int): 12,
Example.main(String[]): 7} with {peelings: 1}

Listing 6 Optimization tree after inlining an optimized IR graph from the running
example (Listing 3).

2.2 Capturing Inlining Decisions
Inmodern compilers, inlining is essential for the performance of many programs.
Inlining not only eliminates call overhead but also introduces new optimization
opportunities. Improved inlining policies can significantly boost performance
[3].

Listing 7 shows method main from the running example (Listing 3) af-
ter duplication. The duplication creates an opportunity to inline the call to
literalsEqual in the else-block. The constant argument allows the compiler
to remove the loop in the inlined method. The loop removal is realized as a
simple local IR optimization after loop peeling (Listing 4) because the peeled
condition is false when limit equals 0.

2 public static void main(String[] args) {
4 if (args.length > 0) {
5 int limit = Integer.parseInt(args[0]);
7 System.out.println(literalsEqual(limit));
6 } else {
7 System.out.println(literalsEqual(0));
6 }
8 }

Listing 7 After duplication in method main from the running example (Listing 3).

Capturing inlining information is a necessity in the context of comparing op-
timization decisions. Inlining may enable optimization opportunities that would
not be otherwise possible. Moreover, for each method, there is also a set of op-
timizations that the compiler performs regardless of the inlining context. When
we compare two compilation units with different inlining decisions, we may
be presented with several optimization differences. It may not be immediately
clear which optimizations were enabled by inlining and which optimizations are
merely results of compiling more code.
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RootPhase
InliningPhase

RootPhase
LoopPeelingPhase

LoopPeeling line 12 with
{peelings: 1}

...

(a) literalsEqual inlined.

RootPhase
InliningPhase
LoopPeelingPhase
...

(b) literalsEqual not inlined.

Figure 2.5 Optimization trees of method main from the running example (Listing 3)
with different inlining decisions.

For example, consider two compilations of method main from the running
example (Listing 3). Their optimization trees are shown in Figure 2.5. The com-
pilation unit in Figure 2.5a inlined literalsEqual but the compilation unit in
Figure 2.5b did not inline literalsEqual. The compiler peeled the inlined loop
in Figure 2.5a, but there was no loop to be peeled in Figure 2.5b. The loop from
method literalsEqual could be peeled even if literalsEqual was compiled
separately. The loop peeling was not enabled by inlining, but it is merely a result
of compiling more code in the compilation unit. Thus, to understand optimiza-
tion differences, we must capture inlining decisions.

The inlining tree is a tree of call sites. Each node is associated with a target
method. The root node corresponds to the compiled root method. The children
of each node correspond to method calls. For each node except the root, we store
the position of the instruction which invokes the method in the parent’s method
body. We assign a call-site category to each. The category reflects the state of the
call site at the end of the compilation. For example, Listing 8 shows an inlining
tree created by compiling method main from the running example (Listing 3).
Call-site categories are displayed in parentheses (explained in detail later). The
tree shows that literalsEqual is inlined.

(root) Example.main(String[])
(direct) Integer.parseInt(String) line 5
(inlined) Example.literalsEqual(int) line 7
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(indirect) Object.equals(Object) line 17

(direct) PrintStream.println(boolean) line 7

Listing 8 Inlining tree of method main from the running example (Listing 3).
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We store a list of inlining decisions for each node (omitted in Listing 8). An
inlining decision from the inliner is either positive (the callee was inlined) or
negative, and the decision is linked to a message explaining the reasoning.

At the beginning of a compilation, we start with a tree consisting of only the
root method. The root is assigned the special category root. Then, we create a
node for each callsite in the compiled method body. As an illustration, Listing 9
shows the inlining tree of method main just after the method is parsed. Non-
inlined callsites are leaf nodes and categorized as indirect if the call involves
dynamic dispatch or direct otherwise. Whenever a callsite is inlined, we create
the corresponding nodes for the invocations in the inlined callee’s body. Inlined
calls are marked as inlined. The collected inlining tree captures the final state
at the end of the compilation.

(root) Example.main(String[])
(direct) Integer.parseInt(String) line 5
(direct) Example.literalsEqual(int) line 7
(direct) PrintStream.println(boolean) line 7

Listing 9 Inlining tree after parsing method main from the running example
(Listing 3).

Non-inlined callsites are linked to the method invocation nodes from the IR
that represent them. The compiler might delete such a node from the IR, e.g.,
when it is in an unreachable branch. These nodes are classified as deleted. For
example, suppose we peel the loop in Listing 3. The result of this transformation
is shown in Listing 4. Notice that some of the call sites were duplicated. The
call to Object.equals in line 17 may be removed from the peeled iteration be-
cause i == 0 holds in the first iteration. Listing 10 shows the inlining tree after
these transformations. There are duplicate inlining-tree nodes for the calls in the
peeled loop, and one of the calls to Object.equals is marked as deleted.

(root) Example.literalsEqual(int)
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(direct) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
(indirect) Object.equals(Object) line 17

Listing 10 Inlining tree of method literalsEqual from the running example
(Listing 3) after loop peeling.
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2.2.1 Indirect Calls
The call target of a callsite may be indirect, i.e., the target of the call is designated
at runtime. For this reason, the call cannot be directly inlined. Thus, for each
callsite, we record whether it is direct or indirect.

Consider the program from the running example (Listing 3). The JSON parser
returns an object representing a literal, e.g., an Integer, String, List, or a Map.
These types override the equalsmethod. Therefore, the call to equals ismarked
as indirect in the inlining tree (Listing 8).

GraalVM [12] records the frequencies of receiver types for indirect call sites.
The receiver type determines the concrete method to call. Profile accuracy is a
possible source of suboptimal inlining decisions. Therefore, we record receiver-
type profiles for indirect callsites, and profdiff displays them in the inlining
tree. As an illustration, Listing 11 shows a type profile for the indirect call
Object.equals from the JSON example. The type profile captures a receiver
type (e.g., Integer), the estimated frequency of the receiver (80%), and the
concrete method invoked for the receiver type (Integer.equals).

(indirect) Object.equals(Object) line 17
80% Integer -> Integer.equals(Object)
15% String -> String.equals(Object)
5% List -> List.equals(Object)

Listing 11 Indirect inlining-tree node with a type profile.

The compilermay inline an indirect call site through devirtualization. If there
is only one recorded receiver type for an invocation, the compiler can relink the
call to the recorded receiver. In JIT, this may involve speculation [4]. Relink-
ing the call makes it effectively direct and inlinable. Note that the inlining tree
captures the state at the end of the compilation.

Suppose the input to the JSON parser from the running example (Listing 3)
comprised only integers. The compiler could speculatively insert a type check
and inline the call to Integer.equals. Listing 12 shows the inlining tree after
the transformation.

A polymorphic call is devirtualized by replacing it with a type switch (an if-
cascade with type checks) for the receiver type [29, 3]. Each branch of the switch
leads to a direct inlinable call and possibly to a virtual call or deoptimization as
a fallback. Listing 13 shows an if-cascade that could replace the indirect call to
Object.equals from the JSON program.

Consider the direct invocations created by the devirtualization of an indirect
call. We attach the direct invocations to the tree as the children of the indirect
callsite. Listing 14 shows the result of inlining all recorded receivers enumerated
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(root) Example.literalsEqual(int)
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(inlined) Integer.equals(Object) line 17

Listing 12 Inlining tree of method literalsEqual from the running example
(Listing 3) after type-guarded inlining.

if (literal instanceof Integer) {
return ((Integer) literal).equals(first);

} else if (literal instanceof String) {
return ((String) literal).equals(first);

} else if (literal instanceof List) {
return ((List) literal).equals(first);

} else {
deoptimize;

}

Listing 13 Devirtualization of the call to equals using an if-cascade with type
checks.

in Listing 11. By attaching the new nodes as children, we convey the fact that
they were created by devirtualization. This improves interpretability when the
trees are compared.

(devirtualized) Object.equals(Object) line 17
(inlined) Integer.equals(Object) line 17
(inlined) String.equals(Object) line 17
(inlined) List.equals(Object) line 17

Listing 14 Inlining-tree snippet for a devirtualized call site.

2.3 Optimizations in Context
Each transformation performed by the compiler affects a set of IR nodes. As
explained in Section 2.1, we assign positions to the captured optimization deci-
sions. Consequently, we can link optimization decisions to inlined code. The
optimization-context tree is the inlining tree extended with optimization deci-
sions. The optimization decisions are attached to the method whose code they
transformed. The optimization tree shows optimization decisions in the dynamic
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context of the compiler, whereas the optimization-context tree shows them in the
context of the application code. Thus, both trees show the same set of optimiza-
tion decisions, except their structure conveys complementary information.

The optimization-context tree shows what optimizations were applied to
each compiled method. Linking optimization decisions to methods is also use-
ful when two compilations units (or fragments) are compared. The difference
between the two optimization-context trees shows what optimization decisions
were applied to methods compiled in both compilation units. Moreover, if one
of the compilation units inlines a method that the other does not, the represen-
tation discerns what optimizations were performed in such differently inlined
code.

Profdiff builds the optimization-context tree by extending an inlining tree
with optimization decisions from an optimization tree. As an illustration, the
optimization-context tree in Figure 2.6c is built from the trees in Figure 2.6a
and Figure 2.6b. The process starts by copying the inlining tree. Then, all opti-
mization decisions from the optimization tree are attached as leaves. The place
where an optimization decision is attached is determined by the position of the
optimization decision. The position of an optimization contains the method
context and an offset (line number) in the method where the optimization was
performed. For example, the method context of LoopPeeling in Figure 2.6b
is method literalsEqual invoked at line 7 in method main. The optimiza-
tion decision was performed in that method context, at line 12. Thus, in the
optimization-context tree (Figure 2.6c), the LoopPeeling is attached to the node
representing literalsEqual invoked in method main at line 7.

2.3.1 Handling Duplicate Paths
A problem that may arise during the construction of an optimization-context
tree is ambiguity after code duplication. Suppose that the call to literalsEqual
were duplicated due to a code transformation. Now, we have two calls to
literalsEqual in matching method contexts. If both calls are inlined, and the
code of one of the callees is optimized, the position of such an optimization is
ambiguous. We cannot distinguish the call sites using the positions because the
positions match both call sites.

Listing 15 shows an optimization-context tree for such a situation. There are
two inlined calls to literalsEqual. The loop peeling cannot be unambiguously
linked to either call. Extending the compiler to create unique positions for du-
plicated IR nodes would be impractical. Therefore, we print a warning for every
ambiguous call site and link the optimization with all matching call sites.

We say that the path to the call sites is duplicate because the method names
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(root) Example.main(String[])
(direct) Integer.parseInt(String) line 5
(inlined) Example.literalsEqual(int) line 7
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(direct) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
(indirect) Object.equals(Object) line 17

(direct) PrintStream.println(boolean) line 7

(a) Inlining tree.

RootPhase
LoopPeelingPhase

LoopPeeling line {Example.literalsEqual(int): 12,
Example.main(String[]): 7} with {peelings: 1}

IncrementalCanonicalizerPhase
CanonicalReplacement line {Example.literalsEqual(int): 12,

Example.main(String[]): 7}
CanonicalReplacement line {Example.literalsEqual(int): 15,

Example.main(String[]): 7}

(b) Optimization tree.

(root) Example.main(String[])
(direct) Integer.parseInt(String) line 5
(inlined) Example.literalsEqual(int) line 7

LoopPeeling line 12 with {peelings: 1}
CanonicalReplacement line 12
CanonicalReplacement line 15
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(direct) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
(indirect) Object.equals(Object) line 17

(direct) PrintStream.println(boolean) line 7

(c) Optimization-context tree.

Figure 2.6 Inlining, optimization, and optimization-context trees of method main
from the running example (Listing 3).
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(root) Example.main(String[])
(direct) Integer.parseInt(String) line 5
(inlined) Example.literalsEqual(int) line 7
Warning: Duplicate path
LoopPeeling line 12 with {peelings: 1}
...

(inlined) Example.literalsEqual(int) line 7
Warning: Duplicate path
LoopPeeling line 12 with {peelings: 1}
...

(direct) PrintStream.println(boolean) line 7
(direct) PrintStream.println(boolean) line 7

Listing 15 Optimization-context tree with duplicate paths (snippet).

and line numbers from the root node to the call sites are equal for both call sites.
If one of the calls was not inlined, we would not report a duplicate path. This is
because optimization decisions are attached to inlined call sites only.

The path to a particular call site may be duplicate in one compilation unit
but not duplicate in another compilation unit. Thus, this is a property we can
compare between two optimization-context trees. To enable this, the warnings
for duplicate paths are implemented as another type of node attached to the tree.
The tree-matching algorithm compares the warning nodes like any other kind
of node.

2.4 Comparing Optimization and Inlining Deci-
sions

Consider two compilation units with optimization and inlining decisions. The
decisions are captured as optimization, inlining, or optimization-context trees.
In this section, we examine potential differences between two compilations re-
garding optimization and inlining decisions. In order to identify these differ-
ences, we apply a tree-matching algorithm to compare the presented trees. We
introduce the delta tree [30], which is a tree representation of optimization and
inlining decisions that are either different or identical.

2.4.1 Comparing Optimization Trees
Recall that the optimization tree captures the applied optimization decisions,
phases, and their relative order. If an optimization decision does not have a
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RootPhase
LoopPeelingPhase

LoopPeeling line 12
IncrementalCanonicalizerPhase

CanonicalReplacement line 12
CanonicalReplacement line 15

(a) Baseline optimization tree.

RootPhase
LoopPeelingPhase

IncrementalCanonicalizerPhase
LoopPeeling line 12

(b) Regressed optimization tree.

. RootPhase
. LoopPeelingPhase
+ IncrementalCanonicalizerPhase
. LoopPeeling line 12
- IncrementalCanonicalizerPhase
- CanonicalReplacement line 12
- CanonicalReplacement line 15

(c) Differences in the form of a delta tree.

Figure 2.7 Optimization tree of method literalsEqual from the running example
(Listing 3) compared with a regressed optimization tree and their delta tree.

matching decision in the other compilation unit, the difference should be re-
ported. Moreover, any change in whether or when a phase is applied should be
reported as well. Optimization phases may be applied depending on dynamic
conditions. The order of optimization phases matters because each transforma-
tion potentially influences subsequent transformations.

To illustrate this, Figure 2.7a shows a possible optimization tree of method
literalsEqual from the running example (Listing 3). Figure 2.7b captures a
regression scenario (i.e., the second experiment): the order of the canonicalizer
and loop-peeling phases is reversed. Figure 2.7c represents the differences as a
delta tree [31]. The tree contains nodes from the optimization trees, and each
node is prefixed with a symbol. The interpretation of ”.” is that the node was
unchanged, ”-” means that the node was deleted, and ”+” means that the node
was inserted.

27



2.4.2 Comparing Inlining Trees
Recall that the inlining tree captures inlining decisions. The root node represents
the root compiled method. Each non-root node represents a call site in the parent
method. A node contains the target method name and the position of the call site
in the parent method (e.g., a line number). Each node is categorized based on the
optimizations it underwent (e.g., inlined, deleted). Log messages from the inliner
and type profiles are collected as well.

Two inlining trees built by compiling the same method may have non-
identical shapes. For example, code duplication [2] multiplies the number of call
sites. Moreover, when a method is inlined, inlining-tree nodes are created for
the callees of the inlinee.

Another kind of difference is different transformations applied to the same
call site. We say that two inlining-tree nodes represent the same call site if their
paths from the root match. The path from the root to a node consists of the target
methods and call-site positions on the path.

As an example, the compiler might inline the same call in only one of the
compared compilations. The applied transformation is reflected in the call-site
category we described earlier. A possible explanation for such a difference might
come from the reasoning of the inliner or the collected profiles. Profdiff displays
this information when a difference is detected.

To illustrate this, Figure 2.8a is an inlining tree obtained by parsing method
main from the running example (Listing 3). Figure 2.8b lists the inlining tree of
the same method after inlining the call to literalsEqual. This inlining tree
also contains nodes for the callees of literalsEqual. Figure 2.8c shows the
differences between the trees in the form of a delta tree [31]. The delta tree
highlights that literalsEqual is a direct call in the first tree, but the call is
inlined in the second tree. The delta tree also shows the call sites that are present
only in the second inlining tree.

A shortcoming of comparing call sites by paths from the root is that we can-
not distinguish call sites created by duplication. For example, after peeling a loop
containing a call, we obtain a node representing the call site in the peeled iter-
ation and another node representing the call inside the loop body. These calls
might be optimized differently, but their target methods and paths from the root
are equivalent. We cannot discern duplicated call sites because the compiler as-
signs the same source position to duplicated IR nodes. Note that extending Graal
to create unique positions for duplicated code would be impractical.
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(root) Example.main(String[])
(direct) Integer.parseInt(String) line 5
(direct) Example.literalsEqual(int) line 7
(direct) PrintStream.println(boolean) line 7

(a) Initial inlining tree of method main.

(root) Example.main(String[])
(direct) Integer.parseInt(String) line 5
(inlined) Example.literalsEqual(int) line 7
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(indirect) Object.equals(Object) line 17

(direct) PrintStream.println(boolean) line 7

(b) Inlining tree with literalsEqual inlined.

. (root) Example.main(String[])

. (direct) Integer.parseInt(String) line 5
* (direct -> inlined) Example.literalsEqual(int) line 7
+ (direct) Scanner.init(InputStream) line 10
+ (direct) Scanner.nextLine() line 13
+ (direct) JSONParser.parse(String) line 14
+ (indirect) Object.equals(Object) line 17

. (direct) PrintStream.println(boolean) line 7

(c) Differences in the form of a delta tree.

Figure 2.8 Two possible inlining trees of method main from the running example
(Listing 3) and their delta tree.
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2.4.3 Comparing Optimization-Context Trees
We can compare optimization-context trees to identify different inlining and op-
timization decisions. Recall that the tree places optimization decisions in their
inlining contexts. Thus, the comparison highlights optimization differences in
each inlined method separately.

As an illustration, consider two possible compilations of method main from
the running example (Listing 3). Suppose that the first compilation unit du-
plicates the call to literalsEqual, as shown in Figure 2.9a. The second
compilation unit does not perform a duplication. Instead, it inlines the call to
literalsEqual, as shown in Figure 2.9b. Figure 2.9c compares the optimization-
context trees of these compilation units.

We can see a duplication (line 7) performed only in the first compilation unit.
The calls to literalsEqual are matched, and the listing explicitly states that the
first compilation did not inline but the second did. We can also see the optimiza-
tion decisions and call sites in the inlined method. The tree clearly shows that
the loop peeling was performed in differently inlined code. Finally, the call sites
created by the duplication are present only in the first compilation unit.

2.4.4 Tree Edit Distance (TED)
In this section, we apply TED [32] to semantically compare two optimization,
inlining, or optimization-context trees. TED solves the following problem. Let
us have two labeled ordered trees, 𝑇1 and 𝑇2. What is the minimum cost of oper-
ations to transform 𝑇1 into 𝑇2? The allowed operations are node deletion, node
insertion, and node relabeling. The cost of the operations is given by a cost func-
tion.

Figure 2.10 shows two trees, 𝑇1 and 𝑇2, as an example. The nodes are labeled
with letters. The figure shows a possible sequence of operations that transform
𝑇1 into 𝑇2. Each operation is associated with a cost. The total cost of the opera-
tions is 𝑐1 + 𝑐2 + 𝑐3.

In general TED, the node deletion and insertion operations work on any
tree nodes (including internal nodes). There are variants of TED [32] solving
slightly different problems. In 1-degree TED [10], only subtrees may be inserted
or deleted. In this section, we argue that the 1-degree variant matches our prob-
lem setting. We show this by enumerating the differences we want to report for
each kind of tree.

Consider the potential semantic differences between two optimization trees.
An optimization might be applied in one compilation but not the other. This
manifests as a missing leaf node in one of the trees. An optimization phase may
be missing in one of the trees. This situation can be expressed as a missing
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(root) Example.main(String[])
Duplication line 7
(direct) Integer.parseInt(String) line 5
(direct) Example.literalsEqual(int) line 7
(direct) Example.literalsEqual(int) line 7
(direct) PrintStream.println(boolean) line 7
(direct) PrintStream.println(boolean) line 7

(a) Optimization-context tree with duplication and without inlining.

(root) Example.main(String[])
(direct) Integer.parseInt(String) line 5
(inlined) Example.literalsEqual(int) line 7

LoopPeeling line 12 with {peelings: 1}
CanonicalReplacement line 12
CanonicalReplacement line 15
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(direct) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
(indirect) Object.equals(Object) line 17

(direct) PrintStream.println(boolean) line 7

(b) Optimization-context tree without duplication but with inlining.

. (root) Example.main(String[])
- Duplication line 7
. (direct) Integer.parseInt(String) line 5
* (direct -> inlined) Example.literalsEqual(int) line 7
+ LoopPeeling line 12 with {peelings: 1}
+ CanonicalReplacement line 12
+ CanonicalReplacement line 15
+ (direct) Scanner.init(InputStream) line 10
+ (direct) Scanner.nextLine() line 13
+ (direct) Scanner.nextLine() line 13
+ (direct) JSONParser.parse(String) line 14
+ (direct) JSONParser.parse(String) line 14
+ (deleted) Object.equals(Object) line 17
+ (indirect) Object.equals(Object) line 17

- (direct) Example.literalsEqual(int) line 7
- (direct) PrintStream.println(boolean) line 7
. (direct) PrintStream.println(boolean) line 7

(c) Delta tree of two optimization-context trees.

Figure 2.9 Two optimization-context trees of method main from the running
example (Listing 3) and their delta tree.
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Figure 2.10 Two labeled ordered trees, 𝑇1 and 𝑇2, and the operations that transform
𝑇1 into 𝑇2.

subtree in one of the trees. See Figure 2.7 for an example. Additionally, we
could consider detecting the situation when the phase plan is reordered. In the
framework of TED, this could be interpreted as a subtree moving to a different
tree node.

The potential differences between two inlining trees also include shape
changes, i.e., call sites missing in one of the trees. Note that it is impossible for
a call site to be missing from the tree while its callees are present. Thus, the
missing call sites are always organized as subtrees. A fundamental semantic
difference is different transformations applied to the same call site (tree node).
Recall that this information is encoded as the category of the call site. Figure 2.8
showed an example of this.

The semantic differences between two optimization-context trees are inlining
differences, optimization differences, and extra optimization decisions in code
that is present in only one of the compilations. These situations can be captured
in the framework of 1-degree TED as subtree deletions or insertions.

We use the ordered variant of TED rather than the unordered [32] because
the order of phases matters. However, the inlining tree is unordered, and some
phases perform order-independent optimizations. We solve this mismatch by
sorting the inlining tree and the children of selected phases. This way, changes
in order are not reported as differences.

1-degree TED does not model move operations [31]. Depending on the cir-
cumstances, a semantic move would be reported as an independent deletion and
insertion. However, the upside of our approach is that insertions and deletions
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0: identity a
1: insert y
1: relabel b to x
2: identity c
2: delete d
1: identity e

(a) Extended edit script.

. a
+ y
* b to x
. c
- d

. e

(b) Delta tree.

Figure 2.11 Extended edit script and a matching delta tree.

are easier to visualize than moves. Moreover, the algorithm [10] for 1-degree
TED is fast and always finds an optimal solution.

The original algorithm proposed for 1-degree TED [10] finds the minimum
cost of operations. The sequence of the operations, also called an edit script, can
be computed by backtracking. Finally, the list of operations can be visualized as
a delta tree [31]. The delta tree preserves the structure of both compared trees
and shows their differences in context. We compute the delta tree by extending
the original 1-degree TED [10] algorithm.

Figure 2.11 shows an example of a delta-tree construction. First, we compute
an extended edit script. In contrast with the standard edit script [32], the ex-
tended edit script is ordered as a pre-order traversal of the delta tree. Moreover,
the extended edit script contains the depth of each node in the delta tree. Profdiff
reconstructs the delta tree from the extended edit script.

The delta tree includes unchanged nodes. Thus, the extended edit script also
contains identity operations. An identity operation does not change a node;
rather, it establishes a mapping between nodes. The depths are displayed as
numbers before each operation in Figure 2.11a. Note that the depth of a delta-
tree node equals the depth of the original node (or nodes) it represents. This is a
property of 1-degree TED.

To compare two trees, we must define the cost function. Although the
original problem statement is formulated in terms of labels, we use a slightly
different formulation. Let us have two tree nodes, 𝑢 and 𝑣. Then, we have a
function 𝑛𝑜𝑑𝑒𝑠𝐸𝑞𝑢𝑎𝑙(𝑢, 𝑣), which returns true if 𝑢 and 𝑣 are equal. Function
𝑟𝑒𝑙𝑎𝑏𝑒𝑙𝐶𝑜𝑠𝑡(𝑢, 𝑣) returns the cost of relabeling 𝑢 to 𝑣 if they are not equal. We
always set the cost of inserting or deleting a leaf node to 1.

In the context of the optimization tree, our goal is to recognize matching op-
timization phases and decisions. Thus, 𝑛𝑜𝑑𝑒𝑠𝐸𝑞𝑢𝑎𝑙(𝑢, 𝑣) returns true if 𝑢 and 𝑣
are equal nodes, i.e., they are either phases with the same identifier or optimiza-
tion decisions with the same name, properties, and position. We do not have a
use for the relabeling operation; therefore, 𝑟𝑒𝑙𝑎𝑏𝑒𝑙𝐶𝑜𝑠𝑡(𝑢, 𝑣) returns a large con-
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stant. Note that it is always possible to transform 𝑇1 to 𝑇2 using only deletions
and insertions.

In the context of the inlining tree, we say that two nodes represent the same
call site if their names and paths from the root are equal. We can use the relabel-
ing operation to highlight equivalent call sites with differing call-site categories.
To this end, we define 𝑛𝑜𝑑𝑒𝑠𝐸𝑞𝑢𝑎𝑙(𝑢, 𝑣) to be true if 𝑢 and 𝑣 are the same call site
with equal call-site categories. 𝑟𝑒𝑙𝑎𝑏𝑒𝑙𝐶𝑜𝑠𝑡(𝑢, 𝑣) returns 1 if 𝑢 and 𝑣 represent the
same call site with different categories. Otherwise, it returns a large constant.

For the optimization-context tree, the intent is to compare optimization de-
cisions in each inlined method and inlining decisions. To this end, we merge
the definitions of 𝑛𝑜𝑑𝑒𝑠𝐸𝑞𝑢𝑎𝑙(𝑢, 𝑣) and 𝑟𝑒𝑙𝑎𝑏𝑒𝑙𝐶𝑜𝑠𝑡(𝑢, 𝑣) for the optimization and
inlining trees. If 𝑢 and 𝑣 are different node types, e.g., an optimization decision
and a call site, we return false and a large constant, respectively. Recall that the
tree may also contain warning nodes. We consider a warning to be equal only
to another warning node.

To improve the interpretability of the comparison, we preprocess the trees be-
fore they are compared. Several optimization phases perform low-impact trans-
formations, such as local IR optimizations and dead-code elimination. These
transformations are not driven by heuristics and are unlikely to change in a man-
ner that would cause a regression. Therefore, by default, we remove these phases
and their optimization decisions from the trees.

As alreadymentioned, we sort some of the optimization decisions in the opti-
mization tree. We have a hand-picked list of phases whose applied optimizations
we consider order independent. We sort the children of these phases in the opti-
mization tree. The goal is to avoid mere order changes being reported as differ-
ences. The sorting criterion is based on source-level positions (i.e., line numbers
in this thesis). In the optimization-context tree, we always sort all nodes.

Finally, we apply a postprocessing step to the delta tree. In the scenariowhere
we want to focus only on the differences, profdiff iteratively removes all leaf
nodes from the delta tree corresponding to identity operations. This way, we are
left with only the differences in their contexts. If the input trees are equivalent,
the post-processed delta tree is empty. This is convenient when we compare
many pairs of trees but we are looking for differences.

2.5 Compilation Fragments
Inlining [3] enables many other optimizations by broadening the scope of the
code that the compiler observes. For example, object allocations can be placed
on the stack [33] provided the object does not escape the inlined scope. However,
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the same transformation might have been possible even if the inlining decisions
differed.

Suppose that we have a hot method (with a dedicated hot compilation unit) in
one of the experiments. In the other experiment, thismethod is inlined in another
method. We want to compare the optimization decisions in the inlinee versus
those in the dedicated compilation unit. However, the techniques introduced up
to this point compare only two compilation units. To solve this problem, we
present compilation fragments.

As an example, we show method literalsEqual from the running example
(Listing 3) first compiled separately and then inlined in its caller, method main.
We illustrate what optimization decisions the compiler might perform in each
case and howwe can use compilation fragments to compare these optimizations.
Listing 16 shows the dedicated compilation unit of method literalsEqual. The
compiler peeled the method’s loop once, as illustrated in Listing 4.

(root) Example.literalsEqual(int) line 7
LoopPeeling line 12 with {peelings: 1}
CanonicalReplacement line 12
CanonicalReplacement line 15
(direct) Scanner.init(InputStream) line 10
(direct) Scanner.nextLine() line 13
(direct) Scanner.nextLine() line 13
(direct) JSONParser.parse(String) line 14
(direct) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
(indirect) Object.equals(Object) line 17

Listing 16 Optimization-context tree for a dedicated compilation of method
literalsEqual.

Now, consider the compilation unit of main shown in Listing 17. The com-
piler first duplicates the call to literalsEqual. Then, it inlines the call with
the constant argument 0, where 0 limits the iterations of the inlined loop. The
compiler removes the loop by peeling it and simplifying the peeled condition to
the constant false.

We construct a compilation fragment from Listing 17 to compare the inlined
method with the dedicated compilation unit. The compilation fragment is ob-
tained by copying the subtree rooted in the inlined literalsEqual node. The
subtree forms an optimization-context tree. As a result, we can compare the tree
from Listing 16 with the just-constructed compilation fragment.

The delta tree in Listing 18 compares the dedicated compilation unit with the
compilation fragment. The tree highlights the replacement of the loop condition
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(root) Example.main(String[])
Duplication line 7
(direct) Integer.parseInt(String) line 5
(inlined) Example.literalsEqual(int) line 7

LoopPeeling line 12 with {peelings: 1}
CanonicalReplacement line 12
CanonicalReplacement line 12
CanonicalReplacement line 15
(direct) Scanner.init(InputStream) line 10
(deleted) Scanner.nextLine() line 13
(deleted) Scanner.nextLine() line 13
(deleted) JSONParser.parse(String) line 14
(deleted) JSONParser.parse(String) line 14
(deleted) Object.equals(Object) line 17
(deleted) Object.equals(Object) line 17

(direct) Example.literalsEqual(int) line 7
(direct) PrintStream.println(boolean) line 7
(direct) PrintStream.println(boolean) line 7

Listing 17 Optimization-context tree after duplication, inlining, and deleting the
loop in literalsEqual.

with a constant. Thanks to the constant argument, the transformation was per-
formed only in the fragment from Listing 17. We can see that all call sites inside
the loop body were deleted in the compilation fragment.

The previous example introduced compilation fragments in terms of subtrees
of the optimization-context tree. However, the concept is more general. We
can also create fragments from optimization and inlining trees. The compilation
fragment of an inlining tree is obtained by taking a subtree of the original inlining
tree.

Creating a compilation fragment from an optimization tree is slightly more
involved. Suppose that we want to create a compilation fragment for some
method inlined in a compilation unit. After the compiler inlines the method,
all subsequent optimization passes might potentially affect the code of the inli-
nee. Therefore, these optimization passes should be a part of the optimization
tree of the fragment. Only the optimization decisions unrelated to the fragment
must be filtered out. Given that the Graal compiler inlines methods [3] at the
early stages of compilation, profdiff filters only the optimization decisions and
preserves all optimization phases in the constructed optimization tree.
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. (root) Example.literalsEqual(int)
. LoopPeeling line 12 with {peelings: 1}
+ CanonicalReplacement line 12
. CanonicalReplacement line 12
. CanonicalReplacement line 15
. (direct) Scanner.init(InputStream) line 10
* (direct -> deleted) Scanner.nextLine() line 13
* (direct -> deleted) Scanner.nextLine() line 13
* (direct -> deleted) JSONParser.parse(String) line 14
* (direct -> deleted) JSONParser.parse(String) line 14
. (deleted) Object.equals(Object) line 17
* (indirect -> deleted) Object.equals(Object) line 17

Listing 18 Delta tree of the dedicated compilation unit from Listing 16 and a
fragment from Listing 17.

2.5.1 Creating Fragments for Inlinees
Every inlinee is a potential compilation fragment. Creating fragments for all
inlinees is infeasible. This section proposes a simple condition that determines
when profdiff should create compilation fragments. We prove that, under certain
assumptions, this condition is sufficient to compare all pairs of relevant method
compilations.

Recall that profdiff marks the most frequently executed compilation units
as hot. We say that a method is hot if there exists a hot compilation unit of that
method in either experiment. We propose to leverage the hotness information to
designate for which inlinees we should create fragments. Thus, the assumption
is that a method is important only if the program spends a significant fraction of
time in that method.

To show why this is sufficient, we must define what pairs of method com-
pilations should be compared. A method compilation of method 𝑚 is either a
compilation unit rooted in 𝑚 or a compilation unit that inlined 𝑚. Now, consider
a program’s global call tree. The call tree is a tree that is rooted in the entry
point of a program. For each method invocation in the source code, we insert a
child node representing the concrete invoked method to the node that calls the
method. For indirect invocations, we insert nodes for all possible targets. The
global call tree may be infinite. However, this is not a problem because we do not
need to build the tree. For simplicity, assume that our workloads are determinis-
tic. Thus, the tree is invariant for all runs of the workload. Each node in the tree
is linked to a concrete method. Several nodes may represent the same method
called from different contexts. Figure 2.12 shows an example of a call tree. Nodes
are marked with the concrete methods they represent (𝑚1 is the entry point).
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Figure 2.12 Example of a global call tree with entry point 𝑚1. Compilation units 𝑐1,
𝑐2, and their covers are highlighted.

A compilation unit contains method compilations, i.e., the compiled root
method and the inlined methods. We can represent its method compilations as
a call tree. The compilation unit’s call tree is a subgraph of the global call tree.
Figure 2.12 shows the call trees of two compilation units, 𝑐1 and 𝑐2. We say that
a compilation unit covers some part of the global call tree. The parts covered by
𝑐1 and 𝑐2 are highlighted in Figure 2.12. Note that a compilation unit may cover
several parts of the call tree.

Let us have a call-tree node 𝑚 which represents some method. Let 𝑐1 be
any hot compilation unit from experiment 1 that covers 𝑚, and let 𝑐2 be any hot
compilation unit from experiment 2 that covers 𝑚. Their root methods are 𝑚1
and 𝑚2, respectively. We will use 𝑚, 𝑚1, and 𝑚2 to refer to the nodes or methods
they represent interchangeably. Both 𝑐1 and 𝑐2 compiled the code of method 𝑚.
Therefore, it is desirable to compare the optimization decisions in method 𝑚.

The situation is depicted at the top of Figure 2.13. There is a call tree for
some workload shown twice. In the left copy of the tree, the nodes covered by
𝑐1 are highlighted in blue. The nodes covered by 𝑐2 are highlighted in green in
the right-side copy of the tree. The nodes representing the methods 𝑚1, 𝑚2, and
𝑚 are labeled in both tree copies.

We claim that using the rules we defined above, the optimization decisions
in 𝑚 will always be compared. We prove the claim by enumerating all possible
cases. If 𝑚1 = 𝑚2, the hot compilation units 𝑐1, 𝑐2 are compared directly. If
𝑚1 ≠ 𝑚2, it holds that either 𝑐1 contains 𝑚2 or 𝑐2 contains 𝑚1. This is because
both call trees contain 𝑚. We assume w.l.o.g. that 𝑐1 contains 𝑚2, as depicted in
Figure 2.13. We know that 𝑚1 is a hot method and 𝑚2, which is inlined in the
compilation unit of 𝑚1, is also hot. Therefore, a compilation fragment rooted in
𝑚2 is created from 𝑐1. The compilation fragment will be compared with 𝑐2.
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Figure 2.13 Method 𝑚 and two compilations units, 𝑐1 and 𝑐2, that cover 𝑚. A
compilation fragment is created from 𝑐1 so that the optimization decisions in 𝑚 are

comparable.
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Chapter 3

Case Studies

This chapter presents several case studies where we applied profdiff. The tool
aims to help debug performance problems during compiler development. For
this reason, the experiments were carried out using development builds of the
compiler.

We focused on workloads from the Renaissance benchmark suite [27] be-
cause it is used to track the performance metrics of the Graal compiler. Graal
compiler developers reported six workloads that exhibit performance fluctua-
tions between VM invocations. Such workloads are non-deterministically faster
or slower on each invocation, which is considered a bug. These issues have been
open for more than a year at the time of our investigation. During that time, the
performance distributions of some of these workloads shifted toward the slower
state, leading to an overall regression. We may execute Graal with different Java
Development Kit (JDK) versions, i.e., different library and VM revisions. The
performance distribution of a workload might vary between JDK versions.

Profdiff is a good fit for such fluctuating workloads. First, we execute the
VMwith the workload several times (e.g., 30) to sample various compilation out-
comes. Second, we cluster the runs into slow and fast based on the collected
performance metrics. Then, we inspect several pairs of the runs using profd-
iff. Some variability regarding optimization decisions between hot compilations
is expected. However, the goal is to identify which optimization and inlining
differences are consistent between the slow and fast runs. These decisions are
likely responsible for the performance gap. Finally, if possible, we override these
decisions using compiler options and measure if this leads to a performance im-
provement.

We present three out of six fluctuating workloads from the Renassaince
benchmark suite [27] where we could pinpoint and confirm a problem. We
confirmed the findings by overriding the optimization decisions of the compiler,
which led to stable improvements of 8% to 30%. In another workload, we iden-
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tified the likely cause but could not override the suspected decisions to confirm
the findings. We reported all these problems to the Graal team so that they may
be fixed in a future release of the compiler.

3.1 Gauss Mix
The workload gauss-mix from Renaissance [27] fluctuated with slow and fast
states approximately 30% apart. Over time, the workload got stuck in a slower
state. We repeated the benchmark 30 times, and we found a single run that was
about 30% faster than the rest. Profdiff uncovered that in the fast run, the com-
piler inlined several hot methods into a single compilation unit. In contrast, the
slower runs spent time in several dedicated compilation units.

Profdiff created compilation fragments from the compilation unit in the fast
run and compared them with the dedicated compilation units from the slower
runs. Some of these dedicated compilation units did not inline more than the re-
spective compilation fragments. We found that the sum of time fractions spent
in such compilation units was higher than the time spent in the single compila-
tion unit from the fast run. This is a clue that the compiler should always inline
these calls into a single compilation unit.

We verified the findings by forcing the compiler to inline the identified meth-
ods using a command-line option. Simply forcing the compiler to inline these
methods appeared insufficient because the compiler would halt compilation due
to excessive graph size. Therefore, using another command-line option, we also
forbade the compiler from inlining the root method of the single compilation
unit in the fast run. This led to a consistent speed-up of about 30%.

3.2 Scala K-Means
The workload scala-kmeans from Renaissance [27] exhibited fluctuations on
both JDK 11 and JDK 17. It regressed to a slower state in a later compiler version
with JDK 17. We repeated the workload 30 times on JDK 11 and found four
runs that were about 8% faster than the rest. Using profdiff, we identified five
methods that were consistently inlined in the hot compilations of the fast runs
but not inlined in the slow runs.

We verified the findings by forcing the compiler to inline the identified meth-
ods using a command-line option. We found that force-inlining a single partic-
ular method is sufficient to achieve the fast state consistently. Although we per-
formed the experiments on JDK 11, we confirmed that overriding the inlining
decision also speeds up the workload on JDK 17. Thus, on JDK 17, we achieve a
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total speed-up of about 8%.

3.3 Scala Doku
The workload scala-doku from Renaissance [27] fluctuates between VM runs,
with a possible speed-up of about 30% relative to the slow runs. We repeated the
workload 30 times and found an apparent inlining difference between the fast
and slow runs. The fast runs always inlined two methods related to iterators, but
the slow runs never inlined them. Both calls were indirect through the iterator
interface.

A likely reason for the different inlining decisions is the type profiles at the
indirect call sites. The type profiles guide the decisions related to devirtualiza-
tion. The profiles for the indirect call sites shown by profdiff differed signifi-
cantly. The estimated probability of the method that should have been inlined
was about 35% in one of the fast runs but only about 2% in a slow run, which
did not inline the method. Thus, the workload’s performance is likely linked to
these inlining decisions, and their instability is, in turn, related to the type pro-
files. We confirmed the findings by forcing the compiler to inline the two target
methods of the indirect call. We achieved this by extending the compiler with a
new option to force the devirtualization of selected calls. This led to a consistent
speed-up of about 30%.
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Chapter 4

Related Work

The goal of performance bug detection in compilers is to discover poorly-
performing compilations. We give an overview of existing methods in Sec-
tion 4.1. Performance diagnosis in general [34] aims to analyze and fix already-
discovered performance bugs. We talk about these methods in Section 4.2. Our
work can be categorized as performance diagnosis in compilers. In contrast to
performance diagnosis in general software, we focus on the performance of the
compiled program rather than the compiler’s performance. To the best of our
knowledge, this is the first work related to performance diagnosis in the context
of a compiler.

Mosaner et al. [35] present an approach to improve optimization decisions
in a dynamic compiler. They compile and run methods with different optimiza-
tion decisions. The extracted execution statistics are used to train or fine-tune a
machine-learning model.

4.1 Performance Bug Detection in Compilers
There are several ways to detect performance bugs in compilers. Black-box ap-
proaches make it possible to compare different compilers. NULLSTONE [36] is
a test suite covering individual compiler optimizations. In random testing, small
programs are randomly generated, compiled, and potential issues are detected.
Differential testing is a type of random testing. Test cases are generated and
compiled in two different settings (e.g., by two different compilers or compiler
versions). Various methods are employed to compare the compiled executables.
If there is a difference, the test case is automatically reduced to trigger the bug
in fewer lines of code. Barany [37] statically compares binaries by performance-
related criteria such as instruction count, the number of arithmetic operations, or
memory accesses. Kitaura and Ishiura [38] statically detect dissimilar code sec-
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tions to detect potential performance differences. Then, they execute the code to
verify the findings. Theodoridis, Rigger, and Su [39] instrument the source code
with markers and check whether the compiler eliminates the markers as dead
code. An optimization opportunity is reported if two compilers remove different
sets of markers.

Hashimoto and Ishiura [40] employ an equivalence-based method, which is
a type of random testing. They prepare an optimized and unoptimized version
of the same C program and compare the generated code. If the compiler fails to
optimize the unoptimized version of the program, a problem is reported. If an
issue is detected, the source code is automatically reduced to isolate the problem.

Moseley, Grunwald, and Peri [41] collect profiles from executables compiled
by different compilers, compiler versions, and configurations. The profiles com-
prise the instruction mix, control-flow edge counts, and data from hardware per-
formance counters. They detect anomalies in these profiles to uncover perfor-
mance problems. The technique is limited to compilation units with equivalent
inlining.

Taneja, Liu, and Regehr [42] employ a white-box approach. They compute
static analyses on code fragments and compare the results to the analyses com-
puted by LLVM. This way, they uncover soundness issues or missed optimization
opportunities.

4.2 Performance Diagnosis in General Software
We give an overview of tools that analyze performance problems in programs
and potentially suggest fixes. These tools are aimed at application developers. In
contrast, profdiff approaches performance diagnosis from a compiler engineer’s
point of view: it seeks to identify suboptimal optimization decisions.

Yu and Pradel [43] present an approach based on profiling to pinpoint root
causes of synchronization bottlenecks in concurrent applications. Nistor et al.
[44] introduce a method to detect loops that can be exited early, and they sug-
gest possible source-code fixes. Curtsinger and Berger [45] show a method to
evaluate the potential impact of speeding up particular lines of code in multi-
threaded applications. Song and Lu [46] present a tool to detect inefficient loops
and suggest fix strategies. Della Toffola, Pradel, and Gross [47] present a tool
that suggests memoization for Java methods that repeat the exact computations.
Tan et al. [48] introduce a tool to mark useless memory operations. Wen, Liu,
and Chabbi [49] present a technique to discover redundant computations.
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Conclusion

In this thesis, we introduce the problem of identifying the causes of performance
regressions in the context of dynamic compilers. We present a solution based on
tracking optimization decisions. In our approach, the compiler captures inlin-
ing and optimization decisions as trees. The inlining tree represents the inlining
decisions. The optimization decisions are organized in an optimization tree or
an optimization-context tree. The former tree follows the dynamic structure of
the optimizer, and the latter follows the structure of application code. Using a
profiler, we determine which compilation units are hot. Profdiff compares the
trees of hot compilations to find changes in optimization decisions that may be
responsible for a performance difference. The thesis presents compilation frag-
ments, which allow profdiff to compare differently inlined methods. The tooling
is available as part of the open-source Graal compiler. We evaluate the tech-
niques with industry-standard benchmarks and describe three instances where
we pinpoint the exact decisions causing performance problems. By overriding
these decisions, we achieve a speed-up of about 8% to 30%.

Future Work
The approach described in this thesis introduces new research opportunities to
explore.

Reducing Costs of Performance Regression Detection
Performance regression detection is expensive in terms of machine time. For this
reason, there are attempts to reduce the costs [7]. We could leverage profdiff as an
indicator for commits that are unlikely to affect performance. Performance dif-
ferences are less likely when optimization and inlining decisions do not change.
Before the infrastructure initiates measurements for a particular workload, we
could perform a single experiment and capture the profiles and optimization logs.
Then, we may compare the experiment with a database of past experiments. If
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there were no significant optimization differences in hot methods, the infrastruc-
ture could skip measuring the workload.

Classifying Workloads Using Optimizations
The compiler may apply diverse kinds and numbers of optimizations to different
workloads in a benchmark suite. Thus, the list of applied optimizations charac-
terizes the workload from the compiler’s view. Based on the presence of partic-
ular optimizations in hot methods, we may try to encode a single workload as
a real-valued vector. We could interpret the distance between such vectors as a
measure of dissimilarity. This metric might help designers of benchmark suites
evaluate the diversity of workloads in a suite.

Automatic Bug Discovery and Fixing
Performance problems like those presented in Chapter 3 could be detected and
confirmed in an automated pipeline. For a workload with fluctuating perfor-
mance, we could run several experiments, classify each as fast or slow, and find
consistent optimization differences. As another step, we could override the iden-
tified decisions and test whether performance improves. If it does, the pipeline
may report the offending optimization decisions and the possible speed-up to
compiler developers.
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Appendix A

Using Profdiff

Profdiff is available as part of the public compiler repository.1 Graal and profdiff
depend on the build tool mx.2 We recommend building a Docker image with all
the dependencies installed and running the examples in a one-off container. The
profiler proftool depends on perf,3 which may not work on non-Linux hosts. Use
the command below to prepare a Docker image to run the examples.

docker build -t profdiff - << EOF
FROM ubuntu:22.04
RUN apt-get update && apt-get install -y build-essential \

git python3-pip flex bison libelf-dev libdw-dev \
libunwind-dev libtraceevent-dev libbfd-dev && \
pip install ninja_syntax

WORKDIR /source
RUN git clone --depth 1 --branch profdiff \

https://github.com/pecimuth/mx.git
RUN git clone --depth 1 --branch profdiff \

https://github.com/pecimuth/graal.git
RUN git clone --depth 1 --branch v6.2 \

https://github.com/torvalds/linux
RUN ln -s /source/mx/mx /bin/mx && mx --quiet fetch-jdk && \

ln -s ~/.mx/jdks/labsjdk-* labsjdk
ENV JAVA_HOME=/source/labsjdk
RUN mx -p mx build && mx -p graal/compiler build && \

mx -p graal/vm --env ni-ce build && \
make -C linux/tools/perf && \
ln -s /source/linux/tools/perf/perf /bin/perf

ENV EXTRA=-Dnative-image.benchmark.extra-image-build-argument
EOF

The requirements for the guest environment are git to clone the repositories,

1https://github.com/oracle/graal
2https://github.com/graalvm/mx
3https://perf.wiki.kernel.org/
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standard C development tools, pip to install a dependency of mx, and libraries to
build perf. The build script clones Graal, mx, and Linux to the directory /source.
Graal requires a JVMCI-enabled4 JDK, which we download using mx fetch-
jdk, and we set JAVA_HOME to the root of the JDK. We build the JIT compiler,
Native Image, and mx itself using the command mx build with the parameter
-p pointing to the root of the particular suite (project). The script also builds
perf using make. Finally, the image sets the environment variable EXTRA, which
we use in the AOT section to improve the readability of the commands.

Run the following command to start a one-off interactive container from the
above image. The flag --privileged is required to run perf.
docker run -it --rm --privileged profdiff

All subsequent commands in Appendix A should be invoked inside the con-
tainer. To verify that profdiff works, we can run unit tests using the command
below.
mx -p graal/compiler unittest org.graalvm.profdiff

A.1 JIT Experiments
The command below runs a workload from the Renaissance [27] benchmark
suite. Note that this is a simple use case without profiling; see how to enable
profiling below. We use an option to track node source positions so that the
compiler can associate optimization decisions with bytecode positions. We also
instruct the compiler to save optimization logs (i.e., the inlining and optimization
trees) to directory opt_log. Read the technical manual5 to learn more about the
optimization log.

mx -p graal/compiler benchmark renaissance:scrabble \
--tracker none -- \
-Dgraal.TrackNodeSourcePosition=true \
-Dgraal.OptimizationLog=Directory \
-Dgraal.OptimizationLogPath=$PWD/opt_log

Now, we run profdiff to display the collected logs. To learn more about the
profdiff command, read Appendix A.3 or the technical manual.6

mx -p graal/compiler profdiff report opt_log | less

The output starts with a short explanation of the concepts and formats. Note
that the output is long because it includes all Graal compilations. Profdiff groups

4https://openjdk.org/jeps/243
5https://github.com/oracle/graal/blob/master/compiler/docs/

OptimizationLog.md
6https://github.com/oracle/graal/blob/master/compiler/docs/Profdiff.md
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compilation units by the name of the root method. For each compilation unit,
it shows an inlining tree and an optimization tree. We may use the following
command to display optimization-context trees instead.

mx -p graal/compiler profdiff --optimization-context-tree true \
report opt_log | less

A.1.1 JIT Experiment with Profiling
The command below executes a JIT workload with profiling. We enable proftool
using --profiler proftool. It is not necessary to explicitly enable node
source positions because proftool inserts the flags to enable them. Proftool
saves the profiles to directories with the prefix proftool_scrabble_. For more
details, refer to the proftool manual.7 To pass these profiles to profdiff, we must
convert them to JSON using mx profjson.
mx -p graal/compiler benchmark renaissance:scrabble \

--tracker none -- --profiler proftool \
-Dgraal.OptimizationLog=Directory \
-Dgraal.OptimizationLogPath=$PWD/jit_log_1

mx profjson proftool_scrabble_* -o jit_prof_1.json

The command below reads the logs, marks themost frequently executed com-
pilation units as hot, and displays their inlining and optimization trees.

mx -p graal/compiler profdiff report jit_log_1 jit_prof_1.json | less

Wemay use command-line options to configure which compilations are con-
sidered hot. For example, the command below marks the top 100 compilation
units with the highest execution shares as hot. Read Appendix A.3 to learn about
the available options.

mx -p graal/compiler profdiff \
--hot-max-limit 100 --hot-percentile 1 \
report jit_log_1 jit_prof_1.json | less

A.1.2 Comparing JIT Experiments
To compare two JIT experiments, we first rerun the sameworkloadwith profiling
and convert the profiles.

7https://github.com/graalvm/mx/blob/master/README-proftool.md
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rm -rf proftool_scrabble_*
mx -p graal/compiler benchmark renaissance:scrabble \

--tracker none -- --profiler proftool \
-Dgraal.OptimizationLog=Directory \
-Dgraal.OptimizationLogPath=$PWD/jit_log_2

mx profjson proftool_scrabble_* -o jit_prof_2.json

We use the profdiff command jit-vs-jit to compare two JIT experiments.
The tool marks hot compilations units and compares all pairs of hot compilations
for each method.
mx -p graal/compiler profdiff jit-vs-jit \

jit_log_1 jit_prof_1.json jit_log_2 jit_prof_2.json | less

By default, pairs of hot compilation units (or fragments) are compared using
their inlining and optimization trees. We can use the command below to build
and compare optimization-context trees instead.

mx -p graal/compiler profdiff \
--optimization-context-tree true jit-vs-jit \
jit_log_1 jit_prof_1.json jit_log_2 jit_prof_2.json | less

A.2 AOT Experiments
We can run a Native Image benchmark using the script below. In contrast to
JIT compilation, Native Image must compile all reachable methods rather than
just hot methods. Thus, there are often many more compilation units. The com-
mand below also enables the profiler proftool. The profiles help us identify hot
compilation units so that we can focus only on hot code.

rm -rf proftool_scrabble_*
mx -p graal/vm --env ni-ce \

benchmark renaissance-native-image:scrabble \
--tracker none -- --profiler proftool \
--jvm=native-image --jvm-config=default-ce \
$EXTRA=-H:+TrackNodeSourcePosition \
$EXTRA=-H:OptimizationLog=Directory \
$EXTRA=-H:OptimizationLogPath=$PWD/aot_log_1

mx profjson proftool_scrabble_* -o aot_prof_1.json

We can view hot compilation units using the following command.

mx -p graal/compiler profdiff report \
aot_log_1 aot_prof_1.json | less
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A.2.1 Comparing JIT and AOT
Profdiff can compare the JIT experiment we ran previously with the AOT exper-
iment.
mx -p graal/compiler profdiff jit-vs-aot \

jit_log_1 jit_prof_1.json aot_log_1 aot_prof_1.json | less

A.2.2 Comparing AOT Experiments
Using the command below, we compile and rerun the same workload.

rm -rf proftool_scrabble_*
mx -p graal/vm --env ni-ce \

benchmark renaissance-native-image:scrabble \
--tracker none -- --profiler proftool \
--jvm=native-image --jvm-config=default-ce \
$EXTRA=-H:+TrackNodeSourcePosition \
$EXTRA=-H:OptimizationLog=Directory \
$EXTRA=-H:OptimizationLogPath=$PWD/aot_log_2

mx profjson proftool_scrabble_* -o aot_prof_2.json

Finally, we can use profdiff to compare two AOT experiments.

mx -p graal/compiler profdiff aot-vs-aot \
aot_log_1 aot_prof_1.json aot_log_2 aot_prof_2.json | less

A.3 Command-Line Options
The syntax to invoke profdiff is mx profdiff [OPTIONS] COMMAND. We de-
scribe the available options below. Each command enables a particular use case.
Run mx profdiff help to show the usage of profdiff or mx profdiff help
COMMAND to show the help message for a particular command. The available
commands are:

• report — view the logs of an experiment with an optional profile,

• jit-vs-jit — compare two profiled JIT experiments,

• aot-vs-aot — compare two profiled AOT experiments,

• jit-vs-aot — compare a JIT experiment with an AOT experiment.

All profdiff commands accept the same set of options. None are mandatory,
and they are all set to default values suitable for quickly identifying differences.
Run mx profdiff help to view the defaults. Note that most of these are binary
options, which expect the literal true or false, e.g., --long-bci=true.
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The algorithm that marks compilation units as hot is parametrized by the
options --hot-min-limit, --hot-max-limit, and --hot-percentile. These
options are relevant only when a profile from proftool is provided. --hot-min-
limit and --hot-max-limit are hard upper and lower bounds, respectively,
restricting the absolute number of compilation units marked as hot. --hot-
percentile is the requested percentile of the execution period taken up by hot
compilation units.

The option --optimization-context-tree enables the optimization-
context tree. If enabled, optimization-context trees replace inlining and
optimization trees in the output. This option is disabled by default. Read
Section 2.3 to learn more about the optimization-context tree.

If --diff-compilations is enabled, profdiff compares all pairs of hot com-
pilations (units or fragments) of the samemethod in two experiments. If disabled,
profdiff prints all compilations without any comparison. This option is enabled
by default. Read Section 2.4 to learn how profdiff compares compilation units.

If --long-bci is enabled, profdiff displays the complete position of each opti-
mization. The option is disabled by default. We explained optimization positions
in Section 2.1.1. If the option is disabled, profdiff formats the positions as single
bytecode indexes relative to the root method of a compilation unit. If the option
is enabled, profdiff prints complete positions, i.e., call stacks relative to the root
method.

Depending on the value of --sort-inlining-tree, profdiff lexicographi-
cally sorts the children of each node in the inlining tree. The sorting criteria
are the bytecode index of the call site and the method name. The option is en-
abled by default to avoid reporting differences caused by a different node order,
as explained in Section 2.4.4.

If --sort-unordered-phases is enabled, profdiff sorts the children of se-
lected optimization phases in the optimization tree. The goal is to establish a
fixed order of optimization phases across compilation units to avoid reporting
differences caused by a different order of optimizations, as explained in Sec-
tion 2.4.4. This option is enabled by default.

Selected optimization phases are removed from the optimization tree when
--remove-detailed-phases is enabled. These include the canonicalizer and
dead-code elimination, as explained in Section 2.4.4. This option is enabled by
default.

If --prune-identities is enabled, profdiff displays only the differences be-
tween two compared trees. In particular, profdiff removes leaf nodes represent-
ing identity operations from delta trees, as explained in Section 2.4.4. Note that
a pruned delta tree is the empty tree when the compared trees are identical. This
option is enabled by default.

The option --create-fragments controls the creation of compilation frag-
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ments. This option is enabled by default. Read Section 2.5.1 to learn how profdiff
creates compilation fragments.

If --inliner-reasoning is enabled, profdiff prints the reasons for all inlin-
ing decisions. This option is disabled by default. Read Section 2.2 to learn how
we capture inlining decisions.
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