
MASTER THESIS

Anna Mlezivová

Representation theory of gentle algebras

Department of Algebra

Supervisor of the master thesis: doc. RNDr. Jan Šťovíček, Ph.D.
Study programme: Mathematical Structures

Study branch: MSPN

Prague 2023



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



I would like to thank my supervisor, doc. RNDr. Jan Sťovíček, Ph.D., for all
the time spent on my thesis, carefully reading and choosing a nice topic full of
images.

Also, I am grateful to Bc. Radek Olšák for his willingness to listen and discuss
my thesis at any time as well as for his mental support.

Last but not least, I would like to thank my family for supporting me during
my studies and reminding me that there are other things in the world than my
thesis.

ii



Title: Representation theory of gentle algebras

Author: Anna Mlezivová

Department: Department of Algebra

Supervisor: doc. RNDr. Jan Šťovíček, Ph.D., Department of Algebra

Abstract: The object of study of this thesis is a special class of quiver algebras
called gentle algebras. To study modules over them, we can use a combinatorial or
geometric view. Thanks to Theorem 6.1. in the article Chan and Demonet [2020],
we can find the lattice of torsion classes of modules over gentle algebras using
string combinatorics. In the thesis, we apply this theorem for a few examples.
Especially we derive the lattice of torsion classes of Kronecker algebra, and we do
the first steps for finding the lattice for Markov algebra. The emphasis is placed
on understanding the relationship with the geometric view.

Keywords: Gentle algebras, torsion classes, string combinatorics, Markov quiver,
geometric model

iii



Contents

List of Abbreviations 2

Introduction 3

1 Definitions and facts 4
1.1 Gentle algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Blossoming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Bijection between sets of strings and torsion classes . . . . . . . . 14

2 Examples 17
2.1 The simplest algebra . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 An . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Kronecker algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Non-self-crossing strings . . . . . . . . . . . . . . . . . . . 20
2.3.2 Maximal non-crossing sets . . . . . . . . . . . . . . . . . . 22
2.3.3 Torsion classes . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Markov algebra 28
3.1 Non-self-crossing strings . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Bijections between strings and numbers . . . . . . . . . . 35
3.1.3 Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.4 Type 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Observations about the lattice . . . . . . . . . . . . . . . . . . . . 49

Conclusion 51

Bibliography 52

List of Figures 53

1



List of Abbreviations
K field
P1(K) projective line
(S, M) marked surface
Q quiver
R relations
(Q, R) gentle quiver
Q0 vertices of quiver Q

Q1 arrows of quiver Q

Q±1 letters of quiver Q

(Q′, R′) blossoming of quiver (Q, R)
s(a) source of arrow a

t(a) target of arrow a

γ string associated to walk γ

c+(γ, δ) set of positive crossings from γ to δ⨁︁ direct sum⨂︁ tensor product
X(γ) string module
XM(γ) band module
Fac(S ) finite factors of set of strings S

f.l. Λ category of finite-dimensional right Λ-modules
tors(Q, R) set of confined torsion sets in (Q′, R′)
maxNC(Q, R) set of maximal non-crossing sets of strings in a blossoming of

(Q, R)
maxNCK(Q, R) set of maximal parametrized non-crossing sets of strings in a

blossoming of (Q, R)
TΛ isomorphism from maxNCK(Q, R) to tors(f.l. Λ) from Theorem 2
A2 quiver consisting of two vertices and one arrow between them
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Introduction
This thesis deals with gentle algebras, especially finding torsion classes of modules
over them by string combinatorics and illustrating it in the geometric view. The
thesis continues the article written by Chan and Demonet [2020]. It uses the
theory stated in this article and brings some applications of it.

Gentle algebras are a class of quiver algebras such that

1. each vertex of the underlying quiver has at most two incoming and two
outgoing arrows;

2. each arrow of the underlying quiver can be succeeded/preceded by at most
one arrow so that their composition is in relations and by at most one arrow
so that their composition is not in relations.

A torsion class is defined as a class of modules closed to factors and extensions.
In Chapter 1, we start with needed definitions and facts. We connect defined

notions in combinatorial and geometric view. At the end of this chapter, we
state Theorem 2, which is taken from the article Chan and Demonet [2020]. This
theorem brings a new way to finding torsion classes of modules over the gentle
algebras. To do this, it uses the string combinatorics.

In Chapter 2 we show the power of this theorem and we apply it to a few
examples. Concretely in Section 2.1 we derive the lattice of torsion classes of
A2, the quiver consisting of two vertices and one arrow between them. The most
difficult example in this section is the Kronecker quiver, consisting of two vertices
and two arrows between them in the same direction. This is the subject of Section
2.3. To find torsion classes, we use string combinatorics, but at the same time,
we show what happens in the geometric view.

Although lattices of torsion classes for this algebras are well known, the chap-
ter gives another way to find them. Moreover, it helps to understand Theorem 2
and work with string combinatorics.

Finally, the last Chapter 3 aims to find the lattice of torsion sets of the Markov
quiver. Compared to the previous examples, this lattice is not yet known. Even if
we do not get the description of the whole lattice, we are taking the first important
steps that will be easy to follow to obtain it.

The contribution of this thesis is mainly in the not yet shown applications
of finding the lattice of torsion classes using string combinatorics. Namely in
simple examples, and especially in the first steps to describe the lattice of torsion
classes for the Markov algebra. At the same time, emphasis is placed on under-
standing the relationship with the geometric view, and everything is illustrated
with several figures. The whole approach and all results in Chapter 3 are original
contributions. Chapter 2 is also mainly author’s up to inspiration in Examples
4.12 and 4.13 in Chan and Demonet [2020].
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1. Definitions and facts
Firstly we start with a necessary theory about gentle quivers and gentle algebras.
Definitions are mostly taken from Chan and Demonet [2020]. Similarly the result
2, which is essential for this thesis, comes from this article. The tiling algebra
view is taken from the article by Baur and Simoes [2018]. We assume a basic
knowledge of the representation of algebras such as the notions of quiver, quiver
algebra and representation. All necessary is listed in the second and third chapter
of the book Assem, Simson, and Skowronski [2006].

1.1 Gentle algebras
In this chapter we will use the following notation. Let K be a field, Q a quiver
with a set of vertices Q0 and a set of arrows Q1. In general, we denote by Qk a
set of paths of length k. Further, given a ∈ Q1, we denote its source by s(a) and
its target by t(a). We will read paths in Q from left to right.

Definition 1 (Gentle quiver). A gentle quiver is a tuple (Q, R) consisting of a
finite quiver Q and a set of relations R ⊂ Q2 such that the following conditions
are satisfied.

1. Any i ∈ Q0 has at most two incoming and two outgoing arrows.

2. For any a ∈ Q1, there is at most one b ∈ Q1 such that t(a) = s(b) and
ab /∈ R.

3. For any a ∈ Q1, there is at most one b ∈ Q1 such that t(a) = s(b) and
ab ∈ R.

4. For any a ∈ Q1, there is at most one b ∈ Q1 such that t(b) = s(a) and
ba /∈ R.

5. For any a ∈ Q1, there is at most one b ∈ Q1 such that t(b) = s(a) and
ba ∈ R.

Example. In Figure 1.1 we can see four examples of gentle quivers. With the first
three of them we will work in this thesis.

Definition 2 (Gentle algebra). An algebra A is gentle if it admits presentation
A = KQ/(R) where (Q, R) is a gentle quiver.

Now we will introduce so-called tiling algebras. The gentle algebras we will
work with in this thesis are also tiling algebras. We will define it similarly as in
Baur and Simoes [2018], but not exactly the same because we want to extend the
definition to infinite dimensional algebras.

Definition 3. Let S denote an orientable surface, no matter if it has a boundary,
with a finite set M of marked points that can be on the boundary of S or not.
The pair (S, M) is called a marked surface.
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(i) Quiver A2

(iii) Markov quiver

(ii) Kronecker quiver

(iv)

Q :

R = ∅

Q :

R = ∅

Q :

R = {a1a2, a2a3, a3a1,

Q :

R = {ab, cd}

a1

b1
b3

a3 a2
b2

a b

c d

b1b2, b2b3, b3b1}

Figure 1.1: Examples of gentle quivers

Definition 4 (Arc). An arc in (S, M) is a curve γ in S satisfying the following
properties:

1. The endpoints of γ are in M .

2. γ intersects the boundary of S only in its endpoints.

3. γ does not cut out a monogon or a digon.

Arcs are taken up to homotopy relative to their endpoints.

Example. Examples of valid and invalid arcs are shown in Figure 1.2.

Figure 1.2: Examples of valid and invalid arcs, respectively

Definition 5. A partial triangulation is a set P of arcs that do not intersect
themselves or each other in the interior of S. A triple (S, M, P ) satisfying the
conditions above is called tiling.

Given a marked point p ∈ M , we can look at all arcs with at least one end
in p. All such ends are naturally sorted by the order in which they leave point
p. We will look at them in the counter-clockwise order. Thus we can talk about
successors and predecessors in this order.
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Definition 6. Tiling algebra AP associated to the partial triangulation P of
(S, M) is the bound quiver algebra AP = KQP /(RP ), where (QP , RP ) are de-
scribed as follows:

1. The vertices in (QP )0 are in one-to-one correspondence with the arcs in P .

2. There is an arrow a in (QP )1 if the arcs corresponding to s(a) and t(a) share
an endpoint pa in M and the second arc is an immediate successor of the
first one.

3. Relations RP consist of paths ab of length two which satisfy one of the
following conditions:

(a) a = b, i.e., it forms a loop
(b) a ̸= b and either pa ̸= pb or we are in one of the two situations presented

in Figure 1.3.

pa = pb

. . .

ab

pa = pb

. . .

ba

There may or may
not be a boundary.

Figure 1.3: Case ab ∈ RP , a ̸= b, pa = pb

Example. In Figure 1.4 we can see tiling algebras for the first two quivers from
Figure 1.2.

1 2
12

Figure 1.4: Tiling algebras for A2 and the Kronecker quiver.

If we would have a bit stronger assumptions to a marked surface as in Baur
and Simoes [2018] then holds that algebra is a finite dimensional gentle if and
only if it is a tiling algebra. It is proven in Theorem 2.10 in this article.
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1.2 Blossoming
Let us go back to the definition of gentle quivers. Now we introduce its blossom-
ing.

Definition 7 (Blossoming). A blossoming of a gentle quiver (Q, R) is another
gentle quiver (Q′, R′) satisfying the following conditions.

1. Q0 ⊆ Q′0, Q1 ⊆ Q′1, and R′ ∩Q2 = R.

2. For any i ∈ Q0, there are exactly two arrows a ∈ Q′1 such that s(a) = i.

3. For any i ∈ Q0, there are exactly two arrows a ∈ Q′1 such that t(a) = i.

4. For any a ∈ Q′1 \Q1, exactly one of s(a) and t(a) is in Q′0.

5. For any pair of arrows a and b satisfying t(a) = s(b) ∈ Q′0 \Q0, ab ∈ R′.

Remark. The point is that we want two incoming and two outgoing arrows for
each vertex. A blossoming is such a quiver that we add exactly missing arrows
and some new vertices to them so that the new arrows either start or end in a new
vertex. This number of new vertices is not unique, so there can be more blossom-
ings for one quiver (see example below). Nevertheless, two different blossomings
have the same set of arrows and everything we need from blossomings are only
new arrows, i.e., everything we do is independent of the choice of blossoming.
The maximum number of vertices of a blossoming is obtained by adding a new
vertex for each new arrow; such a blossoming is called the classical blossoming.
Example. • In Figure 1.5, two blossomings for quiver A2 are shown. The

first is the classical blossoming, with the second we will work in Section
2.1. Vertices and arrows that are added in each blossoming are marked in
brown.

a0

a1 a2

b1

b2 c1

c2

1 2
a0

a1 a2

b1

b2 c1

c2

1 2

Q′ :

R′ = {a1b2, b1a0, a0c2, c1a2}

Q′ :

R′ = {a1b2, b1a0, a0c2, c1a2, c2b1}

Figure 1.5: Blossomings of quiver A2

• In Figure 1.6 we can see two blossomings for the Kronecker quiver. The
first is the classical blossoming, with the second we will work in Section 2.3.

• In the Markov quiver, every vertex has two incoming and two outgoing
arrows, so its only blossoming is itself.
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a1

a0a2

b1
b0b2

Q′ :

R′ = {a0b1, b0a1, a1b2,

a1

a0a2

b1
b0b2

Q′ :

R′ = {a0b1, b0a1, a1b2, b1a2, }
b1a2, a2a0, b2b0}

Figure 1.6: Blossomings of the Kronecker quiver

Remark. From the point of view of tiling algebras, we get a blossoming by adding
vertices for parts of the boundary, adding arrows between them and arcs which
neighbour with them. Indeed, in a tiling algebra every arc has two ends and in
each end it has as successor and predecessor either another arc or a part of the
boundary.
Example. In Figure 1.7 we see two blossomings from Figure 1.5 for quiver A2 in
the tiling view.

a0

a1 a2

b1

b2 c1

c2

1 2
a0

a1 a2

b1

b2 c1

c2

1 2

Figure 1.7: Tiling for blossomings of A2

1.3 Strings
For a, b ∈ Q1 we will write ab = 0 if ab ∈ R and ab ̸= 0 if ab /∈ R.

To each arrow a ∈ Q1, we associate a formal inverse a− such that s(q−) = t(a)
and t(a−) = s(a). Arrows and their formal inverses are called letters, and the set
of letters is denoted by Q±1 .

Let us expand the relations on Q±1 in the following way:

1. For a, b ∈ Q1, b−a− = 0 if and only if ab = 0.

2. If t(a) = t(b) and a ̸= b, then ab− ̸= 0.

3. If s(a) = s(b) and a ̸= b, then a−b ̸= 0.
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For every vertex v we have two stationary walks denoted 1+
v and 1−v , which

are mutually inverse.

Definition 8 (Walk and string). A walk γ in a quiver is a stationary walk or a
reduced sequence (possibly infinite) of consecutive letters which avoids relations,
i.e. γ = · · · aiai+1 · · · with indexing set I ⊆ Z, aj ∈ Q±1 , t(ai) = s(ai+1), ai ̸=
a−i+1, aiai+1 ̸= 0 ∀i ∈ I. An inverse of a walk γ is a walk γ− such that it
is a sequence of inverses of letters γ in the opposite direction. That is γ− =
· · · a−i a−i−1 · · · .

For a walk γ in Q, we denote by γ the pair {γ, γ−}, and we call this the
associated string. Obviously, γ = γ−. The string associated to a stationary walk
for vertex v we will denote 1v.

In this chapter, we will follow the notation of strings with underlining. In
next chapters, we will work with strings and no walks, so for simplicity, we will
write strings without underlining. It means that we will denote them by walks
which determine them.

In the following definition we will work with a walk in a blossoming (Q′, R′)
of a quiver (Q, R). Of course, the endpoints of such a walk can lie in Q′0 \Q0. On
the other hand, midpoints must lie in Q0 because for any pair of arrows a and
b satisfying t(a) = s(b) ∈ Q′0 \ Q0 holds that ab ∈ R′. Hence, for a midpoint in
Q′0 \Q0 we would not have a valid walk.

Definition 9 (Confined, infinite, and periodic walks). Let γ be a walk in a
blossoming (Q′, R′) of a quiver (Q, R).

1. γ is left-infinite if

(a) it is left-unbounded, i.e. the indexing set of γ has no finite lower bound;
(b) or it is left-bounded γ = aiai+1ai+2 · · · with s(ai) ∈ Q′0 \Q0.

Similarly, a walk is right-infinite if it is either right-unbounded or right-
bounded with the target of the last arrow in Q′0 \Q0.

2. γ is infinite if it is both left-infinite and right-infinite.

3. γ is periodic if it is unbounded in both ends, and there is some r ∈ Z such
that the i-th letter in γ is equal to the (i± r)-th letters in γ for all i ∈ Z.

4. γ is left-confined (respectively, right-confined) if it is not left-infinite (re-
spectively, right-infinite).

5. γ is confined if it is left-confined and right-confined; in particular, it consists
of only finitely many letters of Q.

We also say that a string is confined (resp. infinite, resp. periodic) if so is its
underlying walk. We will call a periodic string which not consists of all arrows in
the same direction a band.
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Let us look at strings in the tiling (S, M, P ). The letter, that is an arrow or its
inverse in a quiver, corresponds to ordered pair of neighbouring arcs in the tiling.
A walk can be viewed as some oriented curve on S and string as the corresponding
non-oriented curve. For confined strings, endpoints of the corresponding curve lie
on some arc in P . If an infinite string is unbounded, then the corresponding curve
has no ends, or its ends lie in the blossoming, that is, ends of the corresponding
curve lie on the boundary of S. Periodic strings can be viewed as closed curves.
Curves corresponding to confined string a0 and infinite string c−2 a2 in the notation
of Figure 1.7 are shown in Figure 1.8.

c−2 a2a0

Figure 1.8: Curves corresponding to strings

Definition 10 (Concatenation). Consider two walks, γ and δ. Let γ be right-
confined, δ left-confined, t(γ) = s(δ) and holds that ab ̸= 0, a ̸= b− for a the last
letter of γ and b the first letter of δ. The concatenation of γ and δ as words gives
rise to a well-defined walk, denoted by γδ.

For γ confined we will denote:
• γm the confined walk given by concatenating γ with itself m times;

• γ∞ = γγγ · · · , the right-infinite walk;

• ∞γ = · · · γγγ, a left-infinite walk;

• ∞γ∞ = (∞γ)(γ∞) = · · · γγ · · · , an infinite walk.
Note that because of the definition of gentle algebra and blossoming, each

confined string γ of length at least one can be succeeded by a unique arrow, a
unique inverse arrow and also preceded by a unique arrow and a unique inverse
arrow.
Definition 11 (Crossing). Consider two walks, γ and δ. A positive crossing from
γ to δ is a pair of decompositions of the form γ = γ1a

−ωa′γ2, δ = δ1bωb′−δ where
a, a′, b, b′ are arrows and γ1, γ2, δ1, δ2 are subwalks. It is illustrated in Figure 1.9.

We will say there is a positive crossing from γ to δ at ω. We denote positive
crossing by

γ = γ1a
−

δ = δ1b

⟩︄
ω

⟨︄
a′γ2
b′−δ

.

The set of positive crossings from γ to δ is denoted c+(γ, δ). Note that there is an
immediate identification c+(γ, δ) = c+(γ−, δ−). For two strings γ and δ, we write
c+(γ, δ) = c+(γ, δ) ∪ c+(γ, δ−). We say that γ and δ are crossing if c+(γ, δ) ̸= ∅
or c+(δ, γ) ̸= ∅.

10



γ :

δ :

γ1

δ1

γ2

δ2

a− a′

b b′−

ω

Figure 1.9: Illustration of a crossing

We do not prove that crossings in strings correspond to topological crossings
of corresponding curves in tilings. It is not important for this thesis because we
use the tiling view only for illustration.

In this thesis, we will work mainly with infinite non-self-crossing strings. Cor-
responding curves are called accordions. Now we will define accordions precisely,
and we will show examples of what accordions can look like.

Definition 12 (Accordion). An accordion on tiling (S, M, P ) is a curve γ : I → S
(possibly closed) satisfying the following conditions:

1. I is any connected subset of R. Examples of accordions for different types
of intervals are shown in Figure 1.10.

Figure 1.10: Examples of accordions

2. γ has no self-intersection.

3. γ does not intersect any vertex of M .

4. Each bounded end must lie on the boundary of S.

5. γ is not homotopically equivalent to the part of boundary. Also it is not
homotopically trivial if it is a closed curve.

6. A curve γ that rotates along a simple closed curve δ infinitely (in both of
ends) is identified to δ. An example of this situation is illustrated in Figure
1.11.

Accordions are taken up to homotopy relative to boundary segments between
marked points. We mean that if a curve has an endpoint, we can move this
endpoint along the boundary segment between marked points. On the other hand,
accordions with ends in different boundary segments are necessarily different.

Definition 13 (Non-crossing set). A set S of strings in (Q′, R′) is called non-
crossing if for any γ, δ ∈ S , c+(γ, δ) = ∅. In particular, it consists of non-self-
crossing strings. A set of strings is called maximal non-crossing if

11



Figure 1.11: Example of a curve infinite rotating along closed curve

• It consists only of infinite strings.

• It is non-crossing.

• It is a maximal set with respect to the above properties.

We know that a set of arrows in a blossoming is always the same, so maximal
non-crossing sets of strings do not depend on a choice of blossoming. Hence, we
can denote by maxNC(Q, R) the set of all maximal non-crossing sets of strings in
a blossoming of (Q, R).

Definition 14 (Lamination). A maximal collection of non-intersecting accor-
dions is called lamination.

In other words, maximal non-crossing sets of strings are in the tiling view
laminations.

Note that according to Definition 11, a string determined by a walk consisting
only of arrows does not cross with any string. Hence, such infinite strings always
belong to each maximal non-crossing set.

In the tiling view, a sequence of arrows of the same direction without relation
are viewed as curves around some marked point. For example, all such strings of
A2 are shown in Figure 1.12.

1 2

a1a0a2

b1b2 c1c2

Figure 1.12: Strings consisting only from arrows for A2

1.4 Modules
In this section we will introduce needed notions of string and band modules. This
part is taken from section 5.2 in Chan and Demonet [2020]. From now on, we
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will fix a gentle quiver (Q, R) and a blossoming (Q′, R′). We denote by Λ the
gentle algebra associated to (Q, R) and f.l. Λ the category of finite-dimensional
right Λ-modules.

Definition 15 (String module). Let γ = · · · aiai+1 · · · be a walk in (Q, R) with
indexing interval I ⊆ Z. By a position in γ we mean a number i in the set I, or
in the set I ∪ {max(I) + 1} if I is bounded above (because the last arrow ends in
some vertex).

For a position i, we denote by vi ∈ Q0 the corresponding vertex. Consider the
vector space ⨁︁

i Kxi, where i goes through all positions i. We define an action of
Λ on it as follows:

• for v ∈ Q0, xiev = xiδv,vi
, where δv,vi

= 1 if v = vi and 0 otherwise, where
ev denoted the stationary path at v;

• for q ∈ Q1 and a position i,

xiq =

⎧⎪⎨⎪⎩
xi+1 if q = ai,
xi−1 if q = a−i ,
0 else.

The resulting Λ-module is isomorphic to the one defined by γ−, and so it
makes sense called such a module string module. We will denote it by X(γ).

Note that if γ is a stationary walk, then X(γ) is just the corresponding simple
module. Clearly, X(γ) is finite-dimensional if and only if γ is bounded.

Now let γ be a periodic walk that contains at least one arrow and one inverse
of an arrow in its letters. A subwalk δ of γ is said to be the primitive period of
γ if γ = ∞δ∞ and there is no other subwalk ϵ of γ such that ϵr = δ for some
r > 1. We fix such a γ with an indexing set I, and δ its primitive period with an
indexing set J ⊂ I.

Definition 16 (Band module). Let σ be the operation on γ given by shifting
the letters to the right by |J | places. Abusing notation, we also denoted by σ the
induced period-shifting automorphism

σ : X(γ)→ X(γ)
xi ↦→ xi−|J |.

This gives X(γ) the structure of a K[T, T−1]-Λ-bimodule where T acts as σ.
Therefore, for a finite-dimensional K[T, T−1]-module M , we can define a Λ-
module

XM(γ) = M ⊗K[T,T−1] X(γ).
If M is indecomposable, we call XM(γ) a band module.

We will describe the action of Λ on a band module XM(γ) more explicitly.
By construction, XM(γ) is free of rank |J | over K[T, T−1] with canonical basis
{xj}j∈J , i.e. we have XM(γ) ∼=

⨁︁
j∈J Mxj as a vector space. Then Λ-module

structure is given by
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• for v ∈ Q0 and m ∈M , mxiev = mxiδv,vi
;

• for q ∈ Q1, i ∈ J and m ∈M ,

mxiq =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

mxi+1 if i < max J and q = ai,
mxi−1 if i > min J and q = a−i−1,
(m · T )xmin J if i = max J and q = ai,
(m · T−1)xmax J if i = min J and q = a−i−1,
0 else.

Note that XM(γ) ∼= Xι(M)(γ−), where ι is the K[T, T−1]-automorphism on M
given by swapping the action of T and T−1. In particular, XM(γ) ∼= XM ′(γ′) if
and only if

1. M ∼= M ′ or M ∼= ι(M ′), and

2. γ′ can be obtained by γ via shifting letters, or reversing the whole walk, or
both.

Let us look at finite dimensional K[T, T−1]-modules in the case when K is
algebraically closed. They are representations of the quiver which is one vertex
with a loop. Indecomposable are those of the form Mn,k = (Kn, Jn,k), where Jn,k

is a Jordan block with dimension n ∈ N and eigenvalue k ∈ K \ 0.

At the end of this section, we define a torsion class of modules.

Definition 17 (Torsion class of modules). The full subcategory T of f.l. Λ is
called a torsion class if it is closed under factors and extensions. In other words,
for any short exact sequence 0 −→ L −→ M −→ N −→ 0 in f.l. Λ holds that if
M is an element of T , also N is, and if L, N are elements, then also M is.

1.5 Bijection between sets of strings and torsion
classes

Now we will go back to strings and according to sections 4.1, 4.2, 4.7, 6.1 in Chan
and Demonet [2020], we will introduce notions needed for stating the main results
of this article.

Definition 18 (Factor and extension of strings). 1. For a string γ in (Q′, R′)
a factor of γ is any string ω such that γ = ω or there exists a decomposition
γ = γ1a

−ωa′γ2 or γ = γ1a
−ω or γ = ωa′γ2, with a, a′ ∈ Q′1. A factor is

illustrated in Figure 1.13.

γ :
γ1 γ2

a− a′
ω

Figure 1.13: Illustration of a factor
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2. Let γ and δ be strings and a be an arrow in Q1 such that γaδ is also a
string. We say that γaδ is an extension of δ by γ.

Remark. Let us look at the relation of notions factor and extension for modules
and strings. In notation from Definition 18.1, there are arrows towards γ1, γ2, so
X(γ1), X(γ2) are submodules of X(γ). That is, X(ω) = X(γ)/(X(γ1)

⨁︁
X(γ1))

is a factor module of X(γ). On the other hand, there are factor modules of X(γ)
which are not string modules of some factor of γ.

Similarly, with the notation from Definition 18.2, X(δ) is a submodule and
X(γ) a factor module of X(γaδ). Moreover, there is a short exact sequence
0→ X(δ)→ X(γaδ)→ X(γ)→ 0.

Definition 19 (Torsion set of strings). A set T of strings in (Q′, R′) is called
a torsion set of (Q, R) if it is closed under factors and extensions of strings. If,
moreover, T consists only of confined strings, we say that T is a confined torsion
set. We denote by tors(Q, R) the set of confined torsion sets in (Q′, R′).

Let S be a set of strings. We denote by fin(S ) the confined part of S , i.e.
the set of all confined strings in S . We define

T∞(S ) =
⋂︂

torsion set T ⊇S

T and T(S ) = fin(T∞(S )).

Consider now a confined torsion set T ∈ tors(Q, R) and define

L(T ) = {γ string in (Q′, R′) | fin{all factors of γ} ⊆ T }
and G(T ) = {γ ∈ L(T ) infinite | c+(δ, γ) = ∅ for all δ ∈ L(T )}.

Further, for a set of strings S , we define

Fac∞(S ) = {factors of γ | γ ∈ S } and Fac(S ) = fin(Fac∞(S )).

Now we can state the first important result of Chan and Demonet [2020].

Theorem 1. Let (Q, R) be a gentle quiver.

1. The set maxNC(Q, R) of all maximal non-crossing sets of strings is in one-
to-one correspondence with the set tors(Q, R) of confined torsion sets given
by

maxNC(Q, R)←→ tors(Q, R)
S −→ T(S )

G(T )←− T

2. Let ≥ be the partial order on maxNC(Q, R) induced by the bijection in 1.
Then we have S ≥ S ′ if and only if c+(S ′, S ) = ∅.

Proof. See Theorem 4.11. in Chan and Demonet [2020].

Before stating the second important result we need to introduce some more
terminology.

For a set S of strings, we denote by S p the subset of bands in S .
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Definition 20 (Parametrization). A (B-)parametrized set of strings is a pair
(S ,λλλ) consisting of a set S of strings and a (B-)parametrization map λλλ :
S p → 2B, where 2B is the power set of B. Denote by maxNCB(Q, R) the set of
parametrized maximal sets of non-crossing (infinite) strings, i.e.

maxNCB(Q, R) = {(S ,λλλ) B-parametrized set | S ∈ maxNC(Q, R)}.

We define a relation ≥ on maxNCB(Q, R) given by (S ,λλλ) ≥ (S ′,λλλ′) if S ≥ S ′

(i.e. c+(γ, δ) = ∅ for all γ ∈ S ′ and δ ∈ S ) and for any γ ∈ S p ∩S ′p, we have
λλλ(γ) ⊇ λλλ′(γ).

Let us denote by B = irrK[T, T−1] a set of representative of isoclasses of
simple K[T, T−1]-modules in the category mod K[T, T−1] of finitely generated
(left) K[T, T−1]-modules. For a parametrized set (S ,λλλ : S p → 2B) of infinite
strings, we define

X(S ) = {X(γ) | γ ∈ S },
Xλλλ(S p) = {XM(γ) | γ ∈ S p, M ∈ λλλ(γ)}.

We will denote
maxNCK(Q, R) = maxNCirrK[T,T−1](Q, R).

Theorem 2. There is a complete lattice isomorphism between maxNCK(Q, R), the
lattice of maximal parametrized non-crossing sets of infinite strings, and T(f.l. Λ),
the lattice of torsion classes in f.l. Λ, via

TΛ : maxNCK(Q, R) ∼−→ tors(f.l. Λ)
(S ,λλλ) ↦→ TΛ(S ,λλλ) = T(X(Fac(S )) ∪Xλλλ(S p).

Proof. See Theorem 6.1. in Chan and Demonet [2020].
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2. Examples
Now we will illustrate Theorem 2 with a few examples – quiver A2 in Section 2.1,
the Kronecker quiver in Section 2.3 and in short we will look at quivers An

consisting of n arrows and no relations in Section 2.2. Lattices of maximal non-
crossing sets of strings for A2 and the Kronecker quiver are (almost without
explanation) shown also in Chan and Demonet [2020] in Examples 4.12. and
4.13, respectively.

From this chapter on, we will write strings without underlying. So by writing
γ or γ− we mean string γ.

2.1 The simplest algebra
We will start with the quiver algebra of quiver A2. For this algebra, it is easy to
find all torsion classes without our theory. Therefore, we determine the lattice of
torsion classes in this straightforward way, and then we show that using Theo-
rem 2 we obtain the same result.

Torsion classes are from definition determined by indecomposable modules.
We have up to isomorphism precisely three indecomposable modules over our
algebra. They are K→ 0, 0→ K,K 1−→ K.

There is always an empty torsion class and a torsion class containing all mod-
ules. Obviously, each simple module generates a torsion class containing no other
indecomposable module. This gives us torsion classes T(K→ 0) and T(0→ K).

Torsion class T(K 1−→ K) contains K→ 0 because it is a factor by 0→ K. On
the other hand, this torsion class does not contain 0→ K. It means that we have
found the fifth torsion class.

There is no other torsion class – K 1−→ K is an extension of the other two
indecomposable modules. Together we get the lattice of torsion classes 2.1.

∅

T (K → 0)

T (K 1−→ K)

T (0 → K)

All modules

Figure 2.1: The lattice of torsion classes

Now we want to reach the same result using Theorem 2. There is no band, so
the application of the theorem is relatively easy. Torsion classes are generated by
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string modules determined by factors of a maximal non-crossing sets of infinite
strings.

Without strings consisting of all arrows in the same direction there are ex-
actly five different infinite non-self-crossing strings. These strings are a1a0c

−
1 ,

a1b
−
1 , b−2 a0a2, b−2 a0c

−
1 , c−2 a2. Corresponding accordions are drawn in Figure 2.2,

each in a different colour. The remaining procedure is to look at possible maximal
non-crossing sets and their lattice. Then we will find all factors of these sets, use
Theorem 2 and compare the result with the lattice in Figure 2.1.

a0

a1 a2

b1

b2 c1

c2

1 2

Figure 2.2: Maximal infinite strings

Let us notice that there are exactly five maximal non-crossing sets. Each
of them consists of a pair of strings from the previous paragraph, which have a
common point in the blossoming. They are shown in Figure 2.3.

Mutual crossings of all infinite non-self-crossing strings are listed in Table 2.1.
The entry in the ith row and jth column says if there is a positive crossing from
some string in the ith set to some string in the jth set. If there is, the entry is a
substring at which they cross.

Figure 2.3: All maximal non-crossing sets of infinite strings

Hence, according to Theorem 1, the lattice of laminations looks like in Fig-
ure 2.4.

Finite factors of infinite non-self-crossing strings are as follows:
Fac(a1a0c

−
1 ) = ∅

Fac(a1b
−
1 ) = ∅

Fac(b−2 a0c
−
1 ) = {11}

Fac(b−2 a0a2)c = {11, a0}
Fac(c−2 a2) = {12}.

These factors give string modules

X(11) = K→ 0, X(12) = 0→ K, X(a0) = K 1−→ K.
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Table 2.1: Table of positive crossings
a1a0c

−
1 ,

a1b
−
1

b−2 a0a2,
b−2 a0c

−
1

a1b
−
1 ,

c−2 a2

a1a0c
−
1 ,

b−2 a0c
−
1

b−2 a0a2,
c−2 a2

a1a0c
−
1 , a1b

−
1 - - - - -

b−2 a0a2, b−2 a0c
−
1 a0, 11, - 11 a0 -

a1b
−
1 , c−2 a2 12 12 - 12 -

a1a0c
−
1 , b−2 a0c

−
1 11 - 11 - -

b−2 a0a2, c−2 a2 a0, 11, 12 12 11 a0, 12 -

Figure 2.4: The lattice of laminations

Hence, from Theorem 2 we get:

TΛ(a1a0c
−
1 , a1b

−
1 ) = T(∅) = ∅

TΛ(a1b
−
1 , c−2 a2) = T(X(12)) = T(0→ K)

TΛ(a1a0c
−
1 , b−2 a0c

−
1 ) = T(X(11)) = T(K→ 0)

TΛ(b−2 a0a2, b−2 a0c
−
1 ) = T({X(11), X(a0)}) = T({K→ 0,K 1−→ K}) = T(K 1−→ K)

TΛ(b−2 a0a2, c−2 a2) = T({X(11), X(12), X(a0)}) = T({0→ K,K→ 0,K 1−→ K})
= All modules .

We can see that TΛ maps lattice 2.4 exactly to lattice 2.1.

2.2 An

Further examples of gentle quivers consist of path going through n ∈ N vertices
without any relation. In other words, they are of the form

1→ 2→ 3→ · · · → n−1→ n.

It is usual to denote these quivers An.
The lattice of torsion classes of modules over these quiver algebras can be

found in the same way using maximal strings as in the example in previous
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Subsection 2.1. We will not show the search of the lattice for these analogous
cases, but we will calculate how many torsion classes these algebras have.

We take a tiling consisting of a disk, n+3 marked points on the boundary, and
n arcs between them, all starting at one point. This tiling is shown in Figure 2.5.
Let us note that its associated quiver is exactly An.

· · ·

Figure 2.5: Tiling for An

Every accordion has to start and end in one of the n + 3 segments of the disk
boundary. We will add a new point to each of these parts. These points form
some (n+3)-gon. Every diagonal of this (n+3)-gon gives us a different accordion.
On the other hand, every accordion is homotopic to one of the diagonals of this
(n+3)-gon.

It implies that the laminations correspond to the maximal sets of non-crossing
diagonals, that is triangulations of the (n+3)-gon. It is well-known that the
number of triangulations of an m-gon is equal to the Catalan number Cm−2,
where Cm = 1

m+1

(︂
2m
m

)︂
. Hence, the number of laminations of the tiling algebra

corresponding to An is equal to Cn+1.
There is no band, so the lattice of accordions is isomorphic to the lattice of

torsion classes according to Theorem 2. Thus, the number of torsion classes of
An is equal to Cn+1.

2.3 Kronecker algebra
Let us show a slightly more complicated example. Compared to the previous ex-
amples, there is an infinite number of infinite non-self-crossing strings. Moreover,
one of them is a band. Hence, in the application of Theorem 2 we must work
with a band module. The lattice of laminations is infinite and not isomorphic to
the lattice of torsion classes.

In this section K is an algebraically closed field, (Q, R) denotes the Kronecker
quiver and (Q′, R′) its blossoming. We denote vertices and arrows as in Figure 2.6.

2.3.1 Non-self-crossing strings
We need to find all infinite non-self-crossing strings. We start with infinite strings
which are bounded, e.g., they start and end in vertices in Q′0 \Q0, which is just
a two-element set.
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a1

12

b1
b0b2

a0a2
a1

a0a2

b1
b0b2

R′ = {a0b1, b0a1, a1b2, b1a2, a2a0, b2b0}

Figure 2.6: Kronecker algebra with its tiling

Because of relations, we have only four types of bounded infinite strings. They
are a0(a1b

−
1 )kb−0 , b−2 (b−1 a1)ka2, a0(a1b

−
1 )ka1a2, b−2 (b−1 a1)kb−1 b−0 , k ∈ N0. Strings of

the second two types are self-crossing for k > 0 because they have self-crossings
at a1 and b1, respectively. For k = 0 we get in the second two types strings a0a1a2
and b0b1b2; that is, only strings consisting of arrows with the same orientation.

On the other hand, we will show that the strings of the first two types are
non-self-crossing. We denote them

αk = a0(a1b
−
1 )kb−0 , βk = b−2 (b−1 a1)ka2.

Of course, string (a1b
−
1 )k is non-self-crossing. Suppose that αk is self-crossing and

it crosses itself at some substring ω. Thus, a0 or b−0 must neighbour ω. Because
(a1b

−
1 )k consists only of two alternating arrows, both a0 and b−0 neighbour ω,

otherwise, there would not be enough different arrows to get a crossing. They are
both oriented towards ω, so ω must be the whole (a1b

−
1 )k, which is not possible.

Now we look at these types of strings from the view of accordions. The cases
for k = 1 are shown, in the order in which they are listed above, in Figure 2.7.
For general k, the first two types correspond to spirals that start at the outer
boundary, end at the inner boundary, turn around the middle k-times, and the
first turn clockwise and the second counter-clockwise.

Figure 2.7: Different types of infinite strings for k = 1

Let us note that the only two-sided unbounded string is ∞(a1b
−
1 )∞, we denote

it by γ. We also have four different one-side bounded infinite strings. We can
start at one of the two vertices in Q′0 \Q0 and continue by one of the two arrows.
Then we have only one way how to continue with an infinite cycle. Namely, we
have strings

αo
∞ = ∞(a1b

−
1 )b−0 , βo

∞ = b−2 b−1 (a1b
−
1 )∞, αi

∞ = a0(a1b
−
1 )∞, βi

∞ = ∞(a1b
−
1 )a1a2.
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Of course, they are non-self-crossing.
Again, we will show accordions that correspond to these strings. We can

imagine the only two-sided unbounded string as a closed curve around the middle.
The one-side unbounded strings correspond to spirals which can start at outer or
inner boundary and rotate clockwise or counter-clockwise. These accordions are
illustrated in Figure 2.8.

Figure 2.8: Unbounded strings γ, αo
∞, βo

∞, αi
∞, βi

∞ respectively

2.3.2 Maximal non-crossing sets
In the next step, we will find all maximal non-crossing sets of infinite strings or,
in the tiling algebra view, all laminations and their lattice.

First, let us notice that there are positive crossings from βl to αk for all
l, k ∈ N:

βl = b−2
αk = a0(a1b

−
1 )k−1a1

⟩︄
b−1

⟨︄
a1(b−1 a1)l−1a2
b−0

.

Also, there is a positive crossing from β0 to all αk, k ∈ N and from all βk, k ∈ N
to α0 at 12, respective 11. Strings α0, β0 are obviously non-crossing.

On the other hand, there is no positive crossing from αk to βl, k, l ∈ N0. Their
substrings of the form (a1b

−
1 )n are non-crossing. Hence, the crossing would have

to use arrows from thr blossoming. These arrows are oriented from the middle for
βl and to the middle for αk. Therefore the definition of positive crossing cannot
be satisfied.

Further, we have crossing from βl to all unbounded strings, these crossings
are listed in 2.1. In a similar way, we have crossings from all unbounded strings
to αk. Again, from the same reason as above there are no converse crossings.

βl = b−2
γ = ∞(b−1 a1)

⟩︄
(b−1 a1)l

⟨︄
a2
(b−1 a1)∞

βl = b−2
αo
∞ = ∞(b−1 a1)

⟩︄
(b−1 a1)l

⟨︄
a2
b−1 b−0

βl = b−2
βo
∞ = b−2 b−1 a1

⟩︄
(b−1 a1)l

⟨︄
a2
(b−1 a1)∞

βl = b−2
αi
∞ = a0a1

⟩︄
(b−1 a1)l

⟨︄
a2
(b−1 a1)∞

βl = b−2
βi
∞ = ∞(b−1 a1)

⟩︄
(b−1 a1)l

⟨︄
a2
b−1 a1a2

(2.1)

The previous implies that the only candidates for forming a non-crossing set
with βl are βk’s. Actually, there is a positive crossing from βl to all βk, k ≥ l + 2:

βl = b−2
βk = b−2 b−1 a1

⟩︄
(b−1 a1)l

⟨︄
a2
(b−1 a1)k−l−1a2

.
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Again, there are no converse crossings. Let us note that strings βk, βk+1 make a
non-crossing set. Moreover, this non-crossing set has to be maximal.

Similarly, αl forms non-crossing sets only with αl−1 and αl+1. In contrast to
βl there is a positive crossing in the opposite direction, from all αk, k ≥ l + 2 to
αl:

αk = a2a1b
−
1

αl = a0

⟩︄
(a1b

−
1 )l

⟨︄
(a1b

−
1 )k−l−1b−0

b−0
.

It remains to find non-crossing sets composed of unbounded strings. First, let
us notice that γ form a non-crossing set with each one-sided unbounded strings
because from one side there are the same, so there is no space to crossing. The
same reason holds for pairs αo

∞, βi
∞ and βo

∞, αi
∞. Non-crossing are also pairs

αo
∞, αi

∞ and βo
∞, βi

∞, because both strings in each pair consist only of arrows to
the middle, respectively arrow from the middle, and the cycle.

The rest two pairs αo
∞, βo

∞ and αi
∞, βi

∞ have only crossings from β’s to α’s,
similarly as in the case for αk and βl.

From this subsection we can conclude that we have exactly four types of
maximal-non crossing sets:

1. {αk, αk+1}, k ∈ N0

2. {βk, βk+1}, k ∈ N0

3. {α0, β0}

4. {γ, δo
∞, ϵi

∞}, δ, ϵ ∈ {α, β}.

Moreover, we have reasoned the partial order of these sets, where we take partial
order as in Theorem 1. Hence, we can draw the lattice of corresponding lamina-
tions. It is illustrated in Figure 2.9. In the figure our four types of torsion classes
from the previous paragraph correspond to the right lower part, the right upper
part, the only lamination on the left, and to the four laminations right in the
middle, respectively.

Another possibility to get this lattice would be not to use the string combi-
natorics view and find the intersections of accordions.

2.3.3 Torsion classes
The last step to find the lattice of torsion classes of the Kronecker algebra is to
use the isomorphism from Theorem 2.

We start with finding factors of our strings. We will work in the order in
which we listed the four types of torsion classes in the end of Subsection 2.3.2.

1. From the directions of the arrows follows that the factors of the string
αk = a0(a1b

−
1 )kb−0 are exactly substrings between some occurrence of b−1

and a1.

Fac(αk) = Fac(a0(a1b
−
1 )kb−0 ) = {11, a1b

−
1 , . . . , (a1b

−
1 )k−2}

Fac({αk, αk+1}) = {11, a1b
−
1 , . . . , (a1b

−
1 )k−1}
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Figure 2.9: The lattice of all laminations for Kronecker algebra
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2. The situation for βk = b−2 (b−1 a1)ka2, k ∈ N is a bit more complicated. If
we do not use arrows from the blossoming, we get the same factors as for
αk−1. If we use from the blossoming only the first arrow b−2 , factors are
exactly substrings succeeding by a1. That is, we get factors of the form
(b−1 a1)nb−1 , n < k. On the other hand, if we use from the blossoming only
a2, we get factors of the form a1(b−1 a1)n, n < k. If we use both arrows from
the blossoming, we add as a factor (b−1 a1)k. Together we get for k ∈ N:

Fac(βk) ={11, a1b
−
1 , . . . , (a1b

−
1 )k−1, b−1 , . . . , (b−1 a1)k−1b−1 ,

a1, . . . , a1(b−1 a1)k−1, (b−1 a1)k}.
Fac({βk, βk+1}) ={11, a1b

−
1 , . . . , (a1b

−
1 )k, b−1 , . . . , (b−1 a1)kb−1 ,

a1, . . . , a1(b−1 a1)k, (b−1 a1)k, (b−1 a1)k+1}
Fac({β0, β1}) ={12, 11, b−1 , a1, b−1 a1}.

3. Factors of {α0, β0} are Fac({α0, β0}) = {12}.

4. It remains to find factors of unbounded strings. All of them contain the in-
finite cycle consisting of alternating b−1 and a1. Hence, they all have factors
11, (a1b

−
1 )n, n ∈ N. Of course, γ has no other factors. Further, αo

∞, αi
∞ con-

tains without the infinite cycle only one arrow with direction to the middle.
It means that they do not add any other factor. On the other hand, βo

∞
starts with an arrow b−2 , so it adds factors (b−1 a1)nb−1 , n ∈ N0. Similarly, βi

∞
adds factors a1(b−1 a1)n, n ∈ N0.

According to Definition 15 we can find string modules corresponding to the
factors. We denote

I0 = X11 = 0←−←−K

Ii = X(a1b−1 )i = Ki
(id,0)
←−
←−

(0,id)
Ki+1, i ∈ N

P0 = X12 = K←−←− 0

Pi = X(b−1 a1)i = Ki+1
(id,0)T

←−
←−

(0,id)T

Ki, i ∈ N

Ai = Xa1(b−1 a1)i = Ki+1
id
←−
←−

Ji+1,0

Ki+1, i ∈ N0

Bi = Xb−1 (a1b−1 ))i = Ki+1
JT

i+1,0
←−
←−
id

Ki+1, i ∈ N0.

Let us notice that we have short exact sequences 0 → A0 → Ai+1 → Ai → 0
and 0 → B0 → Bi+1 → Bi → 0 for all i ∈ N0. Hence, if a torsion class contains
A0, respective B0, it contains all Ai, respective Bi. Similarly, among the modules
above there are some other relations that would reduce the numbers of generators
of torsion classes, but we will not deal with that.

Now we know almost the whole lattice of torsion classes of the Kronecker
algebra. It remains to look to the four maximal non-crossing sets of strings
containing the band.
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For each of these four sets S the set S p = {γ}. By Theorem 2 we have the
lattice isomorphism

(S ,λλλ) ↦→ T(X(Fac(S )) ∪Xλλλ(γ)).

The map λλλ : {γ} → 2B only chooses a subset of the set B, recall B is the set of
non-isomorphic simple modules over K[T, T−1]. Further, Xλλλ(γ)={XM(γ) | M ∈
λλλ(γ)}.

From the paragraph below Definition 16 we know that indecomposable mod-
ules over K[T, T−1] are of the form Mn,k = (Kn, Jn,k), where Jn,k is a Jordan block
with dimension n ∈ N and eigenvalue k ∈ K \ ∅. The simple ones are exactly
M1,k because we can embed M1,k to each Mn,k, and on the other hand, there is
no homomorphism between M1,k and M1,k′ for different k, k′.

Hence, from the definition of band modules, we get for the simple module
M1,k and the band γ the band module XM(γ) = K

1
←−←−

k

K.
Together we get that all torsion classes obtained from the set of maximal

strings containing the band have the following generators:

• All of them have generators Ii, i ∈ N

• Torsion classes obtained from the sets S containing βi
∞ add a generator

K
1
←−←−

0
K. Similarly, torsion classes obtained from the S containing βo

∞ add

a generator K
0
←−←−

1
K.

• The torsion class TΛ(S ,λλλ) also has generators {K
1
←−←−

k

K|M1,k ∈ λλλ(γ)}.

The last two points we can reformulate so that depending on (S ,λλλ) we add
as generators some R(α,β) = K

α
←−←−

β

K, (α, β) ∈ P1(K), where P1(K) denotes the
projective line.

Moreover, (S ,λλλ) ≥ (S ′,λλλ′) if and only if S ≥ S ′ in the order of maximal
non-crossing sets of strings and λλλ(γ) ⊇ λλλ′(γ). It means that the part of the lattice
obtained from (S ,λλλ) with S containing the band is isomorphic to the lattice of
all subsets of P1(K).

In this subsection, we have given all the observations needed to complete the
goal of this section – finding the lattice of torsion classes of Kronecker algebra.
The lattice is shown in Figure 2.10. We recall that some elements of the lattice
can be written in a form with fewer generators, but it is not our goal.

Again, it is possible to find the lattice of torsion classes without this theory,
but contrary to the previous example it is not easy. Representations of Kronecker
quiver are discussed in Section 9.3. in Krause [2010]. The whole lattice of torsion
classes is shown in Figure 2 in Thomas [2021].
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T (P0)

∅

T (I0)

T ({I0, I1})

T ({Ii | i ∈ N0})

T ({I0, P0, P1, R(1,0), R(0,1)})

T ({I0, I1, P1, P2,

T ({I0, I1, I2, P2,

T ({Ii | i ∈ N0}∪

· · · · · ·· · · · · ·

· · · · · ·· · · · · ·

· · ·

R(1,0), R(0,1)})

P3, R(1,0), R(0,1)})

{R(α,β) | (α, β) ∈ P1})]

to the lattice of
all subsets of P1(K)

Lattice isomorphic

Figure 2.10: The lattice of torsion classes of the Kronecker algebra
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3. Markov algebra
In this chapter, we will look at a much more complicated example. The chapter
aims to find a lattice of torsion classes of gentle algebra called Markov algebra,
the underlying quiver in Figure 3.1 where relations are formed by pairs of suc-
ceeding arrows of the same colour. It is the same quiver as in Example (iii) below
Definition 1.

1 2

3

Figure 3.1: Markov quiver

The inspiration for this chapter was the unpublished notes of Aaron Chan.
Helpful were especially figures and ideas how could some parts of the wanted
lattice look. On the other hand, the whole approach and all results in this chapter
are original contributions.

As in examples in the previous chapter, there exists a tiling corresponding to
the Markov quiver. Just take a torus with one marked point and triangulation
as in Figure 3.2.

1
2

3

Figure 3.2: Corresponding marked surface

First, let us clarify the notation that we will use in the whole section. A
string is by Definition 8 a pair containing a walk (reduced sequence of arrows
which avoids relations) and the inverse of this walk.

We can specify each arrow in the Markov quiver in Figure 3.1 by a colour
(green or pink) and the source and target. Hence, we can write walks as symbols
of arrows in green or pink colour and between them numbers 1, 2, or 3 for vertices.
For example, there is a walk 1→2→3→1←3. Because of relations, arrows of green
and pink colour must alternate in each walk. Further, we can write an inverse of
an arrow as an arrow in the opposite direction with switched source and target,
i.e. the inverse of 1→2 is arrow 2←1.

For simplicity, we will write strings as walks that determine them. So “string
1→2→3→1←3” formally means the pair {1→2→3→1←3, 3→1→3→2←1} and
also we can mention this pair as “string 3→1→3→2←1”.

Especially when we search crossings it is important to note that the word
“string” also means the inverse of the mentioned sequence. Let us again give
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an example. There is indeed a crossing between strings 1→2→3→1←3 and
2←1←3→1 at 1←3, although there is no sequence 1←3 in the chosen walk de-
termining the first string.

Note that even if we are talking about some substring, e.g. 2→3→1, we do
not fix the orientation of the whole string. That is we still consider a sequence of
arrows as a string not as a walk.

If we, for strings, use notions as first, last, preceding, succeeding and so
on, we refer to the walk which is listed. Hence, by the “first arrow of string
1→2→3→1←3” we mean arrow 1→2.

3.1 Non-self-crossing strings
First, let us see what an infinite non-self-crossing string might look like in the
Markov quiver. This quiver is a blossoming of itself, so each infinite string is a
two-sided infinite sequence of arrows.

In this section, s will denote an infinite non-self-crossing string and X, Y, Z
will denote the three vertices of the Markov quiver so that there are arrows in
the direction X → Y, Y → Z, Z → X.

Definition 21 (Cooriented substring). Let s be an infinite non-self-crossing
string in the Markov quiver. We call cooriented its substring that consists of
consecutive arrows of the same orientation and cannot be extended to a larger
one.

Lemma 3 (Forms of cooriented substrings).

1. Let p be a substring of string s, which does not contain any arrow which is
contained in a cooriented substring of s of length greater than two. Then
there is a vertex Y such that each arrow of p starts or ends in Y .

2. A non-zero finite cooriented substring p of s cannot have a length other than
1, 2, 4, or 5.

3. A string s cannot contain more than one cooriented substrings of length
greater than two. The only exception may be s containing two one-side-
infinite cooriented substrings of opposite directions.

Proof. 1. Suppose p does not contain two consecutive arrows of the same orien-
tation. In that case, p is only an vertex, or it must consist of alternating arrows
between two vertices X and Y , therefore from alternating arrows X→Y and
Y←X.

Otherwise, p contains a substring of the form X → Y → Z. Thus, in s, we
have ← X → Y → Z ←. We will show that each arrow of p starts or ends in
Y . In the Markov quiver, an arrow X → Z does not exist. We claim that there
cannot be an arrow Z → X in p. If there were, it could not succeed an arrow
X ← and could not precede ← Z thanks to non-self-crossing property at Z and
X respectively. Hence, the only option is a substring Y → Z → X → Y in s
which is not possible because from assumption there are not three consecutive
arrows.
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2. Our quiver is symmetric, so it is sufficient to disprove that the length of
p may differ from 1, 2, 4, and 5 only for p starting with 1→2. Thanks to the
relations, cooriented substrings of fixed length with a given starting arrow are
uniquely determined.

First, assume that p has length three, so it is of the form 1→2→3→1. The
arrow preceding p is in the opposite direction to arrows in p, so the only reasonable
possibility is 2←1, and similarly, the arrow succeeding the substring has to be
1←3. Thus, we get substring 2←1→2→3→1←3 which has a crossing at 1.

In p, all six arrows alternate regularly. Thus if p had a length divisible by
three, p would start and end at the same vertex. It means that, by the same
argument as above, no such p exists.

Now suppose that p has a finite length greater than six. Thus, the same ar-
rows as the first and last in p occur at least once more in p. We claim that there
is a self-crossing with a common part between the nearest occurrence of the first
and last arrow, including them (if the first and last are the same, it is sufficient
to take only this arrow). We denote this part by r. Then the string s has a
substring of the form (← p←) = (← r → . . .→ r ←). For better understanding
there is an illustration of an example of such self-crossing in Figure 3.3. We can
see that we exactly have found a self-crossing at r.

←→→→→ · · · →→→→←
r r

p

Figure 3.3: Illustration of a self-crossing of p

3. From the second part of the lemma, we know that s cannot contain a
cooriented substring of length greater than two for another length than 4, 5, or
infinity.

Consider p and q two cooriented substrings of s of length 4, 5, or infinity such
that there is no any other cooriented substring of length 4, 5, or infinity between
them in s. Without loss of generality, we can suppose that the right one q from
the left starts with the arrow 1→2. That is, including the preceding arrow, s has
a substring q′ = 2←1→2→3→1→2.

We distinguish two cases:

• Case 1 – Substring p has the same orientation of arrows as q.
Then we get the following substring.

· · · →→→→← · · · 2←1→2→3→1→2
p q′

We see that p does not end in vertex 1; otherwise, we would get a crossing
in this vertex.
The substring of s starting immediately right of p and ending immediately
left of q, containing arrow 2←1, satisfies the assumption of the first part
of the lemma. Hence, every second vertex of this substring is 2, or every
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second vertex is 1. In both cases, each arrow in this substring immediately
right of 2 is green, immediately left of 2 is pink, and vice versa for 1.
The previous two paragraphs imply the following. If p ends in the vertex
2, then there is a substring of s of the form p′ = 1→2→3→1→2←. Hence,
there is a crossing between p′ and q′ at 1→2. Similarly, for p ending in 3
we get crossing between q′ and p′ = 2→3→1→2→3← at 1→2→3. Note
that the colours in string p′ must be as we have stated. It holds because we
know from the orientation of arrow 3← that its source must be 2, and the
arrow immediately left of 2 is pink.

• Case 2 – String p has a different orientation than q.

· · · ←←←←→ · · · 2←1→2→3→1→2
p q′

Again, we use the observation about the colours of arrows between p and q.
If p ends in the vertex 1, there is the substring of s of the form p1 =
2←1←3←2←1→. If p ends in the vertex 2, we get p2 = 3←2←1←3←2→.
Finally, if p ends in the vertex 3, we get p3 = 1←3←2←1←3→. We cannot
switch colours in p3 because its last arrow 3 → must have a target 1 and
the arrow immediately left of 1 is green.
If q is of length four, adding the succeeding arrow after q, we get the sub-
string of s of the form q4 = 1→2→3→1→2←. Similarly, if q is of length
five, we get the string q5 = 1→2→3→1→2→3←.
Note that there is a crossing between p1 and q4 with at 1→2 and between
p1 and q5 at 1→2→3. For p2, we get a crossing at 2 with q4 and at 2→3
with q5. Finally, there is a crossing of p3 and q4 at 3→1→2 and p3 and q5
at 3.
In the same way, there are crossings between p of the length 4 or 5 and
q of arbitrary length greater than three. Together we have proven that
there are no two cooriented substrings of length greater than two except
two cooriented substrings of infinite length and opposite orientation.

We have narrowed down a possible form of infinite non-self-crossing strings.
According to cooriented strings of length greater than two, we can sort them into
four groups:

1. No cooriented substring of length greater than two

2. One infinite cooriented substring

3. One cooriented substring of length four or five

4. Two infinite cooriented substrings of different orientation
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In all cases, for any infinite non-self-crossing string s there exists a vertex such
that each arrow outside the cooriented strings of length greater than two contains
this vertex. Let us call this vertex significant.

It is a bit stronger statement than in the first part of Lemma 3, where we
claim that such a vertex exists for each substring outside cooriented strings of
a length greater than two. We will show it holds and also when the significant
vertex is unique.

• First, let the string s contain a cooriented substring of length two, that is
there exists its substring of the form Y ← X → Y → Z ← Y . Thus, X and
Z cannot be significant. According to the proof of Lemma 3, there is no
arrow between Z and X in any non-cooriented part. Hence, Y is significant.

• Let the string s does not contain a cooriented substring of length two. It
means that each non-cooriented part consists of two alternating vertices.
Strings of type 1, 2, and 4 have only one non-cooriented part, which has
two significant vertices. Strings of type 3 have a cooriented part and two
non-cooriented infinite parts, each having two significant vertices. Note
that, it has to be the same two vertices in both parts because if in one
part were significant X, Y and in the second Y, Z, we would get substrings
X → Y ← X and Z ← Y → Z with a crossing at Y . Thus, if s does
not contain a cooriented substring of length two there exist two significant
vertices.

1
2

3

1
2

3

Figure 3.4: Examples of cooriented strings of length five and infinite length

Let us look at the cooriented substrings in the tiling algebra view. Each
cooriented substring corresponds to a part of the accordion that rotates around
the puncture. In the second part of the lemma, we proved that if a curve rotates
around a puncture once, it must rotate around it infinitely. Figure 3.4 shows
illustrations of cooriented parts in the tiling view.

Now we want to add more conditions for non-self-crossing. Moreover, we want
find conditions such that all strings that satisfy them are non-self-crossing.

3.1.1 Type 1
For simplicity, let us first focus on strings without cooriented substrings of length
greater than two. All lemmas in this subsection also hold for strings of other
types, but conclusions after these lemmas are specific to type 1.

Let us denote o = Y←X→Y and i = Y→Z←Y . From the first part of
Lemma 3 follows that s is a composition of o’s and i’s. However, not every such
composition gives us a non-self-crossing string, as we will see soon. Note that we
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have not forgotten walks composed of i−’s and o−’s because the inverse of such
walk is composed of i’s and o’s.

Our procedure will be to gradually enlarge non-self-crossing strings from which
the original string is composed.

Lemma 4. It holds that s contains at most one of the substrings o2, i2. Further-
more, if s contains the substring oino, n ∈ N, it does not contain the substring
in+2. Similarly, if s contains the substring ioni, n ∈ N, it does not contain the
substring on+2.

Proof. Let us notice that o2 and i2 have a crossing at Y .
Let s contain the substring oino, n ∈ N. Especially, it contains also the smaller

substring →in←. In contrast, in+2 contains the substring ←in→. Hence, there
is a crossing between oino and in+2. In the same way, we can find a crossing
between ioni and on+2.

We know that the string s is composed of i’s and o’s. Now we can specify the
form of s more precisely. From Lemma 4, we deduce that at least one of i, o is
contained in s in at most the first power. Let us denote it J1 and the other by
V1.

Further, we know from the lemma that if n1 is the smallest power such that
J1V

n1
1 J1 is a substring of s, then there is no substring V m

1 for m ̸= n1, n1+1.
In other words, s is a composition of parts of the form J1V

n1
1 and J1V

n1+1
1 or

s = ∞V ∞1 or s = ∞V1J1V
∞

1 .
Strings composed of the components J1V

n1
1 and J1V

n1+1
1 still can be self-

crossing. For further specification we use the following claim.

Lemma 5. Let V, J be strings such that one of the strings JV and V J is of the
form p ← q1 ← r and the other of the form p → q2 → r, where p, q1, q2, r are
some (possibly empty) strings. Then the following holds:

1. The strings V JV nJV nJV and JV n+1JV n+1J, n ∈ N, have a crossing.

2. There is a crossing between V JV n(JV n+1)mJV nJV and (JV n+1)m+2J and
also between JV n+1(JV n)mJV n+1J and V (JV n)m+2JV .

3. The strings JV n and JV n+1 also satisfy the condition on the form of com-
positions. Thus, one of the compositions JV nJV n+1 and JV n+1JV n has the
form p′ ← q′1 ← r′ and second has the form p′ → q′2 → r′, where p′, q′1, q′2, r′

are some strings.

Proof. 1. We claim that rV nJV np is the common part of the crossing. It is, of
course, a substring of both strings and from the assumption on the form of JV
and V J , we see that we have indeed found a crossing.

2. Note that both pairs are of the forms V JtJV, JV tV J for an appropriate
string t. Thus, by assumption, we have a crossing.

3. Just set p′ = JV np, r′ = rJV n, q′1 = q1, q′2 = q2.
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We have defined V1, J1, which satisfy the assumptions of Lemma 5. We pro-
ceed by induction. If Vi, Ji are defined, they satisfy the assumptions of the lemma,
and s is composed of JiV

ni
i and JiV

ni+1
i . Then we know from the first part of

the lemma that at least one of JiV
ni

i and JiV
ni+1

i is contained in s in at most the
first power. Let us denote such a one by Ji+1 and the second one by Vi+1.

Further, if ni+1 is the smallest power such that Ji+1V
ni+1

i+1 Ji+1 is a substring
of s, then there is no substring V m

i+1 for m ̸= ni+1+1. This is true because of
the second part of the lemma. Hence, s is a composition of parts of the form
Ji+1V

ni+1
i+1 and Ji+1V

ni+1+1
i+1 or s = ∞V ∞i+1 or s = ∞Vi+1Ji+1V

∞
i+1. Moreover, Vi+1

and Ji+1 satisfy the assumptions of the lemma thanks to the third part.
Together we get that infinite strings of type 1 are of the form ∞(Vi)∞ or

∞(Vi)Ji(Vi)∞ for some i or any substring of s is not contained in s to infinite
power and for any i ∈ N the string s is composed of both JiV

ni
i and JiV

ni+1
i .

On the other hand, we will show that every string constructed in this way
from o, i is non-self-crossing.

Lemma 6. Let J, V be as follows: We cannot embed V JV into V kJV l, k, l ∈ N
in other than the obvious way. Moreover, V JV nJV and V JV n+1JV are such a
pair of strings that they do not cross each other and are non-self-crossing. Then:

1. Strings in each of the pairs
JV nJV n+1(JV n)mJV n+1JV n , JV nJV n+1(JV n)m+1JV n+1JV n and
JV n+1JV n(JV n+1)mJV nJV n+1 , JV n+1JV n(JV n+1)m+1JV nJV n+1) are
non-self-crossing and mutually non-crossing.

2. We cannot embed the string JV nJV n+1JV n into (JV n)k′JV n+1(JV n)l′ and
JV n+1JV nJV n+1 into (JV n+1)k′JV n(JV n+1)l′ in other than the obvious
way for all k′, l′ ∈ N.

Proof. From assumption, V JV nJV and V JV n+1JV are non-self-crossing and
mutually non-crossing. Hence each potential (self)crossing between strings from
1. has to contain the substring V JV . Below are marked in pink parts of
string JV nJV n+1(JV n)mJV n+1JV n, which are non-self-crossing and mutually
non-crossing from the assumption. The remaining three strings would be marked
similarly.

JV . . . V JV . . . V V (JV . . . V ) . . . (JV . . . V )JV . . . V V JV . . . V
n n n nn+ 1 n+ 1

m

Since we cannot embed V JV nontrivially, it is precisely that V JV , that we
see in the notation. However, there is no way for two substrings in the same pair
and of the same length containing V JV to start and end differently. Hence, there
is no crossing.

The second part immediately follows from the assumption on embedding
V JV .

First, let us notice that V1 and J1 as i and o satisfy the assumption of Lemma 6.
By induction, we get from the lemma that JiV

ni
i Ji and JiV

ni+1
i Ji are non-self-

crossing and do not cross each other for every ni ∈ N. Thus, all infinite strings
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constructed in the mentioned way are non-self-crossing. Especially V ni
i is non-

self-crossing for every ni, therefore ∞(Vi)∞ is also non-self-crossing. Similarly
∞(Vi)Ji(Vi)∞ must be non-self-crossing.

This subsection concludes that we know all non-self-crossing infinite strings
without a cooriented substring of length greater than two, and we can classify
them into three types:

1.A Periodic strings, i.e., bands, in the previous notation ∞(Vi+1)∞.

1.B Two sides periodic strings with one change, ∞(Vi)Ji(Vi)∞

1.C Strings which have no substrings in the infinite power.

Example. For a better understanding, let us give two examples of corresponding
accordions on torus to strings of types 1.A and 1.B in Figure 3.5. They are
∞(3→1←3←2→)∞ and ∞(1←3→)→2←(1←3→)∞ respectively.

1
2

3

1
2

3

Figure 3.5: Corresponding accordions

3.1.2 Bijections between strings and numbers
In this subsection, we will show another perspective on strings of type 1 using
the knowledge from the previous subsection. We start with strings of type 1.A. It
holds that they are in a bijection with Q∞, and in the tiling view, they are closed
curves with corresponding rational slopes. We will inductively define a map α
from a set of strings to rational numbers with infinity. Since each string s of type
1.A is periodic with a unique primitive period p of the form p = JiV

n
i (using no-

tation introduced in the previous section), for simplicity we will sometimes write
α(s) as α(p). We identify ∞ = −∞ = 1

0 = −1
0 .

First let α(1→ 2←) = 1
0 = −1

0 , α(2→ 3←) = 0
1 and α(3→ 1←) = 1

1 . Thus
we have defined α for all strings of type 1.A. that do not have a unique significant
vertex.

Next, suppose we have a string s of type 1.A with the significant vertex Y .
We can look at string ∞(1→ 2←)∞ in two ways – as the string with significant
vertex 1 and as the string with significant vertex 2. In the first case, we consider
the fraction in its reduced form for α(1 → 2 ←) = ∞ to be the fraction 1

0 and
in the second case −1

0 . We do not distinguish our view of strings (2 → 3 ←),
(3→ 1←) by their significant vertices. We will use a construction of s by Ji, Vi

described in the previous subsection. Strings J1, V1 are just i, o from the previous
section, so we have already defined α(J1) and α(V1).
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Further, if the image of α is defined for strings A, B, we will define it for AB.

Let α(A) = a

b
, α(B) = c

d
, a, c ∈ Z, b, d ∈ N0,

a

b
and c

d
are in reduced form

then α(AB) = a + c

b + d
.

Using this inductive definition we have defined all α(JiV
n

i ) for all n.

We will study this definition more closely. For that, the following observation
will be helpful.

Observation 7. Assume that a, c ∈ Z, b, d ∈ N, a
b

< c
d
. Then a

b
< a+c

b+d
< c

d
.

Proof. We get

ad < bc

ad + ab < bc + ab and ad + cd < bc + cd

a(d + b) < b(a + c) and d(a + c) < c(b + d)
a

b
<

a + c

b + d
and a + c

b + d
<

c

d
.

To work with 1
0 and −1

0 we note that a−1
b+0 < a

b
< a+1

b+0 .

By repeated application of Observation 7, we get that for strings A, B, the
rational number α(ABn) lies between α(A) and α(B). Let α(A) < α(B). For
n < m we have α(ABn) < α(ABm) and conversely α(BAn) > α(BAm). Thus
(α(A), . . . , α(BA3), α(BA2), α(AB), α(AB2), α(AB3), . . . , α(B)) is a division of
the interval (α(A), α(B)).

In the beginning, when α is defined only for three strings without significant
vertex, we have a division of real numbers (−∞, 0, 1,∞). In each following step,
we divide intervals finer than in the previous step. Thus, in our definition of α(s),
we gradually narrow the intervals in which it can lie, and in a finite step, α(s)
will lie on the boundary of some two intervals.

Observation 8. Let c
d

< a
b

and ad − bc = 1. Then also for c′

d′
= (n−1)a+c

(n−1)b+d
, a′

b′
=

na+c
nb+d

, n ∈ N holds a′d′−b′c′ = 1. In particular, all neighbouring images in interval
division from the previous paragraph by α have this property.

Proof. We have

a′d′ − b′c′ = (na + c)((n− 1)b + d)− (nb + d)((n− 1)a + c)
= nad + (n− 1)cb− (n− 1)ad− ncb = ad− cb = 1.

The second part of observation follows from induction.

Note that if a
b
, c

d
are in reduced form, then a+b

c+d
is in reduced form. It holds

from Observation 8 because if a′

b′
= ka′′

kb′′
, then k(a′′d′ − b′′c′) = 1.
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Lemma 9. The map α is a bijection. Moreover, the string mapped to the rational
number q in the tiling algebra view corresponds to an accordion which is the line
with the slope q.

By a line with the slope q on the torus we mean line with the slope q in the
square view of the torus which does not pass through the marked point. Such a
line exists for each slope q, and all such lines are homotopic.

Proof. The map α is injective because we have different sequences of intervals
that determine q for different strings.

On the other hand, let p
q
∈ Q∞ lie in interval ( c

d
, a

b
), where c

d
and a

b
are of

the form α(JiV
n

i ), α(JiV
n+1

i ). We will suppose these fractions are positive. For
negative, the proof is similar. Then

aq − bp ≥ 1 and pd− cq ≥ 1
(c + d)(aq − bp) ≥ c + d and (a + b)(pd− cq) ≥ a + b

(c + d)(aq − bp) + (a + b)(pd− cq) ≥ a + b + c + d

p + q = (p + q)(ad− cb) ≥ a + b + c + d

where the equality in the last line holds from Observation 8. By narrowing inter-
vals, sum a + b + c + d grows, so there is a finite step such that in this step there
is no interval in our subdivision that contains p

q
strictly inside. Hence, p

q
must

be an endpoint of some interval. Thus, p
q

= α(JiV
n

i ) for some appropriate Ji, Vi, n.

For the second part of the proof, we claim that q indicates the ratio between
the number of passes of p through vertex 1 and passes through vertex 3. In the
other words, the ratio between the number of crossing arc 1 and arc 3 by the
corresponding accordion. A number q is negative if and only if the significant
vertex is 2, respectively, each second arc crossed by the line with slope q is 2.

First, we note that the line of slope q = ±a
b

, a, b ∈ N0 is a closed non-self
crossing curve, and it crosses a times the arc 1 and b times the arc 3.

On the other hand, α(1→ 2←) = 1
0 = −1

0 and 1→ 2← contains once vertex
1 and none vertex 3. For p = 2 → 3 ← it holds α(p) = 0

1 and p contains once
vertex 3 and none vertex 1. For p = 3 → 1 ← we have p = 1

1 and it contains
vertices 1 and 3 once.

Further, let the string A pass a times through vertex 1 and b times through
vertex 3, and let B pass c times through vertex 1 and d times through vertex 3.
Then the composition AB passes (a+ c) times through vertex 1 and (b+d) times
through vertex 3. By induction, we get that s, which is mapped to a

b
, contains a

times vertex 1 and b times vertex 3.
For a string s with a period p holds that α(p) < 0 if and only if p is composed

of strings for which α(s) = −1
0 and 0

1 . These strings are exactly 1 → 2 ← and
2 → 3 ←. It follows that α(p) < 0 if and only if the significant vertex is 2. On
the other hand, we notice that every other arc that the line crosses is the diagonal
arc 2 if and only if the slope of this line is negative.

A closed curve of slope q is definitely non-self-crossing and determines a peri-
odic string, therefore a string of type 1.A. Thanks to the arcs it crosses, it must
be a string with a period p satisfying α(p) = q. Since α is a bijection, it holds
that strings of types 1.A correspond to closed curves with slope from Q∞ up to
homotopy.
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From now on, we will denote a string of type 1.A with period p, α(p) = q by
∞q∞.
Example. In Figure 3.6 we illustrate accordions ∞ 2

3
∞, ∞−2

3
∞, ∞ 3

2
∞, ∞−3

2
∞ respec-

tively. We can check that periods of the corresponding strings are
∞(3←2→3→1←3→1←)∞, ∞(2←1→2→3←2←1←2→3←2→3←)∞,
∞(1→2←1←3→1←3→)∞, and ∞(2→3←2←1→2→3←2←1→2←1→)∞.

Figure 3.6: Accordions ∞ 2
3
∞, ∞−2

3
∞, ∞ 3

2
∞, ∞−3

2
∞

Strings of type 1.B are of the form ∞(Vi)Ji(Vi)∞. Recall that Vi = Ji−1V
ni−1

i−1 .
So we can use the bijection α between such Vi and Q∞. Moreover, as we know
from Lemmas 5 and 6, there are exactly two options for Ji, they are Ji−1V

ni−1+1
i−1

and Ji−1V
ni−1−1

i−1 (if ni−1 = 1 we replace the second of them by J2
i−1Vi−1).

In terms of the interval division described above, α(Ji−1) and α(Vi−1) are
endpoints of an interval obtained in step i−1. If we look at the finer division in
step i, there is a triple of adjacent endpoints such that the middle is an image of
Vi and on the sides are images of the possible Ji.

Further, we will denote strings of type 1.B by ∞q+q∞ and ∞q−q∞, q ∈ Q∞.
Where α(Vi) = q and +, respectively −, corresponds to the option of Ji which α
maps to number grater, respective less than q. Hence, we can write each string
of type 1.B in only one way as ∞q+q∞ or ∞q−q∞.
Example. In Figure 3.7 we illustrate ∞ 2

3−
2
3
∞

,
∞ 2

3+2
3
∞. The corresponding strings

are ∞(3←2→3→1←3→1←)3←2→3→1←(3←2→3→1←3→1←)∞ and
∞(3←2→3→1←3→1←)3←2→3→1←3→1←3→1←(3←2→3→1←3→1←)∞

Figure 3.7: Accordions ∞ 2
3−

2
3
∞

,
∞ 2

3+2
3
∞

What remains are strings s of type 1.C. We extend the map α to strings of
this type so that if s is composed of substrings JiV

ni
i and JiV

ni+1
i , then α(s) lies

between images of these strings. We mentioned that this is true for s of type 1.A.
Strings of type 1.C are composed of both JiV

ni
i and JiV

ni+1
i at each step i.

These substrings thus determine an infinite sequence of finer intervals such that
α(s) lies in them. Hence, we get a bijection between strings of types 1.C and
R \ Q. For two different strings, we have a different sequence of intervals that
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converges to different real numbers. On the other hand, for each real number r we
can find a sequence of intervals from which we can construct a string s satisfying
α(s) = r.

The tiling view is similar to that of strings of types 1.A. We can imagine s of
type 1.C as a line with slope α(s).

From now on, we will denote strings of type 1.C by ∞r∞, r ∈ R \Q according
to an image by extended α.

We know that each non-cooriented part of a non-self-crossing infinite string
either contains some substring of the form JiV

n
i in an infinite power or it contains

an infinite sequence of Ji, Vi. So in the same way as for strings of type 1 we can
assign a number in R∞ to each non-cooreinted part. Of course it will be surjective
but non-injective map.

3.1.3 Type 2
Now move to infinite non-self-crossing strings with exactly one infinite cooriented
part. In this subsection, we denote by s strings of type 2.

For the cooriented part, we have two options for orientation and six options
for the last arrow. It might seem that we have also two options on which side of
the string is a cooriented part. However, let us note that

∞(→X→Y→Z→X→Y→Z) = (Z←Y←X←Z←Y←X←)∞

and similarly for the other colours and orientations. Hence, we have exactly 12
possible cooriented one-side infinite strings.

Lemma 10. If the significant vertex of s is unique, it must be the second to last
vertex of the cooriented part of s.

Proof. Let us suppose that the end of the cooriented part together with the
succeeding arrow is Z→X→Y→Z←Y . Obviously, the significant vertex cannot
be X because we have an arrow Z←Y in the non-cooriented part.

If the significant vertex is Z, then the only valid non-cooriented part is
∞(Z←Y→)∞, because with the first occurrence of X we get a substring of s
of the form Z←Y→Z→X, which gives a crossing with the mentioned end of the
cooriented string at Y→Z.

The proof is the same for the opposite orientation or colours.

For the non-cooriented part, we can use our knowledge from the previous
subsection. Next, the question is which crossings will be added by composition
with the cooriented part.

Without loss of generality, let us suppose that the string s has the cooriented
part ∞(→X→Y→Z→X→Y→Z).

We add the last arrow of the cooriented part to the non-cooriented part so that
this part consists of o = Y←X→Y and i = Y→Z←Y , let us denote this extended
non-cooriented part by s′. Then s′ starts with i. We know from Lemma 4 that
at least one of i and o is contained in s′ in at most first power. Depending on
that, we can distinguish two cases:
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• First, suppose that i is not contained in power greater than one. Lemma 4
implies s′ = io∞, or there exists n such that s contains ioni and con-
tains no substring of the form iomi for m ̸= n, n + 1. In the second
case, s′ starts with ion or ion+1. We claim that it cannot start with
ion+1. If it starts with ion+1i, from the choice of n, the string s′ con-
tains ioni. Then we get substrings Z→X→ion+1 = Z→X→ion←X→Y
and oioni =←X→ion→Z←Y , which have the crossing at X→ion.
On the contrary, we will prove that s′ and · · · →→→ ioni are non-crossing.
For contradiction, suppose that there is a crossing between them at p. This
p must contain i because both substrings · · · →→→ i and ioni do not cross
with s′. Anywhere in s′, a substring containing i continues to the right with
oni or on+1i. In the first case, p cannot be succeeded by different arrows in
our two strings. In the second case, the first different arrow is → in string
· · · →→→ ioni, so there is no crossing. For a better idea, what is described
in this paragraph is illustrated in Figure 3.8.

→Z←Y· · · →→→ ion

i

←X→Y

→Z←Y
ion

o

i

Figure 3.8: Starting with ion

Using a similar notation as in the previous section, we have J1 = i, V1 = o.
We have reasoned that s′ = J1V

∞
1 or s′ is composed of strings of the form

J1V
n

1 and J1V
n+1

1 , n ∈ N, and it starts with the first of them.

• Now, let o not be contained in power greater than one. Then s′ = i∞ or
there exists n such that s contains ino and no substring of the form oimo for
m ̸= n, n+1. Let us discuss the second case. Lemma 4 implies that s′ cannot
start with imo, m ≥ n + 2. We show that s′ cannot start with imo where m
is less than some l such that s′ contains oilo. If it started with such imo,
we would get a crossing between Z→X→imo = Z→X→im←X→Y and
oim+1 = Y←X→im→Z←Y .
On the contrary, we will show that s′ and · · · →→→ in+1o are non-crossing.
Suppose there is a crossing at p between them. Because of the non-crossing
of · · · →→→ i and in+1o with s′, p must contain first i in · · · →→→ in+1o.
Anywhere in s′, i is followed from the right by at most n other i’s and then
by o. Hence, the only way how to obtain different arrows after p is that i
succeeded it in · · · →→→ in+1o and o in s′. Thus the first different arrow
of · · · →→→ in+1o and s′ is → and ← respectively. Hence, we do not get
a crossing.
Together we have that J1 = o, V1 = i, s′ = V ∞i or s′ is composed of strings
of the form V n1+1

1 J1, V n1
1 J1 and moreover starts with the first of them.
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Let us note that if, on the contrary, the cooriented string has direction out-
wards s′, the first substrings are exactly the other than those described above. It
holds because the opposite direction of the cooriented part requires the opposite
succeeding arrow after the common part to avoid relations. We illustrated the
difference between composing with differently oriented cooriented parts in Figure
3.9.

←X→Y

→Z←Y
· · · →→→ ion

o

i

←X→Y

→Z←Y
· · · ←←← on

o

i

Figure 3.9: Composing with otherwise oriented cooriented parts

As in the previous subsection, we want to continue with greater Ji and Vi.
We will define them only a bit differently than there.

We have defined J1, V1. Now we will define Ji+1, Vi+1 inductively from Ji, Vi.
Let s′ be composed of either JiV

ni
i and JiV

ni+1
i , or V ni

i Ji and V ni+1
i Ji. From

Lemma 5 at least one of the pair is contained in s′ in at most the first power. Let
it be Ji+1 and the second of them be Vi+1. Then the only possible form of s′ is
one of:

• s′ = Ji+1(Vi+1)∞, s′ = ∞(Vi+1)∞ (depending on the starting part)

• s′ is composed of Ji+1V
n

i+1 and Ji+1V
n+1

i+1 or V n
i+1Ji+1 and V n+1

i+1 Ji+1, n ∈ N.

It is almost implied by Lemma 5. It only remains to prove that if s′ starts with
Vi and it contains Ji+1V

n
i+1J and Ji+1V

n+1
i+1 Ji+1, it cannot start with V m

i+1Ji+1 for
m ≤ n. Further, we will prove that if the second case above occurs, it is uniquely
determined which of the above components occurs first at s′.

Lemma 11. Let the cooriented part be oriented towards s′. If the first different
arrow of JiVi and ViJi from the left is → for JiVi and ← for ViJi, the first
component of s′ cannot be Vi. Otherwise, the first component cannot be Ji. If the
cooriented part is oriented outwards s′, the reverse is true.

Proof. We will prove it by induction for cooriented part oriented towards s′, the
proof for the orientation outwards s′ is similar.

First, note that it holds for J1, V1. We know that the first arrow of io is →,
the first arrow of oi is ←, and s′ cannot start with o.

Before the inductive step, we notice that because s′ starts with i, J2 and V2
end with o = Y←X→Y . Hence, for all i > 1, substrings Ji, Vi end also with o.

Now suppose that the lemma holds for Ji, Vi. In the inductive step we distin-
guish two cases.

• First, let s′ start with Ji, so it is composed of JiV
n

i and JiV
n+1

i . From
assumption the first different arrow from the left of JiV

n
i JiVi and JiV

n+1
i Ji

is → for the first and ← for the second. In other words, we have their
substrings JiV

n
i q → and JiV

n
i q ←, respectively. Hence, s′ cannot start
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with JiV
n+1

i , because we would get a crossing at X→JiV
n

i q. The whole s
would be

· · · →→ Z→X→JiV
n

i q ← · · ·Y←X→JiV
n

i q → · · · ,

where the right occurrence of JiV
n

i in the figure above is preceded by
Y←X→ because the previous substring ends with o.
If Ji+1 = JiV

n
i and Vi+1 = JiV

n+1
i , the first different arrow of Ji+1Vi+1 and

Vi+1Ji+1 is → for the first and ← on the rightfor the second and we proved
s′ cannot start with Vi+1. Similarly if Ji+1 = JiV

n+1
i and Vi+1 = JiV

n
i , the

first different arrow of Ji+1Vi+1 and Vi+1Ji+1 is ← for the first and → for
the second and we proved s′ cannot start with Ji+1. Thus for this case the
inductive step holds.

• Now let s′ start with Vi, so it is composed of V n
i Ji, V n+1

i Ji and theoretically
at the start of s′ can also be V m

i Ji, m < n. We will prove that s′ cannot start
differently than with V n+1

i . Suppose that s′ starts with V m
i Ji, m < n + 1.

The first different arrow from the left of V m
i JiVi and V n+1

i Ji is ← and
→ respectively from assumption. In other words, we have their substrings
V m

i q ← and V m
i q → respectively. Hence, s′ cannot start with V m

i Ji, because
we would get a crossing at X→V m

i q. The whole s would be

· · · →→ Z→X→V m
i q ← · · ·Y←X→V m

i q → · · · .

If Ji+1 = V n
i Ji and Vi+1 = V n+1

i Ji, the first different arrow of Ji+1Vi+1
and Vi+1Ji+1 is ← for the first and → for the second and we proved s′

cannot start with Ji+1. Similarly if Ji+1 = V n+1
i Ji and Ji+1 = V n

i Ji, the
first different arrow of Ji+1Vi+1 and Vi+1Ji+1 is → for the first and ← for
the second and we proved s′ cannot start with Vi+1. Thus for this case the
inductive step holds too.

We have proved the inductive step in both cases, so by induction the lemma
holds.

Corollary. The starting part of s′ cannot be different from JiV
ni

i or V ni+1
i Ji.

Proof. It is a direct consequence of the proof of Lemma 11.

To classify all strings of type 2, it remains to prove that all strings charac-
terized above Lemma 11 and in the second of those cases, starting as in Lemma
11, are non-self-crossing. Of course, its cooriented and non-cooriented parts are
non-self-crossing and mutually non-crossing from Lemma 6. Hence, it remains to
prove that there cannot be a self-crossing at the border between cooriented and
non-cooriented parts. Hence, it is enough to prove the following.

Lemma 12. Let the cooriented part be oriented towards s′. If the first different
arrow of JiVi and ViJi from the left is→ for JiVi and← for ViJi, then · · · →→→
Ji is non-crossing with s′. Otherwise, · · · →→→ Vi and s′ are non-crossing. If
the cooriented part is oriented outwards s′, the reverse is true.
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Proof. Again, we will prove it only for cooriented part oriented towards s′. We
will use the following claim:
Claim. Let p be a substring of the form p = ABC, where A, B, C ∈ {Ji+1, Vi+1}.
Any way we embed p to s′, B must map exactly to some of B, which we see in
the notation of s′.

Proof. From Lemma 6 we know that there is only one way how to embed ViJiVi

to V 2
i JiV

2
i . Hence, anywhere we find ABC = ...ViViJiV

n
i JiViVi · · · in s′ we see B

in the notation of s′ exactly as B.

We will prove the lemma by induction. First, we show that it holds for i = 1, 2.
The first different arrow of io and oi is → and ← respectively, and we know that
s′ and · · · →→→ i are non-crossing. Further, as we have shown at the beginning
of this section, s′ and · · · →→→ ion are non-crossing, and the first different arrow
of ionion+1 and ion+1ion is the same as the first different arrow of io and oi and
it is → and ← respectively. Also, s′ and · · · →→→ in+1o are non-crossing and
again, the first different arrow of in+1oino and inoin+1o is → and ← respectively.

Assume that the lemma holds for all j ≤ i + 1. In the inductive step, we will
show that it also holds for i + 2. We divide it into two cases:

• Let the first different arrow of JiVi and ViJi, which is also the first different
arrow for JiV

ni
i JiV

ni+1
i and JiV

ni+1
i JiV

ni
i , be → and ← respectively. So by

assumption, s′ and · · · →→→ JiV
ni

i are non-crossing.
Let W is the string such that we want to prove · · · →→→ W is non-
crossing with s′. According to the first different arrows and 11, W is one of
the strings JiV

ni
i (JiV

ni+1
i )ni+1 and (JiV

ni
i )ni+1+1JiV

ni+1
i . For contradiction,

suppose that there is a crossing between W and s′ at some string p. This p
must contain JiV

ni
i because s′ is non-self-crossing and it does not cross with

· · · →→→ JiV
ni

i . From the claim, wherever in s′ we find p we see in the
notation of s′ the substring V ni−1

i . We will distinguish two cases according
to whether Ji or Vi precedes this substring.

– Let the component Ji precede substring V ni−1
i . That is, we have a

string
→→→ JiV

ni
i · · · JiV

ni−1
i · · · .

For W the following holds. From the form of components of s′, sub-
string JiV

ni−1
i anywhere in s′ must be succeeded by Vi. And further if

W = JiV
ni

i (JiV
ni+1

i )ni+1 , the substring from the previous sentence can
either continue by ViJi or its continuation has to look as W because
of the characterization of Lemma 11. It is shown below.

W : (JiVi . . . Vi)(JiVi . . . ViVi)
ni+1

ni ni + 1

(JiVi . . . Vi)
ViJi . . .
(JiVi . . . ViVi)

ni+1 = W
Any part of s′

starting by JiV
ni
i

:

The case for W = (JiV
ni

i )ni+1+1JiV
ni+1

i is similar, it is shown below.
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W : (JiVi . . . Vi)
k(JiVi . . . Vi)

l(JiVi . . . ViVi)
ni ni ni + 1

k + l = ni+1 + 1

(JiVi . . . Vi)
k

ni
ViJi . . .
(JiVi . . . Vi)

l(JiVi . . . ViVi) = W
:Any part of s′

starting by JiV
ni
i

From the assumption, the first different arrows of JiVi and ViJi are →
and ←, respectively. That is, arrow succeeding the first occurrence of
p, can be only → from the illustrations above. All arrows preceding
this occurence of p are also → for, so we cannot have a crossing.

– Let the component Vi precede substring V ni−1
i . We denote the com-

ponent preceding this Vi (by the component is meant Ji or Vi) by
X. Hence, Ji is a substring of XiVi from the right (it means that
XiVi ends by Ji), because of the form of p. Substring Ji can be of
the form Ji−1V

ni−1
i−1 , then Vi = Ji−1V

ni−1+1
i−1 or Ji = V

ni−1+1
i−1 Ji−1, then

Vi = V
ni−1

i−1 Ji−1 because of the Corollary of Lemma 11. Hence, Ji−1 is
a substring from the right of Ji−1Vi−1, or Vi−1 is a substring from the
right of Vi−1Ji−1. Again, we know its forms as compositions of Ji−2
and Vi−2, so we can continue in the same way before we get i is from
the right substring of io, which is impossible. This reduction process
is illustrated below.

Ji
XVi

Ji−1V
ni−1

i−1

. . . Ji−1Vi−1V
ni−1

i−1

Vi−1V
ni−1

i−1 Ji−1

. . . Vi−1Ji−1V
ni−1

i−1 Ji−1

Ji−2V
ni−2

i−2

. . . Ji−2Vi−2V
ni−2

i−2

Vi−2V
ni−2

i−2 Ji−2

. . . Vi−2Ji−2V
ni−2

i−2 Ji−2

. . . i
. . . io

• Let the first different arrow of JiVi and ViJi be ← and → respectively.
Therefore, by assumption, s′ and · · · →→→ V ni+1

i Ji are non-crossing. The
further procedure is the same as in the previous case. In short, the potential
crossing must be at the substring containing V ni+1

i Ji, so from the claim, we
look to parts of s′ of the form V ni

i . We note that if an occurrence of this
substring in s′ is preceded by Vi, it must continue as the first component,
and the first different arrow can be only → for the first component. Thus
we have no crossing.
If an occurrence of V ni

i is preceded by Ji, we cannot get a crossing. From
the recursive argument, it is impossible for ViV

ni
i be from the right the

substring of XJiV
ni

i (X can be Vi or Ji) because i is not from the right
substring of io.

Together, the inductive step, hence also the whole lemma, is proved.

44



Collecting results from Lemmas 11 and 12 we get the following corollary.
Corollary. A valid sequence of Ji, Vi for a fixed cooriented part uniquely deter-
mines a string of type 2.

In Subsection 3.1.2 we introduced a bijective map α which maps a string with
the period of the form JiV

ni
i to Q∞. Also, we can take α as a bijection between

strings of the form JiV
n

i and Q∞ and similarly as a bijection between strings of
the form V n

i Ji and Q∞. We will use it in the following lemma.

Lemma 13. Let s contain both substrings JiV
ni

i Ji and JiV
ni+1

i Ji. If the coori-
ented part is pointing outwards s′, then the first component of s′ of V ni

i Ji and
V ni+1

i Ji is that one which corresponds to the smaller number. Otherwise, if the
cooriented part is pointing towards s′, the first one is that which corresponds to
the bigger number.

Proof. Let A, B be the strings V ni
i Ji and V n+1

i Ji so that α(A) < α(B), where
∞ = −∞ < 0 < 1 <∞. Then we claim that their first different arrow from the
left is → for BA and ← for AB.

We prove it by induction. For i = Y → X ← Y, o = Y ← Z → Y it holds
that α(o) < α(i) and o, i differ by → for o and ← for i. Further, suppose that
α(Ji) < α(Vi) and from inductive assumption, the first different arrow of Ji and
Vi is → for Ji and ← for Vi. Then, α(V ni

i Ji) < α(V ni+1
i Ji) and the first different

arrows for V ni+1
i Ji and V ni

i Ji are the same as for Vi, Ji, thus, as we claimed. The
proof for α(Ji) < α(Vi) is similar.

Hence, by Lemmas 11 and 12 the proof is done.

Also, for strings of type 2 we will introduce a new notation according to used
Ji, Vi similarly as in Subsection 3.1.2.

• There is no substring in an infinite power. That is s contains both JiV
ni

i Ji

and JiV
ni+1

i Ji at each step i. So we get an infinite sequence of Ji, Vi, which
is bijective to R \ Q as in the previous subsection. For a fixed cooriented
string, in each step i, the first component is uniquely determined. Hence,
for a sequence corresponding to r ∈ R\Q we get four strings of type 2 – the
string with the cooriented part oriented towards s′ and ending by the green
arrow, oriented towards s′ and ending by the pink arrow, oriented towards
s′ and ending by the green arrow, oriented towards s′ and ending by the
pink arrow. We denote them by ∞r⟨, ⟩r∞, ⟨r∞,∞ r⟩ respectively.

Figure 3.10: Accordions ∞r⟨, ⟩r∞, ⟨r∞,∞ r⟩ respectively.
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• The non-cooriented part is equal to (JiV
ni

i )∞ or (V ni
i Ji)∞. For α(JiV

ni
i ) =

q, q ∈ Q∞ we get according to the choice of the cooriented part four strings.
We denote them, according to the same rule as in the previous case, by
∞q⟨, ⟩q∞,∞ q⟩, ⟨q∞.

• The non-cooriented part is equal to JiV
∞

i , α(Vi) = q, q ∈ Q∞. According
to Lemmas 11 and 12 there is exactly one possible Ji for each Vi. We get,
depending on the cooriented part, four strings ∞q+⟨, ⟩+q∞,∞q−⟩, ⟨−q∞.

Example. What four different strings of type 2 belonging to the same r ∈ R \Q
look like is shown in Figure 3.10. In Figure 3.11 we can see an example of two
different strings belonging to the same number with the same cooriented part.

Figure 3.11: Accordions ∞ 2
3⟩ and ∞ 2

3−⟩

3.1.4 Type 3
Firstly, let s denote an infinite non-crossing string with a cooriented part of
length four. This case is rather rare. Without loss of generality, we can assume
that the cooriented part of the string with preceding and succeeding arrows is
Z←Y→Z→X→Y→Z←Y .

From Lemma 10, the significant vertex for the right non-cooriented side is
Y , and in the same way, for the left non-cooriented side it is Z. Because of
the uniqueness of a significant vertex, one part must be only alternating Y and
Z. Without loss of generality we assume that part is the right part. If the left
part contains X, then s contains substring X←(Z←Y→Z)n→X for some n.
Hence we have a self-crossing because on the right side we can find the substring
Y→(Z←Y→Z)n←Y for arbitrary n. Hence, both non-cooriented parts of s con-
sist of alternating Z and Y .

Now, let s contain a cooriented part of length five. We can assume that this
part with the succeeding and preceding arrow is Y←X→Y→Z→X→Y→Z←Y .
We note that the significant vertex of both parts is the same, it is Y .

We described the non-self-crossing of the cooriented part together right side
in the previous subsection. We used only three arrows of the cooriented string
everywhere, so now it is precisely the same. Similarly, we know the possible form
of a non-self-crossing substring consisting of the left and cooriented parts. It
remains to find out how we can give these three parts together.

From Section 3.1.2 we have an assignment of numbers R∞ to non-cooriented
parts. We will work with it in the following lemma.
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Lemma 14. Two non-cooriented parts with different assignment of numbers in
R∞ are crossing.

Proof. The assignment of numbers is determined either by an infinite sequence
of Ji, Vi (in the non-rational case) or by an infinite period Vj+1 = JjV

nj

j for some
j (in the rational case), we will denote Jj+1 = ∅. In other words in the rational
case the assignment is determined by a finite sequence (Ji, Vi).

We take two non-cooriented parts p, p′ with different assignments. That is,
they are determined by different finite or infinite sequences (Ji, Vi), (J ′i , V ′i ). If
p and p′ have a different significant vertex, they are crossing. Otherwise, there
exists the last i such that Ji = J ′i and Vi = V ′i . We note that Ji ̸= ∅ because p
and p′ would correspond to the same number. If any of the pair Ji+1, Vi+1 contains
Vi in a power which differs by at least two from the power of Vi in any of the pair
J ′i+1, V ′i+1, then p and p′ are crossing according to 5. The only different possibility
is that Ji+1, Vi+1, J ′i+1, V ′i+1 ∈ {JiV

n
i , JiV

n+1
i , ∅}. Then either Vi+1 ̸= V ′i+1, or one

of Ji+1 is ∅ and the second is not. In both cases p and p′ are crossing from Lemma
5.1 respective 5.2.

We get that strings of type 3 consist of one cooriented part of length five (in
three particular cases of length four), which is connected with two non-cooriented
parts assigned to the same number. That is, from the end of subsection 3.1.3
there are for each irrational number two candidates to string of type 3, which
differs only by switching colours of all arrows. For rational numbers there are up
to colours two possibilities for each one-side-infinite non-cooriented part. Hence
there are eight candidates for strings of type 3 for each rational number. In the
rest of this subsection we will show that exactly six of eight candidates for every
rational number and both candidates for every irrational are non-self-crossing.

We will denote these candidates in the similar way as strings of type 2, which
is described in the end of subsection 3.1.3. Hence, we have ∞r⟩r∞ and ∞r⟨r∞ for
r ∈ R, where the first is for the string with the cooriented part ending by green
arrows and the second for the string with the cooriented part ending by pink
arrows. Similarly, we denote candidates for rational numbers by ∞q⟩q∞, ∞q⟨q∞,
∞q−⟩q∞, ∞q+⟨q∞, ∞q⟩+q∞, ∞q⟨−q∞, ∞q−⟩+q∞, ∞q+⟨−q∞

Lemma 15. Strings ∞q−⟩+q∞, ∞q+⟨−q∞ are self-crossing, the rest of the can-
didates are non-self-crossing.

Proof. First we note that strings ∞q−⟩+ q∞, ∞q+⟨−q∞ are self-crossing because
they contain substrings denoted by + and −. We recall that one of + and −
is of the form JiV

ni−1
i or V ni−1

i Ji and second of the form JiV
ni+1

i or V ni+1
i Ji.

Alternatively, they are J2
i Vi or V 2

i Ji and JiV
2

i or V 2
i Ji if ni = 1. Hence, together

with the neighbourhood of these substrings, we get a crossing.

Now we will show that the rest of the candidates are non-self-crossing. Both
non-cooriented parts of each candidate are non-crossing, among other things,
both are substrings of the same string of type 1. Also, they are non-crossing with
the cooriented part. It remains to look at substrings that contain parts of both
non-cooriented and cooriented part. If such substring p contains at least three
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following arrows with the same orientation, there is no substring which p can
cross.

Further, we can consider p as a walk that starts in the cooriented part and
ends in a non-cooriented. We realize that each other occurrence of this walk p has
also start closer to the cooriented part than the end. It holds thanks to colours of
arrows. Next to each significant vertex from the direction of the cooriented part
are arrows of the same colours, thanks to the alternating colours of the arrows.
For a better understanding, see Figure 3.12 for significant vertex Y.

Y X

X

Y

Z

Z Y

Y

· · ·

· · ·

Figure 3.12: Colours of arrows of the cooriented part

Hence, no other occurrence of p reaches both the cooriented and a non-
cooriented part. The last option to the crossing is an occurrence of p in the
second non-cooriented part. Nevertheless, it cannot give a crossing because of
the similar structure of both non-cooriented parts. When we find another oc-
currence of p from Lemma 12 it is succeeding by the same arrow, or if both
occurrences are succeeding by the different arrow, the arrow preceding p has the
same direction as the arrow succeeding p, so there is no crossing.

Example. Figure 3.13 shows three accordions corresponding to three different
strings of type 3 which are assigned to 2

3 . They are ∞ 2
3⟨−

2
3
∞

,
∞ 2

3⟨
2
3
∞

,
∞ 2

3+⟨2
3
∞

respectively. If we write these strings down arrow by arrow we get
∞(2→3→1←3→1←3←)2←1(←3←2→3→1)(←3←2→3→1←3←1)∞,

∞(2→3→1←3→1←3←)2←1(←3←2→3→1←3←1)∞,

∞(2→3→1←3→1←3←)(2→3→1←3→1←3→1←3←)2←1(←3←2→3→1←3←1)∞.

Figure 3.13: Accordions ∞ 2
3⟨−

2
3
∞

,
∞ 2

3⟨
2
3
∞

,
∞ 2

3+⟨2
3
∞
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3.2 Observations about the lattice
In the previous section we have found all infinite non-self-crossing strings of type
1, 2 and 3. We recall that for each irrational number we have exactly seven
infinite non-self-crossing strings with it assigned. Concretely

• one of type 1: ∞r∞,

• four of type 2: ∞r⟨, ⟩r∞, ⟨r∞,∞r⟩,

• two of type 3: ∞r⟩r∞,∞r⟨r∞.

For each number in Q∞ we have 17 non-self-crossing infinite strings. They are

• three of type 1: ∞q∞,∞q+q∞,∞q−q∞,

• eight of type 2: ∞q⟨, ⟩q∞,∞q⟩, ⟨q∞,∞q+⟨, ⟩+q∞,∞q−⟩, ⟨−q∞,

• six of type 3: ∞q⟩q∞, ∞q⟨q∞, ∞q−⟩q∞, ∞q+⟨q∞, ∞q⟩+q∞, ∞q⟨−q∞.

From Lemma 14 we know that two strings that are assigned to different num-
bers are crossing. Now we will prove a stronger statement for strings that have
numbers from different intervals of (−∞, 0), (0, 1), (1,∞) assigned to them.

Lemma 16. Let s, s′ be two infinite non-self-crossing strings with unique and
different significant vertices X, Y . Then there is both a positive crossing from s
to s′ and a positive crossing from s′ to s.

Proof. String s contains a substring of the form X ← Z → X and a string s′

substring of the form Y → Z →, so we have found a positive crossing from s to
s′.

On the other hand, we will find a positive crossing from s′ to s with the
common part X→Y . From Lemma 4 and assumption we have that there exists
a vertex Z such that the string Z→X→Y is the substring of s. The vertex X is
significant, so we get the substring of s Z→X→Y←X. In a similar way we get
a substring of s′ Y←X→Y→; therefore the lemma is proven.

In this section we denote maximal sets of non-self-crossing infinite strings over
the Markov algebra by maxNC. Similarly we will denote maximal sets of these
strings of type 1, 2 and 3 by maxNC3.

In other words Lemma 16 says that two strings which have been assigned
numbers from different intervals (−∞, 0), (0, 1), (1,∞) are crossing in both di-
rections. Hence, two elements of maxNC containing them are incomparable in
partial order from Theorem 1.

Let us summarize our knowledge about the lattice we are looking for into
Figure 3.14. In the figure there is a round bubble for each number in R∞. It
contains elements of maxNC3 consisting of strings with this number assigned.
That is, each element of maxNC3 is located in one round bubble. We do not
know about comparability inside. Also we do not know the comparability between
elements inside pink bubbles and between elements of pink and orange bubbles.
Whatever is in a different pink bubble is incomparable.
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(−∞, 0) (0, 1) (1,∞)

0 1 ∞

...

...

...

...

...

...

...

...

...

...

...

...

Figure 3.14: Scheme of the lattice

Note that adding strings of type 4 can just change the lattice in the following
ways. Every element of maxNC3 could split into more elements of maxNC or we
could get completely new elements of maxNC consisting only of strings of type 4.
Adding strings can create incomparability, but it cannot cancel it.

What remains to show is the following. We want to explore the structure of
round bubbles, that is find positive crossings between strings which have the same
number assigned. Further, we need to specify comparability between elements
of different round bubbles in the same pink bubble and also with elements of
orange bubbles and elements across all the orange bubbles. In the end, we need
to add strings of type 4. Then we will gain the lattice maxNC and with the help
of Theorem 2 also the lattice of torsion classes.

50



Conclusion
In this thesis we introduced gentle algebras. We showed a way to find the lattice of
torsion classes over them in a few examples. To do it we used string combinatorics
and followed the theory in Chan and Demonet [2020]. At the same time, we tried
to present our results in a geometrical view.

The large part of the thesis consists of chapter 3, where we took the first steps
to find the lattice of torsion classes of the Markov algebra. We found all infinite
non-self-crossing strings of types 1, 2 and 3. Also, we stated some properties
about their crossings. On the other hand, a lot of work remains to be done
to achieve our goal, the classification of torsion classes of the Markov algebra.
Concretely we need to find all strings of type 4 and determine remaining positive
crossings between strings of all types.
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