
MASTER THESIS

Maryia Kapytka

Minion Cores of Clones

Department of Algebra

Supervisor of the master thesis: doc. Mgr. Libor Barto, Ph.D.
Study programme: Mathematical Structures

Study branch: Mathematical Structures

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to express my gratitude to my advisor, Libor Barto, for his unwavering
support, guidance, and belief in me. I would also like to thank my family and
friends for their constant encouragement and love.

ii

Title: Minion Cores of Clones

Author: Maryia Kapytka

Department: Department of Algebra

Supervisor: doc. Mgr. Libor Barto, Ph.D., Department of Algebra

Abstract: This thesis provides a classification of the minion homomorphism pre-
ordering and minion cores within a class of multi-sorted Boolean clones. These
clones can be described as those clones defined on the set {0, 1}k = {0, 1} ×
{0, 1} × · · · × {0, 1}, where the clone operations act component-wise on the k-
tuples, which are determined by multi-sorted unary or binary relations.

The second chapter of this thesis focuses on presenting the key findings. We in-
troduce specific minion cores and establish the preordering among them. Further-
more, we prove that each clone falling under the aforementioned type is equivalent
to one of these minion cores.

Keywords: universal algebra, minion, multi-sorted Boolean clone, minion homo-
morphism

iii

Contents

Introduction 2

1 Clones and minions 4
1.1 Clones . 4
1.2 Minions . 5
1.3 Minion homomorphism . 7
1.4 Idempotent clones and minion cores 8

2 Boolean multi-sorted clones 12
2.1 Boolean operations . 12
2.2 Description . 16
2.3 Collapse . 23

2.3.1 X . 24
2.3.2 Y . 24
2.3.3 W . 25
2.3.4 Ak . 26
2.3.5 Bk . 27
2.3.6 Ck . 28
2.3.7 Dk . 30
2.3.8 Putting it together . 31

2.4 Cores . 31
2.4.1 X . 35
2.4.2 Y . 36
2.4.3 W . 37
2.4.4 An . 37
2.4.5 Bn . 45
2.4.6 Cn . 48
2.4.7 Dn . 56

2.5 Ordering . 62
2.5.1 Inequalities . 62
2.5.2 Non-inequalities . 63

2.6 Summary . 69

Conclusion 71

Bibliography 72

List of Figures 73

1

Introduction
In the field of universal algebra, a clone C on a finite set A is a collection of
finitary operations that satisfy two conditions: C contains all the projections and
C is closed under finite compositions. Clones are central objects in Universal
Algebra, where they enable us to study algebras up to term equivalence, and also
in Computational Complexity, where they provide complexity invariants, e.g.,
for the fixed-template finite-domain Constraint Satisfaction Problems (CSPs): to
every such a CSP one associates a certain clone and the complexity of the CSP
is fully captured by the associated clone.

Clones on a fixed domain A are naturally ordered by inclusion. Larger clones
in this ordering correspond to more structured algebras and to easier Constraint
Satisfaction Problems. However, full classification of this ordering of clones seems
currently out of reach already for three-element domains.

The focus of this thesis is on studying a preordering of clones that is coarser
than inclusion. This preordering is defined by the existence of a minion homo-
morphism, which is a mapping from clone A to clone B that preserves arities and
compositions with projections.

The motivation to study clones up to minion homomorphisms is that the
position of a clone in this order still fully captures the complexity of CSPs [1].
Moreover, describing clones up to this preordering seems to be a much easier
(albeit still challenging) task than up to inclusion. The description can be also
much nicer, as illustrated by comparing Post’s ordering of Boolean clones with
respect to inclusion [2] and Bodirky’s and Vucaj’s [3] ordering of the same class
of clones up to minion homomorphisms.

In accordance with standard practice for preorders, we consider two clones to
be equivalent if there exists a minion homomorphism from one clone to the other,
and vice versa. Describing the original preordering then amounts to describing
the equivalence and the ordering of clones factorized by the equivalence. It turns
out that two clones are equivalent if they have the same minion core. Here, a
minion is a weaker ”version” of a clone: it contains all the projections and is
closed under finite compositions with projections. A minion is called a minion
core if every minion homomorphism to itself is an automorphism.

The thesis classifies the minion homomorphism preordering and minion cores
in a class of clones that we now introduce.

Clones can be in general described using relations, which in our case are binary.
An operation f is said to preserve a binary relation if the relation holds among
the results of applying f to the arguments if it holds among the arguments, i.e.
the following implication holds:

x1Ry1 ∧ x2Ry2 ∧ · · · ∧ xnRyn ⇒ f(x1, . . . , xn)Rf(y1, . . . , yn)

We say that a clone C is determined by a set of relations if it contains exactly
those operations that preserve all the relations in the set.

The class of clones I study in the thesis is the class of clones on finite sets that
are determined by unary or binary relations whose both projections are at most
two-element. This class comes from an ongoing project of classifying all clones
on a three-element domain determined by binary arbitrary relations.

2

An equivalent viewpoint on this class of clones is via multi-sorted Boolean
clones1: clones on {0, 1}k = {0, 1} × {0, 1} × · · · × {0, 1} whose operations act
component-wise on the k-tuples, i.e., an n-ary operation on the clone is deter-
mined by a k-tuple of operations on {0, 1}. The class of clones above correspond
to the class of multi-sorted Boolean clones determined by multi-sorted unary or
binary relations. Note that the description of all multi-sorted Boolean clones
ordered by inclusion is widely open; the thesis’ result can be regarded as a step
toward describing multi-sorted Boolean clones up to minion equivalence.

The diagram below represents the poset of equivalence classes of clones. In the
following chapters and sections of the thesis, we provide a proof of the diagram’s
validity.

The first chapter, titled ”Clones and Minions,” serves as an introductory chap-
ter where we present the fundamental concepts utilized throughout the thesis.

Building upon these concepts, the second chapter delves into their application,
demonstrating how they can be used to establish the validity of the diagram. The
results in this chapter are original. Within the section titled ”Collapse,” we pro-
vide a proof that establishes the equivalence between each multi-sorted Boolean
clone determined by multi-sorted binary relations, and one of specific minions we
introduce. In the section labeled ”Cores,” we present a proof validating that the
introduced minions indeed are minion cores. In the section titled ”Ordering,” we
establish that the relations between the introduced minions align precisely with
those depicted on the diagram. Lastly, in the section labeled ”Summary” we
summarize our results and present the final diagram.

Also we note that we used ChatGPT in order to improve sentences and for-
mulations.

Figure 1: Preliminary diagram illustrating the preordering of multisorted Boolean
clones determined by binary relations.

1The thesis does not contain a proof of this equivalence. It will appear in a forthcoming
paper.

3

1. Clones and minions

1.1 Clones
For a nonnegative integer n we use the notation

[n] = {1, 2, . . . , n}.

Let A be a set and let n be a positive integer. We define An as the set of
all n-tuples of elements of A. An n-ary operation on A is a function from An

to A. The number n is referred to as the arity. Operations of arity 1 and 2 are
also called unary and binary operations, respectively. We denote the set of n-ary
operations on A as Op(n)(A).

For any positive integer n, i ∈ [n], and a set A, we define the n-ary projection
to the ith coordinate as follows.

πn
i (a1, . . . , an) = ai for every a1, . . . , an ∈ A

The set A should be clear from the context.
Now, suppose we have an n-ary operation f on A and m-ary operations

g1, . . . , gn on A. We define the composition of f with g1, . . . , gn, denoted as
f ◦ (g1, . . . , gn), as the m-ary operation on A defined as follows.

(f ◦ (g1, . . . , gn))(a1, . . . , am) = f(g1(a1, . . . , am), . . . , gn(a1, . . . , am))

An m-ary relation on a set A is defined as a subset of Am.
Let f be an n-ary operation and R be an m-ary relation on the same set A. We

say that f preserves R if for all m-tuples r1, . . . , rn ∈ R, we have f(r1, . . . , rn) ∈
R. Here, f(r1, . . . , rn) is computed component-wise:⎛⎜⎜⎜⎜⎝

r11
r12
...
r1m

⎞⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝
r21
r22
...
r2m

⎞⎟⎟⎟⎟⎠ , . . . ,
⎛⎜⎜⎜⎜⎝
rn1
rn2
...
rnm

⎞⎟⎟⎟⎟⎠ ∈ R =⇒

⎛⎜⎜⎜⎜⎝
f(r11, r21, . . . , rn1)
f(r12, r22, . . . , rn2)

...
f(r1m, r2m, . . . , rnm)

⎞⎟⎟⎟⎟⎠ ∈ R

Now, we introduce the concept of a clone on a set A. Let Op(A) = ⋃︁∞
n=1

Op(n)(A) be the set of all operations on A. A clone on A is a subset C of Op(A)
that contains all the projections and is closed under composition. We denote the
set of n-ary operations in C as C(n).

Given a set θ of relations on the same set A, the set Pol(θ) is defined as the
set of all operations on A that preserve all the relations in θ. It is not hard to
show that this set is always a clone as stated in the following theorem. In fact,
conversely, every clone on a finite set is of this form [4], but we will not need this
fact in this thesis.

Theorem 1.1 (see [4]). Let A be a set and θ be a set of relations on A. Then
Pol(θ) is a clone on A.

4

We will work with a generalization of clones to multi-sorted sets. We define
a k-sorted set as a k-tuple A = (A1, A2, . . . , Ak) comprising k sets. A k-sorted
n-ary operation on (A1, A2, . . . , Ak) is defined as a k-tuple f = (f1, f2, . . . , fk),
where fi is an n-ary operation on Ai. The n-ary k-sorted projection to the ith
coordinate (where i ∈ [n]), denoted by πn

i , is the k-sorted operation defined by

πn
i = (πn

i , . . . , π
n
i⏞ ⏟⏟ ⏞

k times

),

where the jth projection in the tuple is on the set Aj.
Let f = (f1, f2, . . . , fk) be an n-ary k-sorted operation on a k-sorted set A

and g1 = (g1
1, g

1
2, . . . , g

1
k), g2 = (g2

1, g
2
2, . . . , g

2
k), . . . , gn = (gn

1 , g
n
2 , . . . , g

n
k) be m-ary

k-sorted operations on the same k-sorted set A. Then their composition, denoted
as f ◦ (g1, g2, . . . , gn), is the k-sorted m-ary operation defined as follows:

f◦(g1, g2, . . . , gn)
= (f1 ◦ (g1

1, g
2
1, . . . , g

n
1), f2 ◦ (g1

2, g
2
2, . . . , g

n
2), . . . , fk ◦ (g1

k, g
2
k, . . . , g

n
k))

A k-sorted clone on k-sorted set A is a set of k-sorted operations on A that
contains all the k-sorted projections on A and is closed under composition. A
multi-sorted clone is a k-sorted clone for some k.

An m-ary k-sorted relation on a k-sorted set A = (A1, A2, . . . , Ak) of type
(i1, . . . , im), where i1, . . . , im ∈ [k], is a subset R ⊆ Ai1 ×Ai2 × · · · ×Aim . We say
that an n-ary k-sorted operation f = (f1, . . . , fk) on A preserves such a k-sorted
relation R if the following implication holds:

⎛⎜⎜⎜⎜⎝
r11
r12
...
r1m

⎞⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝
r21
r22
...
r2m

⎞⎟⎟⎟⎟⎠ , . . . ,
⎛⎜⎜⎜⎜⎝
rn1
rn2
...
rnm

⎞⎟⎟⎟⎟⎠ ∈ R =⇒

⎛⎜⎜⎜⎜⎝
fi1(r11, r21, . . . , rn1)
fi2(r12, r22, . . . , rn2)

...
fim(r1m, r2m, . . . , rnm)

⎞⎟⎟⎟⎟⎠ ∈ R

We remark that the type of R is regarded as a part of the definition of R, so,
formally, a k-sorted relation is a tuple (R, i1, . . . , im).

For a set θ of k-sorted relation on a k-sorted set A, we define Pol(θ) in a
completely analogous way as before, i.e., as the set of all k-sorted operations
on A that preserve all the k-sorted relations in θ. A multi-sorted analogue of
Theorem 1.1 is also easily seen.

Theorem 1.2. Let A be a k-sorted set and θ a set of k-sorted relations on A.
Then Pol(θ) is a k-sorted clone on A.

1.2 Minions
In this section, we will define the concepts of minions and multi-sorted minions,
which generalize clones and multi-sorted clones. The concept of a minion comes
from [5].

Let A and B be any sets and let n be a positive integer. An n-ary operation
from A to B is a function from An to B. We denote the set of all such n-ary

5

operations as Op(n)(A,B). Let Op(A,B) = ⋃︁∞
n=1 Op(n)(A,B) be the set of all

operations from A to B.
Note that, in general, composition as defined above does not make sense for

operations from A to B. However, it makes sense to compose such operations
with projections on A. Explicitly, for an n-ary operation f from A to B, a
positive integer m, and i1, . . . , in ∈ [m], the composition f ◦ (πm

i1 , π
m
i2 , . . . , π

m
in

) is
the following m-ary operation from A to B:

(f ◦ (πm
i1 , . . . , π

m
in

))(a1, . . . , am) = f(ai1 , . . . , ain).

The operation f ◦ (πm
i1 , π

m
i2 , . . . , π

m
in

) is also called a minor of f .
A minion on (A,B) is a nonempty subset M of Op(A,B) that is closed under

composition with projections; in other words, it is closed under taking minors.
A suitable analogue of a relation in this context is a pair of relations of the

same arity, one on A and the other one on B. Although we will not need a
generalized concept of preservation, we state it for comparison. We say that an
n-ary operation f from A to B preserves a pair of relations (R, S), where R is an
m-ary relation on A and S is an m-ary relation on S, if the following implication
holds: ⎛⎜⎜⎜⎜⎝

r11
r12
...
r1m

⎞⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝
r21
r22
...
r2m

⎞⎟⎟⎟⎟⎠ , . . . ,
⎛⎜⎜⎜⎜⎝
rn1
rn2
...
rnm

⎞⎟⎟⎟⎟⎠ ∈ R =⇒

⎛⎜⎜⎜⎜⎝
f(r11, r21, . . . , rn1)
f(r12, r22, . . . , rn2)

...
f(r1m, r2m, . . . , rnm)

⎞⎟⎟⎟⎟⎠ ∈ S

The set of all operations of A to B preserving a set of pairs of relations is always
a minion.

Finally, we generalize minions to multi-sorted minions in a similar way as we
generalized clones to multi-sorted clones. Let A = (A1, A2, . . . , Ak) and B =
(B1, B2, . . . , Bk) be k-sorted sets A k-sorted n-ary operation from A to B is a k-
tuple f = (f1, f2, . . . , fk), where fi is an n-ary operation from Ai to Bi. Note that
k-sorted operations from A to B can still be composed with k-sorted projections.
Explicitly, if f = (f1, f2, . . . , fk) is a k-sorted n-ary operation from A to B, m
is a positive integer, and i1, . . . , in ∈ [m], then the j-th component (j ∈ [k]) of
f ◦ (πm

i1 , . . . ,π
m
im

) is fj ◦ (πm
i1 , . . . , π

m
im

), which is an m-ary operation from Aj to
Bj. As above, the obtained k-sorted operation from A to B is called a minor of
f .

Definition 1.3. Let A and B be k-sorted sets. A k-sorted minion M on (A,B)
is a nonempty set of k-sorted operations from A to B which is closed under
taking minors, that is, for every f ∈ M, every positive integer m, and every
i1, . . . , in ∈ [m] (where n is the arity of f), we have

f ◦ (πm
i1 , . . . ,π

m
im

) ∈ M.

For a positive integer n, we denote by M(n) the set of all n-ary members of
M and call it the n-ary part of M.

Note that every multi-sorted clone on A is a multi-sorted minion on (A,A).

6

1.3 Minion homomorphism
When ordering clones, there are various methods to consider. In this section,
we will focus on a preordering that is determined by the existence of a minion
homomorphism.
Definition 1.4 (Minion homomorphism). Let M, N be multi-sorted minions.
A map ξ : M → N is called minion homomorphism if

• it preserves arities

• it preserves minors, that is, for all n-ary multi-sorted operations f ∈ M
and all m ∈ N, i1, i2, . . . , in ∈ [m],

ξ(f ◦ (πm
i1 , . . . ,π

m
in

)) = ξ(f) ◦ (πm
i1 , . . . ,π

m
in

)

For a positive integer n we denote by ξ(n) the n-ary part of ξ, that is,

ξ(n) = ξ|M(n) : M(n) → N (n).

We remark that the projections on the left hand side of the above equations
can have different number of sorts and be on different multi-sorted sets. The no-
tation is abused in this way for simplicity and hopefully will not cause confusion.

Using minion homomorphisms, we define a preordering on the class of all
multi-sorted minions.
Definition 1.5 (Preordering). Let M and N be two multi-sorted minions. We
say that M is less than or equal to N , denoted by M ≤ N , if there exists a
minion homomorphism from M to N .

The relation ≤ is a preordering on the class of all minions, that is, a reflex-
ive and transitive relation. Reflexivity is clear as the identity mapping from a
minion to itself is a minion homomorphism. Moreover, if there exist minion ho-
momorphisms from M to N and from N to L, then their composition is a minion
homomorphism from M to L.

The preodering induces an equivalence in the standard way as follows.
Definition 1.6 (Equivalence). Let M and N be two multi-sorted minion. We
say that M is equivalent to N , denoted by M ∼ N , if there exist minion homo-
morphisms from M to N and from N to M.

The thesis studies the partially ordered class whose elements are ∼-equivalence
classes of multi-sorted clones (taken from some collection of multi-sorted clones)
ordered by ≤. We informally say that we order multi-sorted clones by min-
ion homomorphisms, although the elements of the partially ordered class are
∼-equivalence classes rather than single clones.

The largest multi-sorted minion is the unique one-sorted clone T on the set
{1}:

T = the clone on {1}
Indeed, the unique mapping from a multi-sorted minion to T is clearly a minion
homomorphism.

The smallest multi-sorted minion is the one-sorted clone P on the set {0, 1}
containing only projections.

P = the clone of projections on {0,1}

7

1.4 Idempotent clones and minion cores
An operation f : An → A is idempotent if f(a, a, . . . , a) = a for every a ∈ A. In
other words, f is idempotent if it preserves all the singleton unary relations {a}.

Similarly, a multi-sorted operation f = (f1, . . . , fk) is idempotent if so are all
the fi. For a fixed k-sorted set A = (A1, . . . , Ak), we denote by I(A) the k-sorted
clone of all idempotent operations on A:

I(A) = {(f1, . . . , fk) | (f1, . . . , fk) is a k-sorted idempotent operation on A}.

For a set θ of multi-sorted relations on A, we write IdPol(θ) for the idempotent
part of Pol(θ):

IdPol(θ) = Pol(θ) ∩ I

A well-known fact [1] is that each clone is ∼-equivalent to an idempotent
clone, so-called idempotent core of that clone. This fact extends to multi-sorted
clones in a straightfoward way. The following formulation will be convenient for
our purposes.

Theorem 1.7. Let A = (A1, . . . , Ak) be a k-sorted set with each Ai finite and
let θ be a set of k-sorted relations on A of arity at most m such that Pol(θ) ̸∼ T .
Then there exists a k′-sorted set B = (B1, B2, . . . , Bk′) and a set θ′ of k′-sorted
relations of arity at most m such that

• 1 < |Bi| ≤ maxj∈{1,...,k} |Aj| for every i ∈ [k′]

• Pol(θ) ∼ IdPol(θ′)

Proof. We prove this theorem in two steps. Firstly, we find a set of relations
θ′ such that Pol(θ) is equivalent to Pol(θ′) for some set of multi-sorted relations
θ′. Then, we show that Pol(θ′) is equivalent to IdPol(θ′). Finally we “remove”
one-element sets.

Let f = (f1, . . . , fk) be a unary k-sorted operation in Pol(θ) such that its
image (f1(A1), . . . , fk(Ak)) is minimal with respect to componentwise inclusion.
Define the set B as

B = (B1, . . . , Bk) = (f1(A1), . . . , fk(Ak))

Define θ′ in a natural way using restrictions of relations in θ, i.e.,

θ′ ={R ∩ (Bi1 × · · · ×Bim) | R ∈ θ,

R is a k-sorted relation of type (i1, . . . , im), m ∈ N}

Let us observe a significant property of the set B. For any unary k-sorted
operation g = (g1, . . . , gk) ∈ Pol(θ′) and any i ∈ [k], the function gi is a bijection
on Bi. Suppose, for the sake of contradiction, that there exists some j ∈ [k] for
which gj is not a bijection. In such a case, consider the composition g ◦ f . It
is a unary polymorphism of θ and, moreover, the image of g ◦ f is smaller, a
contradiction to the minimality of B.

Now we show that Pol(θ) ∼ Pol(θ′).

8

In the left-to-right direction, we define a minion homomorphism ξ : Pol(θ) →
Pol(θ′) as follows:

ξ(h) = (f1 ◦ h1 ↾B1 , . . . , fk ◦ hk ↾Bk
),

where h = (h1, . . . , hk) is a k-sorted n-ary operation A → A.
Firstly, we show that this map is well-defined. Assume that S ∈ θ′ is an

m-ary k-sorted relation of type (i1, . . . , im), and (r11, . . . , r1m), (r21, . . . , r2m), . . . ,
(rn1, . . . , rnm) ∈ S. Then, from the definition of θ′, it follows that (r11, . . . , r1m),
(r21, . . . , r2m), . . . , (rn1, . . . , rnm) ∈ R for some R ∈ θ. Therefore, as both h
and f are polymorphisms of θ, we obtain: (fi1 ◦ hi1(r11, r21, . . . , rn1), . . . , fim ◦
him(r1m, r2m, . . . , rnm) ∈ R. Moreover, it follows from the definition of f that
(fi1 ◦ hi1(r11, r21, . . . , rn1), . . . , fim ◦ him(r1m, r2m, . . . , rnm)) ∈ B. Therefore, (f1 ◦
h1 ↾B1 , . . . , fk ◦ hk ↾Bk

) is a polymorphism of θ′, and the map ξ is well-defined
Furthermore, ξ is a minion homomorphism, as shown in the following compu-

tation:

ξ(h ◦ (πm
i1 , . . . ,π

m
in

))
= ξ((h1(πm

i1 , . . . , π
m
in

), . . . , hk(πm
i1 , . . . , π

m
in

)))
= (f1 ◦ h1(πm

i1 , . . . , π
m
in

), . . . , fk ◦ hk(πm
i1 , . . . , π

m
in

))
= (f1 ◦ h1, . . . , fk ◦ hk) ◦ (πm

i1 , . . . ,π
m
in

)
= ξ(h) ◦ (πm

i1 , . . . ,π
m
in

)

In the other direction, we define a map ζ : Pol(θ′) → Pol(θ) as follows:

ζ(h) = h′ = (h′
1, . . . , h

′
k),

where for each i ∈ [k] and for each n-tuple a = (a1, . . . , an) ∈ An
i :

h′
i(a) = hi(fi(a1), . . . , fi(an))

Assume R is an m-ary k-sorted relation of type (i1, . . . , im) in θ, and (a11, . . . ,
a1m), (a21, . . . , a2m), . . . , (an1, . . . , anm) ∈ R. Then, as f is a polymorphism of θ,
(fi1(a11), fi2(a12), . . . , fim(a1m)), . . . , (fi1(an1), fi2(an2), . . . , fim(anm)) ∈ R. Now,
as the image of f is the domain of h, we can apply h and obtain hi1(fi1(a11), . . . ,
fi1(an1)), . . . , him(fim(a1m), . . . , fim(anm)). Moreover, as (fi1(a11), fi2(a12), . . . ,
fim(a1m)), . . . , (fi1(an1), fi2(an2), . . . , fim(anm)) ∈ R ∩ (Bi1 × . . . ,×Bim) ∈ θ′ and
h is a polymorphism of θ′, we obtain hi1(fi1(a11), . . . , fi1(an1)), . . . , him(fim(a1m),
. . . , fim(anm)) ∈ R ∩ (Bi1 × . . . ,×Bim) ∈ θ′, which implies that hi1(fi1(a11), . . . ,
fi1(an1)), . . . , him(fim(a1m), . . . , fim(anm)) ∈ R. Thus we have shown that ζ is
well-defined.

Moreover, h′ is indeed a minion homomorphism as shown in the following
computation. Assume a1 = (a11, . . . , a1m) ∈ Am

1 , . . . ,ak = (ak1, . . . , akm) ∈ Am
k .

Then for each i ∈ [k]:

h′
i ◦ (πm

i1 , . . . , π
m
in

)(ai) = h′
i(aii1 , . . . , aiin) = hi(fi(aii1), . . . , fi(aiin))

Therefore

9

ζ(h) ◦ (πm
i1 , . . . ,π

m
in

)(a1, . . . ,ak) = h′ ◦ (πm
i1 , . . . ,π

m
in

)(a1, . . . ,ak)
= (h′

1 ◦ (πm
i1 , . . . , π

m
in

)(a1), . . . , h′
k ◦ (πm

i1 , . . . , π
m
in

)(ak))
= (h1(f1(a1i1), . . . , f1(a1in)), . . . , hk(fk(aki1), . . . , fk(aki1)))
= (h1 ◦ (πm

i1 , . . . , π
m
in

)(f1(a11), . . . , f1(a1m)),
. . . , hk ◦ (πm

i1 , . . . , π
m
in

)(fk(ak1), . . . , fk(akm)))
= ζ(h1 ◦ (πm

i1 , . . . , π
m
in

), . . . , hk ◦ (πm
i1 , . . . , π

m
in

))(a1, . . . ,ak)
= ζ(h ◦ (πm

i1 , . . . ,π
m
in

))(a1, . . . ,ak)

As this holds for an arbitrary a1, . . . ,ak, we conclude that ζ is a minion
homomorphism.

Thus far, we have shown that Pol(θ) ∼ Pol(θ′).
Next, we prove that Pol(θ′) ∼ IdPol(θ′). The existence of a right-to-left

minion homomorphism is obvious (it is just inclusion).
For the reverse direction, consider a polymorphism h = (h1, . . . , hk) of θ′. We

define a map z as follows:

z = (z1, . . . , zk) = h ◦ (π1
1, . . . ,π

1
1⏞ ⏟⏟ ⏞

n times

)

In other words, for each i ∈ [k] and for each a ∈ Ai, we have zi(a) =
hi(a, . . . , a⏞ ⏟⏟ ⏞

n times

).

The map z is a polymorphism of θ, therefore it’s a bijection and there exists
an inverse z−1:

z−1 = (z−1
1 , . . . , z−1

k)
We define a map ψ in the following way:

ψ(h) = z−1 ◦ h

Notice that z−1 ◦h is idempotent, as for each a = (a1, . . . , ak) ∈ A1 ×· · ·×Ak:

z−1 ◦ h(a, . . . ,a⏞ ⏟⏟ ⏞
n times

) = z−1(h1(a1, . . . , a1⏞ ⏟⏟ ⏞
n times

), . . . , hk(ak, . . . , ak⏞ ⏟⏟ ⏞
n times

))

= (z−1
1 (h1(a1, . . . , a1⏞ ⏟⏟ ⏞

n times

)), . . . , z−1
k (hk(ak, . . . , ak⏞ ⏟⏟ ⏞

n times

)) = (a1, . . . , ak)

Therefore the map ψ is well-defined.
Moreover, ψ is a minion homomorphism:

ψ(h ◦ (πm
i1 , . . . ,π

m
in

)) = ψ(h1(πm
i1 , . . . , π

m
in

), . . . , hk(πm
i1 , . . . , π

m
in

))
= z−1 ◦ (h1(πm

i1 , . . . , π
m
in

), . . . , hk(πm
i1 , . . . , π

m
in

))
= (z−1

1 ◦ h1(πm
i1 , . . . , π

m
in

), . . . , z−1
k ◦ hk(πm

i1 , . . . , π
m
in

))
= (z−1 ◦ h) ◦ (πm

i1 , . . . ,π
m
in

) = ψ(h) ◦ (πm
i1 , . . . ,π

m
in

)

10

The only thing we have to ensure is that |Bi| > 1. Without the loss of
generality we assume that |B1| = 1, i.e. there exist some b such that B1 = {b}.
We show that IdPol(θ′) ∼ IdPol(θ′′), where θ′′ is the set of (k−1)-sorted relations
on B2 × · · · ×Bk, obtained in a way that we remove the first coordinate from the
relations in θ′. In left-to-right direction we define minion homomorphism τ in a
natural way by removing the first coordinate of h = (h1, . . . , hk) i.e.:

τ(h1, . . . , hk) = (h2, . . . , hk)
In the other direction we define a minion homomorphism µ as

µ((h2, . . . , hk)) = (h1, h2, . . . , hk),
where h1(b, . . . , b⏞ ⏟⏟ ⏞

n times

) = b.

In both cases it is easy to see that the maps are correctly defined minion
homomorphisms.

In this way we iteratively “remove” one-element sets from B. Consequently,
we obtain the set of k′-sorted relations on B1 × · · · × Bk′ , where k′ ≤ k, and
|Bi| > 1 for each i ∈ [k′]. Also note that if all the Bi are one-element, then
Pol(θ) ∼ T , which we assumed is not the case.

We will use a different version of a core. To distinguish them from idempotent
cores we call them minion cores.

Definition 1.8 (Minion core). A multi-sorted minion A is called a minion core
if every minion homomorphism from A to itself is a minion automorphism, i.e.,
a bijective minion homomorphism.

It turns out that every (multisorted) minion has a unique (multisorted) minion
core; we will not prove this result in general in this thesis. The concept of minion
cores is important in the study of clones, as it provides a canonical representation
for each clone, and allows us to compare clones by comparing their corresponding
minion cores.

11

2. Boolean multi-sorted clones
In this chapter we work with the k-sorted set

A = (A1, A2, . . . , Ak), A1 = A2 = · · · = Ak = {0, 1},

where k is a positive integer. The k-sorted operations on A are called k-sorted
Boolean operations, they are k-tuples of Boolean operations {0, 1}n → {0, 1}.
The k-sorted clones on A are called k-sorted Boolean clones.

The goal is to describe the ordering by minion homomorphisms in the class of
all multi-sorted Boolean clones of the form Pol(θ), where θ is a set of multi-sorted
at most binary relations. This will be done by computing all possible minion cores
of these clones and the ordering between them.

Theorem 1.7 will allow us to concentrate on idempotent multi-sorted clones.
We use the notation Ik instead of I(A).

Ik = all idempotent k-sorted Boolean operations

We denote by ≤ the natural ordering of {0, 1}, i.e., 0 ≤ 1. This ordering is ex-
tended to tuples and Boolean operations: for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
{0, 1}n, and f, g ∈ {0, 1}n → {0, 1} we define

• x ≤ y if xi ≤ yi for every i ∈ [n], and

• f ≤ g if f(x) ≤ g(x) for every x ∈ {0, 1}n.

We denote by ∧ and ∨ the binary minimum and maximum operation on {0, 1},
respectively, and extend it to Boolean operations.

• x ∧ y = min{x, y}, x ∨ y = max{x, y}

• (f ∧ g)(x) = f(x) ∧ g(x), (f ∨ g)(x) = f(x) ∨ g(x) for every x ∈ {0, 1}n

Finally, we denote by x the “negation” of x and extend the notation to tuples:

• x = 1 − x,

• (x1, x2, . . . , xn) = (x1, x2, . . . , xn).

2.1 Boolean operations
We will see (cf. Example 2.7) that a (f1, . . . , fn) is in Pol(θ) for a set binary multi-
sorted relations θ if certain relationship hold between the fi. We now introduce
two of them and prove some basic properties.

Definition 2.1. (◁) Let f and g be two n-ary Boolean operations. We use the
notation f ◁ g to indicate that for every pair of n-tuples (x,y) such that x ≤ y,
it holds that f(x) ≤ g(y).

Note that while f ≤ f holds for every Boolean operation, the relationship
f ◁ f is nontrivial. Operations satisfying f ◁ f are called monotone.

12

Definition 2.2. (Dual) Let f be an n-ary Boolean operation. The dual of f ,
denoted by fd, is defined as follows:

fd(x) = 1 − f(x)

where x denotes the n-tuple obtained by negating each component of x, i.e., if
x = (x1, x2, . . . , xn), then x = (1 − x1, 1 − x2, . . . , 1 − xn).

Lemma 2.3. Let f, g be two n-ary Boolean operations. Then the following state-
ments are equivalent:

(i) f ◁ g

(ii) there exists a monotone function g′ such that f ≤ g′ ≤ g

Proof. To prove the left-to-right implication assume that for each pair of n-tuples
(x,y) such that x ≤ y, we have f(x) ≤ g(y). We will show that f ◁ g, i.e. that
there exists a monotone Boolean operation g′ such that f ≤ g′ ≤ g.

Define g′(x) to be the maximum of all values of f(y) such that y ≤ x. In
other words, g′(x) = max{f(y) | y ≤ x}. Note that g′ is monotone because if
x ≤ y, then for any z ≤ x also z ≤ x ≤ y, so {f(z) | z ≤ x} is a subset of
{f(z) | z ≤ y} and therefore g′(x) = max{f(z) | z ≤ x} ≤ max{f(z) | z ≤
y} = g′(y).

We claim that f ≤ g′ ≤ g. To see this, note that f ≤ g′ by construction of g′.
Moreover, for x ≤ y we have f(x) ≤ g(y) by assumption, and therefore g′(x) =
max{f(y) | y ≤ x} ≤ g(y) for any y such that x ≤ y. Hence, g′(x) ≤ g(y) for
all x and y such that x ≤ y, which implies g′ ≤ g.

Therefore, we have shown that f ≤ g′ ≤ g for some monotone Boolean oper-
ation g′.

To prove the right-to-left implication we assume that there exists a monotone
Boolean operation g′ such that f ≤ g′ ≤ g. Let x and y be n-tuples such that
x ≤ y. Since g′ is monotone, we have g′(x) ≤ g′(y). Therefore, using the fact
that f ≤ g′ ≤ g, we obtain:

f(x) ≤ g′(x) ≤ g′(y) ≤ g(y)

This completes the proof of the right-to-left implication.

Lemma 2.4 (Properties of Duality). Let f , g, and h be n-ary Boolean operations.
The following statements hold:

(i) Double Duality: (fd)d = f .

(ii) Duality of Joins: (f∨g)d = fd ∧gd and Duality of Meets: (f∧g)d = fd ∨gd.

Proof. (i) We prove that f is dual to fd. Let x be an arbitrary n-tuple. Then:

(fd)d(x) = fd(x) = f(x) = f(x)

Here, the first two equalities follow from the definition of duality. As this holds
for any n-tuple x, we conclude that f is indeed the dual of fd, and therefore
(fd)d = f .

13

(ii) Similarly, we prove that fd ∧ gd is the dual of f ∨ g. Let x be an arbitrary
n-tuple. Then:

(f ∨ g)d(x) = (f ∨ g)(x) = f(x) ∨ g(x) = f(x) ∧ g(x) = fd(x) ∧ gd(x)

Here, the first equality follows from the definition of duality, the second one
from the definition of join, the third one is De Morgan’s law, and the last one is
again the definition of duality.

Duality of Meets is proven analogously.

Lemma 2.5 (Properties of ◁). Let f, g and h be n-ary Boolean operations. Then
the following statements hold:

(i) f ◁ gd if and only if g ◁ fd

(ii) If either f ≤ g and g ◁ h, or f ◁ g and g ≤ h, then f ◁ h.

(iii) If f ◁ g and h ◁ r, then f ∧ h ◁ g ∧ r and f ∨ h ◁ g ∨ r.

(iv) If f ◁ g, then f ≤ g, i.e., the ◁ relation is stronger than the ≤ relation.

(v) If f is monotone, then fd, f ∧fd, and f ∨fd are also monotone. Moreover,
for an arbitrary function g, the following holds: f ∧ g ◁ f ◁ f ∨ g.

(vi) If f ◁ g ◁ f , then f = g

Proof. (i) Suppose f ◁ gd. We will assume for the sake of contradiction that
g◁◁f

d ∈ D, i.e. there exist n-tuples x and y such that x < y, but g(x) = 1
and fd(y) = 0. By the definition of duality, this implies that gd(x) = 0 and
f(y) = 1. This means according to the definition of dual that gd(x) = 0
and f(y) = 1. If x < y, then y < x. Therefore f ◁◁gd and we have come to
a contradiction with the assumption.

(ii) Suppose f ◁ g and g ≤ h. Let x and y be n-tuples such that x ≤ y.
Since f ◁ g and x ≤ y, we have f(x) ≤ g(y), and since g ≤ h, we have
g(y) ≤ h(y). Using the fact that ≤ is transitive, we can combine these
inequalities to get f(x) ≤ g(y) ≤ h(y). Therefore, we have f(x) ≤ h(y),
and since this holds for all n-tuples x ≤ y, we can conclude that f ◁ h.
Now suppose f ≤ g and g ◁ h. Let x and y be n-tuples such that x ≤ y.
Since f ≤ g, we have f(x) ≤ g(x), and since g ◁ h, we have g(x) ≤ h(y).
We can combine these inequalities to get f(x) ≤ g(x) ≤ h(y). Therefore,
we have f(x) ≤ h(y), and since this holds for all n-tuples x ≤ y, we can
conclude that f ◁ h.

(iii) We will use definition 2.1 Assume that x ≤ y. Then f(x) ≤ g(y) and
h(x) ≤ r(y). Therefore from the definition of ∧: f(x)∧h(x) ≤ g(y)∧r(y).
This means that (f ∧ h)(x) ≤ (g ∧ r)(y), therefore by 2.1 f ∧ h ◁ g ∧ r.
The proof for ∨ is analogous.

14

(iv) Suppose that f and g are n-ary functions and that f ◁ g. Then according
to Theorem 2.3 there exists a monotone function such that f ≤ g′ ≤ g.
Transitivity of ≤ implies that f ≤ g.

(v) Monotonicity of fd follows from (i) as f ◁ f .
For monotonicity of f ∧ fd we use (iii), as f ◁ f and fd ◁ fd. Analogously
we prove that f ∨ fd is monotone.
For the last inequality we use Theorem 2.3. The following chain of inequal-
itites holds trivially according to definitions of ∧ and ∨:

f ∧ g ≤ f ◁ f ≤ f ∨ g

Using transitivity from (ii) we obtain:

f ∧ g ◁ f ◁ f ∨ g,

which is what we wanted to prove.

(vi) Assume f ◁ g ◁ f . By the property stated in (iv), this implies f ≤ g ≤ f .
Since the relation ≤ is antisymmetric, it follows that f = g.

The following lemma will enable us to project a self-dual operation g to an
interval f ≤ fd.

Lemma 2.6. Let f and g be functions such that g = gd and f ≤ fd. Define
h = (g ∨ f) ∧ fd. Then the following statements hold:

(i) h = hd

(ii) f ≤ h ≤ fd

(iii) If f is monotone, then f ◁ h ◁ fd

Proof. (i) We have hd = ((g ∨ f) ∧ fd)d = ((g ∨ f)d ∨ f) = ((gd ∧ fd) ∨ f) =
((g ∨ f) ∧ (fd ∨ f)) = ((g ∨ f) ∧ fd) = h. In the first three equalities, we
expanded the brackets using Lemma 2.4(ii). Then, in the fourth equality, we
applied distributivity and the fact that g = gd. Finally, in the last equality, we
utilized the fact that f ≤ fd.

(ii) It is clear that h ≤ fd from the definition of ∧. Moreover, from (i), we
have h = hd = (g ∧ fd) ∨ f . Since f ≤ fd, we know that f ≤ (g ∧ fd) ∨ f from
the definition of ∨. Therefore, we conclude that if f ≤ fd, then f ≤ h ≤ fd.

(iii) The relation f ≤ h ≤ fd can be proven in the same way as in (ii).
Moreover, since f ◁ f and f ≤ h, we can apply Lemma 2.5(ii) to conclude that
f ◁ h. Similarly, we have h ◁ fd.

15

2.2 Description
In this section we show that the clones of our interest can be described by means
of ◁, =, and duals (Lemma 2.10) and then we simplify the description (Theo-
rem 2.15).

The following example illustrates the idea of the first part.

Example 2.7. Let k = 3 and θ = {S11, N}, where S11 = {(0, 0), (0, 1), (1, 0)} of
type (1, 2) and N = {(0, 1), (1, 0)} of type (2, 3). We claim that

IdPol(θ) = {(f1, f2, f3) ∈ I | f1 ◁ f
d
2 = f3}.

(Here f1 ◁ f
d
2 = f3 of course means f1 ◁ f

d
2 and fd

2 = f3.)
Specifically, we show that (f1, f2, f3) preserves S11 iff f1◁f

d
2 and that (f1, f2, f3)

preserves N iff fd
2 = f3, from which the claim immediately follows.

To prove left to right implication we assume (f1, f2, f3) of type (1, 2, 3) pre-
serves the binary relation S11 of type (1, 2). Let x = (x1, . . . , xn) and y =
(y1, . . . , yn) be n-tuples such that x ≤ y. This means that for each i ∈ [n],
(xi, yi) ̸= (1, 0), which is equivalent to (xi, yi) ̸= (1, 1), i.e., (xi, yi) ∈ S11. Based
on our assumption, (f1(x), f2(y)) ∈ S11. Since fd

2 (y) = f2(y), we can conclude
that (f1(x), fd

2 (y)) ∈ S10, i.e., f1(x) ≤ fd
2 (y), which is what we wanted to prove.

Similarly, we can prove it for the second relation: If x = y, then for each
i ∈ [n], (xi, yi) ∈ {(1, 1), (0, 0)}, and therefore (xi, yi) ̸∈ {(1, 1), (0, 0)}. This is
equivalent to (xi, yi) ∈ S00 ∩ S11. According to our assumption, (f2(x), f3(y)) ∈
S00 ∩S11. This implies that (f2(x), fd

3 (y)) ̸∈ S00 ∩S11, i.e., fd
2 (x) = f3(y), which

is what we wanted to prove.
For the right-to-left implication, we assume that f1, f2, and f3 are n-ary op-

erations such that f1 ◁ f
d
2 = f3. We also assume that x = (x1, . . . , xn) and

y = (y1, . . . , yn) are n-tuples such that for each i ∈ [n], (xi, yi) ∈ S11. Therefore,
(xi, yi) ∈ S10, i.e. x ≤ y. By applying the assumption f1 ◁ f

d
2 on tuples x and y,

we find that f1(x) ≤ fd
2 (y). This inequality is equivalent to (f1(x), fd

2 (y)) ∈ S10.
Consequently, we have (f1(x), f2(y)) ∈ S10, and finally, (f1(x), f2(y)) ∈ S11,
which is what we wanted to prove.

Similarly, we can prove it for the second relation: If (xi, yi) ∈ S00 ∩ S11
for each i ∈ [n], this means that xi ̸= yi, and therefore xi = yi and x = y.
Applying the assumption yields fd

2 (x) = f3(y), i.e., f2(x) = f3(y). This means
that (f2(x), f3(y)) ∈ S00 ∩ S11.

We have shown that {(f1, f2, f3) ∈ I | f1 ◁ f
d
2 = f3} = IdPol({S11, N}).

We formalize descriptions of clones similar to the example and show that we
can work only with such clones.

Definition 2.8 (Description). A description over a sequence of symbols (f1, f2,
. . . , fk) is a set of formal expressions, called constraints, that can take one of the
following forms

fi ◁ fj, fi ◁ fd
j, fd

i ◁ fj, fd
i ◁ fd

j, fi = fj, fi = fd
j, fd

i = fj, fd
i = fd

j,

where i, j ∈ [k] (not necessarily distinct).
If D is a description over (f1, . . . , fk), then we define Clo(D) as the set of all

idempotent k-sorted Boolean operations (f1, . . . , fk) ∈ Ik which satisfy all the
constraints in D (in the natural sense). We also say that D describes Clo(D).

16

Example 2.9. The clone from Example 2.7 is

Clo({f1 ◁ fd
2, f3 = fd

2}) = {(f1, f2, f3) ∈ I | f1 ◁ f
d
2 = f3}.

We will also use a shorter notation such as, e.g.,

Clo(f1 ◁ fd
2 = f3).

Lemma 2.10. For each set θ of at most binary k-sorted relations on the k-sorted
A, the clone Pol(θ) is equivalent to T or to Clo(D) for some description D (possible
over less than k-element sequence of symbols).

Proof. From Theorem 1.7, we deduce the existence of a k′-sorted set B = (B1, B2,
. . . , Bk′) and a set θ′ containing k′-sorted relations with arity at most 2. It is
ensured that 1 < |Bi| ≤ maxj∈[k] |Aj| for each i ∈ [k′], and Pol(θ) ∼ IdPol(θ′).
Since |Aj| = 2 for every j ∈ [k], we conclude that |Bi| = 2 for each i ∈ [k′] and
we can assume that each Bi is {0, 1}.

Now we construct a description D over (f1, . . . , fk′) ∈ I such that IdPol(θ′) =
Clo(D).

• For each relation {0, 1}2 \ {(1, 1)} = S11 in θ′ of type (i, j), where i, j ∈ [k],
we add fi ◁ fd

j to D.

• For each relation {0, 1}2 \ {(0, 0)} = S00 in θ′ of type (i, j), where i, j ∈ [k],
we add fd

i ◁ fj to D.

• For each relation {0, 1}2 \ {(1, 0)} = S10 in θ′ of type (i, j), where i, j ∈ [k],
we add fi ◁ fj to D.

• For each relation {0, 1}2 \ {(0, 1)} = S01 in θ′ of type (i, j), where i, j ∈ [k],
we add fd

i ◁ fd
j to D.

• For each relation {(0, 0), (1, 1)} = Eq in θ′ of type (i, j), where i, j ∈ [k],
we add fi = fj to D.

• For each relation {(0, 1), (1, 0)} = Ineq in θ′ of type (i, j), where i, j ∈ [k],
we add fi = fd

j to D.

• Any relation in θ′ that is not mentioned above is ignored.

To prove that IdPol(θ′) = Clo(D), we consider the inclusion in both directions.
⊆: Let f ∈ IdPol(θ′). Since f is idempotent, it is enough to show that f

satisfies all the constraints in Clo(D). For the constraints of the form fi ◁ fd
j and

fi = fd
j this was demonstrated in Example 2.7: For instance, if fi ◁ fd

j is in D,
then θ′ contains S11, so f preserves S11 (since f ∈ IdPol(θ′)), which implies fi◁f

d
j

by that example. The proof for the other relations is completely analogous.
⊇: Let f ∈ Clo(D). Again, f is idempotent. We need to show that f

preserves every relation R in θ′. For relations S11 and Ineq this was again proved
in Example 2.7 (e.g., if fi ◁ f

d
j , then f preserves S11). For relations S01, S10,

S00 and Eq, the proof is analogous. The remaining relations, which were ignored
while defining D, are the following.

• Trivial: ∅, {0, 1}2

17

• One-element: {(0, 0)}{(0, 1)}, {(1, 0)}, {(1, 1)},

• Two-element: {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(0, 1), (1, 1)}, {(1, 0), (1, 1)}

It is evident that all multi-sorted Boolean operations preserve {0, 1}2 (of any
type) and ∅. That the one-element and two-element relations are preserved by f
follows from idempotency. For example, for R = {(0, 1)}, the implication

(︄
0
1

)︄
,

(︄
0
1

)︄
, . . . ,

(︄
0
1

)︄
⏞ ⏟⏟ ⏞

n times

=⇒

⎛⎜⎜⎜⎝
fi(0, 0, . . . , 0⏞ ⏟⏟ ⏞

n times

)

fj(1, 1, . . . , 1⏞ ⏟⏟ ⏞
n times

)

⎞⎟⎟⎟⎠ =
(︄

0
1

)︄
,

is satisfied because fi(0, 0, . . . , 0) = 0 and fj(1, 1, . . . , 1) = 1; for R = {(0, 1),
(0, 0)}, the implication

(︄
0
a1

)︄
,

(︄
0
a2

)︄
, . . . ,

(︄
0
an

)︄
=⇒

⎛⎜⎝ fi(0, 0, . . . , 0⏞ ⏟⏟ ⏞
n times

)

fj(a1, a2, . . . , an)

⎞⎟⎠ ∈
{︄(︄

0
1

)︄
,

(︄
0
0

)︄}︄
,

is satisfied because fi(0, 0, . . . , 0) = 0.

Now we move on to the task of making the description simpler. Namely,
we elimate expressions of the form fd

i ◁ fj from D and make = appear only in a
restricted way.

Definition 2.11 (Reduced form). A description in reduced form is a description
over (f1, . . . , fn, g1, . . . , gm), where m and n are nonnegative integers such that
m+ n ≥ 1, such that

(i) gi = gd
i is in D for each i ∈ [m],

(ii) all the remaining constraints in D are of the form fi ◁ fj, fi ◁ fd
j, fi ◁ gj, or

gi ◁ gi, and

(iii) there are no ◁-cycles of length more than 1, that is, there are no chains
fi1 ◁ fi2 ◁ · · · ◁ fil ◁ fi1 in D with l > 1. (Here, again, the membership in D
means that fi1 ◁ fi2 is in D, fi2 ◁ fi3 is in D, etc.)

We aim to show that each Clo(D) is equivalent to Clo(D′), where the description
D′ is reduced.

Minion homomorphisms will be defined by formulas such as

ξ(f1, f2, f3) = (f3, f
d
2 , f1, f1)

and later by more complex formulas, e.g.,

ξ(f1, f2, f3) = (fd
2 , (f3 ∧ f2) ∨ fd

3).

We show that each such a formula defines a minor preserving map.

18

Lemma 2.12. Let k, k′ ∈ N. Let t1, t2, . . . , tk′ be terms over the set of symbols
{f1, . . . , fk} in the signature {∧,∨, d}. For a k-sorted Boolean n-ary operation
(f1, . . . , fk) and j ∈ [k′] we define tj(f1, . . . , fk) : {0, 1}n → {0, 1} in the natural
way (replace fi by fi and compute the expression). Then the mapping ξ : Ik → Ik′

defined by

ξ(f1, . . . , fk) = (t1(f1, . . . , fk), t2(f1, . . . , fk), . . . , tk′(f1, . . . , fk))

is a minion homomorphism.

Proof. First we claim that for every term s over {f1, . . . , fk} in the signature
{∧,∨, d} there exists a Boolean operation s̃ of arity 2k such that for every n ∈ N,
every k-tuple of n-ary Boolean functions f = (f1, . . . , fk), and every a ∈ {0, 1}n,
we have

(s(f))(a) = s̃(f1(a), . . . , fk(a), f1(a), . . . , fk(a))).
The claim is proved by induction of the depth of s. The base case when s = fj

for some j is clear. If s = s1 ∧ s2, we have

(s(f))(a) = (s1(f) ∧ s2(f))(a) = (s1(f))(a) ∧ (s2(f))(a)
= s1̃(f1(a), . . . , fk(a), f1(a), . . . , fk(a))

∧ s2̃(f1(a), . . . , fk(a), f1(a), . . . , fk(a)),

so we can define

s̃(a1, . . . , ak, b1, . . . , bk) = s1̃(a1, . . . , ak, b1, . . . , bk) ∧ s̃2(a1, . . . , ak, b1, . . . , bk).

The proof for s = s1 ∨s2 is completely analogous. Finally, if s = sd
1, then we have

(s(f))(a) = (sd
1(f))(a) = 1 − (s1(f))(a)

= 1 − s1̃(f1(a), . . . , fk(a), f1(a), . . . , fk(a))

so we can define

s̃(a1, . . . , ak, b1, . . . , bk) = 1 − s1̃(b1, . . . , bk, a1, . . . , ak).

The mapping ξ clearly preserves arities. It also easy to see that tj(f1, . . . , fk)
is idempotent, so ξ is correctly defined. It remains to verify that that for every
n ∈ N, every n-ary k-sorted f = (f1, . . . , fk) ∈ Ik, every m ∈ N, and every i1,
. . . , in ∈ [m], we have

ξ(f) ◦ (πm
i1 ,π

m
i2 , . . . ,π

m
in

) = ξ(f ◦ (πm
i1 ,π

m
i2 , . . . ,π

m
in

)).

Both sides are k′-tuples of m-ary Boolean operations. We need to show that for
each j ∈ [k′], the jth Boolean operations are the same on both sides. That is, we
need to prove

tj(f) ◦ (πm
i1 , π

m
i2 , . . . , π

m
in

) = tj(f ◦ (πm
i1 ,π

m
i2 , . . . ,π

m
in

)).

19

For any tuple a = (a1, . . . , am) ∈ {0, 1}m we have

(tj(f)◦(πm
i1 , . . . , π

m
in

))(a)
= tj(f)(πm

i1 (a), . . . πm
in

(a))
= tj(f)(ai1 , . . . , ain)
= t̃j(f1(ai1 , . . . , ain), . . . , fk(ai1 , . . . , ain)

f1(ai1 , . . . , ain), . . . , fk(ai1 , . . . , ain))
= tj̃(f1(πm

i1 (a), . . . , πm
in

(a)), . . . , fk(πm
i1 (a), . . . , πm

in
(a)),

f1(πm
i1 (a), . . . , πm

in
(a)), . . . , fk(πm

i1 (a), . . . , πm
in

(a)))
= tj̃((f1 ◦ (πm

i1 , . . . , π
m
in

))(a), . . . , (fk ◦ (πm
i1 , . . . , π

m
in

))(a),
(f1 ◦ (πm

i1 , . . . , π
m
in

))(a), . . . , (fk ◦ (πm
i1 , . . . , π

m
in

))(a))
= (tj(f ◦ (πm

i1 , . . . ,π
m
in

)))(a),

as required.

The second ingredient is a criterion for satisfiability of a 2-CNF from [6], which
we now state. 2-CNF is a formula of propositional logic of a specific form: it is a
conjunction of clauses, each clause is a disjunction of two literals, and each literal
is either a variable or a negated variable. Such a formula is e.g.

(x or y) and (¬y or z) and (y or y).

(We use a nonstandard notation for disjunction and conjunction so that we do
not overload the symbols ∧ and ∨ too much.) A 2-CNF is satisfiable if there
exists an assignment ϕ : variables → {true, false} making the formula true.

The implication graph of a 2-CNF is the following directed graph. Vertices
are the variables and their negations. For each clause, the graph contains the
two edges corresponding to the two implications that are logically equivalent to
the clause; and there are no other edges. In the example above, the implication
graph has edges

¬x → y, ¬y → x, y → z, ¬z → ¬y, ¬y → y, y → ¬y.

The criterion for satisfiability is as follows.

Theorem 2.13 ([6]). A 2-CNF formula is satisfiable if and only if there is no
variable x such that there exists a directed walk x → · · · → ¬x and a directed
walk ¬x → · · · → x.

We are ready to reduce the descriptions. At first we give a simple example
and then prove the general theorem.

Example 2.14. Consider the description D = {fd
1 ◁ f2, f3 ◁ f4 ◁ fd

3 ◁ f3}. This
description is not in reduced form since it contains the constraint fd

1 ◁ f2 and
a cycle f3 ◁ f4 ◁ fd

3 ◁ f3. We claim that Clo(D) is equivalent to Clo(D′), where
D′ = {f1 ◁ f

d
2 , g1 = gd

1 , g1 ◁ g1}. Note that D′ is in reduced form.
To demonstrate the equivalence, we define a minion homomorphism

ξ : Clo(D) → Clo(D′) as follows:

ξ((f1, f2, f3, f4)) = (fd
1 , f

d
2 , f3)

20

We need to verify that the constraints in D′ hold. Since fd
1 ◁ f2, and according

to Lemma 2.4(i), (fd
2)d = f2, we can conclude that fd

1 ◁ (fd
2)d. Furthermore, from

f3 ◁ f4 ◁ f
d
3 ◁ f3, using Lemma 2.5(vi) and 2.5(ii), we find that f3 = f4 = fd

3 . By
replacing f4 with f3 in f3 ◁ f4, we also obtain that f3 is monotone. Therefore, the
map ξ is well-defined since all the constraints in D′ are satisfied. Additionally,
this map preserves minors by virtue of Lemma 2.12.

Conversely, we define a minion homomorphism ζ : Clo(D′) → Clo(D) as fol-
lows:

ζ((f1, f2, g1)) = (fd
1 , f

d
2 , g1, g1)

Once again, we verify the constraints in D. Similarly to before, since f1 ◁ f
d
2 ,

Lemma 2.4(i) implies (fd
1)d ◁fd

2 . Additionally, since g1 = gd
1, replacing the second

occurrence of g1 with gd
1 in g1 ◁ g1 yields g1 ◁ g

d
1. If we replace the first occurrence

instead, we obtain gd
1 ◁ g1. Thus, we have g1 ◁ g1 ◁ g

d
1 ◁ g1. Similar to the previous

case, ζ preserves minors as stated in Lemma 2.12.

Theorem 2.15. Let D be a description over {h1, . . . , hk}. Then there exists a
description D′ in a reduced form such that the clones Clo(D) and Clo(D′) are equiv-
alent.

Proof. Let D be a description over {h1, . . . , hk}. Without loss of generality, assume
that there is no description over smaller set of symbols which describes a multi-
sorted clone equivalent to Clo(D) (if there is such, we can replace the original
description with one which has the smallest number of symbols and describes an
equivalent clone).

A consequence of this minimality assumption is that there are no i, j ∈ [k] with
i ̸= j such that every (h1, . . . , hk) ∈ Clo(D) satisfies hi = hj. Indeed, if there are
such i and j, say i = 1 and j = 2, then we define D′ over the smaller set of symbols
{h2, . . . , hk} by replacing every occurrence of h1 by h2 and every occurrence of hd

1
by hd

2. The mapping ξ : Clo(D) → Clo(D′) defined by ξ(h1, . . . , hk) = (h2, . . . hk)
is correctly defined: the constraints in D′ are satisfied since h1 is always equal
to h2 when (h1, . . . , hk) ∈ Clo(D). Also ξ preserves minors by Lemma 2.12,
therefore it is a minion homomorphism. On the other hand, it is easy to see that
ξ : Clo(D′) → Clo(D) defined by ξ(h2, h3, . . . , hk) = (h2, h2, h3, . . . , hk) is a minion
homomorphism. Therefore Clo(D) is equivalent to Clo(D′), a contradiction to the
minimality assumption.

Similarly, there are no i, j ∈ [k] with i ̸= j such that every (h1, . . . , hk) ∈
Clo(D) satisfies hi = hd

j . The differences in the above argument is that while cre-
ating D′ we replace h1 by hd

2 (instead of h2) and hd
1 by h2, and we define the second

homomorphism by ξ(h2, h3, . . . , hk) = (hd
2, h2, h3, . . . , hk). The homomorphisms

are correctly defined since (hd
1)d = h1 by Lemma 2.4(i).

Now we change the set of symbols {h1, . . . , hk} of D (and change the con-
straints accordingly) to {f1, . . . , fn, g1, . . . , gm} (n + m = k) so that for each
(f1, . . . , fn, g1, . . . , gm) ∈ Clo(D) we have g1 = gd

1 , . . . , gm = gd
m and m is

the largest with this property, i.e., for any i ∈ [m] we have fi ̸= fd
i for some

(f1, . . . , fn, g1, . . . , gm) ∈ Clo(D).
We make several adjustments to D, none of which changes Clo(D) because of

trivial reasons or We add to D all the constraints gi = gd
i (i ∈ [m]), remove re-

dundant constraints of the form fi = fi, fd
i = fd

i, gi = fi, g(d)
i = gi, and gd

i = gd
i,

21

replace constraints fd
i ◁ fd

j by fj ◁ fi (due to Lemma 2.5(i)), replace gd
i by gi in

every ◁-constraint, and replace gi ◁ fj by fd
j ◁ gi and gi ◁ fd

j by fj ◁ gi (again due
to Lemma 2.5(i)). We refer to these adjustments of D as simple adjustments.

The only =-constraints left are gi = gd
i since fi = fd

i is not in D by the choice
of m and all the other =-constraints were either removed or are impossible by the
minimality assumption. Note also that gi ◁ gj with i ̸= j is not in D, otherwise
every (f1, . . . , fn, g1, . . . , gm) ∈ Clo(D) satisfies gi ◁ gj = gd

j ◁ g
d
i = gi, therefore

gi = gj (due to Lemma 2.5(vi)) , a contradiction to the minimality assumption.
The remaining ◁-constraints of D are thus of the form fi ◁ fj, fi ◁ fd

j, fd
i ◁ fj,

fi ◁ gj, fd
i ◁ gj, or gi ◁ gi. We need to get rid of the cases fd

i ◁ fj and fd
i ◁ gj.

The description D′ will be obtained from D by selecting some numbers j ∈ N
and replacing fj by fd

j and vice versa. Note that whatever set of numbers we take,
the obtained clone Clo(D′) is equivalent to Clo(D) via the minion homomorphisms
defined in both directions as ξ(f1, . . . , fk, g1, . . . , gk) = ξ(f ′

1, . . . , f
′
k, g1, . . . , gk),

where f ′
j = fd

j if j was selected and f ′
j = fj otherwise. The numbers will be

selected according to a satisfying assignment of a 2-CNF defined as follows. The
set of variables of the 2-CNF is {f1, . . . , fn} and

• for each constraint fi ◁ fj in D we add to the 2-CNF the clause (¬fi or fj),

• for each fi ◁ fd
j in D we add (¬fi or ¬fj),

• for each fd
i ◁ fj in D we add (fi or fj),

• for each fi ◁ gj in D we add (¬fi or ¬fi), and

• for each fd
i ◁ gj in D we add (fi or fi).

We claim that if (¬)fi → (¬)fj in the implication graph of the 2-CNF formula,
then the corresponding relation f (d)

i ◁f
(d)
j holds for every (f1, . . . , fn, g1, . . . , gm) ∈

Clo(D). This follows from Lemma 2.5(i) as follows. In the first item (i.e., fi ◁ fj

in D) we added (¬fi or fj) to the 2-CNF which gives fi → fj and fd
j → fd

i in
the implication graph; we have fi ◁ fj (since fi ◁ fj in D) and fd

j ◁ f
d
i (by that

lemma) for every (f1, . . . , gm) ∈ Clo(D). The second and third items are similar.
The fourth item (fi ◁ gj) gives fi → (¬fi) in the implication graph and for any
(f1, . . . , gm) ∈ Clo(D) we have fi ◁ gj = gd

j ◁ f
d
i . The fifth item is similar.

It follows that there is no symbol fi such that fi → · · · → ¬fi and ¬fi →
· · · → fi in the implication graph. Indeed, otherwise fi ◁ · · ·◁fd

i ◁ · · ·◁fi for every
(f1, . . . , gm) ∈ Clo(D), so fi = fd

i , a contradiction to the choice of m. Let ϕ be a
satisfying assignment to our 2-CNF guaranteed by Theorem 2.13.

We create D′ by replacing fj by fd
j and fd

j by fj for every j such that
ϕ(fj) = true, and making the simple adjustments. Observe that the only =-
constraints in D′ are still gi = gd

i (and we have all such in D′) and that all ◁-
constraints in D′ are of the form fi ◁ fj, fi ◁ fd

j, fi ◁ gj, or gi ◁ gi by the choice of
the 2-CNF and the adjustments. It remains to observe that there are no cycles
fi1 ◁ fi2 ◁ · · · ◁ fil ◁ fi1 in D′ with l > 1 since otherwise fi1 ◁ fi2 ◁ · · · ◁ fil

◁ fi1

and thus fi1 = fi2 = . . . for every (f1, . . . , gm) ∈ Clo(D′), which is impossible
by the minimality assumption. Now the description D′ is reduced and Clo(D′) is
equivalent to Clo(D). The proof is concluded.

22

2.3 Collapse
In this section we show that every multi-sorted Boolean clone of the form Clo(D),
where D is in reduced form, is equivalent to a multi-sorted minion from an explicit
collection.

We start by introducing the specific multi-sorted minions. For k ∈ N we
define:

i. Ak = {(h1, h1, . . . , hk) ∈ Ik | h1 ◁ h2 ◁ · · · ◁ hk ≤ hd
k ◁ · · · ◁ hd

2 ◁ h
d
1}

ii. Bk = {(h1, h2, . . . , hk) ∈ Ik | h1 ◁ h2 ◁ · · · ◁ hk ◁ h
d
k ◁ · · · ◁ hd

2 ◁ h
d
1}

iii. Ck = {(h1, h2, . . . , hk) ∈ In | h1 ◁ h2 ◁ · · · ◁ hk = hd
k ◁ · · · ◁ hd

2 ◁ h
d
1}

iv. Dk = {(h1, h2, . . . , hk, hk+1) ∈ Ik+1 | h1 ◁ h2 ◁ · · · ◁ hk ≤ hk+1 = hk+1 ≤
hd

k ◁ · · · ◁ hd
2 ◁ h

d
1, hk ◁ h

d
k}

v. X = {(h) ∈ I1 | h ◁ h ◁ hd ◁ hd}

vi. Y = {(h1, h2) ∈ I2 | h1 ◁ h1 ◁ h2 = hd
2 ◁ h

d
1 ◁ h

d
1}

vii. W = {(h) ∈ I1 | h ◁ h = hd ◁ hd}
Note that all these multi-sorted minions are on (A,A), where A = ({0, 1},

. . . , {0, 1}) is 1-sorted for X and W , 2-sorted for Y , k-sorted for Ak, Bk, Ck,
and (k + 1)-sorted for Dk. Not all of these multi-sorted minions are multi-sorted
clones. This is caused by ≤ in the “descriptions”. We remark that f ≤ g iff (f, g)
preserves the pair of relations (Eq, S10) of type (1, 2).

Also notice that the “descriptions” of these minions contain redundant infor-
mation. For instance, consider Bk = {(h1, h2, . . . , hk) ∈ I | h1 ◁ h2 ◁ · · · ◁ hk ◁ h

d
k ◁

· · · ◁ hd
2 ◁ h

d
1}. In this case, the ◁ relations following hd

k can be inferred from the
initial relation h1 ◁ h2 ◁ · · · ◁ hk, as per Lemma 2.5(i).

For each of these specific minions we give a sufficient condition under which
a multi-sorted Boolean clone described by a reduced description is equivalent to
it. It will follow from the subsequent result that this condition is also necessary,
because the above multi-sorted minions are pairwise inequivalent.

For the rest of this section, we fix a description D over (f1, . . . , fn, g1, . . . , gm)
in a reduced form. We define monotone symbols, ranks of the fi, and chain rank
of D as follows.
Definition 2.16. We say that a function symbol f is monotone if f ◁ f is in D.
We say that D is monotone-free if no symbol fi or gi is monotone.

A path of length l to fi is a sequence fi1 ◁ fi2 ◁ · · · ◁ fil−1 ◁ fil in D, where
il = i and the ij are pairwise distinct.

We define the rank of fi, denoted as rank(fi), to be the length of the longest
such path, i.e.,

rank(fi) = max{l ∈ N | fi1 ◁ fi2 ◁ · · · ◁ fil−1 ◁ fil is a path to fi}.

Finally, the chain rank of D is defined as

chr(D) = max({rank(fi) | i ∈ [n]} ∪
{rank(fi) + rank(fj) | i, j ∈ [n], fi ◁ fd

j is in D} ∪
{2 rank(fi) + 1 | i ∈ [n], fi ◁ gj is in D for some j ∈ [m]})

23

Note that if fi ◁fj and i ̸= j, then rank(fi) < rank(fj). Indeed, by appending
fj to a longest path to fi we get a longer path to fj (note that there are no
repeated symbols in the new path since D does not contain cycles of length greater
than one).

2.3.1 X
X = {(h) ∈ I1 | h ◁ h ◁ hd ◁ hd}

Lemma 2.17. Assume that

• m = 0, and

• there exists i ∈ [n] such that fi is monotone.

Then Clo(D) is equivalent to X .

Proof. We define a mapping ξ : Clo(D) → X as follows:

ξ((f1, f2, . . . , fi, . . . , fn)) = fi ∧ fd
i

This mapping preserves minors due to Lemma 2.12. Furthermore, we can
observe that (fi ∧fd

i)d = fd
i ∨fi due to Lemma 2.4(ii) and fi ∧fd

i ◁fi ∧fd
i ◁fi ∨fd

i

due to the last inequality in Lemma 2.5(v) and transitivity in Lemma 2.5(ii).
Therefore, we have shown that the following chain of inequalities holds:

fi ∧ fd
i ◁ fi ∧ fd

i ◁ (fi ∧ fd
i)d,

which proves that (fi ∧ fd
i) ∈ X . Thus, we can conclude that ξ is well-defined.

In the other direction we define a mapping ζ : X → Clo(D) as follows

ζ((h)) = (f1, . . . , fn) = (h, . . . , h⏞ ⏟⏟ ⏞
n times

)

This mapping preserves minors due to Lemma 2.12. Moreover, ζ makes sense:
if fi ◁ fj is in D, we need to verify that fi ◁ fj, which holds true because h is
monotone. Similarly, if fi ◁ fd

j is in D, we need to confirm that fi ◁ f
d
j , which is

also true because h ◁ hd.

2.3.2 Y
Y = {(h1, h2) ∈ I2 | h1 ◁ h1 ◁ h2 = hd

2 ◁ h
d
1 ◁ h

d
1}

Lemma 2.18. Assume that

• m > 0,

• there exists i ∈ [n] such that fi is monotone, and

• there is no j ∈ [m] such that gj is monotone.

Then Clo(D) is equivalent to Y.

24

Proof. In this case we define minion homomorphism ξ : Clo(D) → Y as follows.

ξ((f1, f2, . . . , fn, g1, . . . , gm)) = (fi ∧ fd
i , (g1 ∨ (fi ∧ fd

i)) ∧ (fi ∨ fd
i))

Here, due to Lemma 2.6(i) and (iii) as g1 = gd
1 , (fi ∧ fd

i)d = fi ∨ fd
i and fi is

monotone, then (g1 ∨ (fi ∧ fd
i)) ∧ (fi ∨ fd

i)) = ((g1 ∨ (fi ∧ fd
i)) ∧ (fi ∨ fd

i))d and
(fi ∧ fd

i) ◁ (g1 ∨ (fi ∧ fd
i)) ∧ (fi ∨ fd

i)).
Furthermore, fi ∧ fd

i ◁ fi ∧ fd
i due to Lemma 2.5(v).

Thus, we have shown that ξ preserves the relations in Y , which completes
the proof that the map ξ is well-defined. The fact that the map is a minion
homomorphism is shown analogously as in the previous case.

In the other direction, minion homomorphism ζ : Y → Clo(D) is defined as
follows.

ξ((h1, h2)) = (f1, f2, . . . , fn, g1, . . . , gm)
= (h1, . . . , h1⏞ ⏟⏟ ⏞

n times

, h2, . . . , h2⏞ ⏟⏟ ⏞
m times

)

This map is well-defined:

• If fi ◁ fj is in D for i, j ∈ [n], then we need to check that fi ◁ fj, which is
true since fi = h1 ◁ h1 = fj.

• If fi ◁ fd
j is in D for i, j ∈ [n], then h1 ◁ h

d
1.

• If fi ◁ gj is in D for i ∈ [n] and j ∈ [m], then h1 ◁ h2.

2.3.3 W

W = {(h) ∈ I1 | h ◁ h = hd ◁ hd}

Lemma 2.19. Assume that

• m > 0, and

• there exists j ∈ [m] such that gj is monotone.

Then Clo(D) is equivalent to W.

Proof. We define a mapping ξ : Clo(D) → W by

ξ((f1, f2, . . . , fn, g1, . . . , gm)) = (gj).
This mapping preserves minors as in previous case and makes sense since (gj) ∈
W .

In the other direction, we define a mapping ζ : W → Clo(D) by

ζ((h)) = (h, . . . , h)⏞ ⏟⏟ ⏞
n + m times

This mapping makes sense since h satisfies all the relations in D, and therefore
(h, . . . , h)⏞ ⏟⏟ ⏞
n + m times

∈ Clo(D).

25

In all the previous three cases description D contained a monotone function
symbol and we considered all the cases which could happen. Now in all the
following cases we assume that there are no monotone functions in the description.

2.3.4 Ak

Ak = {(h1, h1, . . . , hk) ∈ Ik | h1 ◁ h2 ◁ · · · ◁ hk ≤ hd
k ◁ · · · ◁ hd

2 ◁ h
d
1}

Lemma 2.20. Assume that

• m = 0,

• D is monotone-free, and

• chr(D) is odd.

Then Clo(D) is equivalent to Ak where k = (chr(D) + 1)/2.

Proof. We have chr(D) = rank(fi) for some i ∈ [n] or chr(D) = rank(fi)+rank(fj)
for some i, j ∈ [n] such that fi ◁ fd

j is in D.
Consider first the second case. Assume that rank(fi) ≥ rank(fj) (the proof for

the converse inequality is completely analogous). Let fi1 ◁ fi2 ◁ · · · ◁ fir be a path
to fi, where i1, i2, . . . , ir = i ∈ [n], r = rank(fi). Similarly, let fj1 ◁ fj2 ◁ . . . fjs

be a path to fj, where j1, j2, . . . , js = j ∈ [n], s = rank(fj). Note that k =
(r + s+ 1)/2. We define ξ : Clo(D) → Ak in the following way:

ξ((f1, f2, . . . , fn)) = (h1, h2, . . . , hk)
= (fi1 ∧ fj1 , fi2 ∧ fj2 , . . . , fis ∧ fjs⏞ ⏟⏟ ⏞

s operations

,

fis+1 ∧ fd
ir
, fis+2 ∧ fd

ir−1 , . . . , fik
∧ fd

ik⏞ ⏟⏟ ⏞
k−s operations

)

Note that hk ≤ hd
k. Indeed, hk = fik

∧ fd
ik

≤ fik
∨ fd

ik
= (fd

ik
∧ fik

)d = hd
k,

where we applied Lemma 2.4 (i) and (ii).
We have

fi1 ◁ fi2 ◁ · · · ◁ fis ◁ fis+1 ◁ fis+2 ◁ · · · ◁ fik

and
fj1 ◁ fj2 ◁ · · · ◁ fjs ◁ f

d
ir
◁ fd

ir−1 ◁ · · · ◁ fd
ik
,

where we applied Lemma 2.5(i). Applying 2.5(iii) we obtain h1 ◁ h2 ◁ · · · ◁ hk.
We have shown that ξ is well-defined and is thus a minion homomorphism, which
finishes the second case.

The first case is simpler and we only give the definition of ξ. Let fi1 ◁ fi2◁ . . .
◁fir be a path to fi, where i1, i2, . . . , ir = i ∈ [n], r = rank(fi). Note that
k = (r + 1)/2. We define ξ : Clo(D) → Ak in the following way:

ξ((f1, f2, . . . , fn)) = (fi1 ∧ fd
ir
, fi2 ∧ fd

ir−1 , . . . , fik
∧ fd

ik
)

It remains to construct a minion homomorphism ζ : Ak → Clo(D). For
(h1, h2, . . . , hk) ∈ Ak we define

(h′
1, h

′
2, . . . , h

′
2k−1) = (h1, h2, . . . , hk, h

d
k−1, h

d
k−2, . . . , h

d
1)

26

and define ζ in the following way:

ζ((h1, h2, . . . , hk)) = (h′
rank(f1), h

′
rank(f2), . . . , h

′
rank(fn))

Note that rank(fi) ≤ 2k − 1 (since 2k − 1 = chr(D) ≥ rank(fi)), so the indices
of h′ are in [2k − 1]. Also note that h′

1 ◁ h
′
2 ◁ · · · ◁ h′

2k−1 by Lemma 2.5(ii) and (i)
and that h′

r ◁ (h′
s)d whenever r + s ≤ 2k − 1 by the same lemma.

The map ζ is well-defined:

• If fi ◁ fj is in D for i, j ∈ [n], then rank(fi) < rank(fj), therefore h′
rank(fi) ◁

h′
rank(fj).

• If fi ◁ fd
j is in D for i, j ∈ [n], then rank(fi) + rank(fj) ≤ chr(D) = 2k − 1,

therefore h′
rank(fi) ◁ (h′

rank(fj))d.

2.3.5 Bk

Bk = {(h1, h2, . . . , hk) ∈ Ik | h1 ◁ h2 ◁ · · · ◁ hk ◁ h
d
k ◁ · · · ◁ hd

2 ◁ h
d
1}

Lemma 2.21. Assume that

• m = 0,

• D is monotone-free, and

• chr(D) is even.

Then Clo(D) is equivalent to Bk where k = chr(D)/2.

Proof. The proof is similar to the previous one. We have chr(D) = rank(fi) for
some i ∈ [n] or chr(D) = rank(fi) + rank(fj) for some i, j ∈ [n] such that fi ◁ fd

j
is in D.

In the second case, assume that rank(fi) ≥ rank(fj). Let fi1 ◁ fi2 ◁ · · · ◁ fir

be a path to fi, where i1, i2, . . . , ir = i ∈ [n], r = rank(fi). Let fj1 ◁ fj2 ◁ . . . fjs

be a path to fj, where j1, j2, . . . , js = j ∈ [n], s = rank(fj). Note that k =
(r + s)/2. We define ξ : Clo(D) → Bk in the following way:

ξ((f1, f2, . . . , fn)) = (h1, h2, . . . , hk)
= (fi1 ∧ fj1 , fi2 ∧ fj2 , . . . , fis ∧ fjs⏞ ⏟⏟ ⏞

s operations

,

fis+1 ∧ fd
ir
, fis+2 ∧ fd

ir−1 , . . . , fik
∧ fd

ik+1⏞ ⏟⏟ ⏞
k−s operations

)

Note that hk ◁ h
d
k. Indeed, if r > s, then hk = fik

∧ fd
ik+1

◁ fik+1 ∧ fd
ik

≤
fik+1 ∨ fd

ik
= (fd

ik+1
∧ fik

)d = hd
k; if r = s = k, then hk = fik

∧ fjk
◁ fd

jk
∧ fd

ik
≤

fd
jk

∨ fd
ik

= (fjk
∧ fik

)d = hd
k. The rest of the argument for this case is as in the

previous lemma.

27

The first case is also similar. Let fi1 ◁ fi2 ◁ · · · ◁ fir be a path to fi, where
i1, i2, . . . , ir = i ∈ [n], r = rank(fi). Note that k = r/2. We define ξ : Clo(D) →
Ak in the following way:

ξ((f1, f2, . . . , fn)) = (fi1 ∧ fd
ir
, fi2 ∧ fd

ir−1 , . . . , fik
∧ fd

ik+1
)

In the other direction, for (h1, h2, . . . , hk) ∈ Bk we define

(h′
1, h

′
2, . . . , h

′
2k) = (h1, h2, . . . , hk, h

d
k, h

d
k−1, . . . , h

d
1)

and define ζ in the following way:

ζ((h1, h2, . . . , hk)) = (h′
rank(f1), h

′
rank(f2), . . . , h

′
rank(fn))

Note that rank(fi) ≤ 2k (since 2k = chr(D) ≥ rank(fi)), so the indices of h′ are
in [2k]. Also note that h′

1 ◁ h
′
2 ◁ · · · ◁ h′

2k and that h′
r ◁ (h′

s)d whenever r+ s ≤ 2k.
This implies that ζ is well-defined as in the previous proof.

2.3.6 Ck

Ck = {(h1, h2, . . . , hk) ∈ Ik | h1 ◁ h2 ◁ · · · ◁ hk = hd
k ◁ · · · ◁ hd

2 ◁ h
d
1}

Lemma 2.22. Assume that

• m > 0,

• D is monotone-free, and

• chr(D) is odd.

Then Clo(D) is equivalent to Ck where k = (chr(D) + 1)/2.

Proof. We have chr(D) = rank(fi) for some i ∈ [n], or chr(D) = rank(fi) +
rank(fj) for some i, j ∈ [n] such that fi ◁ fd

j is in D, or chr(D) = 2 rank(fi) + 1
for some i ∈ [n], j ∈ [m] such that fi ◁ gj is in D.

As usual, consider first the second case. Assume that rank(fi) ≥ rank(fj).
Let fi1 ◁ fi2 ◁ · · · ◁ fir be a path to fi, where i1, i2, . . . , ir = i ∈ [n], r = rank(fi).
Similarly, let fj1 ◁ fj2 ◁ . . . fjs be a path to fj, where j1, j2, . . . , js = j ∈ [n],
s = rank(fj). Note that k = (r + s + 1)/2. We define ξ : Clo(D) → Ck in the
following way:

ξ((f1, f2, . . . , fn)) = (h1, h2, . . . , hk)
= (fi1 ∧ fj1 , fi2 ∧ fj2 , . . . , fis ∧ fjs⏞ ⏟⏟ ⏞

s operations

,

fis+1 ∧ fd
ir
, fis+2 ∧ fd

ir−1 , . . . , fik−1 ∧ fd
ik+1⏞ ⏟⏟ ⏞

k−s−1 operations

,

(g1 ∨ (fik
∧ fd

ik
)) ∧ (fik

∧ fd
ik

)d)

Denote h′
k = fik

∧ fi′
k
. Similarly as in the previous two lemmas we obtain

h1◁h2◁hk−1◁h
′
k. Note that h′

k ≤ (h′
k)d and hk = (g1∨h′

k)∧(h′
k)d. By Lemma 2.6(i)

28

we have hk = hd
k. From Lemma 2.6(ii) we obtain h′

k ≤ hk. Combining this with
hk−1 ◁ h

′
k we get hk−1 ◁ hk. This finishes the second case.

As for the first case, let fi1 ◁ fi2 ◁ · · · ◁ fir be a path to fi, where i1, i2, . . . , ir =
i ∈ [n], r = rank(fi). Note that k = (r + 1)/2. We define ξ : Clo(D) → Ck in the
following way:

ξ((f1, f2, . . . , fn)) =(fi1 ∧ fd
ir
, fi2 ∧ fd

ir−1 , . . . , fik−1 ∧ fd
ik+1

,

(g1 ∨ (fik
∧ fd

ik
)) ∧ (fik

∧ fd
ik

)d)

The third case is the simplest. Let fi1 ◁ fi2 ◁ · · · ◁ fir be a path to fi, where
i1, i2, . . . , ir = i ∈ [n], r = rank(fi). Recall that fi ◁ gj is in D and note that
k = r + 1. We define ξ : Clo(D) → Ck in the following way:

ξ((f1, f2, . . . , fn)) = (fi1 , fi2 , . . . , fir , gj)

It remains to construct a minion homomorphism ζ : Ck → Clo(D). For
(h1, h2, . . . , hk) ∈ Ck we define

(h′
1, h

′
2, . . . , h

′
2k−1) = (h1, h2, . . . , hk, h

d
k−1, h

d
k−2, . . . , h

d
1)

and define ζ in the following way:

ζ((h1, h2, . . . , hk)) = (h′
rank(f1), h

′
rank(f2), . . . , h

′
rank(fn)⏞ ⏟⏟ ⏞

n operations

, hk, hk, . . . , hk⏞ ⏟⏟ ⏞
m operations

)

Note

• that rank(fi) ≤ 2k − 1 (since 2k − 1 = chr(D) ≥ rank(fi)), so the indices
of h′ are in [2k − 1],

• that h′
1 ◁ h

′
2 ◁ · · · ◁ h′

2k−1,

• that h′
r ◁ (h′

s)d whenever r + s ≤ 2k − 1, and

• that h′
r ◁ hk whenever r ≤ k − 1.

The map ζ is therefore well-defined:

• If fi ◁ fj is in D for i, j ∈ [n], then rank(fi) < rank(fj), therefore h′
rank(fi) ◁

h′
rank(fj).

• If fi ◁ fd
j is in D for i, j ∈ [n], then rank(fi) + rank(fj) ≤ chr(D) = 2k − 1,

therefore h′
rank(fi) ◁ (h′

rank(fj))d.

• If fi ◁ gd
j is in D for i ∈ [n] and j ∈ [m], then rank(fi) ≤ (chr(D) − 1)/2 =

k − 1, therefore h′
rank((fi)) ◁ hk.

29

2.3.7 Dk

Dk ={(h1, h2, . . . , hk, hk+1) ∈ Ik+1 |
h1 ◁ h2 ◁ · · · ◁ hk ≤ hk+1 = hk+1 ≤ hd

k ◁ · · · ◁ hd
2, hk ◁ h

d
k}

Lemma 2.23. Assume that

• m > 0,

• D is monotone-free, and

• chr(D) is even.

Then Clo(D) is equivalent to Dk where k = chr(D)/2.

Proof. We have chr(D) = rank(fi) for some i ∈ [n] or chr(D) = rank(fi)+rank(fj)
for some i, j ∈ [n] such that fi ◁ fd

j is in D (we do not have the third case here
unlike for Ck).

In the second case we define ξ : Clo(D) → Dk with the usual notation (noting
k = (r + s)/2) as follows.

ξ((f1, f2, . . . , fn)) = (h1, h2, . . . , hk, hk+1)
= (fi1 ∧ fj1 , fi2 ∧ fj2 , . . . , fis ∧ fjs⏞ ⏟⏟ ⏞

s operations

,

fis+1 ∧ fd
ir
, fis+2 ∧ fd

ir−1 , . . . , fik
∧ fd

ik+1⏞ ⏟⏟ ⏞
k−s operations

,

(g1 ∨ (fik
∧ fd

ik+1
)) ∧ (fik

∧ fd
ik+1

)d))

As in the proof for Bk we get hk◁h
d
k. As in the proof for Ck we get h1◁· · ·◁hk ≤

hk+1 and hk+1 = hd
k+1.

The definition of ξ for the first case is as follows.

ξ((f1, f2, . . . , fn)) =(fi1 ∧ fd
ir
, fi2 ∧ fd

ir−1 , . . . , fik
∧ fd

ik+1
,

(g1 ∨ (fik
∧ fd

ik+1
)) ∧ (fik

∧ fd
ik+1

)d)

The construction of ζ : Dk → Clo(D) is again analogous to the proofs for Bk

and Ck. For (h1, h2, . . . , hk) ∈ Ck we define

(h′
1, h

′
2, . . . , h

′
2k) = (h1, h2, . . . , hk, h

d
k, h

d
k−1, . . . , h

d
1)

and define ζ in the following way:

ζ((h1, h2, . . . , hk+1)) = (h′
rank(f1), h

′
rank(f2), . . . , h

′
rank(fn)⏞ ⏟⏟ ⏞

n operations

, hk+1, hk+1, . . . , hk+1⏞ ⏟⏟ ⏞
m operations

)

30

2.3.8 Putting it together
Theorem 2.24. Let θ be a set of at most binary l-sorted relations on a l-sorted
A = ({0, 1}, . . . , {0, 1}) for some positive integer l. The clone Pol(θ) is equivalent
to at least one of the multi-sorted minions Ak, Bk, Ck, Dk, X , Y, W, T , k ∈ N.

Proof. By Lemma 2.10, Pol(θ) is equivalent to T or is equivalent to Clo(D) for a
description D. In the latter case, by Theorem 2.15 we can assume that D is in a
reduced form. As in the beginning of the section, let D be in a reduced form over
f1, . . . , fn, g1, . . . , gm. The following case analysis shows that our lemmas covered
all the cases.

• D contains a monotone symbol.

– m = 0. Then Clo(D) is equivalent to X by Lemma 2.17.
– m > 0.

∗ some symbol gj is monotone. Then Clo(D) is equivalent to W by
Lemma 2.19.

∗ no symbol gj is monotone. Then Clo(D) is equivalent to Y by
Lemma 2.18.

• D is monotone-free.

– m = 0.
∗ chr(D) is odd. Then Clo(D) is equivalent to A(rank(D)+1)/2 by Lemma

2.20.
∗ chr(D) is even. Then Clo(D) is equivalent to Brank(D)/2 by Lemma

2.21.
– m > 0.

∗ chr(D) is odd. Then Clo(D) is equivalent to C(rank(D)+1)/2 by Lemma
2.22.

∗ chr(D) is even. Then Clo(D) is equivalent to Drank(D)/2 by Lemma
2.23.

2.4 Cores
In this section we show that all the multi-sorted minions from the last section are
minion cores. That is, we prove the following theorem.

Theorem 2.25. The multi-sorted minions X , Y, W, An, Bn, Cn, and Dn are
minion cores for every n ∈ N.

Recall that all these multi-sorted minions (apart from the trivial T which we
do not need to consider) are on (A,A), where A = ({0, 1}, . . . , {0, 1}).

The following lemma follows from the fact that the sorts are two-element sets.
The second part shows that it is enough to show that the binary parts of minion
homomorphisms M → M are bijections.

31

Lemma 2.26. Let M be a multi-sorted minion on (A,A).

(i) If ξ, ν : M → M are minion homomorphisms such that ξ(2) = ν(2), then
ξ = ν.

(ii) If for every minion homomorphism M → M its binary part ξ(2) : M(2) →
M(2) is a bijection, then M is a minion core.

Proof. (i) Let f = (f1, . . . , fk) ∈ M, say m-ary, and denote ξ(f) = (g1, . . . , gk)
and ν(f) = (h1, . . . , hk). We need to verify that gi = hi for every i ∈ [k]. To
prove it we check that gi(a) = hi(a) for every a = (a1, . . . , am) ∈ {0, 1}m

as follows.
For any i1, . . . , im ∈ [2] we have

ξ(f) ◦ (π2
i1 , . . . ,π

2
im

) = ξ(2)(f ◦ (π2
i1 , . . . ,π

2
im

))
= ν(2)(f ◦ (π2

i1 , . . . ,π
2
im

))
= ν(f) ◦ (π2

i1 , . . . ,π
2
im

)

By comparing the ith components of these tuples of Boolean operations we
obtain

gi ◦ (π2
i1 , . . . , π

2
im

) = hi ◦ (π2
i1 , . . . , π

2
im

).
Now we have

gi(a) = gi(a1, . . . , am) = gi(π2
a1+1(0, 1), . . . , π2

am+1(0, 1))
= (gi ◦ (π2

a1+1, . . . , π
2
am+1))(0, 1)

= (hi ◦ (π2
a1+1, . . . , π

2
am+1))(0, 1)

= hi(a1, . . . , am) = hi(a)

(ii) We need to prove that every minion homomorphism ξ : M → M is a
bijection. Consider a homomorphism ξ. By the assumption, the mapping
ξ(2) is a bijection on M(2). Therefore, there exists n such that

(ξ(2))n = ξ(2) ◦ ξ(2) ◦ · · · ◦ ξ(2)⏞ ⏟⏟ ⏞
n times

= idM(2)

(one can take e.g. n = |M(2)|!). It follows from the first part of the lemma
that µ = ξn−1 is a both-sided inverse to ξ: Indeed, we have (µ ◦ ξ)(2) =
µ(2) ◦ ξ(2) = (ξ(2))n−1 ◦ ξ(2) = (ξ(2))n = id(2)

M , so µ ◦ ξ = idM, and similarly
(ξ ◦ µ)(2) = id(2)

M , so ξ ◦ µ = idM.

Binary (multi-sorted) operations will therefore play an important role. To
simplify notation, we denote

x = π2
1, y = π2

2, x = π2
1 = (x, x, . . . , x), y = π2

2 = (y, y, . . . , y).

There are exactly four Boolean idempotent binary operations, namely

x, y,∧,∨.

32

Observe that

∧ ≤ x, y ≤ ∨, ∧ ◁ x, y ◁ ∨, xd = y, yd = x, ∧d = ∨,∨d = ∧.

A multi-sorted idempotent Boolean operation is e.g. the 3-sorted operation
(y,∧,∨).

Our multi-sorted minions are all idempotent. This has the following conse-
quence.

Lemma 2.27. Let M be a multi-sorted minion on (A,A) whose all members are
idempotent and let ξ : M → M be a minion homomoprhism. Then M contains
all the projections on A and for any m ∈ N and i ∈ [m] we have

ξ(πm
i) = πm

i .

In particular, ξ(x) = x and ξ(y) = y.

Proof. Since M is nonempty, also M(1) is nonempty (take a unary minor of any
member of M). The only idempotent unary multi-sorted operation on A is π1

1.
One if its minors is π1

1 ◦ (πm
i) = πm

i , so it is in M and we have

ξ(πm
i) = ξ(π1

1 ◦ (πm
i)) = ξ(π1

1) ◦ (πm
i) = π1

1 ◦ (πm
i) = πm

i .

The two lemmata combined already give the result for W , see Lemma 2.32.
For the remaining multi-sorted minions, we will use the fact that minion

homomorphisms “preserve identities” in the following sense. Let M and ξ be as
in the last lemma. If t ∈ M(n) and s ∈ M(n′) satisfy

t ◦ (πm
i1 ,π

m
i2 , . . . ,π

m
in

) = s ◦ (πm
i′
1
,πm

i′
2
, . . . ,πm

i′
n
),

then by applying ξ to both sides and using that ξ is a minion homomorphism,
we get

ξ(t ◦ (πm
i1 ,π

m
i2 , . . . ,π

m
in

)) = ξ(s ◦ (πm
i′
1
,πm

i′
2
, . . . ,πm

i′
n
))

ξ(t) ◦ (πm
i1 ,π

m
i2 , . . . ,π

m
in

) = ξ(s) ◦ (πm
i′
1
,πm

i′
2
, . . . ,πm

i′
n
).

In this sense ξ(s) and ξ(t) satisfy “the same identity”.
Because of the last lemma, ξ also preserves identities where one of the sides

is just a projection:

t ◦ (πm
i1 ,π

m
i2 , . . . ,π

m
in

) = πm
i ⇒ ξ(t) ◦ (πm

i1 ,π
m
i2 , . . . ,π

m
in

) = πm
i .

We will mostly use identities where m = 2. To increase readability, we write
identities in a simplified form: we use the convention x = π2

1 etc. above, we use
the plain font, and skip “◦” and “,”. For example, the identities

t ◦ (π2
1,π

2
1,π

2
1,π

2
2,π

2
2) = s ◦ (π2

1,π
2
2,π

2
2,π

2
2,π

2
2), s ◦ (π2

1,π
2
1,π

2
2,π

2
2,π

2
2) = π2

2

will be written as

t(xxxyy) = s(xyyyy), s(xxyyy) = y.

33

The only other identities that will be used are identities for 5-ary multi-sorted
operations of the form

t ◦ (π5
1,π

5
2,π

5
3,π

5
4,π

5
5) = t ◦ (π5

σ(1),π
5
σ(2),π

5
σ(3),π

5
σ(4),π

5
σ(5)),

where σ ∈ S5 is a permutation on [5]. We write them as

t(x1, x2, x3, x4, x5) = t(xσ(1), xσ(2), xσ(3), xσ(4), xσ(5)).

The common strategy for the proof that the considered minion M is a core
is as follows.

• We consider a set of identities.

• We show that M has multi-sorted operations satisfying those identities
and we prove that the identities (almost) uniquely determine the operations.
Moreover, binary minors of these operations will contain (almost) all binary
members of M.

• Because minion homomorphisms preserves identities, each minion homo-
morphism ξ : M → M maps these operation (almost) to themselves. The
last property from the previous item will guarantee that ξ(2) is a bijection.

• We conclude the proof by applying the second part of Lemma 2.26.

Remark 2.28. We will often use 5-ary idempotent symmetric multi-sorted op-
erations, i.e., idempotent multi-sorted operations t satisfying the identities

t(x1, x2, x3, x4, x5) = t(xσ(1), xσ(2), xσ(3), xσ(4), xσ(5)) ∀σ ∈ S5

Such a t = (h1, . . . , hn) will be represented by a table like the following.

t h1 h2 hn−1 hn

10000 0 0 . . . 0 ?
11000 0 0 . . . 0 0
11100 1 1 . . . 1 1
11110 ? 1 . . . 1 1

The four rows correspond to the 5-tuples (1, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 1, 1, 0, 0),
(1, 1, 1, 1, 0) and columns correspond to the components of t. The entries are val-
ues of the operations. For example, the one in position (3, 2) (third row, second
column) indicates that h2(1, 1, 1, 0, 0) = 1. Note that such a table uniquely deter-
mines t because of the symmetry and idempotency. The question mark indicates
that the value is unknown at that point.

We utilize the following observations, where we use [i, j] to denote the value
at position (i, j).

• hj−1 ≤ hj iff [i, j − 1] ≤ [i, j] for every i ∈ [4]. In particular, if [i, j] = 0,
then [i, j − 1] = 0, and if [i, j − 1] = 1, then [i, j] = 1.

• hj−1 = hj iff the columns j − 1 and j are identical.

34

• hj−1 ◁ hj iff [i, j − 1] ≤ [i′, j] for every i, i′ ∈ [4] such that i′ ≥ i. E.g., if
[i, j] = 0, then [i, j − 1] = [i− 1, j − 1] = . . . ,= 0.

• hj = hd
j iff [i, j] = 1 − [5 − i, j] for every i ∈ [4].

Remark 2.29. In some cases, we utilize ternary idempotent multi-sorted op-
erations instead of 5-ary symmetric ones. multi-sorted ternary operation t =
(h1, . . . , hn) will be represented as follows.

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

t

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 ?

010
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 ?

The six tables correspond to the triples (1, 1, 0), (1, 0, 1), etc. and their
columns correspond to the components of T . The entries are, again, values of the
operations. For example, the zero in position (101, 2) (table labeled 101, second
column) indicates that h2(1, 0, 1) = 0.

In the following observations, we use [i, j] to denote the value in the jth column
in the table labeled i.

We write i ≤ i′ for triples i, i′ ∈ I if the inequalities hold component-wise.
This order is depicted in the figure by lines.

• hj−1 ≤ hj iff [i, j−1] ≤ [i, j] for every i ∈ I = {110, 101, 011, 100, 010, 001}.
In particular, if [i, j] = 0, then [i, j − 1] = 0, and if [i, j − 1] = 1, then
[i, j] = 1.

• hj−1 = hj iff the columns j − 1 and j are identical.

• hj−1 ◁ hj iff [i, j − 1] ≤ [i′, j] for every i, i′ ∈ I such that i′ ≥ i. E.g., if
[i, j] = 0, then [i, j − 1] = [i− 1, j − 1] = . . . ,= 0.

• hj = hd
j iff [i, j] = 1 − [111 − i, j] for every i ∈ I.

2.4.1 X
X = {(h) ∈ I1 | h ◁ h ◁ hd ◁ hd}

Lemma 2.30. X is a minion core.
Proof. Let ξ : X → X be a minion homomorphism. We aim to show that ξ(2)

is a bijection. Note that the binary part of X is X (2) = {(x), (y), (∧)}. By
Lemma 2.27, ξ((x)) = (x) and ξ((y)) = y.

We use the following identity.
t(xy) = t(yx)

Note that (∧) ∈ X (2) satisfies this identity and it is the only member of X that
satisfies it. Since ξ preserves identities, we have ξ((∧)) = (∧).

We have shown that ξ(2) is the identity on X (2). By Lemma 2.26, X is a
minion core.

35

2.4.2 Y
Y = {(h1, h2) ∈ I2 | h1 ◁ h1 ◁ h2 = hd

2 ◁ h
d
1 ◁ h

d
1}

Lemma 2.31. Y is a minion core.

Proof. First note that the binary part is

Y(2) = {x = (x, x),y = (y, y), (∧, x), (∧, y)}.

We use the following identities

t(xxxxy) = t(xxyyy)
t(x1, x2, x3, x4, x5) = t(xσ(1)xσ(2)xσ(3)xσ(4)xσ(5)) ∀σ ∈ S5

We show that there are exactly two members of Y that satisfy those identities.
Assume that t = (h1, h2) satisfies the identities.
To begin, we establish that h1(11100) must be equal to 0. Let’s assume, for

contradiction, that h1(11100) = 1. Since h1 ◁ h2, according to 2.28, this implies
that h2(11100) = 1 and h2(11110) = 1. Consequently, as h2 cannot be ∨, we
conclude that h2(xxxyy) = x and h2(xxxxy) = x. However, this contradicts the
assumption that t ◦ (x,x,x,x,y) = t ◦ (x,x,y,y,y).

Next, we aim to demonstrate that h1(11000) is also equal to 0. Let’s assume,
once again for contradiction, that h1(11000) = 1. By employing the same prop-
erty mentioned in 2.28, we find that h2(11000) = 1 and h2(11100) = 1. This,
however, again contradicts the binary minors of Y since none of them contain a
∨ in the second position.

Therefore, by combining these two results, we can conclude that the first
operation in t(x,x,x,y,y) is necessarily ∧. This implies that the first operation
in t ◦ (x,x,x,x,y) is also ∧ since t ◦ (x,x,x,x,y) = t ◦ (x,x,y,y,y) and t
exhibits symmetry.

Moving on, we consider the second operation in t ◦ (x,x,x,y,y), which can
either be x or y. If the second operation is x, denoted as t ◦ (x,x,x,y,y) =
(∧, x), then due to symmetry, we can infer that t ◦ (x,x,y,y,y) = (∧, y) and
t◦(x,x,x,x,y) = (∧, y) based on the assumption. Similarly, if t◦(x,x,x,y,y) =
(∧, y), then applying symmetry leads to the conclusion that t ◦ (x,x,y,y,y) =
(∧, x) and t ◦ (x,x,x,x,y) = (∧, x) according to the assumption.

We have shown that if a multi-sorted operation satisfies the identities, then it
is either t or t′ defined by the following tables.

t h1 h2
10000 0 0
11000 0 1
11100 0 0
11110 0 1

t′ h1 h2
10000 0 1
11000 0 0
11100 0 1
11110 0 0

36

On the other hand, both of these multi-sorted operations are in Y (see Re-
mark 2.28).

Now consider a minion homomorphism ξ : Y → Y . Since ξ preserve identities,
we have ξ(t) = t or ξ(t) = t′.

Consider the second case. By Lemma 2.27 and since ξ preserves minors, we
get

ξ(2)(x) = x,

ξ(2)(y) = y,

ξ(2)((∧, x)) = ξ(t ◦ (x,x,y,y,y)) = ξ(t) ◦ (x,x,y,y,y) = (∧, y)
ξ(2)((∧, y)) = ξ(t ◦ (y,y,x,x,x)) = ξ(t) ◦ (y,y,x,x,x) = (∧, x)

Therefore ξ(2) is a bijection and then Y is a minion core by Lemma 2.26.
The first case when ξ(t) = t is similar.

2.4.3 W
W = {(h) ∈ I1 | h ◁ h = hd ◁ hd}

Lemma 2.32. W is a minion core.

Proof. Let ξ : W → W be a minion homomorphism. We aim to show that ξ(2)

is a bijection. The binary part of W is W(2) = {(x), (y)}. By Lemma 2.27,
ξ((x)) = (x) and ξ((y)) = y.

Therefore ξ(2) is the identity on X (2). By Lemma 2.26, X is a minion core.

2.4.4 An

An = {(h1, h1, . . . , hn) ∈ In | h1 ◁ h2 ◁ · · · ◁ hn ≤ hd
n ◁ · · · ◁ hd

2 ◁ h
d
1}

Lemma 2.33. The only binary n-sorted operations (h1, h2, . . . , hn), which satisfy
the relations h1 ◁ h2 ◁ · · · ◁ hn ≤ hd

n ◁ · · · ◁ hd
2 ◁ h

d
1 are

• (∧,∧, . . . ,∧⏞ ⏟⏟ ⏞
n times

)

• (∧,∧, . . . ,∧, x⏞ ⏟⏟ ⏞
n times

), (∧,∧, . . . , x, x⏞ ⏟⏟ ⏞
n times

), . . . , (∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n times

), (x, x, . . . , x, x⏞ ⏟⏟ ⏞
n times

) = x

• (∧,∧, . . . ,∧, y⏞ ⏟⏟ ⏞
n times

), (∧,∧, . . . , y, y⏞ ⏟⏟ ⏞
n times

), . . . , (∧, y, . . . , y, y⏞ ⏟⏟ ⏞
n times

), (y, y, . . . , y, y⏞ ⏟⏟ ⏞
n times

) = y

Proof. For n = 1, the only binary operations h2 that satisfy the relation h1 ≤ hd
1

are ∧, x, and y. Thus, the lemma holds for n = 1.
Now assume that (h1, h2, . . . , hn−1, hn) is an n-sorted operation satisfying h1 ◁

h2 ◁ · · · ◁ hn ≤ hd
n ◁ · · · ◁ hd

2 ◁ h
d
1. We will use the inductive assumption on the

(n− 1)-sorted operation (h2, . . . , hn−1, hn).
By the inductive assumption, the only binary (n − 1)-sorted operations that

satisfy the relations h2 ◁ · · · ◁ hn ≤ hd
n ◁ · · · ◁ hd

2 are:

37

• (∧,∧, . . . ,∧⏞ ⏟⏟ ⏞
n − 1 times

)

• (∧,∧, . . . ,∧, x⏞ ⏟⏟ ⏞
n − 1 times

), (∧,∧, . . . , x, x⏞ ⏟⏟ ⏞
n − 1 times

), . . . , (∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n − 1 times

), (x, x, . . . , x, x⏞ ⏟⏟ ⏞
n − 1 times

) = x

• (∧,∧, . . . ,∧, y⏞ ⏟⏟ ⏞
n − 1 times

), (∧,∧, . . . , y, y⏞ ⏟⏟ ⏞
n − 1 times

), . . . , (∧, y, . . . , y, y⏞ ⏟⏟ ⏞
n − 1 times

), (y, y, . . . , y, y⏞ ⏟⏟ ⏞
n − 1 times

) = y

Now consider the possible values of h1. If h2 = ∧, then necessarily h1 = ∧. If
h2 = x, there are two possibilities: either h1 = ∧, or h1 = x. Similarly, if h2 = y,
there are two possibilities: either h1 = ∧, or h1 = y.

By combining these values with the operations obtained from the inductive
assumption, we have exhausted all possible cases, and we have shown that the
only binary n-sorted operations satisfying the given relations are as stated in the
lemma.

Lemma 2.34. An is a minion core for every n ∈ N.

Proof. We use the following identities.

t1(xxxyy) = x

t2(xxxyy) = t1(xxxxy)
t3(xxxyy) = t2(xxxxy)

...
tn(xxxyy) = tn−1(xxxxy)
tn(yyyyx) = tn(xxxxy)

ti(x1x2x3x4x5) = ti(xσ(1)xσ(2)xσ(3)xσ(4)xσ(5)) ∀i ∈ [n] ∀σ ∈ S5

We show that there exist unique t1, . . . , tn in An satisfying those identities.
We start by proving uniqueness. Let t1, . . . , tn by such multi-sorted operations
in An.

We begin by applying the first identity t1(xxxyy) = x, which allows us to fill
the second and the third rows in the table for t1:

t1 h1 h2 hn−1 hn

10000 ? ? . . . ? ?
11000 0 0 . . . 0 0
11100 1 1 . . . 1 1
11110 ? ? . . . ? ?

We fill in ones in the last row and zeros in the first row according to Remark
2.28:

t1 h1 h2 hn−1 hn

10000 0 0 . . . 0 ?
11000 0 0 . . . 0 0
11100 1 1 . . . 1 1
11110 ? 1 . . . 1 1

38

Now we use the second identity to fill in the table for t2 (the identity says
that we should “copy” the first and the fourth rows of the table for t1 and “paste”
them into the second and the third row of the table for t2 respectively):

t2 h1 h2 hn−1 hn

10000 ? ? . . . ? ?
11000 0 0 . . . 0 ?
11100 ? 1 . . . 1 1
11110 ? ? . . . ? ?

Again, we use Remark 2.28 to fill in zeroes in the first row and ones in the
last one:

t2 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 ? ?
11000 0 0 0 . . . 0 0 ?
11100 ? 1 1 . . . 1 1 1
11110 ? ? 1 . . . 1 1 1

We repeat the same until we reach the final operations. Therefore, in tn−1 we
have:

tn−1 h1 h2 h3 hn−2 hn−1 hn

10000 0 ? ? . . . ? ? ?
11000 0 0 ? . . . ? ? ?
11100 ? ? ? . . . ? 1 1
11110 ? ? ? . . . ? ? 1

And for tn:

tn h1 h2 h3 hn−2 hn−1 hn

10000 ? ? ? . . . ? ? ?
11000 0 ? ? . . . ? ? ?
11100 ? ? ? . . . ? ? 1
11110 ? ? ? . . . ? ? ?

According to Lemma 2.33 the only binary n-sorted operation which belongs to
An and satisfies the last identity tn(yyyyx) = tn(xxxxy) is (∧, . . . ,∧)⏞ ⏟⏟ ⏞

n times

, therefore

we can also fill the first and the last rows in the table for tn:

tn h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 ? ? . . . ? ? ?
11100 ? ? ? . . . ? ? 1
11110 0 0 0 . . . 0 0 0

Moreover, we can fill zeroes in the third, and consequently, second row:

tn h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 ? ? . . . ? ? ?
11100 0 0 0 . . . 0 0 1
11110 0 0 0 . . . 0 0 0

39

tn h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 ? ?
11100 0 0 0 . . . 0 0 1
11110 0 0 0 . . . 0 0 0

The only possibility for the last element in the second row is 0, otherwise
f(xxxyy) would be ∨, which contradicts binary n-sorted functions in An as proven
in Lemma 2.33. This zero then necessarily implies 0 in the previous position in
this row:

tn h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 0 0 0 . . . 0 0 1
11110 0 0 0 . . . 0 0 0

Now if we use the n-th identity, we “copy” the second and the third rows of
the table for tn into the first and the fourth rows of tn−1:

tn−1 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 ? . . . ? ? ?
11100 ? ? ? . . . ? 1 1
11110 0 0 0 . . . 0 0 1

Again, we use Remark 2.28 to fill zeroes in the second and the third rows:

tn−1 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . ? ? ?
11100 0 0 0 . . . 0 1 1
11110 0 0 0 . . . 0 0 1

As before, the only possibilities for the last two question marks are zeroes as
there are no ∨. The remaining question mark is 0, because otherwise the minor
wouldn’t be in 2.37:

tn−1 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 0 0 0 . . . 0 1 1
11110 0 0 0 . . . 0 0 1

We use the same approach until we reach t1.
t1 h1 h2 hn−1 hn

10000 0 0 . . . 0 0
11000 0 0 . . . 0 0
11100 1 1 . . . 1 1
11110 0 1 . . . 1 1

We have shown that if t1, . . . tn are in An and satisfy the identities, then they
necessarily have the following tables:

40

t1 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 1 1 1 . . . 1 1 1
11110 0 1 1 . . . 1 1 1

t2 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 0 1 1 . . . 1 1 1
11110 0 0 1 . . . 1 1 1

...
tn−1 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 0 0 0 . . . 0 1 1
11110 0 0 0 . . . 0 0 1

tn h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 0 0 0 . . . 0 0 1
11110 0 0 0 . . . 0 0 0

On the other hand, these multi-sorted operations satisfy the identities and
belong to An, as is easily checked using Remark 2.28.

Every minion homomorphism ξ : An → An therefore satisfies ξ(ti) = ti for
every i ∈ [n]. Note that every binary member of An is a minor of some ti:

t1 ◦ (x,x,x,y,y) = x

t2 ◦ (x,x,x,y,y) = (∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n − 1 times

)

t3 ◦ (x,x,x,y,y) = (∧,∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n − 2 times

)

...
tn−1 ◦ (x,x,x,y,y) = (∧,∧, . . . ,∧,∧⏞ ⏟⏟ ⏞

n − 1 times

, x)

tn ◦ (x,x,x,y,y) = (∧,∧, . . . ,∧,∧⏞ ⏟⏟ ⏞
n times

)

Therefore the binary part ξ(2) is the identity (see the argument in the proof
of Lemma 2.31) and An is a minion core by Lemma 2.26.

41

Alternatively, in order to prove that An is a minion core, we can use the
following ternary identities:

t1(yxy) = x

t2(yxy) = t1(yxx)
t3(yxy) = t2(yxx)

...
tn(yxy) = tn−1(yxx)
tn(xxy) = tn(yyx)

We start filling the table of the first multi-sorted operation t1 from the first
identity:

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

t1

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

100
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

010
h1 h2 h3 . . . hn−2 hn−1 hn

1 1 1 . . . 1 1 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

As explained in Remark 2.29, ones in the row below for 100 imply ones in the
rows above for h2, . . . , hn for the elements 110 and 011 connected by vertical lines
with 010. Similarly, zeroes in the table above for 101 imply zeroes in the tables
in the row below for the elements 100 and 001 for the elements h1, . . . , hn−1:

110
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

t2

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 ?

010
h1 h2 h3 . . . hn−2 hn−1 hn

1 1 1 . . . 1 1 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 ?

According to Lemma 2.33, hn(xyx) cannot be equal to ∨. Consequently, we
are able to fill the final zero in the tables for 100 and 001.

110
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

t1

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

010
h1 h2 h3 . . . hn−2 hn−1 hn

1 1 1 . . . 1 1 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

42

Utilizing the second identity, we replicate the tables corresponding to 011 and
100 for t1 within the tables for t2 representing the tuples 010 and 101 respectively.

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

t2

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

100
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

010
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

Again zeroes in the table for 101, as it is located in the row above, imply zeroes
for operations h1, . . . , hn−1 in the tables for 100 and 001 according to Remark 2.29.
Similarly, ones in the table for 010 imply ones for operations h3, . . . , hn−1 in the
tables for 110 and 011:

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

t2

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 ?

010
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 ?

Moreover, again according to Lemma 2.29 hn(xyx) cannot be equal to ∨.
Consequently we are able to fill final zeroes in the tables for 100 and 001.

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

t2

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

010
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

Now using the third inequality, we “copy” and “paste” the tables for 011 and
100 into the tables for the tuples 010 and 101 respectively for the multi-sorted
operation t3:

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

t3

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

100
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

010
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

43

And, consequently, utilizing Remark 2.29 and then Lemma 2.33:

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . 1 1 1

t3

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . 1 1 1

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

010
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

By continuing filling the tables in the similar manner, for tn−1 we obtain:

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

tn−1

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

010
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? 1 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

And for tn:

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

tn

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

100
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

010
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

Finally, utilizing the last equality we have:

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

tn

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

1 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

And again utilizing Remark 2.29:

44

110
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

tn

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

100
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

010
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

110
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

tn

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 ?

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

Now we return to the previous operations and fill the question marks. It turns
out that all of them are zeroes.

Therefore, we have shown that if ternary operations t1, . . . , tn satisfy the
identities above, then necessarily:

t1(y,x,y) = x

t2(y,x,y) = t1(y,x,x) = (∧, x, . . . , x, y⏞ ⏟⏟ ⏞
n times

)

t3(y,x,y) = t2(y,x,x) = (∧,∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n times

)

...
tn(y,x,y) = tn−1(y,x,x) = (∧,∧, . . . ,∧, x⏞ ⏟⏟ ⏞

n times

)

tn(x,x,y) = tn(y,y,x) = (∧,∧, . . . ,∧,∧⏞ ⏟⏟ ⏞
n times

)

On the other hand, these multi-sorted operations satisfy the identities and
belong to An, as is easily checked using Remark 2.29.

By using a similar argument as for 5-ary operations im Lemma 2.34, if ξ is
a minion homomorphism, then the binary part of ξ(2) is the identity (see the
argument in the proof of Lemma 2.31), therefore An is a minion core by Lemma
2.26.

2.4.5 Bn

Bn = {(h1, h2, . . . , hn) ∈ In | h1 ◁ h2 ◁ · · · ◁ hn ◁ h
d
n ◁ · · · ◁ hd

2 ◁ h
d
1}

45

Lemma 2.35. The only binary n-sorted operations (h1, h2, . . . , hn), which satisfy
the relations h1 ◁ h2 ◁ · · · ◁ hn ◁ h

d
n ◁ · · · ◁ hd

2 ◁ h
d
1 are

• (∧,∧, . . . ,∧⏞ ⏟⏟ ⏞
n times

)

• (∧,∧, . . . ,∧, x⏞ ⏟⏟ ⏞
n times

), (∧,∧, . . . , x, x⏞ ⏟⏟ ⏞
n times

), . . . , (∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n times

), (x, x, . . . , x, x⏞ ⏟⏟ ⏞
n times

) = x

• (∧,∧, . . . ,∧, y⏞ ⏟⏟ ⏞
n times

), (∧,∧, . . . , y, y⏞ ⏟⏟ ⏞
n times

), . . . , (∧, y, . . . , y, y⏞ ⏟⏟ ⏞
n times

), (y, y, . . . , y, y⏞ ⏟⏟ ⏞
n times

) = y

Proof. The proof is analogous as for Lemma 2.33, because for binary n-sorted
operations relations h1 ◁ h2 ◁ · · · ◁ hn ≤ hd

n ◁ · · · ◁ hd
2 ◁ h

d
1 and h1 ◁ h2 ◁ · · · ◁ hn ◁

hd
n ◁ · · · ◁ hd

2 ◁ h
d
1 are equivalent.

Lemma 2.36. Minion Bn is a minion core for n ∈ N.

Proof. For minion Bn we use the same identities as in An:

t1(xxxyy) = x

t2(xxxyy) = t1(xxxxy)
t3(xxxyy) = t2(xxxxy)

...
tn(xxxyy) = tn−1(xxxxy)
tn(yyyyx) = tn(xxxxy)

ti(x1x2x3x4x5) = ti(xσ(1)xσ(2)xσ(3)xσ(4)xσ(5)) ∀i ∈ [n] ∀σ ∈ S5

The tables are filled exactly as in the previous case, as they are derived from
the given inequalities h1 ◁ · · · ◁ hn. Thus, we can conclude the following:

t1 h1 h2 hn−1 hn

10000 0 0 . . . 0 0
11000 0 0 . . . 0 0
11100 1 1 . . . 1 1
11110 0 1 . . . 1 1

t2 h1 h2 h3 hn−1 hn

10000 0 0 0 . . . 0 0
11000 0 0 0 . . . 0 0
11100 0 1 1 . . . 1 1
11110 0 0 1 . . . 1 1

...
tn−1 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 0 0 0 . . . 0 1 1
11110 0 0 0 . . . 0 0 1

46

tn h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 0 0 0 . . . 0 0 1
11110 0 0 0 . . . 0 0 0

We only need to check that these operations indeed are in Bn.
The inequalities h1 ◁ h2 ◁ · · · ◁ hn hold by construction.
We only need to verify that hn ◁ h

d
n for all operations ti, i ∈ [n]. Consider the

last column in the table for operations h1, . . . , hn−1:

ti hn

10000 0
11000 0
11100 1
11110 1

It can be observed that hd
n has the same values as hn:

ti hd
n

10000 0
11000 0
11100 1
11110 1

Both hn and hd
n are monotone, confirming the relation hn ◁ h

d
n.

Now, let’s consider the last column for the multi-sorted operation tn:

tn hn

10000 0
11000 0
11100 1
11110 0

The corresponding values for hd
n are:

td
n hn

10000 1
11000 1
11100 0
11110 1

We can observe that x is a monotone binary operation that satisfies hn ≤ x ≤
hd

n, hence hn ◁ h
d
n holds.

Therefore, in both cases, the relation hn ◁ h
d
n is satisfied.

Similar to the previous Lemma 2.34, we have demonstrated the existence of
unique operations t1, . . . , tn in Bn that fulfill the given identities. These opera-
tions yield the following binary minors:

47

t1 ◦ (x,x,x,y,y) = x

t2 ◦ (x,x,x,y,y) = (∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n − 1 times

)

t3 ◦ (x,x,x,y,y) = (∧,∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n − 2 times

)

...
tn−1 ◦ (x,x,x,y,y) = (∧,∧, . . . ,∧,∧⏞ ⏟⏟ ⏞

n − 1 times

, x)

tn ◦ (x,x,x,y,y) = (∧,∧, . . . ,∧,∧⏞ ⏟⏟ ⏞
n times

)

Therefore, each minion homomorphism ξ would map them to themselves.

2.4.6 Cn

Cn = {(h1, h2, . . . , hn) ∈ In | h1 ◁ h2 ◁ · · · ◁ hn = hd
n ◁ · · · ◁ hd

2 ◁ h
d
1}

Lemma 2.37. The only binary n-sorted operations (h1, h2, . . . , hn), which satisfy
the relations h1 ◁ h2 ◁ · · · ◁ hn = hd

n ◁ · · · ◁ hd
2 ◁ h

d
1 are

• (∧,∧, . . . ,∧, x⏞ ⏟⏟ ⏞
n times

), (∧,∧, . . . , x, x⏞ ⏟⏟ ⏞
n times

), . . . , (∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n times

), (x, x, . . . , x, x⏞ ⏟⏟ ⏞
n times

) = x

• (∧,∧, . . . ,∧, y⏞ ⏟⏟ ⏞
n times

), (∧,∧, . . . , y, y⏞ ⏟⏟ ⏞
n times

), . . . , (∧, y, . . . , y, y⏞ ⏟⏟ ⏞
n times

), (y, y, . . . , y, y⏞ ⏟⏟ ⏞
n times

) = y

Proof. For n = 1, the only binary operations h1 that satisfy the relation h1 = hd
1

are x and y. Thus, the lemma holds for n = 1.
Now assume that (h1, h2, . . . , hn−1, hn) is an n-sorted operation satisfying h1 ◁

h2 ◁ · · · ◁ hn ≤ hd
n ◁ · · · ◁ hd

2 ◁ h
d
1. We will use the inductive assumption on the

(n− 1)-sorted operation (h2, . . . , hn−1, hn).
By the inductive assumption, the only binary (n − 1)-sorted operations that

satisfy the relations h2 ◁ · · · ◁ hn−2 = hd
n−2 ◁ · · · ◁ hd

2 are:

• (∧,∧, . . . ,∧, x⏞ ⏟⏟ ⏞
n − 1 times

), (∧,∧, . . . , x, x⏞ ⏟⏟ ⏞
n − 1 times

), . . . , (∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n − 1 times

), (x, x, . . . , x, x⏞ ⏟⏟ ⏞
n − 1 times

) = x

• (∧,∧, . . . ,∧, y⏞ ⏟⏟ ⏞
n − 1 times

), (∧,∧, . . . , y, y⏞ ⏟⏟ ⏞
n − 1 times

), . . . , (∧, y, . . . , y, y⏞ ⏟⏟ ⏞
n − 1 times

), (y, y, . . . , y, y⏞ ⏟⏟ ⏞
n − 1 times

) = y

Now consider the possible values of h2. If h2 = ∧, then necessarily h1 = ∧. If
h2 = x, there are two possibilities: either h1 = ∧, or h1 = x. Similarly, if h2 = y,
there are two possibilities: either h1 = ∧, or h1 = y.

By combining these values with the operations obtained from the inductive
assumption, we have exhausted all possible cases, and we have shown that the
only binary n-sorted operations satisfying the given relations are as stated in the
lemma.

48

Lemma 2.38. Minion Cn is a minion core for n ∈ N.

Proof. For the minion Cn, we use the following identities:

t1(xxxyy) = x

t2(xxxyy) = t1(xxxxy)
t3(xxxyy) = t2(xxxxy)

...
tn−1(xxxyy) = tn−2(xxxxy)
tn(xxxyy) = tn−1(xxxxy) = tn(yyyyx)

ti(x1x2x3x4x5) = ti(xσ(1)xσ(2)xσ(3)xσ(4)xσ(5)) ∀i ∈ [n] ∀σ ∈ S5

It is worth noting that these identities closely resemble those of Bn, with the
only distinction being the identity tn(xxxyy) = tn(yyyyx). Therefore the first
n− 1 tables are filled exactly as in the previous case.

t1 h1 h2 hn−1 hn

10000 0 0 . . . 0 ?
11000 0 0 . . . 0 0
11100 1 1 . . . 1 1
11110 ? 1 . . . 1 1

t2 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 ? ?
11000 0 0 0 . . . 0 0 ?
11100 ? 1 1 . . . 1 1 1
11110 ? ? 1 . . . 1 1 1

...
tn−1 h1 h2 h3 hn−2 hn−1 hn

10000 0 ? ? . . . ? ? ?
11000 0 0 ? . . . ? ? ?
11100 ? ? ? . . . ? 1 1
11110 ? ? ? . . . ? ? 1

tn h1 h2 h3 hn−2 hn−1 hn

10000 ? ? ? . . . ? ? ?
11000 0 ? ? . . . ? ? ?
11100 ? ? ? . . . ? ? 1
11110 ? ? ? . . . ? ? ?

Let’s analyze the last table for tn. We hn(11100) = 1. Also according to
Lemma 2.37 hn cannot be ∧, therefore due to symmetry hn(11000) = 0, which
consequently implies that all the elements in the second row are zeroes. Moreover,
this implies that all the elements in the first row, except for the last one, should
contain zeroes.

49

tn h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 ?
11000 0 0 0 . . . 0 0 0
11100 ? ? ? . . . ? ? 1
11110 ? ? ? . . . ? ? ?

Now we apply the identity tn(xxxyy) = tn(yyyyx):

tn h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 1
11000 0 0 0 . . . 0 0 0
11100 0 0 0 . . . 0 0 1
11110 0 0 0 . . . 0 0 0

Therefore, we have shown that tn ◦ (x,x,x,y,y) = (∧, . . . ,∧, x)⏞ ⏟⏟ ⏞
n times

and tn ◦

(x,x,x,x,y) = (∧, . . . ,∧, y)⏞ ⏟⏟ ⏞
n times

.

Similarly as before, by “copying and pasting” the rows of the tables we obtain
the following tables:

t1 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 1 1 1 . . . 1 1 1
11110 0 1 1 . . . 1 1 1

t2 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 0 1 1 . . . 1 1 1
11110 0 0 1 . . . 1 1 1

...
tn−1 h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 0 0 0 . . . 0 1 1
11110 0 0 0 . . . 0 0 1

tn h1 h2 h3 hn−2 hn−1 hn

10000 0 0 0 . . . 0 0 1
11000 0 0 0 . . . 0 0 0
11100 0 0 0 . . . 0 0 1
11110 0 0 0 . . . 0 0 0

Binary minors of t1, . . . , tn are the following:

50

t1 ◦ (x,x,x,y,y) = x

t2 ◦ (x,x,x,y,y) = t1 ◦ (x,x,x,x,y) = (∧, x, . . . , x)⏞ ⏟⏟ ⏞
n times

t3 ◦ (x,x,x,y,y) = t2 ◦ (x,x,x,x,y) = (∧,∧, x, . . . , x)⏞ ⏟⏟ ⏞
n times

...
tn−1 ◦ (x,x,x,y,y) = tn−2 ◦ (x,x,x,x,y) = (∧, . . . ,∧, x, x)⏞ ⏟⏟ ⏞

n times

tn ◦ (x,x,x,y,y) = tn−1 ◦ (x,x,x,x,y) = tn ◦ (y,y,y,y,x) = (∧, . . . ,∧, x)⏞ ⏟⏟ ⏞
n times

Similarly as in the previous case, we have shown that there are unique op-
erations t1, . . . , tn satisfying the identities. Clearly, all of them are in in Cn.
Therefore, each minion homomorphism ξ would map them to themselves.

Alternatively we could use the following ternary identities:

t1(yxx) = y

t2(yxx) = t1(yxy)
t3(yxx) = t2(yxy)

...
tn−1(yxx) = tn−2(yxy)
tn(yxx) = tn−1(yxy) = tn(xyx)

Again, we start filling the table of the first multi-sorted operation t1 from the
first equality:

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

t1

101
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

1 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

As explained in Remark 2.29, ones in the row below for 100 imply ones in the
rows above for h2, . . . , hn for the elements 110 and 101 connected by vertical lines
with 100. Similarly, zeroes in the table above for 011 imply zeroes in the tables
in the row below for the elements 010 and 001 for the elements h1, . . . , hn−2 (as
h1 ◁ h2 ◁ · · · ◁ hn−2 ◁ hn−1:

51

110
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

t1

101
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

1 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 ? ?

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 ? ?

Moreover, as proven in Lemma 2.39, there can’t be ∨ minor. Therefore, we
can fill the last question marks in the tables for 010 and 001.

110
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

t1

101
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

1 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

Now using the second equality we “copy” the tables for 010 and 101 for t1
into the tables for 011 and 100 for t2 respectively:

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

t2

101
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

Similar to the case of t1, when examining the table for 100, the ones in
that table imply the ones in the tables above for functions h3, . . . , hn, which
are connected to 100 through lines. Likewise, if there are zeroes in the table for
011, it signifies zeroes in the tables below for functions h1, . . . , hn−2, and, due to
Lemma 2.39, also for functions hn−1 and hn:

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

t2

101
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 ?

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 ?

52

Once again, due to the absence of a ∨ minor, we can determine the final values
for the tables corresponding to 010 and 001:

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

t2

101
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

Continuing this process, for the multi-sorted operation tn−1, we obtain the
following corresponding tables:

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

tn−1

101
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

And, consequently:

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

tn−1

101
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

Therefore for tn we obtain using the last equality:

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

tn

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

Again, zero in the row above imply zeroes in the row below:

53

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

tn

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

Now, as in previous cases, we go back to the previous operations and fill their
tables. For tn−1:

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

tn−1

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

And, zeros in the row above imply zeroes for h1, . . . , hn−2 for the element 100.
110

h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

tn−1

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

Finally for t2 and t1 we have:
110

h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

t2

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 1 . . . 1 1 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

110
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

t1

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 1 1 . . . 1 1 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

1 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

54

Therefore we have the following tables for operations t1, . . . , tn:

110
h1 h2 h3 . . . hn−2 hn−1 hn

? 1 1 . . . 1 1 1

t1

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 1 1 . . . 1 1 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

1 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? 1 . . . 1 1 1

t2

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 1 . . . 1 1 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 1 1 . . . 1 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

...

110
h1 h2 h3 . . . hn−2 hn−1 hn

? ? ? . . . ? ? 1

tn−1

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 1

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 1 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

001
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

110
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

tn

101
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

011
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 0

100
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 1

010
h1 h2 h3 . . . hn−2 hn−1 hn

0 0 0 . . . 0 0 1

001
h1 h2 h3 . . . hn−2 hn−1 hn

. . .

Here after filling the tables it turns out that

55

t1 ◦ (y,x,x) = y

t2 ◦ (y,x,x) = t1 ◦ (y,x,y) = (∧, y, . . . , y)⏞ ⏟⏟ ⏞
n times

...
tn−1 ◦ (y,x,x) = tn−2 ◦ (y,x,y) = (∧, . . . ,∧, y, y)⏞ ⏟⏟ ⏞

n times

tn ◦ (y,x,x) = tn−1 ◦ (y,x,y) = tn ◦ (x,y,x) = (∧, . . . ,∧, y)⏞ ⏟⏟ ⏞
n times

2.4.7 Dn

Dn−1 ={(h1, h2, . . . , hn) ∈ In |
h1 ◁ h2 ◁ · · · ◁ hn−1 ≤ hn = hd

n ≤ hd
n−1 ◁ · · · ◁ hd

2 ◁ h
d
1, hn−1 ◁ h

d
n−1}

Lemma 2.39. The only binary n-sorted operations (h1, h2, . . . , hn), which satisfy
the relations h1 ◁ h2 ◁ · · · ◁ hn−1 ≤ hn = hd

n ≤ hd
n−1 ◁ · · · ◁ hd

2 ◁ h
d
1 and hn−1 ◁ h

d
n−1

are

• (∧,∧, . . . ,∧, x⏞ ⏟⏟ ⏞
n times

), (∧,∧, . . . , x, x⏞ ⏟⏟ ⏞
n times

), . . . , (∧, x, . . . , x, x⏞ ⏟⏟ ⏞
n times

), (x, x, . . . , x, x⏞ ⏟⏟ ⏞
n times

) = x

• (∧,∧, . . . ,∧, y⏞ ⏟⏟ ⏞
n times

), (∧,∧, . . . , y, y⏞ ⏟⏟ ⏞
n times

), . . . , (∧, y, . . . , y, y⏞ ⏟⏟ ⏞
n times

), (y, y, . . . , y, y⏞ ⏟⏟ ⏞
n times

) = y

Proof. Again similar induction as before.
Lemma 2.40. Minion Dn−1 is a minion core for n ∈ N, n > 1.

Proof. We will utilize the following identities:

t1(xxxyy) = x

t2(xxxyy) = t1(xxxxy)
t3(xxxyy) = t2(xxxxy)

...
tn−1(xxxyy) = tn−2(xxxxy)
tn(xxxyy) = tn−1(xxxxy) = tn(yyyyx)

ti(x1x2x3x4x5) = ti(xσ(1)xσ(2)xσ(3)xσ(4)xσ(5)) ∀i ∈ [n] ∀σ ∈ S5

Notice that these operations are exactly the same as in Lemma 2.38. We
start filling the tables in the same way as before. The only difference is that for
convenience as hn−1 ◁ h

d
n−1 we have an additional column corresponding to hd

n−1.

t1 h1 h2 hn−1 hn hd
n−1

10000 0 0 . . . 0 ? 0
11000 0 0 . . . 0 0 0
11100 1 1 . . . 1 1 1
11110 ? 1 . . . 1 1 1

56

Clearly hn(10000) is equal to 0.

t1 h1 h2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 1 1 . . . 1 1 1
11110 ? 1 . . . 1 1 1

Again, we “copy” the first and last rows and “paste” them into the second
and third rows of the next table.

t2 h1 h2 h3 hn−1 hn hd
n−1

10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 ? 1 1 . . . 1 1 1
11110 ? ? 1 . . . 1 1 1

Then in tn−1 we obtain:

tn−1 h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 ? ?
11000 0 0 . . . 0 0 0 0
11100 ? ? . . . ? 1 1 1
11110 ? ? . . . ? ? ? 1

And finally for tn:

tn h1 h2 hn−2 hn−1 hn hd
n−1

10000 . . .
11000 0 0 . . . 0 0 ? ?
11100 ? ? . . . ? ? ? 1
11110 . . .

Again we fill zeroes which are implied:

tn h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 ? ? ?
11000 0 0 . . . 0 0 ? ?
11100 ? ? . . . ? ? ? 1
11110 . . .

And apply the last identity:

tn h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 ? ? 1
11000 0 0 . . . 0 0 ? ?
11100 0 0 . . . 0 ? ? 1
11110 0 0 . . . 0 0 ? ?

Moreover, we can notice that hd
n−1(11110) is equal to 1, otherwise hn−1(10000)

would be equal to 1 and the inequality hn−1 ◁ h
d
n−1 wouldn’t be satisfied. This

means that hn−1(11000) is equal to 0.

57

tn h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 ? 1
11000 0 0 . . . 0 0 ? ?
11100 0 0 . . . 0 ? ? 1
11110 0 0 . . . 0 0 ? 1

Again we use the last identity and obtain:

tn h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 ? 1
11000 0 0 . . . 0 0 ? 1
11100 0 0 . . . 0 0 ? 1
11110 0 0 . . . 0 0 ? 1

There are two possibilities for the column for hn:

tn hn

10000 1
11000 0
11100 1
11110 0

tn hn

10000 0
11000 1
11100 0
11110 1

Consider the first case. Again, we fill the table for the last multi-sorted
operation tn and then go back to the previous operations:

tn h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 1 1
11000 0 0 . . . 0 0 0 1
11100 0 0 . . . 0 0 1 1
11110 0 0 . . . 0 0 0 1

tn−1 h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 0 1
11000 0 0 . . . 0 0 0 0
11100 ? ? . . . ? 1 1 1
11110 0 0 . . . 0 0 1 1

tn−1 h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 0 1
11000 0 0 . . . 0 0 0 0
11100 0 0 . . . 0 1 1 1
11110 0 0 . . . 0 0 1 1

We go back to operations t2 and t1:

58

t2 h1 h2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 0 1 . . . 1 1 1
11110 0 0 . . . 1 1 1

t1 h1 h2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 1 1 . . . 1 1 1
11110 0 1 . . . 1 1 1

Therefore we obtain the following tables:

t1 h1 h2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 1 1 . . . 1 1 1
11110 0 1 . . . 1 1 1

t2 h1 h2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 0 1 . . . 1 1 1
11110 0 0 . . . 1 1 1

...
tn−1 h1 h2 hn−2 hn−1 hn hd

n−1
10000 0 0 . . . 0 0 0 1
11000 0 0 . . . 0 0 0 0
11100 0 0 . . . 0 1 1 1
11110 0 0 . . . 0 0 1 1

tn h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 1 1
11000 0 0 . . . 0 0 0 1
11100 0 0 . . . 0 0 1 1
11110 0 0 . . . 0 0 0 1

And the following binary minors:

59

t1 ◦ (x,x,x,y,y) = x

t2 ◦ (x,x,x,y,y) = t1 ◦ (x,x,x,x,y) = (∧, x, . . . , x⏞ ⏟⏟ ⏞
n − 1 times

)

t3 ◦ (x,x,x,y,y) = t2 ◦ (x,x,x,x,y) = (∧,∧, x, . . . , x⏞ ⏟⏟ ⏞
n − 2 times

)

...
tn−1 ◦ (x,x,x,y,y) = tn−2 ◦ (x,x,x,x,y) = (∧, . . . ,∧⏞ ⏟⏟ ⏞

n − 2 times

, x, x)

tn ◦ (x,x,x,y,y) = tn−1 ◦ (x,x,x,x,y) = tn ◦ (y,y,y,y,x) = (∧, . . . ,∧⏞ ⏟⏟ ⏞
n − 1 times

, x)

In the second case:
t′

n h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 0 1
11000 0 0 . . . 0 0 1 1
11100 0 0 . . . 0 0 0 1
11110 0 0 . . . 0 0 1 1

t′
n−1 h1 h2 hn−2 hn−1 hn hd

n−1
10000 0 0 . . . 0 0 1 1
11000 0 0 . . . 0 0 0 0
11100 ? ? . . . ? 1 1 1
11110 0 0 . . . 0 0 0 1

t′
n−1 h1 h2 hn−2 hn−1 hn hd

n−1
10000 0 0 . . . 0 0 1 1
11000 0 0 . . . 0 0 0 0
11100 0 0 . . . 0 1 1 1
11110 0 0 . . . 0 0 0 1

We go back to operations t2 and t1:

t′
2 h1 h2 hn−1 hn hd

n−1
10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 0 1 . . . 1 1 1
11110 0 0 . . . 1 1 1

t′
1 h1 h2 hn−1 hn hd

n−1
10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 1 1 . . . 1 1 1
11110 0 1 . . . 1 1 1

Therefore we obtain:

60

t′
1 h1 h2 hn−1 hn hd

n−1
10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 1 1 . . . 1 1 1
11110 0 1 . . . 1 1 1

t′
2 h1 h2 hn−1 hn hd

n−1
10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 0 1 . . . 1 1 1
11110 0 0 . . . 1 1 1

...
t′

n−1 h1 h2 hn−2 hn−1 hn hd
n−1

10000 0 0 . . . 0 0 1 1
11000 0 0 . . . 0 0 0 0
11100 0 0 . . . 0 1 1 1
11110 0 0 . . . 0 0 0 1

t′
n h1 h2 hn−2 hn−1 hn hd

n−1
10000 0 0 . . . 0 0 0 1
11000 0 0 . . . 0 0 1 1
11100 0 0 . . . 0 0 0 1
11110 0 0 . . . 0 0 1 1

t′
1 ◦ (x,x,x,y,y) = x

t′
2 ◦ (x,x,x,y,y) = t′

1 ◦ (x,x,x,x,y) = (∧, x, . . . , x⏞ ⏟⏟ ⏞
n − 1 times

)

t′
3 ◦ (x,x,x,y,y) = t′

2 ◦ (x,x,x,x,y) = (∧,∧, x, . . . , x⏞ ⏟⏟ ⏞
n − 2 times

)

...
t′

n−1 ◦ (x,x,x,y,y) = t′
n−2 ◦ (x,x,x,x,y) = (∧, . . . ,∧⏞ ⏟⏟ ⏞

n − 2 times

, x, x)

t′
n ◦ (x,x,x,y,y) = t′

n−1 ◦ (x,x,x,x,y) = t′
n ◦ (y,y,y,y,x) = (∧, . . . ,∧⏞ ⏟⏟ ⏞

n − 1 times

, y)

We have shown that there are two sets of operations satisfying the identities,
namely the operations t1, . . . , tn and the operations t′

1, . . . , t
′
n.

On the other hand, these multi-sorted operations satisfy the identities and
belong to Dn, as is easily checked using Remark 2.28.

Every minion homomorphism ξ : Dn → Dn therefore satisfies ξ(ti) = ti or
ξ(ti) = t′

i for every i ∈ [n]. Since every binary member of An is a minor of some
ti, the binary part ξ(2) is either the identity (see the argument in the proof of
Lemma 2.31), or the identity for all the binary minors apart from (∧, . . . ,∧⏞ ⏟⏟ ⏞

n − 1 times

, y):

it maps (∧, . . . ,∧⏞ ⏟⏟ ⏞
n − 1 times

, y) to (∧, . . . ,∧⏞ ⏟⏟ ⏞
n − 1 times

, x) and (∧, . . . ,∧⏞ ⏟⏟ ⏞
n − 1 times

, x) to (∧, . . . ,∧⏞ ⏟⏟ ⏞
n − 1 times

, y). In any

61

case, the binary part of the minion homomorphism is a bijection. Therefore Dn

is a minion core by Lemma 2.26.

2.5 Ordering
In this section, we will establish the mutual relations between the minion cores
from the previous section, as depicted in the diagram 2.1. We will accomplish this
by constructing minion homomorphisms between some of the multi-sorted min-
ions and demonstrating that there are no homomorphisms between the remaining
pairs of multi-sorted minions. Specifically, we prove the following theorem.

Theorem 2.41. The following inequalities are satisfied.

W ≤ Y ≤ X
X ≤ · · · ≤ B3 ≤ A3 ≤ B2 ≤ A2 ≤ B1 ≤ A1 ≤ T
Y ≤ · · · ≤ D3 ≤ C3 ≤ D2 ≤ C2 ≤ D1 ≤ C1

Cn ≤ An, Dn ≤ Bn ∀n ∈ N.

There are no inequalities among the multi-sorted minions X , Y, W, An, Bn, Cn,
Dn and T other than those that follow from the above inequalities by reflexivity
and transitivity of ≤.

2.5.1 Inequalities
The inequalities are witnessed by the following mappings. That each of them
is a homomorphism follows immediately from the definitions of the multi-sorted
minions.

ζBA : Bn → An

(h1, . . . , hn) ↦→ (h1, . . . , hn)

ζDB : Dn → Bn

(h1, . . . , hn, hn+1) ↦→ (h1, . . . , hn)

ζCA : Cn → An

(h1, . . . , hn) ↦→ (h1, . . . , hn)

ζDC : Dn → Cn

(h1, . . . , hn, hn+1) ↦→ (h1, . . . , hn−1, hn+1)

ζAB : An+1 → Bn

(h1, . . . , hn, hn+1) ↦→ (h1, . . . , hn)

62

ζCD : Cn+1 → Dn

(h1, . . . , hn, hn+1) ↦→ (h1, . . . , hn, hn+1)

ζYD : Y → Dn

(h1, h2) ↦→ (h1, . . . , h1⏞ ⏟⏟ ⏞
n times

, h2)

ζX B : X → Bn

(h) ↦→ (h, . . . , h⏞ ⏟⏟ ⏞
n times

)

ζYX : Y → X
(h1, h2) ↦→ (h1)

ζWY : W → Y
(h) ↦→ (h, h)

2.5.2 Non-inequalities
Lemma 2.42. X ̸≤ C1.

Proof. There exists a binary multi-sorted operation t ∈ X satisfying t(x, y) =
t(y, x) (the same multi-sorted operation we used in Lemma 2.30 to prove that
X is a core). If ξ : X → C1 is a minion homomorphism, then ξ(t) ◦ (x,y) =
ξ(t ◦ (x,y)) = ξ(t ◦ (y,x)) = ξ(t) ◦ (y,x), but there is no such multi-sorted
operation ξ(t) in C1 (as there are no symmetric binary 1-sorted operations due
to Lemma 2.37).

Note that Lemma 2.42 implies the absence of any minion homomorphism from
X to either Cn or Dn for all n ∈ N. The assumption of such a homomorphism
would inevitably lead to a contradiction. Suppose, for the sake of contradiction,
that a minion homomorphism exists from X to Cn for n > 1. In that case, if we
compose this homomorphism with a sequence of homomorphisms Cn → Dn−1 →
Cn−1 → · · · → D1 → C1, we would obtain a minion homomorphism from X to C1.
However, this contradicts the statement made in Lemma 2.42. Similar reasoning
applies to the case of Dn.

Lemma 2.43. Bn ̸≤ Cn for n ∈ N.

Proof. Similarly as in the previous lemma we will utilize the symmetry argu-
ment. There exists a binary multi-sorted operation t ∈ Bn satisfying t(yyyyx) =
t(xxxxy) (the same multi-sorted operation we used in Lemma 2.30 to prove
that Bn is a core). If ξ : Bn → Cn is a minion homomorphism, then ξ(t) ◦
(y,y,y,y,x) = ξ(t◦ (y,y,y,y,x)) = ξ(t◦ (x,x,x,x,y)) = ξ ◦ (t)(x,x,x,x,y),
but there is no such multi-sorted operation ξ(t) in Cn (as there are no symmetric
binary 1-sorted operations due to Lemma 2.37).

Lemma 2.44. Cn ̸≤ Bn for n ∈ N.

63

Proof. In this proof, we use the same set of identities as used in Lemma 2.38 to
establish the properties of Cn. These identities are as follows:

t1(xxxyy) = x

t2(xxxyy) = t1(xxxxy)
t3(xxxyy) = t2(xxxxy)

...
tn−1(xxxyy) = tn−2(xxxxy)
tn(xxxyy) = tn−1(xxxxy) = tn(yyyyx)

t(x1, x2, x3, x4, x5) = t(xσ(1)xσ(2)xσ(3)xσ(4)xσ(5)) ∀σ ∈ S5

There are such operations in Cn as we have shown in Lemma 2.38. Assume
that there exist operations in Bn satisfying these identities. We start filling the
tables:

t1 h1 h2 hn−1 hn

10000 0 0 . . . 0 ?
11000 0 0 . . . 0 0
11100 1 1 . . . 1 1
11110 ? 1 . . . 1 1
t2 h1 h2 hn−1 hn

10000 0 0 . . . ? ?
11000 0 0 . . . 0 ?
11100 ? 1 . . . 1 1
11110 ? ? . . . 1 1

...

tn−1 h1 h2 hn−1 hn

10000 0 ? . . . ? ?
11000 0 0 . . . ? ?
11100 ? ? . . . 1 1
11110 ? ? . . . ? 1
tn h1 h2 hn−1 hn

10000 ? ? . . . ? ?
11000 0 ? . . . ? ?
11100 ? ? . . . ? 1
11110 ? ? . . . ? ?

Also, due to Lemma 2.35 we know that hn cannot be ∧, therefore necessarily
hn(11000) = 0, which implies that all the previous elements in this row are also
zeroes.

tn h1 h2 hn−1 hn

10000 ? ? . . . ? ?
11000 0 0 . . . 0 0
11100 ? ? . . . ? 1
11110 ? ? . . . ? ?

64

Therefore hn(xxxyy) = x. Identity tn(xxxyy) = tn(yyyyx) and symmetry
then implies that hn(xxxxy) = y:

tn h1 h2 hn−1 hn

10000 ? ? . . . ? 1
11000 0 0 . . . 0 0
11100 ? ? . . . ? 1
11110 ? ? . . . ? 0

That is a contradiction with the assumption that hn◁h
d
n, because, for example

hd
n(11000) = 1 − hn(00111) = 1 − hn(11100) = 0, but hn(10000) = 1. Therefore

there are no operations in Bn satisfying the identities

t1(xxxyy) = x

t2(xxxyy) = t1(xxxxy)
t3(xxxyy) = t2(xxxxy)

...
tn−1(xxxyy) = tn−2(xxxxy)
tn(xxxyy) = tn−1(xxxxy) = tn(yyyyx)

t(x1, x2, x3, x4, x5) = t(xσ(1)xσ(2)xσ(3)xσ(4)xσ(5)) ∀σ ∈ S5,

and, consequently, there is no minion homomorphism from Cn to Bn.

Lemma 2.45. An+1 ̸≤ Dn.

Proof. Once again, we employ the symmetry argument. In An+1, there exists
a 5-ary symmetric multi-sorted operation t that satisfies t(yyyyx) = t(xxxxy)
(e.g., the multi-sorted operation tn mentioned in Lemma 2.34). However, no
such multi-sorted operation exists in Dn since Dn lacks symmetric binary minors.
Consequently, there is no minion homomorphism from An+1 to Dn.

Lemma 2.46. Dn ̸≤ An+1.

Proof. Here we use the same identities we used in Lemma 2.40 to prove Dn is a
core:

t1(xxxyy) = x

t2(xxxyy) = t1(xxxxy)
t3(xxxyy) = t2(xxxxy)

...
tn−1(xxxyy) = tn−2(xxxxy)
tn(xxxyy) = tn−1(xxxxy) = tn(yyyyx)

t(x1, x2, x3, x4, x5) = t(xσ(1)xσ(2)xσ(3)xσ(4)xσ(5)) ∀σ ∈ S5

As usual, we show that there are no operations satisfying these identitites in
An+1. For contradiction assume that such 5-ary operations exist in An+1. We
start filling the tables, for t1 we obtain:

65

t1 h1 h2 hn−1 hn hn+1
10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 1 1 . . . 1 1 1
11110 ? 1 . . . 1 1 1

As usual, in order to fill the table we used Remark 2.28 and Lemma 2.33.
For t2:

t2 h1 h2 hn−1 hn hn+1
10000 0 0 . . . 0 0 0
11000 0 0 . . . 0 0 0
11100 ? 1 . . . 1 1 1
11110 ? ? . . . 1 1 1

Filling the tables in this manner, for tn−1 we have:

tn−1 h1 h2 hn−2 hn−1 hn hn+1
10000 0 0 . . . 0 0 0 0
11000 0 0 . . . 0 0 0 0
11100 ? ? . . . ? 1 1 1
11110 ? ? . . . ? ? 1 1

And finally for tn:

tn h1 h2 hn−2 hn−1 hn hn+1
10000 0 0 . . . 0 0 0 0
11000 0 0 . . . 0 0 0 0
11100 ? ? . . . ? ? 1 1
11110 ? ? . . . ? ? ? 1

Clearly, multi-sorted operation tn doesn’t satisfy the identity tn(xxxyy) =
tn(yyyyx), for example because hn+1(xxxyy) = hn+1(xxxxy) = x. Therefore
there are no such operations in An+1, and, consequently, there does not exist a
minion homomorphism from Dn to An+1.

Lemma 2.47. Bn ̸≤ An+1 for n ∈ N.

Proof. Again, we use identities which hold in Bn, but not in An+1. As in the
previous examples, we use identities we used in Lemma 2.36 to prove that Bn was
a core, namely the following identities:

t1(xxxyy) = x

t2(xxxyy) = t1(xxxxy)
t3(xxxyy) = t2(xxxxy)

...
tn(xxxyy) = tn−1(xxxxy)
tn(yyyyx) = tn(xxxxy)

ti(x1x2x3x4x5) = ti(xσ(1)xσ(2)xσ(3)xσ(4)xσ(5)) ∀i ∈ [n] ∀σ ∈ S5

66

We have shown in Lemma 2.36 that in Bn there exist multi-sorted operations
which satisfy the identities. For contradiction assume that there exist such op-
erations t1, . . . , tn in An+1. We start filling the tables for them. Using the first
identity and then Remark 2.28 for t1 we obtain:

t1 h1 h2 h3 hn−1 hn hn+1
10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 1 1 1 . . . 1 1 1
11110 ? 1 1 . . . 1 1 1

Using the second identity we get the following table for t2:

t1 h1 h2 h3 hn−1 hn hn+1
10000 0 0 0 . . . 0 0 0
11000 0 0 0 . . . 0 0 0
11100 ? 1 1 . . . 1 1 1
11110 ? ? 1 . . . 1 1 1

Continuing in this manner, for tn−1 we have:

tn−1 h1 h2 h3 hn−2 hn−1 hn hn+1
10000 0 0 0 . . . 0 0 0 0
11000 0 0 0 . . . 0 0 0 0
11100 ? ? ? . . . ? 1 1 1
11110 ? ? ? . . . ? ? 1 1

And for tn:

tn h1 h2 h3 hn−2 hn−1 hn hn+1
10000 0 0 0 . . . 0 0 0 0
11000 0 0 0 . . . 0 0 0 0
11100 ? ? ? . . . ? ? 1 1
11110 ? ? ? . . . ? ? ? 1

The table for tn contradicts the last identity as from the table hn+1(xxxxy) =
x, which is not symmetric. Therefore there are no such terms in An+1 and there
is no minion homomorphism from Bn to An+1.

Lemma 2.48. Y ̸≤ W.

Proof. We use the same identities we used to prove that Y is a minion core,
namely:

t(xxxxy) = t(xxyyy)
t(x1, x2, x3, x4, x5) = t(xσ(1)xσ(2)xσ(3)xσ(4)xσ(5)) ∀σ ∈ S5

Assume that t is a 1-sorted operation in W which satisfies these identities.
The only monotone operation h which satisfies h = hd has the following table:

67

t h
10000 0
11000 0
11100 1
11110 1

Clearly, it doesn’t satisfy the identity t(xxxxy) = t(xxyyy) as t◦ (x,x,x,x,y) =
x and t ◦ (x,x,y,y,y) = y.

Proof of Theorem 2.41. The inequalities were established in the previous section.
Consider multi-sorted minions M and N appearing in the theorem such that

M ≤ N does not follow from the established inequalities by the reflexivity or
transitivity of ≤. We need to show that M ̸≤ N . Assume, for a contradiction,
that M ≤ N . We distinguish cases according to M.

• M = An. Since the inequality An ≤ N does not follow from the estab-
lished ones, we have N ∈ {X ,Y ,W ,An+1,An+2, . . . ,Bn,Bn+1, . . . , C1, . . . ,
D1, . . . }. From the established inequalities and An ≤ N it then follows
that An ≤ Bn or An ≤ C1. If An ≤ Bn, then if we compose minion
homomorphisms from Cn to An and from An to Bn, we obtain a minion
homomorphism from Cn to Bn, which is a contradiction with Lemma 2.44.
If An ≤ C1, then if we compose minion homorphisms from X to An and
from An to C1, we obtain a minion homomorphism from X to C1, which
contradicts Lemma 2.42.

• M = Bn. We have N ∈ {X ,Y ,W ,An+1,An+2, . . . ,Bn+1,Bn+2, . . . , C1, . . . ,
D1, . . . }. From the established inequalities and Bn ≤ N it then follows that
Bn ≤ An+1 or Bn ≤ C1. The first case contradicts Lemma 2.47. The second
case, if we similarly as before compose minion homorphisms from X to Bn

and from Bn to C1, contradicts Lemma 2.42.

• M = Cn. We have N ∈ {X ,Y ,W ,An+1, . . . ,Bn, . . . , Cn+1, . . . ,Dn, . . . }.
From the established inequalities and Cn ≤ N it then follows that Cn ≤ Bn,
which contradicts Lemma 2.44.

• M = Dn. We have N ∈ {X ,Y ,W ,An+1, . . . ,Bn+1, . . . , Cn+1, . . . ,Dn+1,
. . . }. From the established inequalities and Dn ≤ N it then follows that
Dn ≤ An+1, which contradicts Lemma 2.46.

• M = X . We have N ∈ {Y ,W}, it then follows that X ≤ Y , which
contradicts Lemma 2.42.

• M = Y . We have Y ≤ W , which contradicts Lemma 2.48.

• M = T . We have T ≤ A1. T contains a unary operation satisfying the
identity t(x) = t(y) whereas A1 clearly doesn’t contain such an operation.

68

2.6 Summary
Theorem 2.24 shows that every multi-sorted Boolean clone of the form Pol(θ),
where θ is a set of multi-sorted binary relations, is equivalent to one of the multi-
sorted minions X ,Y ,W ,An,Bn, Cn,Dn, or T . Theorem 2.41 then shows that the
ordering between these multi-sorted minions is exactly as in Figure 2.1, so the
ordering of the original multi-sorted Boolean clones is the same. We have addi-
tionally proved that the multi-sorted minions are minion cores in Theorem 2.25.

The diagram below summarizes our results and illustrates the preordering of
multi-sorted Boolean clones. Each rectangle in the diagram corresponds to a
minion, accompanied by its respective name and description.

69

A1 : h1 ≤ hd
1

B1 : h1 ◁ hd
1

A2 : h1 ◁ h2 ≤ hd
2 ◁ hd

1

B2 : h1 ◁ h2 ◁ hd
2 ◁ hd

1

A3 : h1 ◁ h2 ◁ h3 ≤ hd
3 ◁ hd

2 ◁ hd
1

B3 : h1 ◁ h2 ◁ h3 ◁ hd
3 ◁ hd

2 ◁ hd
1

. . .

X : h ◁ h ◁ hd ◁ hd

C1 : h1 = hd
1

D1 : h1 ≤ h2 = hd
2 ≤ hd

1,
h1 ◁ hd

1

C2 : h1 ◁ h2 = hd
2 ◁ hd

1

D2 : h1 ◁ h2 ≤ h3 = hd
3 ≤ hd

2 ◁ hd
1,

h2 ◁ hd
2

C3 : h1 ◁ h2 ◁ h3 = hd
3 ◁ hd

2 ◁ hd
1

. . .

Y : h1 ◁ h1 ◁ h2 = hd
2 ◁ hd

1 ◁ hd
1

W : h ◁ h = hd ◁ hd

T

D3 : h1 ◁ h2 ◁ h3 ≤ h4 = hd
4 ≤ hd

3 ◁ h2
2 ◁ hd

1,
h3 ◁ hd

3

Figure 2.1: Diagram illustrating the preordering of multi-sorted Boolean clones
determined by binary relations.

70

Conclusion
The thesis aimed to investigate the preordering of Boolean multisorted clones
determined by binary multisorted relations. The most important results are pre-
sented through Theorem 2.24, Theorem 2.25, and Theorem 2.41.

In Theorem 2.24, we established that each clone falls into one of the following
multisorted minions: An, Bn, Cn, Dn, X , Y , W , T (with n being a natural
number). Furthermore, in Theorem 2.25, we demonstrated that these minions
are minion cores. Building upon these findings, in Theorem 2.41, we ordered
these minion cores. As a consequence, we obtained an ordering of equivalence
classes Boolean multisorted clones determined by unary or binary multisorted
relations.

The thesis presents its main result through diagram 2.1, which depicts equiv-
alence classes of clones and their ordering.

In addition to the main result, the thesis opens up opportunities for further re-
search in two distinct directions. The first direction is to characterize multi-sorted
Boolean minions determined by pairs of unary or binary relations; examples of
such minions are the minion cores we found. Are there any others? The sec-
ond direction is to stay within multi-sorted clones but consider relations of arity
greater than two.

71

Bibliography
[1] Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflec-

tions, 2017.

[2] Emil L. Post. The Two-Valued Iterative Systems of Mathematical Logic.
Princeton University Press, Princeton, N. J.„, 1941.

[3] Manuel Bodirsky and Albert Vucaj. Two-element structures modulo primitive
positive constructability. Algebra Universalis, 81(2):Paper No. 20, 17, 2020.

[4] Clifford H. Bergman. Universal Algebra: Fundamentals and selected topics.
CRC Press, 2012.

[5] Libor Barto, Jakub Buĺın, Andrei Krokhin, and Jakub Opršal. Algebraic
approach to promise constraint satisfaction. J. ACM, 68(4):Art. 28, 66, 2021.

[6] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time
algorithm for testing the truth of certain quantified boolean formulas. Infor-
mation Processing Letters, 8(3):121–123, 1979.

72

List of Figures
1 Preliminary diagram illustrating the preordering of multisorted

Boolean clones determined by binary relations. 3

2.1 Diagram illustrating the preordering of multi-sorted Boolean clones
determined by binary relations. 70

73

	Introduction
	Clones and minions
	Clones
	Minions
	Minion homomorphism
	Idempotent clones and minion cores

	Boolean multi-sorted clones
	Boolean operations
	Description
	Collapse
	X
	Y
	W
	Ak
	Bk
	Ck
	Dn
	Putting it together

	Cores
	X
	Y
	W
	An
	Bn
	Cn
	Dn

	Ordering
	Inequalities
	Non-inequalities

	Summary

	Conclusion
	Bibliography
	List of Figures

