
MASTER THESIS

Bc. Peter Grajcar

Data-to-Text Generation With
Text-Editing Models

Institute of Formal and Applied Linguistics

Supervisor of the master thesis: Mgr. et Mgr. Ondřej Dušek, PhD.

Study programme: Computer Science

Study branch: Language Technologies and
Computational Linguistics

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Acknowledgements

Computational resources were provided by the e-INFRA CZ project (ID:90140),
supported by the Ministry of Education, Youth and Sports of the Czech Republic.

ii

Title: Data-to-Text Generation With Text-Editing Models

Author: Bc. Peter Grajcar

Institute: Institute of Formal and Applied Linguistics

Supervisor: Mgr. et Mgr. Ondřej Dušek, PhD., Institute of Formal and Applied
Linguistics

Abstract: We explore the use of different model extensions of the FELIX neural
transformer-based text-editing model for data-to-text generation. Our approach
is based on iterative text-editing – transforming the individual items of the input
data into short sentences using trivial templates and then iteratively improving
the text by fusing the sentences using a text-editing model. Our extensions
include replacing the FELIX’s non-autoregressive decoder with an autoregressive
transformer decoder, extending the decoding so that it can preserve the input data
in the output text, and adding a pointer network-based clause-level reordering
mechanism. Furthermore, we propose our own new dataset versions of the
WebNLG andDiscoFuse datasets for training the text-editingmodels. We evaluate
our models on the WebNLG dataset with automatic metrics and manually analyse
the outputs of selected models.

Keywords: natural language generation | data-to-text generation | text-editing
models | natural language processing

iii

Contents

1 Introduction 3

2 Theoretical Background 5
2.1 Natural Language Generation 5
2.2 Transformer . 6

2.2.1 Sequence-to-Sequence Models 6
2.2.2 Encoder-Decoder Architecture 7
2.2.3 Attention . 7
2.2.4 Architecture . 7
2.2.5 Decoding . 8

2.3 Pre-trained Language Models . 9
2.3.1 BERT . 10
2.3.2 BART . 10
2.3.3 GPT . 10

2.4 Metrics . 11
2.4.1 NLGI . 11
2.4.2 BLEURT . 12

3 Foundations of Our Approach 13
3.1 Iterative Text-Editing . 13
3.2 Text-Editing Models . 13
3.3 FELIX . 14

3.3.1 Tagging Model . 15
3.3.2 Insertion Model . 16

3.4 Pointer Networks . 16
3.5 Datasets . 17

3.5.1 WebNLG . 17
3.5.2 DiscoFuse . 17

3.6 Clause Extraction . 18

1

4 Experiments 20
4.1 Pipeline . 20
4.2 Data Processing . 21

4.2.1 Obtaining Single-Triple Templates 21
4.2.2 Combining DiscoFuse and WebNLG data 22
4.2.3 DiscoFuse Filtering and Reordering 22
4.2.4 Clause Extraction . 23
4.2.5 Clause Reordering . 23

4.3 FELIX Model Extensions . 24
4.4 Setup . 25

4.4.1 Baselines . 25
4.4.2 Training Data . 26
4.4.3 Model Settings . 26
4.4.4 Evaluation . 27

5 Results 28
5.1 Initial Experiments With the Basic Setup 28
5.2 Transformer Decoder . 30
5.3 Clause Extraction and Reordering 31
5.4 BART Templates . 32
5.5 Manual Evaluation . 32

6 Conclusion 36

Bibliography 38

A Attachments 44

2

Chapter 1

Introduction

Autoregressive language models employing word-by-word generation have been
state-of-the-art in data-to-text generation in recent years. While they are able to
produce very fluent outputs, they suffer from a lack of control over the output
and are susceptible to hallucinations, i.e. generating unintended text (Ji et al.,
2022).

Text-editing models, such as the recent FELIX (Mallinson et al., 2020), may
offer a potential alternative (Malmi et al., 2022) by editing an initial text instead of
generating a new one. This initial text can be generated with a simple rule-based
system. Editing the initial text in place using delete, insert, replace, and reorder op-
erations on tokens could provide more control over the output and interpretability
of the model decisions and possibly lower the number of hallucinations.

In this thesis, we explore the use of different extended variants of the text-
editing model FELIX (Mallinson et al., 2020) for data-to-text generation. Data-
to-text generation is the task of generating an understandable natural language
text from structured data (Gatt and Krahmer, 2018). The structured data are
represented in various forms, such as semantic triples, tables, or graphs. Our
experiments are based on the WebNLG dataset that provides data structured into
semantic triples along with reference sentences. The dataset contains examples
from a range of various domains. The examples contain facts about sports teams,
artists, buildings, and more (Gardent et al., 2017). The structured data are first
transformed into a basic preliminary textual form using simple templates (Kale
and Rastogi, 2020; Kasner and Dušek, 2020). Then we apply our text-editing
model to improve the text and increase its fluency.

The goal of this thesis is to explore possible extensions to the basic text-editing
setup that could lead to better results in terms of fluency and faithfulness. The
extensions include general-domain pre-training (Kasner and Dusek, 2022) on
the DiscoFuse dataset (Geva et al., 2019), higher-level reordering (Calizzano,

3

Ostendorff, and Rehm, 2021), autoregressive decoding, and post-processing of the
predicted editing operations. We compare the text-editing setup against standard
autoregressive generation with the BART language model (Lewis et al., 2020)
using both automatic metrics and small-scale manual evaluation.

The thesis has the following structure. In Chapter 2, we provide a general
theoretical background. In Chapter 3 we discuss previous works relating to the
datasets, models, and algorithms we base our thesis on. Chapter 4 describes the
data processing and experimental setup, including the extensions to the model. In
Chapter 5, we present and discuss the results of the experiments. Chapter 6 sums
up our results and proposes possible directions of future research. Appendix A
contains information about the contents of the attachments.

4

Chapter 2

Theoretical Background

This chapter provides the necessary background for our task and models. First,
in Section 2.1, we give an introduction to the natural language generation task
(NLG) and data-to-text generation in particular. Next, we describe the transformer
architecture in Section 2.2, give an overview of transformer-based pre-trained
language models Section 2.3, and discuss metrics commonly used in NLG in
Section 2.4. We assume that the reader has some basic prior knowledge of neural
networks, as we do not cover the basics here. Otherwise, we refer the reader to a
comprehensive introductory book on the topic of neural networks by Goodfellow,
Bengio, and Courville, 2016.

2.1 Natural Language Generation
The Natural Language Generation (NLG) task is the process of generating natural
language text from a given input, such as a set of facts, structured data, or
instructions (Gatt and Krahmer, 2018). Data-to-text is a task of generating text
conditioned on structured data such as tables, databases, or knowledge graphs. In
Table 2.1, we show an example of input data and the corresponding reference text
from the WebNLG dataset (Gardent et al., 2017) for the data-to-text generation
task. While the natural language generators can be as simple as template-based
systems, the majority of the state-of-the-art systems are based on transformer-
based models (see Section 2.2) and pre-trained language models (see Section 2.3).

One of the major challenges in deep learning-based NLG is generating unin-
tended texts. Generated content that is nonsensical or unfaithful to the provided
source content is referred to as hallucination. There are two main types of hallu-
cinations – intrinsic and extrinsic. Ji et al., 2022 give the following hallucination
definition specific to the task of data-to-text generation:

5

Input Data Reference Text

(Aarhus Airport, city, Aarhus) Aarhus airport serves the city of Aarhus.

(1. FC Köln, season, 2014)
(1. FC Köln, capacity, 50000) 1. FC Köln has 50000 members and played in the 2014 season.

(Alan Bean, birth date, 1932-03-15)
(Alan Bean, was selected by NASA, 1963)
(Alan Bean, status, Retired)

Alan Bean (born on 1932-03-15) was selected by NASA in 1963
and now is retired.

Table 2.1 Examples of data-to-text input data and reference texts taken from the
WebNLG dataset (Gardent et al., 2017). The input data are triples of the form (subject,
predicate, object), also referred to as the Resource Description Framework (RDF) triples.

1. Intrinsic hallucination: the generated text contains information that is
contradicted by the input data.

2. Extrinsic hallucinations: the generated text contains extra information
irrelevant to the input.

In addition to hallucinations, in the data-to-text generation task, the generated
text should contain all the information from the input data without any omissions.

2.2 Transformer
The transformer is a neural network architecture initially designed for sequence-
to-sequence modelling (Vaswani et al., 2017), machine translation in particular.
However, the use of transformers is not limited to sequence-to-sequence mod-
elling but can be used for encoding-only and decoding-only tasks as well. These
transformer-based models achieve state-of-the-art results on many natural lan-
guage processing tasks, including NLG (Devlin et al., 2019; Lewis et al., 2020;
Radford et al., 2019a; Radford et al., 2019b; Brown et al., 2020). In this section, we
introduce the sequence-to-sequence models in general and give an overview of
the building blocks of the transformer architecture.

2.2.1 Sequence-to-Sequence Models
Sequence-to-sequence (Seq2Seq) models are a class of neural network models
that are capable of processing sequences of tokens in one domain and generating
sequences of tokens in another domain. These models have been widely used in
natural language processing tasks, including NLG.

6

2.2.2 Encoder-Decoder Architecture
The Encoder-Decoder architecture is a general framework for Seq2Seq models.
In the Encoder-Decoder architecture, the encoder processes the input sequence
and produces a fixed-length vector representation of the input. The decoder then
generates the output sequence based on the encoder’s representation and the
previous output tokens (Cho et al., 2014). Transformers are not always used in the
encoder-decoder setting. Often, models use only the decoder or the encoder part
of the transformer. Several transformer-based models like BERT (Devlin et al.,
2019) (described in further detail in Section 2.3) or others use an architecture that
only uses the encoder part of the transformer.

2.2.3 Attention
Attention is a mechanism used in Seq2Seq models to improve the quality of gen-
erated output by allowing the decoder to focus on different parts of the input
sequence when generating each output token. In recurrent neural networks, the
attention is computed from a weighted sum of the encoder’s hidden states, where
the weights are learned based on the decoder’s state. The attention mechanism
allows the model to selectively attend to the most relevant parts of the input
sequence, which is especially useful when generating long and complex output se-
quences (Bahdanau, Cho, and Bengio, 2015). The transformer architecture is based
on the attention mechanism without recurrence or convolutions. Transformers
are composed of multiple layers of multi-head -attention and feed-forward neural
networks. The attention layers allow the model to attend to different parts of
the input sequence, while the feed-forward layers allow the model to perform
non-linear transformations on the input sequence representations. The single
head of the attention layer projects the input sequence 𝑋 into three spaces – query
𝑄, key 𝐾, and value 𝑉. The output is then computed as

𝑌 = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉

where 𝑑𝑘 is the key dimension. The multi-head attention computes the above
multiple times with a different set of weights for query, key, and value projections.
Then the outputs of each head are concatenated into a single output. (Vaswani
et al., 2017).

2.2.4 Architecture
The entire original transformer architecture by Vaswani et al., 2017 is illustrated
in Figure 2.1. The encoder and decoder contains 𝑁 blocks, each consisting of a

7

multi-head attention layer and a feed-forward network with two linear layers
and ReLU activation between them. The multi-head attention described in the
previous section is used differently for the encoder, decoder, and between the
encoder and decoder. The attention is used in the following ways:

1. In the encoder, keys, queries, and values are the output of the previous
encoder layer.

2. In the decoder, keys, queries, and values are the output of the previous
decoder layer. However, the decoder can at every position attend to all the
previous positions, including the current. The other positions are masked
out.

3. The attention between the encoder and decoder uses the previous decoder
layer’s output as the query and the encoder’s output as the key and value.

The inputs are embedded into a dimension 𝑑model. The model uses positional em-
beddings to give the model information about the absolute and relative positions
of tokens in the sentence. The positional embeddings are summed with the input
token embeddings. The output of the last decoder layer is fed into a linear layer,
and then softmax is applied to the projected outputs.

2.2.5 Decoding
The decoding process is autoregressive, meaning that the decoder generates the
output sequence one token at a time, taking into account the previously generated
tokens at each step. The encoder-only architectures allow the model to generate
the entire output sequence simultaneously, not taking into account the output
positions. Such decoding is also known as non-autoregressive decoding. The
autoregressive models may employ different decoding strategies for generating
the output sequence from the probability distribution over the vocabulary at each
decoding step (Zarrieß, Voigt, and Schüz, 2021). In the following list, we describe
the most common decoding strategies:

• Greedy decoding is the simplest decoding strategy. Greedy decoding
selects the token with the highest probability from the probability distribu-
tion at each decoding step. This approach may lead to low-quality, outputs
as it does not consider alternative options.

• Top-𝑘 decoding selects the top-𝑘most probable tokens from the probability
distribution at each decoding step. Then, the final sequence needs to be
sampled from the 𝑘 candidates.

8

Input
Embedding

Output
Embedding

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Probabilities

𝑁×

𝑁×

Positional
Encoding

Positional
Encoding

Figure 2.1 The original transformer architecture by Vaswani et al. The gray boxes
represent the encoder and decoder blocks.

• Beam search is a heuristic search algorithm that keeps track of the 𝑘 most
likely generated sequences at each time step, expanding each sequence to 𝑘
next candidates (i.e. 𝑘2 in total), then retaining only k best for the next step.
The algorithm selects the most likely sequence from the 𝑘 candidates at the
end of the generation process.

2.3 Pre-trained Language Models
Pre-trained language models are a class of deep learning models that are trained
on large amounts of text data in an unsupervised manner. They can be used as a
starting point for fine-tuning on specific tasks – taking a pre-trained language
model and adapting it to a specific task or domain by training it on a smaller
labelled dataset. This is made possible by the transfer learning paradigm, where
the knowledge gained from one task can be used to improve performance on

9

another related task. The pre-training models differ in their architecture and the
pre-training tasks used. Some models use the full encoder-decoder transformer
architecture (Lewis et al., 2020), while others use only the encoder part (Devlin
et al., 2019) or only the decoder part (Radford et al., 2019a). In Sections 2.3.1
to 2.3.3, we describe three of these pre-trained language models that are relevant
to our work in more detail.

2.3.1 BERT
BERT (Devlin et al., 2019) is a transformer-based model trained using two unsu-
pervised tasks: masked language modelling and next-sentence prediction. The
masked language modelling task involves masking out 15% of the input tokens
from a sentence and predicting the masked words based on the context. The
masked-out token is either replaced by a special [MASK] token, replaced by a
random token or kept unchanged. The next sentence prediction task involves
predicting whether two sentences are consecutive in a text corpus or not. En-
glish Wikipedia and BookCorpus (Zhu et al., 2015) were used as the pre-training
corpora with 3,300M words altogether. The model achieved state-of-the-art re-
sults on multiple classification tasks with a single fine-tuned layer on top of the
pre-trained model.

2.3.2 BART
BART (Lewis et al., 2020) is trained using a combination of denoising autoencoder
and sequence-to-sequence pre-training objectives. The denoising autoencoder
objective involves corrupting a sequence of text and then reconstructing the
original sequence from the corrupted version. The training involves multiple
strategies for sentence corruption. These are token masking, text infilling and
sentence permutation. The sequence-to-sequence objective is to reconstruct the
original sequence from the corrupted one. As the training data, a corpus with
160GB of news, books, stories, and web text was used. The model has been shown
to be effective when fine-tuned on text-generation tasks.

2.3.3 GPT
GPT (Radford et al., 2019a) is trained using an unsupervised language modelling
objective, where the model is trained to predict the next word in a sequence of
text based on the previous words. Unlike BERT, GPT is a left-to-right language
model that generates text in a sequential manner. The first GPT model was
pre-trained on the BookCorpus dataset (Zhu et al., 2015). The following models,
GPT-2 (Radford et al., 2019b) and GPT3 (Brown et al., 2020), mainly differ in the

10

number of trainable parameters. GPT-2 was trained on a custom WebText dataset
created from millions of web pages containing 40GB of text. GPT-3 was trained
on a combination of multiple datasets, including data from CommonCrawl, an
expanded version of WebText, and Wikipedia. Although these large language
models have been shown to be effective in various tasks, their large size makes
them impossible to use with regular hardware.

2.4 Metrics
Besides human evaluation, which is both slow and costly, NLG evaluation heavily
relies on automatic metrics. The most commonly used metrics are heuristic,
word-overlap-based approaches such as BLEU, METEOR, and ROUGE. However,
these metrics rarely correlate well with human judgements and are inadequate
for various NLG tasks (Novikova et al., 2017). In the context of data-to-text
generation, we need to consider criteria like fluency, faithfulness (i.e. preserving
facts from the input), and coverage (i.e. expressing all the information in the
input). Fluency is often evaluated using perplexity with respect to a language
model such as GPT-2 (Sai, Mohankumar, and Khapra, 2022). In recent years,
several automatic task-specific metrics trained on human judgements have been
proposed that can evaluate the mentioned criteria. In the rest of this section, we
describe two such metrics used in this thesis, NLGI (Dušek and Kasner, 2020) and
BLEURT (Sellam, Das, and Parikh, 2020).

2.4.1 NLGI
NLGI (Dušek and Kasner, 2020) is a metric for the semantic evaluation of data-to-
text generation tasks. It uses a natural language inference (NLI) model to check
textual entailment between input and output texts, which reveals omissions and
hallucinations, thus measuring the coverage and faithfulness of the outputs. The
metric is based on RoBERTa (Zhuang et al., 2021), an encoder pre-trained model
similar to BERT (Section 2.3.1), fine-tuned on the MultiNLI dataset (Williams,
Nangia, and Bowman, 2018). For a given premise and hypothesis text, the model
predicts distribution over three results: entailment, contradiction, and neutral. The
input to the metric is an RDF triple of facts and an output from the data-to-text
generation model. The input triples are transformed into natural language using
simple templates that are then used to construct the hypotheses. Each of the
hypotheses is evaluated using the NLI model with the data-to-text output as the
premise. The hypothesis passes the NLI check if the entailment has the highest
probability. A failed check is considered an omission. Hallucinations are detected
by concatenating the hypotheses into one and checking it against the premise

11

the other way around – premise and hypothesis are swapped.

2.4.2 BLEURT
BLEURT (Sellam, Das, and Parikh, 2020) is a learned automatic metric based on
BERT (Devlin et al., 2019, see Section 2.3.1) fine-tuned for quality evaluation
assessing both fluency and semantic quality. The metric correlates with the
human evaluation better than heuristic word-overlap-based approaches. BLEURT
was trained on a set of various pre-training signals, i.a. BLEU, ROUGE, and
another automatic metric BERTscore (Zhang et al., 2020b), a metric based on
computing the similarity between pre-trained BART contextual embeddings. The
training data are synthetic. The dataset was created by perturbing segments from
Wikipedia using three types of perturbations: mask-filling, back-translation, and
randomly dropping words. The scores range roughly between 0 and 1, where 0
indicates random output, and 1 indicates a perfect match with the reference.

12

Chapter 3

Foundations of Our Approach

In this chapter, we give an overview of related research and previous work on
which we base our approach. In Section 3.1, we describe the iterative text-editing
approach proposed by Kasner and Dušek, 2020, which serves as a starting point
for our experiments. In Section 3.2, we introduce the text-editing task and give an
overview of the existing text-editing models. In Section 3.3, describe the FELIX
text-editing model (Mallinson et al., 2020) in more detail. Next, in Section 3.4, we
describe pointer networks for sequence ordering, which are a part of the FELIX
model and are also used in our experiments for clause reordering. In Section 3.5,
we present the datasets used in our experiments. In Section 3.6, we describe the
clause extraction algorithm by Zhang et al., 2020a that we use to prepare a new
dataset for our experiments.

3.1 Iterative Text-Editing
Kasner and Dušek, 2020 proposed a novel text-editing approach to data-to-text
generation. Their approach is based on transforming the input data using simple
templates, which are then iteratively improved by a text-editing model. Kasner
and Dušek automatically extracted or handcrafted sets of templates for single
RDF triple predicates. Then they train the text-editing model on pairs of examples
that consist of (𝑛, 𝑛 + 1) triples and have 𝑛 common triples. The model is trained
on the task of transforming input with 𝑛 triples to a sentence with 𝑛 + 1 triples.
The process is illustrated in Table 3.1.

3.2 Text-Editing Models
Text-editingmodels are a family of models that modify a source sequence by apply-
ing a set of edit operations, unlike the traditional Seq2Seq models, which generate

13

Triples (Aarhus Airport, location, Tirstrup), (Tirstrup, country, Denmark)

1 Triple Example Aarhus Airport is located in Tirstrup.

2 Triples Example Aarhus Airport is located in Tirstrup, Denmark.

Template <subject> can be found in the country of <object>.

Input Aarhus Airport is located in Tirstrup. Tirstrup can be found in the country of Denmark.

Reference Aarhus Airport is located in Tirstrup, Denmark.

Table 3.1 The process of generating training examples for iterative text-editing. We
start from two examples that have 𝑛 common triples (𝑛 being 1 in the table), and one
of the examples has one more triple. We then find a template for the predicate of the
one triple and use it to concatenate it with the example that has 𝑛 triples. The resulting
example is then used as input. The reference is the example with 𝑛 + 1 triples.

the output from scratch. The output sequence is transformed by adding, replacing,
or deleting tokens in the input sequence. Text-editing models have become an
alternative to Seq2Seq models in tasks in which there is a large overlap between
the source and target sequence, such as grammatical error correction, simplifi-
cation, and style transfer. In contrast to the Seq2Seq models, the text-editing
models achieve faster inference speeds and better control and interpretability of
the results (Malmi et al., 2022).

The text-editing models differ in the type of operations they use, architecture,
and token reordering capability. While some models use autoregressive decoding
(Stahlberg and Kumar, 2020; Malmi et al., 2019), others are non-autoregressive (Gu,
Wang, and Zhao, 2019; Mallinson et al., 2020). LaserTagger (Malmi et al., 2019)
and FELIX (Mallinson et al., 2020) are built on top of the pre-trained BERT model
(Devlin et al., 2019). In addition, FELIX is capable of reordering tokens without
deleting the tokens using a pointer network proposed by Vinyals, Fortunato, and
Jaitly. This way, FELIX addresses LaserTagger’s inability to arbitrarily reorder the
tokens, which may have led to a limited expressiveness of the model, as stated
by Kasner and Dušek. Further details of the FELIX model are described in the
following section (Kasner and Dušek, 2020).

3.3 FELIX
FELIX (Mallinson et al., 2020) is a text-editing model that follows up on the
LaserTagger (Malmi et al., 2019) model. Both models decompose the text-editing
task into two steps – tagging and insertion. The two steps are carried out by two
independent models, both based on BERT and trained separately. The key differ-
ence between the FELIX and LaserTagger is that FELIX has an additional pointer

14

network that allows it to reorder tokens without deleting and reinserting them
(see the next Section 3.4 for a more detailed description of the pointer network).
This mechanism results in a reduction in the number of insert operations. Another
difference is that FELIX uses a non-autoregressive decoder for the tagging step,
unlike LaserTagger, which uses an autoregressive transformer decoder. FELIX
outperforms LaserTagger on several tasks, including sentence fusion. Figure 3.1
provides an overview of the FELIX architecture and its operation on an example
input sentence. Felix’s tagging and insertion models are described in further
detail in Sections 3.3.1 and 3.3.2.

Ta
gg
in
g
M
od

el
In
se
rt
io
n
M
od

el

Tagger

Pointer Network

Masked Language Model

Chili pepper is an ingredient in Arrabbiata sauce . Arrabbiata sauce is from Italy . [pad] [pad] [pad]

KEEP KEEP KEEP KEEP KEEP KEEP KEEP INS|1 DEL DEL DEL KEEP KEEP KEEP KEEP PAD PAD PAD

Chili pepper is an ingredient in Arrabbiata sauce [mask] [del] . Arrabbiata sauce [/del] is from Italy .

Chili pepper is an ingredient in Arrabbiata sauce [del] . Arrabbiata sauce [/del] [mask] is from Italy .

Chili pepper is an ingredient in Arrabbiata sauce which is from Italy .

Figure 3.1 FELIX transforming the input sentence “Chili pepper is an ingredient in
Arrabbiata sauce. Arrabbiata sauce is from Italy.” into “Chili pepper is an ingredient in
Arrabbiata sauce which is from Italy.”

3.3.1 Tagging Model
The tagging model performs three subtasks – encoding, tagging, and pointing.

• Encoding is done by the pre-trained BERT model.

15

• Tagging is a multi-class classification using a single feed-forward layer
on top of the BERT encoder. For each input token, the tagger predicts one
of the following classes: KEEP, DELETE, INSERT_N (where N is an integer
signifying how many tokens are to be added).

• Pointing via the pointer network uses an attention mechanism applied
to the encoder’s hidden states to point to the next token (see Section 3.4).
This mechanism allows the model to move tokens around without deleting
and reinserting them, reducing the total number of edit operations.

3.3.2 Insertion Model
After the input sequence is tagged, a new sequence is constructed by surrounding
the deleted tokens with special [DEL] and [/DEL] tokens and inserting [MASK]
tokens after the tokens that were tagged with the INSERT_N tag. This new
sequence is then fed to the insertionmodel, which is a fine-tunedmasked language
model. The insertion model predicts the tokens that are to be inserted in place of
the [MASK] tokens. As the deleted tokens are kept surrounded by the [DEL] and
[/DEL] tokens, the insertion model can also attend to them. The deleted tokens
are removed from the final output sequence.

3.4 Pointer Networks
The pointer network (Vinyals, Fortunato, and Jaitly, 2015) is a neural network
architecture which, for a given input sequence, outputs a sequence of pointers
to the elements from the input sequence. These pointers designate a new order
of the sequence elements. The network is a recurrent sequence-to-sequence
model with attention. Since the model works with variable-length sequences, the
model takes into account only the non-padding elements of the input sequence
by modelling the output by applying softmax to an attention mask over the input,
which is computed as follows:

𝑢𝑖𝑗 = 𝑣𝑇 tanh(𝑊1𝑒𝑖 + 𝑊2𝑑𝑗)

where 𝑣, 𝑊1, and 𝑊2 are weights of the model, 𝑒𝑖 is the 𝑖-th hidden state of the
encoder, 𝑑𝑗 is the 𝑗-th hidden state of the decoder. Then the 𝑖-th element of the
output sequence is modelled with the following distribution:

𝑜𝑖 = softmax(𝑢𝑖)

Originally the network was designed for solving geometric problems, such
as the travelling salesman problem, finding a planar convex hull, or Delaunay

16

triangulation. However, the network has also been applied to other tasks. An
extended version of the network (Wang and Wan, 2019), which uses a hierar-
chical attention mechanism, has been used for sentence and paragraph ordering
(Calizzano, Ostendorff, and Rehm, 2021). FELIX’s tagging model, described in
Section 3.3.1, uses a pointer network based on the original network by Vinyals,
Fortunato, and Jaitly, 2015 to reorder the tokens from the input sequence.

3.5 Datasets
This section is dedicated to two datasets used throughout our experiments for
the training and evaluation of our models. The first one is the WebNLG dataset,
an important data-to-text generation benchmark. The second one, DiscoFuse is
a dataset suitable for training text-editing models for sentence fusion task. In this
section, we provide an overview of the datasets and their contents.

3.5.1 WebNLG
The WebNLG dataset is a crowd-sourced dataset designed for the training and
evaluation of data-to-text generation systems. The dataset consists of RDF triples
extracted from DBPedia1 and corresponding human-written texts that verbalise
the triples. The data are extracted from 15 DBPedia categories: Astronaut, Univer-
sity, Monument, Building, Comics Character, Food, Airport, Sports Team,Written
Work, Athlete, Artist, City, Mean of Transportation, Celestial Body, Politician. To
give a few example of the human-written texts:

• Aaron Boogaard was born in Saskatchewan and his club is Wichita Thunder.

• Anderson is part of Adams Township, Madison County, Indiana located in
the U.S.

The dataset serves as a common benchmark for comparing data-to-text generation
systems (Gardent et al., 2017). In this thesis, we work with an enriched version
of the dataset that contains additional information, including delexicalised texts
(Castro Ferreira et al., 2018).

3.5.2 DiscoFuse
DiscoFuse (Geva et al., 2019) is an automatically generated large-scale dataset for
sentence fusion task, i.e. joining multiple sentences into a more coherent text. The
dataset was constructed using a rule-based approach for decomposing sentences

1https://www.dbpedia.org/

17

https://www.dbpedia.org/

into two independent sentences. The dataset consists of source sentence pairs
and fused sentence or sentences, which are illustrated in Table 3.2. The dataset
also includes a discourse type, which indicates the structure of the sentences.
This approach was applied to articles from Wikipedia and sport report articles.
In this thesis, we use only the Wikipedia dataset, which consists of more than 16
million examples. The large scale of the dataset makes it well-suited for training
neural models.

Discourse Type SINGLE_VP_COORD
Incoherent First Sentence This line survived a merger into the

Burlington Northern.

Incoherent Second Sentence This line was abandoned in the 1980s.

Coherent First Sentence This line survived a merger into the
Burlington Northern but was abandoned
in the 1980s.

Coherent Second Sentence —

Table 3.2 Examples taken from the DiscoFuse dataset. The datasets contains pair of
incoherent and two coherent sentences created by fusing the two incoherent sentences.
In this example, the second coherent sentence is empty in this example as the coherent
text consists of one sentence. The discourse type SINGLE_VP_COORD signifies how the
example was generated – from a single sentence with verb-phrase coordination.

3.6 Clause Extraction
In this thesis, we employ a higher-order operation of clause reordering in our
text-editing pipeline. The clause reordering is based on an approach for sentence
ordering used in the neural pipeline for data-to-text generation by Kasner and
Dusek (2022).

We use an algorithm proposed by Zhang et al., 2020a. The algorithm uses
dependency parsing and semantic role labelling to identify clauses in complex
sentences. The complex sentences are then split into individual clauses. Semantic
role labelling is a shallow semantic parsing technique capturing the relationships
between predicates and their associated arguments. The semantic role labelling
used by the algorithm is based on the PropBank annotation scheme (Palmer,
Kingsbury, and Gildea, 2005). The clause-splitting algorithm works in three steps:
Wh handling, conjunction handling, and insertion handling. In Figure 3.2,
we illustrate the conjunction handling step on an annotated example.

18

• Wh handling looks for relational arguments (R-ARG) and subject argu-
ment (ARG) preceding a relational predicate. The split is done by replacing
the relational argument with the subject argument. For instance, in the
sentence “The instruments that Alison O’Donnell plays are bodhrán, percus-
sion, autoharp plus she also sings”, the word that is a relational argument
of verb plays and The instruments is a subject argument of the same verb.
By replacing the relational argument with the subject argument, we obtain
clause: “The instruments are bodhrán, percussion, autoharp”.

• Conjunction handling looks for the conjunction and. If the word and is
followed by an argument (ARG), or if the word and is followed by a verb
(V), this is identified as a clause boundary, and the sentence is split. In the
latter case, the argument preceding the verb is considered to be a subject
argument. The split is done by replacing the word and by the subject
argument. Conjunction handling is illustrated in Figure 3.2.

• Insertion handling looks for nodes in the dependency tree of one of the
following types: participle modifier, relative clause modifier, prepositional
modifier, adjective modifier, or appositional modifier. The sentence is split by
extracting a clause with the node as the root and prepending the extracted
clause with the subject. The rest of the original sentence is passed on
for further processing. For example, the sentence “The first club Adam
Maher played for was Netherlands national under-17 football team.” is split
by extracting node played, being a relative clause modifier. The extracted
clause is “The first club AdamMaher played for”, and the rest of the sentence
with the prepended subject is “The first club was Netherlands national under-
17 football team.”.

PROPN PROPN AUX DET NOUN CCONJ ADV VERB DET NOUN PUNCT NOUN CCONJ NOUN PUNCT

Alison O’Donnell is a singer and also plays the bodhran , percussion and autoharp .

nsubj

flat

cop

det

root

cc

advmod

conj

det

obj

punct

conj

cc

conj

punct

ARG0

ARGM-ADV ARG1

Figure 3.2 Example of the conjunction split. The conjunction and is followed by an
argument (ARGM-ADV); hence the split is made. The word and is replaced by the subject
argument (ARG0), resulting in the following two sentences: “Alison O’Donnell is a singer”
and “Alison O’Donnell also plays the bodhran, percussion and autoharp.”

19

Chapter 4

Experiments

In the following chapter, we describe the details of our own experiments. We
start with the description of our data-to-text generation pipeline with the FELIX
model in Section 4.1. In the rest of the chapter, individual parts of the pipeline are
newly introduced in our system. In Section 4.2, we cover the data preparation and
preprocessing, including the implementation of the clause extraction algorithm
in Section 3.6 and how we use it in the text-editing pipeline. Next, in Section 4.3,
we describe our extensions to the FELIX model. Finally, in Section 4.4, we detail
all the variants of our pipeline, which will be later experimentally evaluated in
Chapter 5.

4.1 Pipeline
Our data-to-text generation pipeline is based on the iterative text editing approach
of Kasner and Dušek, 2020, discussed in Section 3.1. The pipeline consists of two
main steps – template infilling and iterative text-editing, described in Section 3.1.
In the template selection step, we select appropriate templates for the input
triples. The selected templates are filled with the input data. In the iterative
text-editing step, we iteratively merge the templated sentences into one sentence
using the FELIX text-editing model. Our experiments concern three areas of the
pipeline – FELIX training data preparation, FELIX model extensions, and template
generation. Our approach differs from the one by Kasner and Dušek, 2020 in the
used text-editing model, data preprocessing, and training data. The pipeline is
illustrated in Figure 4.1.

20

TemplatesTemplate Selection

FELIX

FELIX

Triple #1 Triple #2 Triple #3

Sentence #1 Sentence #2 Sentence #3

Output

Figure 4.1 Iterative text-editing pipeline diagram.

4.2 Data Processing
This section describes the details of our data preparation and preprocessing for
the training of the text-editing model (Sections 4.2.1 and 4.2.2). In Section 4.2.4,
we add the implementation details of the clause extraction, previously described
in Section 3.6, for the preparation of new training data. Next, in Section 4.2.3,
we explain the preparation of new training datasets obtained by filtering and
reordering the DiscoFuse. In Section 4.2.5, we introduce clause-level ordering
into our pipeline. Both DiscoFuse and WebNLG were introduced in Section 3.5.

4.2.1 Obtaining Single-Triple Templates
As mentioned in Section 3.1, the initial conversion from data to text is handled
by simple single-triple templates in Kasner and Dušek’s system. We use their
approach, including their provided templates, by default. In addition to the
provided templates, we use an alternative approach for obtaining the templates by
fine-tuning the BART-base model obtained from the HuggingFace Transformers
repository1 (Lewis et al., 2020; Section 2.3.2). We fine-tune the model on the
WebNLG dataset to generate reference sentences from the input triples. Then we
use this fine-tuned model to construct the inputs for training and inference of the
FELIX model. These templates might make the input sequence more similar to
the references and thus further reduce the number of required edits.

1https://huggingface.co/facebook/bart-base

21

https://huggingface.co/facebook/bart-base

4.2.2 Combining DiscoFuse and WebNLG data
The task of the text-editing model in the iterative text-editing approach described
earlier is to join two input sentences into one more fluent sentence, in other words,
sentence fusion. Kasner and Dušek use the sentence fusion dataset DiscoFuse for
zero-shot domain adaptation (Kasner and Dušek, 2020). We combine the WebNLG
dataset with the DiscoFuse dataset using two approaches.

1. We first train the model on the DiscoFuse dataset and then fine-tune it on
the WebNLG dataset.

2. We oversample the WebNLG dataset to match the size of the DiscoFuse
dataset and then train the model on the combined dataset.

4.2.3 DiscoFuse Filtering and Reordering
DiscoFuse and WebNLG datasets differ in their complexity. Figure 4.2 shows
the difference in the number of edits necessary to transform the input text to
the output text in both datasets. It is clear that the DiscoFuse dataset is much
simpler than the WebNLG dataset, requiring much fewer edits on average. In
addition, unlike the WebNLG dataset, the DiscoFuse dataset contains many
examples, requiring much fewer edits on average, such as replacing a proper
noun with a pronoun. To compensate for this difference and better prepare our
models for working on the WebNLG set, we create a new version of the dataset by
filtering out the “easiest” examples in terms of the number of edits. By comparing
the vocabulary used in the two incoherent and the two coherent sentences, we
also reorder the DiscoFuse examples that have reversed order in the original
dataset. The distribution of the number of edits in the filtered dataset is plotted
in Figure 4.3.

0 40 60 80 100µ
Number of edits

0

2000

4000

6000

Co
un

t

WebNLG
µ = 19.48, σ = 8.54

0 40 60 80 100µ
Number of edits

0

20000

40000

Co
un

t

DiscoFuse
µ = 5.69, σ = 3.36

Figure 4.2 Distribution of the number of edits necessary to transform the input text
to the output text in the WebNLG and DiscoFuse datasets. The distributions illustrate
the difference in complexity and variety of the two datasets.

22

0 40 60 80 100µ
Number of edits

0

1000

2000

3000

Co
un

t

DiscoFuse (Filtered)
µ = 10.53, σ = 4.53

Figure 4.3 Distribution of the number of edits necessary to transform the input text
to the output text in the Filtered DiscoFuse datasets.

4.2.4 Clause Extraction
Since the WebNLG and DiscoFuse datasets differ in their complexity (see Fig-
ure 4.2) in terms of the number of edit operations necessary to transform the input
text to the output text, we simplify the WebNLG dataset by extracting clauses
from the original sentences.

We implement a rule-based algorithm for sentence splitting proposed by
Zhang et al., 2020a described in Section 3.6, to simplify the WebNLG dataset. We
use this algorithm to build a new dataset for sentence fusion on the clause-level.
We use this dataset to train the FELIX model. Our implementation uses the
AllenNLP semantic role labeller (Shi and Lin, 2019) and the UDPipe toolkit for
dependency parsing (Straka, 2018).

Figures 4.2 and 4.4 show the distribution of the number of edits in the original
WebNLG dataset, the DiscoFuse dataset and the WebNLG dataset after clause
extraction. The clause extraction did reduce the mean number of edits necessary
to transform the input text to the output text (close to the mean number of edits
in the filtered DiscoFuse dataset); however, the variance has increased.

4.2.5 Clause Reordering
Although FELIX is capable of reordering tokens without deleting them and insert-
ing them again, reordering the input clauses beforehand may reduce the necessary
number of edits and thus reduce the load on the model.

We reuse the ordering module used in the neural NLG pipeline2 by Kasner and
Dusek, 2022. The module is a pointer network model based on an architecture by
Calizzano, Ostendorff, and Rehm that works on a similar principle as the pointer

2https://github.com/kasnerz/zeroshot-d2t-pipeline

23

https://github.com/kasnerz/zeroshot-d2t-pipeline

0 20 40 60 80 100µ
Number of edits

0

1000

2000

3000

Co
un

t

WebNLG Clauses
µ = 12.89, σ = 10.13

Figure 4.4 Distribution of the number of edits necessary to transform the input text
to the output text in the WebNLG dataset after clause extraction. The mean number of
edits is reduced compared to the original WebNLG dataset (compare Figure 4.3

network model used in the FELIX model described in Section 3.3. For a more
detailed description of the pointer networks, refer to Section 3.4. The model is
trained on the WebNLG dataset. Instead of predicting the next token, the model
predicts the following clause (Kasner and Dusek, 2022; Calizzano, Ostendorff, and
Rehm, 2021).

The training data for the reordering model are constructed by reordering the
input clauses by comparing the words used in each input clause to words used in
the output clauses – We map each input clause to an output clause based on the
cosine similarity of bag-of-words vectors used in the clauses. Then we reorder
the input clauses based on the order of the output clauses they are mapped to.
On this data, we fine-tune the ordering model. The mapping is illustrated in
Figure 4.5.

We modify the inference process such that in each iteration step, we split the
current input text into clauses using the clause extraction algorithm described in
Section 4.2.4. Then we construct a new text by reordering the clauses using the
ordering model. Finally, we feed the reordered text to the FELIX model.

4.3 FELIX Model Extensions
We extend the basic FELIXmodel described in Section 3.3 by replacing the tagger’s
feed-forward layer on top of the BERT encoder, i.e. non-autoregressive decoder,
with a transformer decoder, i.e. an autoregressive generator. Such extension has
been proven to improve the results of the tagger in the original LaserTagger paper
(Malmi et al., 2019).

In addition, we modify the decoding mechanism of the transformer decoder
such that we preserve the input triples in the output text. We do so by modifying

24

Alison O'Donnell is a singer . Alison O'Donnell also plays the bodhran , percussion and autoharp Alison ODonnell is in the genre of Jazz .

Alison O'Donnell is a jazz musician . a jazz musician sings and also plays the bodhran , percussion and the autoharp

Figure 4.5 Mapping of input clauses to output clauses extracted using the algorithm
from Section 4.2.4. Original input: “Alison O’Donnell is a singer and also plays the bodhran,
percussion and autoharp. Alison ODonnell is in the genre of Jazz.” Original reference:
“Alison O’Donnell is a jazz musician who sings and also plays the bodhran, percussion and
the autoharp.”

the edit tag probabilities of the tokens that are part of the input triples. We set
the probability of the KEEP tag to 1 and other probabilities to 0. This forces the
decoder to keep the facts from the input triples in the output sequence. With
this modification, the model needs another input besides the input sequence (i.e.
template-based natural language sentence, see Section 4.2.1) – a set of the original
RDF triples. This approach is an alternative to the approach of Kasner and Dušek,
2020, in which the outputs that did not contain the input triples were discarded
and replaced with the original input fallback.

4.4 Setup
In this section, we summarise the experimental settings based on previously
described data and model extensions, which are later referred to in the evaluation
in Chapter 5. We start by describing the baselines we compare our models with
(Section 4.4.1). Then list the training data variants (Section 4.4.2) and the model
settings (Section 4.4.3) used in the experiments. Finally, in Section 4.4.4, we
describe the metrics used for the evaluation of our models.

4.4.1 Baselines
We compare our models to baseline results obtained by copying the input verbatim
to the input (copy baseline) and BART fine-tuned for direct data-to-text generation.
We refer to this baseline as a Copy Baseline. The BART model was fine-tuned
on the WebNLG dataset using a trivial template-based system, with one triple
per sentence. The model was trained for 10 epochs with a batch size of 8, the
AdamW optimiser (Loshchilov and Hutter, 2019) with a learning rate of 1 × 10−4
and a weight decay set to 1 × 10−2, and linear schedule with 200 warm-up steps.
We refer to this baseline as a BART End-to-End Baseline.

25

4.4.2 Training Data
In the following list, we summarise the training data variants used in the experi-
ments. We will refer to these variants in Chapter 5.

• WebNLG – the original iterative-text-editing training data based on the
enriched version of WebNLG (Castro Ferreira et al., 2018; see Sections 3.1
and 3.5.1) dataset prepared using the data processing pipeline3.

• DiscoFuse – the original DiscoFuse dataset (Geva et al., 2019; see Sec-
tion 3.5.2).

• DiscoFuse oversampled with WebNLG – the DiscoFuse dataset oversam-
pled with the WebNLG dataset such that it makes up 50% of the training
data.

• Filtered DiscoFuse – The filtered version of the DiscoFuse dataset (see
Section 4.2.3).

• Filtered DiscoFuse oversampled with WebNLG – The filtered version
of the DiscoFuse dataset oversampled with the WebNLG dataset such that
it makes up 50% of the training data.

• WebNLG clauses – our dataset constructed from clauses extracted from
the WebNLG dataset (see Section 4.2.4).

• Filtered DiscoFuse oversampled with WebNLG clauses – The filtered
version of the DiscoFuse dataset oversampled with the dataset constructed
from clauses extracted from the WebNLG dataset such that it makes up 50%
of the training data.

• Filtered DiscoFuse oversampled with WebNLG clauses and BART
templates – The filtered DiscoFuse dataset oversampled with the dataset
constructed from clauses extracted from the WebNLG dataset with the use
of templated prepared with BART (see Section 4.2.1) such that it makes up
50% of the training data.

4.4.3 Model Settings
The following list is a brief overview of the experimental settings that utilise the
model extensions and data-processing methods described in this chapter. We will
refer to these settings in Chapter 5.

3https://github.com/kasnerz/d2t_iterative_editing

26

https://github.com/kasnerz/d2t_iterative_editing

• Basic Setup – In the basic setup we employ the pipeline proposed by
Kasner and Dušek adapted for the FELIX model without any modifications.
Throughout the experiments, we use the model hyperparameters provided
by the authors of the model used for the sentence fusion task. Due to the
hardware limitations, we use a lower batch size of 4 and 4 × 106 training
steps.

• Transformer Decoder – In this experimental setup, we use the trans-
former decoder extension described in Section 4.3. We use the hyper-
parameters from the LaserTagger paper (Malmi et al., 2019) – 1 layer, 4
heads, hidden size of 768, and feed-forward size of 3072, all with randomly
initialised weights.

• Force Keep Triples – This setup uses modified decoding, which forces
the tagger to keep the facts from the input triples described in Section 4.3.

• Clause Extraction – In Section 4.2, we described our simplified WebNLG
dataset created by extracting clauses from the original dataset. We use this
newly created dataset to train a new FELIX model but also use the extracted
clauses for inference.

• BART templates – This setup uses the alternative templates generated by
BART discussed in Section 4.2.1. The templates are used for inference only
but also for training a new model.

4.4.4 Evaluation
All the experimental models are evaluated on the iterative-text-editing test set
based on the WebNLG dataset using the following automatic metrics: NLGI,4

BLEURT,5 GPT-2 (version with 124M parameters) perplexity from the Hugging
Face repository,6 and average output length. For more information about the
metrics and underlying models refer to Sections 2.3.3, 2.4.1 and 2.4.2. Details
of the metrics are described in Section 2.4. We also evaluate selected models
manually. The manual evaluation is focused on the quality of the generated text
in terms of fluency and faithfulness.

4https://github.com/ufal/nlgi_eval
5https://github.com/google-research/bleurt
6https://huggingface.co/spaces/evaluate-metric/perplexity

27

https://github.com/ufal/nlgi_eval
https://github.com/google-research/bleurt
https://huggingface.co/spaces/evaluate-metric/perplexity

Chapter 5

Results

In this chapter, we present and discuss the results of the experiments described in
Chapter 4. Sections 5.1 to 5.4 discuss the results obtained in individual experiments
with model settings described in Section 4.4.3. These sections are focused on
the results of automatic evaluation using the metrics described in Section 4.4.4.
Section 5.5 presents the results of the manual evaluation of selected models and
compares them with the results of the automatic evaluation, adding specific
insights regarding individual model behaviour.

5.1 Initial Experiments With the Basic Setup
Our initial experiments compared the performance of the model with the basic
setup (i.e. FELIX, see Section 3.3) trained on the WebNLG dataset, on the Disco-
Fuse dataset (with both base and filtered variant) and on a combination of both
datasets – pre-training on the base DiscoFuse and fine-tuning on the WebNLG
dataset. The results of the experiments are shown in Table 5.1, comparing to both
the copy and BART end-to-end baselines, as described in Section 4.4.1.

We found that training the model solely on the WebNLG dataset is prone
to overfitting. Both models trained or fine-tuned on WebNLG perform poorly
compared to models trained on the DiscoFuse dataset in both NLGI and BLEURT
scores.

The predictions of our models tend to be longer than the human references,
suggesting a lower number of edits (coming from the copy baseline with one
sentence per triple, i.e. the information density still does not match the references).
For comparison, the average length of the reference sentences in the test set is
25.72 words. We have analysed the edit tags predicted by FELIX’s tagger model
and compared themwith the gold tags required to transform the input text into the
reference text. Figure 5.1 shows the distribution of the labels in the dataset, and

28

Setting OK O H O+H BLEURT Avg. Length

Basic / WebNLG 159 47 49 28 0.561 30.98

Basic / DiscoFuse, WebNLG fine-tuning 136 84 21 42 0.271 25.59

Basic / DiscoFuse 189 37 32 25 0.597 31.24

Basic / Filtered DiscoFuse 189 42 26 26 0.605 31.23

Copy Baseline 221 40 11 11 0.152 30.31

BART End-to-End Baseline 205 37 14 27 0.638 30.36

Table 5.1 Results of initial experiments. The second to sixth column contains the
results of the NLGI metric as counts out of the 283 examples, which were correct (OK),
contained omission (O), hallucination (H), or both (O+H). The next column contains the
BLEURT scores. The last column contains the average length of the output sentences in
terms of words.

Figure 5.2 contains a confusion matrix of predictions by the model trained on the
WebNLG dataset. These figures support the idea that the model is more inclined
towards predicting fewer edit operations than the number of edits required to
transform the input triple into the reference sentence.

KEEP

DELE
TE

IN
SE

RT 1

IN
SE

RT 2

IN
SE

RT 3

IN
SE

RT 4

IN
SE

RT 5

IN
SE

RT 6

IN
SE

RT 7

IN
SE

RT 8

IN
SE

RT 9

IN
SE

RT 10
100

101

102

103

104

Co
un

t

Predicted Labels

KEEP

DELE
TE

IN
SE

RT 1

IN
SE

RT 2

IN
SE

RT 3

IN
SE

RT 4

IN
SE

RT 5

IN
SE

RT 6

IN
SE

RT 7

IN
SE

RT 8

IN
SE

RT 9

IN
SE

RT 10
100

101

102

103

104

Co
un

t

Gold Labels

Figure 5.1 Distribution of predicted (left) and gold (right) edit tags in the WebNLG
test set. Note that the 𝑦-axis has a logarithmic scale.

Filtering and reordering the DiscoFuse dataset does not bring any improve-
ment in the performance of the model. The results of the model trained on the
filtered and reordered dataset are nearly identical to the results of the model
trained on the original dataset.

Note that even the copy baseline does not achieve a perfect score in the NLGI
metric, even though the copy baseline, by definition, should always meet the
conditions to pass the NLI check (see Section 2.4.1). These results indicate the
limitations of this metric and the difficulty of automatic semantic evaluation.

29

KEEP

DELE
TE

IN
SE

RT 1

IN
SE

RT 2

IN
SE

RT 3

IN
SE

RT 4

IN
SE

RT 5

IN
SE

RT 6

IN
SE

RT 7

IN
SE

RT 8

IN
SE

RT 9

IN
SE

RT 10

Predicted Labels

KEEP

DELETE

INSERT 1

INSERT 2

INSERT 3

INSERT 4

INSERT 5

INSERT 6

INSERT 7

INSERT 8

INSERT 9

INSERT 10

Go
ld

La
be

ls

5766 398 122 43 24 3 0 0 0 0 0 0

2885 852 95 36 17 4 0 0 0 0 0 0

603 34 38 17 3 1 0 0 0 0 0 0

244 11 18 8 2 0 0 0 0 0 0 0

93 6 2 3 0 0 0 0 0 0 0 0

38 7 4 2 2 0 0 0 0 0 0 0

28 2 2 1 1 0 0 0 0 0 0 0

11 0 0 0 1 0 0 0 0 0 0 0

4 2 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

Figure 5.2 Edit tag confusion matrix of the model trained on the WebNLG dataset.

5.2 Transformer Decoder
In the following experiments, we use the modified model with the autoregressive
transformer decoder, as described in Section 4.3. As a comparison of results
in Table 5.2 with the basic setup in Table 5.1 shows, models trained with the
transformer decoder achieve better results in both NLGI and BLEURT scores
compared to the models trained on the same data without the transformer decoder.

Setting OK O H O+H BLEURT Avg. Length

Transformer Decoder / WebNLG 159 71 20 33 0.561 26.93

Transformer Decoder / DiscoFuse 195 46 27 15 0.618 30.92

Transformer Decoder / Filtered Disco-
Fuse oversampled with WebNLG

159 76 17 31 0.564 26.23

Trainsformer Decoder / Filtered Disco-
Fuse, force keep triples

208 45 19 11 0.613 30.44

Copy baseline 221 40 11 11 0.152 30.31

BART End-to-End baseline Baseline 205 37 14 27 0.638 30.36

Table 5.2 Results of experiments with the transformer decoder.

The lower performance when training directly on the WebNLG dataset led
us to oversampling the WebNLG dataset and combining it with the DiscoFuse
dataset. However, this approach leads to similar results as the ones achieved by
the model trained solely on the WebNLG dataset.

30

Further improvements were achieved by forcing the model to keep the input
triples in the output text (see Section 4.3). Hence, the transformer decoder and
the mechanism for keeping the facts from the input triples are used in all the
following experiments.

5.3 Clause Extraction and Reordering
Experiments in this section explore the effect of clause reordering (as described in
Section 4.2.5) on the performance of the model (using FELIX with the autoregres-
sive decoder and force keep triples setting, as described in Section 5.2) trained
using our own new dataset created from the extracted templates (see Section 4.2.4).
In some of the experiments, we use the model trained on the filtered version of
the DiscoFuse dataset. In these experiments, we compare the effects of clause
reordering (described in Section 4.2.5) during inference. Other experiments also
use the new clause-based dataset for training. The results of the experiments are
shown in Table 5.3.

Setting OK O H O+H BLEURT Avg. Length

WebNLG clauses, no ordering 189 62 9 23 0.562 31.55

Filtered DiscoFuse, inference with
clauses, no ordering

215 46 12 10 0.586 35.23

Filtered DiscoFuse, inference with
clauses, gold ordering

217 43 12 11 0.589 35.19

Filtered DiscoFuse, inference with
clauses, predicted ordering

215 45 11 12 0.582 35.16

Filtered DiscoFuse oversampled with
WebNLG clauses

211 52 9 11 0.583 34.98

Copy Baseline 221 40 11 11 0.152 30.31

BART End-to-End baseline Baseline 205 37 14 27 0.638 30.36

Table 5.3 Results of experiments with clause extraction.

With clause extraction, we were able to achieve results comparable to the
previous ones by only training on WebNLG without using the DiscoFuse dataset.
However, better results were achieved using the DiscoFuse dataset for training
than the inference-only clause reordering. Table 5.3 contains results of a model
trained on the filtered DiscoFuse dataset from Section 5.2 with clause reordering
during inference, i.e. splitting the first (possibly complex) sentence of the input
into clauses and reordering as described in Section 4.2.5. We compare three vari-
ants: without any ordering, ordering predicted by the model, and gold ordering
estimated using the method described in Section 4.2.5. The differences between

31

the three variants were minimal. As the clause reordering has little effect, we do
not use it in the subsequent models. These results suggest that the token-level
pointing mechanism of the FELIX model might be sufficient for reordering.

5.4 BART Templates
Experiments listed in Table 5.4 employ the BART during inference and dur-
ing training instead of the base handcrafted templates (see Section 4.2.1). This
approach brings a further improvement in both NLGI and BLEURT metrics, com-
pared to previous results in Table Table 5.3. The best results were achieved when
the BART templates were used for both training and inference. These results
are already comparable to the copy baseline in terms of NLGI and to the BART
end-to-end baseline in terms of BLEURT. In addition, in terms of NLGI, our model
performs better than the BART end-to-end baseline.

Setting OK O H O+H BLEURT Avg. Length

Filtered DiscoFuse with WebNLG
clauses oversampling, inference with
BART templates

218 53 4 8 0.619 32.13

Filtered DiscoFuse with WebNLG
clauses and BART templates, inference
with BART templates

223 50 1 9 0.619 31.90

Copy Baseline 221 40 11 11 0.152 30.31

BART End-to-End baseline Baseline 205 37 14 27 0.638 30.36

Table 5.4 Results of experiments with BART templates.

5.5 Manual Evaluation
The manual evaluation was performed on 100 sentences sampled from the outputs
on the test set for selected models. All the selected models were trained on the
combination of the DiscoFuse and WebNLG-based datasets, so the models were
trained on data of comparable size. Each of the sampled sentences was evaluated
for hallucinations and disfluencies. By disfluency, we mean a sentence that is not
syntactically or grammatically correct. For hallucination, we use the definition
from Section 2.1. The results are shown in Table 5.5.

The manual evaluation shows significant improvement in fluency with the use
of the transformer decoder. However, fluency still poses a problem. We identified
several types of disfluencies that occur in the outputs. The identified classes of
disfluencies are:

32

Setting Disfluencies Hallucinations

Basic Setup 43 15
Transformer Decoder 25 31
Clause Extraction 21 28
BART Templates 22 26

BART End-to-End Baseline 0 28

Table 5.5 Results of the manual evaluation. The results are given as the absolute
counts of sentences containing at least one disfluency or at least one hallucination..

1. Connecting without a connective – locally fluent, e.g. “300 North La salle is
located in Chicago 300 North LaSalle has a floor count of 60.”

2. Missing words and incomplete sentences; e.g. “Alan Frew is a performer of
rock music, the fusion genre of Bhangra, is.”

3. Trailing words and punctuation; e.g. “Alex Tyus plays in the Turkish Bas-
ketball Super League and Maccabi Tel Aviv B.C. is”, “Adam Maher is the PSV
Eindhoven played for the Netherlands national under – 17 football team,.”

While there is an improvement in fluency between the basic setup and the
experiments using the transformer decoder, the number of hallucinations doubled.
The number of hallucinations is comparable to the BART baseline, but the nature
of hallucinations is different. Text-edited output exhibit hallucinations that result
from misuse of connectives and subjunctives, e.g. “The musical genre of Alex Day
is Synthpop, but the stylistic origin of Synthpop is New wave music.” In all three
settings that use the transformer decoder, a third of the hallucinations are caused
by the misuse of connectives.

We have identified that the misuse of connectives causes a large number of
hallucinations. The reason for this behaviour is most likely the fact that some of
the connectives are over-represented in the DiscoFuse dataset compared to the
WebNLG dataset. The distributions of connectives in both datasets are listed in
Table 5.6. In addition, the WebNLG dataset contains a large number of relative
clauses. Our analysis of the training set of the WebNLG dataset shows that 52.9%
of the sentences in the WebNLG examples contain relative clauses, while only
6.5% of the DiscoFuse dataset contains relative clauses. Geva et al., 2019 also
found that connectives like “however”, “although”, and “for example” were harder
to learn for their model – the error rate of sentences with these connectives was
higher than the error rate of the other connectives. The higher error rate is likely

33

caused by the fact that the use of these connectives is more complex, as they
require a broader context to be used correctly.

Connective DiscoFuse WebNLG

and 12.5% 52.06%
but 10.7% 0.73%
although 8.4% 0.03%
however 8.2% 0.15%
because 7.7% 0%
so that 2.1% 0%
while 2.0% 0.11%
or 1.8% 0.50%
so 1.2% 0.06%
for example 1.0% 0%

Table 5.6 Distribution of connectives in the DiscoFuse dataset and WebNLG dataset.
Percentages signify the proportion of sentences containing a given connective. DiscoFuse
statistics are taken from Geva et al., 2019. Numbers for WebNLG are based on our own
analysis of the training set. In the case of connectives “and” and “or”, we include only
connectives that connect clauses or sentences based on a dependency parse by UDPipe.

Setting Perplexity

Basic Setup 51.8
Transformer Decoder 40.0
Clause Extraction 38.3
BART Templates 34.8

BART End-to-End Baseline 31.6
Copy Baseline 41.6

Table 5.7 Mean perplexity of GPT-2 over the selected model outputs.

The differences between the transformer decoder, clause extraction, and
BART template models are subtle in terms of both fluency and hallucinations.
This result does not match the NLGI metric, which showed improvements in
successive experiments. One of the reasons might be that the NLGI metric does
not take into account the fluency of the output. By inspection of the NLGI outputs
on our manually evaluated sample, we found that sentences connected without
a connective or with a wrong connective are considered by the metric as OK.

34

Hence the locally fluent outputs may be classified as OK by the NLGI metric. In
Table 5.7, we list the perplexity of GPT-2 on the outputs of our selected models
and baselines. The perplexity measure shows larger differences between the
models.

Besides, the manual evaluation revealed that a number of input sequences are
left intact by the models. In Table 5.8, we show the percentage of outputs with no
edits. Kasner and Dušek, 2020 did not implement any decoding-time mechanism
that would guarantee retaining of the input facts. In their approach, outputs
are checked after decoding, and those that do not contain the facts are replaced
by a fallback, which copies the input. They reported that 28% of the steps were
fallbacks, i.e. no edits were performed. In our approach, we ensure that the facts
are kept in the output by modifying the edit tag probabilities during decoding. In
spite of the fact that our numbers are lower than 28%, outputs without edits still
represent a significant percentage of the outputs.

Setting Zero Edits

Basic Setup 5.30%
Transformer Decoder 10.25%
Clause Extraction 7.07%
BART Templates 9.19%

Table 5.8 Percentage of the selected model outputs without edits.

35

Chapter 6

Conclusion

In this thesis, we created a data-to-text generation system based on the text-
editingmodel FELIX (Mallinson et al., 2020) and the iterative text-editing approach
(Kasner and Dušek, 2020). We explored several extensions to the original FELIX
model and template preparation pipeline. The source code of our implementation
is attached to this thesis (see Appendix A. We trained the model on different
datasets, including our own new versions of the WebNLG and DiscoFuse datasets.

Both automatic and manual evaluation has proven our transformer decoder
extension of the FELIX’s tagging model to be effective in reducing some artefacts
of the non-autoregressive feed-forward model, such as trailing punctuation. Even
with this extension, the outputs of the model still contain some disfluencies.
Although the FELIX model is able to arbitrarily reorder the input tokens without
deleting and re-inserting them, the model still cannot consistently generate fluent
outputs. Malmi et al., 2022 recommend studying the effects of scaling up the
text editing models as a potential future direction of research. Scaling up proves
to be effective in many other transformer-based text-generation tasks and may
also increase the fluency and overall quality of the text-editing models’ outputs
(Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023).

Using the clause extraction, we were able to use the WebNLG data together
with the DiscoFuse dataset to achieve better results than using the WebNLG
dataset or the DiscoFuse dataset alone. Extracting clauses and filtering the
DiscoFuse dataset has brought the datasets closer to each other in terms of the
number of edits required. However, the zero-edit outputs (i.e. inputs that are left
intact by the model, discussed in Section 5.5) represent a significant fraction of the
outputs being higher in models trained on datasets with fewer edits required on
average. Our mechanism for keeping the facts from the input RDF triples, which
differs from the approach used in the original iterative text-editing approach by
Kasner and Dušek, 2020, reduced the number of zero-edit outputs, compared to

36

the original approach, but the number of such outputs is still significant. We also
found that additional clause reordering has little effect on the results, suggesting
that FELIX’s pointer network is sufficient for the task.

Despite the ability to preserve all the facts from the input using the modified
decoding, our manual evaluation revealed that the number of hallucinations in
the outputs is comparable to our end-to-end BART baseline results. However, a
third of hallucinations of our models amount simply to incorrect use of certain
connectives, whilst the output contains all the correct facts. By analysing the
training data, we found a large discrepancy between the distributions of con-
nectives in the DiscoFuse and WebNLG datasets. Therefore, the pre-training
on the DiscoFuse dataset leads to the overuse of some connectives that shift
the meanings in an undesirable way. For future works, it might be beneficial to
sample the DiscoFuse dataset in a way that would better match the distribution
of connectives in the WebNLG dataset. Automatically generated datasets, such as
DiscoFuse and our own clause-based WebNLG dataset, have proven to be effec-
tive for training text-editing models. Creating new, possibly in-domain, synthetic
datasets could be a promising direction for future research.

37

Bibliography

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun.
url: http://arxiv.org/abs/1409.0473.

Brown, Tom et al. (2020). “Language Models are Few-Shot Learners”. In: Ad-
vances in Neural Information Processing Systems. Ed. by H. Larochelle
et al. Vol. 33. Curran Associates, Inc., pp. 1877–1901. url: https : / /
proceedings . neurips . cc / paper _ files / paper / 2020 / file /
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Calizzano, Rémi, Malte Ostendorff, and Georg Rehm (2021). “Ordering sentences
and paragraphs with pre-trained encoder-decoder transformers and pointer
ensembles”. In: DocEng ’21: ACM Symposium on Document Engineering 2021,
Limerick, Ireland, August 24-27, 2021. Ed. by Patrick Healy, Mihai Bilauca, and
Alexandra Bonnici. ACM, 10:1–10:9. doi: 10.1145/3469096.3469874. url:
https://doi.org/10.1145/3469096.3469874.

Castro Ferreira, Thiago et al. (Nov. 2018). “Enriching the WebNLG corpus”. In:
Proceedings of the 11th International Conference on Natural Language Gener-
ation. Tilburg University, The Netherlands: Association for Computational
Linguistics, pp. 171–176. doi: 10.18653/v1/W18-6521. url: https://
aclanthology.org/W18-6521.

Cho, Kyunghyun et al. (2014). “Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation”. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL. Ed. by AlessandroMoschitti, Bo Pang, andWalter Daelemans.
ACL, pp. 1724–1734. doi: 10.3115/v1/d14-1179. url: https://doi.org/
10.3115/v1/d14-1179.

Chowdhery, Aakanksha et al. (2022). “PaLM: Scaling Language Modeling with
Pathways”. In: CoRR abs/2204.02311. doi: 10.48550/arXiv.2204.02311.

38

http://arxiv.org/abs/1409.0473
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3469096.3469874
https://doi.org/10.1145/3469096.3469874
https://doi.org/10.18653/v1/W18-6521
https://aclanthology.org/W18-6521
https://aclanthology.org/W18-6521
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.48550/arXiv.2204.02311

arXiv: 2204.02311. url: https://doi.org/10.48550/arXiv.2204.
02311.

Devlin, Jacob et al. (2019). “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding”. In: Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers). Ed. by Jill Burstein, Christy Doran,
and Thamar Solorio. Association for Computational Linguistics, pp. 4171–4186.
doi: 10.18653/v1/n19-1423. url: https://doi.org/10.18653/v1/n19-
1423.

Dušek, Ondřej and Zdeněk Kasner (Dec. 2020). “Evaluating Semantic Accuracy of
Data-to-Text Generation with Natural Language Inference”. In: Proceedings
of the 13th International Conference on Natural Language Generation. Dublin,
Ireland: Association for Computational Linguistics, pp. 131–137. url: https:
//aclanthology.org/2020.inlg-1.19.

Gardent, Claire et al. (Sept. 2017). “The WebNLG Challenge: Generating Text
from RDF Data”. In: Proceedings of the 10th International Conference on Nat-
ural Language Generation. Santiago de Compostela, Spain: Association for
Computational Linguistics, pp. 124–133. doi: 10.18653/v1/W17-3518. url:
https://aclanthology.org/W17-3518.

Gatt, Albert and Emiel Krahmer (2018). “Survey of the State of the Art in Natural
Language Generation: Core tasks, applications and evaluation”. In: J. Artif.
Intell. Res. 61, pp. 65–170. doi: 10.1613/jair.5477. url: https://doi.
org/10.1613/jair.5477.

Geva, Mor et al. (2019). “DiscoFuse: A Large-Scale Dataset for Discourse-Based
Sentence Fusion”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume
1 (Long and Short Papers). Ed. by Jill Burstein, Christy Doran, and Thamar
Solorio. Association for Computational Linguistics, pp. 3443–3455. doi: 10.
18653/v1/n19-1348. url: https://doi.org/10.18653/v1/n19-1348.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). “Deep Learning”. In:
http://www.deeplearningbook.org.

Gu, Jiatao, Changhan Wang, and Junbo Zhao (2019). “Levenshtein Transformer”.
In: Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach et al., pp. 11179–
11189. url: https://proceedings.neurips.cc/paper/2019/hash/
675f9820626f5bc0afb47b57890b466e-Abstract.html.

39

https://arxiv.org/abs/2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://aclanthology.org/2020.inlg-1.19
https://aclanthology.org/2020.inlg-1.19
https://doi.org/10.18653/v1/W17-3518
https://aclanthology.org/W17-3518
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.18653/v1/n19-1348
https://doi.org/10.18653/v1/n19-1348
https://doi.org/10.18653/v1/n19-1348
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html

Ji, Ziwei et al. (2022). “Survey of Hallucination in Natural Language Generation”.
In: CoRR abs/2202.03629. arXiv: 2202.03629. url: https://arxiv.org/
abs/2202.03629.

Kale, Mihir and Abhinav Rastogi (2020). “Template Guided Text Generation for
Task-Oriented Dialogue”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20,
2020. Ed. by Bonnie Webber et al. Association for Computational Linguistics,
pp. 6505–6520. doi: 10.18653/v1/2020.emnlp-main.527. url: https:
//doi.org/10.18653/v1/2020.emnlp-main.527.

Kasner, Zdeněk and Ondřej Dušek (Dec. 2020). “Data-to-Text Generation with
Iterative Text Editing”. In: Proceedings of the 13th International Conference on
Natural Language Generation. Dublin, Ireland: Association for Computational
Linguistics, pp. 60–67. url: https://aclanthology.org/2020.inlg-1.9.

Kasner, Zdeněk and Ondrej Dusek (May 2022). “Neural Pipeline for Zero-Shot
Data-to-Text Generation”. In: Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Dublin,
Ireland: Association for Computational Linguistics, pp. 3914–3932. doi: 10.
18653/v1/2022.acl-long.271. url: https://aclanthology.org/2022.
acl-long.271.

Lewis, Mike et al. (July 2020). “BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Translation, and Comprehension”.
In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, pp. 7871–7880.
doi: 10.18653/v1/2020.acl-main.703. url: https://aclanthology.
org/2020.acl-main.703.

Loshchilov, Ilya and Frank Hutter (2019). “Decoupled Weight Decay Regular-
ization”. In: 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. url: https:
//openreview.net/forum?id=Bkg6RiCqY7.

Mallinson, Jonathan et al. (Nov. 2020). “FELIX: Flexible Text Editing Through
Tagging and Insertion”. In: Findings of the Association for Computational
Linguistics: EMNLP 2020. Online: Association for Computational Linguistics,
pp. 1244–1255. doi: 10.18653/v1/2020.findings-emnlp.111. url: https:
//aclanthology.org/2020.findings-emnlp.111.

Malmi, Eric et al. (Nov. 2019). “Encode, Tag, Realize: High-Precision Text Edit-
ing”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for
Computational Linguistics, pp. 5054–5065. doi: 10.18653/v1/D19-1510.
url: https://aclanthology.org/D19-1510.

40

https://arxiv.org/abs/2202.03629
https://arxiv.org/abs/2202.03629
https://arxiv.org/abs/2202.03629
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://aclanthology.org/2020.inlg-1.9
https://doi.org/10.18653/v1/2022.acl-long.271
https://doi.org/10.18653/v1/2022.acl-long.271
https://aclanthology.org/2022.acl-long.271
https://aclanthology.org/2022.acl-long.271
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2020.findings-emnlp.111
https://aclanthology.org/2020.findings-emnlp.111
https://aclanthology.org/2020.findings-emnlp.111
https://doi.org/10.18653/v1/D19-1510
https://aclanthology.org/D19-1510

Malmi, Eric et al. (July 2022). “Text Generation with Text-Editing Models”. In:
Proceedings of the 2022 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies: Tutorial
Abstracts. Seattle, United States: Association for Computational Linguistics,
pp. 1–7. doi: 10 . 18653 / v1 / 2022 . naacl - tutorials . 1. url: https :
//aclanthology.org/2022.naacl-tutorials.1.

Novikova, Jekaterina et al. (2017). “Why We Need New Evaluation Metrics for
NLG”. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017.
Ed. by Martha Palmer, Rebecca Hwa, and Sebastian Riedel. Association for
Computational Linguistics, pp. 2241–2252. doi: 10.18653/v1/d17-1238.
url: https://doi.org/10.18653/v1/d17-1238.

Palmer, Martha, Paul R. Kingsbury, and Daniel Gildea (2005). “The Proposition
Bank: An Annotated Corpus of Semantic Roles”. In: Comput. Linguistics 31.1,
pp. 71–106. doi: 10.1162/0891201053630264. url: https://doi.org/10.
1162/0891201053630264.

Radford, Alec et al. (2019a). “Language models are unsupervised multitask learn-
ers”. In: OpenAI blog 1.8, p. 9.

— (2019b). “Language models are unsupervised multitask learners”. In: OpenAI
blog 1.8, p. 9.

Sai, Ananya B., Akash Kumar Mohankumar, and Mitesh M. Khapra (2022). “A
Survey of Evaluation Metrics Used for NLG Systems”. In: ACM Comput. Surv.
55.2. issn: 0360-0300. doi: 10.1145/3485766. url: https://doi.org/10.
1145/3485766.

Sellam, Thibault, Dipanjan Das, and Ankur Parikh (July 2020). “BLEURT: Learn-
ing Robust Metrics for Text Generation”. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online: Association
for Computational Linguistics, pp. 7881–7892. doi: 10.18653/v1/2020.acl-
main.704. url: https://aclanthology.org/2020.acl-main.704.

Shi, Peng and Jimmy Lin (2019). “Simple BERT Models for Relation Extraction
and Semantic Role Labeling”. In: CoRR abs/1904.05255. arXiv: 1904.05255.
url: http://arxiv.org/abs/1904.05255.

Stahlberg, Felix and Shankar Kumar (Nov. 2020). “Seq2Edits: Sequence Transduc-
tion Using Span-level Edit Operations”. In: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Online: As-
sociation for Computational Linguistics, pp. 5147–5159. doi: 10.18653/v1/
2020.emnlp-main.418. url: https://aclanthology.org/2020.emnlp-
main.418.

Straka, Milan (2018). “UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task”. In:
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, Brussels, Belgium, October 31 - November 1, 2018.

41

https://doi.org/10.18653/v1/2022.naacl-tutorials.1
https://aclanthology.org/2022.naacl-tutorials.1
https://aclanthology.org/2022.naacl-tutorials.1
https://doi.org/10.18653/v1/d17-1238
https://doi.org/10.18653/v1/d17-1238
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1145/3485766
https://doi.org/10.1145/3485766
https://doi.org/10.1145/3485766
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://aclanthology.org/2020.acl-main.704
https://arxiv.org/abs/1904.05255
http://arxiv.org/abs/1904.05255
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://aclanthology.org/2020.emnlp-main.418
https://aclanthology.org/2020.emnlp-main.418

Ed. by Daniel Zeman and Jan Hajic. Association for Computational Linguistics,
pp. 197–207. doi: 10.18653/v1/k18-2020. url: https://doi.org/10.
18653/v1/k18-2020.

Touvron, Hugo et al. (2023). “LLaMA: Open and Efficient Foundation Language
Models”. In: CoRR abs/2302.13971. doi: 10.48550/arXiv.2302.13971. arXiv:
2302.13971. url: https://doi.org/10.48550/arXiv.2302.13971.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: ed. by Isabelle Guyon
et al., pp. 5998–6008. url: https://proceedings.neurips.cc/paper/
2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly (2015). “Pointer Networks”.
In: Advances in Neural Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada. Ed. by Corinna Cortes et al., pp. 2692–2700.
url: https : / / proceedings . neurips . cc / paper / 2015 / hash /
29921001f2f04bd3baee84a12e98098f-Abstract.html.

Wang, Tianming and Xiaojun Wan (2019). “Hierarchical Attention Networks
for Sentence Ordering”. In: The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019. AAAI Press, pp. 7184–7191. doi: 10.1609/aaai.v33i01.
33017184. url: https://doi.org/10.1609/aaai.v33i01.33017184.

Williams, Adina, Nikita Nangia, and Samuel Bowman (2018). “A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference”. In: Proceed-
ings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). New Orleans, Louisiana: Association for Computational Linguistics,
pp. 1112–1122. url: http://aclweb.org/anthology/N18-1101.

Zarrieß, Sina, Henrik Voigt, and Simeon Schüz (2021). “Decoding Methods in
Neural Language Generation: A Survey”. In: Inf. 12.9, p. 355. doi: 10.3390/
info12090355. url: https://doi.org/10.3390/info12090355.

Zhang, Li et al. (Nov. 2020a). “Small but Mighty: New Benchmarks for Split and
Rephrase”. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Online: Association for Computational
Linguistics, pp. 1198–1205. doi: 10.18653/v1/2020.emnlp-main.91. url:
https://aclanthology.org/2020.emnlp-main.91.

Zhang, Tianyi et al. (2020b). “BERTScore: Evaluating Text Generation with
BERT”. In: 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. url: https:
//openreview.net/forum?id=SkeHuCVFDr.

42

https://doi.org/10.18653/v1/k18-2020
https://doi.org/10.18653/v1/k18-2020
https://doi.org/10.18653/v1/k18-2020
https://doi.org/10.48550/arXiv.2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://doi.org/10.1609/aaai.v33i01.33017184
https://doi.org/10.1609/aaai.v33i01.33017184
https://doi.org/10.1609/aaai.v33i01.33017184
http://aclweb.org/anthology/N18-1101
https://doi.org/10.3390/info12090355
https://doi.org/10.3390/info12090355
https://doi.org/10.3390/info12090355
https://doi.org/10.18653/v1/2020.emnlp-main.91
https://aclanthology.org/2020.emnlp-main.91
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

Zhu, Yukun et al. (2015). “Aligning Books and Movies: Towards Story-Like Visual
Explanations by Watching Movies and Reading Books”. In: 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015, Santiago, Chile, December
7-13, 2015. IEEE Computer Society, pp. 19–27. doi: 10.1109/ICCV.2015.11.
url: https://doi.org/10.1109/ICCV.2015.11.

Zhuang, Liu et al. (Aug. 2021). “A Robustly Optimized BERT Pre-training Ap-
proachwith Post-training”. English. In: Proceedings of the 20th Chinese National
Conference on Computational Linguistics. Huhhot, China: Chinese Information
Processing Society of China, pp. 1218–1227. url: https://aclanthology.
org/2021.ccl-1.108.

43

https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108

Appendix A

Attachments

The attached archive contains a modified version of the original FELIX model
source code.1 The modified code implements the extensions described in Sec-
tion 4.3 and inference with clause reordering described in Section 4.2.5. The
archive also contains the implementation of the clause extraction algorithm de-
scribed in Section 3.6. For further details, see the README.md files in the archive.

1https://felixmodel.page.link/code

44

https://felixmodel.page.link/code

	Introduction
	Theoretical Background
	Natural Language Generation
	Transformer
	Sequence-to-Sequence Models
	Encoder-Decoder Architecture
	Attention
	Architecture
	Decoding

	Pre-trained Language Models
	BERT
	BART
	GPT

	Metrics
	NLGI
	BLEURT

	Foundations of Our Approach
	Iterative Text-Editing
	Text-Editing Models
	FELIX
	Tagging Model
	Insertion Model

	Pointer Networks
	Datasets
	WebNLG
	DiscoFuse

	Clause Extraction

	Experiments
	Pipeline
	Data Processing
	Obtaining Single-Triple Templates
	Combining DiscoFuse and WebNLG data
	DiscoFuse Filtering and Reordering
	Clause Extraction
	Clause Reordering

	FELIX Model Extensions
	Setup
	Baselines
	Training Data
	Model Settings
	Evaluation

	Results
	Initial Experiments With the Basic Setup
	Transformer Decoder
	Clause Extraction and Reordering
	BART Templates
	Manual Evaluation

	Conclusion
	Bibliography
	Attachments

