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Introduction
Kampa is a programming language developed by the author in his bachelor the-
sis [1]. Rather than being a test of some extraordinary computational model, the
aim was just to design a general-purpose imperative programming language with
emphasis on clean language design.

One of the main goals of the original thesis was a language that is simple and
orthogonal, meaning that it consists of a small set of primitives that can be used
independently of each other. For example, Kampa (similarly to e.g. C and Rust)
offers one tool to create a homogeneous collection type (array), one tool to create
a product or record type (tuple in Kampa, struct in C), and one tool to create
a reference type for a given type (box in Kampa, pointer in C). The programmer
can but does not have to combine these tools (e.g. create a pointer to a struct or
a boxed tuple). Compare this to e.g. Java or most scripting languages, which do
not allow using these tools separately. The only way to create a product type in
Java is a class, which at the same time introduces a reference. Similarly, Java’s
array type is implicitly a reference to a structure with two fields (length and the
array data).

Arrays in Kampa avoid both the implicit reference and the implicit length
field. Instead of being stored in a field, the length is specified in the type of
the array. The length can be a compile-time constant, but it does not need
to be. This may introduce a dependency of some types on run-time values,
making the language dependently typed. The same mechanism is then further
used to implement generic functions. A function can be made generic by adding
a parameter of type Type Variable, which is then available for use in the types
of the remaining parameters.

Similarly, it should be possible to define a generic type as a function returning
a Type Variable. However, the current implementation of Kampa (as attached to
the bachelor thesis) does not support this and even if it did, it would not be able
to type-check the usages of such a generic type. These and related limitations are
addressed in Section 3.5. Workable generic type definitions are crucial for library
generic types such as Optional (Section 4.1.1) and collections (Section 4.1.2).

Additionally, there are several limitations caused by the language itself. This
thesis improves the syntax (Section 2.1) and adds two new language features.
Type parameter inference (Section 2.3.2) allows calling generic functions without
having to specify the types of the generic arguments. Coroutines (Section 2.3.5)
offer a general way to describe generators and asynchronous functions. Addi-
tionally, this thesis splits the interpreter into two separate parts, one analyzing
the source code and producing bytecode (in a Kampa-specific format, see Sec-
tion 2.4.1), and the other interpreting the bytecode.

3



4



1. Context
To make this thesis more self-contained, we present a summary of the syntax and
semantics of the language as specified and implemented by the original thesis.
This will be our starting point for the next two chapters.

Some details about the syntax are intentionally skipped for now. We will
return to these in Section 2.1.

1.1 Kampa program structure

As in most imperative languages, the source consists of value expressions, type
expressions, and statements (we abandon this distinction later in this thesis). Any
expression can be used as a statement (in the form of an expression statement).
Statements usually appear in code blocks. Similarly to e.g. Rust and GNU C,
a code block can be used as a value expression.

Some expression statements are considered as declarations – their members
enter the current scope. A declaration can additionally be marked as output.
Output declarations contribute to the value of the block they appear in. The last
statement is not used for this (unlike Rust or GNU C). The value of a block is a
tuple – if the block contains no declarations it will be an empty tuple.

The top level of a file (the root of the syntax tree) is a regular code block;
it consists of statements and it is not restricted to declarations only. A file
may import another file using the import expression ( \"path/to/file.kampa" ).
This expression executes the other file and evaluates to the value of its code block,
i.e., a tuple of variables exported by that file using top-level output declarations.
This happens immediately when the expression is parsed, never at runtime.

The interpreter accepts one file on its command line – that file is expected to
export a single unnamed function (the main function). Once all files are parsed,
type-checked and converted to an internal representation, the interpreter initiates
program execution by calling the main function.

As such, although the implementation is incapable of producing code that
can be run some time later, it strictly distinguishes between compile-time and
runtime.

1.2 Type system

Kampa is a structurally-typed language with a limited set of built-in families of
types. The following page lists the nine built-in families, along with the source
code notation. For most of the types, there is a notation for the type itself and a
notation for its values. These two notations are similar or the same. Whether an
expression is to be interpreted as a type or a value (that is, whether it is a type-
or value-expression) depends on the context. For example, the parameters in a
function definition are type-expressions.
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Number is the type of conditions, and array indices/sizes. A value is created us-
ing numeric or character literals. The type is written as a range ( min..max )
syntactically, but this information is dropped during parsing (some future
version of the language will hopefully be able to take it into account). The
library defines several aliases for this type, including Int and Bool . Its
representation is currently always a 64-bit signed integer.

Tuple type is the product of zero or more types. Both the type and its values are
denoted with a comma-separated list of item types or values respectively.
Tuples are usually parenthesised due to their low precedence. For example:
(Int, Int) , (42, 43) . Tuple is a value type, similarly to C structs.

Function type is determined by its argument type and return type. The syntax
for function types is ArgType -> ReturnType . Values are created using
lambda expressions with the same syntax: ArgType -> returnValue . In
addition to the code itself, values of the function type may also carry addi-
tional data (most often the function’s closure).

Named type is a thin “wrapper” for another type. It serves as a tag which can
be used to retrieve the value from a tuple or from the scope. Both the type
and the value is written as identifier: expression . Most often used
in a tuple ( (x: 42, y: 43).x evaluates to 42 ) or a function argument
( (x: Int) -> x * x ).

Box is the pointer/reference type. Unlike usual pointers, it always points to
a separate object on the heap. It is not possible to take a pointer to an
existing value without copying that value. Both the type and the value is
constructed by surrounding a type/value in square brackets. It can be used
to define cyclic data structures or create mutable shared state. Boxes do
not support pointer arithmetic and cannot be null.

Array is a sequence of values of the same type. The number of elements is part
of the type. However, it does not have to be a compile-time constant. The
syntax for array types is ElementType...sizeValue . Array values can
be created using the same syntax ( elementValue...sizeValue ), which
evaluates its left-hand side repeatedly. Array elements are stored directly
in the value of the array, no pointer is involved.

Type Variable is the type of all types (including itself). The syntax for the
Type Variable type is ? and the syntax for a Type Variable value is
?TypeExpr (e.g. ?Int or ?(x: Int, y: Int) ). Type variables can be
used like any other type expression. In memory, each type variable is rep-
resented by a single 64-bit value, which is the size of the type.

Type is similar to the previous. Unlike the previous (which is a single type), this
is a family of unit types. Each type has its own Type type. For example,
the Type for Int and the Type for Int -> Int are distinct types. This
family of types can be used to define aliases for existing types. It is a mere
convenience and is not important for the type system. The syntax for the
type of a Type is ?TypeExpr (i.e. the same as value of Type Variable).

Unknown is used for variables and values whose type is not known. It is a
dependent type that depends on the value of some Type Variable.
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1.2.1 Dependent types
Two items of the above list are dependent types: arrays and unknowns. An
array type depends on its size and an unknown type depends on its type variable.
Additionally, a whole tuple/function/named/box type becomes dependent when
some of its components depend on other values. The value a type depends on
can be one of these:

• Another tuple item, e.g. N: Int, array: Int...N or T: ?, t: T .

• Function parameter, e.g. (N: Int) -> Int...N or (T: ?) -> T .

• An immutable variable.

There are conversions possible between these three variants, but they are not
allowed in all places in which they should be. This limitation will be discussed
in more detail and remedied later.

1.2.2 Immutability
For an imperative language, Kampa offers a relatively large degree of control over
side effects. It does not allow global mutable state and requires each function to
declare in its type what parameters it modifies and whether it modifies variables
in its closure.

Any type can optionally be qualified immutable, mutable, or readable.
If a value is qualified immutable it cannot be modified to and it is guaranteed
by the type system to never change its value (it is referentially transparent).
A mutable value can be assigned to and it may potentially evaluate to a different
value every time. The readable qualifier does not allow modification, but it
also does not guarantee referential transparency.

Any value, whether immutable or mutable can be used as readable.
That is, both a mutable type and an immutable type are subtypes of the
corresponding readable type. Additionally, it is allowed to change the qualifier
of parts of the value that are not behind references, and thus are not shared.

The qualifier may be used in any type expression. As such, it can be used in
the definition of a type (an example from the library is a string, whose characters
are immutable), or in any place the type is used (such as the mentioned function
parameters).

In many other languages, if a reference type is defined as mutable, it is gen-
erally not possible to create immutable instances (or to accept a parameter that
does not allow modification). For example, the C const qualifier, when applied
to a type defined as typedef struct ... * my_type_t; , only applies to the
pointer, but not the structure field itself. A function cannot be declared to accept
an unmodifiable object of such a type.1 In Java, the situation is even worse, since
any user-defined type will be a reference type. There is no way in the type system
to create a class of objects that can be either mutable or immutable. Kampa takes
a different approach: the immutable qualifier applies deeply to all components

1This problem can be partially solved by not using pointer typedefs, but it arises again when
a pointer appears as a field of a structure.
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of a type, including the contents of boxes and environments of functions (the lat-
ter being explained in more detail below). The readable qualifier also applies
deeply, except it does not affect already-immutable parts. Finally, mutable
does not affect either immutable or readable parts. Its only purpose is to
“protect” parts of the type from becoming readable by default.

Functions

Functions may also be qualified. However, the meaning of a qualifier on a function
is slightly different. Functions can never be reassigned. The qualifier applies to
the function’s environment instead. It has implications on both the function
definition (what it can and cannot do) and its use.

Let us start with the restrictions on the function definition. When a function
is qualified immutable, it means that its environment must be immutable. It
is fine if its definition has readable or mutable variables in its scope, but it
must not use them (since they cannot be typed as immutable). An immutable-
qualified function is pure (except for mutable parameters, if any). A readable-
qualified function (the default) can refer to any and all variables in its scope.
However, it must not modify them, since it only sees them as readable or
immutable. A mutable-qualified function can use its environment without any
additional restrictions. Variables that were mutable are captured as mutable,
variables that were immutable are captured as immutable.

We now move on to the rules of using the functions. The subtyping rules must
clearly be different from those applied to values: a conversion from mutable to
readable is fine in values (it just disallows modifications), but it is unsound
for functions, because a readable-qualified function promises not to modify its
environment, while a mutable-qualified does not. Forbidding such a conversion
would however mean that a value containing mutable-qualified functions cannot
ever be used as readable. This is unnecessarily restrictive. The only thing
we need here is disallowing mutable function calls in non-mutable contexts.
Technically, this is achieved by adding a fourth qualifier, disabled. Whenever
the readable qualifier is applied to a mutable function, the result will be
qualified as disabled. Such functions cannot be called or converted to any
function type with a different qualifier. On the other hand, there is one conversion
possible that is not allowed with values: Any immutable- or readable-qualified
function can be converted to mutable-qualified, since this only weakens the
requirements on the function itself, not the caller. This is not very useful for
objects containing functions, but it enables passing immutable- or readable-
qualified functions for example as callbacks where a mutable-qualified callback
is expected.

It remains to specify the rules for using other functions from inside of im-
mutable- or readable-qualified functions, although they are not very surpris-
ing. Using a mutable-qualified captured function amounts to modification, and
is thus only allowed in other mutable-qualified functions. An immutable-
or readable-qualified function sees mutable-qualified functions in its scope
as disabled. Similarly, using readable-qualified functions from immutable-
qualified functions is not allowed, since it is equivalent to reading a value that is
not immutable.
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1.3 Syntax details
The syntax is free-form, that is, mostly whitespace-insensitive. It is based on the
C programming language family and its curly-braced code blocks, semicolon-
terminated statements, and some expression syntax, such as = assignment,
. member access, && and || short-circuiting logical expressions, ! nega-
tion, and ?: conditionals. In some other aspects it deviates from most C-family
languages, such as in using juxtaposition for function application ( f x ), treat-
ing blocks primarily as expressions, and treating operators as plain identifiers.
In this section, we only deal with notations that are, to the best of the author’s
knowledge, specific to Kampa.

1.3.1 Partial application
Like in many functional programming languages, a function can only take a
signle parameter/argument. The preferred way, in Kampa, to define functions
with multiple arguments is using tuples, e.g. hypot: (a: Int, b: Int) ->
isqrt(a*a + b*b) (although nothing stops the programmer from using the
curried form, hypot: (a: Int) -> (b: Int) -> isqrt(a*a + b*b) ).

It is still possible to partially apply a function (that is, to fix some items of
the tuple expected by the function without calling it) using a special notation,
x f where f is the function and x is a tuple of some of the arguments. The
function used as the example above can be partially applied using 3 hypot
or (a: 3) hypot . The resulting partially applied function now only expects
the remaining argument. To complete the call, one could write for example
(3 hypot) 4 (or 3 hypot 4 thanks to the left-associativity of calls).

In addition to providing a way to create functions without the need for a
lambda expression, this also allows functions to be called like methods (for ex-
ample list add(elem) ) or like operators ( elem in list ).

1.3.2 Operator precedence2

Arithmetic and comparison operators such as + , & , != , ˜ , and so on, are plain
identifiers. The standard library contains their definitions as regular functions.
As shown in the previous section, they can be called using an infix notation
as a consequence of the partial application syntax. This stops working as in-
tended in more complex expressions. For example, a == b + c*d would parse
as ((a == b) + c) * d .

To avoid this, the language has a mechanism to define operator precedence. To
define + and * to have their usual relative priority, one would use (*) + (*)
in a parser directive. It says: “when * appears on either side of + , it has higher
priority”.

The relation of “having higher priority” is a partial order. The parser must
ensure transitivity [(A) B (A) and (B) C (B) imply (A) C (A)] and verify
antisymmetry [combination of (A) B (A) and (B) A (B) is an error].

Each operator corresponds to two elements in the partially ordered set. One
element represents the operator when on the left, one on the right. Why one

2Part of this subsection is taken over from the original thesis
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Figure 1.1: Examples of macros

// definition :
// - parentheses mean literal parentheses
// - curly braces mean statement
// - identifier without curly braces means expression

?. "if" (COND) {THEN} = COND ? { THEN; } : { }
?. "if" (COND) {THEN} "else" {ELSE}

= COND ? { THEN; } : { ELSE; }
// use:

if(x != 0) {
if(x < 0)

println (" Negative ");
else

println (" Probably positive ");
}

element is not enough can be seen from the following example (assuming the
usual rules): elements + and - could not be compared. In x+y-z , + has
priority, but in x-y+z , it is - . But if we do distinguish the sides, (+, L) has
priority over (−, R), and (−, L) has priority over (+, R).

In Kampa, one writes this as (-) + () and (+) - () . It is also needed
to relate (−, L) and (−, R), so that x-y-z is unambiguous. With (+, L) and
(+, R) it is irrelevant for integers, but not so for floats and strings. This yields
two additional rules: (-) - () and (+) + () . All four rules can be expressed
as one: (+ -) + - () . The opposite associativity would be written () A (A) .

1.3.3 Macros
Macros provide a way to extend the syntax with custom constructs. They are
based on the substitution of syntax trees (as opposed to arbitrary computation or
joining token streams). A macro definition consists of a pattern and its replace-
ment. The pattern is just a sequence of keywords, parameters, and some other
tokens. The replacement is a statement containing placeholders corresponding to
the parameters. Figure 1.1 shows two example definitions and their uses.

A macro cannot be recursive, but it can use other macros in its body, in
which case they are expanded once during the definition. In case of nested macro
invocations, the innermost is expanded first. The result of an expansion is not
further processed.
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2. Analysis and design
The goal of this thesis is to push the Kampa language closer towards practical
usability. Practical usability depends on many aspects. Besides properties of the
language itself, these include tooling, availability of libraries, and even external
factors (adoption, community). Implementing tools such as IDE support with
autocomplete makes for a thesis of its own. Similarly, implementing a compre-
hensive library is beyond the scope. The main focus of this thesis will be the core
language.

When Kampa was first designed and implemented, the only code written in it
was a set of eight source files, only three of which implemented some functionality
(the rest were tests). The functions in the source files worked mostly in isolation,
taking only numbers and simple arrays (mostly strings) as their arguments. How-
ever, for practical use, just implementing loops and arrays correctly is not enough.
There are several limitations and inconveniences, some already mentioned in the
original thesis, others only discovered later. They do not have much in common,
except that they all limit the language’s expressivity or readability, with some
even forcing the programmer to use unreasonable workarounds.

This chapter presents a detailed list of these limitations and proposes potential
solutions, also exploring further ways to extend the language. However, the only
way to verify the suitability of the modifications is by using the language to write
practical software. While it is still not possible to write application or system
software due to the lack of advanced IO and standard libraries, the libraries
themselves can already be considered practical if they are at least as capable as
their counterparts in more widespread modern programming languages. As such,
we will use the ability to implement practical libraries as a measure of practical
usability.

2.1 Syntax deficiencies
This section describes some improvements that need to be done on the syntactic
level. While they are not of any theoretical interest, they are important in making
the language at least writeable (and ideally also readable).

2.1.1 Type instantiation

One intended property of the syntax is that types are constructed using the
same syntax as their values. For example, the type of [x: 42, y: 43] can be
written as [x: Int, y: Int] and the type of succ: (x: Int) -> x+1 can
be written as succ: (x: Int) -> Int . However, one (much more important)
feature of the language is that types are values as any other (they are so-called
first-class). This means that Int in the above examples is a regular variable that
just happens to have a Type type. The above example, [x: Int, y: Int] ,
could equally well mean [x: type object, y: type object ] . There needs
to be a rule or a set of rules that dictate when Int refers to the type object and
when it refers to an instance.
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(1) Perhaps the cleanest approach would be to specify that Int always refers
to the type object. To describe an unspecified value of the type, one would have
to explicitly instantiate it (e.g. Int() ). On the other hand, this is also the least
practical approach, as it causes unnecessary clutter even in contexts where using
the type object would not be sensible, such as in function parameter specification.
E.g. in the (x: Int) -> x+1 example, x is obviously an integer, not the integer
type. There should be no reason to write (x: Int()) -> x+1

(2) This leads us to a second possible approach: to distinguish between con-
texts where type names refers to type objects and contexts where they describe
values of that type. There also has to be a way to override the default.

(3) The third approach is to always interpret type names as values of the type
in question, never as type objects. As in previous case, there has to be a way to
explicitly request the type object.

Currently, Kampa takes the second approach: it distinguishes between type
expressions and value expressions. In a type expression, a type name refers to
a value of that type. In a value expression, the type name is treated as any
other name (thus evaluating to the type object). Function parameters, block
headers, and declarations are parsed as type expressions, while regular expression-
statements and function return values are parsed as value expressions. To include
a value in a type expression (e.g. in a variable declaration), the programmer may
specify a default value. Default value is a property of a type. A type with a
default value is created using = . For example, the expression Int = 5 when
used as a type expression means “a new type that is identical to Int , but has
a default value of 5 .” The type may be omitted and is then inferred from the
right-hand side.

This requires some special cases (e.g. for function declarations) and the be-
havior is counterintuitive in some cases, but the most important disadvantage
becomes apparent when attempting to use generic types. Consider for example
a simple type constructor List: (?) -> (?) . List(Int) works just fine. As
usual, the function call argument is parsed as a value expression. The type name
Int is thus not expanded and it continues being a type object, which is a valid
argument for a ? parameter. However, for the exact same reason, (Int, Int)
will evaluate to a tuple of two types, not the type of a tuple. As such, it will not
be a valid argument for List and will not compile.

To create an List of (Int, Int) , one has to write List(?(Int, Int)) .
The (?...) construction can be seen as a counterpart of <...> of C++ and
its descendants. For consistency, it would then be reasonable to also write
List(?Int) instead of List(Int) . If all user programs followed such a con-
vention (or if they were forced to), it would mean that type names would never
appear in value expressions at all.

However, instead of forbidding value expressions with type names in them, it
is possible to give them a more useful definition. As described above, the main dif-
ference between type-expressions and value-expressions is their treatment of type
names. If the definition of value-expressions is updated to match type-expressions
in this respect, the main reason to distinguish between the two disappears. This
change means essentially switching to the last of the three approaches outlined
in the beginning of this section.
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To summarize this and related changes:
• As before, the result of a ?expr is always a type object. However, the

expr inside of it can now be any value-expression. If it indeed is a value,
the value is discarded (e.g. ?42 is an equivalent of ?Int : the type object
describing the integer type).

• Type names are now always expanded. The result of the expansion is an
invalid value of the type in question. An invalid value can be used in the
same way as a regular value of the same type, but only in a context where
the value is not required (such as the ?... expression). For example,
?f(Int) or ?f(42) is the return type of f when called on an integer
argument.

2.1.2 Block expressions
Block expressions were originally intended as a multi-purpose tool. In addition
to grouping statements, they could also be used to construct and initialize a
value. Figure 2.1 shows a simple example of this. Furthermore, they were able
to extend the value and its type with additional members (thus using the value
as a prototype), as shown in Figure 2.2.

However, the full power of such initialization statements was never used. In-
stead, most if not all of the use-cases fell into one of the following three categories:

1. Plain blocks without any header, just the output declarations in the body
(like in the makePen function in Figure 2.2).

2. Blocks with header whose body never adds any additional members, and
which use the return statement instead of assigning to the fields individ-
ually. For example, the Int in answer: () -> Int { return 42; } is
a block header.

3. Interface implementation, as in the expression-tree example in Figure 2.1.
The highest cost is paid by code in category 2. Specifying the type in the

header introduces scope variables that the body is never going to assign or use.
Worse, their names can be seen nowhere in the function (only in the defini-
tion of the type) and they will often collide with names used by the function
itself. For example, a function like makeStats: (min: Int, max: Int) ->
Stats { return (min, max); } will accidentally use the uninitialized min
and max from its Stats return value instead of the passed parameters. This
scope extension could be made explicit, which would solve the problem on the
part of the developer writing the code. However, unless it explicitly states which
variables are imported, it does not help with reading.

If we (for a while) only consider categories 1 and 2, we could remove the scope
extension altogether. This basically separates the body from the header. Now,
the header is absent in 1, and serves just as an explicit type annotation in 2. We
can redefine the expr { statements...; } syntax to mean exactly that: an
explicit type annotation of the block’s value (it is, after all, how everybody would
read it in 2). Now it is possible to convert all code from category 3 to category 1,
preserving the header as a type annotation that confirms the block body indeed
implements the interface correctly.
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Figure 2.1: Initializing a newly constructed value

// type definition
Stats: ?( min: Int , max: Int );

// creating and initializing an instance
collectStats : (N: Int , values: [Int ...N]) -> Stats {

min = INT_MAX , max = INT_MIN ;

for(i: = 0; i < N; i += 1) {
if(values[i] < min)

min = values[i];
if(values[i] < max)

max = values[i];
}

}

// type definition
Expr: ?(

eval: () -> Value ,
toString : () -> String ,

);

// implementation
makeTimes : (left: Expr , right: Expr) -> Expr {

eval = () -> left.eval () * right.eval ();
toString = () -> "(" + left. toString () + "*"

+ right. toString () + ")";
}

// implementation
makeConst : (value: Value) -> Expr {

eval = () -> value;
toString = () -> /* ... */;

}
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Figure 2.2: Extending a type (example taken from Lieberman [2])

// prototype
makePen : ( initialX : Num , initialY : Num) -> {

. [x: = initialX , y: = initialY ];

. draw: (newX: Num , newY: Num) -> {
/* ... */;
x = newX;
y = newY;

}
}

// extending the prototype
makeTurtle : ( initialHeading : Num) -> (= makePen ()) {

. [ heading : = initialHeading ];

. forward : (d: Num) -> {
draw(x + d*cos( heading ), y + d*sin( heading ));

}
}

2.1.3 Statements and expressions
As promised in the syntax summary in Section 1.1, this thesis removes the dis-
tinction between expressions and statements. This allows the developer to use
fewer mutable local variables, alleviates the need for additional braces around
individual commands used in expression contexts, and also makes the language
more regular.

As of now, Kampa has five kinds of statements (quoting the original thesis):

1. An expression statement consists of a single expression, whose value
(result) is not used. These are used mostly for calls and assignments.

2. A declaration also consists of a single expression, but this one is parsed
as a type, which is then used for a new local variable.

3. Macro invocations are replaced with their definition by the parser.

4. Restricted goto statements are intended for use in macro definitions.

5. Statement labels serve as targets for goto statements.

There are two types of goto statements: one jumps before the labeled state-
ment (similarly to goto in C), the other jumps after the labeled statement (sim-
ilar to break label in Java or JavaScript). The restriction on the goto statement
is that any label may only be used from inside of the labeled statement itself. This
means that it cannot be abused as badly as an unrestricted goto. It will never
skip over definition or jump into block (or worse, into a loop, making the function
not only hard to read, but also hard to work with in an optimizing compiler).
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To remove the distinction between expressions and statements, it is enough
to define the value to be returned by each of them, and to redefine code blocks
as lists of semicolon-terminated expressions, not statements.

Goto

The most precise type for goto is the empty type (a type that has no instances),
since it never yields a value. Kampa does not have a dedicated empty type,
although an empty type could be expressed in various ways, such as an array of
a negative size. The availability of a value of this type could then also be used by
the compiler as a proof of unreachability. Detecting unreachability is necessary
to avoid rejecting programs for “missing” return values and similar – it is not just
for optimization. However, detecting whether a type is empty is generally a hard
problem,[3] and treating just some “randomly” selected cases (such as the array)
specially is less elegant than just using control-flow analysis. Therefore, until a
dedicated empty type is specified and implemented, the type-checker will use the
control flow.

At this point, typing goto using an empty type is not necessary and we could
use a more practically useful type, which is (T: ?) -> T , a function that takes
a type variable and returns a value of that type.1 On the other hand, there is no
significant difference between calling the (T: ?) -> T function with the desired
type as a parameter and just “casting” an arbitrary value to an arbitrary type,
which is allowed by the type checker in unreachable code.

As such, using the empty type or the mentioned generic function as the type
of goto has no advantages over any other type. For now, the type of goto will be
just an empty tuple, as it is easier to generate the code for it.

Labels

Label is not just one mark in the code; it wraps an entire statement. If we replace
statements with expressions, label becomes an expression that wraps another
expression. As said above, there are two uses for labels – two types of goto.
A goto-start (repeat) does not matter much, it could be seen just as a detail that
does not influence its type. On the other hand, a goto-end (break) could leave
the value uninitialized, so the label expression must not blindly return the type
and value of the wrapped expression.

One possible type for a label expression that contains a break is the empty
tuple. This covers the usual case in imperative programs, where the wrapped
expression is likely a block with no output declarations. However, it discards the
advantages of using an expression in the first place: to be able to return a value.

Another option is to require a value to be embedded in the break expression.
The label expression would then evaluate either to the result of the wrapped
expression (if it terminated normally), or to the value in the break that terminated
it early. The type would then be the union of the types of the individual breaks
(“union” in the sense of “the smallest common superset”), similarly to the type
of a conditional expression.

1Note that this type is not empty – it is inhabited, e.g., by a function that recurses forever.
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A third option is to (again) require the value in the break expression, but only
use the type of the wrapped expression for the label expression. The type checker
would then only verify each break expression separately to have the correct type,
but not attempt to generalize in case of mismatch.

The first of the three options is evidently inferior to the remaining two. How-
ever, none of the latter two seems better than the other. Taking the union over
all breaks can spare the user an unnecessary type annotation, but it involves
non-local effects: a single added or removed break can change the type of the
whole expression, and potentially the whole function. Using just the type of the
wrapped expression may restrict the type too much, especially if the end of the
expression is unreachable without a break.

Currently, the interpreter uses the third approach, particularly for its ease of
implementation. If it turns out that this causes it to reject too many essentially
correct programs, it can always be switched.

Macros

A macro is a shortcut for a statement of another kind. Once all other statement
kinds are replaced with expressions, the change is purely syntactic.

Declarations

The only2 difference between a declaration and an expression statement is that
the declaration introduces a name to the scope. For example, answer: 42;
introduces a variable answer with a value of 42 . It is on itself already a valid
expression with a value of (answer: 42) .

2.1.4 Non-mutability
Note: As explained in subSection 1.2.2, the language has three main qualifiers:
mutable, immutable, and readable. In the following few paragraphs, we will
use the term non-mutable to refer to both immutable and readable.

The language has deep non-mutability only. When a reference (box) is non-
mutable, then all data it points to are non-mutable as well. Conversely, for the
data to be mutable, the reference itself must be mutable too. This was a known
negative consequence, but the only solution seemed to be adding more variants
of the qualifier.

Qualifying pre-existing and new types

There main reason to use deep non-mutability was to allow creating an non-
mutable parameter, variable, or other value using a pre-existing type definition
that itself does not use any qualifiers (and may involve references). For example,
consider a search tree structure. It might have a relatively complex type involving
recursion and possibly several implementation details on which regular users of
the structure should not depend. There will probably be functions that need
to modify the tree and functions that only look up its keys. The second group

2After type- and value-expressions are unified, as per subSection 2.1.1
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Figure 2.3: Initializing a newly constructed value

// type definition without any qualifiers
Type: ?[[[ Int ]]];
// using the type definition , with IMMUTABLE qualifier
object: \Type;

// writing the type in -place , with IMMUTABLE qualifier
object: \[[[ Int ]]];

should only view the structure as readable. This means that they should have
a parameter that uses the type definition, just with an additional qualifier.

Now, qualifiers in Kampa are essentially type constructors: they take a type
and yield another type. There is no difference between qualifying a type taken
from a type definition and qualifying an ad-hoc type created in-place (see Fig-
ure 2.3). Therefore, if we expect the qualifier to apply deeply in the first case, we
also have to expect it to apply deeply in the second case.

This thesis implements a better solution. Instead of considering qualifiers as
type constructors, the parser now takes them as part of the expression at hand.
Only a few selected expressions can have a qualifier ( □ here stands for any
qualifier):

1. identifier (e.g. □ TypeName )
2. member access (e.g. □ foo.TypeName )
3. call (e.g. □ GenericName(args) )
4. named (e.g. □ bar: TypeExpr )
5. box (e.g. □ [TypeExpr] )
Bullets 1, 2, 3 are exactly the cases where we need deep non-mutability to

avoid repeating the type definition just to change all the qualifiers in it. Therefore
the effect of the qualifier in these cases remains deep.

The remaining two cases are counterparts to values that can theoretically
appear on the left-hand side of an assignment. The counterpart of named ex-
pression (4) is member access. For example, the qualifier on □ bar: Int de-
termines whether the corresponding variable/member assignment ( bar = 42 or
object.bar = 42 ) is valid or not. The counterpart of a box expression (5) is
unboxing (dereference). For example, the qualifier in object: □ [Int] deter-
mines whether dereferencing and then assigning it ( object[ ] = newValue ) is
valid or not.

The qualifier in bullets 4 and 5 is shallow; it does not influence the contents
(i.e. the type TypeExpr ). If the programmer needs to, they can always just add
another qualifier to it.

This gives us all the flexibility it realistically can. When building a new type
(whether in a type definition, or ad-hoc in a function parameter), we can fine-tune
every detail as appropriate. When using a pre-existing type, we have to assume
it is already well-designed, and only choose from a set of reasonable options (the
three qualifiers provided by the language).
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The default qualifier

Another motivation for deep non-mutability was to avoid mistakes where a com-
pletely immutable object is intended, and the immutable qualifier is used, but
inadverently not at all levels. Such errors would lead to unexpected type in-
compatibilities (e.g. a function that cannot be called with an immutable object
although it never modifies it anyway) or false assumptions when reading other
programmer’s code (e.g. an immutable list of lists, giving the impression of a
completely immutable structure, despite the inner lists being mutable).

However, once we replace deep immutability with the design described above,
we can change the default to readable. This was not practical originally, since
almost no explicit mutable would have any effect due to being overriden by
some implicit readable from above (unless mutable was dutifully used at all
levels). Without deep immutability, this is no longer a problem.

2.1.5 Summary
This section summarizes the changes by comparing the old syntax (left) with the
new syntax (right).

Local variable definition

// immutable is backslash
\answer: = 42;

// mutable is default
answer: = 42;

// immutable is default
answer: 42;

// mutable is at -sign
@answer : 42;

Import

// named
foo: = \"foo.kampa";

// into scope
: = \"foo.kampa";

// named
foo: \"foo.kampa";

// into scope
\"foo.kampa";

Interface definition

StringBuilder : ?(
append: String @-> (),
build: () -> String ,

);

StringBuilder : ?{
. append: String @-> ();
. build: () -> String;

}

Note: The old syntax is still possible, but using a braced code block makes it
consistent with the implementation (see the next pair).
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Interface implementation (constructor)

// should work but doesn ’t
sb: () -> @StringBuilder {

// ...
append = String @-> {

// ...
}
build = () -> String {

// ...
}

}
// workaround ( unannotated )
sb: () -> {

// ...
. append: String @-> {

// ...
}
. build: () -> String {

// ...
}

}

// works
sb: () -> @StringBuilder {

// ...
. append: String @-> {

// ...
}
. build: () -> String {

// ...
}

}
// works but unnecessary
sb: () -> {

// ...
. append: String @-> {

// ...
}
. build: () -> String {

// ...
}

}

In the old syntax, the StringBuilder already creates uninitialized append
and build . The assignments ( = ) are meant to initialize them. The implemen-
tation is however too limited to allow it. The workaround ignores the interface
and just creates a type that happens to be compatible.

In the new syntax, the annotation is truly just an annotation. Whether it is
omitted does not affect how members are defined (always : ).

Macro definition

// distinguish expressions
// and { statements }
?. "for"({ INIT}COND ’;’INC)

{BODY} = {
INIT;
while(COND) {

continuable BODY;
INC;

}
}

// expressions everywhere ,
// also simplified syntax
?. "for" (INIT; COND; INC)

BODY = {
INIT;
while(COND) {

continuable BODY;
INC;

}
}

Note

The rest of this thesis will only use the new syntax, even when referring to the
old implementation.

20



2.2 Implementation limitations

The language is hobbled by its implementation more than by any of the above
deficiencies. Here we present just a brief summary. A more detailed description
can be found in Chapter 3.

As already the original thesis states, arrays on the stack (i.e. in local variables)
are not supported. The problem is more general, though. Objects on the stack
must have constant size. This means that values of unknown types (specified by
a type variable) cannot be placed in local variables. Likewise, it is not possible to
implement a function that takes a parameter of unknown type, although it can
take a concrete type and then be called in a context where the type is unknown
(e.g. a comparator parameter – it is implemented for integer and then passed to
a generic sorting function).

Then there is a whole class of limitations concerning dependent type checks.
The element count of an array must always be an immutable variable (either
a local variable or, in type definitions, a neighboring tuple member or function
parameter). It is not even possible to use numeric literal expressions for array
sizes, everything must have a location. The reason for this is that the type
checker cannot verify value equivalence, just memory locations. It considers two
values equal if and only if they have the same location. In value expressions,
the location is just the position in the stack frame. In type expressions, it can
additionally be another tuple member or a function parameter within the same
expression (referred to as sibling type dependency in the implementation). Even
allowing it and accepting the fact that it will not be compatible with anything
(possibly even itself) would be unsafe. This is because the array element count
must be remembered for later bound checks and size and offset calculations. If
this restriction were not in place, a size calculation could accidentally re-evaluate
a call, which could be an expensive, or even side effectful, operation.

Finally, while the implementation supports generic functions, it does not allow
generic types. In Kampa, a generic type is written as standard function that
returns a Type. However, when attempting to use the function’s parameter in
the returned type (something one would want to do in practically all cases), it is
reported as an error: “Dependent type not allowed here”. This is a known and
intentional restriction, dictated by the internal representation of types.

Chapter 3 remedies all these limitations. Here, in the following sections, we
design features for the improved implementation.

2.3 Missing language features

This section analyzes ways to extend the language. The language can be used
without most of them, but not as efficiently.

Overloading and parameter inference refer to individual features, but the rest
are more like use-cases. We will analyze what prevents these use-cases and what
needs to be added in order to support them.
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2.3.1 Overloading
Because member functions are only used for polymorphism, most functions are
non-members. Even though this means there will be a large number of functions in
the scope (from imports), this should not pose a problem. There is no significant
difference between selecting functions based on the type they are member of,
versus based on the first parameter type. Of course, this assumes functions can
be overloaded.

The elements eligible for overloading must be expressions, not just identifiers.
There are two reasons for this. First, the left-hand side of a call (i.e. the function)
is generally an expression, not necessarily just an identifier. The scope lookup is
done by the identifier expression itself, not by the call expression. Treating calls
that happen to have an identifier (or even a member access?) on the left-hand
side specially would lead to unnecessary irregularities in the syntax. It would
therefore simplify neither the specification nor the implementation. The second
reason to overload on expressions is that there are several other expression types
we might want to overload:

Identifiers and member accesses (already mentioned and included just for
completeness).

Partial applications. In a + b (i.e. (a +) b ), there might be several al-
ternatives of + , some of which might only differ in the second param-
eter. For example, we want to allow timeDelta + timeInstant and
timeDelta + timeDelta to call different + .

Tuples. Tuple expressions are often used as arguments to functions. Some com-
ponent of a tuple could be (in the simple case) an identifier referring to
an overloaded function. The correct overload can only be chosen after the
tuple is passed to the higher-order function.

Functions. Overloading could be used as a way to infer parameter types in lamb-
da expressions. For example, the lambda in list map((a: _) -> a.x)
could have its type inferred from the type of the second parameter of map
(the _ in the example is not actual Kampa syntax).

This does not mean all expressions should be overloadable: at the very least,
values and their types must be unambiguous when entering the scope, since they
can potentially be used multiple times in different contexts and these contexts
must not influence each other. Then there are expression types where the distinc-
tion is not as clear. For example, allowing whole call expressions to be overloaded,
that is, deciding what function to call according to the context, could allow over-
loading curried functions, but it could also make the code hard to understand.
For some other expressions, there might not even be any reason to allow over-
loading (except that allowing it is as easy as forbidding it). This includes block
expressions, assignments, member accesses.

2.3.2 Parameter inference
Calling functions with generic/dependent parameter types is currently unnec-
essarily verbose and redundant. For example, to apply a function defined as
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qsort: (T: ?, N: Int, array: @[T...N], less: (T, T) -> Bool) -> ()
to the array foo: @[Int...42] , one has to write qsort(?Int, 42, foo, <) .
Passing anything other than ?Int and 42 for the first two parameters results
in a type error. This check generally does not even have a significant potential
to catch errors. It is just an excuse to “examinate” the programmer.

However, parameter lists are just tuples like any other and type/length pa-
rameters are just tuple items like any other. They cannot be just made optional;
it would lead to ambiguities and force the type checker to backtrack too often.
Requiring that they should always be omitted would in turn cause “spooky action
at distance”, where adding items to the end of a tuple (adding parameters to a
function) could cause items in the beginning to become inferable, and thus re-
quired to be omitted. Additionally, it would disable forwarding whole parameter
tuples, since they would always have to be stripped of inferable items. As such,
the inference must be explicit.

One possible solution would be to make it explicit at call-site, adding a special
expression, say _ , that would mean a value that can be inferred from the con-
text. Writing it is quite bearable in the above example: qsort(_, _, foo, <) ,
but it may be confusing for readers. Specifically, it tells them nothing about the
function type anyway and only leaves them wondering why are there exactly two
inferred parameters and what are they. To add to this, it becomes especially
inconvenient in generic abstract data types. Consider for example a method of a
generic list: get: (T: ?, this: List(?T), index: Int) -> T . To call it us-
ing the infix notation, one would have to write (_, myList) get(5) , compared
to myList get(5) on a non-generic list.

For the above reasons, inference is made opt-in on the definition site. To
make a parameter inferable, it has to be marked as such. The dot charac-
ter ( . ) was chosen as the marker, as it is easy to type and does not visu-
ally clutter the definition. For example, after the qsort parameter is updated
to (.T: ?, .N: Int, array: @[T...N], less: (T, T) -> Bool) , the func-
tion can be called using qsort(foo, <) .

There may still be reasons to call the function with explicit parameters, for
example to force a conversion. As such, there needs to be a way for the callers to
decide to override the . . Here, we use the fact that only named parameters can
be marked as inferable (as there is no way to use unnamed parameters as type
dependencies). To explicitly pass an otherwise inferable parameter, the call site
can use the parameter name. For example: qsort(T: ?Int, N: 42, foo, <) .
This also allows unambiguously specifying some parameters and leaving others
for inference.

Implicit parameters

Kampa does not support type constraints and no such support is currently
planned. When a function takes a type variable parameter such as T: ? in
the qsort and get examples above, the parameter can represent any type of
an invariant size. Nothing else is known about it. This means that, given an
object of such a type, it is not possible to use it in any other way than copying
it into memory locations of the same type and passing it as function parameters
of the same type.
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As a consequence, if a generic function needs to do anything else, such as
accessing the object’s members, using its methods, or doing anything else specific
to that type, it needs to accept another parameter (usually a function) that
performs this action for it.

An example of this is the less parameter in the qsort example above.
qsort cannot directly compare instances of T , so it needs to accept a parameter
that does the comparison.

Many languages support various forms of type constraints. In Java and C#,
type parameters can be constrained to implement an interface. In Haskell, a
similar function is served by type classes. In Rust, it is traits. In the following
text, we will use the term trait to refer to all of these.

One property all these have in common is that there can be only one trait
implementation per a (type, trait) pair. However, for many such pairs there are
more possible implementations. Therefore there also needs to be a way to use a
different implementation for an existing type. To continue the qsort example:
there may be multiple possible orderings on one type, and thus multiple possible
less s. In none of the mentioned languages can traits solve this. As such, the
standard sort function always comes in at least two versions:

• Java has Arrays.sort(Object[]) which requires all elements to imple-
ment the Comparable interface (checked at runtime on individual ele-
ments), and it has Arrays.sort(T[], Comparator<? super T>) .

• C# has Array.Sort(Array) , again checking at runtime all elements imple-
ment the IComparable interface, and Array.Sort(Array, IComparer) .

• Haskell has sort :: Ord a => [a] -> [a] (using the type class Ord )
and sortBy :: (a -> a -> Ordering) -> [a] -> [a] (using a com-
parison function a -> a -> Ordering instead).

• Rust has sort(&mut [T]) where T : Ord and sort_by(&mut [T], F)
where F: FnMut(&T, &T) -> Ordering .

Similarly, all other functions requiring an ordering must come in two variants.
Java and C# will sometimes accept a null comparator in which case they cast
the elements to the comparable interface.

As said above, in Kampa, there is no way to constrain a type variable to any
equivalent of Comparable or Ord . Instead, the equivalent of Comparator or
a -> a -> Ordering (i.e. the less function) is the only option. To accomo-
date for the cases where there is indeed a sensible default ordering and it is the
one the caller of the library needs, the language should support selecting this
default implicitly. This can be done by looking up a matching comparator in the
caller’s scope. As with inferred parameters, there must be a way to distinguish
parameters that are always implicit from ones that are never implicit. The same
notation as for inferable parameters ( . ) can be used, since it does not make sense
to make parameters that can be inferable implicit instead. For a value in scope
to be passed as an argument to an implicit parameter, its name must match and
its type must be convertible to the parameter type.

A similar mechanism is found in the Scala programming language, where it can
be considered complex, dangerous and unreadable when not used judiciously[4].
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Figure 2.4: Encapsulated list using closures

makeList : (size: Int) -> {
// a local variable captured by the functions below
elems: @["N/A"... size ];
// three independent functions , returned as a tuple
. getSize : () -> size;
. get: (i: Int) -> String { return elems[i]; }
. set: (i: Int , s: String) @-> { elems[i] = s; }

}

The most severe problems seem to be caused either by interactions between im-
plicit parameters and implicit conversions, or by implicit conversions alone. These
are not applicable to Kampa, since Kampa does not have any user-defined im-
plicit conversions. Another subtlety of Scala implicits is shadowing, where even
an incompatible non-implicit value can shadow another value (of a possibly com-
patible type). Probably because of this, the authors of the cited article suggest
not to use the name in the resolution at all. However, the name can be used
to significantly limit the set of candidates for the implicit argument. Kampa
could solve the problem of shadowing by using overload resolution (Section 2.3.1)
instead, thus never allowing an unrelated value to hide a valid candidate.

2.3.3 Encapsulation
Originally, the principal means of encapsulation in Kampa was closures. For ex-
ample, a simple fixed-size string list could be implemented as shown in Figure 2.4.
The type of such a list is a tuple of three functions, exposing no implementation
details. The source code of the implementation can be modified at any time
without breaking any users. It is even possible to choose between multiple im-
plementations at runtime by using different constructors.

However, there are also some disadvantages:

• Even if we do not plan to use the advantage of the dynamic polymorphism,
the virtual calls will still be there.

• Each closure has its own copy of size and two of them have their own
copies of the elems pointer, which is relatively wasteful.

• There is no way to express the relations between the objects’ implementa-
tions, or even that two objects share the same implementation. This is not
important in the list example, but it becomes an obstacle in some others,
see Figure 2.5.

A much more flexible solution is based on existential types[5]. An existential
type in Kampa is a tuple with a type variable as one of its items and with other
items using that type variable. Figure 2.6 shows the list example translated to use
existential types (note that this is not a literal translation, but a useful one). Now
we can use ListsImpl.makeList(...) to create a list and ListsImpl.List to

25



Figure 2.5: Filesystem interface using closures

FileSystem : ?{
. getFile : (path: String) @-> File;
. move: (from: File , toDir: File) @-> ();
// ...

}

File: ?{
. isSameFile : (other: File) @-> Bool;
// ...

}

refer to the type. The type ListsImpl.List is a type variable. One cannot use it
directly. Therefore, changing its implementation is again backwards compatible.
Let us now compare this to the the closures approach:

• Each user can choose to refer to the ListsImpl constant directly or to
take a parameter of type Lists . The former case can be easily compiled
without any virtual calls, while the latter retains the possibility of dynamic
polymorphism.

• An instance of type ListsImpl.List takes the same space as the plain
tuple used as its definition. For the polymorphic case, passing the Lists
parameter with it takes additional 6 pointers. (Ideally, these could be in a
shared immutable box, but this is not currently supported.)

• The relations between objects’ implementations can be expressed easily. See
Figure 2.7. File types of different FileSystem implementations will be
considered incompatible.

Limitations

One minor limitation was that the Lists interface in Figure 2.6 could not be
written as a block, it was necessary to use the tuple syntax. This was fixed in
Section 2.1.1 by unifying type- and value-expressions.

Worse, the conversion on the very first line of the implementation, which con-
verts the whole block to Lists , is not allowed. This is because the type checker
does not support existential generalization, i.e. replacing some/all occurrences of
the concrete type (size: Int, elems: @[String...size]) with the abstract
type List . A workaround is possible by using its inverse, universal instantiation.
One first has to define an identity function on the type Lists (the interface type),
i.e. Lists -> Lists . It is then possible to pass the whole block with the imple-
mentation to the function. The type checker instantiates (specializes) the func-
tion for the concrete List type, (size: Int, elems: @[String...size]) ,
and will thus accept the rest of the implementation as its parameter. In the
body of the function, the whole parameter already has the type Lists and can
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Figure 2.6: Encapsulated list using existentials

// the interface as an existential type:
Lists: ?{

. List: ?;

. makeList : (size: Int) -> @List;

. getSize : (this: List) -> Int;

. get: (this: List , i: Int) -> String;

. set: (this: @List , i: Int , s: String) -> ();
}

// a concrete implementation :
ListsImpl : Lists {

. List: ?( size: Int , elems: @[String ... size ]);

. makeList : (size: Int) -> @List {
return (size , @["N/A"... size ]);

}
. getSize : (this: List) -> this.size;
. get: (this: List , i: Int) -> this.elems[i];
. set: (this: @List , i: Int , s: String) -> {

this.elems[i] = s;
}

}

Figure 2.7: Filesystem interface using existentials

FileSystem : ?{
. File: ?;
. getFile : (path: String) @-> File;
. move: (from: File , toDir: File) @-> ();
// ...
. isSameFile : (this: File , other: File) @-> Bool;
// ...

}
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be just returned unchanged. Obviously, the above workaround is unnecessarily
complicated and leads to large amounts of boilerplate code. This thesis adds exis-
tential generalization as an implicit conversion, meaning the cast in the example
is allowed.

The need for the cast

There remains one unresolved problem. Without the cast triggering the exis-
tential generalization, the ListImpl.List type definition is essentially just an
alias for the concrete type, and all the methods operate on the concrete type.
In many cases, this does not matter since the cast will be in place anyway to
ensure that the implementation satisfies the interface. However, in some cases,
the programmer does not need a separate interface specification. For these cases,
there should be a way to omit the cast and still end up with an existential type.
However, there is currently no way to do this.

To understand why the current design is wrong, let us compare the following
two “flavors” of existential types:

Array: ?{ Object: ?{
. N: Int; . T: ?;
. new: () -> Int ...N; . new: () -> T;

} }

These two types are very similar:

• Each of them is a tuple of two items.
• In both the type of the second item depends on the value of the first item.
• We do not see the actual value of the first item in either of the types.

An “implementation” of the above types could look like this:

ArrayImpl : { ObjectImpl : {
. N: 3; . T: ?(Int ,Int ,Int );
. new: () -> Int ...N { . new: () -> T {

return 0 ... 3; return 0, 0, 0;
} }

} }

Note that the type of N is still just Int . The implementation does not leak its
detail in its type. On the other hand, the type of T will be ?(Int, Int, Int)
(i.e. a Type type) instead of ? (the Type Variable type). We can fix this incon-
sistency in the language. And fixing it does not even break the example. The
ObjectImpl code would still be compilable even if the expression had the type
? instead. The type checker could still see its definition locally, in the same way
it can see that N = 3 locally.

But before we do away with Type types entirely, let us consider one more
example. We will add parameters to the N and T . In the original Lists
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example, this would be necessary to make the lists generic. In this example, there
is no real need for any type parameters, so we will just use empty parameter lists.
The interfaces now look like this:

Array: ?{ Object: ?{
. N: () -> Int; . T: () -> ?;
. new: () -> Int ...N(); . new: () -> T();

} }

And these are the corresponding implementations:

ArrayImpl : {
. N: () -> 3;
. new: () -> Int ...N() {

return 0 ... 3;
}

} ObjectImpl : ?{
. T: () -> ?(Int , Int , Int );
. new: () -> T() {

return 0, 0, 0;
}

}

ArrayImpl now does not compile, since N() cannot be proven equivalent
to 3 (the function conceals this fact). On the other hand, ObjectImpl works,
since the type of T is () -> ?(Int, Int, Int) (not just () -> ? ), and thus
the type of T() is ?(Int, Int, Int) . There is no need to prove anything
about values if all we need is already in the type. If we replaced Type types with
the Type Variable type, neither would work.

This just confirms that there indeed is an inconsistency that needs to be
rectified, in fact, two of them:

• The value of a parameterized definition (done using a function, () -> ... )
is opaque to the type checker, while a definition without a parameter list
(i.e. without a function) is transparent.

• As said above, integral constants are never part of the type, while type
constants may or may not be part of the type (and they are by default).
The reason is mostly historical. This can be fixed by just removing Type
types. However, the previous must be fixed first.

The former was done intentionally, on the premise that functions are the
units of code that should be opaque to the outside code. As indicated by the
parameterized type definition, this is not necessarily true. And conversely, the
ObjectImpl and ListsImpl definitions from the above examples should be
opaque to the outside, but they are not. There are ways to cast the abstract data
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type away and access the internals, provided we do this from inside of the same
function (and the same file).

We should consider other units (not functions) to take over the role of “opaci-
fier”. There are several options:

• Block expressions, including the top level (the file code block).
Advantage: implicitly encapsulates every nontrivial piece of code. Disad-
vantage: it would already be the third feature specific to blocks (in addition
to composing a tuple and type-annotating it).

• Files only.
Advantage: whole files are always encapsulated, no restrictions within files.
Disadvantage: any element of a file is open to the whole file.

• A new expression type.
Advantage: does one thing and does it well. Disadvantage: significant
chance of being underused (omitted out of laziness), no easy way to be put
on a file block.

• The previous two approaches combined.

Except with the third option, there also needs to be some way to suppress
the opacification. This is necessary to continue supporting type aliases, and it
will also allow transparent constants.

Testing these approaches in practical applications will require further work.
While the collection library (discussed later, in Section 4.1.2) is a good test case,
it will also be useful to consider APIs with more interrelated types, such as some
abstract filesystem interface.

2.3.4 Metaprogramming
Kampa already provides two ways to generate programs, but no way to inspect
existing programs.

One form of program generation in Kampa is macros. This should probably
not be extended to allow the inspection of macro parameters, since it would
make the parsing of the language hard, especially when it needs to be done
incrementally and continually, as in an IDE or language server. Additionally,
during the macro expansion phase, the compiler also does not yet know the
types, which means it cannot type-check macro definitions until expanded and
the expansion cannot depend on the types of the arguments.

The other way to generate programs is doing so within the language itself.
Like most general-purpose languages used today, Kampa allows regular programs
to build complex functions out of simpler functions.3 What should be noted here
is that a program can take any value on its input, perform an arbitrary type-safe
computation, and produce an arbitrary program on its output, as a function with
a requested type. However, some metaprogramming techniques (including the
macros mentioned above) can offer more: the functions (or generally any values)

3Whether this on itself constitutes metaprogramming is beyond the scope of this discussion.
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generated by them are not restricted to predefined types. The metaprogram is
able to generate a new type for the value it returns and this new type can be seen
by the type checker.

While it would be possible to hand-write the type and then just generate the
function(s) for it, there are many situations where the type itself is the most
important part of the generated code. For example, automatically generated
interfaces for libraries written in other languages[6] or according to interface de-
scription languages or even external data sources[7]. All this can be done in a
type-safe manner in the language itself if it is powerful enough[8].

Generating types from values

As already mentioned in Section 2.2, it was originally not possible to write a
function that returns a type that uses the function’s parameters. This makes even
the most trivial form of type generation (substitution of parameters) impossible.

This limitation is removed by this thesis, but others remain. Most impor-
tantly, a function that returns a type cannot branch (or, more precisely, if it
branches, then the returned type becomes completely opaque) or recurse. On the
other hand, parts of the type can be selected as elements from an array.

Inspecting types

The changes done in Section 2.3.2 (parameter inference) already enable trivial
cases of inspecting types:

ParamType : (.T: ?, .R: ?, ?(T -> R)) -> ?T;
ReturnType : (.T: ?, .R: ?, ?(T -> R)) -> ?R;

Both functions have only one non-inferable parameter, the function type.
The first two parameters can be inferred from it. For example, if we passed the
type of + to ParamType (i.e. ParamType(?(+)) ) we would get (Int, Int) .
We could also write a function that returns both types in a tuple:

getInfo : (.T: ?, .R: ?, ?(T -> R)) ->
( paramType : ?T, returnType : ?R);

Now, let us generalize getInfo to work on any type, not just functions.
It has to return a type that can accomodate multiple options, because the current
(paramType: ?, returnType: ?) does not make sense for non-functions. We
will call this new type TypeInfo . Its definition is not important for the example.
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For simplicity, we will only add support for Int . We will use overloading, as
discussed in Section 2.3.1.

// a reflective representation for types
TypeInfo : ?/* not relevant for the example */;

// constructors for the TypeInfo type
makeIntInfo : () -> TypeInfo ;
makeFuncInfo : (T: ?, R: ?) -> TypeInfo ;

// overloaded function that converts
// real types to TypeInfo instances
getInfo : (? Int) -> makeIntInfo ();
getInfo : (.T: ?, .R: ?, ?(T -> R)) ->

makeFuncInfo (?T, ?R);

Like this, the TypeInfo for a function would refer to the real types of the
parameter and return value. What if we wanted to use TypeInfo for them
instead?

makeIntInfo : () -> TypeInfo ;
makeFuncInfo : (T: TypeInfo , R: TypeInfo ) ->

TypeInfo ;
getInfo : (? Int) -> makeIntInfo ();
getInfo : (.T: ?, .R: ?, ?(T -> R)) ->

makeFuncInfo ( getInfo (?T), getInfo (?R));

This example would not compile. Neither of the getInfo calls on the last
line is valid. This is because overloads are only resolved once, when the function
that contains them is defined; not for each instantiation separately as in, e.g.,
C++. Nothing is known about T and R at that time.

This is similar to the reason we proposed implicit parameters in Section 2.3.2.
While the current function does not know of any applicable getInfo for either
?T or ?R , the caller does in some cases. Let us make use of this fact and request
these from the caller using implicit parameters.

makeIntInfo : () -> TypeInfo ;
makeFuncInfo : (T: TypeInfo , R: TypeInfo ) ->

TypeInfo ;
getInfo : (? Int) -> makeIntInfo ();
getInfo : (.T: ?, .R: ?, ?(T -> R),

. getInfo : (?T) -> TypeInfo ,

. getInfo : (?R) -> TypeInfo ) ->
makeFuncInfo ( getInfo (?T), getInfo (?R));
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Now, there is no overload resolution even taking place inside getInfo . More
precisely, there is, but it is trivial. getInfo(?T) resolves to call the exactly
matching (and the only matching) parameter .getInfo: (?T) -> TypeInfo .
Analogically with ?R . Figure 2.8 shows how calling such a function could work.

Still, there are several unknowns.

• How to write getItem for named types, e.g. foo: Int ? Currently, pa-
rameter inference can be used to unwrap these, but only if the name ( foo )
is known in advance.

• How to support dependent types? For example, a dependent function
does not match ?(T -> R) for any T: ?, R: ? . Instead, it is, for some
T: ?, R: (?) -> ? , ?(T -> R(T)) . It is almost certain that R cannot
be inferred in this case.

• Can we somehow ensure that the expansion of the implicit parameter stops
even for recursive types? That is, can the type convertor always expand to
a recursive function instead of infinitely recursing itself?

• Should this be even done? There are several advantages, such as supporting
abstract data types well ( getInfo can be written for each), not enforcing
any particular TypeInfo structure and even allowing some functions (e.g.
hashing) to not use getInfo and work with types directly. On the other
hand, it requires quite complex and powerful type conversions (with the
open questions above).

Inspecting expressions

The “pattern matching” used in the previous section is based on the property of
Kampa that (informally speaking) types are transparent by default, while values
are always opaque. A more precise statement can be found on page 28 of the
section on encapsulation. After this inconsistency is fixed, values can be pattern-
matched in the same way as types.

For now, it is possible to pattern-match values using a hack similar to C++’s
std::integral_constant [9, meta.help]. A value can be embedded into a type
by making it a dependency, as shown in Figure 2.9.

Similarly to types, without implicit parameters, there is no way to inspect
more than a constant number of hard-coded patterns.

2.3.5 Coroutines
A coroutine is a function which can pause its execution to be resumed at a
later time. What this “later time” means depends on the coroutine. Usually the
coroutine returns an object to its caller, which then electively does the resumption
by calling a method (e.g. resume [9] or next [10] or send [10]) on the object.
If coroutines are used to implement asynchronous function, the coroutine itself
schedules the resumption to a specific event,[11] usually the completion of a future
(e.g. the completion of a task, or a promise).
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Figure 2.8: Type inspection using inference and implicit parameters

// example type definition
testCase : ?( Int -> (Int -> Int ));

result: getInfo (? testCase );
// resolves to:

// finding the matching overload
// and inferring parameters
getInfo (T: ?Int , R: ?( Int -> Int), ?testCase ,

getInfo : (?T) -> getInfo (?T),
getInfo : (?R) -> getInfo (?R));

// expanding the definitions of T and R
getInfo (T: ?Int , R: ?( Int -> Int), ?testCase ,

getInfo : (? Int) -> getInfo (? Int),
getInfo : (?( Int -> Int )) ->

getInfo (?( Int -> Int ))
);

// finding the matching overload
// in the last parameter
getInfo (T: ?Int , R: ?( Int -> Int), ?testCase ,

getInfo : (? Int) -> getInfo (? Int),
getInfo : (?( Int -> Int )) ->

getInfo (T: ?Int , R: ?Int , ?( Int -> Int),
getInfo : (?T) -> getInfo (?T),
getInfo : (?R) -> getInfo (?R),

)
);

// expanding the inner definitions of T and R
// in the last parameter
getInfo (T: ?Int , R: ?( Int -> Int), ?testCase ,

getInfo : (? Int) -> getInfo (? Int),
getInfo : (?( Int -> Int )) ->

getInfo (T: ?Int , R: ?Int , ?( Int -> Int),
getInfo : (? Int) -> getInfo (? Int),
getInfo : (? Int) -> getInfo (? Int),

)
);

// done: all getInfo calls now refer to either
// getInfo (? Int) or getInfo (T: ?, R: ?, ?(T -> R), ...)
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Figure 2.9: Embedding a value in a type to make it transparent

Constant : (.T: ?, t: T) -> (?) {
return ?(); // the actual type does not matter

};

// just for illustration - this could be more generic
unapply : (.F: Int -> Int , .X: Int , ? Constant (F(X))) ->

(f: F, x: X);
// example use
succ: 1+;
alsoSucc : unapply (? Constant (succ 7)).f;
seven: unapply (? Constant (succ 7)).x;

The creation of a generator object, as well as the scheduling of the resumption
(usually written as await and implemented by calling then ) is usually done by
the language itself, with no possibility of customization or extension.

On the other hand, Kampa aims to only provide the core mechanisms and
entrusts libraries with providing convenient and high-level abstractions. In this
case, there is no need to implement the await keyword as a call to then . This
can be done by a library await macro. All the macro needs from the language
is a way to stop and resume its enclosing function. The former is trivial: to
stop a function execution, just return from it. The latter can be achieved with a
continuation: a function object that contains the current execution state of the
function (local variables, instruction pointer).

As a first approximation, the await macro would perform the following three
steps (where return terminates the current function, not the macro):

Macro await (future):
1. callback = current state
2. future2 = future.then(callback)
3. return future2
4. ← future.value

The obvious problem here is that once future completes and calls callback,
callback resumes at line 1. What we can do about this is to save a different
instruction pointer:

Macro await (future):
1. callback = current state but line 4
2. future2 = future.then(callback)
3. return future2
4. ← future.value

We can now look into what the current state expression even is. It must
be something that captures local variables. It should also be able to take ar-
guments, so that we do not need to use (or even have) the value field in Future
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objects. Kampa already does have a primitive that can do both: plain old lambda
functions.

Macro await (future):
1. callback = λ value → goto line 4
2. future2 = future.then(callback)
3. return future2
4. ← value

Normally, a goto statement would not be allowed to use a label from a different
function. On the other hand, if the type checker verifies that the inner function
and the outer function have the same return type, there is no reason it should
not be allowed – from the technical point of view, that is. The implementation
just has to ensure that variables appearing in the continuation are captured as if
they were in the lambda body itself.

Let us now rewrite the code into Kampa syntax. This also involves replacing
unrestricted goto with a break statement. First, unrestricted goto does not exist
in the language, second, a break will allow us to pass the value, which would
normally be out of scope once the lambda is broken out of.

? "await" future = $breakLabel : TValue {
callback : (value: TValue) -> TFuture2 {

$breakLabel = value;
}
future2 : future.then( callback );
return future2 ;

}

The type TValue can be easily obtained from the type of the future ex-
pression. The type TFuture2 , used for the return type of the lambda, is also the
return type of the current function. Currently, it cannot be obtained in a gen-
eral way. However, await will always appear in async blocks. async can be
defined in a way that makes TFuture2 available (possibly with a better name).

Notes

async was used here just as an example use of the general language feature
and has been significantly simplified. We will discuss the design of the actual
asynchronous programming library in Section 4.1.4. Another application of con-
tinuations, generators, is analyzed in Section 4.1.3 on iterators.

Also note that breaking out of a function only changes the instruction pointer.
It does not manipulate the stack in any way. The example in Figure 2.10 will not
work as intended (i.e. it will not stop the map function):

If the user is lucky, the program will not compile because the outer function
does not return ProcessedItem as expected by the type annotation on the inner
function. If the outer function happens to also return ProcessedItem , then the
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Figure 2.10: Creating a continuation by accident

$breakLabel : {
processedList : list

map (( item: Item) -> ProcessedItem {
if(item.evil ())

$breakLabel =;
return process (item );

});
// ...

}

continuation will be executed for each evil item in the list and the map will
always process the whole list.

To avoid mistakes like this, functions are not allowed to use nonlocal labels by
default. This needs to be enabled by replacing the -> arrow with ˜> . Internally,
functions defined with ˜> are called malfunctions (because they usually break).

2.4 Missing runtime features
We mention these two points separately from the language features because they
are not related to the language (its semantic or grammar) per se. Instead they
are requirements that the runtime must implement.

2.4.1 Bytecode
Although currently the only implementation of Kampa is an interpreter (or a JIT
compiler when used in conjunction with GraalVM[12]), the language is designed
mainly to be compiled. This includes separate compilation, where each library is
compiled on its own to be included in an application later.

Separate compilation should not impede type safety or optimization, and
portability of compiled libraries is an advantage, so the libraries should be com-
piled to some form of intermediate code (bytecode) rather than machine code
directly. Additionally, it can serve as a clear interface between the front-end
(which analyzes the source and deals with all the high-level abstractions), possi-
bly a general optimizer, and platform-specific back-ends.

The requirements on the bytecode are:

• The ability to represent any Kampa type unambiguously. This is necessary
to allow compiling against bytecode files without the need of separate header
files.

• The ability to represent any value, including cyclic references and values
of dependent and existential types. The top level code block in a Kampa
source file executes at compile time and may construct an arbitrary object,
which needs to be preserved by the bytecode.

37



• Code representation that can be further manipulated, e.g. inlined or (in case
of generic functions) specialized. This allows link-time optimization.

• It should avoid redundancies and ambiguities present (or planned) in the
language, such as name lookups, implicit conversions, overloading, param-
eter inference, and type inference. This makes the analysis of the bytecode
easier and more efficient, which is the main reason to use it as the input for
an optimizer/backend instead of the source language.

On the other hand, being directly interpretable (e.g. as a stream of instructions
that can be executed without any context) is not a requirement. Most virtual
machines for existing bytecodes already do some preprocessing or verification
anyway.

The need to represent objects on itself already rules out many existing formats,
but the most restricting requirement is, of course, the type system. This is
not a compatibility issue, since a translation step may always be introduced,
which will use some lossy encoding (such as dropping the types and replacing
member/element accesses with explicit offset calculations).

The bytecode format

The format consists of two layers. The upper layer is called IR (intermediate
representation) and it represents all executable code, types, and constant data
objects as a single object graph. The lower layer is called serialization (unrelated
to Java serialization) and it encodes the graph in a stream of bytes.

The serialization layer supports three data types:

Long is an unsigned integer in the range [0, 264). It is encoded as a variable-
length quantity similar to UTF-8.

Variant tag is an enum – unsigned integer in the range [0, n) where n is the
number of alternatives. It is encoded using ⌈log256 n⌉ bytes in network byte
order.

Reference is a composite object that can be serialized once and referred to
multiple times. The first occurrence is encoded as a zero byte followed by
the object’s fields, each encoded according to its type (which is again one of
the three in this list). Any later occurrence of the same object is encoded
as a back-reference, which is a Long followed by no fields.

The IR layer represents function code as a mixed control-flow and data-flow
graph, drawing inspiration from the Sea of Nodes representation.[13, 14] However,
there are two important differences. First, it lacks a representation of mutable
local variables. In the Sea of Nodes, these are represented using static single-
assignment form. We avoid the need for it by treating these variables as memory.
This is a deficiency to be addressed by future work. Second, the control-flow
edges are directed away from the entry node, while in Sea of Nodes, they are
directed towards the entry. This divergence makes the back-end and especially
the front-end more straightforward.

Types are represented by the IR layer using a type graph. Each node corre-
sponds to a type (e.g. an array type, a function type, the number type) and may
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refer to other types (e.g. an array type refers to its element type, a function type
refers to its parameter type and its return type) and even data-flow nodes (e.g.
an array type refers to a node that computes its element count).

Finally, constant data objects are represented by the IR layer just by them-
selves. That is, numbers are serialized as the two’s complement longs, boxes are
serialized as references, tuples/arrays are represented as concatenations of their
items/elements. The representation of a named type is the same as that of the
type wrapped in it. A function object is represented as a tuple of the function’s
code (as described above) and its data (usually a tuple of the variables in its
closure). A Type Variable value is represented as a type graph node, as described
above, while Type values have an empty representation.

Neither of the layers includes any field names or tags or other metadata. There
is generally no way to deserialize an object without knowing its type in advance.
This is not a problem in the function code and types, where both the encoder and
the decoder know the schema. However, with constant data objects, the type of
the object must come first. That is, types act as the schema for data objects.

It is also possible to describe the schemata for function code and types them-
selves in terms of types, which means that types and function data could be
used as constant data objects. This is currently not allowed by the implementa-
tion, since it needs to use a different runtime representation for each of the three
categories.

Notionally, a bytecode file just holds a single constant data object. This will
usually be a tuple of functions and other definitions for non-executable, library,
files. Executable bytecode files are required to hold a single function value. Phys-
ically, a bytecode file consists of three parts: the magic number ( 29 2f 28 0a ),
the type of the object, and the object itself.

Usage

The bytecode files can be used exactly in the same way as source files, i.e. im-
ported by other source files (using the same syntax) or executed (using the same
command). Additionally, there is a command that can only execute bytecode
but not the source files (i.e. it is just the runtime without the compiler). The
command-line interface is described in Section 3.1.

2.4.2 Null
Many data structures contain space that is allocated but not yet populated.
Perhaps the simplest example is an array list (a growable array), whose capacity
(physical size) is generally larger than the notional size.

In memory-unsafe languages, this space would just be left uninitialized. The
implementation of the data structure must then ensure it never reads the unini-
tialized data. Kampa is memory-safe, and as such, it must not allow a program
to ever use uninitialized memory.

The array list implementation still ensures it never uses an uninitialized value
(by checking the size field first), it just cannot prove it. Using the dependent
types provided by the type system is unfortunately not an option, since the size
field (which would have to be used as a dependency) is mutable.
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Therefore, we have to make sure the elements are always initialized with some
default value. Obtaining this default value cannot easily be done in Kampa.
There is no generic way to create a default value for an unknown type. There
even cannot be, since there is no feasible default value for boxes (references).
Kampa does not have null pointers, and allocating an actual pointer just to fill a
field that will never be read is a nonsense.

The array elements thus have to be of a different type, Nullable(?T) . This
type can represent any value of the original type T and has at least one value
which is easy to generate ( null ). Additionally, it must satisfy the following
requirements:

Round-trip conversions. It is fairly obvious that converting a T value to
Nullable(?T) and back should always succeed and give the original value.

Soundness. Converting a Nullable(?T) to T should never return anything
other than T . It has to either return some T or abort.

Minimal overhead. Null checks will be unavoidable, but at least space over-
head should be zero.

On the orher hand, we do not require the ability to discriminate between null
and non-null. This is already handled by the user (such as array list) itself. The
conversion of null to T is not required to crash, if it can return a valid T .
This is essential to represent nullable integers without any overhead.

The interface

The nullable type and functions for working with it cannot be implemented in
the library, they must be a part of the runtime. However, they do not need to be
a part of the language and there is little reason to do so (unlike, e.g., functions).
As such, they are added to the same place as other functions with a regular type
but “magic” implementation, such as the arithmetic operators: a pre-generated
bytecode file called base_base.kbc .
The new functions are:

• Nullable: (?) -> ? , a type constructor. It takes a type variable and
returns a type variable.

• null: (T: ?) -> Nullable(?T) creates a null value for the particular
Nullable(?T) .

• asNullable: (T: ?, T) -> Nullable(?T) converts a given T value to
Nullable(?T) . We need a conversion function because the type is not
built-in. This is probably fine, given that nullable types are only to be used
in the “gory internals” of standard (and possibly few other) library data
structures.

• asNonnull: (T: ?, Nullable(?T)) -> T converts a Nullable(?T) to
a T . The result of asNonnull(?t, asNullable(?t, t)) is always t .
The result of asNonnull(?T, null(?T)) is intentionally undefined and
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may depend on T . It may crash or return an arbitrary (but valid) value of
type T . As with the previous bullet, this is a function and as such it must
be explicitly applied. In this direction, it is certainly a good thing, as the
conversion might fail.

• isNullable: (T: ?) -> Bool returns whether null is a valid value of T ,
i.e. it returns true iff asNonnull(?T, null(?T)) should not crash. This
is only intended for testing of the runtime.

• There is no isNull: (T: ?, t: Nullable(?T)) -> Bool . This is inten-
tional.

Currently, isNullable is true e.g. for integers and Nullable itself, and false
e.g. for boxes, function objects and type objects. As a consequence, if Nullable
is nested, only the innermost asNonnull may fail (depending on the base type).

2.5 Summary
To summarize, in addition the implementation fixes, we have drawn up the fol-
lowing list:

• Syntax modifications (2.1)
• Overloading (2.3.1)
• Inferred parameters (2.3.2)
• Implicit parameters (2.3.2)
• Opaque types by default (for encapsulation – 2.3.3)
• (De)constructing named & dependent types (for metaprogramming – 2.3.4)
• Function and conditional expressions transparent to the type checker

(for both encapsulation and metaprogramming)
• Continuations (for coroutines – 2.3.5)
• Bytecode (2.4.1)
• Nullability (2.4.2)

This is an extensive list and completing all its items will take time. Some
items must therefore be prioritized to the exclusion of others, as decided by the
practical need for them.

The first item must be done first, as postponing it would slow down the
development of the library and would also mean that all code will at some point
have to be rewritten.

Nullability is literally indispensable for the collections library. Inferred pa-
rameters are not absolutely necessary, but their absence still makes using these
collections extremely inconvenient. As such, these two will also need to be im-
plemented.

The remaining items can be done without, and thus their relative ordering is
not so clear.
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Coroutines are explicitly suggested by the guidelines, albeit just as an exam-
ple. Additionally, they can be used to implement async/await, which is becoming
a standard feature of modern general-purpose programming languages.

The bytecode currently does not enable much, but the support for it has
a significant impact on the architecture of the implementation. The current
implementation is an AST interpreter (transformed to a compiler by Truffle).
Having to produce a lower-level representation makes it closer to a compiler.
Due to its impact on the architecture, it should again be done early to avoid later
rewrites.

Making types opaque by default is not difficult, but replacing valid uses for
the current behavior is. It does not enable almost anything new. Therefore, the
implementation of this feature is postponed for now. The code of the library will
act as if this restriction was already in place.

The most open-ended part of the analysis was metaprogramming. It will
require further analysis and a lot of experimentation. It has also the most pre-
requisites: implicit parameters with overloading (for getInfo or its equivalent)
and expressions transparent to the type checker. Additionally, it is possible and
quite practical to use a language with only syntactic/textual macros (such as C),
or not using metaprogramming at all (for example, the implementation attached
in this thesis does not use Java reflection except for instance checks). As such,
implementing the two features necessary for metaprogramming is left for future
work. The most noticeable consequence (although by far not the only one) is that
there will be no auto-generated by-value comparison/hashing and debug print-
ing. Interestingly, this is a very common limitation, present in a wide range of
languages, such as C, C++, and Java/C# before 2020.4

Implicit parameters can be made up for by just always passing the parameter.
This is usually trivial, except for the recursive cases (which are only required by
the metaprogramming as designed in 2.3.4). Similarly with overloading.

The author intends to finish these items in the future.

4In that year, both Java 14 and C# 9 coincidentally introduced a feature called records,
which addresses this.
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3. Implementation
A prototype implementation has already been attached to the original thesis.
However, large portions of it had to be rewritten to allow better static analy-
sis. This analysis is necessary for dependent type checks, as explained below, in
Section 3.5.2.

3.1 Usage
This section documents the command-line interface of the compiler and bytecode
interpreter. Details regarding building the compiler and other setup can be found
in the readme file in Attachment A.1. The command-line interface consists of
four main classes (listed below). This separation is significant from the perspec-
tives of both the user and the implementation, which is why we also describe it
here.

• cz.cuni.mff.d3s.kampa.exec.CompileOnly takes a single source file,
compiles it and produces a single Kampa bytecode file. The source file may
import other files (source or bytecode), in which case these are resolved,
compiled in case of source files, and included in the resulting bytecode file.

• cz.cuni.mff.d3s.kampa.exec.ExecuteCompiled takes a single bytecode
file and executes it. It cannot compile source files. It also never imports
anything (since the bytecode does not have a notion of import).

• cz.cuni.mff.d3s.kampa.exec.CompileAndExecute is roughly a compo-
sition of the previous two. It does not serialize to the bytecode and then
deserialize, but it still uses the IR.

• cz.cuni.mff.d3s.kampa.exec.GenerateBaseBase takes no arguments,
reads no sources, and produces a bytecode file at a constant file path. The
resulting bytecode file contains functions that are hard or impossible to
implement in the language itself, such as arithmetic operations.

A bytecode file can be used everywhere a source file can. This means not
only imports, but also arguments to CompileOnly and CompileAndExecute .
However, the utility of this is limited. CompileOnly just reencodes the file, and
CompileAndExecute behaves like ExecuteCompiled except that it involves the
compiler.

3.2 Structure of the compiler
The part that compiles Kampa source files to the bytecode consists of several
passes described below. Each file is processed separately, going through all the
passes at once.

Imports are recognized and processed in the first pass. Before the analysis of
a file can continue, the imported file must be fully processed.
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Lexical and syntactic analysis

This pass is mostly preserved from the original implementation. The lexical
analyzer is extremely simple. The parser is more involved, since it has to expand
macros and parse operators with user-defined precedence. Refer to the original
thesis for a more detailed description.[1]

The result of the syntactic analysis is an immutable abstract syntax tree
(AST) that closely matches the source but has all macros expanded and parser
directives removed.

Conversion from AST to annotated AST

This step converts to a representation that allows storing the type, value, and
possibly other information in its nodes. It allows non-tree links between the
nodes, corresponding to variable references. The annotated AST representation is
mutable, which allows types to be assigned in the order required by dependencies
rather than in a simple bottom-up order. This is necessary in order to break
cycles in nodes that support it (e.g. box types and function types).

Semantic analysis

This pass adds annotations to the AST nodes. It is implemented in the individual
node classes.

In addition to resolving and checking types, it also generates the IR for values
and verifies that all recursive definitions are valid. Kampa is eagerly evaluated,
and therefore only functions and boxes are allowed to recursively reference them-
selves. However, forward references are generally allowed, which necessitates
scheduling.

Once the semantic analysis completes, any malformed program should have
been rejected. There is currently one exception. As said in Section 2.1.3, type
annotations are not be checked in unreachable code. However, the semantic
analysis is not able to detect whether a particular piece of code is reachable. As
such, when it detects an incorrect annotation, it intentionally generates an invalid
IR value ( IRInvalid ). This causes a later phase to crash and report an internal
error. This hack is in place until reachability detection is implemented in the
semantic analysis (as proposed in Section 2.1.3).

Control-flow construction

This pass uses the schedule generated by the previous pass to generate a control-
flow graph. It inserts branches and edges for conditions, loops, and gotos.

IR cleaner

This pass removes information that is only used by the semantic analysis to per-
form generalization (see Section 3.5.1). This pass also changes the representation
of types (described in the same section).
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IR control-flow cleaner

This pass removes nodes that have no side effects and no users from the control-
flow graph. Now, it is just an optimization, but previous versions of the bytecode
interpreter depended on it.

Closure generator

Up until this pass, inner functions can use IR nodes from their enclosing functions
implicitly. This pass locates all such uses and replaces these uses with a special
type of IR node ( IRCapture ). It also updates the function’s definition to specify
the type of its closure (a tuple type of the captured IR nodes). Finally, it updates
all the nodes that create function objects of this function to specify a tuple of IR
nodes to be captured.

This pass cannot be executed before the IR cleaner because it requires the
lower-level representation of types. It could be easily updated to be able to
execute before the IR control-flow cleaner, but this could only result in unused
nodes to be captured.

Doing the closure already during scope lookup only works for ordinary inner
functions, not continuations. It would also complicate the type checker, which
should be able to compare values regardless of where they are defined.

3.2.1 Bytecode generation
Bytecode generation is not a pass comparable to the above. While the above
passes execute on each file separately, the bytecode generator is called directly
from CompileOnly once all files have been processed. Also, in the case of
CompileAndExecute , the bytecode generator is not used at all.

As said in Section 2.4.1, the bytecode format consists of two layers: serializa-
tion and IR. Since the previous passes already generate the appropriate IR, the
bytecode generator only needs to serialize it.

3.3 Structure of the bytecode interpreter
The interpreter does not interpret the bytecode directly. Instead, it first deseri-
alizes it, getting the IR graph. This step is only necessary in ExecuteCompiled .
In CompileAndExecute , no bytecode is even generated.

Not even the IR graph is interpreted directly. It requires some lowering. This
lowering happens in a single pass that does the following:

• It converts the mixed control-flow/data-flow graph into sequences of “in-
structions” arranged in basic blocks.

• It replaces member accesses and array element accesses with offset calcula-
tions and loads/stores.

• It drops all type information. (Except when “slow types” are enabled, which
is the case only when compiling to bytecode, not at ordinary run-time.)

45



At runtime, every function remembers its IR. When executed for the first
time, it is lowered and the result of the lowering is cached for all later calls. This
means that the interpreter essentially simulates a JIT compiler. Just instead of
compiling to machine instructions, we compile for a naive and inefficient virtual
machine, whose code is represented as collections of objects implementing some
Instruction interface, and whose memory consists of java.lang.Object ar-
rays (as detailed in the next section).

3.4 Memory representation
The primary purpose of the implementation is to test programs written in the
language and to evaluate what it involves to compile it to a low-level representa-
tion. Performance is not the main objective, and it can for now be sacrificed for
easier debugging and faster development.

As such, we use Java’s implicit checked casts, null checks, and array bound
checks to detect at least some errors in the implementation, but we never directly
use the information available (e.g. using instanceof , == null , .length ).
Therefore, raw memory with pointers would be enough to execute the same “in-
struction set” but it would catch fewer bugs.

The memory representation of a value consists of zero or more Java objects,
whose classes are determined by the value’s type:

• Number: a single java.lang.Long instance.
• Tuple: the concatenation of its items.
• Function: a single FunctionObject instance (see below).
• Named: in the same way as its wrapped type.
• Box: a single java.lang.Object[] instance. The size of the array and

types of its elements depend on the box content type.
• Array: the concatenation of its elements.
• Type Variable: a single TypeObject instance (see below).
• Type: nothing (same as an empty tuple).
• Nullable: if non-null, same as its wrapped object,

if null, a sequence of java.lang.Long(0) of the same size.

Function objects

Function objects are represented using FunctionObject instances. The class has
two read-only fields. One refers to the function IR, the other is an Object[]
holding the closure data. In a practical native implementation, the representation
would probably consist directly of two size_t s:

struct FunctionObject {
void *code;
union { void *ptr; size_t val; } data;

}
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Type objects

Type objects are represented using TypeObject instances. The class has four
read-only fields, but only the first two of them are normally used: int size and
bool nullable . The former is the size of the values of the type represented by
this type object. The latter is a flag is exactly the value returned by isNullable
(Section 2.4.2).

The size is in OOPs (JVM ordinary object pointers), i.e. the number of ele-
ments the value takes in an Object[] . In a practical native implementation, it
would be in bytes. It would also require additional flags besides nullable for
alignment information. Still, the size of a type object would fit in 64 bits on both
32-bit and 64-bit platforms.

Variable-length stack allocations

We address the problem of local variables whose size is not a compile-time con-
stant. The original implementation did not support them at all. This was due to
the stack frame being represented as a constant-sized object. Its size could de-
pend on the function but not on anything else. The original implementation used
a relatively efficient scheme where tuples could be split among multiple frame
slots. This allowed each tuple item to be stored directly in the stack frame.

On the other hand, the current implementation stores every value in just one
slot. This means that values consisting of multiple objects must be wrapped in
an additional Object[] . However, it allows variable-sized values in the stack.
There is still an optimization that values with a constant size of 1 are stored
directly. The splitting of larger values into multiple slots, when combined with
supporting non-constant allocations, was too complex. In summary, the current
implementation trades efficiency for generality and simplicity. This allows local
variables of unknown types and also aligns with the purpose of the implementa-
tion.

3.5 Dependent types
The handling of dependent types pervades the whole implementation. The origi-
nal implementation disallowed them in some contexts to avoid this (including for
example stack variables, as said in the previous section).

The redesigned semantic analyzer instead tries to reduce the complexity as-
sociated with them. This allowed significantly extending its capabilities, but also
caused some problems. We will describe both sides in this section.

3.5.1 Representation
Original solution

In the original type representation, types never referred to values directly. In-
stead, they referred to parameter indices. These indices pointed into an im-
mutable list of values that was stored separately (we call it the argument list). For
example, the array type Int...N becomes Int...Param0 and an argument list
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with one element, ⟨ N ⟩. If we use a type with such an external dependency in a tu-
ple, then the tuple itself will have that dependency. It also remembers which items
needed which dependencies and explicitly forwards these. For example, the tuple
(Int...N, Int...M) ’s items are (as per the previous) both Int...Param0 ,
and its argument list is ⟨ N , M ⟩. To ensure each item refers to the correct argu-
ment, the tuple forwards the arguments to each item separately. In the array
pair example: (Int...Param0 ⟨ Param0 ⟩, Int...Param0 ⟨ Param1 ⟩) . The
Param s in each item type refers to the item’s own list. Each of the lists refers to
the tuple’s own parameters, ⟨ N , M ⟩. This forwarding can have many levels. For
example, the function type (Int...N, Int...M) -> (Int...L) will become:
(Int...Param0 ⟨ Param0 ⟩, Int...Param0 ⟨ Param1 ⟩) ⟨ Param0 , Param1 ⟩
-> (Int...Param0) ⟨ Param2 ⟩ with an argument list of ⟨ N , M , L ⟩. When a
tuple contains both a type that depends on a value and that value. For example,
the sized array type is a tuple of a number and an array that depends on that
number. Written as (N: Int, Int...N) in the source code, it is represented
as (N: Int, Int...Param0 ⟨ Sibling0 ⟩) . As before, the Param0 just points
into the item’s argument list, ⟨ Sibling0 ⟩. The Sibling refers to an item of the
same tuple (as opposed to a parameter as before). 0 is the index of that item.
The argument list of the whole tuple is empty, ⟨⟩. Analogically with functions,
where a Sibling in the return type refers to the function’s parameter.

The advantage of this representation is that whenever a substitution is needed
(e.g. during generalization and instantiation), it is enough to process just the
list items, but the type can stay the same. When extracting an item from a
tuple, one just takes the item’s argument list and replaces each element with the
corresponding element from the tuple’s list.

Original solution limitations

The disadvantage is that this representation requires that when a type is created,
all values it uses are already known. This is not necessarily true. For example,
the arguments and return types of functions are processed lazily. They are not
known at the time of the construction of the function type. In fact, they cannot
be known in the case of recursive types (the type would require to be processed
before itself).

The implementation attached to the original thesis used many workarounds
and restrictions to cope with this. One of the consequences was that type defi-
nitions (i.e. Type types) were not allowed to refer to any values at all. Doing so
would result in the type error “Dependent type not allowed here.”

Type types depending on values are more important than they seem, since
they are the way to define generic types. A generic type is a function that takes
a Type Variable and returns a Type. If the Type cannot use the Type Variable,
it is almost useless.

Current solution

After a short-lived experiment with list bindings replacing the immutable ar-
gument lists, the representation based on explict argument lists was given up
entirely.
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The immutable lists are still used by the IR, and list bindings are used to
build them in the IR cleaner (Section 3.2), but they are no longer used in the
semantic analyzer.

Instead, each tuple type and each tuple expression is identified using a NodeID
instance. A type uses the same ID as the expression from which it was created.
NodeID is a Java class with no fields and no methods, whose objects are only
used for identity comparisons.

When a type needs to refer to a value, such as the array type Int...42 , it
just contains the IR of the value directly, IRConst(42) in this example. The
value could again be a variable reference, Int...N , in which case the IR contains
information about both its location and its value. For example, if N is defined
as 42 , the length of Int...N will be IRSibling(nodeID, i, IRConst(42)) .
nodeID here refers to the NodeID of the lowest common ancestor of the AST
node defining N and the current array AST node. i is the index of N within
the ancestor.

Note that there already is a Sibling information even though the array is
not yet a part of the tuple. When the type is processed, for example by a type
checker, free NodeID s (i.e. those not found in enclosing tuples) are ignored. That
is why IRSibling also contains the definition ( IRConst(42) in the example).

When the array is put into a tuple next to its length ( (N: Int, Int...N) ),
it does not have to be changed. The only thing that changes is the meaning
of the array length, the IRSibling(nodeID, i, IRConst(42)) . nodeID is no
longer free. It is bound by the enclosing tuple type. As such, the value of the
IRSibling is ignored and only the sibling relation is taken into account (e.g. in
type checks).

Although IRSibling is used as an IR node, it is only relevant in the se-
mantic analysis. The IR uses the explicit argument lists and does not need
any IRSibling . As such, they are removed by the IR cleaner (Section 3.2).
Depending on the context, the IR cleaner replaces them with either the value
( IRConst(42) in the example) or a Param pointing to a Sibling (as shown
in the previous section).

Problems with the current solution

As said above, this representation makes joining values into tuples easy. The
analysis does not have to traverse type trees or even the argument lists. On the
other hand, the extraction of tuple items is hard, since the item type needs to
be traversed and all IRSibling s using the tuple’s NodeID must be substituted.
Similarly when calling functions: the return type must be traversed to substitute
references to the function parameter.

The substitution also has to ensure it does not accidentally bind a NodeID .
As such, all NodeID s defined in the return type must be renamed first. All this
is already inefficient, but it becomes unusable in case of recursion. Consider the
following example:

LinkedList : (T: ?) ->
?[ head: T, tail: LinkedList (?T)];
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Conceptually, this is a recursive generic type. To the semantic analysis, it is
a function that returns a type. To infer its return type, we need first to infer the
type of the LinkedList(?T) call inside of it. To do this, the semantic analyzer
must:

1. Obtain the type of LinkedList . This is not a problem. The analyzer is
designed to work well with recursive types by using lazy evaluation and
caching.

2. Obtain its return type. Again, this is fine. The return type will already be
available when it is first queried for.

3. Rename all NodeID s in the return type. Renaming in recursive types is all
right. Caching and lazy evaluation is used so that types that have already
been seen are not processed again.

4. Substitute the current T into the definition. Same with renaming, this
works with recursive types.

On itself, none of the components can recurse indefinitely. The problem with
a definition like this is that there will be an instance of the renaming visitor and
an instance of the substituting visitor, each doing its caching, but each feeding
its results to the other. Starting with just one type, one of the visitors creates a
new type not seen by the other, which prompts the other to create a new type
not seen by the first one.

Even if we complicated the analysis by merging these two, they would still
hang on a pair of mutually recursive functions like this:

LinkedListA : (T: ?) ->
?[ head: T, tail: LinkedListB (?T)];

LinkedListB : (T: ?) ->
?[ head: T, tail: LinkedListA (?T)];

The only way to reliably prevent infinite recursion in all places in the semantic
analyzer is to never create types from other types (e.g. by renaming and substi-
tution). The only acceptable way to create a type should be creating it from an
expression in the AST, since there is a finite (and fairly limited) supply of AST
nodes.

As such, the argument lists as in the original representation are necessary. To
avoid the need to know each type completely to be able to use it, the argument
lists can be “preventively” populated with all variables available. In the common
case the type does not need all of them, it will just not use all its parameters.
There needs to be an efficient way to represent sets of variables (the argument list
cannot just contain an element for every variable in scope). This should probably
be something that copies the structure of the lexical scope, just not using variable
names but the forwarding shown in the original type representation. A concrete
design is left for future work.
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For now, the following workaround can be used to describe recursive generic
types (the result is exactly the same but does not hang the compiler):

// non - recursive generic type
LinkedListImpl : (T: ?) -> {

// non - generic recursive type
. Type: ?[ head: T, tail: Type ];

}
// non - recursive generic type
LinkedList : (T: ?) -> LinkedListImpl (?T). Type;

3.5.2 Value equivalence
Checking the equivalence (or compatibility) of dependent types requires deciding
whether two values will be equal at runtime. This is known to be impossible, so
the type checker has to use a well-defined approximation. When it cannot prove
two values to be equivalent, it rejects the program.1

Originally, two values were only considered equivalent when their memory
location was the same. There were not many other options. While the gen-
erated program consisted of value nodes, these could not be inspected by the
type checker, only executed. As said above, this thesis replaces the intermedi-
ate representation with one that is not useful for direct execution, but can be
inspected instead. As such, comparing two values is now a matter of comparing
two expression-like structures. The most important consequences include:

• Two instantiations of the same generic type with the same arguments are
considered equal. For example: ArrayList(?Int) and ArrayList(?Int)
or ArrayList(?T) where T is known to be Int .

• Arrays can have in-place constant lengths and be considered compatible if
their lengths are equal.

1Another possible approach would be trying to prove the values can differ and only rejecting
in that case. However, the type system of Kampa is intended to be sound and thus does not
honor the presumprion of innocence.
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4. Evaluation
In this section, we evaluate Kampa’s generality, expressivity, and ease of use.
Regarding expressivity: the language on itself intentionally does not attempt to
be expressive. Instead, it allows libraries to define macros that look like built-in
constructs in other languages.

4.1 Kampa Runtime Library
In this section, we design a standard library that uses the language well (while
not artificially overusing its specifics). We compare the tools provided by Kampa
with their equivalents provided by other languages where applicable. We will also
compare the design decisions with other languages’ libraries.

4.1.1 Optional
The optional type (also called maybe or option) is a type whose value can be either
a wrapped value of another type (some, just) or a special value representing the
absence of any value to wrap (none, nothing, empty).

We have already discussed a similar feature, nullable types, in Section 2.4.2.
However, nullability is a low-level feature for cases where no optional value is
required from the program logic point of view. It is only used to locally opt
out from some guarantees provided by the language. It only makes sense to use
nullability as an implementation detail.

On the other hand, Optional can be used when there is real need for a value
that can be absent, i.e. both alternatives have some meaning in the program’s
logic. It is not specific to pointers and it can be meaningfully used for interfaces
as well as for implementation. The main use case for the optional type is in
return values of functions that may, even under normal circumstances, produce
no result, such as looking up a matching item/key in a collection. The program
using the library can then branch or carry out additional operations depending
on whether some or none was returned.

In Kampa, there are currently roughly four possible ways to represent an
optional value of type T :

1. present: Bool, value: T...present – an array whose length is a bool.
1, t stands for some (where t is the wrapped value), 0, () stands for
none . Note that this type has a variable length, and thus cannot be used
as an array element type or a type variable.

2. [present: Bool, value: T...present] – same as previous, except that
it adds indirection. This solves the previous problem (a reference has a con-
stant size), but it may harm performance due to additional heap allocations
and random accesses to memory. This is the approach taken by Java’s Op-
tional (except that Java can share its empty optional among all T by using
unchecked casts, reducing memory footprint and allowing presence query
without dereference).
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3. present: Bool, value: [T...present] – a variation on the previous
alternative. This allows even faster presence query, and with a slight mod-
ification also the sharing of empty among all T . However, the additional
reference in the (presumably average) case of some remains.

4. present: Bool, value: Nullable(?T) – always allocating space for the
value, even for none . Like the first alternative, this one involves no refer-
ences. Unlike the first alternative, the size is invariant. This is practically
always an advantage, since the possible memory savings of the first alterna-
tive are nullified by the fact that it cannot be stored in an array (scrimping
bits on singular instances just leads to overhead). This is the approach
taken by C++ (with the default value being undefined).

In alternatives 1, 2, 3, it is possible to replace T...present with a union of
() and T . This is useless for alternatives 1 and 2, since it just adds complexity.
In alternative 3, though, it can be used for the sharing of empty values.

Alternative 2 can be eliminated, as it has absolutely no advantage in compari-
son to alternative 3. It occupies the same amount of space, it has slower presence
checks and it cannot share its empty instances.

Similarly, the space-saving advantage of 1 in comparison to 4 is rarely sig-
nificant and will more often lead to unnecessary overhead. While 1 can still be
useful, it should not be the main optional type.

Finally, Optional3(?T) is similar to Optional4(?[T]) . In fact, the latter
is more general, since it allows T to have variable length. And avoiding the
one global empty box, albeit insignificant in terms of memory consumption, is
definitely cleaner.

Functions

The library offers optUnwrap , which checks the present flag and either returns
the value or aborts the program. Querying the flag and then using optUnwrap to
obtain the value is the most universal way to use Optional , but it is not very re-
liable (a flaw in a program could result in unwrapping a non-present Optional ).

As such, the library also offers a functional API, which currently consists of the
following functions: optMap , optFlatMap , optElse , optElseGet , optOr ,
optOrGet . Their implementation relies on optUnwrap .

4.1.2 Collections
A classical example of a standard library collection is a growable array. In
our library, it is called ArrayList after Java’s ArrayList . Java (as well as
dotnet) uses a definition similar to class { Object[] data; int size; } ,
or [@data: [length: Int, @items: T...length], @size: Int] in Kampa
syntax ( length is the capacity). Kampa offers slightly more freedom with re-
spect to the layout.

First, we may use an optimization for short lists, where the elements can
be stored in the list object directly. This is not possible in Java and C#, since
arrays are always reference types (and using e.g. eight named fields would only
add complexity).
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Second, the outer box (pointer) can be dropped in case the list has only one
owner (and no other references), which might be a common case. This is possible
in C# but not Java. This should not be the main implementation of ArrayList ,
since it is slightly restrictive; the user must ensure no copies are made, or more
precisely, that only the latest copy is used.

For now, we stick with the plain approach, since the performance is dominated
by other factors anyway. There already is a theoretical improvement over Java.
In Kampa (similarly to C#), generics do not use boxing1. This means that in
ArrayList(?Int) , the integer values can be stored directly in the array, not as
individual heap objects.

The library also implements ArrayDeque – a queue that allows addition and
removal from either end in O(1) amortized time, backed by a growable array (but
not using ArrayList internally because the growing must work differently). The
reason it was added was the need for a queue data structure in async (which will
be discussed in Section 4.1.4).

4.1.3 Iterators
There are several ways to represent an iterator. Practically every language/envi-
ronment has its own:

• Python iter has a single method, next , which returns an object and
updates the internal state of the iterator. The end is signalized by the
method throwing a special exception.

• Java Iterator is similar to the previous. Additionally, since exceptions are
considered expensive, not well suited for this purpose, and more difficult to
handle when using an iterator manually, there is also the hasNext method,
which generally does not update the state, and returns true iff next will
not throw.

• C# IEnumerator also has two methods, get Current and MoveNext .
Their responsibilities are slightly different than in Java iterators. MoveNext
returns the a boolean (like hasNext ), but it updates the state (like next ).
MoveNext should always be called before the first access to Current .

• C++ iterators have three methods. operator++ moves the iterator (and
returns the iterator itself). operator* (unary) returns the current element.
operator== can be used to test whether the iterator ended (by comparing
to another object, the end iterator, which might not even be an iterator).

Implementing an iterator

Python’s approach has the advantage that the iterator does not have to either
store the element or consider edge cases where one of the methods is called repeat-
edly without calling the other (although one edge case remains: calling next on
an already-ended iterator). This means fewer ways an iterator implementation
can deviate from the specification or the convention.

1The implementation, being written in Java, will use boxing anyway. See Section 3.4 for
details.
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Ways to implement iterators vary. In all of the mentioned languages, it is
possible to implement them directly by writing a class. In Java (and C++ until
C++23), this is also the only way. Python, C#, and C++23 offer an alternative in
the form of generators. A generator is a function/method that, when called, does
not execute and instead returns an iterator. The body of the function is only
executed by using the iterator. The body contains yield statements, which pause
the execution and return a value to the user of the iterator, which can then use
the iterator again to resume the body. This repeats until the body ends (using
return or reaching its end).

Writing a generator is at least as easy as writing the class. Formally: rewriting
an iterator class to a generator is trivial: for(x in existing iter) yield x .
The opposite direction is not hard, but it can be annoying and lead to less readable
code.

Using an iterator

As shown in passing in the previous paragraph, an iterator can be used in a for-
each loop. This is true in the current versions of all four mentioned languages
(albeit with varying syntax).

Some iterator objects support other operations. Some C++ iterators support
pointer-like arithmetic. Java iterators support element removal. Some C# enu-
merators can also be reset to the initial state using the Reset method. However,
this throws an exception when used on enumerators implemented as generator
methods.

Interestingly, C++ iterators and C# enumerators can in some cases be copied in
the middle of an iteration, creating two iterators that can be used independently.
Again, this does not work with C# enumerators written as generators, since those
are always references.

Iterators in Kampa

Kampa’s support for continuations (Section 2.3.5) can be used to implement
generator functions. The state of the generator can be represented using just the
continuation (since it contains both the code and local variables).

We will start with an interface similar to Python’s, i.e., just a next method.
Instead of throwing an exception (not available in Kampa), the method could
return an Optional . When a generator method is called, it just creates an
iterator object in its initial state and returns immediately. The first call to next
enters the body and runs until a yield statement is reached. The yield
statement now has to take the continuation, save it to the iterator object, and
return a some to its caller. Following calls to next just call the continuation
(i.e. closure) saved in the iterator state. The initial state can also be represented
as a closure, making next as simple as a single dereference and call.

Generators are often implemented using state machines, where states corre-
spond to yield statements in the body (with some states being initial, final,
failed, etc.). The current state is stored in the iterator object, together with a
record of the generator’s local variables. Notice that this is very similar to storing
the closure, just instead of the numeric state index, we store a code pointer.
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Back to the interface: this design can be further improved by replacing shared
mutable state with local (mutable) state. The iterator object is not necessary if
the next method returns a new iterator (together with the element) instead.
In other words: yield does not modify anything and returns a (head, tail)
pair, where head is an element and tail is another iterator. The iterator now
does not need to store the closure. It can be the closure.

This leads us to the iterator type: Iter(?T) is a function returning an
optional head/tail pair, () -> Optional(?(head: T, tail: Iter(?T))) .

We make one final modification that is rather pragmatic than theoretic. An
iterator should probably not be directly callable. In most cases, using an iterator
like a function ( iter() ) would be done accidentally, yet it would be valid and
evaluate to the abovementioned Optional(...) . To avoid this, we wrap the
function in a named type. The syntax necessary to the optional thus becomes
iter.start() , which is unlikely to be done by accident. We define the for-each
loop to always use .start() .

As said above, yield is responsible for creating the head/tail pair. It wraps
it in some and returns it. We still need something that (i) pauses the execution
in the beginning, returning a start: () -> ... and (ii) handles the common
case, where the generator reaches the end of its body (and returns none ). Both
is done by one macro, called generate , in which the whole body is wrapped.
Since generate creates a function on its own (to pause in the beginning), it
does not place any requirements on the enclosing function. As such, generate
is just an ordinary expression that returns an iterator.

Nondeterminism

Besides yield , generators can also contain select expressions. The syntax
is select from foo , where foo is an iterator of any type (regardless of the
current iterator type). The result of the expression is a single element of foo .
The select expression forks and returns multiple times, once for each foo . In
other words, the rest of the generator body runs once for each item of foo . All
the items yielded by all the forks are included in-order in the resulting iterator.

select from can be compared to <- in Haskell do notation and its imple-
mentation is similar. In Haskell, elem <- foo calls foo >>= (\elem -> ...) ,
where ... is the rest of the do block. In Kampa, elem: select from foo calls
foo iterFlatMap (elem -> ...) , where ... is the rest of the generator body
(i.e. a continuation).

Other functions and macros

In addition to the Iter type, generate , and yield , the library provides:

• emptyIter , iterFilter , iterMap , iterFlatMap – simple functions
that are themselves implemented as generators

• for(var in iterator ) action – a macro that simplifies iterator usage
• yield from iterator – a macro for use in generators, it is a shortcut

for this loop: for(elem in iterator ) yield elem;
• yield break – another macro for use in generators, it does not take any

value and terminates the generator
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4.1.4 Asynchronous programming
We have already touched async and await when designing coroutines in Sec-
tion 2.3.5, and ended up with this example:

? "await" future = $breakLabel : TValue {
callback : (value: TValue) -> TFuture2 {

$breakLabel = value;
}
future2 : future.then( callback );
return future2 ;

}

This intentionally omitted an important detail. The value called future by
the example is often something returned by another async block. It contains
code that must be executed at some point. However, it is not clear who ensures
this and how. The executor cannot be a global object – Kampa intentionally does
not support global mutable state. The executor must be “found” in some way.
There are several options:

1. Async blocks start themselves. They run immediately and synchronously
until the first await that would suspend. To run synchronously, they do
not yet need access to the executor. The await then takes a future object,
which will presumably fulfill at some point. The fact that it fulfills means
that it was run by the executor and thus can have access to it.

2. Async blocks do not start themselves. They are suspended from the be-
ginning. They are only executed when they are awaited. Note that the
awaiter can always already have access to the executor; this directly follows
from the fact that it is an async function that is already running (and thus
already past its initial suspend).

3. The future objects could track dependencies. Using the names from the
example: normally, future has a reference to future2 (to be able to
call it back). In the case of this option, there would (also?) be a reference
from future2 to future . The chain of the latter type of references leads
from the async main function, whence all the remaining async code can be
reached.

4. Avoiding the “problem” of missing global state by introducing a context
object. It would be necessary to have a context object in scope in order to
create an async block. The async block would be scheduled for asynchronous
execution already when created.

Option 4 was the first one we experimented with. It seems to offer the most
elegant design, but only in conjunction with some currently missing features
(existential generic types – see Section 2.3.3). Until these are supported, we
abandon this option, since the complexity added does not pay for itself.
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Option 3 is probably very similar to option 2. Just instead of actively travers-
ing the dependency graph, the executor is passed along its edges. However, in
deeply nested async calls, there might be a significant difference. If a leaf func-
tion suspends, this information has to be propagated up the stack to the main
function, only to be tracked again to the bottom just to discover what the leaf
function waits for.2

Options 1 and 2 are much more distinct from each other, even from the user
perspective. Yet the decision seems much harder and different environments
choose different paths. In the Kampa library, we choose option 2, mostly for its
consistency with generators and the (necessarily subjective) intuition that if it is
an async(hronous) block/function, it should not run synchronously.

As such, the asynchronous programming library currently uses option 2. Asyn-
chronous blocks return unstarted Task s which have to be started using the
.start(AsyncExecutor) virtual function. This function already returns an ob-
ject on which then can be called. start is called automatically by await , but
a task can also be started manually without yet awaiting it.

The library also provides two simple implementations of AsyncExecutor .
Both are single-threaded and based on a queue. However, there is currently
no support for multithreading or asynchronous IO (or any IO for that matter).
As such, asynchronous programming in Kampa can currently not be used for
anything practical. It is just meant to demonstrate that the language itself can
support it once the system interface provided by the runtime catches up.

4.2 Summary
The library makes heavy use of many of the additions. For some of the addi-
tions, this is inevitable. For example, without support for generic types, it would
be nearly impossible to implement most of the utilities (unless using macros or
specializing the definition for each type manually). Other additions, such as con-
tinuations, could be done without, but code using them can be significantly more
expressive.

While the additions were only designed with ArrayList and asynchronous
coroutines in mind, they proved to be general enough to be used for iterators,
generators, optional, a string library. Furthermore, the features already present
in the language enabled choices not offered by many other languages, such as the
memory layouts.

Ease of use is necessarily subjective and it depends on practice. However,
there are some factors that work in favor of Kampa (e.g. memory safety, use
of automatic memory management, regularity). Probably the most visible limi-
tation is now the lack of overloading, which requires the user to explicitly state
which function to use, as can be seen from almost any code working with iterators
and optional (e.g. iterMap and optMap ).

All code described in this chapter can be found in Attachment A.2.

2This is similar to nested generator calls using yield from .
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Conclusion
This thesis improves the Kampa programming language and its experimental
implementation. The main objective was to make the language more practically
usable. There are many aspects to practical usability of a language, such as
tooling, availability of libraries, and even external factors (adoption, community).
Addressing all of them is beyond the scope of a single thesis.

Consequenly, this thesis primarily focused on the language (syntax and se-
mantics), its compiler/interpreter, and basic runtime libraries. Where necessary,
design decisions were made while considering the needs of other tools.

Chapter 2 discusses a number of shortcomings in the language and suggests
possible solutions, of which the most important ones were also implemented in
this thesis:

• More consistent and readable syntax (2.1)
• Addressing several implementation limitations (2.2)
• Parameter inference (2.3.2)
• Continuations (for coroutines – 2.3.5)
• Compilation to Kampa-specific bytecode (2.4.1)
• The Nullable type (2.4.2)

The following shortcomings were left for future work, because they were not
considered essential for this thesis:

• Overloading (2.3.1)
• Implicit parameters (2.3.2)
• Further type system improvements, especially its consistency (2.3.3, 2.3.4)

Chapter 3 describes the implementation of the language. Even though the
language was designed to be compiled to native code, programs are currently in-
terpreted. Large portions of the original interpreter had to be reworked to enable
better static analysis needed for dependent type checks. The implementation is
still considered a prototype quality – there are still are a few corner cases in which
the implementation fails to detect some kinds of errors or detects them too late
(Section 3.2, Semantic Analysis). It also exposed some deficiencies of the internal
representation of types which could not be redesigned in the scope of this thesis
(Section 3.5.1).

The language and interpreter improvements were necessary to enable imple-
mentation of a more extensive runtime library, as shown in Chapter 4. In terms
of number of provided functions and types, the library is orders of magnitude
smaller compared to libraries found in languages such as C#, Java, or Haskell.
However, the provided functions and types are comparable in nature, ease of use,
and generality with their counterparts in other languages. Some of the interfaces
that programs can use to interact with the environment are still rudimentary and
need to be replaced. But the improvements in this thesis have made it possible.
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In closing, even though there is still a considerable room for improvement
(and the author continues to work on Kampa with unabated interest), the im-
provements presented in this thesis have pushed Kampa towards practicality and
made it possible to write code that is comparable to other modern programming
languages.

Additionally, the implementation is currently very unreliable, failing to detect
some errors or detecting them too late (Section 3.2, Semantic Analysis). Its
internal representation of types needs a redesign, too (Section 3.5.1).
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A. Attachments

A.1 Kampa compiler and bytecode interpreter
The first attachment is a new version of the implementation attached to the
Bachelor’s thesis[1]. The description of the new version can be found in Chapter 3,
including the command-line usage in Section 3.1. For build instructions, please
see the README.md in the attachment.

A.2 Examples
The second attachment is a folder containing example programs. It includes
updated versions of the original examples, together with the programs written as
part of the evaluation (Chapter 4).
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