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datasets acquired by flow cytometry. With more cells and features captured,
manual exploration and analysis of the data become challenging; multiple unsu-
pervised methods were thus created to simplify the task. This thesis describes
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Introduction

Specialized data visualization techniques form a crucial building stone of pub-
lishing in virtually any data-driven research field. Analysis of data in cytometry
(mainly flow and mass cytometry [1, 2]) has spawned many visual analytics
approaches that helped researchers to uncover many complex phenomena that
drive the progress in immunology [3, 4, 5] and oncology [6, 7, 8]. Briefly, methods
such as UMAP [9] easily provide dataset renderings such as the one in the Fig-
ure 1, which may be intuitively interpreted even by users with no background in
computational analysis and statistics.

This thesis reports the results which stem from a longer line of research in
high-performance dimensionality reduction and clustering analysis of cytometry
data: Originating with FlowSOM [10], which gave a fast and precise clustering
possibility for the common datasets and some new directions for the visualizations
based on drawing the self-organizing maps [11], continuing with the development
of EmbedSOM [12] which improved the cell visualization for FlowSOM-style anal-
ysis, we developed FLOWer [13] to enable the interactive building of analysis
pipelines that use these tools by users. Recently, this was continued by a research
project where the author of this thesis developed BlosSOM [14], a highly spe-
cialized and optionally CUDA-accelerated tool that combines both methods in
a highly intuitive interactive user interface. Most notably, BlosSOM was (to the
best of our knowledge) the first tool efficient enough to allow users to manipulate
a useful dimensionality reduction of more than 30-dimensional datasets and mil-
lions of data points, all in a completely interactive and smooth manner without
any noticeable pauses for computation.

A crucial property of the supervision in BlosSOM was the ability of non-
programmer domain-expert users to easily interact with the visualization and
tune (or debug) it to improve upon the outcomes of the unsupervised methods. For
illustration, the Figure 1 shows an example of a dataset visualization that admits
a brief reorganization by the user without losing any data visualization fidelity
at all. This is complicated to implement in an unsupervised case — the domain
expert needs to encode the additional information to an analysis script (which may
be complicated for non-programmers) and re-run the dimensionality reduction,
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Figure 1 The static embedding of the fashionMNIST dataset with the UMAP algorithm.
The resulting embedding shows sandals (the cluster in the red ellipse) to be more similar
to shirts (pale green on the bottom left of the ellipse) than to sneakers (darker green
on the top right of the ellipse). The user might like to change this result and move the
cluster in the red ellipse closer to the right to correspond with the real world. In the static
embedding, this is not possible. (The image taken from the UMAP documentation [15])

hoping that the unsupervised algorithm will pick the additional hint “correctly”
without any undesired side effects. In BlosSOM, the same reorganization and
recomputation are implemented by simply dragging several control points that
internally guide the dimensionality reduction, providing an instant preview of
the result.

As the main goal and result, this thesis consolidates and extends the properties
of the BlosSOM prototype generated in the research project. Problems with
BlosSOM prototype were:

• It used a robust rendering engine with too much unnecessary functionality
that slowed the rendering and compilation.

• The data were processed in fixed-sized batches in each frame which was
not scalable to the used hardware.

The contributions of our thesis are as follows:
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• Rewriting the software to a light-weight rendering library.

• Using dynamic workload scheduling of the computational pipeline that
computes partial updates to the dataset, which enables BlosSOM to run on
various hardware under diverse workloads, properly utilizing the available
hardware without the danger of framerate drops.

• Adding several other improvements in BlosSOM include mainly the new
possibilities of user interaction, which give more powerful ways to reor-
ganize the visualizations, and the ability to manually mark and annotate
various identified parts of the dataset for later statistical analysis.

Notably, we found that for large datasets, most of the work is spent in GPU, and
CPU-based parallelism or even asynchronous computation with GPU does not
improve the perceived throughput; which directed the further optimization of
the rendering pipeline — we created a texture rendering method described in
the Section 4.2, which significantly sped up the rendering.

In outcome, the thesis has finalized the features of BlosSOM that are most
important for realistic use by cytometry domain experts.

The thesis is organized as follows: Chapter 1 of the thesis gives an
overview of properties and typical processing of cytometry data. Chapter 2
details the design and implementation of the BlosSOM tool. Chapter 3 describes
the methods for dynamic balancing of batch sizes, and briefly benchmarks the
results. Chapter 4 summarizes other software and functionality improvements in
the BlosSOM implemented by this thesis. Finally, the conclusion 4.4 provides a
summary of the achieved goals and further challenges.
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Chapter 1

Background

This chapter focuses on the cytometry data and how they are obtained. The
following sections describe the algorithms used for cytometry data visualization
and analysis. Further, we describe how they are applied in our software BlosSOM.

1.1 Cytometry data acquisition and visualization
Cytometry represents a biological term for various methods that measure the
properties of single cells — such as flow-cytometry [1, 16] and mass-cytometry [2,
17] (for more information about cytometry and methods used for obtaining data
and visualization methods, see [13]). In flow cytometry, each cell from the sample
is marked by chemicals that bind only to specific molecules and emits different
colors. Then each cell, one by one, is excited by a laser and emits different colors
of the color spectrum. The amount of the emitted color in different parts of the
spectra is then measured and stored in a data matrix. Other techniques have
similar principles. These techniques allow us to obtain tens of properties of each
cell.

Cytometry data are represented as multidimensional data in the matrix (as
shown in the Figure 1.1). Each row is one cell from the sample, and each column
represents one measured property of the cell. Each column also represents one
dimension of the multidimensional space. Such representation allows us to
observe relationships between each parameter by applying various algorithms
and techniques used for visualization and analysis.

The most common analysis method among biologists is the linear projection
of the properties to two-dimensional space, called gating (see Figure 1.2). While
it is straightforward to visualize and read by humans, it can become very error-
prone with the increasing number of dimensions. This technique is unsuitable
for datasets with dimensions higher than two because many details may be
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2 0.66 0 0.34
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Figure 1.1 Overview of the method of obtaining the flow cytometry data. Cells (the
grey circles numbered 1–4) have various specific molecules on the surface (three types of
surface proteins are present — different types of arrows in the left column). The surface
proteins are marked by chemicals that can bind only to certain specific cell molecules and
have a specific distinguishing “color” (i.e., they emit specific light spectra upon excitation
— in this case, red, blue, and green). The chemicals are excited by a laser, and the amount
of the emitted light in different parts of the spectrum is measured and stored in the data
matrix. Cells can be distinguished by combinations of substances (each bonding to a
different cell molecule). Measurements in the example table are idealized, neglecting the
physical properties of the process (such as measurement noise and spectral overlaps).
(Image originally authored by Molnárová [13])
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Figure 1.2 Example of the manual gating process — marking similar populations
in different subdimensions. (Image originally authored by Saeys, Van Gassen, and
Lambrecht [4])

overlooked.
In the last two decades, the non-linear projection algorithms called dimen-

sionality reduction algorithms have helped to analyze datasets with more than
two dimensions. These visualization techniques are still human-readable and give
a satisfactory view of more advanced features that cannot be observed by gating.
However, these algorithms are slow, and therefore user interaction was possible
only on small, trimmed datasets with the loss of information. Thus in BlosSOM,
we use a performant dimensionality reduction algorithm EmbedSOM [12] that is
suitable for interactive visualization without trimming the dataset. An improved
CUDA EmbedSOM [14] gives even better results thanks to the GPU-acceleration.

Cytometry data can be visualized in various ways — scatter plot, heatmap,
dendrogram, or minimal spanning tree. In BlosSOM, we visualize the data by a
two-dimensional scatterplot where each rendered point has its counterpart in
high-dimensional data and represents one cell. The scatterplot shows the results
of dimensionality reduction algorithms where the cells are arranged in clusters
(see Figure 1.3).

1.2 Landmark-based approach to visualization

The main feature of the BlosSOM interactive visualization is a landmark-based
approach to visualization. Landmarks are points in the same high-dimensional
space as input data with counterparts in the two-dimensional space (see Fig-
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Figure 1.3 The scatterplot from BlosSOM of Levine dataset (authored by Levine et al.
[18]) embedded by the EmbedSOM algorithm where cells are arranged in clusters. The
scatterplot is colored by the expression CD45 which means that the red area contains
cells with high measured values of the CD45 parameter. The gray circles are specific to
the EmbedSOM algorithm and are not part of the scatterplot visualization. The gray
circles are described in the following Section 1.2.
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Figure 1.4 Two-dimensional landmarks (gray circles) visualized in BlosSOM with
optimized landmark positions to better display the dataset distribution.

ure 1.4). The number of landmarks is significantly lower than the number of data
points. Therefore they create a simplified version of the dataset. The underlying
embedding algorithm EmbedSOM uses the high-dimensional landmarks to em-
bed the high-dimensional data points to two-dimensional space according to the
positions of two-dimensional landmarks.

In the original, non-interactive, unsupervised version of the EmbedSOM, the
high-dimensional landmarks are typically chosen as a random subset of data
points and are embedded in two-dimensional space by the t-SNE algorithm. Even
though t-SNE is a rather time-demanding algorithm, it can be used to embed
landmarks because the number of landmarks is relatively small.

BlosSOM is an interactive version of the EmbedSOM algorithm — the user can
interact directly with two-dimensional landmarks and change the results of the
embedding. Ideally, to make BlosSOM a fully supervised version of EmbedSOM,
the user should also be able to move high-dimensional landmarks directly. How-
ever, this is an unfeasible task because of the inherent complexity of navigation
in high-dimensional spaces. Hence, we use algorithms such as k-Means or SOM
to automate the movement of high-dimensional landmarks, possibly also reflect-
ing the user-driven changes in the layout of 2D landmarks. Two-dimensional
landmarks can also be moved automatically by algorithms like t-SNE or graph
layouting algorithms.

In the following sections, we further describe the algorithms used for the
automated movement of high and low-dimensional landmarks and the algorithms
for the actual embedding.
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Figure 1.5 Modified k-Means algorithm. The circles are centroids, and the squares are
data points. The pink square is a randomly chosen target data point. The closest (red)
centroid moves the most to the target (the right picture). The other two (green and blue)
centroids move only a little toward the target.

1.2.1 High-dimensional landmark positioning
In this section, the automated ways for high-dimensional landmark positioning
are described. The entire dataset must be evenly covered with high-dimensional
landmarks so the embedding shows all parts of the dataset. The user can choose
which algorithm is running, adjust the parameters of these algorithms or stop
them anytime.

k-Means

The k-Means algorithm [19] is usually used in clustering problems. It works in
iterations; its input is the number of iterations 𝑖, centroids, and data points. In
each iteration, each data point is assigned to the closest centroid. New positions
of the centroids are computed as the mean of the positions of data points assigned
to the centroid. After 𝑖 iterations, the resulting centroids define dataset clusters.
The output of the algorithm is the assignment of data points to the closest cluster.

In our case, we use the modification of this algorithm for the movement of
high-dimensional landmarks, which are regarded as centroids. The algorithm is
modified so that in 𝑖 iterations, only one randomly chosen data point is processed
in each iteration. Then, all centroids are moved toward the target data point, and
the closest centroid is moved toward the target data point more. This algorithm
is shown in the Figure 1.5. The 𝑎𝑙𝑝ℎ𝑎 parameter affects the moving speed of
the closest centroid, and the 𝑔𝑟𝑎𝑣 𝑖𝑡𝑦 parameter affects the moving speed of all
centroids to the target data point.

Self-organizing maps

The self-organizing map [11](SOM) algorithm is very similar to the k-means
clustering algorithm (see Section 1.2.1). The main difference is centroids. In
k-means, they are independent, i.e., their positions do not affect the positions of
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Figure 1.6 Preserved topology of the high-dimensional dataset in the SOM algorithm.
On the left, there are high-dimensional data (three-dimensional). In the middle are the
positions of neurons in the grid after 𝑖 iterations. On the right is a low-dimensional
(two-dimensional) map used for visualization. The points far from each other in the left
picture are also far from each other in the right picture. It is the same with the close
points. (Image originally authored by Kratochvil et al. [20])

other centroids. In the SOM algorithm, the centroids are connected and affect
positions of each other. In SOM terminology, we use the term neurons rather
than centroids. The usual way how to connect the neurons is a regular grid.

The input of the SOM algorithm is the same as for the k-Means algorithm
— the number of iterations, neurons, and data points. Each data point is also
assigned to the closest neuron in each iteration. However, when the new positions
of neurons are computed, they are not computed only from the positions of data
points but also from the positions of the neighboring neurons. If the neighboring
neuron is too far away, it is attracted, and if it is too close, it is repelled.

The high-dimensional neurons have their counterparts in the low-dimensional
space. The neurons are connected in the same grid pattern in both dimensions. In
the low-dimensional space, the grid is called a map. High-dimensional points are
projected to the map according to the high-dimensional grid. Points in a particular
grid area are projected to the same area in the map. Thanks to this, the SOM
algorithm preserves the topology of the high-dimensional data (see Figure 1.6).
The map is the output of the algorithm — the assignment of the data points to
clusters (neurons).

In BlosSOM, we use SOM in the same way as the k-Means algorithm — for
positioning high-dimensional landmarks (neurons). We use the samemodification
as in the k-Means — we do not compute the closest neurons for every data point
but only for k randomly selected data points. The only difference is in the
computation of the new positions of neurons. In k-Means, the new positions are
computed only from the distances between centroids and data points. In the SOM
algorithm, the new positions are additionally affected by the connections between
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neurons. As we are concerned only about the positioning of the landmarks, the
modified algorithm does not output any map.

1.2.2 Two-dimensional landmark positioning

This section describes automated ways to move two-dimensional landmarks.
Proper positioning of two-dimensional landmarks is crucial for comprehensible
visualization. When a new dataset is loaded, the two-dimensional landmarks
are at the default positions and do not move. The user can move each landmark
freely with the mouse. The user can also use a positioning algorithm to position
landmarks in an automated way. The user can intervene in the algorithm and
freely move each landmark while the algorithm is still running and moving
other landmarks. The user can choose which algorithm is running, adjust the
parameters of the algorithms or stop them anytime.

k-NN graph generation

In BlosSOM, we do not use the k-NN graph generation algorithm for positioning
two-dimensional landmarks. It is mentioned in this section because the Spring
layout algorithm discussed below uses the results of this algorithm.

The k-NN (k-nearest neighbors) graph generation algorithm produces a graph
where each node has edges with at most 𝑘 other nodes. The input of the algorithm
are positions of nodes. It finds 𝑘 closest nodes for each node and creates an
edge between them. It also stores distances between them — usually Euclidean
distances. The output is the set of edges and their lengths. Since it has to inspect
all pairs of nodes, it is slow on the large set of nodes.

In BlosSOM, the nodes are high-dimensional landmarks. High-dimensional
edges are rendered between two-dimensional landmarks only for illustration —
to show which landmarks are close to each other in the high-dimensional space
(see the Figure 1.7).

Spring layout

The Spring layout algorithm [21] is a force-based graph layout algorithm. The
algorithm aims to create a graph layout with acceptably short edges and, simulta-
neously, well-separated nodes. Its input is a graph with nodes and edges. The
edges act as springs that pull both ends together to some extent. The repulsive
force is computed from the nodes based on their proximity. The attractive force is
computed from the edges based on their lengths. At the end of each iteration, the
velocity of each node is updated according to the forces. The velocity is slowed
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Figure 1.7 An example result of the k-NN graph generation algorithm in BlosSOM
with 𝑘 = 3. The gray circles are two-dimensional landmarks, and the red lines between
them are edges. Since k-NN is an asymmetric algorithm, each node can have more than
𝑘 edges.
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Figure 1.8 One iteration of the Spring layout algorithm. Nodes (gray circles) are
repulsed between each other, and nodes connected with edges (red line) are attracted to
each other. The leftmost node stays the same because it is at an approximately viable
position. The node closest to the middle one is repulsed because the nodes are too close
to each other. The node most to the right is attracted to the middle one because the
edge between them is too long, so it has to shrink.

down each frame by an arbitrary number, so the layout is stabilized after some
time. One iteration of the algorithm is shown in the Figure 1.8.

In BlosSOM, the nodes of the graph are two-dimensional landmarks. The edges
are from the k-NN graph generation algorithm (described in the Section 1.2.2). In
each frame, landmarks are moved according to the forces.

t-SNE

The t-SNE (t-Distributed Stochastic Neighbor Embedding) algorithm [22] is a
dimensionality reduction algorithm used for clustering and analysis of underlying
structures in datasets (see Figure 1.9). The algorithm embeds high-dimensional
data into low-dimensional space (typically two- or three-dimensional). At the
beginning of the algorithm, the matrix of similarities for high-dimensional data
points is computed between all pairs of points using Gaussian. In each iteration,
the matrix of similarities between low-dimensional data points is computed
using Student t-distribution. The goal of t-SNE is to minimize a Kullback-Leibler
divergence cost function by the gradient descent method in each iteration, i.e., to
minimize the difference between the similarity matrices. As a result, the positions
of low-dimensional points are updated. The update of points can be imagined
as springs between all pairs of points — the two points are attracted or repelled
based on their distance. The iterations of the algorithm are repeated until the
convergence of positions of the data in low-dimensional space or after a fixed
number of iterations.

In BlosSOM, the t-SNE algorithm is not applied to high-dimensional data
points but to high-dimensional landmarks. It works the same as with high-
dimensional data points — it embeds high-dimensional landmarks into two-
dimensional space. However, the embedding is not used to visualize clusters
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Figure 1.9 Embedding of three-dimensional dataset iris [23, 24] to two-dimensional
space using the t-SNE method. It separates the data into three clusters while preserving
local structure.

and analyze the data set. It is used for positioning two-dimensional landmarks
because it updates the positions of low-dimensional data points in each iteration.

1.2.3 Dimensionality reduction
This section describes dimensionality reduction algorithms applied to high-
dimensional data points to create a visualization in the form of a scatterplot.
In BlosSOM, the data points must be embedded in each frame. Hence, an al-
gorithm that can swiftly process many data points in a single frame is needed.
Therefore, we used the algorithm EmbedSOM which provided speedup of several
magnitudes of flow and mass cytometry data visualization compared to other
available algorithms. A GPU-accelerated variant of EmbedSOM achieved even
more speedup. The user can choose an embedding algorithm at a compile time
and adjust the parameters of algorithms at runtime.

EmbedSOM

EmbedSOM [12] is a non-linear dimensionality reduction algorithm. It embeds
high-dimensional points into low-dimensional space (WLOG two-dimensional).
Its input is high- and two-dimensional landmarks and high-dimensional data
points. The pseudocode of the algorithm is in the Algorithm 1. For each high-
dimensional data point 𝑥, the 𝑘-closest high-dimensional landmarks are chosen
(on Line 3). The score is computed for all 𝑘 landmarks based on their distance
from 𝑥 (on Line 4). The closest landmark has the highest score. For all pairs of
𝑘 high-dimensional landmarks, the point 𝑥 is projected to the space created by
a pair of landmarks (on Line 6). The goal is to find a point in two-dimensional
space such that the projection of this point to a space created by corresponding
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two-dimensional landmarks is the same. The linear equation, which solution is
the wanted point in a two-dimensional space, is created (on Line 7). Such found
point is only an approximation but sufficient approximation. The approximations
are summed for all pairs of landmarks to create two linear equations with two
variables (on Line 8). The solution of this system of linear equations is the position
of the embedded point in two-dimensional space (on Line 10).

Algorithm1 EmbedSOMalgorithm pseudocode (themore detailed algorithm is in [12])

1: function embedsom
2: for all high-dim data points do
3: find k-closest high-dim landmarks
4: assign a score to each of k-closest landmarks
5: for all k-closest landmark pairs do
6: project the point to the line created from the pair of landmarks
7: compute approximation
8: result_matrix← add approximation
9: end for
10: embedded_point← solve linear equation(result_matrix)
11: end for
12: end function

In BlosSOM, the EmbedSOM algorithm embeds high-dimensional data points
into the two-dimensional space. Each point is embedded independently, and
therefore the data points can be processed in subsets, as BlosSOM aims to be
interactive (to have a feasible framerate). The user can change the position of the
two-dimensional landmarks, thereby changing the embedding.

EmbedSOM algorithm can be accelerated well as the CUDA EmbedSOM
algorithm [14] (created for the BlosSOM) demonstrates. CUDA EmbedSOM is
a GPU-accelerated version of the EmbedSOM algorithm. The interface and the
usage of the algorithm are the same as in the EmbedSOM algorithm. Only two
parts of the algorithm are GPU-accelerated — the selection of 𝑘-nearest landmarks
and projections of points to landmark spaces.
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Chapter 2

BlosSOM computation pipeline

BlosSOM started as a research project at Charles University in 2021. The result of
the project was the BlosSOM software1 and the preliminary manuscript [14]. The
software was created to demonstrate the functionality of the GPU-accelerated
EmbedSOM algorithm. Even though BlosSOM was a by-product, it turned out to
be useful for more than just a demonstration. Therefore, we decided to work on
BlosSOM in the master thesis and continue with the development.

The original description [14] focuses mainly on the algorithm and not the
software. This chapter describes BlosSOM in more detail. The following sections
give a short overview of the design and describe the state of the BlosSOM before
the thesis.

2.1 Overview

BlosSOM is a visualization software for the interactive dimensionality reduction of
large datasets. The datasets are obtained primarily from cytometry (as mentioned
in the Section 1.1), but any multidimensional dataset in the FCS [25] or TSV (a
special form of the CSV format with the tabulator as a separator) format can be
used. An example screenshot of the software is shown in the Figure 2.1.

The software implements a semi-supervised dimensionality reduction algo-
rithm using the EmbedSOM [14] algorithm. The GPU-accelerated EmbedSOM
algorithm can be used if the software runs on a device with the CUDA toolkit.

The user can interact directly with the projected dataset and change the results
of the embedding in real time. The dataset is rendered as a two-dimensional
scatterplot, and the interaction with the dataset is done through landmarks.
Multiple algorithms can be applied to landmarks (see Section 1.2).

1https://github.com/molnsona/blossom
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Figure 2.1 An example screenshot of the BlosSOM software. It shows an example
dataset with added and moved landmarks (light gray circles) to display the mammoth
skeleton properly. There are also tools for scaling, coloring, and saving the dataset (small
gray windows).
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input_handler.update

view.update

state.update

renderer.render

imgui.render

new frame

Figure 2.2 Main rendering cycle pipeline. The lines represent the order of the methods.

The user can optimize the position of landmarks by moving them, adding new
ones, or deleting existing ones (see Section 2.2.3). Also, the user can move around
the scatterplot and zoom in and out. Various coloring settings are provided,
including different color palettes, transparency, or different types of coloring. The
dataset can be transformed and scaled by the user. The resulting two-dimensional
positions of the dataset points can be exported and used to plot the data.

2.2 Design
BlosSOM is an interactive graphical environment that renders data in cycles
(frames). The architecture is not very complex because it was created only for
demonstration purposes. There is a pipeline of computations performed each
rendering cycle (see Figure 2.2).

InputHandler InputHandler stores input events and, subsequently, processes
the input. It informs other parts of the pipeline of new input events so
they can update their internal state and react to changes (as shown in
the Figure 2.3).

View View represents a virtual camera. It manages the position and zoom level

21



InputHandler

View

Renderer

InputData

move/zoom

add/delete/move
landmarks

Figure 2.3 The update method of the InputHandler. The dashed lines represent
notifying other parts of the pipeline about changes.

of the camera. In each frame, the camera moves closer to the target position
and the target zoom level. It also handles the conversion of the coordinates
between the screen and the model space and computes the view and the
projection matrix needed in the rendering.

State State represents the current state of the simulation and stores the data
of algorithms. It performs steps of the simulation in each frame. The
computational pipeline is described in the Figure 2.4.

Renderer Renderer is responsible for rendering the scatter plot and the land-
marks. It receives the updated positions of points and landmarks from the
previous stages of the pipeline. It also handles the addition, deletion, and
movement events of landmarks.

ImGuiWrapper ImGuiWrapper renders the user interface and updates the data
stored in State based on the user interaction. It is a wrapper over the user
interface library — Dear ImGui2.

2.2.1 Data flow
The computational pipeline algorithms (see Figure 2.4) work either with high-
dimensional data points or landmarks. The orange rectangles in the Figure 2.4
described in the Section 1.2 are the algorithms that work with landmarks. The
algorithms that work with high-dimensional data points are in update meth-
ods of instances of RawDataStats, TransData, ScaledData, ColorData and

2https://github.com/ocornut/imgui
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stats.update

trans.update

scaled.update

kmeans step

make knn edges

graph layout step

t-SNE layout step

SOM step

colors.update

scatter.update

Figure 2.4 The update method of the State represents the computational pipeline.
The algorithms in the orange boxes (described in the Section 1.2) only run if the user
sets the flags. Each algorithm has its own flag, which can be set in the user interface.
The lines represent the order of the algorithms. The algorithms in gray boxes work with
high-dimensional data and the algorithms in orange boxes work with landmarks.
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Trans
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Scaled
Data
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Model

Scatter
Model

Figure 2.5 Data flow diagram of the computational pipeline (see Figure 2.4). The gray
rectangles represent the data with which the algorithms work. The arrows show the
direction of the data dependency. The algorithms modify their data according to the
data from the direct predecessors. Their data then serves as input data for the successive
algorithms.

ScatterModel. These algorithms are successors in the computational pipeline
(as shown in the Figure 2.4 ), and they work with and depend on the data from the
predecessor. If the predecessor changes the data, all successors have to recompute
the data. The data flow is shown in the Figure 2.5.

DataModel stores the raw data — cells with their features (high-dimensional
data) — loaded directly from the input file. Before the data are transformed,
RawDataStats computes statistics on them. TransData transforms the raw
input data. Subsequently, the data are scaled by ScaledData. The transformed
data are colored by ColorData where each cell (data point) has assigned a color.
LandmarkModel stores the positions of high- and low-dimensional landmarks.
ScatterModel computes the two-dimensional positions of cells (data points) by
EmbedSOM algorithm (see Section 1.2.3) from the high-dimensional scaled data
in ScaledData and from the positions of landmarks in LandmarkModel.

Data format Input data from the FCS or the TSV file are stored in a vector.
Among all the data classes mentioned in the Section 2.2.1, the data are stored in

24



approximately the same way — as a one-dimensional array storing d-dimensional
input data in row-major order. Each row represents one point in the d-dimensional
space.

2.2.2 Batch computations
BlosSOM has to compute large data in batches because its main goal is to be
interactive. It means that only a part of the data is processed in each frame. Such
an approach allows us to maintain a reasonable framerate.

The batch size has been hard coded to the program, but in this thesis, the
batch size is dynamic according to the performance of the computer (as described
in the Chapter 3). The algorithms that work with high-dimensional data points
have to compute the data in batches — namely, the update methods of instances
of TransData, ScaledData, ColorData and ScatterModel classes. Because the
datasets can contain millions of points, it would not be feasible to perform compli-
cated operations on each point from the dataset in just one frame. Therefore, we
process only a subset of the data points in each frame, which is possible because
the operations are independent.

The algorithm knows how much data it has to recompute in every frame and
from which index. If it comes to the end of the data, it goes back to the beginning
because the processing of the data is cyclic. When all data are recomputed, the
algorithm stops. The algorithm starts recomputing again when the input data
changes.

2.2.3 Actions with landmarks
The user can interact with the dataset through landmarks (the gray dots on
the Figure 2.1). The user can do three actions with the landmarks — add, delete,
and move (as shown in the Figure 2.6). More actions with landmarks were
implemented in this thesis (see Section 4.3 and Section 4.4). All of the main logic
is in the InputHandler. It notifies Renderer to do the actions based on the input
events that occurred. Renderer is the middle layer between InputHandler and
GraphRenderer.

Add The two-dimensional landmark is added by pressing CTRL and clicking LMB
anywhere in the window; if the mouse cursor clicks on an already existing
landmark, this landmark will be duplicated. The new high-dimensional
landmark is created together with the two-dimensional — it finds the clos-
est two-dimensional landmark and duplicates its counterpart in the high-
dimensional space. The high-dimensional landmark positioning algorithm
(see Section 1.2.1) then arranges the newly created high-dimensional land-
mark.
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No

Add

Delete

Move

Press
CTRL + LMB

Release
CTRL or LMB

Press
CTRL + RMB

Release
CTRL or RMB

Hold
LMB

Release
LMB

Hold LMB

Figure 2.6 State diagram of the actions on landmarks. There are four states (gray
circles) — No, Add, Delete, and Move. Arrows show the input event that the user has to
do in order to do the action. No state means no action is active, and the application waits
for user input to start some action. Add state means a landmark is added after the CTRL
and LMB are pressed anywhere in the window. Delete state deletes landmark when the
CTRL and RMB are pressed over the landmark the user wants to remove. Move state
moves the landmark in the window while the landmark is pressed by LMB and moved.

Delete The two-dimensional landmark is deleted by pressing CTRL and clicking
RMB on the landmark; if it does not click on the landmark, it does nothing.
It also removes its high-dimensional counterpart. It also removes all existing
edges going from the removed landmark.

Move The landmark can be moved around the window if the user clicks with
LMB on the landmark and moves the cursor while still holding LMB. The
movement is stopped if the LMB is released and other actions can be per-
formed. This action moves only two-dimensional landmarks; therefore, this
action is only for modifying the embedding results. The high-dimensional
counterparts stay in the same positions.
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Chapter 3

Dynamic balancing of workload in
BlosSOM

This chapter explains what a dynamically balanced workload is, why it is needed,
and by what methods it can be achieved. At the end of this chapter, the imple-
mentation of the best method is described and the results with benchmarks are
presented.

BlosSOM processes large amount of data. Since it aims to be an interactive
tool, it must maintain a reasonable framerate. That is achieved by dividing the
input data into batches and processing each in one frame. This approach preserves
an illusion of interactivity because the data are updated gradually in each frame,
and the user sees partial results and progress. The update of the whole dataset in
one frame could cause the freezing of the UI.

In the original version, the algorithms (described in the Section 2.2.2) used a
constant batch size independent of the computer on which the application was
running. It caused a divergence of framerates on different machines because each
processes the same batch size differently. The unpredictable framerate does not
meet the interactivity criterion because we want the same level of interactivity
on every computer.

This chapter aims to adjust the batch size dynamically according to the per-
formance of the computer. In this approach, the framerate is constant, and batch
sizes change. The batch size adapts according to the number of points processed
in previous frames and fits the current batch size to the wanted framerate. The
following Section 3.1 presents possible methods and the one that was the most
suitable for this problem (see Section 3.1.4).
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3.1 Methods for dynamic batch size adjustment
This section describes the explored methods for dynamic batch size adjustment
(the problem is stated in the Task 1). All methods have been tested for the speed
of adaption to a change in a data trend. The speed is measured in the number of
data frames (see Figure 3.1). The number of data frames method is shown only to
illustrate the functioning and adaptiveness of methods. It would be interesting to
compare these methods more rigorously, but for the purposes of this thesis, it is
not necessary.

Task 1 (Batch size vs. framerate problem). Given the constant desired framerate
and batch sizes from previous frames, we estimate the amount of work for the next
frame so that the overall framerate is as close as possible to the given framerate.

3.1.1 Linear regression

The first and most straightforward method explored was linear regression. This
method is suitable for our data because the time required to process the data
increases linearly with the larger batch size. Hence, the fitted line should estimate
the trend of the data sufficiently.

Method overview

Since the data are two-dimensional — desired time of the current frame and the
estimated batch size — a simple linear regression is used. The formula for the
simple linear regression model is

𝑦 = 𝑎𝑥 + 𝑏

where 𝑏1 represents the intercept of the line with the 𝑦-axis and 𝑎 represents the
slope of the line. Since the real world is not perfectly linear, the error term must
be added to the equation

𝑦 = 𝑎𝑥 + 𝑏 + ε.

The 𝑎 and 𝑏 parameters are unknown and, therefore, must be estimated. The
ordinary least squares estimation method (further on only OLS) is used for this
estimation. The main idea is to minimize all the squared distances of all the

1Usually, the 𝑏 parameter is ignored but in our case, it is a very important part of the estima-
tion because it represents the initialization of the algorithm. It is measured in each frame and
additionally, we can turn on and off computational parts of the pipeline and affect the initialization
time by that.

28



25000 30000 35000 40000 45000 50000

4
0

6
0

8
0

1
0
0

1
2
0

n

t

25

50

75

100

Iteration

Figure 3.1 The description of the trend line graph used in all methods on the same
simulated data — 100 pre-generated numbers of data points with assigned times of
computations (100 circles on the graph). The x-axis is the number of data points 𝑛. The
y-axis is the time 𝑡 needed to process the data points. Each point (a circle on the graph)
represents how long it took to process 𝑛 data points. The purple points (lower in the
graph) simulate a lower computer load. The greenish points (upper in the graph) simulate
the change in the computer performance (e.g., some advanced algorithm is running)
when the same number of data points is computed slower (it has higher 𝑡 values than
before). The lines represent an estimate of the data trend in each frame. The purpose of
this graph is to show how many frames (lines) the algorithm needs to notice a new data
trend and start to predict correct values (the lines move from the bottom to the top) —
the number of the middle lines (green lines).
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measured data points from the fitted line (distances between real and predicted
values) called residuals:

min
𝑛
∑
𝑖=1

ε2𝑖 .

The ε is isolated from the equation of the linear regression as follows

ε = 𝑦 − 𝑎𝑥 − 𝑏.

By substitution of ε we get the following problem

min
𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)2.

We will denote S as the sum function

𝑆 =
𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)2.

To find a minimum of a function, the derivative of the function must be equal to
zero. Since there are two parameters 𝑎 and 𝑏, the partial derivatives must be used.
First, we differentiate the function with respect to 𝑎:

𝜕𝑆
𝜕𝑎

=
𝑛
∑
𝑖=1

2(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)(−𝑥𝑖)

= 2
𝑛
∑
𝑖=1

(−𝑦𝑖𝑥𝑖 + 𝑎𝑥2𝑖 + 𝑏𝑥𝑖).

The derivative of the function with respect to 𝑏 is:

𝜕𝑆
𝜕𝑏

=
𝑛
∑
𝑖=1

2(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)(−1)

= 2
𝑛
∑
𝑖=1

(−𝑦𝑖 + 𝑎𝑥𝑖 + 𝑏)

= 2
𝑛
∑
𝑖=1

(𝑎𝑥𝑖 − 𝑦𝑖) + 2𝑛𝑏.

Now, to find the minimum, the partial derivatives must equal zero. The first
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equation isolates the parameter 𝑏, and substitutes it into the second equation

2
𝑛
∑
𝑖=1

(𝑎𝑥𝑖 − 𝑦𝑖) + 2𝑛𝑏 = 0

𝑛
∑
𝑖=1

𝑦𝑖 = 𝑎
𝑛
∑
𝑖=1

𝑥𝑖 + 𝑛𝑏

𝑏 =
∑𝑛

𝑖=1 𝑦𝑖
𝑛

− 𝑎
∑𝑛

𝑖=1 𝑥𝑖
𝑛

𝑏 = 𝑦 − 𝑎𝑥,

where 𝑥 and 𝑦 are the mean values of the vectors. The second equation for the
estimation of the parameter 𝑎 is

2
𝑛
∑
𝑖=1

(−𝑦𝑖𝑥𝑖 + 𝑎𝑥2𝑖 + 𝑏𝑥𝑖) = 0,

substituting 𝑏 with the formula above, we get

2
𝑛
∑
𝑖=1

(−𝑦𝑖𝑥𝑖 + 𝑎𝑥2𝑖 + (𝑦 − 𝑎𝑥)𝑥𝑖) = 0,

from which we eventually get

𝑎 =
∑𝑛

𝑖=1 𝑥𝑖(𝑦𝑖 − 𝑦)
∑𝑛

𝑖=1 𝑥𝑖(𝑥𝑖 − 𝑥)
.

A different formula for the estimation of 𝑎 can be found, but they are equal.
More precisely, the different formula is

𝑎 =
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦)(𝑥𝑖 − 𝑥)
∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)2
=

cov(𝑥, 𝑦)
cov(𝑥, 𝑥) = var(𝑥)

.

We will show the equality of formulas on the equality of numerators and then, in
the same way, of denominators

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦)(𝑥𝑖 − 𝑥) =
𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦)𝑥𝑖 −
𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦)𝑥

=
𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦)𝑥𝑖 − 𝑥
𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦)

=
𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑦)𝑥𝑖,
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where the first equality is from expanding the first bracket with the second bracket.
The second equality is based on the independence of the arithmetic average of 𝑥
on the variable 𝑖 and, therefore, can be outside the sum. The third equality stems
from the Lemma 1.

Lemma 1. The sum of deviations from the mean is equal to zero.
𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥) = 0

Proof.
𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑥) =
𝑛
∑
𝑖=1

𝑥𝑖 −
𝑛
∑
𝑖=1

𝑥 =
𝑛
∑
𝑖=1

𝑥𝑖 − 𝑛𝑥 =
𝑛
∑
𝑖=1

𝑥𝑖 − 𝑛 (
∑𝑛

𝑖=1 𝑥𝑖
𝑛

) = 0.

The equality of denominators uses the same principle as numerators, where
the sum will be 𝑛

∑
𝑖=1

(𝑥𝑖 − 𝑥)(𝑥𝑖 − 𝑥).

By the computation of 𝑎, the substitution of 𝑎 to 𝑏, and consequently, the
substitution of 𝑎 and 𝑏 to the equation 𝑦 = 𝑎𝑥 + 𝑏, we will get the estimation of
the variable 𝑦.

Method utilization

The variables from the equation 𝑦 = 𝑎𝑥 + 𝑏 represent:

• 𝑦 time used for processing 𝑛 data points

• 𝑥 number of data points in one batch

• 𝑎 time used for processing 1 data point

• 𝑏 time spent on initialization of the algorithm

Our goal is to get the size of the next batch 𝑥. We get the value of 𝑦 as the input
of the algorithm, so we consider it a constant. With this assumption, the number
of data points 𝑥 is computed as

𝑥 =
𝑦 − 𝑏
𝑎

,

where 𝑦 is constant and 𝑎 and 𝑏 parameters are computed from the OLS estimation.
The size of the next batch has to be computed in each frame. Therefore, the

method estimates the parameters 𝑎 and 𝑏 in each frame.
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Figure 3.2 The trend line graph for the linear regression method (the graph is described
in the Figure 3.1). The correct estimation of the new data trend is made after more than
20 frames (iterations of the algorithm), which shows how slowly this method adapts to
the new data trend.

Method evaluation

The simple linear regression method is the best for the first experiment because it
is easy to implement, and results are accurate because it considers the last 𝑛 real
measured data. The accuracy has a significant disadvantage — time complexity. It
has to go through all previously measured data in each frame, which is not feasible
for interactive applications. It also has to store 𝑛 measured data, which is space-
consuming. Moreover, it does not store any additional data which could help
with statistical certainty (such as p-value). Also, the method is slowly reacting to
the trend change in the dataset, as shown in the Figure 3.2.

3.1.2 Online linear regression

For BlosSOM, we designed a method to improve the time complexity of the linear
regression method — online linear regression. It takes the main idea from the
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moving average algorithm. The results are cached — the value of the oldest point
is subtracted, and the value of the latest point is added. This approach reduces the
work done in each frame by processing only two numbers instead of 𝑛, as in the
linear regression method in Section 3.1.1. We will use the matrix form because
the summation form of the OLS estimators is not suitable for the subtraction and
addition of the data points. These two forms are equivalent. The results of this
method will yield the same results as the simple linear regression in Section 3.1.1.

Method overview

The model is the same as in simple linear regression. Instead of computing all
data points in the sum, it stores them all in the matrix.

𝑌 = 𝑋𝑏 + ε

⎛
⎜
⎜
⎜
⎝

𝑦1
𝑦2
𝑦3
⋮
𝑦𝑛

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑥11 𝑥12 ⋯ 𝑥1𝑝
𝑥21 𝑥22 ⋯ 𝑥2𝑝
⋮ ⋮ ⋱ ⋮

𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

⎞
⎟
⎟
⎠

∗

⎛
⎜
⎜
⎜
⎝

𝑏1
𝑏2
𝑏3
⋮
𝑏𝑝

⎞
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎝

ε1
ε2
ε3
⋮

ε𝑛

⎞
⎟
⎟
⎟
⎠

,

where 𝑛 is the number of data points used to compute the regression, and 𝑝 is the
number of estimated parameters. The OLS method estimates parameters in the
vector 𝑏 as the minimization of the dot product of the error vector

min(ε𝑇ε) = min(ε1ε1 + ε2ε2 + ⋯ + ε𝑛ε𝑛) = min(
𝑛
∑
𝑖=1

ε2𝑖 ).

The ε is isolated from the equation as follows

ε = 𝑌 − 𝑋𝑏.

We will denote S as the dot product and substitute ε:

𝑆 = ε𝑇ε = (𝑌 − 𝑋𝑏)𝑇(𝑌 − 𝑋𝑏)
= (𝑌 𝑇 − 𝑏𝑇𝑋 𝑇)(𝑌 − 𝑋𝑏)
= 𝑌 𝑇𝑌 − 𝑌 𝑇𝑋𝑏 − 𝑏𝑇𝑋 𝑇𝑌 + 𝑏𝑇𝑋 𝑇𝑋𝑏.

We must find and set the derivative of S to zero to minimize it:
𝜕𝑆
𝜕𝑏

= 0 − 𝑋 𝑇𝑌 − 𝑋 𝑇𝑌 + 2𝑋 𝑇𝑋𝑏

−2𝑋 𝑇𝑌 + 2𝑋 𝑇𝑋𝑏 = 0
𝑋 𝑇𝑋𝑏 = 𝑋 𝑇𝑌

(𝑋 𝑇𝑋)−1𝑋 𝑇𝑋𝑏 = (𝑋 𝑇𝑋)−1𝑋 𝑇𝑌
𝑏 = (𝑋 𝑇𝑋)−1𝑋 𝑇𝑌 .
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That is the generalized matrix form of OLS for 𝑝 parameters.
We will assume 𝑝 = 2 (we estimate two parameters) and 𝑛 = 2 (on two data

points) for demonstration purposes:

𝑦1 = 𝑏1 + 𝑏2𝑥1

𝑦2 = 𝑏1 + 𝑏2𝑥2.

These equations can be rewritten to the matrix form

(𝑦1𝑦2
) = (1 𝑥1

1 𝑥2
) (𝑏1𝑏2

)

𝑌 = 𝑋𝑏.

We noticed properties of the two matrices 𝐴 = 𝑋 𝑇𝑋 and 𝐵 = 𝑋 𝑇𝑌 that helped us
deduce what to add and subtract. The former matrix thus becomes:

𝐴 = 𝑋 𝑇𝑋 = ( 1 1
𝑥1 𝑥2

) (1 𝑥1
1 𝑥2

) = ( 2 𝑥1 + 𝑥2
𝑥1 + 𝑥2 𝑥21 + 𝑥22

) ,

which generalizes to larger 𝑛 as:

𝐴 = 𝑋 𝑇𝑋 = ( 𝑛 ∑𝑥
∑𝑥 ∑𝑥2) .

The latter matrix then becomes:

𝐵 = 𝑋 𝑇𝑌 = ( 1 1
𝑥1 𝑥2

) (𝑦1𝑦2
) = ( 𝑦1 + 𝑦2

𝑥1𝑦1 + 𝑥2𝑦2
) ,

which again generalizes as:

𝐵 = 𝑋 𝑇𝑌 = ( ∑𝑦
∑𝑥𝑦) .

These forms allow us to see what to add and subtract in each frame. For the
matrix 𝐴 the updated matrix 𝐴′ will be:

𝐴′ = 𝐴 + ( 0 𝑥new − 𝑥old
𝑥new − 𝑥old 𝑥2new − 𝑥2old

) ,

where ‘old’ is the index of the oldest element in the data and ‘new’ is the index of
the newest element in the data. The matrix 𝐵′ will look like this

𝐵′ = 𝐵 + ( 𝑦new − 𝑦old
𝑥new ⋅ 𝑦new − 𝑥old ⋅ 𝑦old

) ,
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where ‘old’ and ‘new’ are the same as in the matrix 𝐴′. There is no need to create
𝑋 and 𝑌 matrices in each frame; only add and subtract a few numbers. The 𝑏
parameters are then estimated from the equation

𝑏 = 𝐴′−1𝐵′,

where the 𝑏1 is the original 𝑏 from the equation 𝑦 = 𝑎𝑥 + 𝑏 and 𝑏2 is 𝑎 from this
equation. We will get the estimation of 𝑦 by substituting 𝑎 and 𝑏 to the equation.

Method utilization

We will work with 𝑝 = 2 (parameters 𝑎 and 𝑏 from the equation 𝑦 = 𝑎𝑥 + 𝑏) and
𝑛 = 50 (the size of the data sample fromwhich the regression is computed). In each
frame, we will compute new matrices 𝐴′ and 𝐵′ and from them the parameters
𝑏1 = 𝑏 and 𝑏2 = 𝑎. All other explanation is the same as in the Section 3.1.1.

Method evaluation

The online linear regression method yields the same results as the simple linear
regression (see Section 3.1.1); the graph would be the same as the Figure 3.2. The
only difference is the time complexity — in each frame, it does only one inverse
and one multiplication of two-by-two matrices instead of summing all 𝑛 data
points. It still has to store 𝑛 elements in the memory but only for lookup.

3.1.3 Approximate linear regression
Themotivation for this method is to save time and space at the expense of accuracy.
The main idea is to approximate the parameters 𝑎 and 𝑏 using only one previously
measured value instead of 𝑛 previous values.

Method overview

The OLS estimator looks almost the same as in the online OLS (see Section 3.1.2),
but the matrices 𝐴′ and 𝐵′ have slight differences. The addition and subtraction
method is replaced by an approximation of the values with the following formula:

new estimate = old estimate ⋅ (1 − 𝛼) +measured value ⋅ 𝛼 ,

where 𝛼 is a learning rate. The update of the 𝐴′ matrix is thus defined as follows

𝐴′ = (1 − 𝛼) ⋅ 𝐴 + 𝛼 ⋅ (1 𝑥
𝑥 𝑥2

) ,
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where 𝑛 is fixed to 1 because the approximation is done from a single data point.
The update of the 𝐵′ matrix is the following:

𝐵′ = (1 − 𝛼) ⋅ 𝐵 + 𝛼 ⋅ ( 𝑦
𝑦 ⋅ 𝑥) .

Next, the process is the same as in the online regression (see Section 3.1.2) with
𝑏 = 𝐴′−1𝐵′ estimation of the parameters.

Method utilization

The 𝛼 parameter is set to 0.05. Otherwise, the method is used the same as in the
online OLS (see Section 3.1.2), except for 𝑛, which is set to 1 here.

Method evaluation

The approximate linear regression method has similar time complexity as the
online OLS due to cached partial results. Furthermore, this method has better
space complexity — it stores only one newest value instead of 𝑛. The graph shows
that detecting a new trend is slightly faster — it takes fewer frames to adapt, as
shown in the Figure 3.3. This method is less accurate than previous methods
because it approximates the result from the most recent data point, not from 𝑛
data points.

3.1.4 Mean line estimate method MLEM
The motivation behind this method is to not get biased by a permanent noise. The
Kalman filter [26] cannot be used because the problem is not linear but hyperbolic.
Therefore we designed a method for BlosSOM, which uses a different approach
than the previous methods. The main idea comes from the arithmetic average,
but it expands it to the two-dimensional space.

Method overview

We still try to find the two parameters 𝑎 and 𝑏 from the formula 𝑦 = 𝑎𝑥 +𝑏 as in the
linear regression but not using the OLS estimator. In every frame, the algorithm
receives two values — 𝑁 and 𝑇. 𝑁 is the number of processed data points in the
last frame, and 𝑇 is the computation time of processing 𝑁 data points. 𝑇 contains
the constant initialization time of the algorithm, and the remaining time is the
actual time spent on the computation. The parameter 𝑎 represents the time spent
on the computation of one point, and the parameter 𝑏 represents the initialization
time of the algorithm. If the initialization time is 𝑇, then the computation time
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Figure 3.3 The trend line graph for the approximate linear regression method (the
graph is described in the Figure 3.1). The correct estimation of the new data trend is made
after less than 20 frames (iterations of the algorithm), which shows that this method
adapts faster to the new data trend than linear regression and online linear regression
shown in the Figure 3.2.
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Figure 3.4 The red line represents all possible values of parameters 𝑎 and 𝑏 in the
formula 𝑦 = 𝑎𝑥 + 𝑏, where 𝑎 is y-axis and 𝑏 is x-axis. We need these parameters to
estimate the size of the next batch. The two points on the axis represent two extremes —
if the initialization time of the algorithm is 𝑇, then the computation time of one point is
0, and if the initialization time is 0, then the computation time of one data point is 𝑇

𝑁
.

of one point is 0. Moreover, if the initialization time is 0, then the computation
time of one data point is 𝑇

𝑁 . The parameters 𝑎 and 𝑏 lie linearly between these
two extremes (the line in the Figure 3.4).

The previous paragraph describes only one measurement of values 𝑁 and 𝑇
(in one frame). The new values 𝑁 and 𝑇 are measured in each frame, and the line
in the Figure 3.4 looks different in each frame. These lines do not intersect at
one point; it would be the perfect estimate of the parameters 𝑎 and 𝑏 if they had
exactly one intersection point. Hence, we must find a point closest to all lines,
i.e., minimize the squared distances of the point to the lines.

Now we derive the formula for the distance of a point from a line. We work
with the line in the Figure 3.4. First, we find the slope of the line, which is
(−𝑇 , 𝑇𝑁). Then we find the normal line of the line, which is ( 𝑇

𝑁 , 𝑇) — the vectors
(𝑥, 𝑦) and (−𝑦, 𝑥) are perpendicular because their dot product is 0. Next, we have
to normalize the normal vector:

(𝑛1, 𝑛2) =
( 𝑇
𝑁 , 𝑇)

√( 𝑇
𝑁)

2
+ 𝑇 2

.

The distance of a point from a line is the dot product of its normal and the point
as shown in the Figure 3.5.
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Figure 3.5 Computation of the distance of the point (𝑥, 𝑦) from the line with a slope
(−𝑇 , 𝑇𝑁). (𝑛1, 𝑛2) is a normal line. The dot product of the point vector and normal vector
is highlighted as a full red line on the normal line. This dot product is the same as the
distance of the point (𝑥, 𝑦) with the line (−𝑇 , 𝑇𝑁) (shown as the dashed red line on the
top).

Next, we have to compute the distance of the line (−𝑇 , 𝑇𝑁) from the point
(0, 0) because the distance computation is done at the origin. This distance
can be computed either from the point (𝑇 , 0) or (0, 𝑇𝑁), which are the original
intersections with axes. So the distance is computed as dot product of (𝑇 , 0) and
the normal line (𝑛1, 𝑛2) (the distance is visualized as the blue line in the Figure 3.6):

𝑛3 = (𝑇 , 0) ⋅ (𝑛1, 𝑛2) = 𝑇𝑛1.

Now we have to subtract the distance of the line from the (0, 0) and the
distance of the point (𝑥, 𝑦) from the shifted line to get the actual distance (the
actual distance is drawn as the green line in the Figure 3.6). The whole formula
for the distance of the point (𝑥, 𝑦) from the line with a slope (−𝑇 , 𝑇𝑁) with normal
line (𝑛1, 𝑛2) is:

dist = (𝑥, 𝑦) ⋅ (𝑛1, 𝑛2) − (𝑇 , 0) ⋅ (𝑛1, 𝑛2)
= 𝑥𝑛1 + 𝑦𝑛2 − 𝑛3.

From now on, the parameters 𝑎 and 𝑏 that we discussed at the beginning of
this section will be addressed as 𝑥 and 𝑦, and the 𝑎 and 𝑏 will be the parameters of
the error function described below.
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Figure 3.6 The computation of the actual distance of a point from a line. The pale
graph in the background shows the Figure 3.5 at the origin. Since the line is shifted, we
have to calculate the actual distance of the line from the origin (blue line). Consequently,
we must subtract the blue line from the red line to get the green line — the actual distance
of the point (𝑥, 𝑦) from the original line.
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To find the point closest to all the lines (to estimate the parameters 𝑥 and 𝑦),
we have to minimize the squared distances from the lines:

min(𝑥𝑛1 + 𝑦𝑛2 − 𝑛3)2,

in other words, minimize the error function:

min 𝑒(𝑥, 𝑦).

We will expand the error function:

𝑒(𝑥, 𝑦) = (𝑥𝑛1 + 𝑦𝑛2 − 𝑛3)2

= 𝑛21𝑥2 + 𝑛22𝑦2 + 2𝑛1𝑛2𝑥𝑦 − 2𝑛1𝑛3𝑥 − 2𝑛2𝑛3𝑦 + 𝑛23
= 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 ,

where the parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 expand as follows

𝑎 = 𝑛21
𝑏 = 𝑛22
𝑐 = 2𝑛1𝑛2
𝑑 = −2𝑛1𝑛3
𝑒 = −2𝑛2𝑛3
𝑓 = 𝑛23.

The equation above is a generic formula for a parabola over a two-dimensional
plane denoted as

𝑧 = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑥𝑦 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 .

The geometric explanation of the minimization of the error function is to find
the minimum of summed parabolas, which is only one and well-defined. Since
we approximate the parameters 𝑎-𝑓 (as in Section 3.1.3), the resulting parabola is
the approximated sum of parabolas. To find the minimum of the approximated
parabola, we will differentiate the error function 𝑒(𝑥, 𝑦) and set the derivatives
equal to zero. First, we differentiate the function with respect to 𝑥:

𝜕𝑒(𝑥, 𝑦)
𝜕𝑥

= 2𝑎𝑥 + 𝑐𝑦 + 𝑑

and then with respect to 𝑦:

𝜕𝑒(𝑥, 𝑦)
𝜕𝑦

= 2𝑏𝑦 + 𝑐𝑥 + 𝑒.
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Now, we set both equations to zero, and we get the system of linear equations:

2𝑎𝑥 + 𝑐𝑦 = −𝑑
𝑐𝑥 + 2𝑏𝑦 = −𝑒,

which is solved by Cramer’s rule as follows

𝑥 = 𝑐𝑒 − 2𝑏𝑑
4𝑎𝑏 − 𝑐2

𝑦 = 𝑐𝑑 − 2𝑎𝑒
4𝑎𝑏 − 𝑐2

.

Before the computation of 𝑥 and 𝑦, the parameters 𝑎-𝑓 must be approximated:

𝑎 = a(1 − 𝛼) + 𝑛21𝛼
𝑏 = b(1 − 𝛼) + 𝑛22𝛼
𝑐 = c(1 − 𝛼) + 2𝑛1𝑛2𝛼
𝑑 = d(1 − 𝛼) − 2𝑛1𝑛3𝛼
𝑒 = e(1 − 𝛼) − 2𝑛2𝑛3𝛼
𝑓 = f(1 − 𝛼) + 𝑛23𝛼,

where the parameters a-f are the values from the previous frame and 𝛼 is the
learning rate.

Now, we can calculate parameters 𝑥 and 𝑦 with estimated values 𝑎-𝑓.

Method utilization

As mentioned in the Section 3.1.1, we use this method to estimate the same
parameters 𝑎 and 𝑏 simply by finding the minimum-error parameter combination
(i.e., the center of the paraboloid, as displayed in the Figure 3.8). However, in this
method, the parameters are called 𝑥 and 𝑦, where 𝑥 is the parameter 𝑏 and 𝑦 is the
parameter 𝑎. The batch size can be estimated in the same way as in the previous
methods. We explored a method with probabilistic guarantees but we found out
that the complexity of this method is beyond the scope of the thesis. The idea of
the method is described below until the critical point where we could not invert
a function.

Instead of 𝑥, we will denote the batch size 𝑁. We want to find 𝑁 such that, in
95% of cases, the processing time of data points will not exceed the reserved time.
We have the set of the 𝑁s that does not exceed the given time and 𝑁s that will
cause the algorithm to compute over the given time (as described in the Figure 3.7).
According to the MLEM method, we have a paraboloid in each frame that is more
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Figure 3.7 The graph is almost the same as Figure 3.4, but the axes are switched
WLOG. The red area represents values of 𝑁 that fit into the reserved time.
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Figure 3.8 The center of the paraboloid is at the (𝑦 , 𝑥) point. Ellipses represent the
depth of the paraboloid.
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Figure 3.9 The ellipse with axes ⃖⃗𝑎 and �⃗� has to be divided by the red line to the 95% and
5% of the area. So we find the proper slope of the red line to divide the ellipse correctly.
The correct slope of the red line is approximately shown in the figure.

accurate than in the previous frame. This paraboloid has the center at the (𝑦 , 𝑥)
point computed from estimated values 𝑎-𝑓 (as described in the Figure 3.8).

We can look at the paraboloid as the bivariate normal distribution centered at
(𝑦 , 𝑥) = (𝜇1𝜇2)

𝑇 = ⃖⃗𝜇. We want to find the axes of the distribution (the standard
deviations in two directions) called ⃖⃗𝑎 and �⃗�. We create a covariance matrix
𝑞 from the matrix of the quadratic form of the paraboloid with the equation
𝑧 = 𝑎𝑥2+𝑏𝑦2+𝑐𝑥𝑦 +𝑑𝑥 +𝑒𝑦 +𝑓, and take the first two rows and columns because
it is a two-dimensional distribution:

𝑞 = (
𝑎 𝑐

2𝑐
2 𝑏) = ( 𝜎21 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎22
)

We will perform the SVD algorithm to get the precise values of the standard
deviations (zeros off the diagonal). The SVD algorithm decomposes 𝑞 to three
matrices 𝑈 , Σ, 𝑉. The Σ matrix is a diagonal matrix with sizes of the axes on the
diagonal. The directions of the axes are the rows of the matrix 𝑉.

Now we want to fit the line with a slope (− 𝑇
𝑁 , 𝑇) to divide the ellipse to 95%

and 5% of the area (see Figure 3.9). The line fitting is easier in the one-dimensional
normal distribution, where the problem changes to the point fitting.

To get the one-dimensional normal distribution from the bivariate normal
distribution, we will project it to the normalized normal line 𝑛 with a slope (𝑇 , 𝑇𝑁).
It is possible because the projection of a normal distribution is also normal. The
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Figure 3.10 The projection of the bivariate normal distribution (the ellipse on the left)
to normal 𝑛. This projection squashes the two-dimensional normal distribution to the
one-dimensional normal distribution (the bell curve on the right). The mean 𝜇 of the
normal distribution is the projection of the center of the ellipse 𝑐. The standard deviation
𝜎 is the square root of the sum of projections of the axes of the ellipse 𝑎 and 𝑏 to normal
𝑛. The point 𝑥 is a projection of any point from the red line on the left to the normal 𝑛
(we chose the point (0, 𝑇)).

mean 𝜇 of the distribution is the center of the ellipse 𝑐 projected to normal 𝑛. The
standard deviation 𝜎 is the square root of the sum of projections of the axes to
normal 𝑛. The searched point 𝑥 is a point where the normal is intersected by the
line with a slope (− 𝑇

𝑁 , 𝑇), so the point is a projection of any of the points of the
line to the normal (we chose the point (0, 𝑇)). The mathematical notation of the
variables above is as follows:

𝑛 =
(𝑇 , 𝑇/𝑁)

√
𝑇 2 + 𝑇 2

𝑁 2

𝜇 = (𝑐 ⋅ 𝑛)

𝜎 = √(𝑛 ⋅ ⃖⃗𝑎)2 + (𝑛 ⋅ �⃗�)
2

𝑥 = ((0, 𝑇) ⋅ 𝑛) .

The graphical representation is in the Figure 3.10.
We want the statistic 𝑥 to be in the 95% of the normal distribution (its p-value

equals 0.05). Therefore, we must convert the normal distribution to the standard
normal distribution called z-score:

𝑧 =
𝑥 − 𝜇
𝜎
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Typically, we know the z-score and find the probability. Now, we do not know
the z-score, but we know the probability, so we must invert the function Φ to get
the z-score value. The value of the inverse function Φ is from the Z table. So the
equation is:

Φ(𝑧) = 95%
𝑧 = Φ−1(95%)
𝑧 = 1.64

𝑥 − 𝜇
𝜎

= 1.64.

After the substitution, we will get the formula below:

𝑇

√𝑁 2 + 1
−

𝑐1
𝑁√𝑁 2 + 1

−
𝑐2

√𝑁 2 + 1

√

(𝑎21 + 𝑏21)𝑁 2 + 2(𝑎1𝑎2 + 𝑏1𝑏2)𝑁 + (𝑎22 + 𝑏22)
𝑁 2 + 1

= 1.64

We failed to find a closed form that would extract the desired N for the given
parameter probability distribution and desired target time. Therefore, we use
MLEM only for the estimation of 𝑎 and 𝑏 parameters from the 𝑦 = 𝑎𝑥 + 𝑏 formula
(described in the Section 3.1.1) and not for the estimation of the batch size. The
batch size 𝑁 is estimated the same as in the previous methods from the formula

𝑥 =
𝑦 − 𝑏
𝑎

.

Method evaluation

The MLEM method has similar time and space complexity as the approximate
OLS (see Section 3.1.3) because it does not compute sums in each frame but
only approximates the values. It does not store 𝑛 data points, only parameters
from the last frame. But the MLEM method has more precise estimations and is
more accurate than the approximate OLS as can be seen in the smooth change of
trend lines in the figure. The graph (see Figure 3.11) shows that with the same 𝛼
(learning rate), the method adapts as fast to the change of the new trend as the
approximate OLS (see Figure 3.3).

This method can be modified to sum all previous values as in the Section 3.1.1
or to use the additive and subtract method as in the Section 3.1.2. However, they
would have worse time and space complexity, so we directly used the approxima-
tive method. This method is also implemented in the BlosSOM tool to estimate
the next batch size because it gives the best results and is the fastest method. The
implementation of the method is described in the Section 3.2.
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Figure 3.11 The trend line graph for the MLEM method (the graph is described in
the Figure 3.1). The correct estimation of the new data trend is made after less than 20
frames (iterations of the algorithm), which is roughly the same as for the approximate
OLS (as in the Figure 3.3). In addition, the trend lines change smoothly, not inconsistently,
as in the previous methods — the lines are approximately parallel and do not cross each
other.
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3.2 Implementation
The method we implemented in BlosSOM is MLEM (see Section 3.1.4). It is a
straightforward implementation of the mathematics described in the Section 3.1.4
but with the basic estimation of the batch size without the probability guar-
antees as it turned out to be more complex than we expected. The implemen-
tation is in the Estimator class. The batch size estimation is used in every
stage of the pipeline that is computationally more complex and cannot pro-
cess all data points in one frame. Namely in the TransData, ScaledData,
ColorData, and ScatterModel instances where each instance has its own esti-
mator BatchSizeGen and therefore has a different batch size. The template of
the usage of BatchSizeGen is in the Algorithm 2, where 𝑇 represents the real
measured duration of the computation in the last frame, and 𝑡 is the required
computation time in the current frame. The current frame batch size is estimated

Algorithm 2 Batch size estimation

function non-const computation::update
⋯
max_points ← batch_size_gen.next(𝑇, 𝑡)
⋯

end function

based on these two parameters and the previous batch size.
The time 𝑡 — how long the computation should last in the current frame —

is computed from the duration of the pipeline stages (described in Figure 2.4).
Some stages do not need to estimate the batch size, so their computation time
is constant. Some stages are non-constant, and their computation time changes
according to the batch size. The time reserved for non-constant computations is
computed as follows:

non-constant time = 𝑑𝑡 − constant time,

where 𝑑𝑡 is the duration of the whole frame. The non-constant time has to be
divided between all non-constant computations in the pipeline. The non-constant
time is divided according to the priorities — the higher the priority, the faster the
computation is completed. These priorities and the duration of each non-constant
computation are implemented in the FrameStats::update_times method. The
time needed for computations in the current frame is computed as follows:

new duration = non-const time ⋅ priority,

where all priorities are summed to one, so the whole non-constant time is divided
between computations.

49



The MLEM algorithm is reset only when a new dataset is loaded (see Algo-
rithm 3).

Algorithm 3 MLEM reset

function non-const computation::update
⋯
if new dataset is loaded then

t ← 0.00001f
batch_size_gen.reset()

end if
⋯

end function

3.3 Pratical results
With the fixed batch size, the framerate was different on each computer, making
the software not portable, and we could not guarantee interactivity on every
hardware. Also, the framerate differed even on one computer (see Figure 3.12).
The dynamically balanced workload utilizes the available hardware to get the
most performance while preserving the framerate. Therefore the framerate is the
same on each computer, and the software is interactive on every computer. Even
with the basic batch size estimation, the batch sizes are computed reasonably
well, as shown in the Figure 3.13.
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Figure 3.12 Frame times of both fixed and dynamic batch size approaches. For the
fixed-batch approach, frame time stabilizes at the desired region only after all com-
putation stages finish, and only thanks to manual tuning of the fixed batch size. The
frame time in the dynamic-batch approach is stabilized at the desired region from the
beginning, even with all computations running. Variance in the dynamic batch approach
is deliberately caused by the algorithm, which scans a wider range of batch sizes to
provide better data for the regression.
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Figure 3.13 The graph depicts how a given non-constant time is divided between
all four parts of the pipeline. The batch size is dynamic and it changes a little each
frame to fit into the given time. The trans and scaled update methods have the
highest priorities and therefore are computed the fastest (they occupy the largest area
at the beginning). After that, color has to be recomputed and then the embedsom is
recomputed with the full possible available batch size. Estimates of batch sizes adjust
initially and then stabilize.
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Chapter 4

Technical improvements in
BlosSOM

In addition to the new main feature (described in the Chapter 3), several other
improvements have been implemented, described in the following sections.

4.1 Rendering pipeline based on GLFW
Originally, BlosSOM was implemented in the Magnum engine1. However, we
found out that it contains too much unnecessary functionality, slowing the com-
pilation time. Therefore, we decided to use only the needed functionality and
rewrote the application using the GLFW2 library.

GLFW is used for handling input and output events and creating windows.
The abstraction over OpenGL calls provided by the Magnum engine is no longer
available. Hence, the rendering is done directly with OpenGL calls and shaders.
The user interface stays the same because Dear ImGui is compatible with GLFW
and OpenGL.

Thanks to the GLFW, we now have full control over the rendering cycle, and
therefore, the main function is used to start the application. Before, there was no
main function, only methods inherited from Magnum Engine classes. It gives us
more freedom in the layout of the main function and the possibility to change
the order of events.

Because of the change to GLFW, the input and output have to be handled
differently; in the Magnum Engine, we just overrode methods. With GLFW,
we create GLFW callbacks, register them, collect the values if any callback was
triggered, and react to changes in the InputHandler::update method. This

1https://magnum.graphics/
2https://www.glfw.org/
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method is called in each frame at the beginning, and the collected values from
callbacks are reset in each frame at the end. The new events are polled after the
reset, so in the next frame, the values are up-to-date.

After switching to GLFW, the dependency on the SDL library3 is no longer
needed because all the functionality we need is contained in the GLFW library.
Magnum Engine offered the mathematical abstraction for matrices and vectors
and operations with them; after removing it from the project, we had to find a
replacement — the glm library4 (a C++ header-only mathematics library). Dear
ImGui5 is the only submodule needed. Other dependencies are binaries installed
directly into the operating system.

The rendering is done directly through shaders. That is because the rendering
abstraction provided by Magnum Engine is no longer available. The shaders are
written in the GLSL language, and objects are rendered in the new OpenGL way
— via vertex and array buffer objects. Shaders are written in the shaders.h file,
and the model, view, and projection matrices are obtained from the View instance.
We do not use advanced shaders, only basic vertex and fragment shaders that set
the position and color of objects.

Although there was some overhead in rewriting the project to GLFW, it made
the application more lightweight and reduced compilation time by removing
unnecessary features. Due to this change, we decided not to support theWindows
operating system because it is no longer a priority since the target audience is
mostly Linux users. With more time, it would be possible to restore the support
because GLFW is compatible with Windows.

4.2 The speed up of a scatterplot rendering
Rendering the data points is the most complicated part of BlosSOM to solve
because a full render cannot be split into two separate frames as it would cause
parts of the dataset to flicker. Also, the limitation of the rendering of large datasets
is GPU. In each frame, the GPU has to process all data points and render them to
the screen. In larger datasets, it prevented us from fitting into the wanted frame
time because the rendering took longer than the wanted frame time. We solved
this problem by rendering the data to separate textures. We have 𝑛 data points
and 𝑡 textures. The data points are evenly distributed between the textures, where
each texture stores positions of 𝑛

𝑡 distinct data points. In each frame, only one
texture updates its content; all other textures have the old content. The update of
only one texture in each frame speeds up the rendering 𝑡 times because only 𝑛

𝑡 data

3https://www.libsdl.org/
4https://github.com/g-truc/glm
5https://github.com/ocornut/imgui
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Figure 4.1 Rendering of a scene to multiple textures. Each texture (colored rectangles
on the left) stores a distinct part of the resulting data (colored body parts of the stickman
on the left). All textures rendered together over themselves give the whole dataset (the
picture on the right). In our case, the body parts of a stickman represent different parts
of the data points in the scatterplot.

is rasterized instead of all 𝑛 data points. Textures alternate using a round-robin
scheduling. In each frame, all textures are rendered over each other, so it looks
like the whole dataset is rendered simultaneously (see Figure 4.1).

This feature is implemented in a newly created class TextureRenderer.
ScatterRenderer draws points the same as before but only the subset of points
— each subset of points to a different texture. The textures are then projected to
quads and rendered over each other.

4.3 Multiselection of landmarks
Multiselect is a functionality that allows the user to select more landmarks at
once and move them around together. As a main feature for the users, it makes
the reorganization of detailed embeddings that depend on many landmarks much
more convenient.

The landmarks are selected by drawing a rectangle (see Figure 4.2) by pressing
SHIFT and moving the mouse with the pressed left button. The user can freely
move the rectangle with landmarks by pressing the left mouse button. To stop
multiselect, the user has to press the right mouse button.

When multiselect is active, no other actions with landmarks can be performed.
The multiselect mode has three states (as shown in the Figure 4.3):

No multiselect In this state, multiselect is inactive, and other actions can be per-
formed, such as adding or deleting landmarks (as shown in the Figure 2.6).

Active multiselect To get to the Active state, the user has to press and hold
SHIFT and LMB (left mouse button). It will activate the selection creation
(gray rectangle in the Figure 4.2). While the user holds SHIFT and LMB
and moves the mouse, it specifies the selection area. In this state, the user
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Figure 4.2 The multiselection of landmarks in BlosSOM. Landmarks (gray circles)
inside the gray rectangle will move together when clicked and dragged.

can only create the rectangle, nothing else. The SHIFT or LMB must be
released to leave this state and switch to the Passive multiselect state.

Passive multiselect When the user creates the selection (releases SHIFT or
LMB), it switches to the Passive state. In this state, the user can only move
the selection (click LMB on the rectangle and move the mouse with pressed
LMB). As in the move action of landmarks, the selection only moves with
two-dimensional landmarks, and high-dimensional counterparts stay the
same. All other actions are not possible in this state. To end this state, the
user has to press RMB, and it returns to the No multiselect state where all
other actions can be performed.

The logic of the multiselect is implemented in the process_mouse_button
method of InputHandler, which triggers Renderer when input events occur.
Renderer serves as a middle layer between InputHandler and UiRenderer.
UiRenderer creates the rectangle, checks which landmarks are within the rect-
angle, moves landmarks together with the rectangle, and renders the rectangle. It
also stores all flags, which determine the state of multiselect.

56



No Active Passive
Hold SHIFT

+ LMB

Release LMB

or SHIFT

Hold SHIFT + LMB Hold/Release LMB

Press RMB

Other actions

Figure 4.3 State diagram of multiselect. It consists of three states (gray circles) —
No multiselect, Active multiselect, and Passive multiselect. The lines show transitions
between states using mouse and keyboard buttons. No multiselect state means the
multiselect functionality is inactive, and other actions can be performed, such as adding
or deleting landmarks (as shown in the Figure 2.6). The Active multiselect state represents
the creation of the gray rectangle (as shown in the Figure 4.2). Passive multiselect allows
only the movement of the selected landmarks (the movement of the gray rectangle).

4.4 Brush coloring

Brushing is a coloring method that allows users to color data points indirectly
through landmarks. The user can color the landmarks by “spraying” the color.
The color of each data point is the same as the closest high-dimensional landmark.
The color represents the cluster to which the landmark and corresponding data
points belong. The cluster is also represented by a name. The user can set both
cluster attributes — color and name — in the user interface. An example of the
brushing coloring is in the Figure 4.4.

The “spraying” of the color is done by choosing the cluster color and moving
the mouse with pressed LMB above the landmarks. The mouse cursor has a circle
radius within which the landmarks will be colored (as shown in the Figure 4.5).
The user can change the size of the radius. The clusters can be added or deleted
as the user wants. When the cluster is deleted from the tool, all landmarks and
closest data points that belonged to that cluster are colored back to the default
color without any cluster assigned. When the brushing is active, no other action
can be performed with landmarks.

Data points are colored in each frame by batches (as mentioned in the Sec-
tion 2.2.2). In each frame, the closest high-dimensional landmark is found for
each data point in the batch, and its color is assigned to the data point. The logic
of the “spraying” is in the process_mouse_button method of InputHandler,
which informs Renderer about the change in the input and Renderer notifies
UiRenderer. UiRenderer renders the radius circle around the mouse cursor
and checks which landmarks are within the circle. InputHandler also notifies
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Figure 4.4 Landmarks assigned to clusters by brushing coloring technique. Each
cluster has its name and color, which are editable by the user (in the Color tool on the
left). Each data point has the color of the closest high-dimensional landmark.

Figure 4.5 The “spraying” of the color is done by choosing the cluster with its color
(the blue cluster in the picture) and then moving the mouse with pressed LMB. The
landmarks within the circle radius around the mouse cursor (the black circle around the
cursor) will be colored. The slider in the Color tool on the left sets the radius size.
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Listing 1 Format of the TSV file that stores exported clusters of landmarks.

...
landmark_id r g b cluster_name
...

the ColorData class about the landmarks that should be colored according to
the active cluster in ClusterData. The ColorData stores the colors and IDs of
the clusters for each landmark. The ClusterData stores information about the
clusters added by the user and about the active cluster — which color will be used
for coloring.

The results of the brushing coloring can be exported to the TSV file. One line
of the exported file contains the ID of the landmark together with the cluster
name and color (for the exact format of the exported file see Listing 1). It has as
many lines as there are landmarks. The results can be exported from the Save
tool with the “Save clusters” option ticked.
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Conclusion

The thesis improved the proof-of-concept software BlosSOM to the production-
ready state thanks to the following features:

• BlosSOM is now implemented with the light-weight rendering library
GLFW which offers only the functionality we need and nothing more. It
speeds up the compilation time and reduces the complexity of the software,
making it easier for modification and customization.

• The dynamic batch size enables the same framerate on different computers
and hence it maintains interactivity.

• Two new functionalities were added to BlosSOM — multiselect and brush
coloring. Thanks to these two new features, the software now has all the
essential tools needed to explore and analyze datasets.

Some of the original goals of the thesis proved to be rather problematic; but we
found sufficiently good alternative solutions:

• We found that the planned CPU-based parallelism actually did not con-
tribute much to the overall throughput of the pipeline, because most of
the latency is already present in GPU-accelerated processing. To further
offload the GPU, we added a multiple-buffer solution (see Section 4.2) for
caching partial rendering results, allowing the rendering of huge datasets
to be split into multiple frames with negligible impact on user experience.

• While we managed to construct a method MLEM (see Section 3.1.4) for
very precise estimation of the batch size including the confidence intervals,
we found that the involved complexity may not be practical – the computa-
tion of MLEM either requires inverting a 4th-degree rational polynomial
function, or estimating the value of the inverse numerically. BlosSOM now
thus uses the simpler variant of MLEM which is not able to account for
confidence regions, but can be computed much more easily. At least on the
common tasks, we were not able to detect any rendering problem caused
by the loss of statistical precision.
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Establishing the mathematics required to decide whether MLEM may be
computed efficiently is left for future work.
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Appendix A

How to build BlosSOM software

The BlosSOM software currently supports only Unix-like systems and not Win-
dows. For further details, see README on Github1.

A.1 Dependencies
The BlosSOM has to be built with Cmake2 build system. GLFW3 OpenGL library
and GLM4 mathematics library are needed for rendering and mathematical com-
putations. For a compilation of a version with CUDA EmbedSOM, the NVIDIA
CUDA toolkit5 is needed.

These dependencies can be installed as libglfw3-dev, libglm-dev, and
libgl-dev binaries on Debian-based systems. The names may differ depending
on the Linux distribution.

A.2 Compilation

A.2.1 From a git repository
1. Clone git repository of BlosSOM project

https://github.com/molnsona/blossom

2. Change to the project repository

cd blossom
1https://github.com/molnsona/blossom
2https://cmake.org/
3https://www.glfw.org/
4https://github.com/g-truc/glm
5https://developer.nvidia.com/cuda-zone
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3. Clone git sub repositories

git submodule update --init --recursive

4. Create build subdirectory and change to build directory

mkdir build

cd build

5. Run Cmake

A variant without CUDA:

cmake .. -DCMAKE_INSTALL_PREFIX=./inst

A variant with CUDA (make sure to use correct gcc/g++ compilers compat-
ible with your version of CUDA/nvcc):

cmake .. -DCMAKE_INSTALL_PREFIX=./inst -DBUILD_CUDA=1
-DCMAKE_C_COMPILER=/usr/bin/gcc-10
-DCMAKE_CXX_COMPILER=/usr/bin/g++-10

6. Compile the application

make install

A.2.2 From a zip file
1. Unzip the file

2. Change to blossom directory

cd blossom

3. Create build subdirectory and change to build directory

mkdir build

cd build

4. Run Cmake

A variant without CUDA:

cmake .. -DCMAKE_INSTALL_PREFIX=./inst

A variant with CUDA (make sure to use correct gcc/g++ compilers compat-
ible with your version of CUDA/nvcc):

cmake .. -DCMAKE_INSTALL_PREFIX=./inst -DBUILD_CUDA=1
-DCMAKE_C_COMPILER=/usr/bin/gcc-10
-DCMAKE_CXX_COMPILER=/usr/bin/g++-10
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5. Compile the application

make install

A.3 Running
1. Run the application with the directory specified in the

-DCMAKE_INSTALL_PREFIX flag (in our case inst)

./inst/bin/blossom

Or a CUDA version

./inst/bin/blossom_cuda

2. The application is ready! Look at the How to section (in Appendix B) to
start.

67



68



Appendix B

How to use BlosSOM

B.1 Quickstart
1. Open the menu by clicking on the bottom right plus button.

2. Click on the first item in the menu to open a dataset.

3. Choose any dataset from ./demo_data/ folder.

4. Now, you can freely interact with the dataset by actions with landmarks
(see Section 2.2.3).

5. Also, you can apply different algorithms on landmarks (see Section 1.2)
from the training settings tool in the menu.

6. Or change the color of the dataset from the color settings tool in the menu.

A more detailed description of the tools and an example of a demo dataset is
on Github1.

1https://github.com/molnsona/blossom/blob/master/HOWTO.md
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