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Abstract: In this thesis, we address the problem of smooth interpolatory subdi-
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subdivision as the original vertices of the mesh cannot be moved to produce
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problem. As a solution, we use the minimization of a global fairness energy to
compute the positions of newly added vertices of the mesh. This approach results
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facts for more complex ones. As a future work, we suggest ways to improve our
algorithm to address the artifact occurrences.
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Introduction

Background and motivation
Three-dimensional (3D) models are widely used in industries such as animation,
game development, architecture, and product design. These models are usually
created using 3D modeling software by artists or designers and are used for pur-
poses such as visualization, 3D printing, or scientific simulations. Some models
can also be obtained through real-world scanning. This thesis solves a specific
problem that involves the processing of 3D models.

In this section, we provide a high-level overview of the problem of this thesis
along with some background information. More detailed definitions of some of
the mentioned terms follow in later chapters.

Subdivision surfaces
In general, the task of this thesis is to construct an algorithm that takes as input
a 3D model represented by a triangle mesh. The algorithm then produces another
mesh consisting of more triangles that should resemble a more detailed version of
the input. This technique is known as subdivision surfaces and typically requires
two steps. First, the edges and faces of the original mesh are divided into smaller
parts (e.g., each edge is split into two and each triangle into four smaller ones).
This also involves the addition of new vertices. Second, the vertices of the new
mesh are moved to make the new surface smoother. The smoothing of a vertex
is commonly performed by taking a weighted average of neighboring vertices’
positions. If a method moves only the inserted vertices and keeps the positions of
the original ones fixed, it is called interpolatory. Interpolatory methods have an
additional constraint and are generally more difficult to optimize for good results.

A common workflow exists in 3D modeling, where an artist first edits a coarser
mesh, where larger changes in the model’s shape are easier to make. The changes
to the coarser mesh typically involve moving only one or a few vertices or adding
new faces next to existing ones. The model can then be subdivided into a finer
mesh, where the artist can work locally on higher-resolution details. A mesh can
be subdivided this way multiple times during the modeling process.

Another application is to only model or acquire the coarse mesh and let an
algorithm generate a finer mesh without any user input along the way. This
might be useful for fast prototyping or in 3D printing to increase the smoothness
of a model. During the process, a large number of new vertices are added to the
model at once, so there is a higher emphasis on the quality of the subdivision
algorithm. Subdivision schemes that only average neighboring vertices’ positions
may not suffice for this purpose. There is also a need to somehow preserve sharp
features of the original mesh—sharp edges and vertices (e.g., sides of a cube or a
vertex on top of a cone).
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How to evaluate a subdivision
One way to evaluate the quality of a subdivided triangle mesh is to use the no-
tion of smoothness or fairness—the definitions of these terms often vary across
applications. One notion of smoothness might be a certain degree of geometric
continuity greater than zero (e.g., tangent continuity denoted as G1). Triangle
meshes are piece-wise linear surfaces and are therefore never smooth in the geo-
metric sense. In some subdivision approaches, new vertices are constructed to be
on a parametrically defined surface or curve, which in fact is smooth in the sense
of geometric continuity (e.g., polynomial patches or curves). The difference1 be-
tween the new mesh and the parametric object could, in a limit, approach zero
as we increase the number of new vertices in the subdivision. Then we might say
a part of a triangle mesh is also smooth as it approximates a smooth parametric
object.

The notion of fairness may, in some cases, mean only looking aesthetically
pleasing or with no unnatural features (without any formal definition). This is a
valid criterion, as subdivided meshes might, in some cases, end up directly in ren-
dered images, videos, or other content. In this thesis, we extensively employ this
informal approach for evaluation, as we aim to avoid the generation of noticeable
visual artifacts by a corresponding algorithm.

The book Polygon Mesh Processing [Botsch et al., 2010] gives the following
description of fairness: “. . . in general fair surfaces should follow the principle
of simplest shape: the surface should be free of any unnecessary details or os-
cillation.” One way to achieve fairness in practice is by minimizing a defined
energy function dependent on vertex positions across the mesh. This may in-
volve minimizing the total surface area or discretized surface curvature along
with constraints for the positions of certain vertices. The methods that optimize
the energy functions operate on the whole mesh and are therefore more compu-
tationally expensive. On the other hand, no unnecessary oscillation is produced,
as might be the case for a simple average of neighboring vertices’ positions.

Another approach to evaluating a subdivision (common in machine learning)
is to have a dataset of pairs of meshes—a coarse and a fine version of the same
object. Different subdivision algorithms could be compared by looking at the
differences between the original fine mesh and a mesh subdivided from the coarse
mesh using a particular mesh distance metric. This approach is used by Liu et al.
[2020] for evaluation and training of their neural subdivision. Public datasets2

are available to be used for this evaluation method; if the coarser meshes are
not already a part of the dataset, they might be generated by a suitable mesh
simplification algorithm, such as QSLIM [Garland and Heckbert, 1997]. It is
important to note that if some features, such as high-frequency details, are lost
during the creation of coarser meshes, there is no way for the energy minimizing or
vertex averaging algorithms to reconstruct them back. This can only be achieved
by prediction algorithms over training datasets or by rule-based manual addition
of high-frequency details based on coarse meshes’ features.

1Hausdorff distance may be used for computing the difference between two objects [Bartoň
et al., 2010].

2For example the ABC dataset of Computer-aided design (CAD) models [Koch et al., 2019].
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Additional background
A two-dimensional (2D) analogy of triangle mesh subdivision might be image
super-resolution, which attempts to construct a higher-resolution image from a
lower-resolution one. The state of the art solutions for this task are now using
deep neural networks [Wang et al., 2020].

We can also look again at the process of creating a finer mesh from a coarser
one without any user input along the way. An analogous process in 2D is using
a coarse image drawing as an input to a diffusion model such as Stable Diffusion
[Rombach et al., 2022] and getting as an output a more detailed image resembling
the input. Apart from the optional coarse image input, a more important type
of input to a diffusion model is a text prompt that may describe a desired object
in the resulting picture or an artistic style.

Attempts to generate 3D models from text prompts have also been made, with
one of the most successful ones being Magic3D [Lin et al., 2023]. It generates the
final 3D model in a coarse to fine manner, where a model is initially represented
as a neural network encoding [Müller et al., 2022] and in the finer stages as
a tetrahedral mesh. The model is iteratively being improved, where in each
iteration it is rendered from a certain angle to a 2D texture, that is given as an
input to a 2D diffusion model along with a text prompt. The diffusion model
generates normal, color, and other types of textures that are used to update the
3D model.

This thesis is about interpolatory subdivision, which is covered slightly less
in terms of produced algorithms than the general case. Interpolatory subdivision
may be beneficial, for example, in 3D printing, where it is in some cases important
to keep the outlines of models fixed (e.g., in mechanical parts that later need to
fit together). While not using machine learning or neural networks, the proposed
algorithm intends to combine an energy-minimizing global fairing approach with
the retention of sharp features of the input mesh.

The requirements we set for the algorithm are the following:

1. The algorithm should perform interpolatory subdivision on triangle meshes
with the amount of inserted new vertices somehow controlled by input pa-
rameters. The input mesh is assumed to be a manifold (see section 1.2.1)
and the output mesh should be a manifold as well.

2. The algorithm should be able to preserve the sharp features of the input
mesh.

3. The algorithm should, to some degree, satisfy either fairness or resemblance
to an original finer mesh.

4. There should be a reasonable tradeoff between the speed and quality of the
output mesh.

While we present our algorithm as a whole, there are parts of it with various
degrees of significance or replaceability. We can categorize them as follows (al-
though the algorithm features are more on a spectrum between the categories
than strictly adhering to one category):

4



Strictly set features The parts with clearly defined, non-ambiguous ways to
implement them.

General problems This is, for example, sharp edge detection. A problem for
which many different approaches exist. The more optimal approaches are
often more complicated to implement. Because of the independent nature
of the general problem, our algorithm can be easily improved by swapping
a usually simpler solution to the problem proposed by us for a more robust
solution.

Approximative methods for specific problems These are our solutions to
smaller problems that arise during our proposed algorithm. For example,
the computation of a vector that is most close to being perpendicular to
a set of other vectors (see section 3.4). What we aim for is a rough ap-
proximation that is efficient to compute. Our solutions to these kinds of
problems are usually simple, non-optimal, and sufficient to work in our case.
The solutions should not be taken as something essential to our algorithm
and could be exchanged for different approximation methods solving the
same task.

The overall structure of the thesis is as follows:

1. Geometric background We start with a brief survey of parts of continuous
differential geometry, with an emphasis on surface curvature. Then we
move to the discrete world, where we show how analogous concepts to the
continuous ones can be defined for triangle meshes.

2. Related works In this section, we provide a brief overview of various ap-
proaches to interpolatory and non-interpolatory subdivision and smooth-
ing. This includes traditional subdivision schemes that use neighborhood
averaging and a fairing method known as curvature flow. We also explore
the use of neural networks to address the problem. Additionally, we discuss
polynomial interpolation, which could potentially serve as a subdivision
scheme. Some of the covered polynomial interpolation schemes preserve
sharp features.

3. Our approach In chapter 3 we present our algorithm for interpolatory sub-
division. We start with an overview of an existing energy minimization
fairing approach. We show that energy minimization is undesirably shrink-
ing sections of the mesh that resemble parts of a cylinder and propose a
countermeasure to the problem. In addition, we describe how to perform
feature detection on the coarse mesh, which results in adjustments to the
energy minimization. That involves, among other things, the polynomial
and linear interpolation of curves and surfaces near sharp edges and vertices.

4. Results and evaluation In this chapter, we measure the speed of our algo-
rithm and compare its smoothing capabilities to butterfly subdivision. We
also show the results of our method for different non-smooth shapes and
cover problematic cases that occur for certain types of models.
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5. Future work We discuss possible ways in which our algorithm might be
improved—we address the problematic cases of our approach from the pre-
vious chapter and propose ways to avoid them.
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1. Geometric background

1.1 Differential geometry
In this section, we present a brief survey of parts of continuous differential geom-
etry, focusing on surface curvature. The main purpose of this section is to define
concepts that will be referenced in later parts of the text. For proofs, intuitions
behind the definitions, and a more detailed treatment of the subject, we encour-
age the reader to seek other sources, such as Kühnel [2015]. Main references for
this section are lecture notes of an MIT course on shape analysis from Solomon
[2021] and a book by Botsch et al. [2010].

1.1.1 Submanifolds
In our first definition, we introduce the notion of a submanifold of Rn. This will
be the basic object that allows us to measure curvature, distances, and other
properties upon it.

Definition 1 (Submanifold of Rn). A set M ⊆ Rn is an m-dimensional sub-
manifold of Rn if for each p ∈ M there exist open sets U ⊆ Rm, V ⊆ Rn and
a function g : U → M ∩ V such that p ∈ V and g is an infinitely differentiable
(C∞) bijection with a Jacobian of rank m and a continuous inverse function.

The function g is generally referred to as a map and U as a parameter space.
In some cases, the infinite differentiability of g is exchanged for less or more strict
differentiability constraints.

One-dimensional submanifolds of R2 or R3 are curves, whereas two-dimensio-
nal submanifolds of R3 are surfaces. A common way to define these objects is by
parametric representation. In the following equation, we present as an example
a parametric representation of a sphere with radius r and input parameters θ ∈
[0, 2π) and ϕ ∈ [0, π]:

f(θ, ϕ) =

⎛⎜⎝r sin ϕ cos θ
r sin ϕ sin θ

r cos ϕ

⎞⎟⎠ .

The function f from the equation above can be used as the map g in Defini-
tion 1, except for the boundary points for θ and ϕ, where f does not have a
continuous inverse function. In these cases, we would need to use different local
parametrization for g.

1.1.2 Curves
In this subsection about curves, we first show how to make a curve parametrized
by arc length. This ensures that the derivative of the curve function is always
unit length, which allows us to define tangents and normals for curves in R3.
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For a given point t0, the length of a curve parametrized by γ between the
points γ(t0) and γ(t) is given by the integral

S(t) :=
∫︂ t

t0
∥γ′(s)∥2 ds.

The notation ∥·∥2 represents the Euclidean norm of a vector. As the function S
is strictly increasing, it is possible to define γ̃(t) := γ(S−1(t)) as the composition
of the inverse of S and γ. This operation is known as reparametrization by arc
length and can be done for every curve. It can be shown that for all points s:
∥γ̃′(t)∥2 = 1.

Suppose γ : (a, b) → R3 is a curve parametrized by arc length and for all
s ∈ (a, b): γ′′(s) ̸= 0. We define the unit tangent of γ as T (s) := γ′(s). The unit
normal of γ is defined as N (s) := γ′′(s)/∥γ′′(s)∥2. Together with curvature κ :=
∥γ′′(s)∥2, this gives us the formula:

T ′(s) := κ(s)N (s).

The curvature expresses a notion of how the tangent of the curve changes with
respect to the arc length. If we take, for example, a circle in 3D with a radius
of r, its curvature is everywhere 1/r. As the radius of the circle increases, the
circle’s curve starts to locally resemble a line, and the curvature approaches zero.

In addition to curvature, there is also torsion which together with curvature
defined for all points is enough to determine the shape of the whole curve up to
rigid motion (translation, rotation, and reflection).

1.1.3 Surfaces
In this subsection, we define the basic properties of surfaces, including first and
second fundamental forms, Gaussian and mean curvature and geometric continu-
ity.

Tangent and normal spaces

We will refer to the next definition also as a tangent plane.

Definition 2 (Tangent space of a surface). The tangent space TpS of a sur-
face S at a point p, where g(u, v) : R2 → R3 is the map g form Definition 1, and
g(u0, v0) = p, is given by

TpS := span
{︄

∂g

∂u
(u0, v0),

∂g

∂v
(u0, v0)

}︄
. (1.1)

The span operator represents the linear span of vectors from the corresponding
set. The linear independence of the two partial derivatives of g is attributed to the
rank of the Jacobian of g, which has a value of 2. Equation 1.1 can be simplified
to

TpS := span {pu, pv} .
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We will use this subscript notation throughout the rest of the text; it will always
mean the partial derivatives of function g taken from Definition 1 at point p. Sim-
ilarly, we denote puu, pvv and pvu as the corresponding second partial derivatives
of g at p.

Finally, we denote pw, where w = (wu, wv)T , the directional derivative of g
at p in the direction w, which is given by

pw = ∂g

∂u
(u0, v0)wu + ∂g

∂v
(u0, v0)wv.

The directional derivative can give us a sense of how the surface changes in the
direction w by returning values in the tangent plane TpS.

Definition 3 (Normal space of a surface). The normal space NpS of a surface S
at point p is defined as

NpS := span {pu × pv} .

The symbol × represents the operator for the cross product of two vectors.
If we want to select a normal vector np ∈ NpS of a tangent plane TpS, we have
two options—the normalized versions of pu × pv and −pu × pv. We might try
to construct a continuous function f that maps each point on the surface to its
normal. This is only possible for the so called orientable1 surfaces. From now on,
we assume that all surfaces mentioned in this text are orientable, and therefore
the normals np, defined by f , are available for all points p on the surface.

First and second fundamental form

Definition 4 (First fundamental form). The first fundamental form Ip of a sur-
face S at point p is given by

Ip :=

⎛⎜⎝pT
u pu pT

u pv

pT
v pu pT

v pv

⎞⎟⎠ .

The form can be viewed as an operator

Ip(w1, w2) := wT
1 Ipw2

defined for each surface point. It can be shown that the operator returns a dot
product between the directional derivatives of p in directions w1 and w2. From
the dot product defined as such, it is possible to measure the size of vectors in
the tangent space and the angles between them. More advanced uses of the first
fundamental form involve the computation of the length of a parametrized surface
curve or the area of a parametrized surface patch.

Definition 5 (Second fundamental form). The second fundamental form IIp of
a surface S at point p is given by

IIp :=

⎛⎜⎝pT
uunp pT

uvnp

pT
uvnp pT

vvnp

⎞⎟⎠ .

1An example of a surface that is not orientable is the Klein bottle [Polthier, 2003].
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The second fundamental can be seen as an operator

IIp(w1, w1) := wT
1 IIpw2.

An important application of the second fundamental form is to measure the cur-
vature of a curve along the surface S. A surface curve might be locally defined
as a 2D curve in parameter space that is mapped to the surface space using func-
tion g from definition 1. The curvature of a surface curve at point p depends only
on the tangent t of the corresponding 2D curve in parameter space at a point
corresponding to p. For all surface curves γt with the parameter space tangent t
at p, it holds that

IIp(t, t) = κ(s)N (s),
where κ(s) is the curvature of γt at p, and N (s) is the normal vector of γt at p.

Mean and Gaussian curvature

As IIp(w1, w1) is a symmetric matrix, it has real eigenvalues, which we denote
κmin and κmax, where κmin ≤ κmax. We refer to them as the principal curvatures
of the surface S at point p. They are, respectively, the minimum and maximum
values of the curvature of a curve along a surface S at point p. The eigenvectors
(tangent vectors in the parameter space) corresponding to κmin and κmax are
orthogonal to one another.

Definition 6 (Mean and Gaussian curvature). The mean curvature H and Gaus-
sian curvature K of a surface S at point p are defined as

H := 1
2 (κmin + κmax) ,

K := κminκmax.

A point p with Gaussian curvature K can be categorized into three cases (as
can be seen in figure 1.1.3):

(a) If K > 0, the surfaces locally resemble valleys or the tops of hills; we call
these points elliptic.

(b) If K = 0, the surface is locally flat, like a plane, or bent in only one direction.
These are parabolic points. Apart from the two other cases, the surface is
locally not being stretched.

(c) If K < 0, the surface is locally saddle-shaped, we call these points hyperbolic.

Geometric continuity

We have now introduced enough concepts to define the notions of geometric con-
tinuity.

Definition 7 (Geometric continuity). The G0, G1 and G2 geometric continuity
of surfaces are defined as follows:

10



(a) K > 0

(b) K = 0

(c) K < 0

Figure 1.1: Examples of surfaces with different Gaussian curvature.
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• A surface S is G0-continuous if it is a submanifold of Rn with a continuous
function g from Definition 1.

• A surface S is G1-continuous if it has a continuous tangent plane Tp at
every point p.

• A surface S is G2-continuous if it has a continuous second fundamental
form IIp at every point p.

1.2 Discrete geometry
In this section, we cover how to apply the concepts of curvature and other prop-
erties of surfaces to triangle meshes. Main references for this section are Meyer
et al. [2003], Solomon [2021] and Botsch et al. [2010].

1.2.1 Triangle meshes
General definitions

The following definitions will build into an idea of a simplical complex. Simplical
complex is a general term that encompasses triangle meshes and, among others,
also graphs (meaning a collection of vertices and edges) and meshes in higher
dimensions (e.g., tetrahedral meshes).

Definition 8 (Simplex). A k-simplex is a set S ⊆ Rn that for some affinely
independent set of points p0, . . . , pk ∈ Rn satisfies

S =
{︄

r ∈ Rn

⃓⃓⃓⃓
⃓ r =

k∑︂
i=0

αipi where
k∑︂

i=0
αi = 1 and ∀i : αi ≥ 0

}︄
.

We denote p0, . . . , pk as vertices of S. Simplices of dimensions 0 to 3 are
points, lines (edges), triangles, and tetrahedra, respectively.

Definition 9 (Faces of a simplex). The faces of a simplex given by vertices
p0, . . . , pk ∈ Rn are all of the l-simplices (l ≤ k) defined by a subset of the
vertices p0, . . . , pk, including the empty set.

For example, the faces of a triangle are the three points and lines that define
the triangle, with the addition of the empty set and the triangle itself.

Definition 10 (Simplical complex). A simplical complex K is a set of simplices
such that for all S ∈ K, the faces of S are also in K, and for any two sim-
plices S, S ′ ∈ K, the intersection S ∩ S ′ is a face of both S and S ′.

We consider simplices S and S ′ k-adjacent if S ∩ S ′ is a simplex of dimension
k. To avoid confusion in this text, if we omit the k and say the simplices are only
adjacent, we mean (l − 1)-adjacency if both simplices have dimension l, and in
the case of different dimensions, we mean l-adjacency where l is the dimension of
the simplex with the lower dimension. From this, it follows that two triangles are
adjacent if they share an ege, and a triangle is adjacent to a vertex if it contains
the vertex.
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It is possible to define the concept of discrete manifolds for all simplical com-
plexes. We will however restrict ourselves only to triangle meshes, which for us
are simplical 2-complexes (the maximum dimension of a simplex is 2) with points
in R3. In order to be a discrete manifold, a 2-complex has to satisfy the following
properties:

• Every edge is adjacent to exactly two triangles. For a triangle mesh with a
boundary, it is sufficient to be adjacent to one triangle.

• For all vertices v, the set of all triangles that have v as a vertex forms a
closed fan (or an open fan for a mesh with a boundary).

A fan is a sequence of different triangles that all share a common vertex, and every
two consecutive triangles share an edge. The fan is closed if the last triangle shares
an edge with the first triangle; otherwise, it is open. If we remove the condition
of the common vertex from the open fan sequence, we get a generalized triangle
strip. By imposing a condition on the generalized triangle strip that at most
three triangles share a common vertex, we get a (standard) triangle strip. Figure
1.2.1 shows examples of the defined triangle formations.

We denote the neighborhood N (v) of a vertex v as the set of all vertices
distinct from v that share a common edge with v. The degree of a vertex v is
defined as deg(v) = |N (v)|.

A vertex is regular if it has a degree of 6. A mesh with a very high amount
of regular vertices (highly regular mesh) has in general triangles of interior angle
degrees close to 60—the triangles are close to being equilateral. This is a desir-
able property for mesh processing. The cotangent Laplacian operator, which we
introduce later, works better for a mesh with triangles close to being equilateral.

The normal of a triangle is the normalized cross product between two edges of
the triangle. As in the continuous case, however, we have two choices to define it
uniquely because the negative of the normal is also a valid choice. We can make
the triangles of the mesh oriented by assigning to each of them an orientation—
an ordered sequence of its vertices (v1, v2, v3). Then we can define the unique
normal of a triangle as

n = (p2 − p1) × (p3 − p1)
∥(p2 − p1) × (p3 − p1)∥2

,

where p1, p2, p3 are the positions of vertices v1, v2, v3, respectively.
To make the orientation consistent across the whole mesh, we require that

if two triangles share a common edge {v1, v2}, then the vertices v1, v2 appear in
opposite order in the two triangles’ orientations. One of the triangles then has
orientation (v1, v2, v3), and the other (v2, v1, v4), up to cyclic permutations.

The computation of a normal at a vertex v of a triangle mesh is generally
done by averaging the normals of triangles that are in a closed fan around v. A
weighting scheme can be employed for the averaging. The most common one is
angle weighted averaging, where the normal of a triangle t is weighted by the size
of the interior angle of t next to v.

The dihedral angle of a triangle mesh is the angle between two adjacent trian-
gles sharing an edge. More precisely, the dihedral angle of an edge e of a triangle
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(a) Triangle fan

(b) Triangle strip

(c) Generalized triangle strip

Figure 1.2: Examples of triangle formations.
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mesh is the angle between the normals of the two triangles adjacent to e. The di-
hedral angles, in a way, define the curvature of a curve running along the triangle
mesh.

Representations

A simple format to store an oriented triangle mesh is the shared vertex represen-
tation. It contains two lists—one for vertices and one for triangles. The vertex
list contains the position of each vertex in R3, which is given by three floating
point numbers. Each triangle is defined by an array of three indices into the
vertex list, which also defines the orientation of the triangle. This representation
is very compact and is used by the popular .obj file format. However, it does not
allow for easy traversal of the mesh. We cannot, for example, find the neighboring
triangles of a triangle in constant time.

A more convenient representation is the half-edge representation, where half-
edge is a pair (e, f) of an edge e and a triangle f adjacent to it. Given one
half-edge, the other half-edge with e called the opposite should be accessible in
constant time, as well as the next and previous (according to triangle orientation)
half-edges of the triangle f . A half-edge can also be viewed as pointing from one
vertex to another, these two vertices being in the same order as in the orientation
of f . The positions of the vertices of the half-edge should also be accessible in
constant time. This is commonly implemented using pointers to objects. An
alternative way is to use the two lists for vertices and triangles from shared
vertex representation, where each triangle has three additional indices back into
the triangle list that define its three neighbors. In this approach, a half-edge is
a pair of an index to the triangle list and a number from 0 to 2 that defines the
edge of the triangle. With the right correspondence between edge numbers and
neighboring triangles’ indices, it is possible to perform the previously mentioned
traversal operations in constant time.

1.2.2 Voronoi regions
Voronoi regions are a partition of a given space that assigns to each point pi from
p1, . . . , pn all points of the space that are closer to pi than to any other vertex
from p1, . . . , pn. In R2 this is known as the Voronoi diagram. In the case of a
triangle mesh, the Voronoi region of a vertex v is the set of points that are closer
to v than to any other vertex of the mesh (not in R3 but using geodesic distance,
which is the length of the shortest path going only over the triangle mesh surface).
We can compute the area of the Voronoi region of v as the sum of areas of closest
points to v in each triangle adjacent to v (with a small modification).

In a triangle, a point equidistant from all of its three vertices is the circum-
center, which is also the point where the three Voronoi regions corresponding to
the vertices of the triangle meet. In the case of an obtuse triangle, however, the
circumcenter is located outside of the triangle. This means that in some cases,
the Voronoi region of a vertex can span beyond its adjacent triangles. Therefore,
instead of computing the true Voronoi regions, we partition the obtuse triangle
such that the three modified Voronoi regions meet in the middle of the longest
edge of the triangle. In this partition of an obtuse triangle T , we set the area of
the partition belonging to the vertex opposite to the longest edge to be A(T )/2,
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and to the other two vertices we assign the area value A(T )/4 (the value A(T )
represents the area of T ).

If a triangle ABC is acute, the area of the Voronoi region corresponding to A
can be computed as 1

8(|AB|2 cot∠C + |AC|2 cot∠B) [Meyer et al., 2003]. In
combination with the definitions of area for Voronoi regions of obtuse triangles,
we can estimate the area of the Voronoi region of a vertex v as the sum of the
areas of the Voronoi regions of v in the triangles adjacent to v. We denote the
result as the mixed Voronoi area of v.

1.2.3 Discrete curvature
In the context of discrete differential geometry, the discretizations of continuous
concepts, such as the curvature of a curve applied to a piece-wise linear discrete
curve, often lead to multiple definitions. While there are many desirable proper-
ties in the continuous case that we would like to preserve, it is not always possible
to retain all of them while using a given discretization scheme. For the curvature
of curves, it is not possible to simultaneously preserve formulas for the curve’s
winding number and the variation of a curve’s arc length, which both use contin-
uous curvature (definitions for these concepts can be found in Solomon [2021]).
This issue is of great importance in the field of geometric processing, where the
choice of a discretization scheme can have a significant impact on the quality of
the obtained results.

Gaussian curvature

The following definition of Gaussian curvature of a vertex vi is derived from the
preservation of a theorem called Gauss-Bonet for triangle meshes [Solomon, 2021]:

K = 1
Ai

⎛⎝2π −
∑︂

j

θj

⎞⎠ ,

where Ai is the mixed Voronoi area of vi and the sum over j iterates over all
triangles adjacent to vi and sums their interior angles corresponding to vi. By
taking the previous equation without the division by Ai, we obtain the integrated
Gaussian curvature of vi.

Laplace-Beltrami operator

In conclusion of our discussion on discrete geometry, we introduce the cotangent
Laplacian, which provides a discretization of the Laplace-Beltrami operator for
triangle meshes. The Laplace-Beltrami operator is a generalization of the Laplace
operator to surfaces. The Laplace operator ∆ for multi-variable functions is
defined as the divergence of the gradient: ∆f = ∇ · ∇f (the symbol · represents
the dot product). For a function of two variables f(x, y) this can be written as

∆f = ∂2f

∂x2 + ∂2f

∂y2 .

The intuition behind the Laplace operator is that it, in a sense, captures how a
point differs from an average value over its closest neighborhood. If the neigh-
borhood is locally flat, like a plane, the Laplace operator is zero.
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The Laplace-Beltrami operator ∆S for surfaces belongs to more advanced
topics in differential geometry, and in this text we have not introduced enough
theory to provide an exact definition for it—it can be found in Jost and Jost
[2008]. The Laplace-Beltrami operator does not depend on surface curvature and
can be computed entirely from the first fundamental form.

The Laplace operator is also featured in many applications in physics, such as
the heat equation and the wave equation. These equations can also be applied
to manifolds. A lot of the recent progress in the fields of discrete differential
geometry and shape analysis is due to the application of the Laplacian to triangle
meshes and other discrete structures. For instance, there exists the concept of
manifold harmonics, which can be used to measure the frequencies of possible
waves on manifolds and, in turn, on triangle meshes. The computed frequencies
can carry a lot of information about the shape of a surface [Vallet and Lévy,
2008]. Another different application of the Laplacian is using the heat equation
to compute distances on meshes in Crane et al. [2013]. In the case of this thesis,
we will examine the use of the Laplace-Beltrami operator for surface smoothing.

Many different discretizations of the Laplace-Beltrami operator to triangle
meshes exist. Similarly to discrete curvature, there is not a discretization scheme
the would preserve all significant properties of the continuous operator [Wardet-
zky et al., 2007]. The simplest discretization that can also be defined for graphs
is a simple averaging of neighboring values without any encoding of positions in
space:

∆f(vi) = 1
deg(vi)

∑︂
vj∈N (vi)

(f(vj) − f(vi)) .

The most widely used discretization of the Laplace-Beltrami operator is the
cotangent Laplacian, which can be derived in multiple different ways. It shows up
among other cases when minimizing the Dirichlet energy over a triangle mesh in
Pinkall and Polthier [1993] and during the computation of the curvature normal
in Desbrun et al. [1999]. The cotangent Laplacian of a function f : V → Rn

where V is the set of vertices of a triangle mesh S is defined by

∆f(vi) = wi

∑︂
vj∈N (vi)

wij (f(vj) − f(vi)) . (1.2)

The weights for vertices wi and edges wij are defined as

wi = 1
Ai

, wij = 1
2(cot αij + cot βij), (1.3)

where Ai is the mixed Voronoi area of vi and αij and βij are the interior angles
opposite to edge eij in the two triangles adjacent to eij. The cotangent Laplacian
can be written in a matrix form as⎛⎜⎜⎝

∆f(v1)
...

∆f(vn)

⎞⎟⎟⎠ = L

⎛⎜⎜⎝
f(v1)

...
f(vn)

⎞⎟⎟⎠ .
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2. Related works
Subdivision surfaces

We have already described how subdivision surfaces generally work in the in-
troduction. The most popular subdivision scheme for triangle meshes is Loop
subdivision [Loop, 1987]. A known algorithm that is also interpolatory is butter-
fly subdivision [Dyn et al., 1990]. Both schemes compute the new position of a
vertex v by weighted averaging of vertex positions in the proximity of v. Depend-
ing on the mesh topology around v different vertices and weights are used for the
averaging. These methods have linear time complexity in terms of the total num-
ber of vertices of the subdivided mesh. Loop subdivision gives generally better
results but is not suitable for our task as it also recomputes the positions of the
original vertices of the mesh. Butterfly subdivision is interpolatory and therefore
solves exactly the problem of this thesis. Its drawback is that, in some cases, it
produces undesirable oscillations of the resulting surface. It might be possible to
add feature-retention to the algorithm in a similar way we add feature-retention
to our approach. In the evaluation part of the thesis, we use modified butterfly
subdivision [Zorin et al., 1996] to compare algorithm results on an organic mesh
without sharp features.

Curvature flow

This popular mesh smoothing approach was introduced in an article by Desbrun
et al. [1999]. The idea is to move the vertices of the mesh in a direction that
minimizes the mean curvature over the surface. This approach results in similar
equations as the energy minimization method we employ in our own approach.
The energy minimization method is in fact equivalent to the result of curvature
flow if the flow would last for an infinite amount of time [Desbrun et al., 1999].
If given no constraints on the positions of vertices, this method slowly shrinks
the entire mesh. The volume shrinkage is dealt with by rescaling the entire mesh
uniformly after each iteration of curvature flow by the amount of overall volume
that was lost.

Neural subdivision

A recent approach to interpolatory subdivision was proposed by Liu et al. [2020].
In the introduction, we already described how to evaluate a subdivision scheme
over a mesh dataset. This approach computes a loss function between an original
fine and a subdivided coarse mesh and uses it to train a neural network with two
dense layers and generally a very low number of weights. The network predicts
the position of a vertex added during a subdivision surface scheme from the
positions of already present close vertices—in this way, it is similar to traditional
subdivision schemes. In the corresponding article, the network is trained only on
one fine triangle mesh, which is randomly collapsed into multiple coarse meshes.
The results are good, and the method is capable of feature retention when trained
on a model with sharp features. It is not shown, however, what the method is
capable of when trained over a large dataset.

18



After the article on neural subdivision was released, a new type of architecture
for triangle mesh neural networks was described by Hu et al. [2022]. The architec-
ture applies the concept of convolutional neural networks to triangle meshes. By
convolution, the network passes information from local triangle neighborhoods to
increasingly larger areas of the mesh. A trained network of this type can be used
for mesh classification or segmentation and achieves state-of-the-art performance
on those tasks. If this architecture was used for the task of interpolatory sub-
division, it might achieve very good results. Subdivision by a neural network is
also more efficient for larger meshes than, for example, an energy minimization
approach because it scales linearly with the number of vertices of the mesh.

Polynomial patches

A different way to solve the problem of this thesis is to fit all triangles with
polynomial patches where two patches meeting at an edge have some degree
of geometric continuity at their intersection. Then a subdivision scheme might
be constructed that computes its vertices to be on those patches. The patches
interpolate the vertices of the original mesh.

An easy-to-implement version of this can be seen in an article by Nagata
[2005]. The method is able to preserve sharp edges and vertices. The patches,
which are quadratic polynomials, however, meet at the edges at only G0 continu-
ity.

A method using quartic triangular Bézier patches and working with feature-
retention is described in an article by Su and Senthil Kumar [2005]. It builds up
on the work of Owen et al. [2002] and Walton and Meek [1996]. The resulting
patches of the method have G1 continuity at the edges. The article also covers
how to compute the normals of vertices next to sharp features; these normals are
then used for patch construction.
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3. Our approach

3.1 High-level description
The core of our algorithm is solving a linear system of equations involving the
cotangent Laplacian over a modified subdivided mesh. The result of solving the
system are new positions for vertices added during the mesh subdivision. The
vertices are placed such that a defined fairness energy over the mesh is minimized.
This is also referred to in this text as solving the fairing equation. However,
most of the complexity of our algorithm is in the preparation stage before the
equation is solved. There are two important issues that need to be addressed
in the preparation stage. First, the mesh from which we compute the cotangent
Laplacian has to be topologically modified to prevent the smoothing of sharp
features such as sharp edges and points. Second, the minimization of the fairness
energy leads in some cases to a significant loss of volume of the resulting mesh,
which should be prevented.

The algorithm can be summarized in the following steps:

1. Detection of sharp edges In the first step, we detect the sharp edges of
the mesh. The mesh is later disconnected along the sharp edges. That way,
the positions of vertices on different sides of the sharp edge will not affect
each other when solving the fairing equation. To ensure the disconnection,
we mark all sharp edges as seams. Seam is in this text a general term for an
edge along which an original mesh is disconnected before solving the fairing
equation.

2. Detection of VGSs The undesirable volume shrinkage occurs in triangle ar-
eas that resemble a part of the surface of a cylinder. We call these areas
vulnerable generalized triangle strips (VGSs). The amount of volume shrink-
age significantly decreases as the resembled cylinder becomes flatter. We
therefore isolate the VGSs from the original triangle mesh and smooth out
scaled down versions of them. We essentially apply a linear transformation
that scales the vertices of the VGS down in the direction of the resembled
cylinder height, fair the VGS using energy minimization, and then scale it
back up. The boundary edges around a VGS separating it from the rest of
the mesh are marked as seams.

3. Creating seam paths Seams consist of either VGS boundaries or sharp
edges. If seams follow each other in a sequence in such a way that they
form a curve, we denote them as a seam path (although a seam path can
only consist of a single seam). The vertices of the seam path are fitted with
polynomial curves, which we use later in the subdivision stage to compute
the positions of new vertices on the seams. Figure 3.1 shows a model of a
semicylinder with highlighted seams forming four seam paths.

4. Subdivision In this step, we subdivide each triangle uniformly into a given
number of smaller triangles. The splitting along the seam paths is done by
duplicating the vertices of the seams and connecting one set of vertices to
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Figure 3.1: Semicylinder model with highlighted seams. All of the seams are
sharp edges. In addition, the seams next to the round area of the model are VGS
boundary edges.

triangles on one side of the seam path and the other set of vertices to tri-
angles on the other side. Special care is taken when adding new vertices on
seams. These vertices are fixed during the solving of the fairing equation,
and therefore we need to compute the positions for them well, as the posi-
tions also appear in the final output of the algorithm. We interpolate the
vertices of seam paths using cubic splines or quadratic curves respecting the
surface normals. Because the vertices on seams are placed on curves, but
the new vertices inside triangles are computed by linear interpolation, this
creates a potentially high discontinuity between the vertices on the seam
curves and the linearly interpolated inner vertices, which share an edge with
them. A curve might, for example, run very close to or even in between
some of the inner vertices. This could lead to wrongly set weights of the
cotangent Laplacian. We therefore use only linear interpolation for vertices,
from which we compute the cotangent Laplacian weights. Two positions for
each vertex are stored:

1. Standard position that represents fixed points in the fairing equation.
Can be potentially computed by interpolation of polynomial curves or
patches.

2. Position for the cotangent Laplacian weights, which is always com-
puted by linear interpolation.

We denote the points with changed positions, from which we compute the
cotangent Laplacian weights, as shadow vertices.

5. Computation of the cotangent Laplacian What we compute in this step
are the coefficients of a system of linear equations Ax = b, which contains
the cotangent Laplacian weights and whose solution minimizes a defined
fairness energy. The elements of this resulting matrix and vector can be ob-
tained by traversing all paths along two or fewer edges of the input mesh,
starting at a vertex that is free (is not being interpolated or is not a part
of a seam). However, if a path would lead directly into a seam vertex, in
order to have consistent cotangent Laplacian weights, some of the possible
continuations of the path might lead beyond the seam to on the spot con-
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structed final vertices. We denote these final vertices of the two edge path
as imaginary. These imaginary vertices are placed on polynomial patches,
which we create by interpolation from triangles neighboring the seam. In
a way (although not exactly), by using the imaginary vertices, we define
tangents to the resulting surface on the seam paths. An approximate vi-
sualization of what surface the imaginary vertices might form beyond the
seams is in figure 3.2.

Figure 3.2: Semicylinder model with surface extensions.

Because in our approach, the position of an imaginary vertex is dependent
on the first vertex of the path or how we got to the seam vertex, we compute
imaginary vertices on the spot. This is necessary because imaginary vertices
from all paths would not create a topologically consistent mesh that we
could construct beforehand.

6. Solving the fairing equation In this part, we solve the system of linear
equations from the previous step. As we will see, this is a sparse symmetric
positive semi-definite system. The result of this step is a new position for
each free vertex in the subdivided mesh. At the end of this step, we unite
the duplicated seam vertices to return to the original topology. Figure 3.3
shows the result of the algorithm for the semicylinder model from figure
3.1.

Figure 3.3: Semicylinder model as a result of our algorithm, where each edge is
subdivided into eight smaller ones.
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3.2 Fairing
Thin-plate energy

Mesh fairing using the equation Lx = b, or more generally Lkx = b, where L
is the cotangent Laplacian, is a common paradigm in geometry processing. It
can be used for smoothing out a region of the mesh, filling holes, or finding the
smoothest deformations during mesh editing [Botsch and Sorkine, 2007]. The
fairing equations can be derived by minimizing suitable energy functions over
surfaces. Thin-plate energy that minimizes curvature is defined as

ETP(x) =
∫︂∫︂

Ω
κmin + κmax dudv,

where x is here a function x : Ω → R3 that maps from a parameter space Ω ⊆ R2

of a surface S to S. Minimizing this energy, however, does not lead to solving a
system of linear equations. In practice, a similar linearized thin plate energy that
leads to a linear system and is therefore easier to compute is used instead:

ẼTP(x) =
∫︂∫︂

Ω
∥xuu∥2

2 + 2∥xuv∥2
2 + ∥xvv∥2

2 dudv.

The minimization of the above energy can be converted into a problem of solving
the equation ∆2

Sx(u, v) = 0 over Ω. For the problem to be well defined, it is
necessary to introduce boundary constraints—typically in the form of positions
and normals for the points over the boundary ∂Ω. A discretization of the above
equation leads to a linear system L2x = 0 [Botsch et al., 2010], which is a
cotangent Laplacian applied to another cotangent Laplacian that is applied to a
function that returns the position of a vertex at each vertex. Using equations 1.2
and 1.3, we get the following:

∆2xi = wi

∑︂
j∈N (vi)

wij(∆xj − ∆xi)

= wi

∑︂
j∈N (vi)

wij

⎛⎝wj

∑︂
k∈N (j)

wjk(xk − xj) − wi

∑︂
k∈N (vi)

wjk(xk − xi)
⎞⎠ ,

where xi is the position of a vertex vi. The equation L2x = 0 is equivalent to
∆2xi = 0 for all vertices vi. Defining boundary constraints for the discrete setting
can be done by fixing the positions of certain vertices. The constrained discrete
fairing problem is given by a system of linear equations

0 =
∑︂

j∈N (vi)
wij

⎛⎝wj

∑︂
k∈N (j)

wjk(xk − xj) − wi

∑︂
k∈N (vi)

wjk(xk − xi)
⎞⎠ (3.1)

for all i, where vi is a vertex that is not fixed. We denote the set of all free vertices
as V ′. The variables in the system are the positions xi of all vertices vi ∈ V ′.
The solution of the system are the positions of vertices vi ∈ V ′ that minimize the
discrete linearized thin plate energy over the triangle mesh.

A different type of fairness energy is the membrane energy

EM(x) =
∫︂∫︂

Ω

√︂
det(I) dudv,
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which minimizes surface area. The expression det(·) denotes a determinant of
a given matrix. The discretization of the linearized form of EM with added
boundary constraints leads to the system Lx = b. The system for thin-plate
energy can be written in a similar form L2x = b. Higher order equations in the
general form Lkx = b are also used—the equation L3x = b corresponds to the
minimization of minimum variational energy [Botsch et al., 2010]. The number k
corresponds to a smoothness Ck on the boundary of the optimized continuous
surface. Figure 3.4 shows the comparisons between membrane and thin-plate
energy optimization.

(a) (b)

(c) (d)

Figure 3.4: Comparison of membrane (a, c) and thin-plate (b, d) energy opti-
mization. The optimization was performed on uniformly subdivided sphere (a, b)
and cube (c, d) meshes. The positions of the original vertices that were present
in the meshes before subdivision were fixed during the optimization.

In our algorithm, we employ thin-plate energy optimization and interpolate
polygonal boundary vertices as well as single isolated points corresponding to the
original vertices of the mesh—this is a different process from the applications
mentioned in the beginning of this section that do not interpolate single points.
We have, however, found a mention of point constraints added to thin-plate
energy optimization in Jacobson et al. [2010].

Note that we do not solve the equation L2x = b directly but instead solve
an equivalent linear system with some rows and columns corresponding to fixed
vertices removed.
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Coefficients of the linear system

The computation of the linear system from equation 3.1 can be done in a path
traversal way over the mesh. To compute the coefficients corresponding to the
equation associated with a vertex vi ∈ V ′, we do a depth-first search starting at
vi. At the beginning of the search, we assign zero to all coefficients corresponding
to the equation. During the search, we update a variable t, which is the multipli-
cation of all weights encountered on the path from vi. A path is followed in the
following steps:

1. In the first step, we start at vi with t = 1. From here, we can either move
to vj ∈ N (vi) and multiply t by wij, or we can stay at vi and multiply t by
the negative sum of all weights wij for j ∈ N (vi).

2. In the second step, we repeat the same process as in the first step: we either
stay at the current vertex or go to a neighboring vertex. During this, we
again multiply t by the corresponding weights computed in the same way
as in step 1. In addition, we multiply t by the weight wj of the initial vertex
of the second step.

3. In the final step, we are at a vertex vk. If vk ∈ V ′, we add t to the current
value of the coefficient corresponding to vk in the equation for vi. If vk /∈ V ′,
we add −t to the coefficient b, which does not correspond to any variable.

If we traverse all possible paths in the depth first search, we get the final coeffi-
cients

a1x1 + · · · + anxn = b,

where x1, . . . xn are the positions of vertices at most two edges far from vi that
belong to V ′. This is how we compute the coefficients of the linear system for each
row in our implementation. The resulting matrix of the system is sparse because
in each row the amount of non-zero elements is equal to the number of points vk

reached from a point vi by a path that contains at most one other vertex between
them (we assume the number of reachable points vk from a given vertex vi is on
average a constant number).

To show that the resulting matrix from the system is symmetric and positive
semi-definite, we define matrix D as a diagonal matrix with weights wi on the
diagonal and a matrix Ls as

(Ls)ij =

⎧⎪⎪⎨⎪⎪⎩
−∑︁

vk∈N (vi) wik, i = j,

wij, vj ∈ N (vi),
0, otherwise.

(3.2)

Furthermore, we denote L′
s as the matrix Ls with all rows corresponding to the

fixed vertices vi /∈ V ′ removed. Note that columns of the matrix correspond to all
original vertices, free vertices from V ′, and vertices on seams. Imaginary vertices
are not part of the matrix L′

s, as we will see in section 3.5.
The system of linear equations from equation 3.1 is equivalent to

L′
sD(L′

s)T x = b. (3.3)
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The weights in the previous equation should correspond to the weights encoun-
tered during the depth first search and also to the weights in equation 3.1. Be-
cause values of mixed Voronoi areas wi are always positive, the equation 3.2 can
be written as (︂

L′
s

√
D
)︂ (︂

L′
s

√
D
)︂T

x = b.

The system from equation 3.1 contains a matrix of the form AAT ; it can be
shown using basic linear algebra that the system is symmetric and positive semi-
definite. A proof of negative definiteness that applies to the matrix L can be
found in Pinkall and Polthier [1993] and is a part of the derivation of the cotangent
Laplacian. The book Botsch et al. [2010] references this proof and shows that the
matrix denoted in the book as M (DM)2 and a version of the same matrix with
rows and columns corresponding to fixed vertices removed is positive definite. The
matrix M(DM)2 with rows and columns removed is equivalent to the matrix
of the linear system from equation 3.3. From this assumption, the linear system
corresponding to equation 3.3 is positive definite.

In our algorithm, we construct imaginary vertices on the spot at the ends
of certain weight computation paths. The imaginary vertices are not stored
anywhere; when tracing a path, we compute the positions of the imaginary ver-
tices, use them to determine cotangent Laplacian weights, and then discard them.
These vertices, taken together, do not create a consistent mesh topology. Because
of that, we cannot apply the previously stated proofs of positive definiteness to
our algorithm. In section 3.5, we suggest how to modify our algorithm to lead to
a positive definite system at the cost of having to manually compute the positions
of some previously free vertices.

Note that our implementation also contains the energy solutions for Lx = b
and L3x = b. These correspond to edge paths of lengths at most one and at
most three respectively and also lead to positive definite linear systems.

Solving the linear system

The book by Botsch et al. [2010] discusses approaches to solving sparse symmet-
ric positive definite systems and also compares them using the task of computing
L2x = b for larger triangle meshes. The two best approaches in those com-
parisons are multigid iterative solvers and sparse direct Cholesky solver. The
Cholesky solver factorizes a matrix A from the equation Ax = b into A = LLT

where L is a lower triangular matrix. For a triangle mesh the same equation
needs to be solved three times for each coordinate x, y, z of R3. The factorization
is done only once because in our case only the right hand side b changes for each
coordinate, not the matrix. The time complexity of the Cholesky solver is in the
worse case O(n3) for the factorization and O(n2) for the subsequent substitu-
tion. However, if the input matrix has special properties such as low bandwidth
which can be found in triangle meshes [Botsch et al., 2010], the complexity of the
factorization decreases.

Cholesky decomposition can be applied only to positive definite systems. Our
algorithm would need to be modified to result into a positive definite system (see
section 3.5) or it results into a positive definite system if feature-preservation
and volume shrinkage prevention are turned off. In our implementation we use a
similar approach instead called LDLT decomposition that decomposes matrix A
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into A = LDLT where L is a lower triangular matrix and D is a diagonal
matrix. As opposed to Cholesky decomposition, LDLT decomposition can also
decompose symmetric positive semi-definite matrices which is the case with our
algorithm.

In our implementation, we use the SimplicialLDLT class from the Eigen
library (https://gitlab.com/libeigen/eigen) for the LDLT decomposition.

3.3 Feature detection and seam interpolation
The thin-plate energy minimization described in the previous section, in combi-
nation with a uniform subdivision of the triangles of the input mesh, can already
be used as a functioning algorithm for interpolatory mesh fairing. However, the
sharp features of the input mesh will get lost in the energy minimization process.
We count as sharp features all areas that are not G1 continuous, meaning that
the tangent plane to the surface at those points is not continuous. On a triangle
mesh, we detect two kinds of discontinuities. Sharp edges of dimension 1 and
sharp fans of dimension 0.

Detection of sharp edges

Our detection of sharp edges uses methods mentioned in the article by Hubeli
et al. [2000]. There are two angle parameters: α and β, where α ≤ β. For each
edge in the triangle mesh, we compute its dihedral angle and classify the edges
into three groups:

1. Edges with dihedral angle φ ≤ α. These edges are automatically considered
not sharp.

2. Edges with dihedral angle φ ≥ β. These edges are automatically sharp.

3. Edges with dihedral angle φ ∈ (α, β). If an edge e from this group has
an adjacent edge that belongs to the second group of automatically sharp
edges, it is also considered sharp. Otherwise, it is considered not sharp.

This approach to sharp edge classification is called hysteresis thresholding and is
the method we use in our implementation.

A potentially better method from the article by Hubeli et al. [2000], that
we did not implement, is angle between best fit polynomials, which measures an
angle between two polynomials that interpolate points on the edges of the triangle
mesh close to the classified edge. The polynomials are approximating curves on
the surface of the mesh perpendicular to the measured edge. One polynomial is
approximating a curve starting in the middle of the measured edge and going in
one direction perpendicular to the edge. The other polynomial starts at the same
point and interpolates points on the opposite side of the measured edge. The
method computes a similar value as the dihedral angle but takes into account a
bigger neighborhood than the two adjacent triangles of the dihedral angle.
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Composition of seams into seam paths

We denote as a seam path a sequence of vertices v1, . . . , vn of the triangle mesh
where the edges formed by neighboring vertices in the sequence are seams. By
seams, we mean sharp edges and boundary edges of VGSs. In addition, in a seam
path, the angle between the directions of two neighboring vectors must be less
than an angle parameter γ. A seam path is, in a sense, a smooth curve that
separates two areas of the triangle mesh. We allow the repetition of vertices in
v1, . . . , vn but prohibit the repetition of the same pairs of successive vertices, even
in reversed pair order. If v1 = vn the seam path forms a loop.

To determine unique seam paths for each triangle mesh, a conflict needs to
be resolved where a seam can potentially have two following seams whose angle
with the original seam is less than γ. We resolve this by connecting two seams e1
and e2 at a vertex v that have an angle θ < γ between their edge directions
only if the angle between e1 and any other seam incident to v different from e2 is
greater than θ and the angle between e2 and any other seam incident to v different
from e1 is greater than θ. This rule uniquely determines the seam connections in
a given vertex and, in turn, for the whole mesh. It also should not be possible to
get a seam path where the same pair of successive vertices is repeated.

Because the seam paths are unique for each triangle mesh and for each vertex
we can determine what two edges are on the same path, a seam path can easily
be computed given one edge of the path by traversing the path in both directions.
In our implementation, we iterate over all seams and, for each seam, trace the
seam path if the edge is not already part of an established seam path.

Interpolation of seam paths

During the solving of the fairing equation, the new points on the seam paths
created by subdivision will be fixed. For the computation of the positions of the
points, we employ cubic splines defined in R3. A seam path can be divided into
segments, where each segment corresponds to one original seam or two successive
vertices of the seam path sequence. In a segment going from vi to vi+1, the cubic
spline is represented by a polynomial

Yi(t) = ai + bit + cit
2 + dit

3,

where t ∈ [0, li], ai, bi, ci, di ∈ R3 are the coefficients of the polynomial Yi, and li
corresponds to the assigned length of Yi. The polynomial Yi interpolates the two
vertices— Yi(0) should be the position of vi and Yi(li) the position of vi+1. In
addition, for successive polynomials Yi and Yi+1, we require that

Y ′
i (li) = Y ′

i+1(0) and Y ′′
i (li) = Y ′′

i+1(0),

so that the whole spline has continuous first and second derivatives. We solve a
sparse linear system to get the coefficients separately for each coordinate x, y, z
of R3. Given a seam path v1, . . . vn, the total number of polynomials for the
spline is n − 1 and the total number of coefficients is 4(n − 1). There are 2(n − 1)
equations for the positions of the endpoints of the polynomials and 2(n − 1) − 2
equations for the first and second derivatives. Two more equations are needed
to get a linear system with a square matrix. The two equations are commonly
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added in the form of boundary conditions for the first and last polynomials; often
used is the natural boundary condition that sets the second derivatives at the
two endpoints of the spline to zero. In our implementation, we use first derivative
equality with quadratic curves over single edges, which we describe later in this
section. An exception to the boundary conditions are loops where the first and
second derivative equality equations can be defined at v0 = vn instead of the
boundary conditions.

What we have not addressed yet are the lengths li assigned to the polynomials.
A common way is to set them to be proportional to the lengths of the original
seam edges. A different approach called the centripetal model, proposed in an
article by Lee [1989], produces in general results that more closely follow the
interpolated vertices. Instead of setting the length li to be ∥xi+1 − xi∥2, where
xi, xi+1 are the positions of vi, vi+1, respectively, we set it to

∥xi+1 − xi∥a
2.

The parameter a is recommended to be 1/2, which corresponds to the square
roots of edge lengths.

In our implementation we use the previously described centripetal model with
a = 1/2. In addition, we solve the system of linear equations for a cubic spline
using sparse LU decomposition.

Computation of normals

In this section, we cover the computation of the normals of a vertex. Vertex
normals can easily be computed using angle-weighted averaging introduced in
section 1.2.1. However, if there are sharp edges adjacent to a vertex, the vertex
does not have a defined tangent plane, and therefore it is not clear how the normal
should look. Instead of computing a normal for an entire vertex, we compute a
normal with respect to a vertex and an edge adjacent to it.

If we take a closed triangle fan around a vertex v, the fan can be partitioned
into open triangle fans by splitting the closed fan along sharp edges. Such open
fans contain sharp edges only at their boundaries. We denote the partitioned fans
as smooth fans of v. In most cases, smooth fans have defined normals, although
the computation of a normal corresponding to an edge of a smooth fan is also not
straightforward, and we describe various cases of what steps need to be taken to
compute it in the text below. It is important to add that what we compute is
actually a normal at a vertex from the direction of an adjacent edge—the smooth
fans only in some cases make the computation easier. Also, when the adjacent
edge is a sharp edge, there are actually two different normals from both sides of
the edge, which we compute by first making the edge associated with one smooth
fan next to the sharp edge and then the other. Here are the cases we need to
consider for a vertex v and an adjacent edge e:

1. The vertex v does not have any sharp edges adjacent to it, or the splines for
the seam paths have not been computed yet, and we therefore cannot access
their coefficients—this happens when computing the splines themselves. In
this case, we take an angle-weighted normal of the triangles of the smooth
fan associated with e. Angle-weighted normal averaging is discussed in
section 1.2.1.
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2. The smooth fan associated with e is bounded by two sharp edges from the
same seam path going through v, or there is only one sharp edge containing
v (splines are computed). In this case, we want the normal to be consistent
with the tangent of the spline of the seam path of the two sharp edges or
one edge at v. The result of this case is the angle-averaged normal of the
smooth fan projected into a plane defined by the spline tangent at v.

3. There are two sharp edges from distinct seam paths with computed splines
that are on the boundaries of a smooth fan associated with e. Then we
take as normal the cross-product of the two splines’ tangents at v. The two
tangents are enough to define a normal, and we therefore do not take into
account the normals of the triangles of the smooth fan.

4. The smooth fan associated with e does not have a defined tangent plane.
This is a case that might happen, for example, on the tip of a cone. There
are no sharp edges next to the tip, but the tip is not G1 continuous. We
denote these smooth fans as sharp fans and cover how to detect them in the
next section. This case has precedence over the previous cases; if a sharp
fan is encountered, the normal is handled as a sharp fan normal. If e is a
sharp edge, the computed normal is the normal of one of the neighboring
triangles, depending on from which side we compute the normal. If e is not
a sharp edge, the computed normal is the average of the normals of the two
neighboring triangles of e.

Sharp fans

Sharp fans cover the cases when a surface is not smooth at a single point. As these
points generally resemble partial or whole sharp tips, we use discrete Gaussian
curvature to identify them—concretely integrated Gaussian curvature, as we want
our detection of sharp fans to be independent of the local scale of the mesh. A
higher positive Gaussian curvature should correspond to the sharp tips, for a
parameter φ we therefore state that a smooth fan of a vertex v is a sharp fan if
it satisfies

K̃ = 2π − 1
k

∑︂
i

θi > φ, (3.4)

where i iterates over all interior angles θi of the smooth fan. Because the smooth
fan might cover only a part of the triangles adjacent to v, we want to somehow
scale the values of the sum to an amount corresponding to the values of similar
triangles around the whole closed fan. The factor k states how much of the vertex
neighborhood the smooth fan covers. In our implementation, we first compute a
simple angle-weighted normal ns of the vector v. Then we project all triangles
of the smooth fan into a plane defined by ns and compute the total sum of the
interior angles corresponding to v of the projected triangles. This sum divided
by 2π is the factor k.

Quadratic interpolation of edges

For the boundary conditions of non-loop splines, we use first derivative equal-
ity with quadratic curves constructed over the first and last edges of the cor-
responding seam path. During the construction of these quadratic curves, we
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take into account the normals of the two vertices of an edge—for a seam path,
these are either v1, v2 or vn−1, vn. The first derivative equality should be satisfied
at points v1 and vn. The quadratic curves over single edges we now introduce
are also utilized during the polynomial patch interpolation described later. The
quadratic curves allow for an easy way, implementation-wise, to make the ends
of the cubic splines more in line with the neighboring surface. If a seam path has
an end vertex where there are no other sharp features apart from the line itself,
we want the path to, in a way, smoothly transition into the neighboring surface.
This might be defined as wanting to have the spline tangent have the same direc-
tion as an existing directional derivative of the neighboring surface at the spline
endpoint. To compare, a natural boundary condition might, in some cases, lead
to a greater deviation of the spline tangent from the neighboring surface.

The method we use for quadratic curve interpolation was introduced in an
article by Nagata [2005]. A quadratic curve between vertices v1 and v2 has the
form

P (t) = a + bt + ct2,

where t ∈ [0, 1] and a, b, c ∈ R3 are the coefficients of the polynomial P . Accord-
ing to the article, the polynomial P interpolates the two vertices and, in addition,
is trying to be perpendicular to two arrays of normals n1, · · · , nk and n′

1, · · · , n′
l,

which correspond to the vertices v1 and v2, respectively. This leads to a system
of equations where, in addition to the interpolation of two points, there are equa-
tions for each normal. In the equation for a normal, the dot product of the normal
and the tangent of the curve at a corresponding point is equal to zero. With two
or fewer normals in total, the system is underdetermined and the method finds a
solution with the minimal value for |c|. For more normals than three, the system
is overdetermined and the method finds a solution with the minimal value for |c|
among all least-square solutions. In contrast to the cubic splines solution, this
method solves the problem as one linear system and not three systems for each
coordinate of R3. The method is also explicit, so no calling of a matrix solving
function is needed. We do not describe the steps of the method here, but they
can be viewed in the original article by Nagata [2005].

With the quadratic curves described, we can now return to the problem of
spline boundary conditions of seam paths. Given a seam edge e at the end of a
seam path, we compute normals in both of its vertices in the direction of e, as
described previously in this section in a paragraph about normals. The results are
two different normals for each vertex if e is a sharp edge and one normal for each
vertex if e is a VGS boundary edge. These normals are put as input parameters to
the quadratic curve construction over the edge e. The first derivative of the curve
is computed from the coefficients of the resulting polynomial P . Because the curve
is parametrized with t ∈ [0, 1], we need to rescale the first derivative appropriately
so it corresponds to the first derivative of the same but reparametrized curve with
t ∈ [0, l] where l is the centripetal length of the corresponding spline segment upon
which we want to impose the tangent equality condition.

In addition, if a seam path has only two points, we use the coefficients of the
quadratic curve constructed over the single edge of the path directly as the spline
coefficients of the single spline segment. In this case, we entirely skip the spline
equation solving.
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3.4 Prevention of volume shrinkage
Volume shrinkage analysis

In some cases, the minimization of thin-plate energy over the triangle mesh leads
to a significant loss of volume in the resulting smoothed-out mesh. In general,
the reduction seems to be happening in areas that resemble the curved surface
of a cylinder or a cone—larger curved areas with no vertices to interpolate in
the middle of them (see parts of shapes in figure 3.5). If we run our algorithm
on meshes with such areas without any volume shrinkage prevention, we get a
mesh with vertices shifted inward and reduced volume (see figures 3.6 and 3.7).
The amount of surface distortion depends strongly on the height of the resembled
cylinder, as can be seen in figure 3.7.

(a) (b)

Figure 3.5: Triangle meshes with highlighted edges—a cylinder (a) and a block
with rounded edges (b).

In the following text, we compute how a cylinder is distorted in the continuous
case. This does not cover the more general cases where a mesh resembles a part of
a cylinder only vaguely, but it might, at least for the most basic case, give some
insight into the problem. We represent the curved surface of a smoothed out

Figure 3.6: A triangle mesh from figure 3.5 (b) as a result of our algorithm with
no volume shrinkage prevention.
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(a) (b)

(c) (d)

Figure 3.7: Triangle meshes from figure 3.5 (a) with different scale applied to them
before being processed by our algorithm without volume shrinkage prevention.
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cylinder by a function

g(x, y) =

⎛⎜⎜⎝
f(x) cos y

f(x) sin y

x

⎞⎟⎟⎠ , (3.5)

where f(x) is a function describing the radius of the cylinder at height x and
y ∈ [0, 2π]. An assumption that we make is that we can actually use the func-
tion f(x) to describe the cylinder after energy minimization. In the next step,
we compute the squared Laplacian (bilaplacian) of the function g (note that this
is not rigorous as we do not use the Laplace-Beltrami operator for manifolds but
only the standard Laplacian in R3). Function g is vector valued, so the result is
a vector of bilaplacians for each coordinate of g:

∆2g(x, y) = ∆
(︄

∂2g

∂x2 (x, y) + ∂2g

∂y2 (x, y)
)︄

= ∂4g

∂x4 (x, y) + 2 ∂4g

∂x2∂y2 (x, y) + ∂4g

∂y4 (x, y)

=

⎛⎜⎜⎜⎝
(︂
f (4)(x) − 2f (2)(x) + f(x)

)︂
cos y(︂

f (4)(x) − 2f (2)(x) + f(x)
)︂

sin y

0

⎞⎟⎟⎟⎠ .

We search for a function f(x) for which the bilaplacian is zero over the whole
parameter space of g(x, y), i.e., the surface defined by f(x) has minimal thin-plate
energy. For arbitrary x, there is always a y (for example y = π/3), where cos y is
not zero. Because of that, it must be true that

f (4)(x) − 2f (2)(x) + f(x) = 0 (3.6)

for every x ∈ [0, t], where t is the height of the cylinder. For simplicity, we set the
radius of the cylinder to one but keep the height t of the cylinder as a variable.
With appropriate scaling, the solution should apply to arbitrary cylinders. The
formula for the function f can be computed as a result of a ordinary differential
equation defined by equation 3.6 with added constraints

f(0) = 1, f(t) = 1, f ′(0) = 0, f ′(t) = 0.

The first two equations represent that we interpolate the rings of the two bases
of the cylinder. The last two equations state that the tangents near the bases
are perpendicular to the bases. This simulates the fact that in our algorithm, we
construct imaginary vertices in approximately tangential directions to the bases
of the cylinder as a continuation of the mesh. We compute the solution of the
differential equation using the following line in Mathematica [Wolfram, 2023]:

DSolve[{y[x] - 2 y’’[x] + y’’’’[x] == 0,
y[0] == 1, y[t] == 1, y’[0] == 0, y’[t] == 0}, y[x], x]

The result is the following single solution:

f(x) = e−x (tet+2x + et+2x − etx + e2tx − xet+2x + ett − et + e2t − e2x + e2xx)
2ett + e2t − 1
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.
When plotting the function f(x) for different values of t, we obtain similar

results as the output of our algorithm with no volume shrinkage prevention for
differently sized cylinders. This can be seen in figures 3.8, 3.9 and 3.10.
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Figure 3.8: The values of f(x) from equation 3.5 for t = 1.
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Figure 3.9: The values of f(x) from equation 3.5 for t = 4.

Preventing the volume shrinkage

Our solution to the shrinkage problem involves the detection of vulnerable gen-
eralized triangle strips (VGSs). A VGS represents a generalized triangle strip
prone to volume shrinkage. To each VGS, we assign a unit vector v, which ap-
proximately corresponds to the direction from a lower base to an upper base
of a cylinder resembled by the VGS. Another value assigned to the VGS is a
scalar s ∈ (0, 1), which denotes the amount of shrinkage necessary to prevent no-
ticeable volume shrinkage. From the values of v and s, a non-singular matrix T
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Figure 3.10: The values of f(x) from equation 3.5 for t = 10.

is constructed, which scales space in the direction of v by a factor of s. The
matrix T has the form

T =
(︂
vvT (s − 1) + I

)︂
.

This holds because

T x =
(︂
vvT (s − 1) + I

)︂
x

=
(︂
svvT − vvT + I

)︂
x

= (−vv + I) x + svvT x; (3.7)

the expression vvT x represents a projection of x into v and svvT x is a scaled-
down version of it. The expression (−vv + I ) x is the component of x perpen-
dicular to v. The matrix T scales down only the component of x parallel to v
and keeps the perpendicular component intact.

As we have stated in the high-level description of the algorithm, we isolate
the VGSs from the rest of the mesh by marking the boundary edges of the VGSs
as seams. Before thin-plate energy minimization, we transform all vertices of
the VGS, including seam and imaginary vertices, using the matrix T . After the
energy minimization, all vertices are scaled back using the inverse of T and are
subsequently connected back to the now smoothed out mesh.

VGSs

In this part, we first show how to deterministically find potential VGSs of a
triangle mesh. Then we describe how to process the individual potential VGSs
to determine corresponding scale matrices T . During the processing of the strip,
we might find that a potential VGS is not actually a VGS, and in that case, we
either discard it or divide it into two shorter potential VGSs that are processed
subsequently.

A VGS is a sequence of neighboring triangles t0, . . . , tn−1 that form a gener-
alized triangle strip. Triangles ti and ti+1 share an edge ei+1, which we denote as
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interior edge of a VGS. It is possible for a VGS to form a loop when triangles t0
and tn share an edge—we mark the edge as e0 (this is the case for a cylinder from
figure 3.5). We denote as potential VGSs all maximal with respect to inclusion
generalized triangle strips whose angles between successive interior edges ei and
ei+1 are lower than a given threshold γ < 60◦. This should give us a sequence of
thin neighboring triangles where there is a significant relative distance between
the ends of edges e0, . . . , en on one side of the VGS and the other. In addition,
we add a rule that if a triangle has two interior angles with values less than γ,
then only the two edges ei, ei+1 corresponding to a sharper of these two angles
can be in the same potential VGS. This should be enough to deterministically
evaluate all potential VGSs of a triangle mesh (considering that potential VGSs
are maximal with respect to inclusion sequences of triangles). It is possible to
evaluate for each triangle if two of its edges can be in the same potential VGS
and which one these are. All potential VGSs can be computed by iteration over
all triangles, where for each triangle we trace its potential VGS if it is not already
a part of one created earlier. This approach is similar to the detection of seam
paths described in section 3.3.

Having a VGS, it is necessary to determine its scale direction v. For each
triangle ti, we denote as a base vector bi the vector that has the same direction
and magnitude as an edge of ti that is neither ei nor ei+1. For a non-loop VGS
and triangles t0 and tn−1, we simply take for each triangle the shorter of the
two edges that are not e1 or en−1. The base vectors correspond to the vectors
of edges in the two bases of a cylinder that the VGS resembles. In a similar
way, the scale direction v should somehow resemble the direction of the cylinder
height—the direction from the lower base to the upper base of the cylinder that
is perpendicular to both bases. The vector v can be the solution of a problem
given by the following definition:

Definition 11 (Optimal VGS scale direction). A unit vector v is an optimal
scale direction of a VGS with n triangles if it satisfies

v = arg min
x

n−1∑︂
i=0

(bi · x)2

= arg min
x

∥Bx∥2,

where x a vector of unit length, b0, · · · bn−1 are base vectors of the VGS that can
have arbitrary values, and B is a matrix composed of the base vectors of the VGS
as rows.

Because the vectors b0, · · · bn−1 might not all lie in one plane, as is the case for
actual cylinders, the optimization problem above is used to find in a way the most
perpendicular vector to all the base vectors. Finding the vector v is a quadratic
optimization problem with a quadratic constraint—the unit length of x. If v is
a solution, then −v is also a solution. We are not aware of any exact solution
algorithm that finds the vector v in polynomial time. In our case, however, an
approximate solution is sufficient. One way to solve it approximately would be
to use constrained stochastic gradient descent [Roy and Harandi, 2017].
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In our implementation, we simply generate a certain number of vectors lying
on a unit half-sphere, compute the optimization function for each of them, and
choose as a result the vector with the minimal value of the optimization function.
Our implementation evaluates 220 vectors that are generated using the equation

f(θ, ϕ) =

⎛⎜⎝sin ϕ cos θ
sin ϕ sin θ

r cos ϕ

⎞⎟⎠
with θ ∈ {0 · 2π/20, 1 · 2π/20, . . . , 19 · 2π/20} and ϕ ∈ {0 · π/20, 1 · π/20, . . . , 10 ·
π/20}.

Splitting a potential VGS along an edge ei means that it is divided into two
smaller VGSs; the first consists of triangles t0, . . . , ti, the second of triangles
ti+1, . . . , tn−1. If a VGS that forms a loop is split along an edge ei, we keep the
VGS intact and only mark the VGS as disconnected along the edge ei and look
at it as no longer forming a loop.

The whole VGS detection process begins with identifying potential VGSs, as
described earlier. After that, the individual potential VGSs are processed in the
following series of steps:

1. If a potential VGS has three or fewer triangles, we discard it.

2. If a potential VGS has some dihedral angles of its interior edges positive
and some negative, we split it along one of the edges ei that are next to
another edge with an opposite dihedral angle sign. The two new VGSs are
processed subsequently using the same series of steps.

3. For a potential VGS, we compute the sum of the dihedral angles of its inte-
rior edges. If we process a potential VGS and the VGS has this sum lower
than a given threshold η, we discard it. Here we are essentially discarding
flatter generalized triangle strips.

4. The scale direction v is computed for the VGS as described earlier in this
section.

5. We take sliding windows consisting of three successive triangles in the VGS
triangle sequence. A VGS forming a loop has two more sliding windows
(tn−2, tn−1, t0) and (tn−1, t0, t1), as opposed to a VGS not forming a loop.
For a sliding window, we compute its base vector b′ as a sum of the base
vectors of its three triangles. If the difference between the right angle and
the angle between b′ and v is greater than an angle threshold δ, the VGS
is split along one of the interior edges of the triangle sliding window. The
newly split VGSs are processed subsequently with the same series of steps.
Here we check if the computed scale direction v is close to a scale direction
that might correspond to a given triangle sliding window. A VGS might
consist of a large number of triangles and also twist a lot along the way.
It might not be possible to appropriately scale down the whole VGS using
only one matrix transform. This step detects such twisting and prevents it
by recursively splitting the VGS.
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6. The scale factor s is computed. A scale factor s′ is first computed for each
three-triangle sliding window as defined in the previous step. For a sliding
window ti, ti+1, ti+2 we compute the following values:

l′ =
2∑︂

i=0
∥(midpoint of ei+1) − (midpoint of ei)∥2,

h′ = 1
3
∑︂

i∈{1,2}
(ei as a vector) + 1

6
∑︂

i∈{0,3}
(ei as a vector),

φ′ =
∑︂

i∈{1,2}
(dihedral angle of ei) + 1

2
∑︂

i∈{0,3}
(dihedral angle of ei),

where l′, h′, φ′ are the estimated arc length, height, and arc angle of a
resembled cylinder arc, respectively. When computing h′, the vectors from
edges should have the same direction. The dihedral angles of VGS boundary
edges are considered zero when computing φ′.
The estimated radius of the cylinder arc is computed as r′ = l′/φ′. Given a
parameter desired radius to height ratio denoted as λ, the resembled cylinder
arc after the scale-down transformation should satisfy this ratio λ or be
even flatter to prevent noticeable volume shrinkage. The scale factor s′ is
computed in the following way:

h′
proj = v(v · h′),

h′
perp = h′ − h′

proj,

s′ =

√︂
(r′/λ)2 − ∥h′

perp∥2
2

∥h′
proj∥2

.

The expression r′/λ denotes the desired length of h′ after scaling-down.
The square root expression from the above equation denotes the desired
length of h′

proj after scaling down. We are scaling in the direction of v
so the transformation does not affect h′

perp. The coefficient s′ is the ratio
between the desired and actual length of h′

proj.
From the coefficients s′ for all triangle sliding windows, we select the mini-
mal value. If this value is greater than or equal to 1, that means the VGS
does not actually need to be scaled down, so we discard it. It is also possible
that the resulting coefficient s has a very low value, or in rare cases, the
expression under the square root is negative for some sliding window; in
that case, in our implementation, we set s to be 0.05.

What follows is a short discussion about our approach for construction of the
VGSs. In principle, we set out and try to ensure that in the input to the fairing
equation there are only VGSs that resemble cylinders that are to some degree
flat. The volume shrinkage of the VGSs, resembling flatter cylinders, should be
almost unnoticeable.

Our description of the construction contains implementation details such as
values for boundary constants, the size of the triangle sliding window, or the
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process of generating potential scale direction vectors. We do not consider these
implementation details a core part of our algorithm.

The reason why a triangle sliding window is used is that computing values
over only one triangle might lead to noisy estimations, and computing values over
the whole VGS might result in some areas of the VGS to not be sufficiently scaled
down to prevent visible artifacts.

Another way to compute the VGS scale direction v is to take an average
of vectors from interior edges e0, . . . , en−1. This means that the scale direction
v would be in some cases more aligned with the estimated height vector h′ of
a triangle sliding window. During the computation of c′, we however take this
misalignment into account by projecting the vector h′ into the direction of v.
What we do not take into account is the case when the triangle base vectors
b0, . . . , bn−1 are too far from being perpendicular to v. During the computation of
c′, we assume for simplicity that the estimated radius r′ is constant when scaling
the VGS down in the direction of v. The radius would change significantly
if the base vectors were also scaled down, which happens when they are not
perpendicular to the scale direction. To ensure that the radius is very close to
constant, we scale the VGS in a direction approximately perpendicular to the base
vectors b0, . . . , bn−1 and even split a VGS if some of its triangle sliding windows
do not have perpendicular enough base vectors. The approach of computing v
as the average of vectors from edges e0, . . . , en−1 could in some cases lead to non-
perpendicular base vectors, as might be the case for a VGS being an open triangle
fan that represents a part of a cone with base edges lying in one plane.

3.5 Subdivision and weight computation
Polynomial patches

In our algorithm, polynomial patches are used to estimate the surface over a
triangle or two triangles of the original mesh neighboring a seam. Utilizing the
patches, we compute the positions of imaginary vertices used as conditions in
the fairing equation. The imaginary vertices define how the surface continues
beyond the seams, which in turn affects how the mesh, as a result of the fairing
equation, will look near the seams.

In the article by Nagata [2005], from which we borrow the algorithm for
quadratic curve construction, polynomial patches over triangles are quadratic
and their coefficients are computed explicitly from the coefficients of the three
quadratic curves corresponding to the triangle edges. The patches interpolate the
three quadratic curves. In our approach, however, the polynomial patch should
also potentially interpolate a cubic spline of a seam edge. Because of that, the
patches of our algorithm are cubic. A patch has the following form:

Z(x, y) =
∑︂

i+j≤3
aij xiyj,

where i, j ∈ [0, 3] are natural numbers. The polynomial has in total 10 coef-
ficients ai,j which are determined by solving a system of linear equations. All
equations involve an interpolation of a certain point.

In the case of interpolating a single triangle ti, we have 3 equations for the
interpolation of the three vertices of the triangle. We also take cubic curves
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c1, c2, c3 parametrized by t ∈ [0, 1] corresponding to the edges of ti taken either
from a spline segment if an edge is on a seam path or from a quadratic curve
respecting vertex normals constructed over an edge otherwise. For each curve ci,
we compute two points at t = 1/3 and t = 2/3. This gives us additional 6 equa-
tions for point interpolation. The patch system for a single triangle is therefore
underdetermined, having 10 unknowns and 9 equations.

Another case is interpolating two triangles that share a seam edge. This is
done for the boundary edges of the VGSs, where we want the surface to be smooth
but at the same time not connected topologically as the VGS part needs to be
scaled down. Similarly to the previous case, we take the curves c1, c2, c3, c4, c5 cor-
responding to the edges of the two joined triangles. For the curve corresponding
to the seam edge, we compute the points at t = 1/3 and t = 2/3; for other curves,
we only take one point at t = 1/2. This gives us a total of 6 equations for the
curve points and 4 for triangle vertices, which results in a square matrix linear
system. It is, however, possible for two edges of the neighboring triangles to be
in line with each other, giving a total of 5 points to interpolate on the same line
of the patch parameter space (we discuss the parameter space later). Therefore,
in some cases, the system might not have a solution; it may be impossible for a
cubic patch to interpolate all of the points.

To solve the system of equations for cubic patches, we use SVD decomposi-
tion. For an underdetermined system, the decomposition gives the least norm
solution, and for an overdetermined system, it computes the least squares solu-
tion [Golub and Reinsch, 1971]. The system is solved for each coordinate x, y, z
of R3 separately.

What remains to be said is what parameters x, y we set for each point we
interpolate. For the main seam vertices around which we later compute imaginary
vertices, we use the coordinates (0, 0) an (1, 0). For one of the other triangle
vertices vi, we define its projection to the seam edge as the point on the seam
edge line with the closest distance to vi—we denote it as pi. For the x coordinate
of vi, we take the distance from pi to the seam edge point with coordinates (0,0)
divided by the seam edge length. The y coordinate of vi is computed as the
distance from vi to pi divided by the length of the seam edge and optionally
multiplied by −1 if the vertex is beyond the seam edge (this depends on from
which side of the seam edge we compute the patch). The coordinates of points
on curves are linearly interpolated between the corresponding curve edge vertex
coordinates with a coefficient t that is equal to the coefficient used for the curve
point computation.

There are cases where a curve might deviate too far from its corresponding
edge. Because the point parameters are linearly interpolated, this might make
the patch that interpolates the curve twist in an unpredictable way. In our
implementation, we compute the curve deviation for each interpolated point p
of an edge e of an interpolated triangle t. The deviation is the angle between
a vector going from v to p and a vector corresponding to e. If this number is
greater than any of the two interior angles near e of the interpolated triangle
t multiplied by a threshold parameter γ, we consider the point p deviant. In
our implementation, we set γ to 1/2. If there are any deviant points in a patch,
linear interpolation of triangle vertices is used to compute the patch—the patch is
a plane. For two neighboring triangles, we linearly interpolate both triangles and
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then average both sets of coefficients to create a patch represented by a plane for
the two triangles. Linearly interpolated patches are also used for the computation
of shadow vertices.

A problem that arises with this approach is that if the seam vertices lie on a
cubic spline and the imaginary vertices next to them lie on a linear (plane) patch
that contains the seam edge, the imaginary vertices are not a smooth extension of
the mesh surface. To compensate for this when evaluating an imaginary vertex
near a seam edge with a linear patch, we add to the resulting vertex position
the difference between the edge cubic curve evaluated at t = x and a linear
interpolation between the edge vertices also evaluated at t = x, where x is the
x-coordinate of the imaginary vertex.

Subdivision

Before the subdivision stage, our algorithm has already performed the detection
of sharp edges of the mesh along with the detection and processing of VGSs. In
addition, the algorithm has computed the splines of all seam paths.

We first describe how to perform a simple uniform subdivision and then discuss
how to modify the subdivision for seams. Uniform subdivision divides all triangles
of the mesh into smaller, same-sized triangles that, for an original triangle ti, lie
on the same plane as ti and have the same values of interior angles as ti. An
example of uniform subdivision can be seen in figure 3.11. As a subdivision
density parameter, we use the number of new smaller edges that are created
during the subdivision in place of an original edge. All new vertices that are
created by the subdivision have degree 6.

Figure 3.11: A large triangle marked by thicker edges uniformly subdivided into
9 smaller triangles.

The seams are incorporated into the subdivision in the following way: All of
the newly created and original seam vertices are duplicated, with the exception of
the original vertices that had only one seam edge adjacent to them. One half of
the duplicated seam vertices is connected to triangles on one side of the seam, and
the other half to triangles on the other sides. During the subdivision, we compute
positions for the new seam vertices using cubic splines of the corresponding seam
paths. In addition, we save the positions of the seam vertices computed by simple
uniform subdivision and mark them as the positions of shadow vertices.
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Polynomial evaluation

During the subdivision, vertices on seams are constructed by evaluating cubic
curves that are parts of cubic splines. Given a subdivision density parameter
n, a straightforward solution is to acquire the seam vertices by evaluating a
curve at points 1/n, 2/n, . . . , (n − 1)/n if the curve is parametrized with t ∈
(0, 1). A problem with this approach is that the cubic curve does not have a
tangent of constant magnitude, and therefore the final vertex positions might be
shifted along the seam, although still on the cubic curve. This creates inconsistent
triangles near the seam with potentially very sharp inner angles. A constant
magnitude of the curve tangent could be achieved by arc-length reparametrization
of the curve.

Arc-length reparametrization of a cubic curve cannot be computed analyti-
cally [Wang et al., 2002]. This means that it cannot be expressed as a combination
of elementary functions; it can only be evaluated numerically. The numerical eval-
uation of an arc-length parametrized cubic curve is a valid approach in this case;
our solution to the problem is, however, different.

Because cubic curves in our algorithm are running along edges that are line
segments, a preliminary point can first be computed on the line segment. This
can be done by linear interpolation of the vertices of the corresponding edge.
For a seam edge, the preliminary points correspond to the positions of vertices
created by uniform subdivision of the seam. A desired point on the cubic curve is
then the intersection of the cubic curve with a plane containing the preliminary
point on the line segment that is perpendicular to the line segment. This does
not correspond directly to points evaluated using arc-length parametrization but
gives us points that are, in a sense, very close to vertices that would be created
by uniform subdivision. The process leads to more consistent triangles at the
boundary and prevents the shifting of vertex positions along the seam.

Instead of computing the exact intersection of the plane and the cubic curve,
we compute an approximation of the intersection using binary search. For a
curve P (t) parametrized by t ∈ (0, 1) and a plane m, we start with an interval
I := (0, 1) for the values of t. Using the plane normal and a point lying on the
plane, we can easily check if a point is above or below the plane. At the start
of the algorithm, we assume that P (0) is below the plane and P (1) above the
plane m. If the curve evaluated at a point in the middle of the interval I (0.5 in
the case of I = (0, 1)) is below the plane, we set I to the upper half of the interval
for the next step of the algorithm (I := (0.5, 1) for I = (0, 1)). Similarly, if the
curve evaluated at a point in the middle of the interval is above the plane, we set
I to the lower half of the interval (I := (0, 0.5) for I = (0, 1)). We repeat this
division of the interval I a certain number of times and, in the end, return the
middle point of the final interval as the resulting approximation of the intersection
of P (t) and m.

The same problem arises when interpolating polynomial patches. Because the
parameter space is 2D, we cannot use the exact same solution as for cubic curves.
In our case, we interpolate imaginary vertices near seams. Four points lying on
the seam edge evaluate correctly without shifts along the patch because they cor-
respond to interpolatory constraints used when computing the patch coefficients.
These four points with correct evaluation should be enough to prevent noticeable
x-coordinate shifts on the seam edge and in its close proximity. There is still, how-
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ever, a problem with the y-coordinate shifts. An evaluated point might be closer
or further from a seam edge than what is expected from a given y-coordinate.
From how we computed the polynomial patch, a y-coordinate should approxi-
mately correspond to the shortest distance between the evaluated point and the
seam edge divided by the length of the seam edge. This can again be solved by
using binary search. Similarly to the cubic curve case, we have an interval for
potential values of the y-coordinate. The x-coordinate is fixed during the search.
Depending on whether the distance from the evaluated point to the seam edge
divided by the seam edge length is greater or less than a desired y, we take as
the next interval the lower or upper half of the current interval, respectively. As
an initial interval, we choose I := (0, 1). It is possible that the final value of the
y-coordinate might be greater than 1. To account for that, the interval is at the
beginning of the binary search iteratively enlarged from (x, y) to (x, 2y) until the
evaluation of the upper value of the interval results in a greater distance from the
seam edge divided by the length of the seam edge than the desired y coordinate.

Another problem to address is the evaluation of the polynomial patch when
the evaluated imaginary points are a part of a VGS. After the evaluation, the
imaginary points are transformed by a scaling-down matrix T corresponding to
a given VGS. What we want from the imaginary vertices is to be about the same
distance from a seam as the newly added free vertices on the other side of the
seam. That way, triangles around the seam are more similar to each other; in the
case of dissimilarity, there is a chance for the resulting surface to create artifacts
in the form of surface oscillations. The desired distance from the seam edge is
encoded in the parameter y of the polynomial patch. By choosing the right y we
are making sure imaginary vertices have the same distance from the seam edge as
the free vertices on the other side. After the transformation by T , however, these
distances might no longer be similar. This is the case if the vector between the
imaginary vertex and its projection to the seam has a different direction than the
vector between the free vertex and its projection to the seam. The vectors are
scaled-down to a higher degree if they are more in line with the scale direction v
of a given VGS. To keep the distances of the imaginary vertices from the seam
after the scaling-down similar to the free vertex distances, we do the following:
Based on the positions of free vertices, we compute the desired distance of an
imaginary vertex from a seam edge after the transformation by T . This distance
divided by the length of the seam is used as a parameter y′ for a slightly modified
evaluation of the imaginary vertex. In this case, we use the evaluated position in
the middle of the interval I with applied transformation by T , when comparing
it with y′ to determine whether to take the lower or upper half of the interval I
in the next step. This should ensure that the resulting imaginary vertex after
the transformation by T has approximately the same distance from the seam as
transformed free vertices.

Imaginary vertices

In the section 3.2, we described an algorithm for computing the coefficients of
the fairing linear system by following a path at most three vertices long across
the subdivided mesh from a newly added free vertex. If a seam vertex vi is
encountered as the second vertex of the path, its mixed Voronoi area needs to
be computed, along with the positions and weights wij of its neighbors for all
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possible continuations of the path. The vertex vi is topologically located at a
boundary. Some of the possible continuations of the path from vi lead back to
the existing triangle mesh vertices. Imaginary vertices need to be computed on
the spot if the path leads beyond the seam.

From equation 3.1 it can be seen that if a path ends in a non-free vertex, all of
its accumulated weights are added to the coefficient b and therefore do not affect
the matrix of the linear system. We can choose arbitrary values as positions of
imaginary vertices when a path does not end in a free vertex, and it should not
affect the symmetry and positive (semi)definiteness of the system.

There is another case where a path starts at a free vertex, continues through
a seam vertex, and then ends at a free vertex. Among the accumulated weights of
the path is the Voronoi area of the seam vertex, which might depend on positions
of imaginary vertices, and also the weights corresponding to both edges of the
path, which, in some cases, might also depend on positions of imaginary vertices.
Because of this, we cannot be certain that the matrix of the resulting system is
positive definite—imaginary vertices do not create a consistent mesh topology,
which is a precondition for the proof of positive definiteness we reference in the
description of our algorithm (see section 3.2). As we will see later in this section, if
the seam vertex in the middle of the path is not an original vertex, the imaginary
vertices are constructed in such a way that they create a consistent topology
behind the seam. This should not break positive definiteness, as in this case
we are essentially putting fixed points for interpolation beyond the seams. An
opposite case is that the seam vertex is an original vertex. This case could
be eliminated if we fixed all vertices around the original seam vertices using
polynomial patch interpolation. The positive definiteness would be guaranteed
for the entire algorithm, but at the cost of having to manually set positions for
slightly more vertices.

The computation of imaginary vertices described in the following text should
not affect the symmetry or positive semi-definiteness of the system.

Another way to look at this part of the algorithm might be not as imagi-
nary vertices on the ends of paths but as a complete neighborhood of a seam
vertex vi, with some vertices real and some imaginary. On this neighborhood is
computed the mixed Voronoi area of vi and also, for each imaginary vertex vj, the
weights wij, the position of vj, and the position of a shadow vertex corresponding
to vj. The mixed Voronoi area of vi and the weights wij are computed using the
positions of shadow vertices.

We describe the computation of imaginary vertices by considering different
cases for a seam vertex vi—note that one seam vertex can have different neigh-
borhoods depending on from which edge ei it was reached. In the following case
descriptions, we mean by original vertices the vertices that were part of the mesh
before subdivision or the seam duplicates of those vertices. It is also important to
add that we compute the resulting imaginary vertex positions twice (even if this
is not always mentioned explicitly in the cases). Standard vertex positions are
computed using polynomial patch interpolation, and shadow vertices for cotan-
gent Laplacian weights are acquired using linear patch interpolation. The cases
are the following:

1. Sharp fan The smooth fan of vi corresponding to the edge ei is a sharp
fan. The smooth fan does not have a consistent normal, and therefore the
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computed normal ni according to our algorithm is the average of the two
normals of the two triangles adjacent to ei. Using this normal, we create 5
imaginary vertices on a plane defined by the normal with the same distance
from vi as is the length of ei. The edges between the imaginary vertices
and vi with the addition of ei are all 60◦ apart from each other. By this
definition of the neighborhood of vi, we are in a way making sure that the
fairing algorithm sees this area as having a normal that is the same as ni.

2. Not duplicated original seam vertex The seam vertex is an original ver-
tex that had only one seam edge associated with it. These are the original
seam vertices that were not duplicated during the subdivision. The ver-
tex vi is located at the end of a seam path, where we want the seam path to
smoothly transition to the following surface. In this case, we do not create
any imaginary vertices but instead use the neighboring vertices of vi as the
final vertices of the path. Only in the case of the two neighboring seam
vertices created by duplication sharing the same position, we pick only one
of them.

3. Non-original seam vertex The seam vertex is not an original vertex. This
is the case for a majority of seam vertices. Because uniform subdivision was
used, the seam vertex has two neighboring seam vertices and two neighbor-
ing vertices created by subdivision inside the original triangles. We keep
these four existing vertices and add two imaginary vertices to them. In this
case, we try to simulate a consistent mesh topology between the neighboring
non-original seam vertices. We depict how this consistent topology looks
in figure 3.12. Two neighboring non-original seam vertices both have one
imaginary vertex at the same absolute position, forming a triangle tj above
an edge we denote as ej between them. To make our algorithm simpler, we
make the triangle tj an isosceles with edges next to the imaginary vertex
having the same length. As we have stated earlier, our intention is that
the distance between the imaginary vertices and the seam is approximately
the same as the distance of the free vertices on the other side of the seam
form the seam. We define edges ek and el as the edges leading from the
two vertices of edge ej to the same inner vertex. The edges ej, ek, el form
a triangle that shares the edge ej with tj but is on the other side of the
seam. We estimate the length of the two same length edges of tj leading
to the imaginary vertex as the average of the lengths of ek and el. By
now knowing, together with the length of ej, the (estimated) lengths of all
sides of tj, we can compute the estimated distance of the imaginary vertex
of the isosceles tj from ej using the Pythagorean theorem and denote it
as h. We denote as e′

j the original seam edge from which the edge ej was
created by subdivision. The value h divided by the length of e′

j is used as
the y-coordinate for the evaluation of the polynomial patch corresponding
to e′

j. For the x-coordinate, a corresponding value is used depending on
where the middle of the edge ej is located in the context of e′

j. The binary
search algorithm described earlier is used for evaluating the final position
of the imaginary vertex. The resulting position should have approximately
the distance h from the seam. Note that during the computation of the
coordinates (x, y) for patch evaluation, only shadow vertices are used. If a
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shadow imaginary vertex is computed, a patch created by linear interpola-
tion is employed for evaluation without the addition of the spline difference
from the seam edge. If a standard imaginary vertex is computed, a cubic
patch is used or a linear patch with an added spline difference in the case
of badly conditioned triangles near the seam (what type of patch to use in
this case is described previously in this section).
The polynomial patch might be constructed from one triangle in the case
of a sharp edge and two triangles in the case of a VGS boundary. In the
case of a VGS boundary, the polynomial patch expects the value of the y-
coordinate to correspond to the distance from the seam after scaling-down.
To that end, we multiply the originally computed y coordinate created by
dividing h by the length of e′

j by a factor c, which is computed as

c = ∥T b∥2

∥b∥2
,

where T is the scaling-down matrix of the corresponding VGS and b is the
average of the two vectors of edges ek and el.
As a summary of this case, we add two imaginary vertices to the neighbor-
hood of vi. An imaginary vertex is created to have approximately the same
distance from the seam as the free vertex opposite it on the other side of
the seam. Or, more precisely, the edges leading to the imaginary vertex
from the seam are created to have approximately the same length as the
edges leading to the free vertex on the opposite side. This is done to avoid
surface oscillations that might occur when the distances to the seam do not
correspond.

4. Duplicated original seam vertex In this case, the edge ei corresponds to
an open smooth fan of vi. To construct the neighborhood around vi, we aim
to extend the smooth fan to cover the whole area around vi. In equation 3.4,
we computed a factor k that represented what fraction of a vertex neigh-
borhood an open fan covers. To make the constructed imaginary vertices
have edges with vi appropriately 60 degrees apart, we compute the num-
ber of imaginary vertices we construct to be the maximum of a rounded
value of

(︂
2πk/π

3 − 1
)︂

and zero. This case will be covered less formally
than the previous one. Imaginary vertices are placed uniformly in terms
of edge angles into the space where the smooth fan is missing, and their
distances from vi are linearly interpolated from the lengths of the smooth
fan boundary edges. These are, however, only preliminary positions that
are converted into patch coordinates. We use patch evaluation as in the
previous case but linearly interpolate between the values from two patches
corresponding to the boundary edges of the smooth fan of ei. The appro-
priate linear combination of the values from the two patches is the final
position of the imaginary vertex. The coordinates (x, y) for the patches
are computed from shadow vertices, while adequate linear or polynomial
patches are used for vertex evaluation. When interpolating the lengths of
the smooth fan boundary edges that are boundaries of a VGS, we compute
the scale factor c defined in the previous step for vectors corresponding
to the two boundary edges of the smooth fan of ei. The coordinate y is
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multiplied by the value interpolated from factors c of both boundary edges
before patch evaluation. Note that the interpolation in this entire step is
based on how close, angle-wise, an imaginary vertex is estimated to be to
each of the boundary edges.

3.6 Notes on implementation
During the development of this thesis, parts of the mesh fairing algorithm were
changed many times. Probably the most significant change is the move from
adding triangles to the mesh that represent the continuation of the surface of the
mesh beyond seams to computing the positions of imaginary vertices. However,
in our code, there are a lot of remnants of this old approach, so we briefly address
it here.

What is computed explicitly in the code and topologically connected to the
rest of the mesh are the imaginary vertices of non-original seam vertices, which
can be seen in figure 3.12. In addition, there are other out-of-surface vertices
that are connected to original seam vertices, these are, however, not used dur-
ing the computation of linear system coefficients—imaginary vertices of different
types replaced them. In the code, all out-of-surface vertices along with their
corresponding out-of-surface triangles are called surface extensions. Surface ex-
tensions are topologically connected to the rest of the mesh during most of the
steps of our algorithm. After the surface is smoothed out by solving the fairing
equation, the extensions are discarded.

Surface extensions are no longer needed to implement our algorithm, but they
provide a way to visualize neighborhoods around certain seam vertices.

Figure 3.12: Subdivided cube with highlighted edges along with imaginary ver-
tices and their corresponding triangles for non-original seam vertices. The cube
had originally two triangles on each side.
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4. Results
All models referenced throughout this chapter are available in the digital attach-
ment to this thesis under the path Application/Resources.

4.1 Algorithm options
In this section, we describe the parameters of our algorithm and the corresponding
default values. These parameters can be set in the user interface of a desktop
application that is part of this thesis. All evaluation in this chapter is performed
with the default parameter values unless stated otherwise for a particular case.
The default values of parameters in the following list are in parentheses after the
parameter name:

Subdivision type (Laplacian 2) This option has the following values:

Laplacian 1 Minimization using linearized membrane energy. Does not
work with shrink prevention.

Laplacian 2 Minimization using linearized thin-plate energy. This is the
main method of our algorithm.

Laplace 3 Minimization using minimal variation. Does not work with
feature-retention and shrink prevention.

Modified butterfly An implemented algorithm from an article by Zorin
et al. [1996]. The algorithm is not connected to feature-retention.

No smoothing Simple uniform subdivision.

Edge subdivision count (8) To how many new edges is each edge of the mesh
subdivided. This sets the number of vertices added during the subdivision.

Number of subdivisions (3) Similar property to emphEdge subdivision count
but it applies only to butterfly subdivision. Two to the power of the option
states to how many new edges is each edge of the mesh subdivided.

Keep sharp edges (turned on) Whether to detect and preserve sharp edges.

Edge dihedral angle lower (40 degrees) The lower angle from section 3.3
for detection of sharp edges.

Edge dihedral angle upper (60 degrees) The upper angle from section 3.3
for detection of sharp edges.

Seam path connection angle (35 degrees) The maximum angle between di-
rections of two successive edges of a seam path.

Keep sharp fans (turned off) Whether to detect and preserve sharp fans. If
turned off, the sharp fan case for the creation of seam vertex neighborhood
is skipped. Note that because this feature did not show successful results
in practice, it is turned off by default.
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Sharp fan average total angle The threshold angle φ from section 3.3 for the
detection of sharp fans.

Shrink prevention (turned on) Whether to prevent volume shrinkage.

Max VGS triangle interior angle (20 degrees) Upper bound for an angle
between two inner edges of a VGS.

Min VGS total dihedral angles (50 degrees) The threshold η for dihedral
angles of a VGS (see section 3.4).

Max VGS base vector deviation (20 degrees) The threshold angle δ used
for checking that a 3-triangle VGS sliding window has an average base vector
approximately perpendicular to the scaling direction v (see section 3.4).

Desired radius to height ratio (2.0) The desired ratio between a radius and
height of a cylinder resembled by a scaled-down VGS (see section 3.4).

Keep surface extensions (turned off) Whether to show surface extensions
described in section 3.6 after subdivision. After processing a mesh with
this option turned on, no more actions are available on that mesh, as the
mesh might no longer be a manifold.

Keep VGSs scaled down (turned off) Available only when Keep surface ex-
tensions is turned on. Does not scale the VGS triangles back to their
original sizes after solving the fairing equation. Can be used to look at how
VGSs are scaled down.

4.2 Speed comparisons
We evaluate the speed of the algorithm on a Stanford bunny model of different
sizes. The evaluation was run on a computer with the following configuration:

• CPU: Intel Core i7-10870H, 2.20 GHz, 8 cores,

• RAM: 16 GB,

• Memory drive: SSD,

• Operating system: Windows 11, 64-bit.

We do not list the system GPU as it is not used by the algorithm.
Comparisons of algorithm speeds for different types of models are in ta-

ble 4.1. Note that the actual number of vertices in the linear equation is much
higher—table 4.1 shows only the number of vertices before subdividing each edge
into 8 smaller edges. For example, the total number of vertices in a subdivided
bunny large.stl model is 2 215 298, which is about 64 times higher than the
original vertex count.

From table 4.1, it can be seen that for larger meshes, the solution of the linear
equation takes most of the time of the algorithm. Therefore, to improve the speed
of the algorithm in a meaningful way, the only two options are to either modify
the input to the fairing equation or find a faster way to solve the linear system.
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Approach Number of vertices
34616 10386 3463 694

Laplace 2 algorithm 678.8 71.7 13.5 0.96
Laplace 2 solver 652.1 79.7 10.9 0.27
Laplace 3 algorithm 2704.0 267.8 46.8 3.58
Laplace 3 solver 2509.7 287.0 41.9 2.71
Modified butterfly algorithm 3.78 0.89 0.29 0.06

Table 4.1: Times of the execution of our algorithm with either Laplace 2 or
Laplace 3 subdivision type or of using modified butterfly subdivision; all other
parameters are set to default (although Laplace 3 does not perform feature de-
tection and volume shrinkage prevention). The times are in seconds. The rows
corresponding to algorithm state the time of the entire algorithm, while the rows
corresponding to solver state only the time of converting a list of elements with
indices to a representation of a sparse matrix for the linear system, factoring the
matrix, and substituting the solution for each coordinate x, y, z of R3. The mod-
els used for the evaluation are from the model with the most vertices to the model
with the fewest vertices bunny large.stl, bunny medium.stl, bunny small.stl
and bunny very small.stl.

The row in table 4.1 corresponding to Laplace 2 solver can be fitted with a
quadratic polynomial using polynomial regression, resulting in a polynomial of
the form

f(x) = −3.59 + 3.23 × 10−3 x + 4.54 × 10−7 x2

with a corelation coefficient 0.9999756. When fitting the row corresponding to
Laplace 3 solver with a quadratic polynomial, the polynomial has the following
form:

f(x) = −7.32 + 9.10 × 10−3 x + 1.84 × 10−6 x2

with a corelation coefficient 0.99999397. The corelation coefficients are very high
in both cases, but there are only four values to fit. A more extensive measurement
should take place to approximate the time complexity of the algorithm from the
measured data. We show the results of the regressions here to give an idea of
how steep the curves for both linear systems are.

When applying linear regression to the row of table 4.1 corresponding to
butterfly subdivision, the following form of linear function is obtained:

f(x) = −1.12 + 1.11 × 10−4 x

with a corelation coefficient of 0.9961. This is to be expected as the algorithm
only averages vertices in a neighborhood of constant size when computing a newly
added vertex.

4.3 Visual evaluation
For the evaluation of meshes, we use flat shading as opposed to ray-traced shading
with shadows used for other figures in this thesis. That way, potential artifacts
might be easier to spot.
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Organic objects

Examples of how our algorithm performs in the case of natural objects without
sharp features are shown in figures 4.1, 4.2 and 4.3. Feature retention is turned
off in this case in order to clearly examine how well the algorithm smooths out
the shape. We are comparing the results to modified butterfly subdivision.

From the examples, modified butterfly subdivision produces significant oscil-
lations of the resulting surface.

Laplace 2 subdivision produces smooth results but, in some cases, suffers from
artifacts. On original vertices that are slightly off from their neighboring surface,
Laplace 2 subdivision produces artifacts that resemble sharp vertices. This can
be seen in detail in figure 4.3. The case of natural objects with a lower number
of vertices seems to be a problem for Laplace 2 subdivision.

Laplace 3 subdivision results in very smoothly looking shapes. To our knowl-
edge, there is no mention of Laplace 3 fairing applied to interpolatory subdivision
surfaces in the literature. It seems to be well suited for the case of hard to in-
terpolate organic surfaces, even if it is the slowest of the discussed methods. It
is important to note, however, that Laplace 3 subdivision suffers from volume
shrinkage. This can be seen by running Laplace 3 on the round box.stl model
using the application that is a part of this thesis.

Basic and technically looking shapes

In this part, we demonstrate on examples what our algorithm can do correctly.
Some of the mentioned examples contain artifacts, which are addressed later in
this section.

Figure 4.4 shows successful results of our algorithm on basic shapes, including
meshes prone to volume shrinkage.

In figure 4.5 of a fan disk, detected sharp edges are smoothly interpolated by
cubic splines. The sharp edges (up to one seam path not sharp enough to pass
hysteresis thresholding) are successfully preserved, and the surface is smoothed
only in areas in between the sharp edges.

Figure 4.6 demonstrates that a seam path consisting of sharp edges can
smoothly transition into the neighboring surface if it ends in a vertex where
there are no other sharp edges. The surface of the object also smoothly follows
the seam path curves.

A box in figure 4.7 gives an example of successful prevention of volume shrink-
age on a smooth mesh. The volume shrinkage for the same model is shown in
figure 3.6

Problematic cases

Sharp vertices Figure 4.8 demonstrates that the issue of volume shrinkage also
applies to cones or, in general, to sharp vertices. In this case, our algorithm
identifies the closed fan around the tip of the cone as a VGS. The scale
factor of the VGS s is set to the lowest possible value. This makes the cone
almost flat before being processed by the fairing equation. Let us consider
two cases of further development:
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(a) (b)

(c) (d)

Figure 4.1: Image (a) shows the original model for bunny very small.stl, image
(b) is the result of modified butterfly subdivision, (c) uses Laplace 2 with feature
preservation and volume shrinkage prevention turned off, (d) uses Laplace 3.

1. The preservation of sharp fans is turned off. As can be seen on im-
age 4.9 (b), even an almost flat cylinder does not have a fully smoothed
out tip vertex after being processed by the fairing equation. The
smoothing of a scaled-down regular cone should produce a similar re-
sult. After scaling up, the tip becomes more sharp and noticeable,
as can be seen in picture 4.9 (c). The expected result is, however,
different—that of the tip of the cone being smoothed out. This might
be looked at as a form of undesirable volume shrinkage.

2. The preservation of sharp fans is turned on. The fan around the tip of
the cone is correctly identified as a sharp fan, and imaginary vertices
corresponding to sharp fan neighborhoods indirectly define how the
normals close to the tip of the fan should look (see section 3.5). This,
however, results in the worst result among the depicted processed cones
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in figure 4.9. A form of volume shrinkage occurs here that returns a
shape with a very sharp tip instead of the normally looking cone that
is the expected result.

Both cases suffer from volume shrinkage. Slightly paradoxically, the ex-
pected flat tip after volume shrinkage looks more like a cone tip, and the
expected cone tip after volume shrinkage looks like a much sharper tip. To
that end, sharp fan preservation is turned off by default in our algorithm.
The result is that sharp fans are still preserved due to the volume shrinkage.
However, the sharpness of the resulting fans may vary from the sharpness
of the input fans, as is the case for image 4.9 (c).

Ill-conditioned triangles Another artifact type occurs due to the input mesh
triangles having one or two of their inner angles very sharp. This corre-
sponds to the cotangent Laplacian not working well for non-regular meshes
with triangles that are very far from being equilateral. We denote these tri-
angles as ill-conditioned. The case can be seen in figure 4.10. In such cases,
the badly set weights of the cotangent Laplacian may move the vertices of
a subdivided triangle really far from their original position.

Issues with smooth VGS boundaries In figure 4.7, it can be seen how the
prevention of volume shrinkage works on a mesh with no sharp edges. A
problem that sometimes arises near a non-sharp VGS boundary can be seen
clearly on image 4.7 (b). A flat square part of the box is slightly round and
does not seem to be G1 continuous with the surrounding smooth edges of
the box. As we have said in section 3.5 and as can be seen in figure 3.12,
our algorithm creates a line of triangles beyond a seam from imaginary
vertices that are fixed during the solving of the fairing equation. In the
case of a non-sharp seam, the surface around the seam is estimated by
one polynomial patch, and from it, two lines of triangles with imaginary
vertices are constructed on both sides of the seam. During fairing, vertices
on one side of the seam are made to form a smooth surface with the fixed
imaginary vertices on the other side of the seam. The main problem with
this approach is that the final positions of newly added vertices on one side
of the seam might not correspond to the positions of imaginary vertices
that were previously there to estimate the same surface. Because the surface
from one side of the seam is made to smoothly connect to imaginary vertices
on the other side and not to the final positions of vertices, the resulting
surface might not be G1 continuous around the seam.
One solution to the discontinuity is to fix all neighboring vertices of the
seam by polynomial patch interpolation before solving the fairing equation.
This, however, creates another problem when the patch is a linearly in-
terpolated plane. Then all vertices neighboring the seam from both sides
would lie in one plane, which could be a noticeable artifact in the final out-
put mesh. Triangles with sharp inner angles are located on both ends of a
non-loop VGS, such triangles are more prone to being linearly interpolated
(see section 3.5).
Another issue with non-sharp seams is that they in some cases produce
surface oscillations, as can be seen in figure 4.11. This might be due to
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imaginary vertices forming ill-conditioned triangles on some occasions af-
ter scaling down. Several measures were taken in our algorithm to prevent
ill-conditioned triangles from forming beyond seams, such as binary search
when evaluating splines and patches, accounting for the scaling down during
patch evaluation, shadow vertices for weight computation, and the splitting
of VGSs that do not have base edges perpendicular to the VGS scale direc-
tion. This does not, however, prevent all surface oscillations, and further
work in this area is required.

False positive feature detection on organic models Figure 4.11 shows the
result of running our algorithm with feature detection turned on for a shape
that, for the most part, should remain smooth. Some edges are falsely de-
tected as sharp. This might also be the case for sharp fans, whose preser-
vation is, however, turned off by default. A more robust feature detection
is required in these cases. It can also be left for the user of the algorithm
to manually mark or modify which features are sharp.

4.4 Comparisons with other approaches
In this section, we compare our algorithm to approaches from chapter 2 that
can be applied to interpolatory subdivision. Butterfly subdivision was already
covered earlier in this chapter. For the remaining approaches, we only discuss the
algorithm differences in text without an actual evaluation on existing models.

Neural subdivision

The neural network method from an article by Liu et al. [2020] scales linearly
with the number of added vertices. In the article, the neural network model
is trained on only one triangle mesh. Therefore, it is not clear how well the
model would perform when trained over a large mesh dataset for the task of
general feature-preserving subdivision. It could, however, introduce fine details
into the subdivided mesh, where there is a high probability that the original
mesh, from which the coarser input to the algorithm was potentially created, had
these details. Our algorithm is incapable of producing such details; it can only
be modified to manually add the details, which can be complicated to implement
successfully.

Polynomial patches

The Bézier patch approach from the article by Su and Senthil Kumar [2005] com-
putes normals in vertices in a similar way to our approach, having cases for sharp
vertices and vertices next to sharp edges. It also produces curves with continuous
tangents along sharp edges. The approach is linear with respect to the number
of input vertices. In theory, quartic Bézier patches should lead to less fair results
than a minimization of global fairness energy. We have seen, however, that the
minimization of thin-plate energy in some cases produces slightly sharp vertices
in places where they should be smooth, which disappear only when minimizing
the minimum variation energy.
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(a) (b)

(c) (d)

Figure 4.2: Image (a) shows the original model for igea.stl, image (b) is the
result of modified butterfly subdivision, (c) uses Laplace 2 with feature preserva-
tion and volume shrinkage prevention turned off, (d) uses Laplace 3.
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(a)

(b)

Figure 4.3: Both images represent a small area of hair of the igea.stl model.
Image (a) uses Laplace 2 with feature preservation and volume shrinkage preven-
tion turned off, (b) uses Laplace 3. Notice that some vertices of (a) look sharp.
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(a) (b)

(c) (d)

Figure 4.4: The figure shows processed models for sphere.stl (a), rod.stl (b),
half cylinder.stl (c) and cylinder higher.stl (d).
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(a)

(b)

Figure 4.5: The image (a) is the original model for fan disk.stl. On image (b)
is that model subdivided with default settings of our algorithm. Our algorithm
wrongly evaluated a sequence of edges as not sharp. On the bottom of the mesh
are slight surface oscillations in places where two VGSs were detected.

59



Figure 4.6: On the left is the original model line endings.stl; on the right is
that model subdivided with default settings of our algorithm.
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(a) (b)

(c)

(d)

Figure 4.7: On the figure are images of the model round box.stl. The topology
of this model can be seen in figure 3.5 (b). On image (a) there are highlighted
VGS boundary edges. The mesh has nine VGSs—one for the large middle area
of the model and eight for the remaining round edges that are not part of the
middle area. Images (a,b,c) show the box subdivided using default settings from
different angles. On image (b) it can be seen that the flat square part of the box
is slightly inflated. Figure (d) shows the contour of the mesh which is affected by
splines computed by the centripetal method.
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(a) (b)

(c) (d)

Figure 4.8: Image (a) shows the original model for cone.stl, image (b) is the
result our algorithm without volume shrinkage prevention, (c) prevents volume
shrinkage (the default setting), (d) prevents volume shrinkage and, in addition,
retains sharp fans.

Figure 4.9: The figure depicts processed flat cone.stl model from the side. It
can be seen that the tip of the flat cone is still visible and was not fully smoothed
out.
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Figure 4.10: On the left is the model flat part.stl with highlighted edges. On
the right is that model subdivided with default settings of our algorithm. It can
be seen that some of the triangles got moved to areas where previously there was
no surface.
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Figure 4.11: The figure depicts processed bunny very small.stl model. On the
right ear of the bunny are surface oscillations caused by a VGS connecting to
the remaining surface. Some sharp edges on the surface of the bunny form flat
triangles.
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5. Future work
In this chapter, we cover ways to improve our algorithm either by modifying the
existing parts or by replacing some of them with potentially better alternatives.

Iterative patch-based fairing

When compared to butterfly subdivision [Dyn et al., 1990] or neural subdivision
[Liu et al., 2020], our approach takes significantly more time for larger meshes. In
this section, we describe a way to decrease the time complexity of our algorithm
by iteratively fairing only parts of the mesh with limited size. A triangle mesh
before solving the fairing equation could be divided into patches of neighboring
triangles with a defined maximum size. All of the patches would be iterated over
multiple times. For each iteration, the fairing equation would be solved only for
the vertices of the patch. The remaining vertices would be fixed.

This approach might leave some artifacts at the boundaries of the patches,
but after multiple iterations over all patches, these artifacts could be eliminated.
A way to eliminate these boundary artifacts faster would be to have another set
of patches that have different boundaries and alternate between the sets during
iterations. The time complexity of the algorithm is linear if we assume the maxi-
mum size of the patch and the maximum number of iterations over all patches are
constant numbers. The actual execution time of the proposed approach would
depend on the values of the previously mentioned constants. There is also an
option to process multiple patches that do not neighbor each other in parallel.

The proposed approach might be successful to a lesser degree in cases of mesh
hole filling or finding the smoothest deformations. In these cases, there are a large
number of free vertices that benefit from being faired as a whole. By dividing the
large area of free vertices into patches, it may take a very large number of patch
iterations to produce globally smooth results. Because in our case, the global
structure of the mesh is already defined by the fixed original vertices, this is not
a problem for our task.

The patch-based approach might also solve the surface discontinuity problem
of non-sharp seams (see section 4.3). If individual VGSs were also considered
patches, both patches on the opposite sides of a seam would, in each iteration,
smoothly connect to the vertices of the other patch beyond the seam.

Because the approach is incremental, the results of patch fairing could be
viewed by a user in real-time. If the user finds the resulting surface sufficiently
smooth, he or she could terminate the algorithm early.

Adaptive triangle subdivision

To make a surface smooth, a finer discretization is usually needed for parts of
the surface with high curvature. On the other hand, flatter parts can be repre-
sented with fewer triangles in the resulting smoothed out mesh. To speed up our
algorithm while keeping approximately the same level of detail that a uniform
subdivision has, each triangle could be non-uniformly subdivided into a particu-
lar number of new triangles depending on the curvature around the triangle. The
curvature of a triangle might be estimated from the coefficients of a polynomial
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patch over the triangle or from angles between directions of normals in the ver-
tices of the triangle. In this approach, it is necessary to define what topology
the new triangles would have inside the original triangles and how neighboring
subdivided triangles would be connected if one triangle had a higher curvature
and therefore more triangles than the other.

Incremental remeshing

As we have seen in section 4.3, our algorithm suffers from ill-conditioned input
triangles. There are techniques to remesh the triangle mesh into a more regular
mesh with approximately equilateral triangles while retaining the form of the
processed shape. A method that could be employed in our algorithm is described
in an article by Botsch and Kobbelt [2004]. The method repeatedly splits long
edges into two and collapses short edges made of two vertices into a single vertex.
In this approach, the edges of the mesh are iteratively becoming more equally
sized, which in turn produces more equilateral triangles. It might be possible
to adjust the method to keep original vertices and their positions fixed by for
example, not collapsing an edge with an original vertex. With this approach
applied to our algorithm, the mesh before solving the fairing equation could have
well-conditioned triangles, and our method would still remain interpolatory. The
method could also split edges to a higher degree on a more curved surface and
therefore produce similar results to the adaptive triangle subdivision suggested
above.

Improvement of VGS processing

Some VGSs suffer from surface oscillations after solving the fairing equation. This
problem could be analyzed more in depth to design and implement a correspond-
ing solution.

Improvement of sharp edge detection

Simple hysteresis thresholding is not sufficient for sharp edge detection in certain
cases. It could be exchanged for angle between best fit polynomials described in
section 3.3 or a more robust solution.

Fixing of certain free vertices

Throughout the thesis, solutions to multiple problems involved the fixation of
some free vertices:

1. Fixing of all vertices near non-sharp seams. This is done to prevent the tan-
gent plane discontinuity of the resulting surface around VGSs (see section
4.3).

2. Fixing of all vertices near seam vertices that correspond to original vertices.
This is proposed in section 3.5 to make the matrix of the fairing equation
positive definite. The positive definiteness of the system might lead to the
application of more efficient algorithms to the solution of the linear system.
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3. Fixing of all vertices neighboring the tips of sharp fans. This might prevent
the sharp fans from becoming undesirably sharper after solving the fairing
equation (see section 4.3). The detection of sharp fans is turned off by
default in our algorithm—this may no longer be necessary after fixing the
vertices appropriately.

For the fixation of free vertices, the polynomial patches proposed in our al-
gorithm might not be sufficiently accurate. One problem is that the patches
constructed over a single triangle are not G1 continues between each other over
edges. The tangent plane continuity over edges could be guaranteed by using
quartic triangular Bézier patches proposed in an article by Su and Senthil Kumar
[2005].

Tangent constraints instead of imaginary vertices

The fact that our algorithm needs to define the positions of imaginary vertices
beyond seams brings several issues. First, it poses high requirements on poly-
nomial patches that need to evaluate vertices outside of the area over which
they were constructed. Second, imaginary vertices lead to tangent plane discon-
tinuities around non-sharp seams, as discussed in section 4.3. Third, the need
to define layouts of imaginary vertices for different types of seam vertices adds
higher complexity to our algorithm.

According to an article by Jacobson et al. [2010], it is possible to define tangent
plane constraints for thin-plate energy minimization without modifying the ma-
trix of the linear system of the minimization. Tangent constraints for the seam
vertices might be used in our algorithm instead of the positions of imaginary
vertices. We already construct polynomial patches over triangles, so computing
tangents to them on the seams would not be difficult. Some details would need
to be resolved, however, such as how to deal with sharp fans that do not have a
defined normal at their tip.

In section 4.3 we have seen that Laplace 3 leads to very smooth results for
organic objects. It, however, requires the computation of edge paths consisting
of up to four edges. In our algorithm, this corresponds to having to define paths
of length two of imaginary vertices leading from seam vertices. This is the reason
why, in our implementation, the preservation of sharp features and prevention of
volume shrinkage cannot be used with Laplace 3. From the article by Jacobson
et al. [2010] it might, in theory, be possible to define second derivative constraints
for boundary vertices in addition to tangent constraints instead of the imaginary
vertex paths. Again, the second derivative constraints could be acquired from
the already utilized polynomial patches. This would potentially allow for the use
of Laplace 3 along with the preservation of sharp edges and volume retention.
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Conclusion
In this thesis, we designed and implemented an algorithm for interpolatory subdi-
vision of triangle meshes with feature-retention. At its core, the method utilizes
the minimization of thin-plate energy over the triangle mesh to compute the po-
sitions of new vertices added during subdivision. The minimization of this energy
is evaluated along with the minimization of the minimum variation energy over
selected meshes. Both methods give better results than a traditional subdivision
scheme modified butterfly, although thin plate energy produces artifacts around
certain interpolated points. Minimum variation energy does not have these arti-
facts but is computationally more expensive. Both methods suffer from the loss
of volume of the resulting mesh in some cases.

It is more difficult to build additional constraints around minimum variational
energy. Therefore, in the rest of the thesis, we attempted to devise a method that
adds feature-retention and volume preservation to an approach that minimizes
thin-plate energy. Our proposed method results in a complex algorithm that
employs various techniques for feature detection, computation of normals, poly-
nomial spline and patch interpolation, and the topological division of the mesh
along some of its edges.

In the evaluation part of the thesis, we showed that our algorithm is capable
of volume and feature preservation on selected objects. In addition, we ana-
lyzed some of the current drawbacks of the algorithm, such as the impact of
ill-conditioned triangles and problems with tangent plane discontinuities along
certain edges.

In the future work chapter, these drawbacks are addressed. We suggest a way
to modify the mesh to replace the ill-conditioned triangles while still being an
interpolatory method. Multiple methods are proposed that try to mitigate the
tangent plane discontinuities.
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A. Attachments

A.1 Application
The implementation of our algorithm is available as a part of a graphical user
interface (GUI) application that can be run on the Microsoft Windows operating
system. In the application, a triangle mesh can be loaded from a file, subdivided,
and observed in 3D. The application is an executable that can be found in the
Application folder under the name mesh processing app.exe in the digital
attachment to the thesis.

A.1.1 System requirements
The following are our recommended minimum system requirements to run the
application:

• CPU: 2 GHz, 2 cores, x64

• RAM: 8 GB,

• Operating system: Windows 10, 64-bit,

• GPU: Supports OpenGL 3.3.

In addition, there should be a Visual C++ Redistributable of version 2019 or
2022 installed on the system. It is available at https://learn.microsoft.com/
en-us/cpp/windows/latest-supported-vc-redist.

A.1.2 User documentation
Upon start, the application displays a default 3D model located in a 3D space.
Different 3D models of the formats .stl and .obj can be imported into the
application or saved after being processed by the application.

Menu options

The application contains a menu bar on top of the viewport with the following
options:

File This submenu allows the import and export of .stl and .obj meshes.
The loaded meshes should only consist of triangles and be manifolds to
ensure the proper functionality of our algorithm. There is an incorporated
file explorer that, for import, opens in the Resources folder next to the
application executable. The folder contains a selected collection of meshes,
including all meshes shown in figures in this thesis, with the same file names
as those used in the text.

Appearance In this submenu, a View mode determines if the 3D model is ren-
dered using flat shading (Default option) or with highlighted edges without
any lighting (Edges option). The Sharp edges checkbox can be checked
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to highlight all detected sharp edges (black color). The VGS boundary
edges checkbox corresponds to the highlighting of VGS boundary edges
(red color). If an edge is both a sharp edge and a VGS boundary edge, it
is marked black when both checkboxes are checked.

Subdivision The Subdivide button starts the subdivision with the currently set
parameters. Note that it might take some time to subdivide the mesh
and during this time the application is not responding to any user input.
The options under the Options menu correspond to the algorithm options
described in section 4.1.

Controls

The 3D navigation in this application involves looking at a center point. The
viewport camera can orbit around the center point, and the point can be moved
along with the camera. The navigation has the following controls:

• Dragging a mouse while holding the left mouse button orbits the viewport
camera around the center point.

• Dragging a mouse while holding the right mouse button moves the center
point along with the camera.

• Mouse wheel or the keys I and O can be used to zoom in and out.

• The key B can be used to reset the center point position and camera angle
to their default values.

A.1.3 Source code
The source code is located in the folder MeshProcessing in the digital attachment
to this thesis.

Setup

The following requirements are needed for a successful project setup:

• CMake of version 3.1 or higher (https://cmake.org).

• Git (https://git-scm.com/).

The project setup consists of the following steps:

1. Run setup.bat script located in the MeshProcessing folder, which gener-
ates a Visual Studio solution in build folder.

2. Open the solution in Visual Studio, build and run selected projects. The
path to the solution file is MeshProcessing/build/mesh processing.sln.

The setup script first clones all Git submodules of the project. Among them is
vcpkg (https://vcpkg.io) which is used as an internal package manager for some
of the third-party libraries connected to the solution. The setup script initializes
vcpkg and then calls CMake to create the Visual Studio solution.
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Solution structure

The solution is divided into two main projects:

1. MeshProcessing—an internally used library that contains the implementa-
tion of our algorithm.

2. MeshProcessingApp—an executable application with a GUI that uses the
library.

In addition, in the solution is a Resources folder that contains GLSL shaders
and a collection of 3D meshes.

The solution contains modified copied code of some of the files from PrusaSli-
cer (https://github.com/prusa3d/PrusaSlicer). What we utilize from the
PrusaSlicer is an implementation of the half-edge representation of a triangle
mesh and methods for importing and exporting models.

Third-party libraries used in the solution are the following:

• eigen (https://gitlab.com/libeigen/eigen)

• boost (https://github.com/boostorg/boost)

• admesh (https://github.com/admesh/admesh)

• cereal (https://github.com/USCiLab/cereal)

• oneTBB (https://github.com/oneapi-src/oneTBB)

• Catch2 (https://github.com/catchorg/Catch2)

• glad (https://github.com/Dav1dde/glad)

• glfw (https://github.com/glfw/glfw)

• imgui (https://github.com/ocornut/imgui)

• imgui-notify (https://github.com/patrickcjk/imgui-notify)

• ImGuiFileDialog (https://github.com/aiekick/ImGuiFileDialog)

• glm (https://github.com/g-truc/glm)

The libraries are either downloaded via vcpkg, cloned as a git submodule, or have
copied source code into the solution.
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