
BACHELOR THESIS

Michal Stratený

Orbital dynamics around a black hole
surrounded by matter

Institute of Theoretical Physics

Supervisor of the bachelor thesis: Georgios Loukes Gerakopoulos,
Ph.D.

Study programme: Physics
Study branch: Physics

Prague 2023





I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



ii



I would like to acknowledge and give my thanks to my supervisor, Georgios Loukes
Gerakopoulos, who made this thesis possible. His dedicated guidance and advice
carried me through all the stages of writing my thesis.

iii



iv



Názov práce: Orbitální dynamika v okolí černé díry obklopené hmotou

Autor: Michal Stratený

Ústav: Ústav teoretické fyziky

Vedúci bakalárskej práce: Georgios Loukes Gerakopoulos, Ph.D., Astronomický
ústav Akademie věd České republiky

Abstrakt: Táto práca študuje dynamiku geodetického pohybu v zakrivenom
priestoročase okolo Schwarzschildovej čiernej diery, perturbovanej gravitačným
poľom vzdialenej osovo symetrickej distribúcie hmoty obklopujúcej systém. Tento
konkrétny priestoročas môže slúžiť ako všestranný model pre rôznorodé astro-
fyzikálne scenáre. V úvode práce je poskytnutý stručný prehľad teórie klasických
mechanických systémov a vlastností geodetického pohybu. Taktiež je poskytnuté
stručné uvedenie do teórie integrability a neintegrability spolu s podstatnými
nástrojmi pre analýzu neintegrabilných systémov, zahrňujúc Poincarého rezy a ro-
tačné čísla. Tieto metódy sú následne aplikované na skúmaný priestoročas pomo-
cou numerických metód. Využitím rotačných čísel sú vypočítané šírky rezonancií,
ktoré sú neskôr použité k stanoveniu vzťahu medzi pertubačným parametrom a
parametrom charakterizujúcim perturbovanú metriku.
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Abstract: This thesis studies the dynamics of geodesic motion within a curved
spacetime around a Schwarzschild black hole, perturbed by a gravitational field
of a far axisymmetric distribution of mass enclosing the system. This particular
spacetime can serve as a versatile model for a diverse range of astrophysical sce-
narios. At the beginning of the thesis, a brief overview of the theory of classical
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Introduction
The present thesis studies the geodesic motion within a curved spacetime around
a Schwarzschild black hole, perturbed by the gravitational field of a far axisym-
metric distribution of mass enclosing the system.

The perturbation of a Schwarzschild black hole by a surrounding matter field
can serve as a model for a diverse range of physical scenarios. Notably, massive
black holes located in the centres of galaxies are often surrounded by dense nuclear
star clusters and other molecular and dust structures [1]. Furthermore, alternative
sources of external matter can come from more exotic sources, such as dark matter
or scalar fields [2, 3].

Additionally, the perturbation of the Schwarzschild black hole by the sur-
rounding matter can have observational implications on the evolution of extreme
mass ratio binary systems consisting of a compact stellar-mass object and a
supermassive black hole. In such systems, which are known as extreme mass
ratio inspirals, the compact stellar-mass object inspirals into the supermassive
black hole, emitting gravitational waves. These gravitational waves peak in the
mHz frequency band and are expected to be observed by the next generation of
gravitational-wave observatories [4, 5, 6].

A key aspect of Schwarzschild spacetime is its integrability, as the equations
of motion can be solved analytically [7]. However, by perturbing the spacetime,
the system is no longer entirely symmetrical, which results in the loss of one of
the integrals of motion. The insufficient number of integrals of motion leads to
non-integrability, which allows chaotic behaviour to emerge.

We focus mainly on resonances, parts of the phase space where two or more
characteristic frequencies of the system match in integer ratios. These regions are
key parts of the study of chaos because there strongly emerges chaotic behaviour.
There are studies, see, e.g., [8] and references therein, showing that such regions
can have an observational impact on the gravitational waves emitted during an
extreme mass ratio inspiral, since a resonance crossing is expected to cause a
dephasing of the gravitational waveforms. Hence, investigating the strength and
the growth of the resonances is important for the preparation of the gravitational
waveforms needed to detect the signal from an extreme mass ratio inspiral [9].

The thesis is organised as follows. The first chapter begins by introducing the
metric tensor and providing a brief overview of the theory of classic mechanical
systems and the properties of geodesic motion. Then in the rest of the chapter,
we introduce the theory of integrability and the canonical perturbation theory
method, along with tools to study non-integrable systems. The chapter concludes
with the definition of deterministic chaos. The second chapter presents our nu-
merical results obtained from the computation of geodesic motion within studied
curved spacetime. The thesis attachments include a summary of the accuracy
achieved by the employed numerical methods.
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1. Theoretical foundations

1.1 Notation and conventions
This thesis is founded upon the theoretical framework of the theory of general
relativity. The notation follows canonical books on the theory of relativity, such as
the Refs. [10, 11]. In particular, abstract index notation is used, wherein indices
indicate the type of quantity rather than necessarily representing components
on any basis. Greek indices can assume any value 0, 1, 2, or 3, while spatial
indices take on values 1, 2, or 3 and are denoted by Latin indices. Whenever the
indices are not just abstract, the symbol Xα represents all components, or any
individual component, of the quantity X, i.e. Xα ≡ (X0, X1, X2, X3). In sections
encompassing classical mechanics, lowercase, upright boldface font denotes vector
quantities.

The covariant metric tensor is denoted as gαβ, and its signature is chosen
as (− + ++). The contravariant version of the metric tensor is denoted as gαβ.
Their corresponding matrices are mutually inverse, which can be expressed by
the following identity ∑︂

ρ

gαρgρβ ≡ gαρgρβ = δα
β . (1.1)

In the first equivalency, Einstein’s summation convention is introduced. This
convention implies that in such expressions, we omit the summation symbol for
any index which goes over all its possible values and has appeared once as a
covariant and once as a contravariant index in a product. The last symbol δα

β

represents the four-dimensional Kronecker delta, which has the meaning:

δα
β =

⎧⎨⎩1 if α = β,

0 if α ̸= β.
(1.2)

In general, indices are raised and lowered using the metric tensor; for instance,

gµνAµBν = AνBν = AνBµgµν . (1.3)

The partial derivative is denoted by ∂ or, equivalently, by a comma in an
index location; for example,

∂Xα

∂xλ
≡ ∂λXα ≡ Xα

,λ. (1.4)

The covariant derivative is denoted by ∇ or by a semicolon in an index location;
for instance,

∂Xα

∂xλ
+ Γα

ρλXρ ≡ ∇λXα ≡ Xα
;λ. (1.5)

Higher mixed derivatives are ordered according to

Xα
,λσ ≡ ∂σ∂λXα ≡ ∂2Xα

∂xσxλ
≡ ∂

∂xσ

(︄
∂Xα

∂xλ

)︄
. (1.6)

A dot over variable indicates a derivative with respect to time (for example,
q̇i ≡ dqi/dt in section 1.4 at page 7) or a derivative with respect to proper time
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(for example, ẋα ≡ dxα/dτ in section 1.3 at page 6). The semantic interpretation
of the symbol shall be established by its contextual usage.

We denote
Γσκλ = 1

2 (gσκ,λ + gλσ,κ − gκλ,σ) , (1.7)

Γµ
κλ = 1

2gµσ (gσκ,λ + gλσ,κ − gκλ,σ) , (1.8)

as Christoffel symbols of the first kind, respectively, second kind.
Throughout the remainder of this thesis, we will adopt geometric units where

c = 1 (c represents the speed of light) and G = 1 (G represents the gravitation
constant).

1.2 Metric
This thesis studies geodesic motion in curved spacetime around a black hole,
perturbed by a faraway gravitating ring surrounding the system. The metric
was introduced in Ref. [6], where it is also outlined its derivation. This metric
expresses a spacetime around a non-spinning black hole of mass M encircled by
a rotating gravitating ring with mass Mr at a radius rr ≫ M much larger than
the black hole horizon. The gravitational field near the black hole is influenced
by the tidal effects caused by the presence of the ring. Apart from assuming
that the black hole is static and stationary in the inertial frame, we also truncate
the multipole structure of the ring to the leading quadrupolar order. Then we
obtain, in Schwarzschild-like coordinates (t, r, θ, ϕ), the resulting metric valid near
the black hole, given by the line element:

ds2
r≪rr

= −
(︃

1 − 2M

r

)︃
(1 + 2νQ) dt2 + 1 + 2χQ − 2νQ

1 − 2M/r
dr2

+ (1 − 2νQ)r2
[︂
(1 + 2χQ)dθ2 + sin2 θdϕ2

]︂
,

(1.9)

νQ ≡ Q

4
[︂
r(2M − r) sin2 θ + 2(M − r)2 cos2 θ − 6M2

]︂
, (1.10a)

χQ ≡ QM(M − r) sin2 θ, (1.10b)

with Q ≡ Mr/r3
r representing the quadrupole perturbation parameter. The local

metric is approximately vacuum, static, and axisymmetric with respect to the
local time t and azimuthal angle ϕ. The metric is approximately part of the Weyl-
type metrics class as it is a static and axisymmetric solution to the Einstein’s field
equations [12]. However, it should be noted that metric (1.9) is valid only for
r ≪ rr and assumes non-compact rings, i.e. Mr ≪ rr. Especially, it neglects all
terms starting from O (r−4

r ) and O (M2
r ).

1.3 Geodesic equations
The theory of general relativity is a geometric theory of gravitation. The natural
state of motion influenced by gravity is a free fall; thus, it is crucial for this thesis
to establish for it a rigorous mathematical framework.
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Free fall is the straightest path through spacetime followed by a freely falling,
neutral test body, independent of its internal structure and composition. To
construct the straightest possible curve, we take a short segment of the curve and
move it forward, step by step, always parallel to itself. Ultimately, we obtained
such an extremal world-line whose tangent vector transports along it parallelly.
We emphasise extremal because, in Euclidean space, a straight line means the
shortest connection, whereas, in spacetime, it is not always the shortest.

As demonstrated in Ref. [13], if we take a small segment dxα of a geodesic
curve and displace it forward, parallel to itself, through a displacement dxα equal
to itself, the segment undergoes a change described by:

δdxα = −Γα
µνdxµdxν . (1.11)

To convert this to the differential equation, it is essential to introduce a parametri-
sation of the curve, with an affine parameter λ increasing monotonically along the
curve. If dλ is the increment of this parameter that corresponds to the displace-
ment dxα, the aforementioned equation can be divided by (dλ)2 and rewritten
as

d2xα

dλ2 + Γα
µν

dxµ

dλ

dxν

dλ
= 0. (1.12)

One should realise that the above equation 1.12 represents four second-order
ordinary differential equations. Therefore, two initial conditions, the initial posi-
tion xα (λ = λin) and initial tangent vector dxα

dλ
(λ = λin) must be specified. Let

us say that the above only holds for a point-like particle (characterised purely by
its rest mass).

Considering the rest of the thesis, we will constrain to time-like geodesics; the
Eq. (1.12) could be shortened by choosing the affine parameter as the particle’s
proper time, transforming the geodesic equations to

ẍα + Γα
µν ẋµẋν = 0. (1.13)

1.4 Lagrangian formalism
The Lagrangian formalism is a formulation of classical mechanics founded upon
the principle of least action. For a classical mechanical system, it is often advan-
tageous to define a set of generalised coordinates q = (q1, ..., qn) by n arbitrary
parameters that are better suited to the symmetries of the problem and com-
pletely describe every possible system configuration. To unambiguously describe
the possible configuration, there must be as many coordinates as degrees of free-
dom of the mechanical system.

Generalised coordinates then form configuration space Q, which, however,
does not possess complete information about the system’s mechanical state. As
a result, we need to introduce generalised velocities q̇ = (q̇1, ..., q̇n), defined as
the time derivative of conjugate coordinates q̇i ≡ dqi/dt. Together, generalised
coordinates and velocities form the velocity phase space TQ, a complete space of
mechanical states. The only missing part is now the equations of motion that
govern the time evolution of particles within the space TQ.

According to Ref.[14, 15], the most general formulation leading to equations
of motion is the principle of least action. For any mechanical system, the definite
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function L (q, q̇, t) is characterised as the Lagrangian function of the system.
Let the system occupy, at the instants t1 and t2, positions defined by vector
coordinates q1 and q2. The principle of least action states that out of all the
conceivable paths between these positions, only those whose action integral

S (q, t1, t2) =
∫︂ t2

t1
L (q, q̇, t) dt (1.14)

is extremal are realised physically. The integral (1.14) is referred to as the action.
The Lagrangian function contains solely q and q̇ but not the higher derivatives,
implying that only functions qi (t) have to be determined.

With the application of the variation principle on integral (1.14), we can
obtain the Euler-Lagrange’s equations:

d

dt

∂L
∂q̇i − ∂L

∂qi
= 0. (1.15)

Mathematically, the equations (1.15) constitute a set of n second-order differential
equations for n unknown functions qi (t). Knowing the 2n initial conditions is
necessary to determine the system’s motion.

In the previous section 1.3 at page 6, we have introduced the geodesic equa-
tions, referring to the literature, without further investigation of its physical back-
ground, rather than postulating it as a purely geometrical object. We would try
to derive it in the section using the Lagrangian formalism.

1.4.1 Derivation of geodesic equations
We again begin with a free test particle moving in curved spacetime. As we know
from special relativity (see Ref. [11]), the particle should move along a time-like
world-line, which extremises the proper time between two events. Let us label
these events A and B. In spacetime, the generalisation of the length is given by
the invariant interval ds2 = gµνdxµdxν , integrated along the curve. For a time-
like curve, the interval can be expressed in terms of proper time, dτ 2 = −ds2.
Combining these given facts, we may obtain the corresponding action:

S =
∫︂ B

A
dτ =

∫︂ B

A

√
−ds2 =

∫︂ B

A

√︂
−gµνdxµdxν . (1.16)

In the next step, we introduce a parametrisation of the world-line by an arbitrary
parameter λ, which satisfies the condition

xµ = xµ (λ)
⎧⎨⎩xµ(0) = A

xµ(1) = B .
(1.17)

Then, we write

τAB =
∫︂ 1

0

√︄
−gµν

dxµ

dλ

dxν

dλ
dλ ≡

∫︂ 1

0
L
(︄

xµ,
dxµ

dλ

)︄
dλ. (1.18)

Here we have formally introduced the relativistic Lagrangian L
(︂
xµ, dxµ

dλ

)︂
, in re-

lation to Eq. (1.14). We also note that

L = dτ

dλ
, (1.19)
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which implies how the function f = f (τ (λ)), which is parametrised by the pa-
rameter λ, transforms the parametrization to the proper time one:

df

dλ
= df

dτ
· dτ

dλ
= L df

dτ
. (1.20)

We will use this relation later in derivation to change the derivatives with respect
to our arbitrary parameter λ to proper time derivatives.

Having now the form of the Lagrangian, we can proceed to calculate the
necessary derivatives in equations (1.15):

∂L
∂xα

= − 1
2L

gµν,α
dxµ

dλ

dxν

dλ

= −L
2 gµν,α

dxµ

dτ

dxν

dτ
,

(1.21)

∂L
∂
(︂

dxα

dλ

)︂ = − 1
2L

gµν

(︄
dxµ

dλ
δν

α + dxν

dλ
δµ

α

)︄

= − 1
2L

(︄
dxµ

dλ
gµα + dxν

dλ
gαν

)︄

= − 1
L

gαµ
dxµ

dλ

= −gαµ
dxµ

dτ
.

(1.22)

The derivative (1.21) is trivial, and we have already proceeded to the proper time
parametrisation by employing Eq. (1.20). The second derivative (1.22) requires
reindexation of repeated indices. Also, we used the symmetry of the metric and
relation (1.20) to obtain the final form.

To continue further, we need to differentiate (1.22) with respect to our arbi-
trary parameter:

d

dλ

⎛⎝ ∂L
∂
(︂

dxα

dλ

)︂
⎞⎠ = L d

dτ

(︄
−gαµ

dxµ

dτ

)︄

= −L
(︄

gαµ
d2xµ

dτ 2 + dgαµ

dτ

dxµ

dτ

)︄

= −L
(︄

gαµ
d2xµ

dτ 2 + gαµ,ν
dxµ

dτ

dxν

dτ

)︄
,

(1.23)

where the only not-trivial is understanding how to operate with the derivatives
of the metric. Since

dgµν

dλ
= ∂gµν

∂xα

dxα

dλ
, (1.24)

we can write Eq. (1.15) as

0 = −gαµ
d2xµ

dτ 2 − gαµ,ν
dxµ

dτ

dxν

dτ
+ 1

2gµν,α
dxµ

dτ

dxν

dτ
. (1.25)

Multiplying Eq. (1.25) by gαβ, we obtain

0 = d2xβ

dτ 2 + 1
2gαβ (gαµ,ν + gνα,µ − gµν,α) dxµ

dτ

dxν

dτ
. (1.26)
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where one can identify Christoffel symbol of the second kind (1.8). Thus, equa-
tion (1.26) becomes

0 = d2xβ

dτ 2 + Γβ
µν

dxµ

dτ

dxν

dτ
. (1.27)

Equation (1.27) is identical to Eq. (1.13) postulated in Section 1.3.
The derivation of the geodesic equations using the Lagrange formalism is

perhaps more complicated than using other means. However, it perfectly demon-
strates a relationship between classical mechanics and relativistic physics.

At the end of this section, we mention that a seemingly different but utterly
equivalent form of the Lagrangian for a free massive particle is the square of the
Lagrangian (1.18):

L

(︄
xµ,

dxµ

dλ

)︄
:= gµν

dxµ

dλ

dxν

dλ
= ±L2

(︄
xµ,

dxµ

dλ

)︄
. (1.28)

As shown in Ref. [16], for a Lagrangian along the solution curve parametrised by
the proper time, we arrive at L ≡ −1; thus, its square will give the same geodesic
equations.

1.5 Hamiltonian formalism
Hamiltonian mechanics is the reformulation of classical mechanics to the lan-
guage of canonical coordinates and their conjugate momenta. The motivation for
Hamiltonian formalism is the availability of the advanced techniques of canoni-
cal transformations, symplectic geometry, perturbation theory and other struc-
tures, which are less apparent in Lagrangian formalism and can provide deeper
insights into the formal structure of mechanics. Moreover, Hamiltonian formal-
ism simplifies numerical work by transitioning the equation of motion from the
set of n second-order differential equations to a set of 2n first-order differential
equations (for the rigorous comparison of the two fundamental formalisms, see
Ref. [17])

To perform the transition, mathematically known as Legendre’s transforma-
tion (see Ref. [18]), it is necessary to introduce a new independent variable called
the canonical momentum pi. Once a system has a known Lagrangian, we can
define the canonical momentum as

pi := ∂L (q, q̇, t)
∂qi

. (1.29)

Thus we get a pair of canonically conjugate variables (qi, pi) for each degree
of freedom. Therefore, we have 2n independent variables, forming the phase
space T ∗Q. A point in such a space fully describes the mechanical state of the
system.

The existence of phase space enables the portrayal of the system’s time evolu-
tion as a unique geometric trajectory dependent solely on the initial conditions.
The different sets of the initial conditions are represented by curves (or points),
thereby together constituting a phase portrait of the system (example shown for
Schwarzschild solution in Fig. 1.1).
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Figure 1.1: The phase portrait of the Schwarzschild solution. Each curve rep-
resents a specific energy value conserved along the trajectory. The parameters
taken L = 4.3M , r [0] ∈ (7.6M, 14.8M) with step 0.2M and initial pr = 0m.

One can find in [18] that the obligatory condition of Legendre’s transformation
from generalised velocities q̇ to canonical momenta p is the non-singularity of the
respective Hessian. In our case, the Hessian is a determinant of a matrix composed
of the second derivatives of L (q, q̇, t) with respect to q̇i. Thus, we need to ensure
that condition

H (L) =

⃓⃓⃓⃓
⃓⃓⃓⃓ ∂2L

∂q̇1q̇1 ... ∂2L
∂q̇nq̇1

... ... ...
∂2L

∂q̇1q̇n ... ∂2L
∂q̇nq̇n

⃓⃓⃓⃓
⃓⃓⃓⃓ ̸= 0 (1.30)

is fulfilled before we proceed.
Following the general scheme of Legendre’s transformation of Lagrangian me-

chanics (as described in detail in Ref. [19]), we advance in three steps. Firstly, we
introduce the new function, which is denoted by H and called the "total energy":

H (q, q̇, t) = q̇ipi (q, q̇, t) − L (q, q̇, t) . (1.31)

Secondly, we express the new function (1.31) in terms of the canonical momenta pi

by solving the equation (1.29) for q̇i and substituting it back into Eq. (1.31). Thus,
we obtain a function

H (q, p, t) =
[︂
q̇ipi (q, q̇, t) − L (q, q̇, t)

]︂
q̇i→q̇i(q,p,t)

(1.32)

which is referred to as the Hamiltonian function of the system.
Just as we started from the Lagrangian function L and constructed the Hamil-

tonian function H, we can also, from a known Hamiltonian function H, construct
a Lagrangian function L, following the same procedure.
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Finally, the last step of the transition to Hamiltonian formalism is assembling
a new set of equations of motion from equations (1.15). For a known Hamilto-
nian H, the equations of motion are called the Hamilton’s canonical equations:

q̇i = ∂H
∂pi

, pi̇ = −∂H
∂qi

. (1.33)

In section 1.4 at page 7, we introduced relativistic Lagrangian for a free par-
ticle in curved spacetime. If we take the second form of it (1.28) and perform
the described Legendre’s transformation, we obtain a relativistic Hamiltonian
describing the motion of a free particle in curved spacetime.

The canonical momentum has the form:

pµ = ∂L

∂
(︂

dxµ

dp

)︂ = 2gµν
∂xν

dp
. (1.34)

The second derivatives of L with respect to dxµ

dp
form the Hessian, which is

equal to the determinant of the metric itself:

H (L) = |gµν | . (1.35)

In Ref. [20], one might find that the spacetime (the metric tensor) is non-singular
if every half-geodesics is either complete or else contained in a compact set. This
particularly means spacetime has no singularity (coordinate or physical). If we
restrict ourselves to the region without singularities, we can proceed.

Continuing in the scheme, we first get a total energy function, and then, we
substitute the canonical momenta, resulting in the Hamiltonian function:

H = 1
2gµνpµpν . (1.36)

It is straightforward to verify that the Hamilton’s canonical equations (1.33) for
the Hamiltonian (1.36) again reproduce the geodesic equations (1.13). Thus, the
Hamiltonian formalism leads to the exact geodesic equations obtained through
the Lagrangian formalism.

1.6 Integrals of motion
Consider a pair of arbitrary differentiable functions, denoted as f (qj, pj, t) and
g (qj, pj, t), defined on the phase space. We introduce their Poisson bracket, which
represents a new function on the phase space, expressed as follows:

{f, g} =
n∑︂

i=1

(︄
∂f

∂qi

∂g

∂pi

− ∂g

∂qi

∂f

∂pi

)︄
. (1.37)

Let I (qj, pj, t) be function on the phase space. Its total time derivative can
be expressed as (see Ref. [14]):

dI
dt

= ∂I
∂t

+ {H, I}. (1.38)
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In the above expression, we have employed the Poisson bracket of the Hamilto-
nian (1.32) and the function I (qj, pj, t).

Those functions of dynamical variables that remain constant during the sys-
tem’s motion are referred to as integrals of the motion. We see from (1.38) that
the condition for the quantity I (qj, pj, t) to be an integral of the motion can be
written as

∂I
∂t

+ {H, I} = 0. (1.39)

Suppose the integral of the motion is not explicitly dependent on the time. In that
case, the above condition simplifies to a vanishing Poisson bracket of Hamiltonian
and integral of the motion:

{H, I} = 0. (1.40)

The Poisson brackets possess various mathematical properties, among which
we highlight just one very useful, known as Jacobi’s identity [14]:

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0, (1.41)

where f, g and h are functions on the phase space. Jacobi’s identity leads to
Poisson’s theorem, which states, that if f and g are two integrals of the motion,
their Poisson bracket is likewise an integral of the motion:

{f, g} = constant. (1.42)

The proof is trivial, as it only requires replacing h in Jacobi’s identity (1.41)
with H. The particular case is when the constant in (1.42) is identically zero; in
such a situation, we say that the integrals are in involution.

We can rewrite second Hamilton’s equation using the Poisson bracket as fol-
lows:

ṗκ = −∂H
∂qκ

≡ {pκ, H}. (1.43)

Immediately, we can use this knowledge for the relativistic Hamiltonian (1.36)
with raised indices and obtain the expression:

{pκ, H} = −∂H
∂qκ

= −1
2gµν,κpµpν , (1.44)

where we utilised that the canonical momenta are independent of the generalised
coordinates; therefore, only the metric tensor will contribute to the derivative
with respect to generalised coordinates. This implies that if the metric tensor is
independent of a particular generalised coordinate, the conjugate momentum as-
sociated with that coordinate is conserved and considered an integral of motion.
This observation corresponds with Noether’s theorem, which states that symme-
tries of a system give rise to the existence of integrals of motion. Furthermore, it
implies the presence of a Killing vector field in the differential geometry.

In literature linked with general relativity (see, e.g. [10, 13]), the conjugate
momentum associated with the time coordinate is denoted pt ≡ −E. It has
the meaning of the total energy, whereas the conjugate momentum related to the
azimuthal angle is denoted pϕ ≡ L and has the meaning of an angular momentum.
Both quantities are referenced with respect to an observer standing at infinity.
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1.7 Effective potential
This section discusses the effective potential method widely employed to analyse
motion in the central force field. This method allows us to distinguish the char-
acteristics of the particle’s motion without actually solving equations of motion.
This is sometimes advantageous, as solving complicated differential equations
may be slow and laborious. To illustrate its applicability, we will examine two
fundamental problems, the Kepler problem and the Schwarzschild solution.

1.7.1 Kepler problem

Figure 1.2: The Kepler effective potential and examples of the orbits discussed
in the text. The grey dashed line represents the parabolic orbit, a boundary be-
tween bound and unbound orbits. The shaded area demonstrates regions where
the condition (1.47) is not satisfied. The intersections between a horizontal line
representing an energy value and the effective potential curve correspond to turn-
ing points, where ṙ = 0. The parameters are taken E = 0.98, L = 4.3M . Note
that the conventions used for the quantities above are introduced in section 1.7.2

Consider a single particle of reduced mass m that moves around a fixed centre
of gravitational force. In this system, the equation of the motion can be expressed
in a simple form, as widely known (for more detailed information, see, e.g. [14,
15, 21]):

1
2mṙ2 + 1

2
L2

mr2 + V (r) = constant. (1.45)

Here, L denotes total angular momentum and V (r) = −mM
r

represents the grav-
itational potential of the central object with mass M . Equation (1.45) is the

14



statement of the conservation of total energy. By rearranging equation (1.45) for
the derivative of radial distance, we obtain:

ṙ2 = 2
m

[︄
E −

(︄
V (r) + L2

2mr2

)︄]︄

= 2
m

[E − Veff (r)] ,

(1.46)

where we have introduced a quantity denoted as the effective potential Veff (r).
The keystone of this method lies in the fact that the left side of equation (1.46)
is the square of the real function, which provides a straightforward condition
between the energy and the effective potential:

E ≥ Veff (r) . (1.47)
This condition can be analysed graphically by plotting Veff (r) and examining
where the condition (1.47) holds. As an illustration of this method, the typical
shape of the effective potential is shown in Fig. 1.2. As discussed in the cited
literature (e.g. [14, 15, 21]), we will briefly distinguish three possible orbits:

• Case E = Emin: The total energy equals the minimum value of the effective
potential Veff (r). The orbits are bound and circular (ṙ = r̈ ≡ 0).

• Case E ≤ 0: The elliptic orbit remains bounded between the turning
points (pericenter, respectively apocenter). An orbit with E = 0 is called a
parabolic orbit, with its second turning lying theoretically point at infinity,
i.e. practically, there is no second turning point.

• Case E > 0: The hyperbolic orbit is unbounded. The particle approaches
the centre, arrives at the turning point and then moves away towards infin-
ity.

1.7.2 Schwarzschild solution
Here we focus on the Schwarzschild solution, which again involves a single parti-
cle of rest mass m, moving around a static, spherically symmetric black hole of
mass M . The Schwarzschild line element is given by (for more detailed informa-
tion, refer to the original work [22] or any elementary relativistic literature, e.g.
[10, 13, 16]):

ds2 = −
(︃

1 − 2M

r

)︃
dt2 + dr2

1 − 2M
r

+ r2
(︂
dθ2 + sin2 θdϕ2

)︂
. (1.48)

We would like to point out that the Schwarzschild metric above describes any
spherically symmetric source and is valid anywhere outside this source. Evi-
dently, the metric (1.48) is independent of the coordinates t and the azimuthal
angle ϕ. Due to these cyclic coordinates (see section 1.6), the energy E and
angular momentum L are conserved. By examining the four-momentum normal-
isation gµνpµpν = −m2, and incorporating the integrals of motion, we arrive at
the following equation:

−m2 = gtt (pt)2 + grr (pr)2 + gθθ (pθ)2 + gϕϕ (pϕ)2

= E2

gtt

+ grr (pr)2 + gθθ

(︂
pθ
)︂2

+ L2

gϕϕ

,
(1.49)
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Figure 1.3: The Schwarzshild effective potential and examples of the orbits dis-
cussed in the text. The grey dashed line represents the parabolic orbit, a bound-
ary between bound and unbound orbits. The shaded area demonstrates regions
where the condition (1.52) is not satisfied. The intersections between the horizon-
tal lines corresponding to a value of the specific energy and the effective potential
curve indicate turning points, where ur = 0. The parameters are taken E = 0.98,
L = 4.3M .

where we have employed gµν = 1/gµν because of the diagonality of the metric.
Moreover, since the motion is planar (θ = constant. ≡ π/2, thus pθ ≡ 0), equa-
tion (1.49) is further simplified. By rearranging the equation (1.49) for the radial
component of the four-momentum pr we obtain:

(pr)2 = E2

−gttgrr

− 1
grr

(︄
m2 + L2

gϕϕ

)︄

= E2 −
(︃

1 − 2M

r

)︃(︄
m2 + L2

r2

)︄
.

(1.50)

Assuming particles with non-zero mass, we can divide the entire equation (1.50)
by m2 to obtain the final form:

(ur)2 = ˜︁E2 −
(︃

1 − 2M

r

)︃(︄
1 +

˜︁L2

r2

)︄
= ˜︁E2 − V 2

eff (r) ,

(1.51)

where ˜︁E := E/m, ˜︁L := L/m are the specific energy and angular momentum
respectively. In equation (1.51), we have formally introduced the relativistic ef-
fective potential Veff (r) (per unit of rest mass m). The condition where the
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particle is allowed to move, similar to one in the Kepler problem (1.47), is given
by the relation ˜︁E2 ≥ V 2

eff (r) (1.52)
and can be again analysed graphically by plotting Veff (r) and examining where
the condition (1.52) holds.

A typical shape of the effective potential is shown in Fig. 1.3. In analogy to
Kepler problem, we classify possible orbits in the Schwarzschild field:

• Case ˜︁E > ˜︁Emax: The total energy is greater than the maximum of the
effective potential Veff (r). These trajectories have no turning points since
they nowhere hit the effective potential. Along such unbound trajectories,
the particle either arrives from infinity and plunges to the centre or, on the
contrary, it starts from some radius larger than the black hole horizon and
escapes to infinity. These trajectories do not exist in the Kepler problem
because the Keplerian effective potential diverges to infinity as r approaches
zero (for L ̸= 0), making it impossible to overflown the potential and reach
the centre with finite energy.

• Case ˜︁E = ˜︁Emax: The total energy is equal to the maximum of the effective
potential Veff (r). The orbits are circular (ṙ = r̈ ≡ 0), but they are unstable.
Depending on the value of the maximum ( ˜︁Emax < 1 or ˜︁Emax > 1), these
orbits can be either bound or unbound, if they are slightly shifted from
bounded circular orbit by perturbation. Such trajectories also do not exist
in the Kepler problem since the Keplerian effective potential does not have
a local maximum.

• Case ˜︁Emax > ˜︁E > 1: The total energy is below the maximum of the ef-
fective potential but is greater than the rest energy. In addition, they also
include trajectories with ˜︁E < 1 entirely lying below the radius correspond-
ing to ˜︁Emax. These are unbound trajectories analogous to hyperbolic orbits
in the Kepler problem. The particle either approaches the centre, arrives at
the turning point and then moves away towards infinity, or, on the contrary,
they travel outwards from the centre, stops at its turning point, and falls
back.

• Case ˜︁Emin < ˜︁E ≤ 1: The total energy is below the rest energy, but greater
than ˜︁Emin. Concurrent, their radius is greater than the radius corresponding
to ˜︁Emax. These bounded trajectories are the counterparts of the Keplerian
elliptical orbits. The counterpart of the Keplerian parabolic orbit corre-
sponds to ˜︁E = 1.

• Case ˜︁E = ˜︁Emin: The total energy is equal to a local minimum of the effective
potential Veff (r). The orbits are circular (ṙ = r̈ ≡ 0) and stable.

In summary, the Schwarzschild solution encompasses various trajectories, some
of which are not present in the Kepler problem.

The effective potential method holds for this thesis significant importance in
identifying the bounded trajectories as only they may exhibit chaotic behaviour.
Acquiring knowledge about the specific range of r, where these trajectories exist,
is essential, as it allows more efficient integration of the equations of the motion.
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Although discussing the previous two systems may seem redundant, we believe
it essential to do so. Kepler problem represents a fundamental problem in classi-
cal mechanics, while the Schwarzschild solution, which we subsequently perturb,
serves as its counterpart in general relativity. Understanding the traits of these
problems is significant for comprehending the overarching concepts presented in
this thesis.

1.8 Canonical transformations
For a system described by a Lagrangian L (q, q̇, t) or Hamiltonian H (q, p, t)
function, it is often advantageous, due to reasons such as symmetry of the system,
to introduce a new set of coordinates, which allow the equations of the motion
to become simpler or even trivial.

The choice of the generalised coordinates in Lagrange’s formalism has no re-
striction; thus, the formal structure of Lagrange’s equations (1.15) remains uni-
form regardless of this choice. Consequently, the equations of the motion remain
invariant under a given transformation from one set of generalised coordinates to
any other set of independent quantities, denoted by:

Qi = Qi (q, t) . (1.53)

Since Lagrange’s equations are unaffected by Legendre’s transformation (see sec-
tion 1.5), Hamilton’s equations (1.33) also remain unchanged under coordinates
transformation. However, in the Hamiltonian formalism, the canonical momenta
are treated as independent variables on the same level as the generalised coordi-
nates. Therefore, the range of permissible transformations must be extended to
include the simultaneous transformation of the set of independent coordinates qi

and momenta pi to a new set Qi and Pi, respectively, with invertible equations
of transformation:

Qi = Qi (p, q, t) , Pi = Pi (p, q, t) . (1.54)

Thus, the new coordinates are defined not only in terms of the original coordinates
but also in terms of the original momenta.

The equations of motion cannot maintain their canonical form under arbitrary
transformations of the type (1.54). Hence, it becomes necessary to derive the
conditions that must be satisfied in order for the new coordinates Q and P to
form the Hamiltonian H′ (Q, P, t), which also obey the canonical equations (1.33).
These particular transformations are denoted as canonical transformations.

Definition 1 (Canonical transformation [23]). A transformation (q, p) → (Q, P)
defined by equations (1.54) is a canonical transformation if and only if the Poisson
brackets are invariant, i.e., if the three equalities

{Qi, Pj}q,p = δi
j, {Qi, Qj}q,p = {Pi, Pj}q,p = 0 (1.55)

are satisfied for all i, j = 0, ..., n, where the Poisson brackets in equation (1.55)
are those defined in equation (1.37) with f and g replaced by the various Qi and
Pi coordinates.
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In the aforementioned definition, we had to employ subscripts for the Poisson
brackets denoting the coordinates for which the brackets are defined. The proof
of this theorem can be found in references such as [15]. It should be noted that if
the transformation is canonical, its inverse transformation is also canonical. The
definition 1 is one of several equivalent definitions of canonical transformations
(e.g. symplectic condition exists, for more details, see, e.g. [23]).

With the established conditions for canonical transformation, we are able to
proceed further and determine a transformation to a set of variables where the
Hamiltonian is H′ (Q, P) ≡ 0, resulting in trivial motion; consequently deter-
mined solely by 2n integration constants. This leads us to the Hamilton-Jacobi
theory.

1.8.1 Hamilton-Jacobi theory
In the equation (1.14), we defined the action as the integral of the Lagrangian. In
section 1.5, we introduced Legendre’s transformation, enabling us to transition
from Lagrangian to Hamiltonian formalism. Taking advantage of this, we express
the action integral (1.14) once again, but in terms of the Hamiltonian formalism:

S =
∫︂ t2

t1

(︄
pi

dqi

dt
− H (q, p, t)

)︄
dt. (1.56)

By applying the principle of least action, we vary S with respect to the indepen-
dent variables q and p; we once more obtain the Hamilton’s equations (1.33).
Under canonical transformations, the form of the equations (1.33) remains un-
changed (by definition), thus necessitating the invariance of the principle of least
action under canonical transformation as well.

The simultaneous validity of equation (1.56) for the old Hamiltonian func-
tion H (q, p) and the new one H′ (Q, P) leads to the equality:

δ
∫︂ t2

t1

(︄
pi

dqi

dt
− H (q, p, t)

)︄
dt = δ

∫︂ t2

t1

(︄
Pi

dQi

dt
− H′ (Q, P, t)

)︄
dt. (1.57)

Therefore, the integrands must be equal apart from the total time differential of
the arbitrary function F on the phase space (with continuous second derivatives):

pidqi − H (q, p, t) dt = PidQi − H′ (Q, P, t) dt + dF. (1.58)

The function F can be added since the total time differential does not prevail
in the action variation and hence does not affect the equations of motion (e.g.,
see [21]). Here we explicitly exclude the scale transformation, which only leads to
the multiplication of one side of equation (1.58) by an arbitrary constant, which
is insignificant for our purposes (details can be found in [15]). The function F is
commonly referred to as the generating function (of a canonical transformation).
It may depend on one of the old phase space variables (q, p) and one of the new
phase space variables (Q, P).

In Hamilton-Jacobi theory, our goal is to find such a transformation to a set of
variables where the Hamiltonian is H′ (Q, P, t) ≡ 0. In this case, the Hamilton’s
equations become trivial, as all the derivatives of the Hamiltonian vanish:

dPi

dt
= 0 = dQi

dt
. (1.59)
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Therefore the new generalised coordinates Q and momenta P become constants
of motion. Additionally, we assume that the generating function is given as a
function of the old and new coordinates and time: F = F (q, Q, t). Under these
conditions, equation (1.58) can be rearranged as follows:

dF (q, Q, t) = ∂F

∂qi
dqi + ∂F

∂Qi
dQi + ∂F

∂t
dt

= pidqi − PidQi − H (q, p, t) dt.

(1.60)

Consequently, the generating function F (q, Q, t) satisfies, term by term:

∂F

∂qi
= pi,

∂F

∂Qi
= −Pi,

∂F

∂t
+ H (q, p, t) = 0. (1.61)

Combining these equations yields the Hamilton-Jacobi equation, expressed as:

∂F

∂t

(︄
q, Q, t

)︄
+ H

(︄
q,

∂F

∂q
, t

)︄
= 0. (1.62)

We emphasise that the generalised coordinate is a function of old generalised
coordinates and time: Q = Q

(︂
q, ∂F

∂q , t
)︂
. Therefore the Hamilton-Jacobi equa-

tion (1.62) is a single, first-order nonlinear partial differential equation in (n + 1)
variables (q1, ..., qn; t), for the generating function F (q, Q, t).

It is conventional to denote the solution F (q, Q, t) of equation (1.62) by
S (q, t) and call it Hamilton’s principal function. Remarkably, when the 2n con-
stant parameters Q and P are identified with the initial values Q = q (t1),
P = p (t1), the Hamilton’s principal function S (q, t) is equal to the classical
action S (q, t) defined by equation (1.14) [14, 24].

Similar to Lagrange’s equations (1.15) and Hamilton’s equations (1.33), the
Hamilton-Jacobi equation (1.62) serves as the basis of a general method of inte-
grating the equations of motion.

1.9 Integrability of the Hamiltonian systems
In accordance with the Hamilton-Jacobi theory, we proceed from solving the sys-
tem of 2n ordinary differential equations (1.33) to the single partial differential
equation (1.62). Solving partial differential equations can be notoriously com-
plicated, which can sometimes hinder the effectiveness of the Hamilton-Jacobi
theory. Nevertheless, under certain conditions, separating the variables in the
Hamilton-Jacobi equation (1.62) becomes possible, consequent in a solution re-
ducible to integration alone.

The complete integral of the Hamilton-Jacobi equation (1.62) must contain
n + 1 arbitrary integration constants. Since the Hamilton’s principal function
S (q, t) appears in the equation (1.62) solely through its derivatives, one of these
constants is additive (as precisely described in [14]). Thus, a complete solution
takes the form:

S = s (q; α1, ..., αn; t) + A, (1.63)
where αi and A represent arbitrary constants. The additive constant A may be
omitted as it holds no importance in the Hamilton’s principal function. According
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to [14, 15], if all coordinates in the Hamilton-Jacobi equation (1.62) appear only
in some combination (qi, ∂S/∂qi), which does not involve the other coordinates
or time (i.e. the coordinates are separable) then the function in form (1.63) is
completely separable and can be rewritten in the following form:

S =
∑︂

i

Si

(︂
qi; α1, ..., αn

)︂
− E

(︂
α1, ..., αn

)︂
t, (1.64)

where each of the functions Si depends solely on one coordinate qi.
When a Hamiltonian system, characterised by n degrees of freedom, exhibits

complete separability, it implies it has n independent conserved quantities. How-
ever, in order to reveal this separability, it is necessary to select appropriate
canonical variables. Consequently, two fundamental theorems regarding the inte-
grability of the Hamiltonian systems and the definition of action-angle variables
come into play.

Theorem 1 (Liouville’s theorem on integrability [21]). Let us consider a Hamil-
tonian system with n degrees of freedom, described by 2n generalised coordi-
nates (qi, pi). If there exist n functions I (on a subset U of the phase space),
satisfying the following properties (without loss of generality I1 = H):

• {Ii, H} = 0, i = 2, ..., n; indicating that the quantities Ii are conserved;

• {Ii, Ij} = 0, i, j = 1, ..., n; indicating that the functions Ii are in involution;

• The total differentials dIi =
(︂
∂Ii/∂qk

)︂
dqk + (∂Ii/∂pk) dpk are linearly in-

dependent;

then the system is integrable (on the subset U); thus in principle the analytical
solution of the Hamilton’s equations (1.33) can be obtained through integration.

The proof of this theorem can be found in [25], where one can also find another
theorem on integrability, further developing Liouville’s theorem and introducing
the canonical transformation to action-angle variables.

Theorem 2 (Liouville-Arnold theorem [25]). Let us consider a Hamiltonian sys-
tem with n degrees of freedom to be integrable, possessing independent, involutive
integrals of motion H, I2, ..., In. For a fixed f ∈ Rn, we set

Mf = {x : Ii (x) = fi, i = 1, ..., n}.

Then

• Mf is a smooth manifold, invariant under the phase flow governed by the
Hamiltonian function H.

• If the manifold Mf is compact and connected, then it is diffeomorphic to
an n-dimensional torus

Tn = S1 × ... × S1.

• If the manifold Mf is compact and connected, then locally, there exists a
canonical coordinate transformation (q, p) → (θθθ,III) to a new coordinate sys-
tem, referred to as the action-angle coordinates, such that the angles {θi}n

i=1

21



serves as coordinates on Tn; the action {Ii}n
i=1 are integrals of motion and

H (q, p) = H′ (I) does not depend on θθθ [21]. In particular, the Hamilton’s
equations are given by

İ = 0, θ̇ = ∂H′

∂I
≡ ω (I) . (1.65)

Once all the integrals III of motion are specified, both the torus on which
the motion occurs as well as the fundamental frequencies of motion ω (I) are
determined. By varying III, we can explore the phase space T ∗Q on a foliation
of tori. Fig. 1.4 shows a trajectory of a system of two degrees of freedom on a
torus T2, with highlighted particular actions III and angles θθθ. It is evident that
the solution to equations (1.65) results in a spiral-shaped curve on the surface of
a torus (the blue trajectory in Fig. 1.4).

Figure 1.4: A trajectory on a torus of a two degrees of freedom system.

The nature of the motion on the torus relies on whether any of the fundamental
frequencies are related by an integer ratio. This condition referred to as resonance
condition and discussed in [8], establishes that the character of the motion on the
torus depends on the existence of linearly independent integer-vectors k that
satisfy the following equation:

k · ωωω ≡
n∑︂

i=1
kiω

i = 0, where ki ∈ Z and |k| ≡
n∑︂

k=1
|ki| ≠ 0. (1.66)

If there are no such k that satisfy the condition (1.66), the motion on the
torus Tn is classified as quasiperiodic. In this case, the quasiperiodic orbit densely
covers the torus Tn over an infinite amount of time and does not return to its
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initial state from where it started within a finite period. Furthermore, this partic-
ular orbit is considered ergodic, indicating that a phase space average across the
torus can be used instead of an infinite-time average on the phase space function
along the motion.

If there are less than m < n − 1 independent resonant conditions fulfilled, the
quasiperiodic orbit will only densely cover a Tn−m torus, which is a submanifold
of the corresponding Tn torus. On the other hand, if there are n − 1 resonant
conditions, the motion turns periodic.

Fig. 1.5 depicts an example of a two degrees of freedom system’s resonant
and three examples of non-resonant phase space trajectories on a torus T2 with
various ratios of fundamental frequencies.

1.10 Discrete and continuous systems
A dynamical system is characterised by the evolution of one or more state vari-
ables across time, where the current state dictates all future states. We can
distinguish between discrete or continuous dynamical systems depending on the
nature of the time variable. Throughout the remainder of the thesis, we will focus
solely on Hamiltonian systems. Therefore, we restrict the dynamical systems to
the Hamiltonian ones.

Formally, a continuous dynamical system is defined by a set of differential
equations:

dx
dt

= f (x, t) . (1.67)

In equation (1.67), x represents a vector from the phase space T ∗Q, f (x, t) is a
vector function defined on phase space and t ∈ R is a continuous parameter that
commonly associated with time.

On the other hand, analogous to equation (1.67), we can introduce a set of
differential equations

xn+1 = F (xn, n) , (1.68)

which defines a discrete mapping. Likewise, in previous definition, xn and xn+1
are vectors from the phase space T ∗Q, F (xn, n) is a vector function on the phase
space and n ∈ N is a discrete parameter.

In continuous dynamical systems, the equations of motion give rise to a flow
in a phase space Ft : T ∗Q → T ∗Q along which an initial condition x0 evolves
to x over time, i.e. x (t) = Ft (x0). If there is a volume element on T ∗Q such
that the size of any volume of initial conditions along the flow remains constant,
the system is referred to as conservative. In particular, for Hamiltonian systems,
this is well known as Liouville’s theorem:

Theorem 3 (Liouville’s theorem [21]). For a time evolution of a closed Hamil-
tonian system described by the flow in the phase space x (t) = Ft (x0), Liouville’s
theorem states that an arbitrary volume of the region in phase space remains
constant as it evolves.

Consequently, the Hamiltonian systems are conservative. The proof of Liou-
ville’s theorem can be found in Ref. [21]. The remarkable feature of the above
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theorem is that the flow in the phase space can be treated as canonical trans-
formation [14]. Thus, the arbitrary volume of the phase space T ∗Q is invariant
under canonical transformation.

If the vector function f (x, t) in equation (1.67) does not explicitly depend on
time, then the system is considered autonomous. Specifically for Hamiltonian
systems, this implies ∂H/∂t = 0, which in connection to the equation (1.38),
yields dH/dt = 0 since {H, H} ≡ 0 (by the definition of the Poisson bracket).
Thus, the autonomous Hamiltonian systems have the Hamiltonian as the integral
of the motion, reflecting the system’s total energy conservation.

1.11 Poincaré surface of section
In the domain of general relativity, the studied dynamical systems are continu-
ous. However, these continuous systems can be discretised, allowing them to be
represented by discrete mappings.

The subsequent sections of this thesis will focus on Hamiltonian systems of two
degrees of freedom. Therefore, let us glance at the visualisation of 4-dimensional
phase space foliation by the T2 tori. Such a dynamical system possesses two
integrals of motion (without loss of generality I1 = H). By confining ourselves to
a hypersurface, where one of the integrals of motion remains fixed, we are left with
a 3-dimensional space filled with 2-dimensional tori. Additionally, we can select
a section within this space that intersects the Hamiltonian flow perpendicularly,
i.e. cuts transversally through the tori (for more information, see Ref. [8]). This
selected section enables us to examine the foliation (an example is shown in
Fig. 1.5). This surface is commonly known as the Poincaré surface of section,
which corresponds to a discrete mapping called Poincaré mapping described by
an equation (1.68), because every successive point is determined by the preceding
one.

To computationally create a Poincaré section, one must integrate the equa-
tions of motion and identify the constant of the motion that remains fixed, as
well as the section condition that reflects the symmetries of the system. Only
two remaining phase-space coordinates are recorded once the trajectory passes
through this section surface. After a sufficient number of crossings have been
recorded, the results can be plotted.

In the case of an integrable system, the torus is densely populated with a
quasiperiodic trajectory, and the set of points derived from it will progressively
trace out a single closed curve on the plot. This particular curve is referred to as
an invariant curve since, on a Poincaré surface of section, the curve is mapped to
itself. When several independent trajectories are used, the foliation is revealed as
a sequence of nested, non-intersecting closed curves. Conversely, trajectories that
meet a resonant condition occupy just a subspace of the torus and manifest as a
finite set of periodically repeated points on the section. For each resonance, the
number of these sets is infinite. However, each set is made up of a finite number
of points equal to the periodicity of the resonance, which represents the number
of mappings required for a periodic orbit to return to its initial conditions).

Poincaré surfaces of section provide valuable insights into the dynamics of
Hamiltonian systems. They enable us to visualise and analyse the behaviour of
trajectories in a phase space. These surfaces of section are a powerful tool in
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studying the complex and rich dynamics of dynamical systems.

(a) ω1/ω2 = 4/5 (b) ω1/ω2 ≈ 0.8001

(c) ω1/ω2 ≈ 0.801 (d) ω1/ω2 ≈ 0.81

Figure 1.5: An illustration of a resonant (a) torus and three quasiperiodic ones
(b,c,d) in a two degree of freedom system. The trajectories on the tori are de-
picted in blue, while the Poincaré surfaces of section are in red. Each trajectory
undergoes calculations until the motion intersects the Poincaré surface of section
for a total of 100 occurrences. The resonant trajectory, located in the upper
left plot, exhibits a resonant ratio expressed as ω1/ω2 = 4/5, representing the
fundamental frequency of the small circle over the large circle. In contrast, the
remaining trajectories represent non-resonant trajectories, characterised by ratios
that deviate from the resonant ratio and are of an irrational nature. Over time,
the non-resonant trajectories asymptotically trace out the torus cross-section.

1.12 Transition to non-integrability
Let us consider an integrable system that undergoes perturbation, causing it to
lose its integrability, enabling chaos to occur. To analyse the trajectory changes
caused by perturbation, we must establish a correspondence between parts of
the phase space in the perturbed system and their counterparts in the unper-
turbed system, for which it is suitable to use the action-angle framework. The
transition from integrable systems to non-integrable ones is governed by two fun-
damental theorems: the Kolmogorov-Arnold-Moser theorem (abbreviated as the
KAM theorem, for detailed references see the original papers [26, 27, 28]) and the
Poincaré-Birkhoff theorem (for detailed references see the original papers [29, 30]).

Consider the Hamiltonian H0 (q, p) of an autonomous integrable system that
must be solved. We perturb this system with the additional term ϵH1, where ϵ
is sufficiently small, i.e. ϵ ≪ 1. The perturbed system’s resultant Hamiltonian is
given by:

H (q, p) = H0 (q, p) + ϵH1 (q, p) . (1.69)
In the next step, we transform the coordinates of this Hamiltonian from (q, p)
to action-angles variables (θθθ,III). In particular, if this transformation yields the
following expression for the Hamiltonian:

H (θθθ,III) = H0 (III) + ϵH1 (θθθ,III) , (1.70)
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we call such a Hamiltonian system quasi-integrable [31] or nearly integrable.

Theorem 4 (KAM theory [21]). If the fundamental frequencies ω0,i on a torus in
an unperturbed system H0 are sufficiently non-resonant, then there exists also in
the system H = H0+ϵH1 at small, but finite values of ϵ a distorted torus (referred
to as KAM torus), which for ϵ → 0 turns into the torus of the unperturbed
system H0.

To quantify the notion of "sufficiently non-resonant", we introduce a Diophan-
tine condition [8]. This condition necessitates the presence of K (ϵ) ≲ O (

√
ϵ) and

an integer d > n−1 such that the set of tori satisfying the Diophantine condition:⃓⃓⃓⃓
⃓

n∑︂
i=1

kiω
i

⃓⃓⃓⃓
⃓ >

K (ϵ)
|k|d

(1.71)

is sufficiently non-resonant. The Diophantine criterion guarantees that the dis-
torted torus is sufficiently distant from a resonance. However, the condition (1.71)
is satisfied only in a fraction of the phase space volume, approximately equal to
1 − O (

√
ϵ) [8]. As a result, even with little perturbations, the qualitative charac-

ter of the motion in the system is mostly preserved. However, there is a volume of
the phase space O (

√
ϵ) around the resonances, where the character of the motion

undergoes qualitative changes. That brings us to the second theorem, known as
the Poincaré-Birkhoff theorem.

Theorem 5 (Poincaré-Birkhoff theorem [30]). When an integrable Hamiltonian
system H0 (III) is perturbed, the rational curve with resonant ratio ω1/ω2 = r/s
under a Poincaré mapping is dissolved, and only an even number of periodic
points 2κs (κ ∈ N) under the perturbation survive. These periodic points alternate
between stable and unstable ones forming a chain of resonance points known as
the Birkhoff chain.

1.13 Resonance analysis
Resonances are parts of the phase space where chaotic behaviour emerges. There-
fore, having the methods to identify these zones effectively would be advanta-
geous. In systems with two degrees of freedom, we might take advantage of the
Poincaré surface of section to evaluate the rotation number νϑ (for further in-
formation on the rotation numbers, see Ref. [8, 32]). The rotation number νϑ

represents the ratio of the system’s two fundamental frequencies, i.e. ω1/ω2.
Assuming we have already produced a Poincaré surface of section of the system

(an illustration of the following is depicted in Fig. 1.6), we must first distinguish
the centre of the main island of stability, represented by a fixed point xs on
the Poincaré section, around which most invariant curves are nested. Next, we
evaluate rotation angle, defined as the angle between two vectors originating
from xs and pointing towards two consecutive points on the Poincaré surface of
section:

ϑi := ang
[︂
(xi+1 − xc) ; (xi − xc)

]︂
. (1.72)
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Figure 1.6: An illustration of a two degrees of freedom system’s Poincaré surface of
section. The central region of the figure shows black invariant curves, representing
components of the main island of stability with their centre denoted as xc. The
orange curves are part of 2/3 resonance, wherein centres of islands are stable
points of the respective resonance. The grey points illustrate the chaotic layer,
where the unstable points of 2/3 resonance are located. On the resonance layer,
two consecutive points and their corresponding rotation angle are marked.

To ensure numerical consistency, it is customary to restrict the angle value
spectrum to a proper interval so there is no discontinuity [32]. The rotation
number is then obtained as the average of these rotation angles as follows:

νϑ = lim
N→∞

1
2πN

N∑︂
i=1

ϑi. (1.73)

In the limit, N → ∞, the rotation number (1.73) corresponds to the ratio of two
fundamental frequencies ω1/ω2, presented in section 1.9.

The plot of rotation numbers νϑ as a function of distance from the main
island’s centre is referred to as a rotation curve.

The rotation curve is strictly monotonic for integrable systems as one advances
away from the centre xs. In contrast, for perturbed non-integrable systems,
the curve maintains qualitative similarity to the unperturbed one, except in the
vicinity of the resonances where it exhibits significant changes. The resonance
curve starts to fluctuate randomly in chaotic layers near the resonance. Moreover,
within the Birhoff chain, stable regions known as islands of stability appear as
plateaus with constant values in the rotation curve.

The width of a resonance is a useful measure as it can be related to the
perturbation parameter ϵ in the perturbed Hamiltonian introduced in Eq. (1.70).
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Let us summarise the relationship between the width of the resonance and the
perturbation parameter of two degrees of freedom system, as provided in [8]
(further details can also be found in [33, 31]). The Hamiltonian (1.70) can be
expressed as:

H = H0 (I1, I2) + ϵH1
(︂
I1, I2, θ1, θ2

)︂
. (1.74)

Considering the unperturbed Hamiltonian system H0, we assume that there
exists a resonance satisfying the resonance condition (1.66) (i.e. k1ω

1 +k2ω
2 = 0)

at action coordinates I1 = Inp
1 and I2 = Inp

2 . We perform rotation of the action-
angle variables as follows:

˜︁I1 = I1

2k1
+ I

2k2
, ˜︁θ1 = k1θ

1 + k2θ
2, (1.75)

˜︁I2 = I1

2k1
− I

2k2
, ˜︁θ2 = k1θ

1 − k2θ
2. (1.76)

These new variables also maintain canonical properties. In the transformed vari-
ables, the resonance condition reduces to ˜︁ω1 = 0. The final form of the Hamilto-
nian can be written as (the steps leading to this relation can be found in [8]):

H = β

2
(︂
∆˜︁I1

)︂2
+ ϵα cos

(︂
κ˜︁θ1

)︂
, (1.77)

where κ corresponds to the one discussed in Poincaré-Birkhoff theorem 5 and α, β
are positive parameters, while ∆˜︁I1 = ˜︁I1 − ˜︁Inp

1 .
Separatrices, which separate the near-resonant Birkhoff chain from the rest

of the KAM tori, are approximately located as the level set H = ϵα of the
Hamiltonian (1.77), resulting in:

(︂
∆˜︁I1|sep

)︂2
= 2ϵα

β

(︃
1 − cos

(︂
κ˜︁θ1

)︂)︃
. (1.78)

The definition of the width of resonance, which we denote as w, is as the difference
between the maximum and the minimum of ∆˜︁I1 on the separatrix, which occurs
when cos

(︂
κ˜︁θ1

)︂
= −1:

w := max
(︂
∆˜︁I1|sep

)︂
− min

(︂
∆˜︁I1|sep

)︂
= 4

√︄
α

β

√
ϵ. (1.79)

Returning to the initial system (1.74) and choosing a Poincaré surface of
section on the plane θ2 = 0, then from (1.75), we obtain ˜︁θ1 = k1θ

1 throughout
the section. This implies that on the surface of section and at the resonance, a
total of κ · k1 islands of stability and κ · k1 unstable points will emerge.

1.14 Chaos
This thesis is dedicated to the study of dynamical systems which exhibit chaotic
behaviour. Chaotic behaviour emerges when an integrable system is perturbed
and loses its integrability. A widely accepted definition of chaos has been intro-
duced by Devaney in Ref. [34].
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Definition 2 (Topologically transitive [34]). A mapping f : J → J is considered
to be topologically transitive if, for any pair of open sets U, V ⊂ J , there exists a
positive integer k > 0 such that fk (U) ∩ V = ∅.

In practical terms, this concept states that points of topologically transitive
maps move from one arbitrarily small neighbourhood to any other during iter-
ations. As a result, the dynamical systems governed by such maps cannot be
decomposed into two disjoint open sets that are invariant under the map.

Definition 3 (Sensitive dependence on initial conditions). A mapping f : J → J
is said to have sensitive dependence on initial conditions if there exists a positive
value δ > 0 such that, for any x ∈ J and any neighbourhood N of x, there exists
a point y ∈ N and a non-negative integer n satisfying⃓⃓⃓

fn (x) − fn (y)
⃓⃓⃓
> δ.

Sensitive dependence on initial conditions implies that for at least one point y
arbitrarily close to the point x, the f cause eventually deviation from x within at
least δ under n iteration. It is not required for all points near x to exhibit this kind
of behaviour, but there must be at least one such point in any x neighbourhood.

Definition 4 (Devaney’s definition on chaos [34]). Let us consider V a set and f
a mapping f : J → J . f is said to be chaotic on V if it satisfies the following
conditions:

• f exhibits sensitive dependence on initial conditions,

• f is topologically transitive,

• periodic points are dense in V .

Among these three conditions, the first one, sensitive dependence on initial
conditions, is widely accepted as the central concept of chaos. However, it has
been proven in [35] that for the mapping f , the sensitive dependence on initial
conditions is redundant in the definition of chaos because the other two conditions
imply that. Furthermore, [36] demonstrates that this is the only redundancy in
definition 4.
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2. Numerical Results
In this chapter, we aim to employ our theoretical concepts to examine the space-
time described by the metric (1.9). First, it is necessary to discuss the values of
the parameters used. The metric tensor encompasses two parameters, the mass
of black hole M and quadrupole perturbation parameter Q. Moreover, as param-
eters for the test particle, we shall employ the conserved energy E and angular
momenta L. To work with dimensionless quantities, we establish the scale of
all parameters with respect to the black hole mass M , which effectively entails
setting M ≡ 1.

To numerically integrate the geodesic equations (1.13) and obtain further
numerical results, the new authentical program was written in environment Wol-
fram Mathematica (version 13.2.0). The numerical accuracy achieved during the
integration is summarised in appendix A.1.

2.1 Reduced Hamiltonian
The initial system exhibits four degrees of freedom; however, if we examine the
form of the metric (1.9), we see that it does not depend on the time variable t and
the azimuthal angle ϕ. In section 1.6, we have previously discussed that these
cyclic coordinates of the metric result in the conservation of the total energy E,
respectively, in the conservation of the angular momentum L. Therefore, this
symmetry allows us to reduce our system to a two degrees of freedom problem
solely described by coordinates r and θ. The reduced Hamiltonian of this system
takes the following form:

H = 1
2

(︄
(pr)2

grr

+ (pθ)2

gθθ

+ E2

gtt

+ L2

gϕϕ

)︄
. (2.1)

2.2 Effective potential
Upon examining the 4-momentum normalisation in equation (1.49), we can also
apply it to our system. By rearranging the particular equation appropriately, we
obtain the following:

(pr)2 + gθθ

grr

(︂
pθ
)︂2

= E2

−grrgtt

− 1
grr

(︄
m2 + L2

gϕϕ

)︄
. (2.2)

Assuming particles with non-zero mass, we can divide the entire equation by m2

to obtain the final form:

(ur)2 + gθθ

grr

(︂
uθ
)︂2

=
˜︁E2

−grrgtt

− 1
grr

(︄
1 +

˜︁L2

gϕϕ

)︄
, (2.3)

where we have again introduced the tilted quantities ˜︁E and ˜︁L with meaning per
unit of rest mass. Throughout the remainder of this thesis, we will work solely
with the quantities per unit of rest mass; thus, for the simplicity of notation, we
will denote ˜︁E → E and ˜︁L → L. Moreover, in the remainder of this thesis, we
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will work with the radial part of the momentum per unit of rest mass; thus, for
the simplicity of notation, we will denote pr/m as pr.

Figure 2.1: Three options on displaying the effective potential. The left column
represents the slightly perturbed system (Q = 10−8M−2), while the right column
represents the significantly perturbed system (Q = 10−5M−2). In the top figure of
the right column, the grey line represents the effective potential of an unperturbed
Schwarzshild solution. The first row is the 2D effective potential. The second row
shows the 3D potential, where the displayed area corresponds to E ≤ 0.98. The
third row displays the intersection of the 3D potential with a plane of constant
energy (i.e. the edge of the 3D potential for E ≤ 0.98), denoted as the CZV. These
plots also show projections onto CZV of bounded motion with a given energy. The
parameters taken are L = 4.0M, r [0] = 20M, pr [0] = 0 and θ [0] = π/2.
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In the Schwarzschild solution 1.7.2, the motion is planar, resulting in uθ ≡ 0.
Consequently, the left-hand side of equation (2.3) reduces to the square of a real
function (ur), which allows us to employ a quantity of effective potential as the
right side of equation 2.3. By perturbing the Schwarzschild solution, we have
lost one of the integrals of motion; therefore, the motion is no longer planar and
uθ ̸≡ 0. However, since the term gθθ/grr is non-negative beyond r = 2M (the
black hole horizon), we can consider the left-hand side of the equation (2.3) to be
non-negative in every reasonable region and employ the same procedure as before
with the Schwarzschild solution.

To maintain the consistency with the effective potential presented in the the-
oretical part of this thesis, we demand that as Q → 0, the perturbed effective
potential approaches the unperturbed one (for θ ≡ π/2). Consequently, we define
effective potential as follows:

Veff (r, θ) =

⌜⃓⃓⎷E2 + E2

grrgtt

+ 1
grr

(︄
1 + L2

gϕϕ

)︄
. (2.4)

The aforementioned definition of the effective potential appears identical to the
one for the Schwarzschild solution. However, it is essential to note that the
unperturbed effective potential is a function of a single variable (r), whereas the
perturbed one (2.4) is a function of two variables (r, θ).

Although it is still possible to compute the one-dimensional effective poten-
tial as a function of the radial coordinate, similar to Figures 1.2 and 1.3, it is
not as informative since it does not include all the possible turning point for
a given energy. Alternatively, we could employ the two-dimensional effective
potential (2.4), plotted as a function of r and θ. However, three-dimensional
plots are not as concise in practical means. Therefore, we introduce the curve of
zero velocity (abbreviated as the CZV) as a curve in meridian plane (r, r · cos θ),
where the effective potential (2.4) is equal to specific energy, i.e. Veff (r, θ) = E.
This nomenclature originates from the fact that whenever the right-hand side of
equation (2.3) equals zero, it implies that both ur and uθ are also zero; thus,
the velocity component in the meridian plane (r, r · cos θ) vanishes, indicating a
turning point.

In Figure 2.1, a comparison of the three aforementioned plots is presented
for two specific quadrupole perturbation parameters (for more examples on 3D
potential, respectively, CZV curve in various spacetimes, see Refs. [37, 38]).

2.3 Poincaré surface of section
To study the particle’s motion qualitatively, we should employ the Poincaré sur-
face of section as described in 1.11. The system we study exhibits reflection
symmetry along the equatorial plane; thus, in order to ensure that chosen section
intersects the Hamiltonian flow perpendicularly, we set the Poincaré surface of
section as the equatorial plane (i.e. θ ≡ π/2). Additionally, we only consider
points intersecting the surface of section from a specific direction, i.e. without
loss of generality, selecting the additional condition uθ > 0. Therefore, we are
left with the two remaining phase coordinates, r and pr, which we record.
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The illustrations of Poincaré surface of section are presented in the following
discussion of the possible bounded motion (Fig. 2.2 - 2.5).

Let us emphasise that the accessible region of the Poincaré surface of section
is determined by the normalisation of four-momentum (see e.g. [39]). To establish
the boundary curve, we shall employ the effective potential 2.4 and define it as
follows:

ur = ±
√︂

E2 − V 2
eff (r, π/2). (2.5)

In the subsequent depictions of the Poincaré surface of section (except the ones in
the following section, where the boundary curve is a thin black line), we represent
this boundary curve of accessible region (2.5) as a thick magenta line.

2.3.1 Types of off-equatorial motion
To comprehend the diverse range of possible motions within the gravitational field
described by the metric (1.9), we integrate the geodesic equations 1.13 and analyse
the motion through various perspectives. We can identify four distinct scenarios
of bounded motion for given energy, which we shall distinguish as follows:

• The generic circular orbit depicted in Fig. 2.2. Examining the spatial repre-
sentation of this motion, we see that it is circular, although it is not confined
to the equatorial plane. This observation becomes evident from the CZV,
where the vertical line implies that r/M remains constant while θ oscillates
between two values. The remaining subfigures further reinforce the fact
that the motion is circular, as represented by the circular trajectory in the
projection onto the equatorial plane, respectively, resembling a single point
within the particular Poincaré surface of section.

• The invariant trajectory on the KAM torus depicted in Fig. 2.3. The spatial
representation of this motion shows that the trajectory is not confined to
any plane and might be considered chaotic at first sight. The remaining
subfigures show this is false, and the motion is quasi-periodic. The curve of
the Poincaré surface of section is closed, referring to the fact that the curve
is mapped to itself.

• The resonant trajectory depicted in Fig. 2.4. The initial conditions are
chosen to align approximately with the middle of the 2/3 resonance. The
motion is thus seen as resonant straight from the spatial representation of
this motion. Notably, the trajectory intersects the particular Poincaré sur-
face of section in three distinct sets of points, indicating that the periodicity
of the motion is three.

• The chaotic trajectory depicted in Fig. 2.5. The chaos is hardily observed
from the spatial representation, respectively, from CZV and projection onto
the equatorial plane. Nevertheless, upon examination of the particular
Poincaré surface of section, we see solely the scattered distribution of points
without discernible pattern, which is mostly referred to as a chaotic layer.

The concentric circles in the projections onto the equatorial plane are obtained
from the effective potential (2.4) as the inner-most, respectively, the outer-most
turning points for a given energy.
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(a) (b)

(c) (d)

Figure 2.2: The circular motion of the slightly perturbed system. Figure (a) shows
the spatial motion in Cartesian-like coordinates, with the trajectory calculated
over τ = 10000 time steps. Figure (b) displays the corresponding CZV, whereas
figure (c) shows a projection of the motion onto the equatorial plane (θ = π/2).
Figure (d) depicts the Poincaré surface of section. The parameters taken are
L = 4.0M, E = 0.98,Q = 10−8M−2, r [0] = 24.054M, pr [0] = 0 and θ [0] = π/2.
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(a) (b)

(c) (d)

Figure 2.3: The invariant KAM trajectory of the perturbed system. Figure (a)
shows the spatial motion in Cartesian-like coordinates, with the trajectory cal-
culated over τ = 50000 time steps. Figure (b) presents the corresponding CZV,
whereas figure (c) shows a projection of the motion onto the equatorial plane
(θ = π/2). Figure (d) depicts the Poincaré surface of section. The parame-
ters taken are L = 4.0M, E = 0.98,Q = 10−6M−2, r [0] = 12M, pr [0] = 0 and
θ [0] = π/2.

36



(a) (b)

(c) (d)

Figure 2.4: The resonant motion of the perturbed system with the ratio of
the fundamental frequencies equal to 2/3. Figure (a) shows the spatial mo-
tion in Cartesian-like coordinates, with the trajectory calculated over τ = 50000
time steps. Figure (b) presents the corresponding CZV, whereas figure (c)
shows a projection of the motion onto the equatorial plane (θ = π/2). Fig-
ure (d) depicts the Poincaré surface of section. The parameters taken are
L = 4.0M, E = 0.98,Q = 10−6M−2, r [0] = 6.8M, pr [0] = 0 and θ [0] = π/2.
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(a) (b)

(c) (d)

Figure 2.5: The chaotic motion of the significantly perturbed system. Figure
(a) shows the spatial motion in Cartesian-like coordinates, with the trajectory
calculated over τ = 50000 time steps. Figure (b) presents the corresponding
CZV, whereas figure (c) shows a projection of the motion onto the equatorial plane
(θ = π/2). Figure (d) depicts the Poincaré surface of section. The parameters
taken are L = 4.0M, E = 0.98,Q = 5 · 10−6M−2, r [0] = 7M, pr [0] = 0 and
θ [0] = π/2.

2.4 Rotation numbers
With the utilisation of Poincaré surfaces of section, we can proceed to employ
the rotation numbers as described in section 1.13. Following the procedure, we
initially distinguish the centre of the main island of stability. This fixed point
is unique to each Q value and must be computed separately. Notably, as the
quadrupole perturbation parameter Q increases, the centre gradually moves far-
ther away from the black hole.
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(a)

(b)

(c)

Figure 2.6: Rotation number spectra of a chaotic trajectory (a), a KAM trajec-
tory (b) and a resonance trajectory (c). Histograms are in logarithmic scale with
7000 rotation angles in total distributed into 250 equally sized bins. The param-
eters employed to create these plots are L = 4.0M, E = 0.98, Q = 5 · 10−6M−2,
pr [0] = 0, θ [0] = π/2 and ra [0] = 12.298M ; rb [0] = 21.298M ; rc [0] = 32.298M .
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Consequently, we are able to compute the rotation angles (1.72). As was
mentioned earlier, it is necessary to ensure that the rotation angle spectrum does
not have any discontinuity. In Fig. 2.6 are plotted three rotation spectra. We see
that the chaotic spectrum lies within the interval [0, 2π), whereas the KAM and
resonance spectra are in the interval [π, 2π). However, none of them possesses
any discontinuity. Therefore, we can proceed to calculate the rotation numbers
as given by equation (1.73).

The definition of rotation numbers (1.73) assumes that as the number of
rotation angles N approach infinity, the rotation number corresponds to the ratio
of two fundamental frequencies ω1/ω2. For finite N , the inaccuracy of calculations
is approximately equal to [32]:

δϑ = ∆
N

, where 0 < ∆ < 1. (2.6)

Hence, in order to obtain more precise values of rotation numbers, it is necessary
to record more rotation angles. Typically, we calculate the trajectory for the
subsequent plots until the 7000 rotation angles have been recorded. However, in
section 2.5, we need to acquire better accuracy; therefore, the motion undergoes
the calculation until 35000 rotation angles have been recorded.

Figs. 2.7 - 2.24 depict Poincaré surfaces of section along with the correspond-
ing rotation curve for several different values of the quadrupole perturbation
parameter Q.

2.5 Resonance growth
We have previously described in the theoretical section 1.13 that the resonance
width is a useful measure as it can be related to the perturbation parameter ϵ.
From Fig. 2.7 - 2.24, it is evident that this width of all resonances grows as the
quadrupole perturbation parameter Q increases.

By taking the logarithm of the equation (1.79), we obtain:

log w (Q) = 1
2 log ϵ (Q) + log 4

√︄
α

β
, (2.7)

where we emphasise that on the right-hand side of the equation, only ϵ is depen-
dent on Q as α and β are positive parameters. Therefore, by plotting the width
of the resonance with respect to the quadrupole perturbation parameter on a
logarithmic scale and performing the linear regression, we are able to quantify
the relation between ϵ and Q. The aforementioned linear regression takes the
following form:

log w (Q)
M

= A · logQM2 + B. (2.8)

Thus, by comparing the equations (2.7) and (2.8), we obtain the following power
law expression for the perturbation parameter:

ϵ = (QM2)2A. (2.9)
In the subsequent sections, we examine four resonances, which have already

been identified in Fig. 2.7 - 2.24.
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Figure 2.7: The top figure displays a Poincaré surface of section, while the bottom
figure shows the corresponding rotation curve computed along the pr = 0 line.
The dominant resonances are prominently marked in both figures, along with
their ratios of fundamental frequencies. The parameters taken are L = 4.0M ,
E = 0.98, θ [0] = π/2 and r [0] ∈ (6.063M ; 50.063M) with step size 0.2M .
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(a) The resonance ω1/ω2 = 2/3

(b) The resonance ω1/ω2 = 8/11

Figure 2.8: Details from the Poincaré surface of section shown in Fig. 2.7
that focus on the most prominent resonances. In (a) the initial ra-
dius r [0] ∈ (14.25M ; 19.05M) and changes with step size 0.1M ; in (b)
r [0] ∈ (32.468M ; 32.592M) with step size 0.002M . Away from the resonance,
the step size is magnified ten times, and the respective KAMs are depicted in the
figure in grey colour.
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(c) The resonance ω1/ω2 = 12/17

Figure 2.8: In (c) r [0] ∈ (34.640M ; 34.732M) with step size 0.002M .

43



Figure 2.9: The top figure displays a Poincaré surface of section, while the bottom
figure shows the corresponding rotation curve computed along the pr = 0 line.
The dominant resonances are prominently marked in both figures, along with their
ratios of fundamental frequencies. The parameters taken are L = 4.0M, E = 0.98,
θ [0] = π/2 and r [0] ∈ (6.159M ; 50.159M) with step size 0.2M .
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(a) The resonance ω1/ω2 = 2/3

(b) The resonance ω1/ω2 = 4/5

Figure 2.10: Details from the Poincaré surface of section shown in
Fig. 2.9 that focus on the most prominent resonances. In (a) the ini-
tial radius r [0] ∈ (10.3M ; 15.6M) and changes with step size 0.1M ; in (b)
r [0] ∈ (27.00M ; 27.52M) with step size 0.01M . Away from the resonance, the
step size is magnified ten times, and the respective KAMs are depicted in the
figure in grey colour.
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(c) The resonance ω1/ω2 = 8/11

(d) The resonance ω1/ω2 = 12/17

Figure 2.10: In (c) the initial radius r [0] ∈ (36.41M ; 37.25M) with step size
0.02M ; in (d) r [0] ∈ (38.89M ; 39.43M) with step size 0.01M .
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Figure 2.11: The top figure displays a Poincaré surface of section, while the
bottom figure shows the corresponding rotation curve computed along the pr = 0
line. The dominant resonances are prominently marked in both figures, along with
their ratios of fundamental frequencies. The parameters taken are L = 4.0M ,
E = 0.98, θ [0] = π/2 and r [0] ∈ (6.298M ; 50.098M) with step size 0.2M .
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(a) The resonance ω1/ω2 = 2/3

(b) The resonance ω1/ω2 = 4/5

Figure 2.12: Details from the Poincaré surface of section shown in
Fig. 2.11 that focus on the most prominent resonances. In (a) the ini-
tial radius r [0] ∈ (6.0M ; 14.0M) and changes with step size 0.2M ; in (b)
r [0] ∈ (30.7M ; 32.95M) with step size 0.05M . Away from the resonance, the
step size is magnified ten times, and the respective KAMs are depicted in the
figure in grey colour.
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(c) The resonance ω1/ω2 = 8/11

(d) The resonance ω1/ω2 = 12/17

Figure 2.12: In (c) the initial radius r [0] ∈ (40.34M ; 41.30M) with step size
0.02M ; in (d) r [0] ∈ (42.79M ; 43.34M) with step size 0.01M .
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Figure 2.13: The top figure displays a Poincaré surface of section, while the
bottom figure shows the corresponding rotation curve computed along the pr = 0
line. The dominant resonances are prominently marked in both figures, along with
their ratios of fundamental frequencies. The parameters taken are L = 4.0M ,
E = 0.98, θ [0] = π/2 and r [0] ∈ (6.266M ; 44.266M) with step size 0.2M .
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(a) The resonance ω1/ω2 = 2/3

(b) The resonance ω1/ω2 = 4/5

Figure 2.14: Details from the Poincaré surface of section shown in
Fig. 2.13 that focus on the most prominent resonances. In (a) the ini-
tial radius r [0] ∈ (6.0M ; 9.8M) and changes with step size 0.1M ; in (b)
r [0] ∈ (34.59M ; 36.47M) with step size 0.04M . Away from the resonance, the
step size is magnified ten times, and the respective KAMs are depicted in the
figure in grey colour.
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(c) The resonance ω1/ω2 = 8/11

(d) The resonance ω1/ω2 = 12/17

Figure 2.14: In (c) the initial radius r [0] ∈ (41.294M ; 41.486M) with step size
0.004M ; in (d) r [0] ∈ (42.458M ; 42.538M) with step size 0.002M .
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Figure 2.15: The top figure displays a Poincaré surface of section, while the
bottom figure shows the corresponding rotation curve computed along the pr = 0
line. The dominant resonances are prominently marked in both figures, along with
their ratios of fundamental frequencies. The parameters taken are L = 4.0M ,
E = 0.98, θ [0] = π/2 and r [0] ∈ (6.336M ; 42.136M) with step size 0.2M .
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(a) The resonance ω1/ω2 = 2/3

(b) The resonance ω1/ω2 = 4/5

Figure 2.16: Details from the Poincaré surface of section shown in Fig. 2.15
that focus on the most prominent resonances. In (a) the initial ra-
dius r [0] ∈ (6.16M ; 7.68M) and changes with step size 0.04M ; in (b)
r [0] ∈ (36.32M ; 37.12M) with step size 0.02M . Away from the resonance, the
step size is magnified ten times, and the respective KAMs are depicted in the
figure in grey colour.
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Figure 2.17: The top figure displays a Poincaré surface of section, while the
bottom figure shows the corresponding rotation curve computed along the pr = 0
line. The dominant resonances are prominently marked in both figures, along with
their ratios of fundamental frequencies. The parameters taken are L = 4.0M ,
E = 0.98, θ [0] = π/2 and r [0] ∈ (6.115M ; 41.915M) with step size 0.2M .
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(a) The resonance ω1/ω2 = 2/3

(b) The resonance ω1/ω2 = 4/5

Figure 2.18: Details from the Poincaré surface of section shown in
Fig. 2.17 that focus on the most prominent resonances. In (a) the ini-
tial radius r [0] ∈ (6.16M ; 7.28M) and changes with step size 0.02; in (b)
r [0] ∈ (36.58M ; 37.08M) with step size 0.01M . Away from the resonance, the
step size is magnified ten times, and the respective KAMs are depicted in the
figure in grey colour.
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Figure 2.19: The top figure displays a Poincaré surface of section, while the
bottom figure shows the corresponding rotation curve computed along the pr = 0
line. The dominant resonances are prominently marked in both figures, along with
their ratios of fundamental frequencies. The parameters taken are L = 4.0M ,
E = 0.98, θ [0] = π/2 and r [0] ∈ (6.294M ; 41.694M) with step size 0.2M .
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(a) The resonance ω1/ω2 = 2/3

(b) The resonance ω1/ω2 = 4/5

Figure 2.20: Details from the Poincaré surface of section shown in Fig. 2.19
that focus on the most prominent resonances. In (a) the initial ra-
dius r [0] ∈ (6.16M ; 7.08M) and changes with step size 0.02M ; in (b)
r [0] ∈ (36.72M ; 37.11M) with step size 0.01M . Away from the resonance, the
step size is magnified ten times, and the respective KAMs are depicted in the
figure in grey colour.
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Figure 2.21: The top figure displays a Poincaré surface of section, while the
bottom figure shows the corresponding rotation curve computed along the pr = 0
line. The dominant resonances are prominently marked in both figures, along with
their ratios of fundamental frequencies. The parameters taken are L = 4.0M ,
E = 0.98, θ [0] = π/2 and r [0] ∈ (6.274M ; 41.274M) with step size 0.2M .
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Figure 2.22: The top figure displays a Poincaré surface of section, while the
bottom figure shows the corresponding rotation curve computed along the pr = 0
line. The dominant resonances are prominently marked in both figures, along with
their ratios of fundamental frequencies. The parameters taken are L = 4.0M ,
E = 0.98, θ [0] = π/2 and r [0] ∈ (6.261M ; 41.261M) with step size 0.2M .
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Figure 2.23: Details from the Poincaré surface of section shown in Fig. 2.21 that
focus on the resonance ω1/ω2 = 2/3. The initial radius r [0] ∈ (6.22M ; 6.78M)
and changes with step size 0.01M . Away from the resonance, the step size is
magnified ten times, and the respective KAMs are depicted in the figure in grey
colour.

Figure 2.24: Details from the Poincaré surface of section shown in Fig. 2.22 that
focus on the resonance ω1/ω2 = 2/3. The initial radius r [0] ∈ (6.24M ; 6.65M)
and changes with step size 0.01M . Away from the resonance, the step size is
magnified ten times, and the respective KAMs are depicted in the figure in grey
colour.

2.5.1 2/3 Resonance
The 2/3 resonance, observed in our perturbed system is depicted in red colour in
Fig. 2.7 - 2.24. Table 2.1 provides a summary of the widths of the 2/3 resonance
with respect to the different values of the quadrupole perturbation parameter.
During the calculations, all other parameters were kept fixed, i.e. E = 0.98,
L = 4.0M , and the initial conditions were chosen along the pr = 0 line in Poincaré
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surface of section. The value δw represents the step size used to obtain the width
of the resonance. The final uncertainty in the width is determined by the law of
propagation of uncertainty (see Ref. [40]), therefore, given as

√
2 · δw.

The values from Table 2.1 are plotted in Fig. 2.25, where a linear regression is
applied. During the linear regression, certain data points were omitted (marked
in a particular figure with empty circles). This exclusion is due to those points
corresponding to the quadrupole perturbation parameter, where a large chaotic
layer surrounds the particular resonance. Large chaotic layers, in general, have
a tendency to distort the width of resonance since we depart from the pendulum
approximation discussed in Sec. 1.13; thus, these data points cannot be used in
the linear regression analysis.

The regression parameters in equation 2.8 for the 2/3 resonance are as follows:

A = 0.511 ± 0.002,

B = 2.91 ± 0.01.

Therefore, the inclination is approximately equal to A ≈ 0.5. Consequently, we es-
tablish the following relation for the perturbation parameter ϵ and the quadrupole
perturbation parameter Q for 2/3 resonance as follows:

ϵ = QM2. (2.10)

Hence, the perturbation parameter ϵ is directly proportional to the quadrupole
perturbation parameter Q in a linear relationship.

Figure 2.25: Logarithmic plot of widths of the 2/3 resonance with respect to the
quadrupole perturbation parameter. The figure omits the error bars as their size
is smaller than the plot symbols (the relative error was maintained below 1%).
Empty circles symbolise the data that were excluded from the linear regression
analysis.
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Table 2.1: The values of quadrupole perturbation parameter Q along with the
respective widths of the 2/3 resonance and their computing steps.

Q (·M2) w (/M) δw (/M) Q (·M2) w (/M) δw (/M)
1.0 · 10−10 0,0065 0,0001 2.0 · 10−8 0,094 0,001
1.3 · 10−10 0,0075 0,0001 2.5 · 10−8 0,105 0,001
1.6 · 10−10 0,0082 0,0002 3.2 · 10−8 0,120 0,001
2.0 · 10−10 0,0092 0,0002 4.0 · 10−8 0,134 0,001
2.5 · 10−10 0,0102 0,0002 5.0 · 10−8 0,151 0,001
3.2 · 10−10 0,0118 0,0002 6.3 · 10−8 0,170 0,001
4.0 · 10−10 0,0130 0,0002 8.0 · 10−8 0,194 0,001
5.0 · 10−10 0,0146 0,0002 1.0 · 10−7 0,219 0,001
6.3 · 10−10 0,0164 0,0002 1.3 · 10−7 0,254 0,001
8.0 · 10−10 0,0186 0,0002 1.6 · 10−7 0,285 0,001
1.0 · 10−9 0,0208 0,0002 2.0 · 10−7 0,325 0,001
1.3 · 10−9 0,0236 0,0002 2.5 · 10−7 0,372 0,001
1.6 · 10−9 0,0260 0,0005 3.2 · 10−7 0,434 0,001
2.0 · 10−9 0,0290 0,0005 4.0 · 10−7 0,502 0,001
2.5 · 10−9 0,0330 0,0005 5.0 · 10−7 0,585 0,001
3.2 · 10−9 0,0370 0,0005 6.3 · 10−7 0,692 0,001
4.0 · 10−9 0,0415 0,0005 8.0 · 10−7 0,829 0,001
5.0 · 10−9 0,0465 0,0005 1.0 · 10−6 0,996 0,001
6.3 · 10−9 0,052 0,001 1.3 · 10−6 1,253 0,001
8.0 · 10−9 0,058 0,001 1.6 · 10−6 1,525 0,001
1.0 · 10−8 0,065 0,001 2.0 · 10−6 1,911 0,001
1.3 · 10−8 0,075 0,001 2.5 · 10−6 2,440 0,001
1.6 · 10−8 0,083 0,001

2.5.2 4/5 Resonance
Following the same procedure as for the 2/3 resonance in section 2.5.1, we can
now analyse the second resonance, the 4/5 resonance, depicted in green colour in
Fig. 2.7-2.24. Table 2.2 summarises the widths of the 4/5 resonance for different
values of the quadrupole perturbation parameter. During the calculations, all
other parameters were kept fixed, i.e. E = 0.98, L = 4.0M , and the initial
conditions were chosen along the pr = 0 line in Poincaré surface of section. The
values from Table 2.2 are plotted in Fig. 2.26, where a linear regression is applied.
Similarly to the previous analysis, during the linear regression, certain points
were omitted (marked in a particular figure with empty circles). The regression
parameters 2.8 for the 4/5 resonance are:

A = 1.038 ± 0.004,

B = 5.85 ± 0.03.

Therefore, the inclination is approximately equal to A ≈ 1.0. Consequently, we es-
tablish the following relation for the perturbation parameter ϵ and the quadrupole
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perturbation parameter Q for 4/5 resonance as follows:

ϵ = Q2M4. (2.11)

Hence, the perturbation parameter ϵ is directly proportional to the quadrupole
perturbation parameter Q in a quadratic relationship.

Figure 2.26: Logarithmic plot of widths of the 4/5 resonance with respect to the
quadrupole perturbation parameter. The figure omits the error bars as their size
is smaller than the plot symbols (the relative error was maintained below 1%).
Empty circles symbolise the data that were excluded from the linear regression
analysis.

2.5.3 8/11 Resonance
Continuing on the third resonance, 8/11 resonance, depicted in blue colour in
Fig. 2.7-2.24. Table 2.3 provides a summary of the widths of the 8/11 resonance
with respect to the different values of the quadrupole perturbation parameter.
During the calculations, all other parameters were kept fixed, i.e. E = 0.98,
L = 4.0M , and the initial conditions were chosen along the pr = 0 line in Poincaré
surface of section. The values from Table 2.1 are plotted in Fig. 2.25, where a
linear regression is applied. Similarly to the previous analysis, during the linear
regression, certain points were omitted (marked in a particular figure with empty
circles).

The regression parameters 2.8 for the 8/11 resonance are:

A = 2.491 ± 0.027,

B = 13.01 ± 0.16.
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Table 2.2: The values of quadrupole perturbation parameter Q along with the
respective widths of the 4/5 resonance and their computing steps.

Q (·M2) w (/M) δw (/M) Q (·M2) w (/M) δw (/M)
1.0 · 10−8 0.0037 0.0001 2.5 · 10−7 0.096 0.001
1.3 · 10−8 0.0048 0.0001 3.2 · 10−7 0.125 0.001
1.6 · 10−8 0.0059 0.0001 4.0 · 10−7 0.159 0.001
2.0 · 10−8 0.0074 0.0002 5.0 · 10−7 0.201 0.001
2.5 · 10−8 0.0092 0.0002 6.3 · 10−7 0.259 0.001
3.2 · 10−8 0.0118 0.0002 8.0 · 10−7 0.336 0.001
4.0 · 10−8 0.0148 0.0002 1.0 · 10−6 0.429 0.001
5.0 · 10−8 0.0186 0.0002 1.3 · 10−6 0.572 0.001
6.3 · 10−8 0.0235 0.0005 1.6 · 10−6 0.718 0.001
8.0 · 10−8 0.0300 0.0005 2.0 · 10−6 0.907 0.001
1.0 · 10−7 0.0375 0.0005 2.5 · 10−6 1.119 0.001
1.3 · 10−7 0.0495 0.0005 3.2 · 10−6 1.334 0.001
1.6 · 10−7 0.060 0.001 4.0 · 10−6 1.417 0.001
2.0 · 10−7 0.077 0.001 5.0 · 10−6 1.283 0.001

Therefore, the inclination is approximately equal to A ≈ 2.5. Consequently,
we establish the following relation for the perturbation parameter ϵ and the
quadrupole perturbation parameter Q for 8/11 resonance as follows:

ϵ = Q5M10. (2.12)

Hence, the perturbation parameter ϵ is directly proportional to the quadrupole
perturbation parameter Q raised to the power of five.

Table 2.3: The values of quadrupole perturbation parameter Q along with the
respective widths of the 8/11 resonance and their computing steps.

Q (·M2) w (M) δw (/M)
5.0 · 10−7 0.0022 0.0001
6.3 · 10−7 0.0038 0.0001
8.0 · 10−7 0.0065 0.0001
1.0 · 10−6 0.0110 0.0002
1.3 · 10−6 0.0205 0.0005
1.6 · 10−6 0.0350 0.0005
2.0 · 10−6 0.062 0.001
2.5 · 10−6 0.114 0.001
3.2 · 10−6 0.220 0.001
4.0 · 10−6 0.382 0.001
5.0 · 10−6 0.570 0.001
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Figure 2.27: Logarithmic plot of widths of the 8/11 resonance with respect to the
quadrupole perturbation parameter. The figure omits the error bars as their size
is smaller than the plot symbols (the relative error was maintained below 1%).
Empty circles symbolise the data that were excluded from the linear regression
analysis.

2.5.4 12/17 Resonance
Applying the previously used procedure of the last resonance, 12/17 resonance,
depicted in purple colour in Fig. 2.7-2.24. Table 2.4 provides a summary of
the widths of the 12/17 resonance with respect to the different values of the
quadrupole perturbation parameter. During the calculations, all other parame-
ters were kept fixed, i.e. E = 0.98, L = 4.0M , and the initial conditions were
chosen along the pr = 0 line in Poincaré surface of section. The values from
Table 2.4 are plotted in Fig. 2.28, where a linear regression is applied.

The regression parameters 2.8 for the 12/17 resonance are:

A = 3.880 ± 0.040,

B = 20.34 ± 0.23.

The inclination is approximately equal to A ≈ 4.0. Consequently, we estab-
lish the following relation for the perturbation parameter ϵ and the quadrupole
perturbation parameter Q for 12/17 resonance as follows:

ϵ = Q8M16. (2.13)

Hence, the perturbation parameter ϵ is directly proportional to the quadrupole
perturbation parameter Q raised to the power of eight.
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Table 2.4: The values of quadrupole perturbation parameter Q along with the
respective widths of the 12/17 resonance and their computing steps.

Q (·M2) w (/M) δw (/M)
1.0 · 10−6 0.0012 0.0001
1.3 · 10−6 0.0031 0.0001
1.6 · 10−6 0.0065 0.0001
2.0 · 10−6 0.0168 0.0005
2.5 · 10−6 0.0405 0.0005
3.2 · 10−6 0.108 0.001
4.0 · 10−6 0.243 0.001

Figure 2.28: Logarithmic plot of widths of the 12/17 resonance with respect to the
quadrupole perturbation parameter. The figure omits the error bars as their size
is smaller than the plot symbols (the relative error was maintained below 1%).

2.6 Perturbation parameter
We see from the equations 2.10 - 2.13 that the relation between the quadrupole
perturbation parameter Q and the perturbation parameter ϵ is not uniform and
differ for each resonance. This is in contradiction with the outcomes of works [8,
41], where similar relations were consistent.

Apart from the energy and the Lz, in the Schwarzschild case, there is the
total angular momentum constant. The total angular momentum is not con-
stant of motion after the perturbation is imposed. The absence of this constant
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drives the system from integrability. For small perturbation values, a total an-
gular momentum-like quantity should oscillate around an averaged value (see
Ref. [6, 42]). We speculate that the order O(Qn) at which the Poisson bracket of
this quantity with the Hamiltonian departs from zero near each resonance should
correspond to the value we are finding. However, this speculation is yet to be in-
vestigated. What we can deduce from the obtained results is that each resonance
appears to be driven from a different order in the perturbation. Moreover, it
appears that the value of n in O(Qn) grows as the denominator in the resonance
ratio increases.
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Conclusion
The first chapter provides an overview of the fundamental theory of classical
mechanical systems applied in the general relativistic framework, encompassing
both Lagrangian and Hamiltonian formalism. Building upon this foundation, we
further developed Hamiltonian formalism and introduced advanced techniques
such as canonical transformations, Hamilton-Jacobi theory and canonical per-
turbation theory. The geodesic equations were also derived, and their essential
properties were analysed. Then we proceed to the theory of integrability and non-
integrability, introducing two fundamental theorems regarding the integrability
of Hamiltonian systems. Moreover, standard methods for studying deterministic
chaos were presented.

The guidelines of this thesis were to gain a thorough understanding of the
essential characteristics of geodesic motion in curved spacetime and acquire pro-
ficiency in methods for analysing deterministic chaos. To achieve these goals,
a new program has been developed in Wolfram Mathematica, enabling the evo-
lution of the geodesic motion within prescribed spacetime. Several examples of
Poincaré surface of section, along with corresponding rotation curves, were pro-
vided using this program. By utilising the aforementioned methods, we could
distinguish chaotic, respectively resonant trajectories. Towards the end of the
thesis, we advanced further and began to study the relation between the per-
turbation parameter of Hamiltonian and the quadrupole perturbation parameter
describing the metric.

The research led to the identification of four different relations between the
perturbation parameter and the quadrupole perturbation parameter, contrary to
the findings of previously published works addressing similar problems [41, 8, 43],
which indicated one single relation. Therefore, we verified that the validity of such
a relation is not necessarily global and can differ from resonance to resonance in
the phase space.

The values of the quadrupole perturbation parameter, like Q = 10−7M2, used
in this work were slightly exaggerated, since by taking into account that the
quadrupole perturbation parameter is defined as Q ≡ Mr/r3

r , the radius of the
gravitating ring should be, for instance, at rr = 100M and the mass of the ring
should be Mr = 0.1M . However, the findings remain interesting, even if they do
not correspond to probable astrophysical scenarios, for which Q should be much
smaller. With respect to the perturbation parameter and Q relation the only
reasonable resonance is 2/3, rendering the remaining resonances negligible. Thus,
it is possible to utilise the linear relation between the perturbation parameter and
the quadrupole perturbation parameter in most regions of the phase space.

To expand upon this research, future works could focus on studying extreme
mass ratio inspirals in such systems, as demonstrated in the work [6]. These
systems generate gravitational waves in the mHz frequency band. In the upcom-
ing years, multiple new-generation gravitational wave observatories are scheduled
for launch, presenting an opportunity to observe these gravitational waves [4, 5].
Consequently, this would enhance our comprehension of these systems and allow
for verifying the presented results.
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A. Attachments

A.1 Numerical Accuracy

To numerically integrate geodesic equations (1.13), a new program has been writ-
ten in the Wolfram Mathematica environment (version 13.2.0). The program
consists of two versions, which differ in their integration algorithm scheme.

The first version employed the "LocalAdaptive" algorithm, provided by default
by Wolfram Mathematica. The algorithm dynamically adjusts the integration
method and step size during the process, making it versatile for a wide range
of problems. By adapting the integration method in pathological situations,
this algorithm generates effective but less accurate numerical results, which are
valuable for insight into the geodesic motion. However, when higher accuracy is
required, this method becomes ineffective.

The second version utilises the standard fourth-order explicit Runge-Kutta
algorithm. This method is widely employed in geodesic motion integration (for
comparing inaccuracies with different methods frequently used in geodesics in-
tegration, see Ref. [44]), as it constantly provides accurate numerical results in
most situations while maintaining reasonable computation time.

To ensure that the inaccuracies remain below a certain level, we monitor
the conservation of four-momentum. Since the form of Lagrangian 1.28 has an
identical form to four-momentum, it becomes synonymous with monitoring the
Lagrangian. Let us denote the value of the Lagrangian at the beginning as L (0)
and the value at step τ as L (τ). Therefore, we can calculate the relative error of
the Lagrangian as follows:

∆Lrel =
⃓⃓⃓⃓
⃓⃓L (τ) − L (0)

L (0)

⃓⃓⃓⃓
⃓⃓. (A.1)

Fig. A.1 summarise the numerical accuracy achieved during the integration
by both algorithms. In chapter 2, we integrated the geodesic equations with
typically five to ten million integration steps. However, when computing the
widths of resonances for the final section of the second chapter, the integration
required twenty million integration steps. Nevertheless, Fig. A.1 demonstrates
that the inaccuracy of RungeKutta numerical results is still reasonable even for
twenty million integration steps. On the other hand, the LocalAdaptive method
exhibits poor accuracy during longer integration periods. This is depicted in the
top left panel of Fig. A.1, where the Poincaré surfaces of section for both methods
are depicted using a specific quasi-periodic trajectory. The results reveal that
the RungeKutta algorithm provides precise outcomes. At the same time, the
LocalAdaptive method, during integration, shifted across several invariant curves
(i.e. altered the conserved energy) and magnified the actual width of Poincaré
surface of section.
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(a) LocalAdaptive: Absolute error (b) RungeKutta: Absolute error

(c) LocalAdaptive: Poincare surface of section (d) RungeKutta: Poincare surface of section

Figure A.1: The summary of the numerical inaccuracies of both employed algo-
rithms. The top panels display the absolute error encountered during the inte-
gration process utilising twenty million steps. The bottom panels show the corre-
sponding Poincaré surface of section for both methods. The parameters utilised
during the calculation were E = 0.98, L = 4.0M , Q = 1.0 · 10−6M−2, θ [0] = π/2,
pr [0] = 0M and r [0] = 15.0M .
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