
BACHELOR THESIS

Ján Kovačovský
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Introduction

Non-additive intermolecular interactions are interactions between three or more
molecules that cannot be predicted by simply adding the pairwise interactions
between the molecules. These interactions are high-dimensional and vary un-
predictably with molecular position. Including three-body non-additive interac-
tions in first-principles approaches can dramatically decrease the deviation from
experiments, sometimes by an order of magnitude. Evaluating these interac-
tions accurately using quantum mechanics is challenging, and becomes infeasible
for large clusters. An alternative approach is to use intermolecular potentials
to describe the interactions. Several types of intermolecular potentials exist,
ranging from simple functions with general coefficients, commonly used to study
biomolecules, to more complex models that fit potentials for specific molecules
using high-quality reference data. While the former are fast, they are typically
less accurate. The latter can achieve high accuracy if the model is reliable and are
often designed to describe non-additive interactions, which are frequently omitted
in simpler schemes. Non-additive terms describe the change in interaction energy
of a molecular dimer due to the presence of a third molecule, and are crucial for
both electrostatic and van der Waals interactions.
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Chapter 1

Intermolecular interactions

In this work, we are interested in the stationary properties of molecules, such
as equilibria geometry or vibrational frequencies. The studied system is then
described by the time-independent Schrödinger equation

ĤΨ = EΨ. (1.1)
The Schrödinger equation (1.1) is an eigenvalue problem that relates the

Hamiltonian operator Ĥ to its wave function Ψ and energy.
The Hamiltonian operator of a system can be expressed as a sum of the kinetic

and potential energies of all its constituents. In the case of a molecular system,
Ĥ can be further decomposed into a sum of nuclear and electronic terms

Ĥ =
∑︂

i

(︃
− 1

2me

∇2
i

)︃
kinetic energy

of electrons

+
∑︂

k

(︃
− 1

2Mk

∇2
k

)︃
kinetic energy

of nuclei

+
∑︂
i,k

(︃
−Zk

rik

)︃
electron-nuclear

attraction

+ 1
2
∑︂
i ̸=j

1
rij

electron-electron
repulsion

+ 1
2
∑︂
k ̸=l

ZkZl

rkl

nuclear-nuclear
repulsion

, (1.2)

where rij denotes the distance between a pair of particles and Zi their charge.
The resulting Hamiltonian is expressed in atomic units.

The wave function Ψ encompasses all properties of the system, including
the positions and movements of all particles, such as electrons and nuclei in a
molecule.

To accurately describe the system, the wave function must satisfy certain re-
quirements. Namely, it must be a solution to the Schrödinger equation and also
respect the Pauli exclusion principle, no two fermions can occupy the same quan-
tum state. In other words, a many-electron wave function must be antisymmetric
with respect to the interchange of the spatial or spin coordinate among any two
electrons. This means that if two electrons are interchanged, the wave function
changes sign. The state space required to represent a system encompasses all
possible superpositions of particles. This makes the quantum many-body prob-
lem computationally intractable, and therefore, it is necessary to use appropriate
approximations.

Due to their relatively lower masses than the nuclei, electrons move at consid-
erably higher speeds and can adiabatically (instantaneously) adapt to the move-
ment of the nuclei, that is, on a typical timescale of the nuclear motion, the
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electrons rapidly relax to the ground-state configuration. This concept is known
as the Born-Oppenheimer approximation and enables us to study the electronic
and nuclear parts of the system separately.

Within the Born-Oppenheimer approximation, the electronic subsystem is
studied with fixed nuclei, i.e. the positions of nuclei are treated as constant
parameters in the electronic Hamiltonian

Ĥelectronic = −1
2
∑︂

i

∇2
i −

∑︂
i,k

Zk

rik

+ 1
2
∑︂
i ̸=j

1
rij

+ 1
2
∑︂
k ̸=l

ZkZl

rkl

. (1.3)

For a given configuration, the nuclear-nuclear interaction remains constant
and thus does not alter the solution of the eigenfunction.

The total wave function can then be expressed as a product of nuclear and
electronic terms

Ψ(r,R) = Θnuclear (R) Φelectronic (r; R) (1.4)
where Φ (r;R) is the solution to the electronic Schrödinger equation

ĤelectronicΦ = EelectronicΦ, (1.5)

and Θ (R) to the corresponding nuclear.
The electronic wave function Φ describes the motion of electrons and their

rapid adaptation to any change in the nuclear position. Therefore, the eigenvalues
Eelectronic, called the adiabatic contribution of the electrons to the energy of the
system, depend on the nuclear coordinates R. This adiabatic energy acts as an
effective potential energy for nuclear motion. Minima of this potential correspond
to the equilibrium structures, whereas the saddle points describe transition states.
The potential energy surface (PES) captures the relationship between the energy
of a system and its geometry.

1.1 Ab initio methods
Ab initio electronic structure methods aim to calculate the many-electron function
as a solution to the non-relativistic electronic Schrödinger equation (in the Born-
Oppenheimer approximation). The many-electron function is generally a linear
combination of many simpler electron functions.

To evaluate these approximations, the exact, known solutions can be used as
a basis for the state space. This allows any approximate solution to be expressed
as a linear combination of an exact solution, ϕ = ∑︁

i ciψi, with ∑︁
i ci = 1. The

expectation value of Hamiltonian then is ⟨ϕ| Ĥ |ϕ⟩ = ∑︁
i c

2
iEi. Since the ground

state energy E0 is by definition the lowest eigenvalue of Ĥ, the expected value
must be greater or equal to it, and equality is only achieved when the trial wave
function is equal to the ground state.

The variational principle states that the exact ground state wave function
has the lowest possible energy and thus, any approximate solution yields higher
energy, i.e. ⟨Ψ0| Ĥ |Ψ0⟩ ≤ ⟨Ψ| Ĥ |Ψ⟩. This principle can be used to find the
ground state of a quantum system by minimizing the energy functional

E [Ψ] = ⟨Ψ| Ĥ |Ψ⟩
⟨Ψ|Ψ⟩ . (1.6)
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1.1.1 The Hartree-Fock model
The electronic Schrödinger equation can be solved exactly only for the hydrogen
atom and similar one-electron systems. The idea behind the Hartree-Fock method
is to write the many-body wave function as a product of single-particle spin
orbitals χ (x), where x describes both spin and spatial distribution of the particle.

Electrons interact via electron-electron repulsion, meaning the many-body
wave function must depend simultaneously on the coordinates of all electrons.
Such a many-body wave function can be expressed in terms of a Slater determi-
nant

Φ(x1,x2, . . . ,xn) = 1√
n!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
χ1 (x1) χ2 (x1) . . . χn (x1)
χ1 (x2) χ2 (x2) . . . χn (x2)

... ... . . . ...
χ1 (xn) χ2 (xn) . . . χn (xn)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ , (1.7)

which ensures that the Pauli exclusion principle is followed. The Slater determi-
nant has n electrons occupying n spin orbitals χi, χj, . . . , χk without specifying
which electron is in which orbital.

This trial wave function can then be optimized via the variational princi-
ple 1.6 with a normalization condition ⟨Φ|Φ⟩ = 1. The electronic Hamiltonian
1.3 can be written in terms of an isolated particle and two-electron interactions
⟨ij|ij⟩ = ∑︁

j ⟨ϕiϕj| 1
rij
|ϕiϕj⟩, which can be interpreted as an interaction between

the particle i and an effective field generated by an average position of other
particles. The exchange integral, ⟨ij|ij⟩, emerges as a result of spin statistics and
has no classical analogy.

The goal is to minimize

EHF [ϕi] =
∑︂

i

⟨i| ĥ |i⟩+ 1
2
∑︂
i,j

[⟨ij|ij⟩ − ⟨ij|ji⟩]−
∑︂
ij

εij (⟨ϕi|ϕj⟩ − δij) , (1.8)

where εij are the Lagrange multipliers, constraining the optimization for normal-
ized wave functions. It has the same effect as dividing the expectation values by
the norm of the wave function, see equation 1.6. The use of Lagrange multipliers
is usually preferred due to computational simplicity.

We can define the Fock operator for the energy terms in equation 1.8 as

⟨ϕi| F̂ |ϕk⟩ = ⟨i| ĥ |k⟩+ 1
2
∑︂

j

⟨ij|kj⟩ − ⟨ij|jk⟩ (1.9)

and use it to rewrite the functional in eq. 1.8 as F̂ ϕi = ∑︁
j εijϕj. Since the Slater

determinant is invariant to unitary transformation of orbitals, there always exists
a canonical solution, such that

F̂ ϕi = εiϕi (1.10)

The Hartree-Fock equations 1.8 are solved iteratively until a predefined condi-
tion is met. With a complete basis set, the best possible solution for the Hartree-
Fock energy can be obtained. This would be the case if the equations were to be
solved iteratively but analytically. However, we are still restricted by some com-
putational limits and thus need to use some well-behaved pre-defined functions
as a basis. We can express the unknown orbitals in this basis ψi = ∑︁

µ=1 cµiφµ.
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Substituting this expansion into eq. 1.10 and projecting the result onto the basis
vector ϕµ, we get the Roothaan equations∑︂

ν

Fµνcνi = εi

∑︂
ν

Sµνcνi. (1.11)

The closed-shell HF equations can be written in a more compact way by
introducing the diagonal matrix ε = diag{εi} and C matrix, which describes the
spacial orbitals ϕi

F C = SCε. (1.12)
S is called the overlap matrix and describes the non-orthogonality of the

chosen basis set. The matrix equation 1.12 is a generalized eigenvalue problem
(F depends on the orbital coefficients), and thus needs to be solved iteratively.

1.1.2 Post-Hartree-Fock methods
The Hartree-Fock method is unsuitable for systems with multiple electronic con-
figurations contributing significantly to the wave function. This is due to the
method’s assumption of a single determinant wave function, which fails to accu-
rately represent such systems.

Ab-initio electronic structure calculations are susceptible to various sources
of error. One such source arises from the inadequacy of the basis set. Another
source stems from inaccuracies in modelling electron correlation. To address this,
post-Hartree-Fock methods are employed to recover the correlation energy. The
correlation energy denotes the disparity between the system’s exact energy and
the energy obtained through the Hartree-Fock approximation

Ecorrection = Eexact − EHF. (1.13)

Perturbation Theory

Perturbation theory is a mathematical approach used in quantum mechanics to
approximate the solution of a complex problem by starting with the exact solution
of a simpler, related problem. We introduce an ordering parameter λ and a small
perturbation V̂ into the reference Hamiltonian Ĥ0

Ĥ = H0ˆ + λV̂ , (1.14)

with λ being later set to one. For simplicity, suppose the perturbation to be
time-independent and the wave function non-degenerate, thus we can consider
the known eigenfunctions of Ĥ0 to form a complete orthonormal basis.

We can expand the exact eigenvalues and eigenfunction as a power series in λ

Ei(λ) = E
(0)
i + λE

(1)
i + λ2E

(1)
i + . . . (1.15)

Φi(λ) = Φ(0)
i + λΦ(1)

i + λ2Φ(2)
i + . . . (1.16)

Substituting equations 1.15 and 1.16 into the stationary Schrödinger equation
1.1 with the perturbed Hamiltonian 1.14, and equating the coefficient λn yields
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the following set of equations

(n = 0) :
(︂
Ĥ0 − E(0)

i

)︂
Φ(0)

i = 0 (1.17)

(n = 1) :
(︂
Ĥ0 − E(0)

i

)︂
Φ(1)

i =
(︂
E

(1)
i − V̂

)︂
Φ(0)

i (1.18)

(n = 2) :
(︂
Ĥ0 − E(0)

i

)︂
Φ(2)

i =
(︂
E

(1)
i − V̂

)︂
Φ(1)

i + E
(2)
i Φ(0)

i (1.19)
...

(n = ℓ) :
(︂
Ĥ0 − E(0)

i

)︂
Φ(ℓ)

i =
(︂
E

(1)
i − V̂

)︂
Φ(ℓ−1)

i + E
(2)
i Φ(ℓ−2)

i + · · ·+ E
(ℓ)
i Φ(0)

i

(1.20)

We can choose the normalization of Φi to be orthonormal to the unperturbed
states, i.e.

⟨︂
Φ(0)

i

⃓⃓⃓
Φi

⟩︂
= 1. From equation 1.16 we then obtain the orthogonality

relations ⟨︂
Φ(0)

i

⃓⃓⃓
Φ(n)

i

⟩︂
= 0 for n = 1, 2, 3, . . . (1.21)

Projecting the equations 1.17 - 1.20 onto the unperturbed wave functions, we
obtain the n-th order energy corrections

E
(0)
i =

⟨︂
Φ(0)

i

⃓⃓⃓
Ĥ0

⃓⃓⃓
Φ(0)

i

⟩︂
(1.22)

E
(1)
i =

⟨︂
Φ(0)

i

⃓⃓⃓
V̂
⃓⃓⃓
Φ(0)

i

⟩︂
(1.23)

E
(2)
i =

⟨︂
Φ(0)

i

⃓⃓⃓
V̂
⃓⃓⃓
Φ(1)

i

⟩︂
(1.24)

...

Plugging equation 1.23 into 1.18 we obtain(︂
E

(0)
i − Ĥ0

)︂
Φ(1)

i =
(︂
V̂ − E(1)

i

)︂
Φ(0)

i . (1.25)

Using the fact that the zeroth-order wave functions are orthogonal, we can
project the relation 1.25 onto Φ(0)

j , plug the result into the expression for the sec-
ond order energy correction 1.24 to obtain the second-order energy contribution

E
(2)
i =

⟨︂
Φ(0)

i

⃓⃓⃓
V̂
⃓⃓⃓
Φ(1)

i

⟩︂
=
∑︂

j

⟨︂
Φ(0)

i

⃓⃓⃓
V̂
⃓⃓⃓
Φ(0)

j

⟩︂ ⟨︂
Φ(0)

j

⃓⃓⃓
Φ(1)

i

⟩︂
=
∑︂
i ̸=j

⃓⃓⃓⟨︂
Φ(0)

i

⃓⃓⃓
V̂
⃓⃓⃓
Φ(0)

j

⟩︂⃓⃓⃓2
E

(0)
i − E

(0)
j

.

(1.26)
Higher-order terms can be calculated analogously through an iterative process.

Møller-Plesset Perturbation Theory

Møller-Plesset perturbation theory (MP) is a post-Hartree-Fock ab initio method
that improves on the Hartree-Fock method by adding electron correlation ef-
fects via the Rayleigh-Schrödinger perturbation theory. The zeroth-order wave
function is an exact eigenfunction of the Fock operator, which serves as the unper-
turbed operator and electron correlation as perturbation. Since the Hartree-Fock
energy is not the eigenvalue of the Fock operator, it is suitable to define the un-
perturbed Hamiltonian as a shifted Fock operator Ĥ0 = F̂−⟨Φ0| Ĥ−F̂ |Φ0⟩. This
way the eigenfunctions stay the same, but eigenvalues give the correct energy.

The zeroth-order energy is the expectation of Ĥ with respect to the unper-
turbed state Φ0, i.e. the Hartree-Fock energy. First-order correction to energy
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is identically zero (by construction). The first meaningful energy correction is
given by the second-order perturbation. In order to obtain this correction for
a closed shell molecule, we need to write the formula 1.24 in a basis of doubly
excited Slater determinants. The Brillouin theorem states that for an optimized
Hartree-Fock wave function ψ0, the matrix element of the Hamiltonian between
the ground state and a single excited determinant must be zero. Therefore, the
singly-excited Slater determinants do not contribute.

E
(2)
0 =

∑︂
i,j>i

∑︂
a,b>a

⃓⃓⃓⟨︂
Φab

ij

⃓⃓⃓
Ĥ |Φ0⟩

⃓⃓⃓2
E(0) − Eab

ij

=
∑︂
i,j>i

∑︂
a,b>a

|⟨ij|ab⟩ − ⟨ij|ba⟩|2

εi + εj − εa − εb

. (1.27)

The second-order Møller-Plesset (MP2) energy is always lower than that of
Hartree-Fock due to the fact that virtual orbitals possess higher energy than
occupied ones, resulting in a negative contribution. However, the energy is not
an expectation value of the Hamiltonian, and as such, MP2 does not adhere to
the variational principle.

Explicitly correlated methods, such as F12, are employed to address the issue
of slow convergence of the wave function. It is based on the idea of including the
interelectronic distance r12, directly into the wave function, to more accurately
describe the correlation energy. [1]

1.2 Intermolecular interactions
In quantum mechanics, charged particles are not considered to be point-like or
rigid. Instead, atoms and molecules have an internal electronic structure that can
change in different environments. This leads to non-additive interatomic forces,
such as induction, dispersion, or repulsion. [Kaplan 2], [Stone 3]

The classification of intermolecular interactions is dependent on the distance
between the interacting entities. It is important to note that all types of in-
termolecular interactions share the same underlying physical nature, which is
electromagnetic. These interactions can be classified according to three ranges of
interatomic separation, as defined by a typical interatomic potential. The first
range encompasses short distances, where the potential exhibits a repulsive na-
ture and electronic exchange dominates due to the overlap of molecular electronic
shells. The second range includes intermediate distances, characterized by the
presence of a van der Waals minimum resulting from a balance between repulsive
and attractive forces. The third range encompasses large distances, where elec-
tronic exchange becomes negligible and intermolecular forces are predominantly
attractive.

The pairwise additivity, as seen in the Lennard-Jones potential, is only the
first approximation. The energy of an n-particle system can be expressed in terms
of a dimer, trimer, tetramer, etc. contributions

E = E1(n) + E2(n) + E3(n) + · · ·+ En(n). (1.28)

In many cases, this series converges rapidly and pairwise interactions are domi-
nant.
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1.2.1 Polarization
Polarization forces arise when the electron cloud of one atom is distorted by the
electric field of another atom, leading to an attractive force between the two
atoms. They can be derived from the Rayleigh-Schrödinger perturbation theory.
Take the isolated systems as an unperturbed Hamiltonian Ĥ0 = ĤA + ĤB and
the perturbation as an electrostatic interaction between the particles of both of
them

V̂ = 1
4πϵ0

ρ̂A(ra)ρ̂B(rb)
|ra − rb|

d3ra d3rb , (1.29)

with a being a charged element of atom A at position ra and b in atom B.
ρ̂X(r) = ∑︁

x∈X Zxδ(r − rx) is the charge density operator, which describes the
electrostatic cloud created by the molecule.

It is suitable to express the complete electrostatic interaction using the charge
density operator

V̂ =
∫︂
VB̂(r)ρ̂A(r) dΩ , where V̂ B(r) = 1

4πϵ0

∫︂ ρ̂B(r′)
|r− r′|

dΩ′ .

The unperturbed states are simple product functions ΦA
i ΦB

j . The zeroth-
order term is a sum of individual energies, first-order energy correction is just the
expectation value of the electrostatic interaction for the ground state. For closed-
shell molecules, the second-order of perturbation theory, equation 1.26, describes
the polarization interaction between two molecules in their ground states

E
(2)
polarization = −

∑︂
i,j

⃓⃓⃓⟨︂
ΦA

i ΦB
j

⃓⃓⃓
V̂
⃓⃓⃓
ΦA

0 ΦB
0

⟩︂⃓⃓⃓2
(EA

i − EA
0 ) +

(︂
EB

j − EB
0

)︂ = E
(2)
induction + E

(2)
dispersion (1.30)

The quantum numbers i and j do not simultaneously take the values correspond-
ing to the ground states of the isolated molecules. The summation over i and j
may be divided into two parts, induction and dispersion. Components within the
summation can be analysed individually wherein the molecule A is in an excited
state while molecule B remains in its ground state, the components where the
molecule B is in an excited state while molecule A remains in its ground state,
and the components where both molecules are concurrently in an excited state.

Induction

If the molecules are apart far enough and the overlap between their wave func-
tions can be ignored, the theory becomes relatively simple. For neutral atoms in
the spherical-symmetry ground states, like noble gases, the induction forces are
equal to zero if the overlap of the charge distribution of interacting atoms can
be neglected. In the presence of the overlap, the induction forces are defined by
equation 1.30 as

E
(2)
induction = −

∑︂
j ̸=0

⃓⃓⃓⟨︂
ΦA

0 ΦB
j

⃓⃓⃓
V̂
⃓⃓⃓
ΦA

0 ΦB
0

⟩︂⃓⃓⃓2
EB

j − EB
0

−
∑︂
i ̸=0

⃓⃓⃓⟨︂
ΦA

i ΦB
0

⃓⃓⃓
V̂
⃓⃓⃓
ΦA

0 ΦB
0

⟩︂⃓⃓⃓2
EA

i − EA
0

(1.31)

The first term describes the electrostatic interaction of the molecule A in its
ground state with the induced electron density distribution of the molecule B
and vice versa.
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When the distance between molecules is significant, the induction energy can
be effectively approximated by employing a multipole series. This approach in-
volves expanding the potential energy V̂ in a series of powers of 1/r. The leading
term in this expansion corresponds to the interaction of an induced dipole with
the field of the inducing molecule. The distance dependence is given by the square
of the corresponding dipole-multipole interaction. For example, the first term for
an interaction between a polar and a neutral molecule has the 1/r6 dependence.

Dispersion

The dispersion energy is a quantum-mechanical phenomenon that arises from
s fluctuations in electronic density. These fluctuations cause an instantaneous
redistribution of electron density, leading to the creation of a non-zero mean
dipole moment even in cases where the permanent dipole moment is zero, such as
in nonpolar molecules and noble gas atoms. This instantaneous dipole moment
can induce dipoles and higher-order moments in neighbouring molecules.

E
(2)
dispersion = −

∑︂
i,j ̸=0

⃓⃓⃓⟨︂
ΦA

i ΦB
j

⃓⃓⃓
V̂
⃓⃓⃓
ΦA

0 ΦB
0

⟩︂⃓⃓⃓2
(EA

i − EA
0 ) +

(︂
EB

j − EB
0

)︂ . (1.32)

This expression, which was first studied by Heitler and London [4], shows that
the first term in the orientation-averaged dispersion energy is directly propor-
tional to r−6. The dispersion energy is commonly represented using a multipole
expansion series

E
(2)
dispersion = −

∑︂
n=6

cn

rn
. (1.33)

Dispersion forces are typically the dominant type of van der Waals forces
between atoms and molecules. For example, in the case of a noble gas dimer such
as Ne-Ne, the dispersion force is the only contributor to the interaction energy,
meaning that the total interaction energy is equal to the dispersion energy. They
are attractive for molecules in ground states.

Third-order perturbation correction to the dispersion energy was studied by
Axilrod and Teller [5]

E
(3)
dispersion(ijk) = E0

1 + 3 cos γi cos γj cos γk

r3
ijr

3
ikr

3
jk

, (1.34)

where rij is the distance between atoms i and j, while γij represents the angle
formed by the vectors rij and rik. The sign of the three-body interaction is given
by the geometrical factor. For an equilateral triangle configuration leads this
correction to repulsion, while for a linear molecule to attraction.

For an accurate description of short-range forces, it is necessary to damp
the dispersion energy at internuclear distances where significant charge overlap
occurs. This is required to account for the effects of charge penetration and
exchange repulsion, which become increasingly important at shorter distances.
To achieve this, damping functions such as

fn(r; ℓ, k) =

⎧⎪⎨⎪⎩exp
{︃
−ℓ

(︂
k
r
− 1

)︂2
}︃
, r < k,

1, r ≥ k
(1.35)
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are employed. These damping functions tend to 1 as r →∞, and to zero as r → 0.
Each damping function fn(r) must suppress the corresponding r−n singularity.

1.2.2 Repulsion
The repulsive forces present in a system have two primary sources. The first
originates from the interaction between electrons, while the second arises due to
the Pauli exclusion principle.

Interaction between molecules at long range can be suitably expressed us-
ing a multipole expansion in 1/r, where r represents the distance between the
molecules. This approach offers a clear and comprehensible framework for ana-
lyzing and manipulating long-range interactions.

However, at short range, the description of the interaction becomes consider-
ably more intricate. This complexity arises due to the interplay of overlapping
electron densities and the effects of electron exchange. The exchange energy is a
consequence of the Pauli exclusion principle, which states that no two fermions
can occupy the same quantum state. As we have seen before, the many-body
wave function must be antisymmetric with respect to permutations of electrons.
Consider two atoms A and B, being in the ground state with wave functions
ΦA

0 and ΦB
0 . The wave functions are eigenfunctions of the isolated Hamiltonian

for the corresponding atom, hence they both satisfy the antisymmetric princi-
ple. However, for the composed system, the total wave function ΦA

0 ΦB
0 must

be antisymmetric with respect to all permutations of electrons, that is, also be-
tween atoms. This condition can be fulfilled using the antisymmetrizing operator
Â = 1

N !
∑︁

P ∈SN
(−1)πP̂

ΦAB
0 = ÂΦA

0 ΦB
0 = NAB

∑︂
P ∈SN

(−1)πP̂ΦA
0 ΦB

0 , (1.36)

where P̂ is an operator permuting electrons between molecules, π is parity of the
permutation and NAB is a normalization factor.

The interaction energy in the first-order of perturbation theory is then

E
(1)
interaction =

⟨︂
ΦAB

0

⃓⃓⃓
V̂
⃓⃓⃓
ΦAB

0

⟩︂
= NA

AB

⎡⎣⟨︂ΦA
0 ΦB

0

⃓⃓⃓
V̂
⃓⃓⃓
ΦA

0 ΦB
0

⟩︂
+
⟨︂
ΦA

0 ΦB
0

⃓⃓⃓
V̂
⃓⃓⃓ ∑︂

P ̸=1
(−1)π P̂ΦA

0 ΦB
0

⟩︂⎤⎦ ,
(1.37)

The first term in brackets represents the electrostatic interaction, while the sec-
ond term corresponds to the exchange energy. Böhm and Ahlrichs [6] found that
the exchange energy for two many-electron atoms with closed shells can be ap-
proximated using a simple exponential function of the form A exp(−αr). This
implies that as the distance between the two atoms increases, the exchange en-
ergy approaches zero exponentially. However, at short distances, the exchange
force is the dominant interaction. It is positive for interacting systems with closed
electronic shells, such as noble gas atoms.

In the context of second-order perturbation theory, it is not possible to sepa-
rate the contributions of exchange and polarization energies. Standard perturba-
tion theory becomes incorrect, since the zeroth-order functions are not eigenfunc-
tions of the total unperturbed Hamiltonian Ĥ0 = ĤA + ĤB, only the first-order
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correction is valid. In the case of closed-shell systems, the impact of exchange con-
tributions to the dispersion energy within the second-order perturbation theory
is rather negligible.

In the context of interactions between neutral, spherical atoms, the induction
component does not contribute to the total energy of the system. The primary
non-additive effects are attributed to many-body repulsion and dispersion terms.

1.3 Model potentials
Molecular dynamics and Monte Carlo calculations require a description of the
potential energy at arbitrary configurations. Ideally, such a potential surface
would respect all the physical constraints, such as differentiability. These po-
tential surfaces can be deduced from experimental data or electronic structure
calculations. Nonetheless, procuring precise data is resource-intensive and often
restricted to a finite set of geometries. In applications where the potential energy
must be evaluated at numerous configurations, an efficient interpolation method
is essential.

One approach is to assume a physically-motivated functional form with a
small number of adjustable parameters. A well-chosen function may allow for
effective fits to small amounts of data, however, finding such a function requires
some intuition for all but the simplest systems. Such functions could also give
the model unrealistic properties. The accuracy of interpolation may not improve
by simply increasing the amount of data unless additional parameters are added
to increase the flexibility of the model.

Semi-empirical model potentials, such as the Lennard-Jones potential, are
widely used in computational chemistry due to their simplicity and computa-
tional efficiency. These potentials are approximate representations of the interac-
tions between atoms or molecules and provide a reasonable compromise between
accuracy and computational cost.

The Lennard-Jones potential is an interatomic pair potential describing elec-
tronically neutral atoms

VLennard-Jones(r) = 4ε
[︄(︃
σ

r

)︃12
−
(︃
σ

r

)︃6
]︄
, (1.38)

where r is the distance between the interacting particles, −ε is the minimum of
this potential and σ describes the position of the minimum rmin = 21/6σ.

The attractive term in the Lennard-Jones potential corresponds to the dipole-
dipole dispersion interaction, while the r12 term is chosen for computational sim-
plicity in molecular dynamics simulations. The repulsive term can be more ac-
curately represented by an exponential function, which has a better theoretical
justification

VBuckingham(r) = Aeαr − γ

r6 . (1.39)

The idea behind selecting the Buckingham-type potential to describe the two-
body interaction is well-founded for atoms with closed electron shells. In such
cases, these atoms lack multipole moments, leading to purely overlapped electro-
static and induction interactions, akin to the exchange case. Consequently, these
interactions exhibit a short-range nature, permitting their approximation by the
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same exponential function. Conversely, at considerable distances, where electron
function overlap between interacting atoms becomes negligible, the interaction
energy is primarily governed by dispersion forces.

The mentioned model potentials can capture only the pair interaction, how-
ever if we want to study more complicated structures, we need to include the
spatial resolution of the interacting atoms. In the third-order perturbation ap-
proximation, this can be represented by the Axilrod-Teller dispersion term 1.34
employing the inscribed angles.

The exchange part of the three-body potential can be expressed in terms of
symmetry adapted coordinates Q1, Q2 and Q3, which are the following linear
combinations of the internal distances,

Q1 =
√︄

1
3 (r1 + r2 + r3) , Q2 =

√︄
1
2 (r2 − r3) and Q3 =

√︄
1
6 (2r1 − r2 − r3) .

(1.40)
The potential must be symmetric to the exchange of the same type of atoms. This
is achieved by using only the totally symmetric combinations, i.e. Q1, Q2

2 + Q2
3

and Q3
3 − 3Q3Q

2
2. [7]

The analytic form of the three-body potential is taken as a sum of an exchange
term, expressed as a polynomial in Q coordinates multiplied by an exponentially
decaying function of Q1

V
(3)

exchange = {c0 + c1Q1 + c2Q
2
1 +

(︂
c3 + c4Q1 + c5Q

2
1

)︂ (︂
Q2

2 +Q2
3

)︂
+
(︂
c6 + c7Q1 + c8Q

2
1

)︂ (︂
Q3

3 − 3Q3Q
2
2

)︂
+
(︂
c9 + c10Q1 + c11Q

2
1

)︂ (︂
Q2

2 +Q2
3

)︂2

+
(︂
c12 + c13Q1 + c14Q

2
1

)︂ (︂
Q2

2 +Q2
3

)︂
×
(︂
Q3

3 − 3Q3Q
2
2

)︂
} exp{(−αQ1)}. (1.41)

The three-body model potential is then given as a sum of exchange and dis-
persion terms

E(3) = V
(3)

exchange + F (r1, r2, r3)V (3)
dispersion, (1.42)

where F (r1, r2, r3) is a product of three damping functions 1.35.
The polynomial representation quickly gets out of hand, posing a challenging

task in interpreting the coefficients. To account for higher-order contributions
or other physical properties, a more versatile functional approximator, such as a
neural network, may be employed.

The parameters of these model potentials are not representative of real many-
body interaction parameters. Instead, their values incorporate higher-order con-
tributions. Consequently, these parameters cannot be directly related to specific
physical properties.

Optimization

In order the model potentials describe the physical properties of the system with
good precision or be suitable to be used in molecular dynamics, they need to be
at least twice differentiable. Therefore, we can use optimization algorithms which
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use gradients or hessians. This is not strictly true, when optimizing the models,
we are differentiating the model with respect to its parameters. However, when
computing forces we are differentiating the model with respect to the inputs, or
more generally with respect to the Cartesian coordinates of atoms.

The analytic functional representation of the model potential is usually de-
termined by fitting to ab initio reference points on the potential energy surface.
The goodness of the fit is given by the loss function1 L, which characterizes the
deviation of the model potential from the ab initio data. The loss function is
typically chosen to be the norm in an appropriate function space. For example,
the mean squared error

LMSE
[︂
f̂ reference(x), fmodel(x; w)

]︂
= 1
n

n∑︂
i=1

(︂
f̂ reference(xi)− fmodel(xi; w)

)︂2
. (1.43)

The loss function can be thought of as a functional, depending on the input data,
model function and model parameters. For simplicity, we will denote only the
relevant parts of its argument.

For systems consisting of multiple atoms, the potential energy surface is a mul-
tidimensional surface with numerous local minima. Mathematically, this problem
can be reduced to minimizing a function of several variables with multiple min-
ima. It is not feasible to solve such a by examining all local minima, as their
number increases exponentially with the number of atoms.

Heuristic methods for finding the global minimum typically employ two funda-
mental strategies: an iterative improvement approach and a “divide-and-conquer”
strategy.

Genetic algorithms are inspired by the processes of natural selection from
nature or statistical physics. Initially, a predetermined number of parameters
within the search space is randomly selected. Each set of parameters is then
evaluated for its suitability as a solution according to the objective function.
Best-ranked sets are selected for breeding to produce a new population. The
algorithm is reiterated until a specified condition is met.

Descent direction search algorithms should reduce the objective function at
every step they take, that is, L [f(x; wn+1)] ≤ L [f(x; wn)]. To find a suitable
direction, they often utilize the gradient of the objective function.

Gradient-based algorithms cannot typically distinguish local and global min-
ima and so should be iterated over a range of initial conditions, be it random
values of model parameters or even slightly different functional representations
of the model potential.

The simplest of these algorithms is called the steepest descent, which optimizes
the objective function according to the following update rule

wn+1 = wn − γ∇wL(wn), (1.44)

where γ is called the learning rate and determines the step length in the direction
of the gradient. Sufficiently small choices of the learning rate allow the loss
function to converge to a local minimum. However, in flat regions, the algorithm
would take unnecessarily many steps in a similar direction. Conversely, if γ is

1Also called the cost function or objective function.
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chosen too large, the minimum may be overshot and algorithm become unstable,
either oscillating or even moving away from the minimum.

To prevent unwanted behaviour and speed up the optimization process, the
learning rate parameter can be set during every step of the optimization according
to the current curvature of the region. This method is called the line search
method [8], however, it is often sufficient to try out a small number of different
values, for example, from a geometric progression 10−4 ∼ 102.

Newton’s method chooses the step for the parameters in such a way as to
minimize a second-order Taylor expansion of the loss function

L[f̂(x), f(x; w + u)] ≈ L+∇wL(w)u + 1
2uT H(w)u, (1.45)

with H being the Hessian matrix of second derivatives of the loss function with
respect to the model parameters and u is the parameter update. Differentiating
this equation with respect to u, noting that the optimal set of parameters should
have the gradient equal to zero, we obtain 0 = ∇wL+H(w)uoptimal. Rearranging
the terms gives the update rule for Newton’s method

wn+1 = wn −
1

H(wn)∇wL(wn). (1.46)

Note that the update rule has no free parameter, the length of the step is given
by the Hessian. Newton’s method employs second-order information about the
objective function, i.e. the curvature. It can be geometrically interpreted as the
process of approximating the graph of the function by fitting a parabola with the
same slope and curvature as the graph at that point. In other words, it finds the
minimum of a parabola in just one step.

For the Hessian to be invertible, the loss function must be convex. This,
however, is often not the case for regions far from the optimum. One way to ensure
convergence is to approximate the Hessian with a suitable positive-definite matrix.
Quasi-Newton methods such as the Levenberg-Marquardt algorithm approximate
the Hessian with Jacobian, H ≈ JT J . To make sure the approximated Hessian
matrix is invertible, the Levenberg-Marquardt algorithm introduces a damping
parameter µ

H ≈ JT J + µI, (1.47)
with µ being large enough to make the matrix positive-definite.

Plugging the approximated Hessian into Newton’s update rule (eq. 1.46) we
get

wn+1 = wn −
1

JT J + µI
∇wL(wn). (1.48)

Levenberg-Marquardt algorithm is a combination of the steepest descent and
Newton’s algorithm. When the damping parameter is small, the equation 1.48
approaches the update rule for Newton’s algorithm. For large values of µ, the
Levenberg-Marquardt approaches the steepest descent, and the inverse of the
damping parameter can be interpreted as the learning rate γ = 1

µ
. During every

step of the optimization is the damping parameter µ selected using a line-search
method. [9]

Above in figure 1.1, we show a comparison between gradient descent and
Levenberg-Marquardt algorithms. The objective function was chosen as the
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Figure 1.1: LM green, GD red

Beale’s function for its shallow minima and steep maxima. The step-size for
gradient descent was chosen very small so as to compensate for the very steep
surface at the beginning. On the other hand, when the GD reached close to the
optimal value, the region was very shallow and the optimization method spent a
considerable number of steps in the same direction. LM took advantage of the
surface curvature, and it took him lower tens of steps, whereas for GD it took
him about 105 steps to reach the optimal value.

Gradient-based optimization algorithms converge typically faster than genetic
algorithms, however, they have one fatal flaw, they fail to optimize when the
gradient is zero, i.e. the update rule keeps the parameters unchanged. As we
have seen in the previous section, many parts of the model potentials would
return zero gradients, be it the cut-off function or the damping function. It is
often sufficient to fine-tune these hyperparameters using a simple grid search.
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Chapter 2

Neural Networks

A neural network is a type of machine learning algorithm that can be used to
fit non-linear functions. It consists of layers of interconnected nodes, where each
node performs a simple computation on its inputs and passes the result to the
next layer. The connections between the nodes have associated weights, which
are adjusted during training to minimize the error between the predicted and
actual outputs.

In terms of non-linear function fitting, a neural network can be thought of
as a universal function approximator [10]. Given a set of input-output pairs, the
neural network can learn to approximate the underlying function that maps the
inputs to the outputs. This is achieved by adjusting the weights of the connections
between the nodes in such a way that the error between the predicted and actual
outputs is minimized.
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Above is shown a typical fully-connected layer, that is, a layer in which all
neurons are connected with all neurons from the previous layer. The input into a
neuron is linearly scaled with its internal parameters w, and then an activation
function σ is applied. Mathematically, the computation of the whole layer can
be compressed into a simple matrix multiplication.
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2.1 Activation functions
The physical nature of the studied problem restrains the sample space of pos-
sible activation functions to those which are at least continuously differentiable.
However, infinitely differentiable activation functions allow us to obtain smooth
potential energy surfaces, force fields, and second derivatives which are required
for training with forces as well as the calculation of vibrational modes.

Examples of such functions are the Softplus activation function, hyperbolic
tangent tanh or Gaussian Error Linear Units GELU.
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Figure 2.1: Softplus, tanh and GELU activation functions and their gradients.

Despite being the preferred option, the Softplus function is not without its
limitations. As with any unbounded activation function, suffers from explod-
ing gradient while its gradient, the sigmoid, suffers from the vanishing gradient
problem. Although the issues mentioned are not significant for the shallow neu-
ral networks utilized in this work, they should be taken into consideration when
choosing an activation function.

The issue of exploding gradients arises due to the nature of unbounded func-
tions, such as Softplus, where large inputs result in even larger outputs. This can
pose problems with learning even for relatively shallow neural networks. This
issue can be partially dealt with by using advanced techniques such as batchnorm
layer directly after this activation function of gradient clipping.

Saturating activation functions, such as tanh, can suffer from the vanishing
gradient problem, where small gradients for large inputs hinder further training
of the neural network. Since the gradients control how much the network learns
during training, if the gradients are very small or zero, then little to no training
can take place, leading to poor predictive performance.

The selection of activation functions must be carefully considered to accurately
reflect the physical properties of the system being studied. For instance, in the
case of a simple Coulomb potential, ∝ 1/r, is convex on any sub-interval. This
raises the question of whether our model should also be represented by a convex
function.

In the plot below we compare training on a Coulomb potential for a shallow
neural network using tanh and Softplus as activation functions for hidden layers.
The Softplus function has been shown to achieve lower loss for energy predictions,
and its convexity allows for the prediction of forces over a larger out-of-sample
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Figure 2.2: Comparison of convexity between the model and the underlying phys-
ical system.

interval. While it may appear to be the ideal candidate, the difference in energy
loss compared to tanh is relatively small. It is the Hessian that highlights the
significant difference between them.

The scale of the output variable must match the range of the activation func-
tion in the output layer. Otherwise, the network is impossible to converge in this
region, similar to fitting nonzero energy outside the cutoff radius rC . Therefore,
in the last layer, we use a linear activation function and set the bias to represent
the one-body contribution to the energy for the studied element.

2.2 Optimization
Just as with any nonlinear continuous function, the parameters of a neural net-
work can be optimized by a gradient-based algorithm. Due to the high flexibility
of neural networks, it is recommended to use a network with a minimal number
of weighted connections between nodes to reduce the likelihood of overfitting,
which can occur when insufficient data is available for optimal weight adjust-
ment. The training time required for large neural networks can be considerable,
as the number of calculations performed during each weight update using the
Levenberg-Marquardt algorithm is proportional to the square of the number of
connection weights.

Typical choices for the optimization algorithm for shallow neural networks or
in general, models with a moderate number of parameters, are the Levenberg-
Marquardt algorithm or the extended Kalman filter. Both of these methods are
quasi-Netwon, meaning they scale quadratically with the number of parameters
and number of samples in the batch. Blank and Brown [11] proposed to screen
the sample space during the optimization process and avoid data containing re-
dundant information. Only the data points with a significant contribution to the
loss function are considered, effectively reducing the matrix size (see eq. 1.48).
Another possibility is to monitor the gradients, which are being accumulated into
the parameters during the backpropagation, and freeze the weights with a small
contribution to the overall variance.

From the ab initio methods, we can obtain not only the potential energy
surface but also the corresponding forces and since the model function is differ-
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entiable with respect to its inputs, we can train on both sets of data.
The individual forces can be obtained from the model output by differentiating

the output with respect to the atomic coordinates

F̂ = −∇xÊ = −
∑︂

i

∇xGi∇Gi
Ê, (2.1)

where G are the input functions. Gradients of the input functions can be cal-
culated before the training process and since during training this part of the
computational graph stays unchanged, we only need to differentiate the output
with respect to the input function.

The simultaneous training on both energies and forces has been shown to
improve the quality of the fit and also prevent the function from overfitting. We
can think of this as training on a dataset with implicit regularization. Below
we compare training on energies and forces with training on energies with L2

regularization technique for 50 random shallow neural networks.
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Figure 2.3: Comparison on using force as an implicit regularization technique
versus the standard L2.

When training using such an augmented dataset, it is important to bear in
mind, that there are significantly many more force components than energies.
This is due to the fact that we are usually interested in approximating the total
energy of a system, whereas the forces are counted per atom. Therefore, if we are
interested primarily in energy estimation, we need to penalize the force component
in the loss function

Ltotal = Lenergy + ρ

n
Lforce, (2.2)

where ρ is a scaling factor that dictates the relative significance of energy and
force errors. Pukrittayakamee [12] proposed the value of ρ as λ/η2, where λ is a
hyperparameter typically set to 104 and η is the ratio of the maximum absolute
value of force to the maximum absolute value of the potential energy.

The relative importance of force in the loss function can be small, however,
when optimizing a function with steep sections, the optimization process can be
led astray, especially in the first epochs of training. Even though the models are
asymptotically expected to reach the same optimum, it is better to introduce the
force incrementally. Below, we compare training on a fixed number of epochs
between constant ρ and linearly increasing importance.

Integrating a differential equation formally solves the problem up to a con-
stant. A model that learns only on forces can integrate the loss and match the
energy up to a constant.
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Figure 2.4: Comparison of constant and linear force importance ρ.

Overfitting can be mitigated via two approaches, either by using less complex
models with a reduced number of parameters or by increasing the size of the
dataset to decrease the probability of noise exhibiting a pattern.

Another form of regularization used to avoid overfitting is called Early Stop-
ping. It involves dividing the dataset into distinct training and testing subsets,
where the former is utilized for parameter optimization, and the latter serves as
an out-of-sample validation to assess overfitting. Early stopping terminates the
training process when the validation error begins to increase, ensuring avoidance
of fitting sample-specific features in the data. [13]

2.3 Fingerprints
If Cartesian coordinates were to be fed into a neural network, the model would
not only need to learn the translational and rotational symmetries but also the
quantum invariance of identical particles. It is preferable to preprocess the input
data in such a way as to incorporate these symmetries into the inputs and the
model itself, and this way can the model focus on learning the desired yet unknown
physical properties.

As we have seen in the section about empirical potentials, two and three-body
terms can be effectively represented using the relative interatomic distances and
inscribed angles. The three-dimensional structure of an atomic cluster can thus
be represented in terms of these values.

2.3.1 Cut-off functions
A cut-off function fc(r; rc) is employed to define only the energetically relevant
regions close to the central atom.

The choice of the cut-off radius rc is important because it can affect the accu-
racy of the fit, since it determines how many neighbouring atoms are considered
when describing the environment of a central atom. If the cut-off radius is too
small, important features may be missed, while a large cut-off radius increases the
computational cost of the descriptor as more neighbouring atoms are included in
the calculation. A good compromise between accuracy and computational cost
is always system-dependent, and different values should be tested to achieve sat-
isfying results.
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The cut-off function must be differentiable and decay smoothly to zero in
value, slope, and if possible, even higher derivatives at the cut-off radius. This is
required to avoid discontinuities in the descriptor values and its derivatives, and
consequently in the energy and its gradients, if atoms leave or enter the cut-off
spheres in molecular dynamics simulations. [14]

Common choices for the cut-off functions are the cosine cut-off function

fc(rij) =
⎧⎨⎩

1
2

[︂
cos

(︂
π rij

rc

)︂
+ 1

]︂
, rij ≤ rc

0, rij > rc

(2.3)

A well-known problem of this cut-off function is that its second derivative has
a discontinuity at the cut-off radius. If the cut-off chosen is sufficiently large, the
effect of this discontinuity becomes as small as needed.
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Figure 2.5: Cosine cut-off function for a selection of rC .

Another possible cut-off function that has continuous first and second deriva-
tives is the tanh cut-off function, defined as

fc(rij) =
⎧⎨⎩tanh3

(︂
1− rij

rc

)︂
rij ≤ rc

0 rij > rc

(2.4)

The advantage of this cut-off function is that its value as well as first and
second derivatives go to zero at the cut-off radius rc.

Another possible choice is the exponential cut-off function

fc(rij) =

⎧⎪⎪⎨⎪⎪⎩
exp

(︄
1− 1

1−( rij
rc

)2

)︄
rij ≤ rc

0 rij > rc

(2.5)

with continuous derivatives up to infinite order at the cut-off radius.
In all these cut-off functions it is also possible to replace the term rij

rC
by

x = rij−rci

rc−rci
with the inner cut-off rci

< rc such that

fc(rij) =

⎧⎪⎨⎪⎩
1 rij < rci

fc(x) rci
≤ rij ≤ rc

0 rij > rC

(2.6)
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The advantage of including an inner cut-off is the possibility of focusing the
numerical range of function values to the chemically meaningful range of inter-
atomic distances rij.

2.3.2 Radial symmetry functions
Radial symmetry functions are constructed as sums of two-body terms multiplied
by one or more cut-off functions to ensure that the total symmetry function decays
to zero in value and slope at the cut-off radius.

The G1 symmetry function is just a sum of the cut-off functions with respect
to all neighbouring atoms j

G1
i =

∑︂
j

fC(rij). (2.7)

The radial atomic environment can also be described in terms of Gaussian
functions for a central atom i

G2
i =

∑︂
j

exp
{︂
−η (rij − rS)2

}︂
· fC(rij). (2.8)

For η = 0 we get the G1
i . Recommended choices for parameters rS and η are

• rS = linspace(0, rC, n) and η =
(︂

2π
rS

)︂2

• rS = n
nm/n and η =

(︂
n

n(n−m)/n − n
n(n−m−1)/n

)︂2

rS = 1 rS = 0
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Figure 2.6: Polar plot of the G2 radial symmetry function.

2.3.3 Angular symmetry functions
As we have seen with the three-body correction term in 1.34, the spatial orienta-
tion of the neighbouring atoms can be captured using the cosine of an inscribed
angle. Angular symmetry functions are a sum of such cosine terms over all pairs
of neighbouring atoms.

In the function G4, the multiplication of three Gaussian functions ensures that
only triplets of atoms, for which all three interatomic distances are less than the
specified cut-off radius, are included in the summation
G4

i = 21−ζ
∑︂

j,k ̸=i

(1 + λ cos θijk)ζ ·exp
{︂
−η

(︂
r2

ij + r2
ik + r2

jk

)︂}︂
·fC(rij)·fC(rik)·fC(rjk).

(2.9)

23



The angular resolution of the function is determined by the parameter ζ.
Higher values of ζ result in a narrower range of non-zero symmetry function
values. As such, a set of angular functions with varying ζ values can be utilized to
obtain the distribution of angles centred at each reference atom. This is analogous
to the control of radial resolution in radial functions G2 through the parameter η.
Additionally, by appropriately selecting the values of η and rC , which control the
radial component, the angular distribution can be determined at various distances
from the central atom.

λ = +1 λ = −1

0.00
0.16
0.32
0.48
0.64
0.80
0.96
1.12
1.28
1.44

Figure 2.7: Angular symmetry function G4 around a central atom positioned at
origin and another atom at x = 1.

The range of values for individual symmetry functions used to character-
ize atomic environments can vary significantly. For numerical reasons, it is ad-
vantageous to precondition the range of values for each symmetry function as
Gk

i ← Gk
i − 1

N

∑︁N
j=1 G

k
j . A fundamental operation is to shift the mean value of

each symmetry function to zero. Centring the range of values around 0 is often
beneficial, as this corresponds to the centre of the nonlinear regions for most ac-
tivation functions. This can also be achieved by shifting the centre of mass of all
symmetry function values to zero.[15]

The relative importance of all symmetry functions can be balanced by rescal-
ing the range of values for each symmetry function to a predefined interval
[Smin, Smax], for example [−1, 1], by applying

Gscaled
i = Gi −Gmin

i

Gmax
i −Gmin

i

· (Smax − Smin) + Smin, (2.10)

where Gmin
i is the smallest value of the function Gi occurring in any atomic

environment and Gmax
i its largest value in the dataset.

Similar to training on forces, if the symmetry functions are scaled, their deriva-
tives have to be rescaled must also be rescaled to maintain the consistency of the
model’s gradient. For the min-max normalization, eq. 2.10, the derivatives need
to be divided by Gmax −Gmin. However, when using PyTorch, these transforma-
tions are a part of the computational graph and so are automatically accounted
for.

To accurately represent the atomic environment, a typical approach involves
the use of 50 symmetry functions, with hyperparameters selected to optimally
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capture the environment. The initial step in this process is to determine a com-
prehensive and manageable pool of candidate symmetry functions. [16]

For the additive part, two distinct sets of radial symmetry functions, G2, are
generated. The first set is centred on the reference atom i, with rS = 0, and the
width varies as

ηm =
(︄
nm/n

rC

)︄2

, (2.11)

where n represents the number of intervals in which the space is divided and
m = {0, 1, . . . , n}. The second set is centred along the path between the central
atom and its neighbours, at increasing distances rS,m = rC

nm/n , while the Gaussian
widths are chosen as

ηs,m = (rs,n−m − rs,n−m−1)2 (2.12)
to produce narrow Gaussians close to the central atom and wider ones as the
distance increases. This creates a finer grid near the central atom, where small
variations in position have a larger effect on the potential.

The angular symmetry functions are chosen analogously with values for η
selected according to equation 2.11, λ = ±1 and a few values of ζ chosen on a
logarithmic scale.

From such a set of symmetry functions, a smaller subset can be chosen using
the farthest point sampling technique. In this scheme, points are selected succes-
sively to maximize their Euclidean distance. After the first fingerprint is chosen
arbitrarily, each additional fingerprint is determined according to

k = argmax
(︃

min
j
|Xk −Xj|

)︃
, (2.13)

where j represents all previously chosen features. This process is repeated until
all features have been selected. The distance between two fingerprints is defined
as |f − g| = ∑︁

x|f(x)− g(x)|.
An alternative method to simplify the input space involves identifying and

removing symmetry functions that have minimal impact on training performance,
i.e. discarding all fingerprints with a range below a predefined threshold.
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Chapter 3

Results

3.1 Computational details

3.1.1 Molpro
The reference ab initio data were constructed using Molpro [17].

Firstly, we compared the convergence behaviour for Hartree-Fock interaction
energy, MP2 and MP2 with F12 correction, using several basis sets, namely
AVDZ, AVTZ, AVQZ and AV5Z. We found the best convergence for the MP2-f12
explicitly correlated method using the Dunning correlation consistent (cc) basis
sets with added diffuse functions (aug), denoted aug-cc-pV5Z.

The energy threshold was set to energy = 1.d-16 threshold for forces and
gradient = 1.d-10. The neglection of two-electron integrals was set to twoint
= 1.d-19.

Interaction energies for both dimers and trimers were computed using the
counterpoise correction.

3.1.2 PyTorch
The models used were constructed using the PyTorch machine-learning library.
In particular, we have taken great use of their automatic differentiation module
torch.autograd and the computational graph allowing us to treat all the trained
models the same, regardless of whether it was a simple empirical potential, a
fully-connected neural network or even something more complicated.

These models were then trained using the Levenberg-Marquardt algorithm,
the implementation of which is in the appendix A.1.

3.2 Dimer
For argon dimer we compared three model potentials, namely, empirical, Buck-
ingham type potential with the functional representation

Vempirical = Ae−αr−βr2 − γ

r6 (3.1)

26



and as we were not sure about the contribution of the repulsion term, we chose
the parameter A to be represented by a neural network

Vcombined = ANNe
−αr−βr2 − γ

r6 . (3.2)

Lastly, we consider a full neural network potential with no “physically meaning-
ful” terms.

Below, in figure 3.1, we show the fit of these potentials on an argon dimer
reference data.
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Figure 3.1: Argon dimer pair interaction potential.

All models we capable of minimizing the loss below a predefined threshold of
10−10.

3.3 Trimer
For three-body interactions, we compared the empirical potential defined in equa-
tion 1.42 with a pure neural network potential for argon and helium. Around 50
data points were obtained from the costly ab initio software for C2v geometry,
that is, isosceles triangles with interatomic distances r1 and r2 = r3.

The empirical potential was able to capture the reference data rather well,
however, the neural network potential completely failed. It was unable to capture
even the simplest physical features, e.g. qualitatively correct behaviour on the
diagonal r1 = r2 = r3.

To ensure the implementation of the neural network potential is correct, we
fit the model on an artificial dataset obtained from the Lennard-Jones potential
1.38 for the C2v geometries. To obtain a relatively small error, we had to train
the model on a considerably greater number of reference data points, that is 103.
The results of this fit, for equilateral triangles r1 = r2 = r3 are shown in figure
3.4.
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Figure 3.2: Potential energy surface for the C2s configurations of helium trimer.
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Figure 3.3: Potential energy surface for the C2s configurations of argon trimer.
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Conclusion

We have analysed the most basic of systems, dimer, and trimer of two noble
gasses. From the quantum chemistry software, we obtained reference data on the
potential energy surface and corresponding forces. We optimized several model
potentials on these potential energy surfaces and compared the obtained precision.

The semi-empirical model potentials were able to capture all physical features
of the dataset and minimize the loss below a predefined threshold. This was to be
expected, since their functional form entails these features, only the parameters
need to be set for the specific medium.

We found models comprised of the neural networks to be unable to learn on
such small datasets. In case of the argon dimer, the number of reference data
points was smaller than the number of parameters of the neural network. Later we
fit the neural network on an artificial dataset obtained for the C2v geometries from
the analytical functional form of the Lennard-Jones potential and showed, that
this method is indeed capable of capturing important physical features, however,
necessitates a significantly larger dataset.
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and Michele Ceriotti. Automatic selection of atomic fingerprints and refer-
ence configurations for machine-learning potentials. 148(24):241730.

[17] Hans-Joachim Werner, Peter J. Knowles, Gerald Knizia, Freder-
ick R. Manby, and Martin Schütz. Molpro: a general-purpose
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Appendix A

Attachments

A.1 Implementation of Levenberg-Marquardt al-
gorithm

import torch

class LevenbergMarquardt(torch.optim.Optimizer):
"""
PyTorch implementation of the Levenberg-Marquardt optimization algorithm.
This optimizer is designed for a single parameter group.

Parameters:
params (iterable): Iterable of parameters to optimize.
mu (float, optional): Initial value of the damping factor (default=10**3).
mu_factor (float, optional): Factor by which mu is multiplied during line search (default=5).
m_max (int, optional): Maximum number of line search iterations (default=10).

Example usage:
optimizer = LevenbergMarquardt(model.parameters(), mu=100, mu_factor=10, m_max=5)
for epoch in range(num_epochs):

def closure():
optimizer.zero_grad()
outputs = model(inputs)
errors = loss_function(outputs, targets)
errors.backward()
return errors

loss = optimizer.step(closure)
"""

def __init__(self, params, mu=10**3, mu_factor=5, m_max=10):
"""
Initializes Levenberg-Marquardt optimizer with the specified parameters.
"""
self.mu = mu
self.mu_factor = mu_factor
self.m_max = m_max

defaults = dict(mu=self.mu, mu_factor=self.mu_factor, m_max=self.m_max)
super(LevenbergMarquardt, self).__init__(params, defaults)

self.numel = sum([
param.numel() for group in self.param_groups
for param in group['params'] if param.requires_grad

])

@torch.compile
def jacobian(self, targets):

"""
Compute the Jacobian matrix for the given targets.

Parameters:

33



targets (torch.Tensor): Target tensor for which Jacobian is computed.

Returns:
torch.Tensor: Computed Jacobian matrix.

"""
J = torch.empty(targets.shape[0], self.numel)

for i in range(targets.shape[0]):
J[i] = torch.hstack([

d.view(1, -1) if d is not None else torch.tensor([0.]).view(1, -1)
for d in grad(targets[i], self.param_groups[0]['params'],
create_graph=True, retain_graph=True, allow_unused=True)

])

return J

@torch.no_grad()
def loss(self, errors):

"""
Compute the loss using the Mean Squared Error (MSE) criterion.

Parameters:
errors (torch.Tensor): Errors tensor.

Returns:
torch.Tensor: Computed loss.

"""
return errors.T @ errors

@torch.no_grad()
def update_weights(self, update):

"""
Update the model weights using the computed update.

Parameters:
update (torch.Tensor): Computed update for the model weights.

"""
update = update.view(-1)

offset = 0
for group in self.param_groups:

for param in group['params']:
numel = param.numel()
param.add_(update[offset: offset + numel].view_as(param))
offset += numel

def step(self, closure=None):
"""
Performs a single optimization step using the Levenberg-Marquardt algorithm.

Parameters:
closure (callable, optional): A closure that reevaluates the model and returns the loss.

Returns:
float: Computed loss value after the optimization step.

"""
assert len(self.param_groups) == 1

# Make sure the closure is always called with grad enabled
closure = torch.enable_grad()(closure)

# Compute errors from closure
errors = closure()

# Compute Jacobian matrix
J = self.jacobian(errors)

# Compute updates using the Levenberg-Marquardt formula
updates = -torch.inverse(

J.T @ J + self.mu * torch.eye(self.numel)
) @ J.T @ errors

# Update weights with the computed updates
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self.update_weights(updates)

# Line search for mu
for m in range(self.m_max):

# Check if loss has decreased
if self.loss(closure()) < self.loss(errors):

break

# Restore weights
self.update_weights(update=-updates)

self.mu *= self.mu_factor

# Compute new updates
updates = -torch.inverse(

J.T @ J + self.mu * torch.eye(self.numel)
) @ J.T @ errors

# Update weights
self.update_weights(update=+updates)

if m < self.m_max:
self.mu /= self.mu_factor

# Return the computed loss after the optimization step
return self.loss(closure()).item()
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