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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a pro-
gressive decline in cognitive function, memory loss, and behavioral changes. As
the most prevalent form of dementia, AD affects over six million adults above 65
years old in the United States alone, and it is anticipated that this number will
rise to nearly fourteen million by 2060 [1].

The immense burden of AD extends beyond the affected individuals them-
selves by impacting their caregivers and placing a significant financial strain on
healthcare systems. The average lifetime cost of care for a patient with dementia
was estimated in 2022 at 392,874 US dollars [2]. The development and test-
ing of new drugs to combat AD incur substantial costs, making it imperative to
deepen our understanding of the disease’s underlying mechanisms and identify
novel therapeutic strategies [2].

Among the various factors contributing to AD, one of the most influential
genetic risk factors is the presence of the APOE4 variant of the polymorphic
apolipoprotein E (APOE) [3]. Extensive research has been conducted on APOE,
shedding light on its structure and function in recent years. Interestingely,
APOE4 differs from the more common, neutral variant called APOE3 by just
a single-point mutation. However, despite significant progress, we still lack a
comprehensive understanding of how such a small change can increase the risk of
this debilitating disease.

The APOE protein is contains flexible regions that significantly contribute
to its functional properties and determine its interactions with other molecules.
Due to its dynamic nature, studying APOE requires a comprehensive analysis of
temporal data describing it. This task poses a challenge as it involves captur-
ing the complex and intricate movements and conformational changes that occur
within the protein. Gaining a deeper understanding of APOE’s dynamic behav-
ior is essential for unraveling its biological mechanisms and exploring potential
therapeutic interventions.

This master’s thesis employs the VAMPnet-based [4] neural network archi-
tecture CoVAMPnet [5] to investigate the dynamics of APOE, focusing on its
association with the pathogenesis of Alzheimer’s disease. Our research provides
novel insights into the conformational dynamics of APOE and serves as a basis for
investigating new ideas that may offer a deeper understanding of the involvement
of APOE in the development and progression of Alzheimer’s disease.
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1. Background

1.1 Proteins and their structure
Proteins are vital macromolecules that play a central role in the functioning
of living organisms. They are involved in a wide range of biological processes,
including catalyzing chemical reactions, providing structural support, facilitating
cellular communication, and serving as transporters and regulators [6].

The function of a protein is determined by its structure, i.e. the three-
dimensional arrangement of its atoms. Proteins are composed of long chains
of amino acids, that fold into specific shapes. There are 20 distinct types of
amino acids that can be present in these chains. These individual amino acids
are referred to as residues. The primary structure of a protein is the linear se-
quence of amino acids, while the secondary structure refers to local patterns such
as alpha helices (see Fig. 1.1) and beta sheets. The tertiary structure is the
overall three-dimensional arrangement of the protein. It is primarily dictated by
the interactions between different amino acids. In some cases, proteins can have
multiple chains, leading to a quaternary structure.

Proteins are often composed of domains, which can be identified using various
methods. Sequence-based methods involve analyzing the amino acid sequence to
detect conserved motifs and patterns. Structure-based methods rely on the three-
dimensional structure of the protein obtained through X-ray crystallography, nu-
clear magnetic resonance (NMR), or cryogenic electron microscopy (cryo-EM).
Hybrid methods integrate sequence-based and structure-based information, com-
bining sequence similarity searches with structural data. Some protein domains
can be also defined based on functional properties observed by other kinds of
analysis [7].

However, domain identification can be challenging for proteins with complex
structure or dynamic behavior. To overcome these challenges, a combination of
methods – including experimental data, computational predictions, and expert
knowledge – is often required to identify the protein domains accurately. More-
over, the precise boundary between domains is often blurry, and the ultimate
decision may be based on an expert’s opinion [7].

In this work, the main focus will be on the full shape of the protein, i.e., its
tertiary structure, but most of the changes will be related to changes on the level
of secondary structures, specifically the alpha helices.

The alpha helix (see Fig. 1.1) is a secondary structure commonly found in
proteins, characterized by a right-handed helical arrangement of amino acids.
Within the alpha helix, each amino acid residue forms hydrogen bonds with
its neighboring residues, creating a helical backbone. Specifically, the carbonyl
oxygen of one residue forms a hydrogen bond with the amide hydrogen of the
fourth residue downstream. This pattern repeats, resulting in a stable and tightly
packed structure. The helix is further stabilized by van der Waals interactions
between the side chains of adjacent residues, contributing to the overall stability
and integrity of the alpha helical conformation [8]. The alpha helix plays a crucial
role in maintaining the three-dimensional structure of proteins and is involved in
diverse biological functions, including protein-protein interactions, membrane-
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spanning regions, and DNA binding motifs.

(a) Cartoon view.

(b) Atomic view.

Figure 1.1: Visualization of the helical structure in proteins. Hydrogen bonds stabi-
lizing the helical structure are shown in red.

The Define Secondary Structure of Proteins (DSSP) algorithm [9] is a widely
used computational tool for the identification of secondary structures in proteins
from their atomic coordinates. DSSP assigns to each residue a secondary struc-
ture element, e.g., alpha helix, beta sheet, or coil, based on hydrogen bonding
patterns and geometric criteria. In this thesis, most of the observed results con-
cern changes of local helical structure of the protein, so DSSP turned out to be
an important tool in our analyses.

1.2 Protein dynamics and function
Protein structure plays a crucial role in determining the protein function. The
three-dimensional arrangement of amino acids in a protein dictates its ability to
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interact with other molecules and perform specific biological tasks. Equally im-
portant is the protein dynamics, which refers to the flexibility and motion within
protein structures. The protein dynamics allows for conformational changes nec-
essary for binding, catalysis, and regulation, which enable proteins to adapt and
function in response to their environment. Understanding protein dynamics is
essential for unraveling the full spectrum of protein functionality and designing
effective therapeutic interventions [10].

Intrinsically disordered proteins (IDPs) are a class of proteins that lack a
clearly defined structure in at least one of their domains. A full understanding of
their functionality is usually impossible without a thorough investigation of their
dynamics and flexibility by experimental and computational methods.

Let us consider the tau protein as an example of an IDP. Unbound, the tau
protein lacks a stable 3D structure, embodying remarkable flexibility. However,
its shape becomes fixed upon binding to nerve cell microtubules, stabilizing them
in the process. In the context of Alzheimer’s disease, the tau protein behavior
becomes consequential as anomalous alterations of its structure lead to the protein
aggregating into tangles, a hallmark of the disease [11].

The importance of analyzing the properties of IDPs was highlighted in [12].
The authors make a strong case that understanding the dynamic variety of shapes
these proteins can adopt is as vital as comprehending the static 3D structure of
stable biomolecules. The paper showcases 17 Nobel Prize discoveries where IDPs
played a significant role [12].

1.3 Apolipoprotein E and Alzheimer’s disease
Apolipoprotein E (APOE) is a protein that plays a critical role in lipid metabolism
and transport in the body. It is primarily produced by the liver and by astro-
cyte cells in the brain. APOE is involved in the regulation of cholesterol and
triglyceride levels by interacting with lipoprotein particles, which are responsible
for transporting fats in the bloodstream [13].

The APOE is also an IDP. It consists of a single chain with 299 residues.
On a high level, we can identify at least four distinct domains: the N-terminus
(residues 1-21), the 4-helix bundle (residues 24-161), the hinge region (residues
170-199), and the C-domain (residues 210-299) (see Fig. 1.2).

A dominant dynamical phenomenon observed in APOE is the unfolding of
the C-domain (see Fig. 1.2). The C-domain is able to bind to several kinds of
lipids, which would be impossible without its dynamical adaptability [14].
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(a) Folded C-domain.
(b) Intermediate position of the C-
domain.

(c) Unfolded C-domain.

Figure 1.2: Several conformations of APOE3 showcasing the high flexibility of the
C-domain (purple). Colors: light brown – N-terminus, dark green – 4-helix bundle,
dark red – hinge region, purple – C-domain.

In humans, the APOE gene exhibits three predominant alleles: E2 (APOE2),
E3 (APOE3), and E4 (APOE4). These alleles are associated with varying lev-
els of Alzheimer’s disease (AD) risk. APOE4, in particular, represents a major
genetic risk factor, with the risk increasing up to 12-fold in individuals who are
homozygous for this allele [3]. On the other hand, APOE2 reduces the risk of
AD by nearly half and is linked to increased longevity [3].

In this thesis, we primarily examine the differences between APOE3 and
APOE4. It is notable that these two variants differ merely by a single-point
mutation. Specifically, the 112th residue contains cysteine in APOE3, but argi-
nine in APOE4 (see Fig. 1.3).
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(a) Location of the mutated residue 112 (bright red).

(b) Cysteine in position 112 in APOE3. (c) Arginine in position 112 in APOE4.

Figure 1.3: Location of C112R mutation. Notice the difference in size between cys-
teine and arginine. Colors: light brown – N-terminus, dark green – 4-helix bundle, dark
red – hinge region, purple – C-domain.

Numerous studies have focused on understanding the impact of the APOE4
mutation on the brain function, leading to several hypotheses. One hypothesis
suggests that the single mutation in APOE4 impairs its ability to effectively
clear the amyloid beta protein from the brain, leading to increased aggregation of
amyloid plaques, which are known to be neurotoxic [15]. However, it is important
to note that APOE4 also damages the brain through mechanisms unrelated to
the abeta protein. It was proven that APOE4 has detrimental influence on the
brain-blood barrier [16]. Other hypotheses include impaired lipid clearance [17],
interaction with the tau protein [18], or direct involvement through aggregation
processes [19].

Establishing the root cause of the neuropathological influence of APOE4 be-
comes increasingly intricate when we acknowledge that each of these hypotheses is
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backed by substantial evidence. It is important to recognize that these hypothe-
ses are not mutually exclusive, as the available evidence suggests that the link
between the types of APOE and the Alzheimer’s disease may consist of multiple
factors rather than a single isolated cause.

Given the multiple ways in which APOE4 can detrimentally affect the brain, it
is evident that further exploration of its properties is of great relevance to medical
research. This serves as the primary motivation for the work presented in this
thesis, as unraveling the intricate mechanisms of APOE and its variants holds
significant potential for advancing our understanding and developing targeted
therapeutic strategies.
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2. Related work
In this chapter, we give a concise summary of the methods used to gather data
describing kinetic aspects of proteins and some of the basic methods of its anal-
ysis. We also provide a mathematical background for the methods we employed
and the basic overview of the utilized neural network architecture. We also high-
light relevant studies and literature about APOE, especially those related to our
research hypothesis.

2.1 Molecular dynamics
Molecular dynamics (MD) is a discipline focused on simulating physical interac-
tions at the molecular level, aiming to achieve precise and accurate representations
of molecular systems. It can be classified into two main categories: quantum MD
and classical MD. While quantum MD provides a detailed description of molec-
ular behavior using quantum mechanics, it is often computationally intensive
and time-consuming. In contrast, classical MD utilizes high-resolution classical
physics simulations as an approximation to mimic quantum phenomena. This
approach enables faster computations while striving to capture the essential fea-
tures of molecular systems. By employing classical MD simulations, researchers
can strike a balance between computational efficiency and maintaining a reason-
able level of accuracy in modeling molecular dynamics [20].

MD simulations play a crucial role in the comprehensive understanding of
protein behavior, supplementing the static pictures derived from techniques like
crystallography or NMR. While these “static” methods provide invaluable insights
into a protein’s stable conformations, they cannot capture the dynamic nature of
proteins, i.e., their constant conformational fluctuations. These dynamic changes
are fundamental to a protein’s function, including how it interacts with other
molecules or responds to changes in its environment. MD simulations, by mod-
eling the motions of atoms over time, can fill this gap in our knowledge. They
allow us to observe transitions between different states, estimate their likelihood,
and, importantly, understand the mechanistic details of these processes. Thus,
MD simulations are an essential tool in the field of structural biology, providing
a dynamic view that complements the static snapshots of other techniques.

In this thesis we analyze data obtained by classical MD simulations. Classical
MD simulations are still computationally demanding, to the extent that dedicated
supercomputers are employed to tackle some simulations [21]. Big molecular sys-
tems pose significant challenges that make them especially expensive to simulate.
On top of that, the approximation of quantum effects by classical physics in-
troduces inherent limitations. MD also requires a setting of hyperparameters,
such as the simulation temperature, and naturally encounters the limitations of
numerical approximation. Many processes can be simulated only in radically
simplified versions. For example, in the case of bigger proteins, usually only a
single biomolecule surrounded by water molecules is simulated. Such simplifica-
tion does not account for the realistically complex environment in which multiple
biomolecules can interact with each other simultaneously.

An important concept in MD are the timescales of the observed processes. It
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is important to distinguish two factors that determine them. On one hand, some
processes can truly span over the course of milliseconds, which is very long in the
MD domain. This kind of “slow” dynamics is naturally difficult to observe in a
simulation due to the time required to span the whole trajectory of the process of
interest. An example of such a process is a slow binding of two big biomolecules.
If the target conformation is known, one possible solution is introduction of a
guiding force [22].

In this study, we have to deal with a different kind of “slow” dynamics, namely
the rareness of the transitions. While a transition between two conformations
may be quick, if its occurrence is rare, it will require proportionally more time to
observe in a simulation. Hence we also refer to such dynamics as slow.

If the transitions between main conformations are rare, we call such states
metastable. It means that a protein does not “easily” change its overall confor-
mation. Interestingly, such metastable states are a proxy for free energy minima.
The lower the free energy of a conformation, the more thermodynamically stable
it is, and the more likely the protein is to adopt it. On the other hand, a protein
becomes more unstable with higher free energy, so transitional states usually ex-
hibit high free energy. That is why conformational landscapes generated by MD
are often referred to as free energy landscapes, and rarely populated transitional
areas are referred to as high energy barriers [23].

Note that we usually do not know the overall conformational landscape of
the system of interest. Therefore, we would like to find out what are its main
metastable states and the transitions between them.

2.2 Time-lagged Independent Component
Analysis

Large amounts of MD simulations need to be generated to capture highly intricate
free energy landscapes of protein systems. The free energy landscape embodies
the dynamic nature of proteins and other biomolecules, depicting a multitude of
energy barriers that reflect the convoluted behavior of these molecules.

However, navigating this vast configuration space presents a formidable chal-
lenge due to its high-dimensionality, where the number of interacting atoms can
reach tens of thousands. This complexity necessitates the use of dimension re-
duction techniques designed to simplify the analysis of such complicated systems.

Time-lagged independent component analysis (tICA) [24] is a dimensionality
reduction method commonly used for MD data. tICA is appreciated for its ability
to account for the temporal dimensions of the data. It identifies the collective
degrees of freedom that exhibit the strongest time-correlations for a given lag-
time. This characteristic of tICA proves particularly beneficial when exploring
how a protein shifts between different conformations over time. In addition, tICA
serves as an effective preprocessing phase for representing the conformational
dynamics of macromolecules in the setting of a discrete Markov process.

In our current research, we selected tICA as a method of choice due to this
added temporal dimension it offers. By including time information from the input
trajectory, tICA offers a more comprehensive perspective of the protein dynamics.
This makes it particularly advantageous in the analysis of complex biomolecular
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systems.
To formally estabilish tICA, we will follow the notation used in [25].
Consider a d-dimensional trajectory x(t) ∈ Rd, t = 1, . . . , T with Cartesian

coordinates x1, . . . , xd, which are assumed to be mean-free, i.e., the time average
⟨x(t)⟩t is zero.

tICA determines those ”slowest” independent collective degrees of freedom
vk ∈ Rd, k = 1, . . . , d, onto which the projections yk(t) = vk · x(t) have the largest
time-autocorrelation

⟨yk(t)yk(t + τ)⟩t

⟨yk(t)2⟩t

where τ is a chosen lag time.
This can be equivalently formulated using the time-lagged covariance ma-

trix C(τ) = (⟨xi(t)xj(t + τ)t⟩)ij ∈ Rd×d. Each degree of freedom vk maximizes
vT

k C(τ)vk/vT
k C(0)vk under the constraint that it is orthogonal to all previous de-

grees of freedom. Hence, the vk are the solutions of the generalized eigenvalue
problem C(τ)vk = λkC(0)vk[25].

tICA aims to maximize the time-lagged autocorrelation along each compo-
nent. This unique feature makes tICA particularly suitable for analyzing MD
simulation data, where the slowest changing features (associated with high auto-
correlation) are often of the most interest.

In our work we used tICA to visualize the energy landscapes of systems of in-
terest in two dimensions. Interestingly, we observed well separated energy islands
in all of them. This suggests the existence of significant conformational jumps
between metastable conformations being a part of the analyzed data.

2.3 Markov state models
Markov state models (MSMs) are a powerful tool extensively employed in molec-
ular dynamics simulations to characterize and analyze the dynamic behavior of
molecular systems. Essentially, MSMs allow us to break down a complex molecu-
lar system into discrete states, and provide a way to study the transitions between
them.

An MSM provides a probabilistic view of molecular dynamics, which gives us
an understanding of how a molecule behaves over time. Each state in an MSM
represents a specific set of conformations of the molecule, and the transitions
between states depict the molecule’s movement between them. In the most com-
mon scenario we want to build a MSM which states correspond to metastable
conformations separated by high-energy barriers. This probabilistic model can
yield both static and dynamic information about the molecular system.

From a static perspective, the properties of each state can provide intriguing
insights into the structure and functionality of the molecular system. For in-
stance, a specific state could reveal a protein’s binding site, contributing valuable
information to drug design efforts.

From a dynamic perspective, MSMs can shed light on the relative prevalence of
certain states and the likelihood of transitions between the states. This knowledge
is essential to understanding functional processes, like a protein’s interaction with
a ligand or lipid, and can also provide clues about the system’s reaction to different
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conditions or perturbations. Uncovering unknown transitional states may inspire
development of new drugs addressing harmful transitions, for example.

However, constructing Markov state models can be quite challenging, partic-
ularly for systems characterized by high dimensionality and complex dynamics.
The traditional process of building an MSM involves a multi-step pipeline [26],
which includes :

• Choosing relevant features for analysis: This initial step involves deciding
which aspects or properties of the molecular system should be included in
the model. The choice of features can greatly impact the accuracy and
interpretability of the resulting MSM.

• Performing spatial clustering: Once the features have been selected, the
next step involves dividing the conformational space into discrete states
based on spatial properties. This task can be complex due to the high
dimensionality of the data and the need to ensure that each state is mean-
ingfully distinct from the others. This step results in a data clustered into
hundreds or thousands of microstates.

• Performing dynamical coarse-graining: The final step usually involves a pro-
cess known as Perron Cluster-Cluster Analysis (PCCA) [27], which groups
the microstates into macrostates based on their dynamical properties. This
reduces the complexity of the model while preserving the essential dynamics
of the system. The final number of states need to be carefully chosen to
strike the right balance between expressiveness and interpretability.

• On top of clustering itself the transition rates between macrostates are also
calculated.

2.3.1 Adaptive sampling
It is often impractical to observe rare transitions within a single simulation. To
address this issue, enhanced sampling methods [28] have emerged as a common
solution in protein dynamics research. These methods involve dynamically ad-
justing the simulation conditions to focus on the most relevant regions or events,
allowing for more efficient exploration of the conformational space and enabling
the observation of rare and important molecular events.

Adaptive sampling [29] aims to allocate computational resources more effi-
ciently by focusing on regions of the conformational space that are most relevant
to the scientific question at hand. It typically consists of several key stages. In
the adaptive sampling regime, the full simulation can be divided into epochs con-
sisting of several simulations. Usually simulations in one epoch are computed in
a parallel manner.

The simulations in the first epoch are initalized with the known 3D struc-
tures of proteins, for example coming from the NMR or crystallography data, or
some previously performed simulation. The simulations are run in the standard
manner. This generates an initial dataset covering a broad conformational space.

Based on some arbitrarily chosen sampling criterion single or several frames
are probabilistically chosen.A popular criterion is based on the traditional MSMs
(see Sec. 2.3): after each epoch MSM is constructed from all the data obtained
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so far. Then, based on properties of the constructed MSM frames are sampled.
Specifically, frames are more likely to be chosen if they belong to macrostates
that have been less explored [29].

Those frames are then used to initialize the next epoch of simulations. Due
to the deterministic nature of the classical physics, a randomizing factor must be
added, and it usually takes a form of randomly modifying the velocities of some
of the atoms in the chosen frame. Next frame is computed and serves as the
initial frame of the simulation. This process is iteratively performed with sam-
pling done on frames from all the previous epochs. Adaptive sampling allows for
a more targeted exploration while still allowing for the discovery of new regions.
By biasing the simulation towards these regions, we are able to observe rare tran-
sitions in the radically shorter total simulation time compared to running a single
simulation without adaptive sampling and often results in a more comprehensive
exploration of the conformational space.

In this approach the most important is the level of detail the MSMs are
built upon. In situations where we believe a very precise sampling is required
to reach some interesting transitions, all information about the protein structure
and position may be used. This is however time consuming and usually MSMs
are constructed based on a very restricted representation, for example positions
of residues or secondary structure in the region of interest [30].

Interestingely, the way MSM is built can also differ, for example authors of
[31] created a highly efficient VAMPnet-based [4] architecture for constructing
MSMs during adaptive sampling procedure.

It is important to remember, however, that bias introduced by the sampling
criterion will almost always influence what conformations we will be able to ob-
serve in most realistic scenarios, because usually we are only able to sample a
small part of the full conformational landscape [30].

2.4 Koopman theory
The Koopman theory is one of the most dominant frameworks in nonlinear dy-
namics, which was gaining in popularity in the recent years. This perspective
leverages an infinite-dimensional linear operator, the Koopman operator, which
acts on the space of all possible measurement functions of the system. Con-
sequently, this theory enables prediction, estimation, and control of nonlinear
systems using methods conventionally associated with linear systems [32].

The theory presented in this section is based on [33], but the notation in this
and following sections is adapted to the notation used in [4].

Under some commonly used assumptions, molecular dynamics can theoreti-
cally be described as a Markov process {xt} in the state space Ω. The dynamics
are fully characterized by a transition density pτ (x, y). This density signifies the
probability that a molecular dynamics trajectory at configuration x will transi-
tion to configuration y after a time lag τ . The Markov property allows sampling
y from x alone, negating the need for previous time steps.

Although variables xt can exhibit high non-linearity, the application of Koop-
man theory reveals their transformation into latent variables that evolve linearly
on average.
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Formally, transformations

χ0(x) = (χ01(x), . . . , χ0m(x))T

and
χ1(x) = (χ11(x), . . . , χ1m(x))T

exist such that the dynamics in these transformed variables are approximated by
matrix K:

E[χ1(xt+τ )] ≈ KTE[χ0(xt)] (2.1)
The accuracy of this approximation improves with an increase in the number

of features (m → ∞), eventually becoming exact [33]. However, even with a large
lag time τ , a satisfactory approximation can be achieved with low-dimensional
feature transformations[33]. We think about the χ transformations as one for the
‘present’ (χ0) and one for the τ ‘lag time in the future’ (χ1), what is justified by
the fact that for a limited data first lag time points do not have a past and last
lag time points do not have a future, but as we will see, in practice, to keep the
results more interpretable and intuitive, only one transformation is used.

Equation 2.1 can be elucidated by considering {xt} as a discrete-state Markov
chain. Here, if the feature transformation is defined by indicator functions –
(χ0i = 1 when xt = i and 0 otherwise, and similarly with χ1i and xt+τ ), therefore
m corresponds to the number of states in the chain – their expectation values
are equivalent to the probabilities pt and pt+τ of the chain being in any given
state. Subsequently, K mirrors the matrix of transition probabilities, denoted by
pt+τ = P (τ)pt [33].

2.5 Variational Approach to Markov Processes
Variational Approach to Markov Processes (VAMP) [33] adds a practical frame-
work to the Koopman operator theory. While the Koopman operator provides a
theoretical foundation for linearizing the evolution of complex dynamical systems,
VAMP offers an efficient way to optimally approximate the Koopman operator
in finite dimensions, thus enabling its use in practice.

The core of the VAMP theory suggests that the optimal finite-dimensional
linear model is obtained when the subspaces spanned by χ0 and χ1 align with
those of the top m left and right singular functions of the Koopman operator
[33]. Given a certain feature transformation χ0 and χ1, we define the covariance
matrices as:

C00 = Et[χ0(xt)χ0(xt)T ], (2.2)
C01 = Et[χ0(xt)χ1(xt+τ )T ], (2.3)
C11 = Et+τ [χ1(xt+τ )χ1(xt+τ )T ], (2.4)

where Et[·] and Et+τ [·] are the averages over time points and lagged time points
within and across trajectories, respectively. The optimal K that minimizes the
least square error Et[χ1(xt+τ ) − KT χ0(xt)]2 is: K = C−1

00 C01 [4].
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Choosing appropriate transformations χ0 and χ1 is nontrivial. Consider an
example where χ0(x) = χ1(x) = 1(x); here, the least square error is zero for
K = [1], but the model yields no dynamic information [33].

To find a solution we need a central theorem of the VAMP theory [33]:

Theorem 1 (Optimal Approximation of Koopman Operator). Let Kτ be a
Hilbert-Schmidt operator between the separable Hilbert spaces L2

ρ1 and L2
ρ0. The

linear model 2.1 with the smallest modeling error in the Hilbert-Schmidt norm is
given by χ0 = (χ01 , . . . , χ0m)T , χ1 = (χ11 , . . . , χ1m)T , and K = diag(σ1, . . . , σm),
i.e.,

E[χ1i
(xt+τ )] = σiE[χ0i

(xt)], for i = 1, . . . , m (2.5)
subject to the constraint dim(χ0), dim(χ1) ≤ m. The projected Koopman operator
derived from 2.5 is

K̂τ χ1 =
m∑︂

i=1
σi⟨χ1, χ1i

⟩ρ1χ0i
, (2.6)

where the singular value σi > 0 is the square root of the i-th largest eigenvalue of
K∗

τ Kτ or Kτ K∗
τ , the left and right singular functions χ0i

, χ1i
are the i-th eigen-

functions of K∗
τ Kτ and Kτ K∗

τ with

⟨χ0i
, χ0j

⟩ρ0 = 1i=j, ⟨χ1i
, χ1j

⟩ρ1 = 1i=j, (2.7)

and the first singular component is always given by (σ1, χ11 , χ01) = (1,1,1) with
1(x) ≡ 1.

VAMP introduces a useful scoring system, which also allows us to express the
theorem above in a way useful for machine learning [4]. Given any two sets of
linearly independent functions χ0(x) and χ1(x), we define their VAMP-2 score,
denoted as R̂

2
χ0,χ1 , as follows:

R̂
2
χ0,χ1 =

⃦⃦⃦⃦
C

− 1
2

00 C01C
− 1

2
11

⃦⃦⃦⃦2

F
(2.8)

where C00, C01, C11 are defined as in 2.4 and ∥A∥2
F = 1

n

∑︁
i,j A2

ij is the Frobe-
nius norm of an n × n matrix A.

The maximum value of the VAMP-2 score is obtained when the top m
left and right singular functions of the Koopman operator are contained in
span(χ01 , . . . , χ0m) and span(χ11 , . . . , χ1m), respectively [4], and based on the the-
orem 1 we know that such a solution results in a smallest modelling error.

Consequently, we can optimize χ0 and χ1 by maximizing the VAMP-2 score.
This way VAMP establishes a scoring system that can be used to construct a
machine learning loss function enabling learning of the χ transformations directly
from data [4].

2.6 VAMPnet
Neural networks, due to their capabilities as universal function approximators
[34] and their potential for expressing strongly nonlinear functions are a natural
choice for approximating the χ transformations (see Sec. 2.4). VAMPnets are
neural networks that utilize VAMP scores as their loss functions [4].
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VAMPnets utilize two parallel lobes to simultaneously process MD configu-
rations at distinct times xt and xt+τ . To enforce probabilistic interpretation, the
last layer of the lobes utilizes softmax function. During training, given a batch
of time-lagged pairs the network calculates the resulting covariance matrices (see
2.4) and differentiable VAMP-2 score (see 2.8) [4]. The network is trained by
backpropagation [35].

For the purpose of simpler interpretation, a single basis set χ = χ0 = χ1 is
typically used. This is implemented as weight sharing between the lobes and
training using the total gradient [4].

After training, we can evaluate the quality of the learned features and choose
network’s hyperparameters by computing the VAMP-2 validation score computed
on data not used during training [4].

In study [36], VAMPnets were shown to yield superior results as compared to
tICA, showing the ability to identify states that would otherwise remain unde-
tected. This evidence underlines the significant utility and potential of VAMPnets
in the realm of molecular dynamics.

2.7 CoVAMPnet
In this thesis, we employ the extension of VAMPnets proposed in [5]. This ad-
vanced version, referred to as CoVAMPnet (Comparative VAMPnet), incorpo-
rates two key innovations. The first innovation involves the alignment of states
detected in different systems representing the same biomolecule in different con-
ditions. These varied conditions may include changes in the simulation’s physical
parameters or, more significantly, the introduction of a potential drug candidate
into the solvent. Alternatively, alignment can also be applied to different mutated
variants of the same biomolecule. This alignment enables a comparative analysis
of dynamic properties such as transition rates, particularly when some states can
be considered analogous.

The second advancement involves the analysis of feature importance. Co-
VAMPnet works based on a matrix input, which is composed of distances be-
tween different residues in a specific time frame. Using this input, the method
calculates average gradients [37] for each inter-residue distance. These gradients
represent how changes in each of these distances can influence the classification
of the molecule into a particular state. CoVAMPnet then visualizes calculated
gradients in a form of feature importance matrices. Consequently, it is possible to
identify specific regions of the protein, or pairs of residues, that significantly influ-
ence the classification into a particular state, including their impact, i.e. whether
the proximity of the residues is a positive or negative factor. This innovation
enables identification of regions critical for the dynamics of the protein [5].

2.8 Related research about APOE

2.8.1 The dynamics of APOE
The dynamics of APOE have garnered considerable attention in the scientific com-
munity, leading to multiple in-depth research studies. For instance, one research
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project employed MD to analyze the interactions of APOE with the TREM2
protein, with the focus primarily on the hinge region and the C-domain [38]. In
another study the focus was on lipid binding, where researchers differentiated how
APOE3 and APOE4 interact with various types of lipids, again with a significant
emphasis on the C-domain [14]. Interactions between APOE and amyloid beta
have also been thoroughly investigated [39].

Of course, MD is not the only tool that allows us to understand dynamics
more; one study utilized hydrogen/deuterium exchange and mass spectrometry
rather than MD, to reveal new insights about the dynamical differences between
APOE3 and APOE4 [40].

2.8.2 Exploring tramiprosate and 3SPA
Tramiprosate, a drug initially developed for Alzeheimer’s disease (AD) treat-
ment, and its metabolite 3-sulfopropanoic acid (3SPA) have been studied for
their potential therapeutic benefits in AD, particularly for patients carrying the
APOE4/APOE4 genotype [41].

Our research investigates the influence of 3SPA on the dynamics of the APOE
protein. It has been theorized that 3SPA may alter the behavior of APOE4,
causing it to mimic the characteristics of the less harmful APOE3 isoform [19]. If
this is the case, investigating a potential mechanism through which 3SPA exerts
its therapeutic effects could bolster its promise as a potential treatment for AD.

Interestingly, the statistically significant beneficial influence of tramiprosate
was not observed in APOE3/APOE4 heterozygotes [42], which could suggest that
the effect of 3SPA on those two types APOE differs. We investigate this as part
of our work.

2.8.3 APOE oligomerization
Our work can be considered complementary to the recent publication by our
colleagues from Loschmidt Laboratories at Masaryk University in Brno [19], who
focused on investigating the properties of novel APOE dimers. To understand
their work, it is required to understand that parts of the full-length APOE tend
to degenerate in the brain. The most stable part of the protein is the so-called
4-helix bundle, which was the main focus of their research. The 4-helix bundle
consists of four main helices (H1-H4) and loops connecting them, including the
notable loop HL1 between H1 and H2, which often exhibits high helicality (see
Fig. 2.1).
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(a) 1D representation of the 4-helix bundle.

(b) 3D structure of the 4-helix bundle.

Figure 2.1: Representations of the 4-helix bundle. We will continue using this color-
coding in the rest of the thesis: dark blue – H1, light blue – HL1, green – H2, yellow –
H3, orange – H4 and grey – remaining regions.

The study found out that such truncated APOE molecules create previously
unknown types of dimers, differing slightly in shape between APOE3 and APOE4.
APOE3 tends to create a so-called T-shaped dimer, while APOE4 creates an anal-
ogous but clearly altered V-shaped dimer (see Fig. 2.2). In these T-shaped and
V-shaped dimers, we identify two distinct components: chain A, which corre-
sponds to the “top of the T”, and chain B, which corresponds to the “bottom of
the T” (or their equivalents in the V-shaped dimer). The study included a thor-
ough investigation of the most prominent properties of both dimers, with a focus
of their differences. Moreover, using experimental and computational methods
the authors analyzed the influence of 3SPA on the different APOE systems [19].

On top of that, thanks to yet unpublished insights from our collaborators, we
also learned about the formation of another kind of dimer – the so-called parallel
dimer – which, as the name suggests, involves two APOE molecules in a parallel
position.

Their findings were in line with the APOE cascade hypothesis, which assumes
that APOE is directly involved in the most fundamental molecular processes
leading to AD.
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(a) T-shaped APOE3 dimer. (b) V-shaped APOE4 dimer.

(c) Critical residues: chain A: R38 (H1), R145
(H4), chain B: E45 (HL1), E49 (HL1) .

(d) Critical residues - chain A: R38 (H1), R145
(H4), D153 (H4) chain B: E45 (HL1), E49
(HL1), Q46 (HL1).

Figure 2.2: Difference between T-shaped and V-shaped dimers. Red residues are
critical for forming the self-association interface and black dashes represent polar inter-
actions that stabilize it. Notice the additional interaction formed between D153 from
top chain A and Q46 from bottom chain B in the V-shaped dimer (right), resulting in
a different tilt of the chain A.
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3. Data and models

3.1 Data
Our study was based on MD simulation data of four full-length monomeric APOE
systems: APOE3 and APOE4, each simulated with and without the excess of
the 3SPA. We will refer to these four systems as APOE3, APOE4, APOE3 +
3SPA, and APOE4 + 3SPA. The simulation data was kindly provided by our
collaborators from Loschmidt Laboratories.

3.1.1 Molecular dynamics simulations
The initial three-dimensional structures of unbound APOE3 were acquired from
the RCSB Protein Data Bank [43] (PDB entry 2L7B). Generated from NMR
experiments, this entry consists of 20 unique models, from which the first model
was selected as the starting point for our MD simulations. For APOE4, homology
modeling was employed, using the corresponding FASTA sequence and the 2L7B
entry of APOE3 as a template.

The simulations were implemented using the High Throughput Molecular Dy-
namics (HTMD) scripts [29]. Standard procedure of system protonation by sim-
ulation at physiological pH 7.4 and equilibration was performed. The starting
point for our production MD runs were the systems resulting from the equilibra-
tion phase.

HTMD was utilized to conduct adaptive sampling of the conformational space
of the proteins. The adaptive sampling process was guided by online-built MSMs
(see Sec. 2.3) constructed using root-mean square deviation (RMSD) of the pro-
tein’s alpha-carbon atoms relative to their positions in the initial structure. The
RMSD is a measure used to calculate the average distance between the atoms
(e.g., alpha-carbon atoms) of superimposed proteins. The initial 3D structures of
both APOE3 and APOE4 contained a highly folded C-domain, so the RMSD cri-
terion was chosen to heuristically increase the probability of observing unfolding
of the whole protein.

To capture the trajectory, the coordinates of all atoms in the system were saved
every 0.1 ns. For each system, at least 20 epochs were performed, each consisting
of 10 individual MD runs. All individual simulations consisted of 1,000 frames,
corresponding to an interval of 100 ns, with an exception of the first epoch of the
APOE3 + 3SPA system, which consisted of 500 frames, i.e. 50 ns. Summing up
the individual simulation times, the total simulation time was at least 20 µs per
system. The details are described in Table 3.1.

System #Epochs #Simulations (total) #Frames (total)
Free APOE3 20 200 200,000
Free APOE4 20 200 200,000

APOE3 + 3SPA 22 220 215,000
APOE4 + 3SPA 21 210 210,000

Table 3.1: Basic information about MD data of each system.
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3.1.2 Data representation
In the training process, we used matrices of inter-residue distances for the 138
residues of the 4-helix bundle. Inter-residue distances establish an intrinsic co-
ordinate system for molecular structures, providing a representation invariant to
rotations and translations. Such a representation also fully captures the tertiary
structure of the protein, at least on the residue level. We then adjusted these
138 x 138 matrices by excluding the distances up to the second closest neighbor
for each residue, which correspond to the stable distances determined by peptide
bonds and the zero distance to itself. In addition, since the matrices are sym-
metric, we considered only the elements above the main diagonal and flattened
them into vectors of 9,180 values. Each of these vectors uniquely represents the
structure at specific time frame. Data for each system was normalized before the
training by subtracting the mean and dividing by the standard deviation.

Our analysis was specifically focused on the 4-helix bundle due to a couple of
key factors. Firstly, the 4-helix bundle is the central element in the APOE dimer-
ization hypothesis [19], and limiting our representation to it prevented C-domain
movements from overshadowing the intricate dynamics of the 4-helix bundle.
Secondly, we were aware of certain limitations in our model, which we address
more thoroughly in Sec. 3.5.1. The models we derived do not necessarily depict
the standalone behavior of the truncated 4-helix bundle, but rather represent its
behavior influenced by the unfolding C-domain, which was not included in the
analysis but exhibited clear correlation with the 4-helix bundle movements.

3.2 Model
In this study, we employed the VAMPnet implementation by Löhr et al. [44] with
each system’s model consisting of an ensemble of 20 models with identical ar-
chitecture. The same model architecture successfully yielded a kinetic ensemble
of amyloid beta [44] and was subsequently employed to analyze the influence of
small molecules on amyloid beta [45]. The same approach was utilized in Co-
VAMPnet [5] to analyze MD simulations of amyloid beta, ultimately reproducing
and extending the earlier results with innovations that significantly improved the
interpretability of the findings. The states from the 20 models within an ensem-
ble were aligned by a constrained k-means clustering algorithm [46], the same
way as described in [5]. The employment of an ensemble of 20 models proved
advantageous for obtaining error estimates through bootstrapping.

The VAMPnet model we used comprises two identical lobes, each featuring
batch normalization followed by five fully connected layers of 256 neurons. An
L2 regularizer is applied in each hidden layer to mitigate overfitting by adding
a penalty proportional to the magnitude of the weights. The architecture em-
ploys physical constraints [47] to enforce non-negativity in the Koopman matrix,
thereby preserving its probabilistic interpretation. These constraints also ensure
the statistical reversibility of the learned MSM.

The implementation of the model includes a self-normalizing setup [48], which
enhances the stability of the training process. Self-normalizing networks utilize
specific types of activation functions, in this case the Scaled Exponential Linear
Unit (SELU), that help to ensure that the outputs from neurons in the network
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have a mean of zero and a standard deviation of one. This property helps the
network to learn from the data more effectively and makes the training process
more robust, improving the stability and the general performance of the model.

In conjunction with this, LeCun normal initialization of weights in the network
is used. This initializer draws the weights from a truncated normal distribution
centered in zero, with a standard deviation determined by dividing one by the
number of input units in the weight matrix, and then calculating the square root
of the result. It was proven to achieve good performance in conjunction with
SELU [48].

3.3 Training the ensemble
We adhered to the same training strategy as employed for the amyloid beta models
in [44]. We prepared 20 random data splits, each with a 90:10 training:validation
ratio. For each split, we trained three models and chose the best-performing one
according to the VAMP-2 score to be included in our ensemble. This step enabled
us to minimize the variance of the results, which we deemed unacceptable without
this measure.

Training of the χ model (see Sec. 2.4) was performed using batches of 10, 000
frame pairs and the Adam minimizer with a learning rate of 0.05, β1 = 0.99 and
ϵ = 0.0001. Overfitting was addressed through early stopping, i.e., the training
was stopped when the VAMP-2 [33] validation score did not increase by at least
0.001 over the previous twenty epochs.

After training, we had performed the temporal validation with implied
timescales [49] and Chapman-Kolmogorov (CK) test [50]. Both these validation
methods were used to ensure the quality of the obtained models. The implied
timescales plot reveals the relaxation times of the system’s dynamical processes,
while the CK test validates the Markovianity of the model by comparing the
model’s predictions of longer time events with the actual observations.

The implied timescales test [49] is a common approach to determine whether a
MSM accurately captures the temporal behavior of a system. Implied timescales
give us an indication of the timescale on which the system transitions between
states. They are defined as follows:

ti(τ) = − τ

log |λi(τ)| (3.1)

where τ is the lag time and λi(τ) is the ith eigenvalue of the transition matrix K
estimated with lag time τ . If the implied timescales are approximately constant
over a long range of lag times, the MSM is said to be Markovian. Usually,
the smallest lag time for which time scales become constant is chosen for the
analysis to capture the dynamics of system in the finest detail while preserving
the Markovianity of the model. Based on the implied timescales plots after initial
trainings with different lag times, we decided to use 12.5 ns lag timefor the analysis
of our systems. Fig. 3.1 shows the implied timescales plot for the APOE3 system;
the implied timescales plots for the other systems are available in the Appendix
(see Fig. A.3).
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Figure 3.1: Implied timescales of the free APOE3 system. The vertical axis corre-
sponds to the timescales computed according to equation 3.1 for lag time τ values on
the horizontal axis.

The Chapman-Kolmogorov (CK) test [50] is another method to validate the
Markov property of an MSM. It compares the predicted transitions of the MSM
over a certain period of time with the observed transitions over the same period.
For an MSM to be valid, it must satisfy the Chapman-Kolmogorov equation:

K(nτ) = Kn(τ) (3.2)
where Kn is the transition matrix propagated for n steps (prediction), and

K(nτ) is a transition matrix estimated with lag time nτ (observation). If the
predicted and observed transitions agree, the MSM satisfies the Markov property.
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Figure 3.2: Chapman-Kolmogorov test for the free APOE3 system. The horizontal
axis corresponds to the lag time τ and the vertical axis to the probability P of transition.
The brown dash line marks the values estimated from observed transitions at a given
lag time τ , while the red line corresponds to predictions based on propagating the
Koopman operator estimated at 12.5 ns. Rows and columns correspond to states. In
other words, the plot at position (i, j) represents the probability of transitioning from
state i to state j.

As can be seen from the CK test plots (see Fig. 3.2, Fig. A.4, Fig. A.5,
Fig. A.6), we have managed to obtain models that yield satisfactory results as
implied timescales converged with time and remained relatively constant after the
utilized lag time and the CK-test plots show good agreement between long-term
model predictions and actual observations. These promising outcomes highlight
the robustness and validity of our models.

We experimented with different numbers of states for each system. How-
ever, due to the resource-intensive nature of the training process, combined with
limited resources and satisfactory preliminary results, we did not carry out a com-
prehensive hyperparameter search. The final number of states for each system
was determined by the quality of the implied timescales and the interpretability
of the results.
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3.4 Statistics and visualizations
In our study, we used the first two time-lagged Independent Components (tIC)
determined by tICA to provide a two-dimensional representation of each system.
The systems were transformed using the corresponding tICA transformation, with
the density determined via Gaussian kernel smoothing. Interestingly, this tech-
nique revealed a clear separation of several high-density areas observable in the
two-dimensional space.

This effect was particularly noteworthy when contrasted with the results from
the smaller, fully unstructured amyloid beta. Being an unstructured peptide with
rapid conformational changes, the tICA landscape of amyloid beta was notably
shallow. In contrast, our APOE systems exhibited more pronounced transitions
between main conformational states, suggesting a better separation of detected
metastable conformations.

We examined varying numbers of states for each system, utilizing the quality
of implied timescales, compatibility of the tICA projection of detected clusters
with the density plots of tICA, and interpretability of results as key determinants
for choosing the optimal number of states for each system. We concluded that 4
states were most suitable for APOE3 and APOE4 + 3SPA, while 3 states were
best for APOE3 + 3SPA and APOE4.

We overlaid MSM graphs onto the tICA density plots (see e.g. Fig. 4.1). The
circles represent the states and their size corresponds to the equilibrium proba-
bility estimated from the Koopman matrix. The arrows represent the transitions
between states and their thickness is proportional to the probability of transition
at the used lag time of 12.5 ns. The transition probabilities are stated in the
arrow labels, with percentage (%) used as a unit of measure.

We provide a visualization depicting the temporal evolution of each system
(see e.g. Fig. 4.2). For this, we sorted the simulations according to the time
elapsed since the initial frame of the first epoch, treating the sampled frame as
immediate past for the seeded simulations, effectively concatenating simulations
from different epochs. Upon visual examination, it was usually straightforward
to discern the time correlation of specific states within the total simulation. For
example certain states surfaced only around the first epoch’s initial frames, while
others emerged only after some time had elapsed. These plots were used to
choose the order of the states, enhancing their interpretability. Smaller numbers
are assigned to states that dominate earlier in the overall timeline. This allows
us to quickly figure out the initial and final states of our simulations and makes
it easier to compare states between different systems.

Since most changes in the systems occurred on the level of secondary struc-
ture, plots showing the average level of helicality for each state as computed by
DSSP algorithm [9] were probably the most important tool in our analysis (see
e.g. Fig. 4.3).

To get more insight about higher-level geometric structures of the obtained
states, we plotted the average residue contact maps for each state, utilizing a
cutoff threshold of 0.8 nm (see e.g. Fig. 4.3). The residue contact map is a
matrix-based representation that outlines the spatial proximity of residues in a
protein. Each element of the matrix corresponds to a pair of residues in the
protein, and is set to one if the distance between the two residues is smaller than
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a predefined cutoff threshold, and zero otherwise .
To gain some intuition about the overall changes in the shape of APOE be-

tween states, we visualized several representative frames for each Markov state
(see e.g. Fig. 4.5). We applied a probabilistic approach to avoid selecting frames
from a single trajectory, which would frequently happen if frames with the high-
est probability for a given state were selected. To this end, we calculated a
probability distribution over all frames of a given system, weighted according
to the probability of assignment to a given state. After drawing representative
frames according to this distribution, we eliminated frames with less than a 50%
probability of belonging to that state. We expect this method to select frames
adequately representing the state, not solely concentrating on its center but also
potentially reducing the occurrence of highly transitional frames.

In the visualizations, we opted for varying numbers of representative frames
for different states and systems. This approach was taken to prevent outliers
from masking the overall characteristic property of a state, which could happen
in particular when visualizing the loss of helical structure between two states.
Since the helix is visualized as a broad band, one outlier could effectively obscure
all the narrow coils representing the loss of structure in a given state. Moreover,
due to locality of most changes, we only presented short ranges of residues to see
them in more detail. All 3D visualizations in this thesis were rendered in PyMol
[51].

For the gradient analysis by CoVAMPnet [5], we used 1,000 frames. We
selected frames based on a uniform distribution over all frames. However, the
quality of the feature importance matrices varied across the systems. For exam-
ple, while gradient matrices for APOE3 allowed for a quick and unambiguous
identification of important features, the results for APOE4 were consistently un-
informative.

Due to the relatively low reliability of the Koopman operators for our data,
which we discuss below in Sec. 3.5.1, we decided to support our estimates of the
equilibrium distributions of states with the population counts (see Fig. A.1). The
populations are calculated as the number of frames classified to each state by hard
assignment divided by the total number of frames in a given system. Koopman
operators, although central for our analysis, are difficult to interpret visually, and
were thus included only in the Appendix (see Fig. A.2).

3.5 Limitations of our study

3.5.1 Full-length APOE modeling attempts
Our original goal was to train a neural network utilizing data from the full spec-
trum of APOE protein residues. To be more precise, this involved inter-residue
distances between all pairs of 299 residues of the full-length APOE protein. How-
ever, the network encountered difficulties in generating a coherent Koopman oper-
ator. A recurrent issue was the emergence of eigenvalues exceeding the maximum
theoretical limit of 1. This is likely due to the limited dataset and the inherent
randomness of the neural network. Despite various attempts to train the network
using different lag times, the results remained largely unchanged.
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To overcome these difficulties, we modified our approach by excluding the C-
domain and the N-terminus from the analysis and eliminating motions from highly
flexible protein sections that could potentially skew the Koopman operator. Even
though less than half of the residues were excluded, 4-helix bundle is significantly
more stable. This effectively reduced the conformational landscape of the protein.
This deliberate refinement improved the network’s learning ability and minimized
the risk of overfitting, potentially unmasking obscured properties. On top of
that, 4-helix bundle is of crucial importance for the leading hypotheses about
APOE dimerization, including hypothesis of our collaborators from Loschmidt
Laboratories [19], therefore it was a natural choice for more detailed analysis.

However, it is crucial to underscore the inherent limitations of our study. The
total amount of data necessary to fully capture the conformational landscape
of the APOE, whether we are dealing with the whole protein or just the 4-
helix bundle, remains unclear. As far as we know, no other studies have applied
VAMPnets to a system of comparable size and complexity with such a short total
simulation time. The conformational shifts of APOE are undeniably rare, so while
the observed clusters can offer intriguing insights into the metastable states of
APOE, we must take the estimates of dynamical properties with caution.

We observed that our data may be too far from equilibrium to accurately re-
flect it. This conclusion is based on several observations, including the scarcity of
transitions between states and the significant correlation between state transitions
and the unwinding of the flexible C-domain. Another factor casting doubt on the
reliability of the dynamic element of our conclusions is the implied timescales
test. While our models passed this test by showing converging timescales, the
implied time of the slowest process exceeded the total simulation length for each
system, suggesting that the theoretical number of transitions that were observed
in the data is extremely small. Situations leading to those kind of observations
were discussed in detail in [52].

However, despite these challenges, we believe our study yielded meaningful
clustering. Our models passed the implied timescales and CK tests, and agreed
with the tICA landscape. Even if we cannot truly interpret our results as a model
of the APOE dynamics at equilibrium, it nevertheless gives us insights into the
overall flexibility of the 4-helix bundle. Furthermore, the most significant valida-
tion came from the replication of our collaborators’ results, who used traditional
methods for estimating Markov state models or directly observed the evolution
of features of interest.

3.5.2 CoVAMPnet limitations
On top of that, we were also limited by the computational expenses when comput-
ing the feature importance matrices implemented in CoVAMPnet. Free APOE3
presented a highly interpretable, sensible matrix. While APOE3 + 3SPA and
APOE4 + 3SPA offered decent results, we believe there’s room for substantial
improvement. Conversely, the free APOE4’s matrix was of subpar quality and
lacked interpretability (see Fig. 4.11).

This might be attributed to the sparse data, causing the network to fixate
on less crucial features. Further, we based these matrices on merely 1,000 time
frames, a fraction of the frames used in the original CoVAMPnet paper, which
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utilized 10,000 frames. Moreover, our analyzed 4-helix bundle system is approx-
imately three times larger than the amyloid beta system in the original study.
We found that increasing the number of frames for gradient computation could
substantially improve the results. However, due to the time-intensive nature of
the process and other pressing research priorities, we deemed these matrices ac-
ceptable for this master’s thesis.

3.5.3 Emergent symmetry of CoVAMPnet gradient anal-
ysis

Interestingly, CoVAMPnet often identifies nearly perfectly opposite feature im-
portance matrices for two detected states. This symmetry was even visible in
some matrices from the original paper (see Fig. 3. in [5]). We noted similar
symmetry in our matrices, despite some numerical differences. This intriguing
pattern could likely be mathematically explained. It could be advantageous for
the network to identify states in such a high-contrast manner, akin to contrastive
learning [53], considering it processes two frames concurrently and utilizes loss
which involves measuring similarity between them in the form of covariance ma-
trices.

3.5.4 Limitations of adaptive sampling and VAMPnet
based analysis

We want to highlight a specific challenge when applying VAMPnets to simula-
tions generated with adaptive sampling. This issue arose while trying to estimate
the model for the full-length protein, where we noticed that many transitions
occur between two epochs of simulations for the analyzed system. This is possi-
ble because the frames selected by adaptive sampling as “seeds” to initialize the
simulations in the next epoch are not technically the first frames of those simula-
tions – the frames immediately following are. The goal of adaptive sampling is to
increase the likelihood of interesting slow transitions occurring from the chosen
seed frames, which results in higher probability of the seed frames to represent
such an uncertain conformation. We observed that even our states computed
for the 4-helix bundle of each system strongly correspond to a particular level of
unfolding of the protein – usually one state corresponds to a completely folded,
and one to a completely unfolded C-domain, which position, as we mentioned
before, dominates the value of the RMSD used for constructing MSMs during
adaptive sampling. We conclude that due to this strong correlation it simply be-
came more likely for the network to “agree” with the sampling criterion, resulting
in transitions happening between epochs.

Despite VAMPnets working with soft assignments, which one might expect to
introduce some uncertainty in transitioning between different states, we still deem
transitional pairs of frames valuable. This is particularly relevant for systems with
slow dynamics or rare transitions, as these pairs of frames provide VAMPnets with
most of the information about these transitions. This is especially the case if the
transition is sharp, i.e., if we observe a large change in the calculated probability
distribution for two frames being one lag time apart - which is more likely to
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happen if there are distinctly separated energy islands in the conformational
landscape.

Furthermore, we would like to point out that this phenomenon leads to some
issues of practical nature. To better understand the system one may try to calcu-
late the matrix that represents the transitions according to the hard assignment,
which in this case might lead to misleadingly low values, due to transitions “hid-
den” between epochs. That actually happened during our initial attempts with
the full-length APOE. Moreover, identifying transitional trajectories becomes less
straightforward, as they become more likely to span across multiple epochs. Such
trajectories can provide especially useful visualizations, including videos, which
help us understand system’s movements.

3.5.5 Limitations of modeling slow dynamics with short
simulations

Another more fundamental issue with estimating dynamical properties based on
many short simulations is the way a lag time determines the number of frame
pairs that can be used for MSM estimation. When dealing with a single long
simulation, the effective number of frames is simply

total simulation length − lag time

In the case of multiple short simulations, such as in the case of adaptive sampling,
however, it becomes

total simulation length − total number of simulations ∗ lag time

. In our case we had around 200 simulations per systems, so we “lost” 200 times
more pairs than we would in the case of single trajectory. This problem grows
proportionally to the utilized lag time, which in turn grows if the dynamics of
the systems of interest has slower dynamics. This scenario, which often presents
itself in larger and more complex systems, consistently garners significant research
interest and continues to be a frontier area of study [54]. In our case the utilized
lag time turned out to be acceptably small, but we would like to point out this
inherent limitation of adaptive sampling techniques combined with time-lagged
methods for systems with slow dynamics.

3.5.6 Concatenting trajectories
To address these limitation, we propose an approach that involves artificially
concatenating the trajectories. In this method, instead of treating each trajec-
tory from the adaptive sampling regime as separate, we consider sampled frames
as the historical context for seeded simulations. This gives every simulation in
subsequent epochs a well defined past, enabling us to generate time-lagged pairs
spanning between epochs.

This way, the effective number of pairs would become approximately

total simulation length − number of simulations per epoch ∗ lag time

On top of that, we could even utilize lag times surpassing lengths of individ-
ual trajectories. We believe this idea holds a potential to increase applicability
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of time-lagged methods for systems distinguishing slow dynamics. We plan to
implement and test it in the nearest future.
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4. Analysis of the free APOE
dynamics
In this chapter, we thoroughly analyze and discuss our primary findings concern-
ing the free APOE3 and free APOE4 systems. The focus will primarily be on
the potential correlations with the hypotheses surrounding APOE dimerization
proposed by our collaborators [19].

Presenting all results for such a multifaceted analysis is by itself quite a daunt-
ing task. Understanding the full scope of the observed changes directly from
particular plots alone would be difficult, therefore, we have adopted a consis-
tent layout across all systems to simplify navigation. Each system’s introduction
consists of the most essential numerical findings.

First, we present MSM graphs superimposed on tICA density plots (Fig. 4.1,
Fig. 4.8, Fig. 5.1, Fig. 5.8). A visualization of each system’s temporal evolution
based on the plots presenting simulations sorted by the time elapsed from the
first frames of the first epoch is provided. Frames are colored according to hard
assignment of a MSM state (Fig. 4.2, Fig. 4.9, Fig. 5.2, Fig. 5.9). Following
are average secondary structure plots and contact maps of each state. They are
accompanied by equilibrium populations calculated based on the corresponding
Koopman operators (Fig. 4.3, Fig. 4.10, Fig. 5.3, Fig. 5.10). Next, CoVAMPnet’s
feature importance matrices are presented (Fig. 4.4, Fig. 4.11, Fig. 5.4, Fig. 5.11).
We provided cues in forms of arrows in the colors of corresponding subdomains
and circles highlighting the regions of high importance where it was possible.

For every system, we included a table outlining the most notable differences
among the identified states. As previously mentioned, while our analysis focuses
on the 4-helix bundle, we observed a clear correlation between the position of the
C-domain and the detected states. This is why our tables provide information
not just about the key segments of the 4-helix bundle, but also about the overall
position of the C-domain associated with each state (Tab. 4.1, Tab. 5.1, Tab. 4.2,
Tab. 5.2).

We recommend to first read a detailed description of the observed changes in
the following subsections, including their possible links to APOE dimerization,
and only then coming back to those high-level plots. We believe such approach
is the quickest way to obtain a better insight into APOE’s dynamical behavior.
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4.1 Examination of free APOE3

Figure 4.1: tICA density plot and the MSM graph representation of the free APOE3
system. Darker shades of grey correspond to higher density. Circles correspond to states
and are accordingly numbered. Size of the circle is proportional to the probability of a
corresponding state at equilibrium. Arrows represent probability of transitions between
states, with 1% used as a unit of measure.
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Figure 4.2: Temporal evolution of the free APOE3 system. Simulations were sorted
according the the time elapsed from the initial frames of first epochs (x-axis), treating
epochs from which frames were sampled as a past of newly initialized simulations.
Frames were colored according the their hard classification to a state, whose numbers
are visible in the legend on the right.

Figure 4.3: Average secondary structure, contact maps and equilibrium probability
of states obtained for the free APOE3 system.
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The use of feature importance matrices, generated in the CoVAMPnet pipeline,
proved to be essential for this system. They facilitated the swift identification of
two regions in the protein—HL1 and L3—that exert significant influence on its
dynamics. HL1 and L3 display the largest differences among the different states.

Figure 4.4: Feature importance matrices obtained by the 4-state CoVAMPnet model
for the free APOE3 system. State 1 exhibits high importance of the distances of residues
belonging to HL1, while other states seem to be more focused on the L3 area.

Subdomain State 1 State 2 State 3 State 4
HL1 Structured Intermediate Unstructured Unstructured
L3 Structured Structured Structured Unstructured

C-domain Folded Mixed Intermediate Unfolded

Table 4.1: Structure of the most important subdomains and position of the C-domain
observed in different states of the free APOE3 system.

4.1.1 Free APOE3 dynamics is dominated by the struc-
tural changes in HL1

The structural integrity of the HL1 area is the most distinctive feature among
the identified states. The protein experiences a noticeable loss of structure in this
region as the C-domain unwinds (see Fig. 4.5).
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(a) State 1 (b) State 2

(c) State 3 (d) State 4

Figure 4.5: Structure of HL1 in different states of free APOE3 system. Residues 39-
57, 20 representative frames. Dark blue – H1, light blue – HL1, green – H2. Notice that
HL1 maintains a high degree of structure in state 1, while it exhibits a total absence
of structure in other states.

State 1 is characterized by a highly structured HL1, whereas state 2 depicts
an intermediate state marked by a high variance of helicality and position in
the tICA landscape. HL1 in states 3 and 4, by contrast, can be regarded as
unstructured (see Fig. 4.3). The absence of structure observed in states 3 and
4 distinguishes the APOE3 system from the other systems under investigation.
While a degree of structure loss is apparent in the other systems, none display as
substantial a loss as observed in these two states.

Importance of the HL1 region was clear when looking at the computed feature
importance matrices (see Fig. 4.4). We can see that state 1 is characterized by
the high intensity of the entries corresponding to the proximity of the residues
in the HL1 to the rest of the protein. The region of high intensity in the left
circle roughly corresponds to the secondary structure of HL1. The other region
in the elongated ellipsis on the right indicates relatively small distance between
HL1 and residues of the H3, L4 and the beginning of H4. It is worth noting that
L4 is right next to HL1 in the overall 3D structure of the 4-helix bundle.

Considering temporal ordering of states (see Fig. 4.2), we can suspect that
as the whole protein was unfolding, HL1 was losing its helical structure and
simultanously drifting away from the L4 and the residues surrounding it in H3
and H4. According to the visual inspection this drifting is mostly a consequence
of the unwinding of HL1, and most likely is of low significance.
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These findings bear particular significance in the context of the T-shaped
dimer hypothesis. Given that HL1 contains two critical residues of the B chain
involved in self-association interface formation (see Fig. 2.2), it would be plausible
to suggest that the high flexibility of HL1 in this system plays a role in forming
a highly stable interface. Due to the findings related to this protein simulated
in the presence of 3SPA, however, such a straightforward interpretation seems
unlikely, as discussed in the next chapter.

It is also important to note that our collaborators did not report analogous
changes in the simulations of the dimers of interest [19]. Therefore, additional
investigation is necessary to reconcile these observations and comprehend the
potential impact of this structural change on the dimerization process.

4.1.2 Role of L3 flexibility in free APOE3 dynamics
Furthermore, we conducted a detailed investigation of the differences between
states 3 and 4 in the APOE3 system. These states showed distinct characteris-
tics in the second time-lagged independent component. The feature importance
matrix highlighted structural changes in the L3 region, for which the states ap-
peared to be complementary (see Fig. 4.4). High intensity blue region in the center
of the feature importance matrix for state 4 suggested that higher distance be-
tween residues belonging to the L3 area increases the probability of classifying the
state as state 4. This was subsequently confirmed through average contact maps
generated for these clusters. Notably, in state 4, the slight blur indicating rela-
tive proximity of residues observed in state 3 disappeared. From the secondary
structure plots and visual inspection it was also evident that some residues at
the beginning of H3 were drifting apart and losing their helical structure (see
Fig. 4.6).

(a) State 3 (b) State 4

Figure 4.6: Structure around L3 in state 3 and state 4 of free APOE3 system. Residues
76-97, 20 representative frames. Yellow – H3, grey – L3, green – H2. Notice the slight
unwinding of H3 in state 4.
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These changes were also reported in [19]. Among the 8 PDB structures
of APOE3 dimers the authors analyzed, two of them exhibited conformations
more similar to the V-shape dimer characteristic of APOE4 and displayed similar
changes in this region. These changes do not involve residues indicated in the
creation of dimer interfaces. However, it is plausible that these alterations have
important implications through long-range effects on protein behavior. Quoting
the authors of the paper : “The unwinding of the beginning of helix H3 (residues
89–91) probably led to a weakening of the interaction between helices H2 and
H3 and, consequently, to conformational changes similar to those caused by the
C112R substitution.” [19]. One of such changes involved the orientation of W34
residue. This atomic scale phenomenon was not visible in the residue level rep-
resentations processed by VAMPnets, but analyzing the possible correlation of
such changes with the states obtained by our clustering could be an interesting
next step in our analyses. Another thing that will require further discussion is the
coexistence of this change with the unstructured HL1. It is possible that both of
those changes in conjunction – unstructured HL1 and weaker interaction between
H2 and H3 – strengthen the interactions leading to a formation of a dimer.

(a) State 3 (b) State 4

(c) Both states aligned

Figure 4.7: Unwinding of the beginning of H3 in free APOE3. Residues 89-94 are
depicted in red.

Some of the frames associated with state 4 show substantial unwinding at the
start of H3 (see Fig. 4.7). We observe a structural loss for residues 89-94, which
is a slightly more pronounced than the reported unwinding of residues 89-91 [19],
but essentially represents the same transformation.

Intriguingly, the close alignment between the VAMPnet-based clustering and
tICA lends itself to a more intuitive interpretation of the computed independent
components. The primary differentiation occurs in the first time-lagged indepen-
dent component, seemingly corresponding to the structural degradation in HL1.
This is inferred by examining the 3D structure, the feature importance, and the
state location within the projection. The second component appears to segregate
states 3 and 4 based on the structure of L3, specifically the unwinding of residues
ranging from 89 to 94 (see Fig. 4.1).
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The identification of subtle changes in protein conformations highlights the
sensitivity of VAMPnet [4] in detecting even the small local conformational
changes. By utilizing gradient extraction methods, we were able to effectively
identify the most relevant conformational changes without introducing bias from
preconceived expectations. This capability of CoVAMPnet [5] to identify cru-
cial conformational changes and regions of high flexibility reaffirms its potential,
particularly for researchers without specialized expertise in biochemistry.

4.2 Free APOE4
We used 3 states in our Markov state model to describe the dynamics of the free
APOE4 system - they turned out to be in perfect agreement with the high-density
islands of tICA landscape (see Fig. 4.8), and using higher number of states led
to less informative results with higher variance. Therefore we believe that for
this system tICA was a sufficient method of extracting information about the
dynamics of the protein, at least based on the provided data.

Figure 4.8: tICA density plot and the MSM graph representation of the free APOE4
system. Darker shades of grey correspond to higher density. Circles correspond to states
and are accordingly numbered. Size of the circle is proportional to the probability of a
corresponding state at equilibrium. Arrows represent probability of transitions between
states, with 1% used as a unit of measure.
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Figure 4.9: Temporal evolution of the free APOE4 system. Simulations were sorted
according the the time elapsed from the initial frames of first epochs (x-axis), treating
epochs from which frames were sampled as a past of newly initialized simulations.
Frames were colored according the their hard classification to a state, whose numbers
are visible in the legend on the right.

Figure 4.10: Average secondary structure, contact maps and equilibrium probability
of states obtained for the free APOE4 system.
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Figure 4.11: Feature importance matrices calculated for free APOE4 system. Com-
pared to other system they turned out to be completely uninformative.

Subdomain State 1 State 2 State 3
HL1 Structured Structured Less structured
H3 Bent, structured Intermediate Untructured

C-domain Folded Intermediate Unfolded

Table 4.2: Structure of the most important subdomains observed in different states
of the free APOE4 system.

4.2.1 Free APOE4 dynamics is dominated by the unwind-
ing of H3

Most visually striking difference between different states in this system focus
on the end of H3, specifically residues 120-124 (see Fig. 4.12). Over the course
of the simulations (see Fig. 4.9), we observed a significant unwinding of this
region, which was already described by our collaborators. As they indicated,
those changes involve residue 123, which is involved in creating interactions with
W39/T42 residues and forming the V-shaped dimer [19].
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(a) State 1 (b) State 2

(c) State 3

Figure 4.12: Structure of H3 in different states of free APOE4 system. Residues
116-139, 5 representative frames. Yellow – H3, grey – L4, orange – H4. Notice the
progressive loss of helical structure between residues 117-122 when the system was
evolving towards state 3.

4.2.2 States represent changes in the HL1 domain
Additionally, similar to APOE3, the structure of the HL1 domain in APOE4
exhibited changes across different states. However, unlike the APOE3 system,
none of the states in APOE4 exhibited a fully unstructured loop in the HL1
region. This suggests that the HL1 domain in APOE4 retains a higher level of
structural stability. As in all systems, higher level of structure was observed in
state 1, so in the state with on average most folded C-domain. As the simulations
run and transitioned towards state 2 and 3, we observed unwinding of the residues
44-47, and the residues 45-51 remained relatively stable (see Fig. 4.13).
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(a) State 1 (b) State 2

(c) State 3

Figure 4.13: Structure of HL1 in different states of free APOE4 system. Residues
39-57, 10 representative frames. Dark blue – H1, light blue – HL1, green – H2. We can
observe a gradual loss of HL1 structure, but less severe than in the free APOE3 system
(see Fig. 4.5).

Like in the case of APOE3, this alteration could potentially impact the final
shape of the dimer, leading to a shape more characteristic of the APOE4 V-
shaped dimer. It is possible that this is linked to better exposure of the residue
Q46, which forms a critical interaction with D153 in chain A (see Fig. 2.2). This
interaction causes a tilt of chain A, skewing it and resulting in the formation of
a V-shape.
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5. Analysis of the effect of a
small molecule drug candidate on
the APOE protein dynamics
In this chapter we focus on describing the changes we observed in simulations
performed with the 3SPA introduced to the solvent. We put the emphasis on the
differences visible in the dynamical behavior of the protein under the influence of
this drug candidate, as compared to the free APOE systems. We also elaborate
on their possible connection to the processes leading to APOE aggregation.

5.1 APOE3 with 3spa

Figure 5.1: tICA density plot and the MSM graph representation of the APOE3 +
3SPA system. Darker shades of grey correspond to higher density. Circles correspond to
states and are accordingly numbered. Size of the circle is proportional to the probability
of a corresponding state at equilibrium. Arrows represent probability of transitions
between states, with 1% used as a unit of measure.
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Figure 5.2: Temporal evolution of the APOE3 + 3SPA system. Simulations were
sorted according the the time elapsed from the initial frames of first epochs (x-axis),
treating epochs from which frames were sampled as a past of newly initialized simu-
lations. Frames were colored according the their hard classification to a state, whose
numbers are visible in the legend on the right.

Figure 5.3: Average secondary structure, contact maps and equilibrium probability
of states obtained for the APOE3 + 3SPA system.
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Figure 5.4: Feature importance matrices obtained by the 3-state CoVAMPnet model
for the APOE3 + 3SPA system. State 1 and state 2 look very noisy, but matrix for
state 3 has drawn our attention the highly relevant features - residues at the end of H2
and H3.

Subdomain State 1 State 2 State 3
HL1 Structured Less structured Less structured
L3 Structured Less structured Less structured
H3 Straight Bent Bent

C-domain Folded Intermediate Unfolded

Table 5.1: Structure of the most important subdomains observed in different states
of the APOE3 + 3SPA system.

5.1.1 APOE3 with 3SPA exhibits unique bending of H3
The most notable change with respect to the free APOE3 we observed is the
bending of H3 around residue 118. While state 1 is characterized by a straight
H3, states 2 and 3 have a bent H3, which is visible in the one-point loss of structure
around residue 118. State 3 also encompasses frames with reduced helicality in
this area, specifically around residues 118-125 (see Fig. 5.5).
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(a) State 1 (b) State 2

(c) State 3

Figure 5.5: Structure of H3 and L4 in different states of free APOE3+3SPA system.
Residues 116-139, 5 representative frames. Yellow – H3, grey – L4, orange – H4. Notice
the bending of H3 in state 2 and unwinding of H3 in state 3.

We currently do not see a straightforward interpretation of this change in
relation to the T-shaped dimers, as it does not directly involve any residues
contributing to the self-association interfaces. However, as proven even in the
discussed publication [19], even small conformational changes can lead to long
range, domino-like effects of profound consequences for protein interactions. To
quote the authors: “Interestingly, while all three ApoE isoforms share the same
self-association interface, the pathological ApoE4 isoform differs from the ApoE2
and ApoE3 isoforms by the angle between the two interacting NTDs. We demon-
strate that this angular difference is a consequence of a “domino-like effect” of the
C112R substitution, starting with the loss of the R61-E109 interaction, leading
to destabilization of the H3 helix and re-orientation of Q123. ” [19].

Another important observation is the fact that this bending and unwinding
resembles conformational changes we observed for the free APOE4 system (see
Fig. 4.12). We will elaborate on this in the next subsection.

5.1.2 Loss of HL1 structure looks reduced in the presence
of 3SPA

As in previous systems describing free APOE3 and free APOE4, we could observe
different levels of structural integrity in HL1 subdomain between different states.
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HL1 was the most structured in the state 1. With time, the beginning of the
HL1 became less structured, but contrary to the free APOE3 simulations it never
became fully unstructured (see Fig. 5.6). Interestingly, this change is virtually
identical with behavior of free APOE4 described previously (see Fig. 4.13). As
stated in the previous chapter, this is one of the regions of very high importance
for the T-shaped dimer, and according to data obtained by our collaborators from
Loschmidt Laboratories, 3SPA increased the APOE3 propensity to aggregate as
a T-shaped dimer [19].

(a) State 1 (b) State 2

(c) State 3

Figure 5.6: Structure of HL1 in different states of APOE3 + 3SPA system. Residues
39-57, 10 representative frames. Dark blue – H1, light blue – HL1, green – H2. Higher
structural integrity of state 1 is clearly apparent.

It seems like the idea that increased flexibility of HL1 in the free APOE3 sys-
tem supports creation of T-shaped dimers leads to a contradiction. 3SPA which
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made the HL1 in APOE3 more similar to that of APOE4 actually increased aggre-
gation into the desired T-shaped dimer. There are several possible explanations
for that. Possibilities to consider include the changes in HL1 being irrelevant for
dimer behavior, these properties being significant but inadequately captured due
to limited data, or our residue-level analysis obscuring atomic-level properties
such us specific orientations of residues.

The most interesting explanation, however, is related to the fact that
3SPA was found to only have a positive medical effect on patients with the
APOE4/APOE4 genotype [41], [42]. As described in the next section, 3SPA
really has effect on the conformational dynamics of APOE4 that could be con-
sidered positive. Considering the previously described bending and unwinding
of the end of H3 and the influence on the structure of HL1 in APOE3, it may
be concluded that 3SPA induces more APOE4-like conformations on APOE3. If
that truly is the case, 3SPA may actually cause a negative effect on APOE3, and
the lack of effect on APOE3/APOE4 patients might be the effect of both positive
effect on APOE4 and negative effect on APOE3 cancelling each other out.

5.1.3 3SPA introduces unwinding of the H2 helix near the
L3 loop in APOE3

Another significant change we observed was the unwinding of helices around the
L3 loop. This is the same region of importance as we observed for free APOE3.
Contrary to the simulation without the drug candidate, however, we also observed
some progressive loss of structure on the side of H2, specifically residues 75-79.
APOE3 with 3SPA also suffered from some loss structure at the beginning of H3,
but at a lesser degree (see Fig. 5.7).
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(a) State 1 (b) State 2

(c) State 3

Figure 5.7: Structure of H2 and L3 in different states of APOE3 + 3SPA system.
Residues 76-96, 20 representative frames. Yellow – H3, grey – L3, green – H2. Notice
the progressive loss of structure of the green H2 and the grey L3.

We can consider these changes to be somewhat analogous to the L3 changes
observed in free APOE3 (see Fig. 4.6). Increased unwinding of the end of H2
helix seems to be a significant effect of 3SPA. As mentioned in the previous
chapter, unwinding of the H3 resulted in conformations leading to more APOE4-
like, V-shaped dimers. According to research [19], 3SPA increased the APOE3
propensity to form T-shaped dimers. It could be therefore possible that this mi-
nor stabilization of the H3 increases the probability to form more APOE3-like,
T-shaped dimer. If the V-shaped dimerization is responsible for the neuropatho-
logical effects of APOE4, then this finding suggests a possible explanation for the
therapeutic effects of 3SPA observed in clinical experiments. However, confirming
this hypothesis demands more rigorous investigation.
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5.2 APOE4 with 3SPA
Some of our most interesting findings concern the simulation of APOE4 in the
presence of 3SPA.

Figure 5.8: tICA density plot and the MSM graph representation of the APOE4 +
3SPA system. Darker shades of grey correspond to higher density. Circles correspond to
states and are accordingly numbered. Size of the circle is proportional to the probability
of a corresponding state at equilibrium. Arrows represent probability of transitions
between states, with 1% used as a unit of measure.
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Figure 5.9: Temporal evolution of the APOE4 + 3SPA system. Simulations were
sorted according the the time elapsed from the initial frames of first epochs (x-axis),
treating epochs from which frames were sampled as a past of newly initialized simu-
lations. Frames were colored according the their hard classification to a state, whose
numbers are visible in the legend on the right.

Figure 5.10: Average secondary structure, contact maps and equilibrium probability
of states obtained for the APOE4 + 3SPA system.
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Figure 5.11: Feature importance matrices obtained by the 4-state CoVAMPnet model
for the APOE4 + 3SPA system. Circles in the center of the matrices uderscore the
importance of changes in the H2, while the small circle in the state 4 also suggest higher
relevance of the HL1 structure.

Subdomain State 1 State 2 State 3 State 4
H2 (70-73) Structured Intermediate Unstructured Unstructured
H2 (74-80) Structured Intermediate Less structured Structured

H3 Bent Less bent Even less bent Straight
C-domain Folded Folded Intermediate Unfolded

Table 5.2: Structure of the most important subdomains observed in different states
of the APOE4 + 3SPA system.

5.2.1 3SPA prevents the loss of structure in the H3 sub-
domain in APOE4

One notable change was the prevention of structure loss in the bent H3 subdo-
main observed in free APOE4. In the case of free APOE4, we observed gradual
degradation of helical structure of residues 115-125 (see Fig. 4.12). In contrast
to the free system, the presence of 3SPA led to a gradual unbending of the helix,
with state 4 exhibiting a fully straight H3 (see Fig. 5.12).
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(a) State 1 (b) State 2

(c) State 3 (d) State 4

Figure 5.12: Structure of H3 in different states of APOE4+3SPA system. Residues
109-129, 5 representative frames. Notice the gradual unbending of the helix.

This particular change was already reported [19] and is considered as a very
positive and promising effect of 3SPA: the straight H3 resembles the H3 from
the free APOE3 system. Quoting the authors: “Interestingly, 3SPA modulates
the structural features of APOE4, e.g., the conformation of helix H3 and the
orientation of W34 towards resembling APOE3. It has been previously shown
that small-molecule structure correctors can modify the aberrant conformation
of APOE4 and abolish its detrimental effects in cultured neurons.” [19]. If the
shape of H3 was of crucial importance for the neurodegenerative effect of the
APOE4, regardless of the hypotheses about the oligomerization processes, then
it would prove that 3SPA serves as a good corrector.
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5.2.2 3SPA led to a loss of structure in H2 in APOE4
One distinct feature we detected with our analysis was the significant loss of
structure in the H2. To be more specific, we observed a progressive loss of struc-
ture in residues 70-80 going from state 1 to state 3. Interestingly, state 4 saw an
increase in structure for residues 74-80 at the end of H2, but the residues 70-73
looked consistently unstructured (see Fig. 5.14). Those changes were reflected in
the altered surface of the protein (see Fig. 5.13). We consider this to be one of
the most interesting findings, as according to yet unpublished observations from
our collaborators from Loschmidt Laboratories, several residues in that area were
identified to play a role in the creation of parallel dimers. APOE4 has a signifi-
cantly higher propensity to form parallel dimer than APOE3, but this propensity
was severly reduced in the presence of 3SPA. We could therefore hypothesize,
that introduction of 3SPA disrupts the structural integrity of H2, which in turn
results in weaker interactions between APOE4 molecules, reducing its propensity
to create parallel dimers. Another important observation is that this change was
clearly correlated with the unbending of the H3 (see Fig. 5.12), which was not
previously reported. As a relatively small change, it could have been obscured in
the analysis of the full-length APOE, reinforcing our belief that restricting it to
the 4-helix bundle provided unique advantages.

(a) State 1 (b) State 4

Figure 5.13: Differences in protein surface between state 1 and state 4 of APOE4
+ 3SPA. Only one frame per state was used for this visualization. Residues 70-80 are
colored in red. Notice how big is the change of the surface for those residues.
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(a) State 1 (b) State 2

(c) State 3 (d) State 4

Figure 5.14: Structure of H2 in different states of APOE4+3SPA system. Residues
61-82, 5 representative frames. Interestingly, after losing a significant amount of the
structural integrity when transitioning from state 1 to state 2 and state 3, system seems
to partially regain it in state 4, as indicated by shape and good alignment of frames in
this state.

The interpretation of observed conformational changes is still a part of our on-
going discussions with our collaborators from Loschmidt Laboratories who posses
in-depth knowledge about proteins and development of small molecule drugs.
Their insight will provide the motivation to investigate most promising findings
from this thesis more thoroughly.
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Conclusion
Our study offers several significant insights, including previously unobserved
structural changes in the 4-helix bundle of the APOE protein. In total, we ana-
lyzed four systems which allowed us to get insight into the dynamics of APOE3
and APOE4 simulated with and without the excess of 3SPA. The most important
achievements of our analysis could be summarized as follows:

• We comprehensively analyzed flexibility of the HL1 across various systems,
noting that the HL1 of free APOE3 demonstrated the most unstructured
conformations among all the systems studied.

• We uncovered novel structural transformations at the end of H2 of the
APOE4 + 3SPA system and their correlation with the straightening of H3.

• For the APOE3 + 3SPA system, we witnessed an unwinding of the end of
H2 and an increased stability at the beginning of H3, as compared with the
free APOE3 system.

• We identified that 3SPA introduces two changes in APOE3 that interest-
ingly make APOE3 + 3SPA more similar to free APOE4, namely a bend
and unwinding in the H3 helix and an increased stability of the HL1 subdo-
main. These findings could potentially elucidate the lack of 3SPA’s positive
effect on APOE3/APOE4 patients, as previous works were centered around
how 3SPA induces more APOE3-like conformations on APOE4. We would
like to put forward the idea that the opposite process also occurs.

All of these observations could provide an insight into the protein’s oligomer-
ization process, which is thought to be a precursor to Alzheimer’s disease.

Additionally, we successfully validated several findings of our colleagues at
Loschmidt Laboratories [19], who employed more traditional methods:

• The increased flexibility around L3 in APOE3, resulting in a higher un-
winding of the beginning of H3.

• The stabilizing effect of 3SPA on APOE4, leading to a straightening of H3,
hence making it more akin to APOE3.

VAMPnet simplified the creation of models that fulfilled the necessary implied
timescales and CK test parameters, based on a representation encapsulating full
complexity of APOE’s 3D structure, as informed by the inter-residue distances.
The use of feature importance matrices in CoVAMPnet allowed for an easy iden-
tification of the protein’s most significant flexible regions, further showcasing
the potential of this machine learning pipeline. To our knowledge, neither Co-
VAMPnet nor VAMPnet have been successfully utilized on a protein of similar
size yet.

Our study also serves as a valuable case study by offering another example
of the application of VAMPnets to highly flexible proteins with complex con-
formational landscapes, and highlighting the limitations of MD in this context.
It shows that obtaining sufficient data to estimate the MSM that describes the
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protein’s equilibrium behavior remains a significant bottleneck. However, it also
demonstrates that it is possible to derive informative MSMs, even if they cannot
fully capture the system’s equilibrium behavior, and even if some compromises
on the processed data are necessary to manage the task’s complexity – such as
constraining the input representation, as we ultimately did by focusing on 4-helix
bundle. Thus, our work contributes to a deeper understanding of the challenges
involved in estimating MSMs with limited data.

Future work
In the future, we intend to further delve into the implications of the discovered
conformational states, possibly extending the analysis with methods we did not
apply yet. We believe that our observations possess the potential to deepen our
understanding of the molecular foundations of Alzheimer’s disease and enhance
our comprehension of the impact of 3SPA on APOE, especially on its oligomer-
ization process. Ultimately, this could lead to new avenues in the development of
drug candidates for Alzheimer’s disease.

We also aim to use the same pipeline to the simulations of the earlier described
APOE dimers, with the objective of identifying the critical conformations during
the formation of T-shaped, V-shaped, and parallel dimers. Due to the consid-
erably higher complexity of this system, it will likely necessitate more compu-
tational resources. This may prompt us to consider modifications to the neural
network architecture or the training regime. Notably, as dimer simulations ex-
hibit permutational symmetry, architectures like Graph Neural Networks [55] [56]
might be required. This could potentially offer a chance to employ their inductive
bias to enable the network to concentrate on critical interactions between the two
chains of the dimer, and perhaps pave the way for the creation of new architec-
tures specialized in analyzing the dynamics of such intricate systems modeling
interactions of multiple biomolecules. Moreover, we would like to implement and
test the “concatenated trajectory” for time-lagged methods which we described
in section 3.5.6.
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[32] Steven L. Brunton, Marko Budǐsić, Eurika Kaiser, and J. Nathan Kutz.
Modern Koopman theory for dynamical systems, 2021.
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A. Appendix

A.1 Populations of states calculated according
to hard assignments

In a situation when we can consider the estimated Koopman operator to be
reliable, equilibrium probabilities are more informative - they inform us not only
about the number of frames observed in a given state, but about the hypothetical
distribution of frames we would observe infinitely sampling from the equilibrium.
In our case, however, the reliability of the operators is arguable, therefore we
provide these hard assignment populations based estimates.

(a) Free APOE3 (b) Free APOE4

(c) APOE3 + 3SPA (d) APOE4 + 3SPA

Figure A.1: Populations of all analyzed systems.
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A.2 Koopman operators

(a) Free APOE3 (b) Free APOE4

(c) APOE3 + 3SPA (d) APOE4 + 3SPA

Figure A.2: Koopman operators of all analyzed systems.
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A.3 Implied timescales

(a) Free APOE3 (b) Free APOE4

(c) APOE3 + 3SPA (d) APOE4 + 3SPA

Figure A.3: Implied timescales of all analyzed systems.
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A.4 CK tests

Figure A.4: Chapman-Kolmogorov test of the free APOE4 system.
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Figure A.5: Chapman-Kolmogorov test of the APOE3 + 3SPA system.
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Figure A.6: Chapman-Kolmogorov test of the APOE4 + 3SPA system.
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