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Introduction
The category theory was initially introduced by Samuel Eilenberg and Saunders
Mac Lane in the 1940’. Its main advantage is that the categorical language can
be used in all fields in mathematics. It helps to see mathematics from a higher
perspective which can give us interesting connections between different areas in
mathematics or help us generalize some mathematical concepts. Some people see
category theory as a useful tool but some even build category theory without
using set theory and present it as the new foundation of mathematics opposed to
the set theory. Another interesting part is that even such an abstract theory has
applications outside of mathematics, for example in computer science and even
in philosophy, neuroscience or epidemiology. It can capture dynamic systems in
a visual way unlike differential equations and it has somewhat simple language
which makes it possible for people outside of mathematics to use it.

Daniel Kan made an important contribution to the category theory in his ar-
ticle Adjoint functors (Kan [1958]) where he introduced adjoint functors which is
one of the most important concepts in the category theory. In this article, he also
used constructions which are known today as Kan extensions. Let F : A −→ C
and G : A −→ B be functors. Kan extensions answer the question what is the
“best” functor H : B −→ C closing the triangle. This is a very universal situation.
As Saunders Mac Lane famously said “The notion of Kan extensions subsumes
all the other fundamental concepts of category theory” (Mac Lane [1998]). In
this thesis, we will differentiate between global Kan extensions and local Kan
extensions but we will refer to local Kan extensions just as Kan extensions.

In the first chapter, we will introduce some essential definitions for this thesis.
In the second chapter, we will define Kan extensions, state and prove important
theorem which gives us the existence condition for Kan extensions. The proof will
also be the manual for the construction of Kan extensions. In the third chapter,
we will state and prove theorem connecting Kan extensions and adjoint functors,
introduce the global Kan extension and put it in context. In the last chapter, we
will solve an interesting problem using theorems from this thesis.
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1. Basic definitions
In this chapter we will introduce some definitions and theorems which will be
needed in proofs.

Definition 1.1 (Category of elements). Consider a functor F : A −→ Set from
a category A to the category of sets. The category Elts(F ) of “elements of F”
is defined in the following way.
(1) The objects of Elts(F ) are the pairs (A, a) where A ∈ obj A and a ∈ F (A)
(2) The arrow f : (A, a) −→ (B, b) of Elts(F ) is the arrow f : A −→ B of A
such that Ff(a) = b.
(3) Composition of arrows of Elts(F ) is induced by composition of arrows of A .

Now let us recall what it means that a functor F : A −→ Set is representable.
One definition is that F is representable if it is naturally equivalent to a func-
tor A (A, −) for some A ∈ obj(A ). Another equivalent definition is that F is
representable if it has a universal pair. It means that there exist a pair (A, a)
where A ∈ A and a ∈ F (A) such that for every B ∈ A and b ∈ F (B) there is a
unique morphism α : A −→ B such that Fα(a) = b. Another characterisation is
introduced in the following remark.

Remark. F is representable if and only if Elts(F ) has an initial object.

Proof. First let us assume that F is representable. Let (A, a) be an universal
pair. It means that for every B ∈ A and b ∈ F (B) we have a unique morphism
α ∈ A (A, B) such that Fα(a) = b. But this means that in the category Elts(F )
we have one and only one morphism α : (A, a) −→ (B, b). Now because B and b
were chosen arbitrary we see that (A, a) is the initial object.
Now let us assume that (A, a) is the initial object in Elts(F ). It means that for
every (B, b) ∈ Elts(F ) we have a unique morphism α : (A, a) −→ (B, b). α is
a morphism in Elts(F ) so from the second condition in the definition above we
have Fα(a) = b. Because it holds ∀(B, b) ∈ Elts(F ), we have for every B ∈ A
and b ∈ F (B) a unique morphism α such that Fα(a) = b and that is exactly the
definition of the universal pair for F so F is representable.

Definition 1.2 (Co-free object). Let M and N be categories and N ∈ obj(N ).
Let F : M −→ N be a functor. A pair (M, f) is a co-free object over N with
respect to F if M ∈ obj(M ), f : F (M) −→ N is a morphism in N and for every
M ′ ∈ obj(M ) and every morphism g : F (M ′) −→ N there is a unique morphism
h : M ′ −→ M such that g = f ◦ F (h).

Now we will introduce one of the equivalent definitions of adjoint functors,
specifically the one which we will use later.

Definition 1.3 (Adjoint functor). Let H and K be categories and U : H −→
K be a functor. Then the functor F : K −→ H is the left adjoint of U if there
is a natural transformation ϵ : F ◦U −→ 1H such that the pair (U(b), ϵb) is co-free
object over b with respect to F .

3



2. Kan extension theorem
In this chapter we will formulate and prove theorem which gives us an existence
condition for Kan extensions. But first, we begin with definitions.

Definition 2.1 (Left Kan extension). Let us consider categories A , B and C
and two functors F : A −→ C and G : A −→ B. The left Kan extension F
along G, if it exists, is a pair (L, η) where:
• L : B −→ C is a functor
• η : F −→ L ◦ G is a natural transformation,
as we can see in the left diagram below. (L, η) also has to satisfy the following
universal property:
For every functor M : B −→ C and a natural transformation α : F −→ M ◦ G
there is a unique natural transformation σ : L −→ M such that σG ◦ η = α, as
we can see in the right diagram below. The left Kan extension will be denoted
by LanGF .

B L ◦ G

A C F M ◦ G

G L

F

η σG

α

◦η

Now we introduce the dual notion to the left Kan extension, the right Kan
extension.

Definition 2.2 (Right Kan extension). Let us consider categories A , B and C
and two functors F : A −→ C and G : A −→ B. The right Kan extension F
along G, if it exists, is a pair (R, ϵ) where:
• R : B −→ C is a functor
• ϵ : R ◦ G −→ F is a natural transformation,
as we can see in the left diagram below. (R, ϵ) also has to satisfy the following
universal property:
For every functor M : B −→ C and a natural transformation α : M ◦ G −→ F
there is a unique natural transformation σ : M −→ R such that ϵ ◦ σG = α, as
we can see in the right diagram below. The right Kan extension will be denoted
by RanGF .

B R ◦ G

A C F M ◦ G

G R

F

ϵ σG

α

◦ϵ

One could ask what will happen if we have two different left Kan extensions
F along G. We will answer that in the following remark.
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Remark. Let us assume that L1 and L2 are both left Kan extensions F along
G with the corresponding natural transformations η1 and η2 where F and G are
the same as in theorem. From the definition we get the natural transformations
σ1 : L1 −→ L2 and σ2 : L2 −→ L1 such that the following diagrams commute:

L1 ◦ G

F L2 ◦ G

L2 ◦ G

F L1 ◦ G

η1 σ1G

η2

η2 σ2G

η1
◦

◦

We have two equalities:
η1 = σ2G ◦ η2

η2 = σ1G ◦ η1

From this we get
η1 = σ2G ◦ σ1G ◦ η1

and it is equivalent to
σ2G ◦ σ1G = 1L1G

That mean that for every A ∈ A we have σ2G(A) ◦σ1G(A) = 1(L1◦G)(A) which means
that σ2G(A) is an inverse of σ1G(A) which means that functors L1 ◦ G and L2 ◦ G
have to be naturally equivalent.

Now we will introduce Kan extension theorems.

Theorem 2.3 (Left Kan extension theorem). Consider two functors
G : A −→ B and F : A −→ C , with A small and C cocomplete. Under these
conditions, the left Kan extension F along G exists.

Proof. We will use the same notation as in the definitions above and we will split
this proof into three parts.

Part 1

In this part we will define the functor L on objects and arrows. First, let us
fix some B ∈ B. Consider the category of elements (Definition 1.1) of the con-
travariant functor B(G(−), B) : A −→ Set and denote it by δB. δB is small since
A is small.
We will show why it has to be contravariant. Consider an arrow a : A −→ A′.
We need to define the arrow B(G(a), B) : B(G(A′), B) −→ B(G(A), B). We
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will do it the following way: B(G(a), B)(f) = f ◦ G(a), ∀f ∈ B(G(A′), B) as we
can see in the following picture.

G(A) B

G(A′)

G(a)
f

f◦G(a)

◦

From this picture it is also easy to see that if we try to do it the other way there
would be no clear method to define a map from B(G(A), B) to B(G(A′), B).

Now we write ϕB : δB −→ A for the corresponding forgetful functor defined
in the way that ϕB((A, a)) = A, ∀(A, a) ∈ δB. Let us denote the colimit of
the diagram (F ◦ ϕB) : δB −→ C by (L(B), (sB

(A,b))(A,b)∈δB
) where (sB

(A,b))(A,b)∈δB
:

(F ◦ ϕB)((A, b)) −→ L(B) are the components of the natural transformation
which witnesses the colimit. And this is how we define L on objects.

Now we need to define define L on arrows. Given a morphism f : B −→ B′

and an object (A, b) ∈ δB, the pair (A, f ◦ b) is an object in δB′ . Let us ob-
serve that the morphism a : (A, b) −→ (A′, b′) in δB immediately gives rise to the
morphism a : (A, f ◦ b) −→ (A′, f ◦ b′) in δB′ . Another important thing is that
(F ◦ϕB)((A, b)) and (F ◦ϕB′)((A, f ◦ b)) are the same objects in C . Together this
gives us that (L(B′), (sB′

(A,f◦b))(A,b)∈δB
) is a cocone on F ◦ϕB. Because L(B) is a col-

imit and L(B′) is a cocone we get the unique factorisation L(f) : L(B) −→ L(B′)
such that L(f)◦sB

(A,b) = sB′

(A,f◦b) ∀(A, b) ∈ δB and this is how we define L on arrows.

Part 2

In this part we will show that L is a functor. Equality L(1B) = 1L(B) clearly
holds because the equality 1L(B) ◦ sB

(A,b) = sB
(A,b) holds ∀(A, b) ∈ δB. For the com-

position suppose morphisms f : B −→ B′ and g : B′ −→ B′′ and a fixed object
(A, b) ∈ δB. This gives us objects (A, f ◦ b) ∈ δB′ and (A, g ◦ f ◦ b) ∈ δB′′ .
The morphism L(g ◦ f) is defined as the unique morphism such that equality
L(g ◦ f) ◦ sB

(A,b) = sB′′

(A,g◦f◦b) holds. We also have morphisms L(f) and L(g) such
that the equalities L(f) ◦ sB

(A,b) = sB′

(A,f◦b) and L(g) ◦ sB′

(A,f◦b) = sB′′

(A,g◦f◦b) hold as is
captured in the diagram below.

L(B′′) L(B′) L(B)

(F ◦ ϕB)((A, b))

sB
(A,b)

L(f)L(g)

sB′
(A,f◦b)

sB′′
(A,g◦f◦b)

L(g◦f)

L(g)◦L(f)

◦ ◦
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Now we have three equalities:

L(f) ◦ sB
(A,b) = sB′

(A,f◦b)

L(g) ◦ sB′

(A,f◦b) = sB′′

(A,g◦f◦b)

L(g ◦ f) ◦ sB
(A,b) = sB′′

(A,g◦f◦b)

If we combine the first two equalities we get:

L(g) ◦ L(f) ◦ sB
(A,b) = sB′′

(A,g◦f◦b)

L(g ◦ f) ◦ sB
(A,b) = sB′′

(A,g◦f◦b)

This holds ∀(A, b) ∈ δB so the morphism L(g)◦L(f) also satisfy the condition for
the unique morphism from the colimit L(B) to the cocone L(B′′). This means
that L(g) ◦ L(f) = L(g ◦ f) so L is indeed a functor.

Part 3

In this part we will define the natural transformation η and show that for any
functor H : B −→ C and a natural transformation α : F −→ H ◦ G there is a
natural transformation σ : L −→ H such that the triangle from definition com-
mutes.

To define η, we must construct a morphism ηA : F (A) −→ (L ◦ G)(A) for each
object A ∈ A . It suffices to choose ηA = s

G(A)
(A,1G(A)). Let us prove the naturality

of η. Given a morphism a : A −→ A′, we need to show that the following square
commutes.

F (A) (L ◦ G)(A)

F (A′) (L ◦ G)(A′)

ηA=s
G(A)
(A,1G(A))

(L◦G)(a)F (a)

ηA′ =s
G(A′)
(A′,1G(A′))

◦

We have
(L ◦ G)(a) ◦ s

G(A)
(A,1G(A)) = s

G(A′)
(A,G(A)) = s

G(A′)
(A′,1G(A′)) ◦ F (a)

where the first equality holds by the definition of (L◦G)(a) and the second equal-
ity holds because a : (A, G(a)) −→ (A′, 1G(A′)) is a morphism of δG(A′). So η is
indeed a natural transformation.

Now consider a functor H : B −→ C and a natural transformation α : F −→
H ◦ G. To construct σ let us fix an object B ∈ B. For each object (A, b) ∈ δB

we have the following composite.

(F ◦ ϕB)((A, b)) = F (A) (H ◦ G)(A) H(B)αA H(b)

Let us prove that (H(B), (H(b) ◦ αA)(A,b)∈δB
) is a cocone on F ◦ ϕB. Given a

morphism a : (A, b) −→ (A′, b′) of δB we need to show that the following diagram
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commutes.

(F ◦ ϕB)((A, b)) = F (A) (H ◦ G)(A) H(B)

(H ◦ G)(A′)

(F ◦ ϕB)((A′, b)) = F (A′)

αA H(b)

F (a)

αA′

H(b′)◦

We have
H(b′) ◦ αA′ ◦ F (a) = H(b′) ◦ (H ◦ G)(a) ◦ αA

= H(b′ ◦ G(a)) ◦ αA

= H(b) ◦ αA

where the first equality holds by naturality of α and the third equality holds by
definition of the morphism a of δB. So (H(B), (H(b) ◦ αA)(A,b)∈δB

) is a cocone
on the F ◦ ϕB. This gives us a unique factorisation σB : LB −→ H(B) through
the colimit L(B) yielding σB ◦ sB

(A,b) = H(b) ◦ αA. To prove the naturality of σ,
consider a morphism f : B −→ B′. We need to show that the following square
commutes.

L(B) H(B)

L(B′) H(B′)

σB

H(f)L(f)

σB′

◦

It suffices to show it on the colimit injections. For each sB
(A,b) we get

H(f) ◦ σB ◦ sB
(A,b) = H(f) ◦ H(b) ◦ αA

= H(f ◦ b) ◦ αA

= σB′ ◦ sB′

(A,f◦b)

= σB′ ◦ L(f) ◦ sB
(A,b)

where the first equality holds by the definition of σB, the third holds by the def-
inition of σB′ and the fourth holds by the definition of L(f). Together, we got
that σ is a natural transformation.

It suffices to show that the condition σG ◦ η = α holds on objects. We get
σGA ◦ ηA = αA which is just a relation

σG(A) ◦ s
G(A)
(A,1G(A)) = αA = H(1G(A)) ◦ αA.

But this holds just from the definition of σG(A).

The skeleton of this proof is from Borceux [1994], specifically from pages 123
and 124. Now because of the duality principle we immediately get the following
theorem.
Theorem 2.4 (Right Kan extension theorem). Consider two functors
G : A −→ B and F : A −→ C , with A small and C complete. Under these
conditions, the right Kan extension F along G exists.
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3. Relation of adjoint functors to
Kan extensions
In this chapter, we will introduce a theorem which connects adjoint functors
and Kan extensions in some way and introduce the concept of the general Kan
extension.
Theorem 3.1 (Adjoint functors of functors between categories of functors). Let
M and N be small categories and let K be a complete category. Let G : M −→
N be a functor. It gives rise to the functor F : K N −→ K M such that F (B) =
B ◦ G for every B ∈ obj

(︂
K N

)︂
and F (τ) = τG for every τ ∈ mor

(︂
K N

)︂
. Then

F has a right adjoint U : K M −→ K N .
Proof. We will split this proof into two parts. In the first part we will define the
functor U and in the second part we will show that F is the left adjoint of U
which is equivalent to U being a right adjoint to F .

Part 1

First, we will define U on objects. Let I ∈ obj
(︂
K M

)︂
. We know that M is

small and K is complete. Theorem 2.4 gives us existence of the right Kan ex-
tension I along G as is captured in the following diagram:

N

M K

G RanGI

I

ϵI

We put U(I) = RanGI. And this is how we define U on objects.

Now we will define U on morphisms. Let J ∈ obj
(︂
K M

)︂
and let τ : I −→ J

be a morphism. We again get the right Kan extension J along G. We already
have the functor RanGI : N −→ K and τ gives rise to the natural transforma-
tion τ ◦ ϵI : RanGI ◦ G −→ J as is captured in the following diagrams:

N N

M K M K

G RanGJ

J

G RanGI

J

ϵJ τ◦ϵI

Now from definition of the right Kan extension J along G we get a unique natural
transformation γ : RanGI −→ RanGJ such that the following diagram commutes:

RanGJ ◦ G

J RanGI ◦ G

ϵJ
γG

τ◦ϵI

◦
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Because RanGI = U(I) and RanGJ = U(J), we can put U(τ) = γ. And this is
how we define U on morphisms.

Now we need to show that U is a functor. First, let us show that U(1I) = 1U(I)

for all I ∈ obj
(︂
K M

)︂
. From the definition of U on morphisms we get that

U(1I) : RanGI −→ RanGI is the unique natural transformation such that the
following diagram commutes:

RanGI ◦ G

I RanGI ◦ G

ϵI
U(1I)G

ϵI

◦

In other words ϵI = ϵI ◦ U(1I)G. But ϵI = ϵI ◦ 1RanGIG also holds so from the
uniqueness of the identity morphism we get U(1I) = 1RanGI = 1U(I) and because
I was chosen arbitrary this holds for all objects in K M .

Now let us assume two morphsims τ : I −→ J and υ : J −→ K and let ϵI ,
ϵJ and ϵK be the natural transformations from definitions of U(I), U(J) and
U(K). From definitions of U(τ), U(υ) and U(υ ◦ τ) we get the three commuting
diagrams which we will merge into one:

RanGK ◦ G

RanGJ ◦ G

K J RanGI ◦ G

U(υ◦τ)G

ϵK

τ◦ϵIυ

U(τ)G

U(υ)G

ϵJ

υ◦ϵJ

(υ◦τ)◦ϵI

ϵK

The red diagram comes from the definition of U(τ) and commutes, the green
diagram comes from the definition of U(υ) and commutes and the purple diagram
comes from the definition of U(υ ◦ τ) and commutes. From the red diagram we
get

ϵJ ◦ U(τ)G = τ ◦ ϵI .

We see from the diagram that we can compose it with υ from left and we get

υ ◦ ϵJ ◦ U(τ)G = υ ◦ τ ◦ ϵI .

Now from the green diagram we get

ϵK ◦ U(υ)G = υ ◦ ϵJ .

10



From these two equalities we can conclude

ϵK ◦ U(υ)G ◦ U(τ)G = υ ◦ τ ◦ ϵI .

But from the purple diagram we see that

ϵK ◦ U(υ ◦ τ)G = υ ◦ τ ◦ ϵI

and from uniqueness of U(υ ◦ τ) we get U(υ ◦ τ) = U(υ) ◦ U(τ). Because τ and
υ were chosen arbitrary we see that U is indeed a functor.

Part 2

We will show that F is the left adjoint of U by finding a counit ϵ : FU −→ 1K M .
For I ∈ obj

(︂
K M

)︂
we see that FU(I) = RanGI ◦G so we get the candidate for a

component of ϵ directly from the definition of U(I) which is ϵI : RanGI ◦ G −→ I
as we can see in the following diagram:

N

M K

G RanGI

I

ϵI

Now we verify that ϵ =
(︂
ϵI ; I ∈ obj

(︂
K M

)︂)︂
is a natural transformation. Let us

assume the morphism τ : I −→ J . We see that FU(τ) = U(τ)G. We need to
show that the following diagram commutes:

RanGI ◦ G I

RanGJ ◦ G J

U(τ)G

ϵI

τ

ϵJ

But this follows directly from the definition of U(τ).

Now we need to show that (U(I), ϵI) is a co-free object over I with respect to F

for all I ∈ obj
(︂
K M

)︂
. This means that for every S ∈ obj

(︂
K N

)︂
and for every

morphism µ : F (S) −→ I there is a unique morphism σ : S −→ U(I) such that
µ = F (σ) ◦ ϵI . We see that U(I) = RanGI, FU(I) = RanGI ◦ G, F (σ) = σG
and F (S) = S ◦ G from definition of F and U . We capture our situation in the
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following picture:

K N K M

RanGI RanGI ◦ G

S I S ◦ G

F

∃!σ
ϵI σG

µ

◦

In other words, for every functor S : N −→ K and a natural transformation
µ : S ◦ G −→ I there is a unique natural transformation σ : S −→ RanGI such
that µ = ϵI ◦ σG. But the existence of such unique natural transformation comes
directly from RanGI being the right Kan extension. So (U(I), ϵI) is a co-free
object over I with respect to F and because I was chosen arbitrary it holds for
all I ∈ obj

(︂
K M

)︂
so ϵ is a counit and thus F is the left adjoint of U .

In the following remark, we will define the global Kan extensions and show
interesting connection to the previous theorem.

Remark. Let K M and K N be categories of functors and G : M −→ N as in
Theorem 3.1. Assume the functor F : K N −→ K M defined in the same fashion
as in Theorem 3.1. The right adjoint U of F is called the global right Kan exten-
sion. From the last section of the previous theorem we know that components
of the counit have needed properties for being the natural transformation from
definition of the right Kan extension for the corresponding functors. That is, if
ϵ =

(︂
ϵI ; I ∈ K M

)︂
is the counit of the adjunction than U(I) = RanGI with the

corresponding natural transformation ϵI . This means that if we put a functor
into the global right Kan extension we get the local Kan extension. From du-
ality principle, the same holds for the global left Kan extension which is the left
adjoint of F and we get the needed natural transformations from the unit of the
adjunction. We can see that it is in some way the opposite implication than the
one in Theorem 3.1.
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4. Example
In this chapter, we will formulate a problem and answer it using the previous
theorems. First we need to recall what is the category G-set for some group G.
Objects of such category are sets together with a left group action. This means
that two same sets with different left group actions are different objects in this
category. Morphisms in this category are such set functions that preserve respec-
tive left group actions. For example let us have a set A with the left group action
g · − for all g ∈ G and a set B with the left group action g ⋆ − for all g ∈ G. A
morphism in our category is such function f : A −→ B that f(g · a) = g ⋆ f(a)
for all g ∈ G and a ∈ A.

Problem Let G and H be groups and f : G −→ H a group homomorphism.
Assume a functor F : H-set −→ G-set defined such as F (A) = A, ∀A ∈ obj(H-
set) and the G-set structure is induced by f in the way that g ·a = f(g) ·a, ∀a ∈ A
and g ∈ G. Find the right adjoint U : G-set −→ H-set of F .
Solution. Let us represent G and H as one object categories with the object ⋆
for G and † for H and with morphisms being the elements of the corresponding
group. In this representation, the composition of morphisms works like the group
multiplication which will be important for the solution of this problem. We name
these categories G and H . Now we can represent the category G-set as the
category of functors from G to Set. For example, let us have A ∈ obj(G-set).
We define the corresponding functor I : G −→ Set in the way that I(⋆) = A and
I(g) = g · −, for all morphisms g ∈ mor(G ). We represent the category H-set in
the same fashion. Now, because Set is complete, we can use the construction of
the right adjoint from Theorem 3.1.

Let us consider the following diagram:

H

G Set

f Ranf I

I

ϵI

Here I is the functor representing some A ∈ obj(G-set). According to Theorem
3.1, RanfI = U(I), so we need to find RanfI. We will use the construction
from Theorem 2.3 modified for the right Kan extension. Let δ be the category
of elements of the functor H (†, f(−)). Now because f(⋆) = † objects of δ are
pairs (⋆, h) for all morphisms h ∈ mor(H ). A morphism from (⋆, h) to (⋆, h′) is
a morphism g from G such that H (†, f(g)) (h) = h′. Equivalently, we need the
following diagram to commute:

† †

†

h
f(g)

h′

◦
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In other words, the morphism we are looking for is such g that f(g) ◦ h = h′.
We write ϕ for the forgetful functor from the category δ to the category G . To
define U(I) we will find the limit of the functor I ◦ ϕ : δ −→ Set. We will use the
Maranda construction.

We define the discrete categories δ0 and δm in the way that obj(δ0) = obj(δ) and
obj(δm) = mor(δ). Assume the functor codom : δm −→ δ0. Let N : δ0 −→ Set
be the functor such that N((⋆, h)) = (I ◦ ϕ)((⋆, h)) = A for all (⋆, h) ∈ δ0. We
need to find the limit of N and codom ◦ N . Now because N((⋆, h)) = A for all
(⋆, h) ∈ δ0 and because δ0 has the same number of objects as H has elements
we see that lim N =

(︂
AH ; (πh, h ∈ H)

)︂
where πh is the h-th coordinate pro-

jection to A. To find the limit of codom ◦ N we observe that every codomain
of a morphism can be represented by the morphism itself and every morphism
in δ can be indexed by some g ∈ G and h ∈ H because there is one and only
one h′ such that the relation f(g) ◦ h = h′ holds. From this we get that lim
codom ◦ N =

(︂
AG×H , (πg,h; g ∈ G, h ∈ H)

)︂
where πg,h is the g, h-th coordinate

projection to A.
The first limit gives us two cones of the diagram codom ◦ N : δm −→ Set. These
cones are

(︂
AH , (πf(g)h; g ∈ G, h ∈ H)

)︂
and

(︂
AH , ((I ◦ ϕ)(g) ◦ πh; g ∈ G, h ∈ H)

)︂
.

From these we get two unique morphisms α, β : AH −→ AG×H such that πf(g)h =
πg,h ◦ α and (I ◦ ϕ)(g) ◦ πh = πg,h ◦ β for all g ∈ G and h ∈ H.
To define α and β let us consider some a ∈ AH . Let us start with α. We need
the equality α(a)g,h = af(g)h to hold for all h ∈ H and g ∈ G so we put ∀h ∈ H
α(a)g,h′ = ah for all g ∈ G and h′ ∈ H such that h = f(g)h′ and this is sufficient
to define α. To define β let us observe that ((I ◦ ϕ)(g) ◦ πh)(a) = g · ah. In this
case we put β(a)g,h = g ·ah for all g ∈ G and h ∈ H and this is sufficient to define
β.
The last step in the Maranda construction is to find the equaliser of α and β. To
find it, we separate such a ∈ AH that af(g)h = g · ah for all g ∈ G and h ∈ H.
Those are exactly the a ∈ AH such that α(a) = β(a). To do so, let us look at the
elements of AH like at the functions from the set H to the set A. For example,
let s be such function. We put s(h) = ah for all h ∈ H and by this we get the
wanted representation. A function representing a such that α(a) = β(a) must
satisfy the following equality: s(f(g)h) = g ·s(h). We will describe such functions
using G-sets.

Let us assume the H-set H where the action of H is defined in the way that
h · h′ = hh′. Now let us consider the set of functions G-set(F (H), A). From defi-
nition we see that for every s ∈ G-set(F (H), A), h ∈ H and g ∈ G the equality
g · s(h) = s(g · h) = s(f(g)h) must hold and also the set G-set(F (H), A) is the
set of all functions such that the previous equality holds. But this is exactly the
condition we wanted. In other words, for every a such that α(a) = β(a) there
is one and only one function s ∈ G-set(F (H), A) such that ah = s(h) for all
h ∈ H. We define the morphism rI : G-set(F (H), A) −→ AH in the way that for
all s ∈ G-set(F (H), A) rI(s) = a such that ah = s(h) for all h ∈ H. It is clear
that rI equalises α and β. We want to show that (G-set(F (H), A), (rI , α ◦ rI)) is
the equaliser.
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Let us consider some set K and some morphism r′ : K −→ AH such that α ◦ r′ =
β ◦ r′. We will find the morphism d : K −→ G-set(F (H), A) such that r′ = rI ◦ d.
For every k ∈ K, r′(k) = a such that α(a) = β(a). But we know that for such
a there is sk ∈ G-set(F (H), A) such that ah = sk(h) for all h ∈ H. To define d,
we simply put d(k) = sk, for all k ∈ K and the equality r′ = rI ◦ d easily holds.
Because K and r′ were chosen arbitrary we see that (G-set(F (H), A), (rI , α ◦ r))
is the equaliser of α and β and from the Maranda construction it follows that
(G-set(F (H), A), (πh ◦ rI ; h ∈ H) is the limit of the diagram I ◦ ϕ : δ −→ Set and
thus RanfI(†) = G-set(F (H), A).

Now we define RanfI on morphisms. We will again use the construction from
Theorem 2.3 modified for the right Kan extension. Every h ∈ mor(H ) gives rise
to the cone (G-set(F (H), A), (πh′h ◦ rI ; h′ ∈ H)). Here we use that we can also
view morphisms from the category H as elements of the group H. We will find
the unique morphism RanfI(h) : G-set(F (H), A) −→ G-set(F (H), A) such that
πh′h ◦ rI = πh′ ◦ rI ◦RanfI(h) for all h′ ∈ H. Let s ∈ G-set(F (H), A) and h′ ∈ H.
We see that (πh′h◦rI)(s) = s(h′h) and (πh′ ◦rI)(s) = s(h′). Let us define RanfI(h)
on the elements. We put ((RanfI(h))(s))(h′) = s(h′h) for all s ∈ G-set(F (H), A)
and h′ ∈ H and with this definition the equality πh′h ◦ rI = πh′ ◦ rI ◦ RanfI(h)
easily holds. Because this all holds for every h ∈ mor(H ), RanfI is sufficiently
defined on arrows and thus we completely defined U on objects.

Now we define U on morphisms. To do so, we need to know specifically for
every I : G −→ Set what is the natural transformation ϵI from the definition of
the right Kan extension RanfI. According to the construction from Theorem 2.3,
it suffices to put ϵI = π1H

◦ rI where 1H is the unit of the group H. Now we use
the construction from Theorem 3.1. Let us consider two functors I, J : G −→ Set
such that I(⋆) = A and J(⋆) = B. Assume a natural transformation m from I
to J that is a morphism m : A −→ B. From definition of U on objects we get the
following pictures:

H H

G Set G Set

f U(I)

I

f U(J)

J

π1H
◦rI π1H

◦rJ

Now m gives rise to the natural transformation m ◦ π1H
◦ rI : U(I) ◦ f −→ J and

from the definition of the right Kan extension and the construction from Theorem
3.1 we get the following commutative diagram:

U(J) ◦ f

J U(I) ◦ f

π1H
◦rJ U(m)f

m◦π1H
◦rI

◦

That is there exist the unique natural transformation U(m) : U(I) −→ U(J)
such that m ◦ π1H

◦ rI = π1H
◦ rJ ◦ U(m)f . Now because G has only one object
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this equality reduces to m ◦ π1H
◦ rI = π1H

◦ rJ ◦ U(m). Now let us show that
U(m) = G-set(F (H), m). We get

m ◦ π1H
◦ rI = π1H

◦ rJ ◦ G-set(F (H), m).

But this is the equality of two functions from G-set(F (H), A) to B so we can
verify the equality on elements. Let p ∈ G-set(F (H), A). We get

(m ◦ π1H
◦ rI)(p) = (π1H

◦ rJ ◦ G-set(F (H), m))(p)

and this is equivalent to

m ◦ p(1H) = m ◦ p(1H).

The last equality holds and because p was chosen arbitrary we have that U(m) =
G-set(F (H), m).

We have successfully defined U on objects and morphisms and because we fol-
lowed the construction from Theorem 3.1 we immediately have that U is the right
adjoint of F . Now let us translate our result to the language of standard group
actions. For a A ∈ G-set we have U(A) = G-set(F (H), A) where H-set structure
is induced by the relation (h · s)(h′) = s(h′h) for all s ∈ G-set(F (H), A) and
h, h′ ∈ H. For a morphism m ∈ mor(G-set) we have U(m) = G-set(F (H), m).
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Conclusion
First, we familiarised a reader with the category of elements and presented our
version of definition of adjoint functors. In the second chapter we, with the help
of Borceux [1994], proved theorem which gives us the existence condition for
left Kan extensions and its construction using colimits and we introduced the
dual version of this theorem. In the third chapter, we introduced and proved
a theorem which puts in relation adjoint functors and Kan extensions and we
showed its connection to global Kan extensions. In the last chapter, we solved
an interesting problem using everything from this thesis, namely a construction
of a Kan extension from the proof of Theorem 2.3 and the method of finding a
right adjoint from Theorem 3.1.
It would be also interesting to study relation of Kan extensions and ends and
coends following, for example, Fosco [2021] but unfortunately there was no time
and space for that in this thesis.

17



Bibliography
F. Borceux. Handbook of categorical algebra 1. Encyclopedia of Mathematics and

its Applications (50). Cambridge University Press, Cambridge, 1994. ISBN
9780511525858.

L. Fosco. (Co)end Calculus. London Mathematical Society Lecture Note Series
(468). Cambridge University Press, Cambridge, 2021. ISBN 9781108778657.

D. M. Kan. Adjoint functors. Transactions of the American Mathematical Society,
87(2):294–329, 1958.

S. Mac Lane. Categories for the Working Mathematician. Graduate Texts in
Mathematics (5). Springer, New York, NY, 1998. ISBN 9780387984032.

18


	Introduction
	Basic definitions
	Kan extension theorem
	Relation of adjoint functors to Kan extensions
	Example
	Conclusion
	Bibliography

