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1 Introduction

Over the past decades, computational methods have taken a major role in
theoretical studies in physics and other scientific fields. This rapid expansion
has been facilitated by both advances in computer hardware and develop-
ment in computational algorithms. One of the manifestations of these ad-
vances is the expansion of the possibilities of methods of molecular dynamics
simulations, in which the statistical properties of many-body molecular sys-
tems are investigated by numerically solving their classical equations of mo-
tion (the methods can be used to investigate other systems as well, however,
this work will not be concerned with these cases) [1]. An important direction
in the development of these methods is the strive for a more accurate de-
scription of the simulated atoms and their interactions. In the past, the inter-
atomic interactions were, for realistic systems, often available only in a highly
approximate form as a sum of pairwise interactions. The recent develop-
ments in the field of ab-initio molecular dynamics [2] allow a highly accurate
description of these interactions, obtained by solving the ground state elec-
tronic problem, even for moderately sized systems. Furthermore, the quan-
tum mechanical effects on the equilibrium properties of the atomic nuclei
can be included using the Feynman path integral formulation in imaginary
time [3], [4]. This formulation allows one to map the problem of quantum
statistics onto a problem of classical statistics where each particle is replaced
by a ring polymer, which in turn can be simulated using molecular dynamics.
These path-integral molecular dynamics simulations, however, require an ac-
curate description of the interatomic interactions and are significantly more
costly than their classical counterparts, and as such, they were until recently
available only for rather simple systems or at a very high computational cost.

Despite this progress, the inclusion of quantum dynamical effects into
molecular dynamics simulations still presents a major challenge. The main
obstacle towards this goal is the numerical sign problem [5] — the direct cal-
culation of the exact time evolution of a high-dimensional quantum mechan-
ical system, be it through the usage of the Feynman path integral in real time,
or through the explicit calculation of the time evolution operator, generally
requires the calculation of a sum of a large number of mutually nearly can-
celing complex phase factors. Such a task is virtually impossible to do on a
computer. This problem can be overcome by other means — most notably
by diagonalizing the Hamiltonian, but these approaches tend to have highly
unfavorable scaling with system size (the diagonalization of the Hamiltonian
scales exponentially with system size). The size of the systems for which exact
quantum dynamics can be computed is thus highly limited. In the study of
molecular systems, this presents an issue for the theoretical prediction of the
results of a number of experiments, such as infrared or Raman spectroscopy,
which investigate the dynamical properties of the system.
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1.1 Approximations to quantum dynamics

To solve this issue, a number of approximations have been developed which
allow one to include quantum dynamical effects in molecular dynamics sim-
ulations of condensed systems without running into the numerical sign prob-
lem. These approximations generally take advantage of the fact that deco-
herence times tend to be small in condensed systems, and thus the effects of
quantum coherence are significantly suppressed. The semiclassical class of
methods introduces quantum corrections to classical dynamics by perform-
ing a systematic expansion in the powers of ħ. Methods such as the Herman-
Kluk propagator [6] or the linearized semiclassical initial value representation
(LSC-IVR) [7] fall into this category. The general drawback of these meth-
ods is that they do not conserve the quantum Boltzmann distribution, and as
such, the dynamical information obtained using them degrades with simula-
tion time.

Another class of methods, which takes what could be called an “opposite”
approach to semiclassical methods, are methods based on imaginary-time
path-integral molecular dynamics. In imaginary-time path-integral molecu-
lar dynamics, each particle is replaced by a classical ring polymer of P replicas
of the particle, connected by harmonic couplings, and the resulting system
is simulated using molecular dynamics in order to determine its statistical
properties. It can be shown that in the limit P →∞, the partition function of
such a classical system exactly coincides with the quantum-mechanical par-
tition function, and the equilibrium distribution of replicas exactly matches
the quantum mechanical distribution of the particle positions. In numerical
simulations, the number of replicas of course cannot be infinite, but it can
be systematically increased to achieve convergence. Imaginary-time path-
integral molecular dynamics can thus be used to calculate the equilibrium
properties of quantum mechanical systems exactly. The dynamics are used in
this scheme merely as a sampling tool to obtain these equilibrium averages.
However, it turns out that a number of methods can be constructed, which
use this classical dynamics to approximate the underlying quantum dynam-
ics. The primary motivating feature behind using the auxiliary classical dy-
namics as a source of dynamical information is the fact that it exactly con-
serves the quantum Boltzmann distribution. The approximative methods in
question prominently include ring polymer molecular dynamics (RPMD) [8],
thermostatted ring polymer molecular dynamics (TRPMD) [9], and the sub-
ject of this work — centroid molecular dynamics (CMD) [10]. These methods
can be shown to be exact in the classical, harmonic, and short-time limits.
Furthermore, the series of approximations that takes one from exact quan-
tum dynamics to RPMD and CMD can be established [11], with the help of
Matsubara dynamics [12], as an intermediate step. Despite this, there is no
good justification for taking these specific approximation steps and as such,
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they remain rather ad-hoc in nature. Furthermore, both methods perform
poorly for operators which are non-linear functions of the position and mo-
mentum operators [11]. The mentioned Matsubara dynamics presents a less
drastic approximation to exact quantum dynamics, while still being classical,
and quantum Boltzmann conserving. However, its practical usage is severely
restricted by the fact that it still involves weighting contributions by a com-
plex phase and as such still suffers from the numerical sign problem.

1.2 Centroid molecular dynamics

As a method, centroid molecular dynamics traces its roots to the seminal pa-
per by Feynmann and Kleinert [13], in which it was shown that the imaginary-
time path integral centroid can be used to obtain the equilibrium statistical
properties of quantum mechanical systems. In numerical applications, the
centroid corresponds to the center of mass of the ring polymer used in path-
integral molecular dynamics and is a classical object. The potential “felt” by
the centroid is the centroid potential of mean force — a free energy surface
obtained by integrating out all non-centroid degrees of freedom of the ring
polymer. In their original paper, Feynmann and Kleinert were able to find a
scheme to yield accurate approximations to this potential of mean force. Fur-
thermore, they were able to use the scheme to calculate approximations to
the imaginary-time correlation functions in the systems studied by them and
to analytically extend them to obtain real-time correlation functions. CMD
takes this success as a motivating feature and approximates the quantum dy-
namics of a particle by the classical dynamics of the centroid, moving on the
exact centroid potential of mean force. To determine the potential of mean
force and its derivatives at each point visited in centroid molecular dynam-
ics, a full converged path-integral molecular dynamics simulation with the
particle centroids fixed would need to be run at every such point. Running
centroid molecular dynamics according to such a scheme would be compu-
tationally demanding even for small systems, and especially so for complex
condensed-phase molecular systems. To sidestep these computational de-
mands, centroid molecular dynamics is usually run according to the adia-
batic scheme [14]. In this scheme, imaginary-time path-integral molecular
dynamics is run with all the non-centroid normal modes of the ring polymer
shifted higher, such that they are adiabatically separated from the physical
modes present in the system. Due to this separation, the centroid approxi-
mately moves on the potential of mean force, which is thus effectively gener-
ated on the fly. The higher the adiabatic separation is, the closer the potential
effectively felt by the centroid is to the true potential of mean force, how-
ever, higher adiabatic separation also implies the usage of a shorter time step,
which increases the computational effort needed. The effect of the adiabatic
separation was investigated in the past and it was suggested that full adia-
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batic separation is in certain cases not necessary to yield reasonable dynam-
ics, yielding the computationally cheaper partially adiabatic centroid molec-
ular dynamics (PACMD) method [15].

1.3 Machine learning

In recent years, methods of machine learning have gained significant pop-
ularity in many areas of computer science as well as other fields for solving
a wide range of complex problems. In the computational study of complex
molecular systems, these methods have shown themselves to be particularly
useful for constructing the so-called machine learning potentials [16]. These
are machine learning models that are able to correctly reproduce potential
energy surfaces for atomic and molecular systems, calculated using a cho-
sen method of interest. These are necessary for running molecular dynam-
ics, and for ab initio molecular dynamics in particular, this presents a signif-
icant speedup, as this eliminates the necessity to run an electronic structure
calculation at each step of the molecular dynamics simulation. Of course,
to construct these models, sample data from electronic structure calcula-
tions (or another reference method of choice) is needed, which the model
“learns”. However, the number of these reference calculations needed tends
to be much lower than what would be required by a typical molecular dynam-
ics simulation.

1.4 Outline

This work will be mainly concerned with constructing an alternative approach
to adiabatic centroid molecular dynamics, in which the potential of mean
force is predicted at each simulation point by machine learning methods. It is
proposed that the framework of machine learning potentials can not only be
used to run CMD in a fashion that is closer to its original formulation even for
condensed-phase molecular systems, but at the same time to achieve a signif-
icant improvement in performance over the previously used adiabatic CMD.
To this end, focus will be given to detailing the implementation of full CMD,
investigating its properties as well as those of the adiabatic CMD, and com-
paring the results to previous calculations and experimental results, where
possible. These investigations will be performed on both realistic molecu-
lar systems of high dimensionality and on model one- or two-dimensional
systems, where the main features of the methods can be demonstrated more
clearly.

The discussion will begin by outlining the established theoretical back-
ground of the physical problems at hand, the approximations involved, and
the computational methods used to solve these problems. This will be fol-
lowed by detailing the implementation itself and the computational tools in-



1 Introduction 5

volved. Lastly, the results obtained will be presented and discussed.



2 Theoretical background

This section will deal primarily with reviewing the established theory and
methods used to describe molecular many-body systems. This theory has
been sourced from the literature as well as other resources, and written down
by the author in his own words. First, the basic formulation of the problem
will be given, with attention paid to the approximations commonly involved.
Next, an overview of both equilibrium and non-equilibrium statistical me-
chanics relevant to this work will be presented. The section will conclude with
a general description of the computational methods used to solve the prob-
lems at hand. The practical details of the implementation of these methods
will be left for the next chapter.

2.1 The molecular problem

The information presented in this section was mostly sourced from the book 2.
The most elementary non-relativistic description of a molecular system is

given by the time-dependent Schrödinger equation:

i
∂

∂t
ψ (x, X ; t ) = Ĥψ (x, X ; t ) . (2.1)

Where x is used to denote the 3N coordinates of the electrons and X cor-
responds to the 3M coordinates of the nuclei. In writing this equation, the
choice ħ= 1 was made. Such a choice is a part of the atomic system of units:

ħ= 1

e = 1

4πϵ0 = 1

me = 1,

which will be used throughout this section. In this system of units, the molec-
ular Hamiltonian takes the compact form:

Ĥ =−
N∑︂

i=1

1

2
∇2

x⃗i
−

M∑︂
i=1

1

2Mi
∇2

X⃗ i
+

N∑︂
i=1

N∑︂
j>i

1

|x⃗i − x⃗ j |

+
M∑︂

i=1

M∑︂
j>i

Zi Z j

|X⃗ i − X⃗ j |
−

N∑︂
i=1

M∑︂
j=1

1

|x⃗i − X⃗ j |
,

(2.2)

where x⃗i and X⃗ i denote the three-dimensional coordinates of the individual
electrons/nuclei. Zi and Mi are the nuclear charges and masses, respectively.
This equation can be rewritten and eventually approximated by first employ-
ing the following ansatz, introduced by Born [17]:

ψ (x, X ; t ) =
∞∑︂

i=0
χi (x; X )φi (X ; t ). (2.3)
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The functionsχi (x, X ) are the solutions of the stationary electronic Schrödinger
equation in which the nuclei are considered clamped:

Ĥ elecχi (x; X ) = Ei (X )χi (x; X ) (2.4)

Ĥ elec =−
N∑︂

i=1

1

2
∇2

x⃗i
+

N∑︂
i=1

N∑︂
j>i

1

|x⃗i − x⃗ j |
+

M∑︂
i=1

M∑︂
j>i

Zi Z j

|X⃗ i − X⃗ j |
−

N∑︂
i=1

M∑︂
j=1

1

|x⃗i − X⃗ j |
.

(2.5)

They thus depend parametrically on the positions of the nuclei X and so do
their corresponding eigenvalues Ei (X ). Assuming the spectrum of Ĥ elec is
non-degenerate, these functions are orthogonal and can be chosen to be nor-
malized to unity. The functionsφi (X ; t ) can be viewed as time-dependent co-
efficients. Using this ansatz in equation 2.1, multiplying it by χ∗j (x; X ), inte-
grating over all coordinates x, and using the orthonormality of the functions
χi yields

i
∂

∂t
φ j =

(︄
−

M∑︂
i=1

1

2Mi
∇2

X⃗ i
+E j (X )

)︄
φ j +

∞∑︂
i=0

C j iφi , (2.6)

where

C j i =
M∑︂

k=1

∫︂
dxχ∗j

(︃
− 1

2Mk
∇2

X⃗ k

)︃
χi −

M∑︂
k=1

1

Mk

∫︂
dxχ∗j ∇X⃗ k

χi∇X⃗ k
. (2.7)

At this point, the adiabatic approximation will be made, according to which
the non-diagonal elements of the matrix C j i will be omitted. Under such an
assumption, the electronic part of the system remains in a single state k dur-
ing the time evolution. This also implies that the equations for the functions
φi are now fully decoupled. If the wavefunctions χi are considered to be real,
the diagonal elements C j j themselves contain only a single term:

C j j =
M∑︂

k=1

∫︂
dxχ∗j

(︃
− 1

2Mk
∇2

X⃗ k

)︃
χ j , (2.8)

due to: ∫︂
dxχ j∇X⃗ k

χ j = 1

2
∇X⃗ k

(︃∫︂
dxχ jχ j

)︃
=∇X⃗ k

1 = 0. (2.9)

The wavefunctions can be safely considered real if the Hamiltonian is time
reversible. Since this will be the case throughout this work the wavefunc-
tions will be taken as real and the simplification presented by the preceding
equation will be used. A final simplification will be made by omitting the di-
agonal elements Ckk as well. In the end, this finally yields the well-known
Born-Oppenheimer approximation [18], which stipulates that the motion of
the nuclei and the electrons is fully decoupled, i.e. the electrons adapt in-
finitely fast to the movement of the nuclei. Taken together, this results in the
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following equations for the nuclear wavefunctions φi :

i
∂

∂t
φi =

(︄
−

M∑︂
i=1

1

2Mi
∇2

X⃗ i
+Ei (X )

)︄
φi ≡ Ĥ nucφi . (2.10)

Each φi is thus a solution of the Schrödinger equation, with the potential
equal to the eigenvalue Ei (X ) of the electronic Schrödinger equation. The
approximate solutions to equation (2.10) are the main concern of the present
work. Attention will also be given exclusively to the electronic ground state
(i = 0) case. As the typical first excitation energy of a molecular system is
of the order of 1 eV, the temperature at which the i ̸= 0 states would start to
contribute significantly is 1eV /kB ≈ 10000 K, which is well above the temper-
ature ranges considered in this work. Aside from thermal excitation, the sys-
tem could also be excited into the higher electronic states by interaction with
electromagnetic radiation or other external perturbations. However, these
cases will not be considered in this work.

A somewhat drastic approximation to the last equation is to invoke the
correspondence principle (see appendix B for details) and to consider the nu-
clei to be classical particles, Hamilton’s function being equal to:

H =
M∑︂

i=1

p⃗2
i

2Mi
+E0(X ). (2.11)

Making this step presents an enormous simplification, as the partial differ-
ential equation 2.10 is effectively replaced by an ordinary differential equa-
tion. For highly-dimensional systems the original partial differential equation
is generally impossible to solve (numerically or otherwise) and even though
methods exist to circumvent this difficulty in certain cases, as will be shown
in the next subsection, making the classical approximation is still the most
common way to describe such systems. This level of approximation will also
be used to motivate the molecular dynamics method in subsection 2.4, and
as a useful reference, due to its common usage.

A necessary ingredient to perform any computation at the level of approx-
imation outlined previously is the ground state electronic energy as a func-
tion of the coordinates of the nuclei E0(X ). Determining this potential energy
surface (PES) is the task of electronic structure methods. As investigation of
these methods was not part of the goals of this work, and their inner workings
thus of relatively low importance, the details of these methods will be omit-
ted from this discussion. The basic ideas can be found summarized in ap-
pendix A. Instead, it will be assumed that the PES E0(X ), as well as its deriva-
tives with respect to the nuclear coordinates ∇X E0(X ), are readily available as
a function of X for all relevant positions of the nuclei, for instance through the
use of machine learning potentials which will be further described in subsec-
tion 3.3. In any case, these quantities can be obtained through direct solution
of the electronic problem at worst.
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2.2 Path integral formulation of quantum mechanics

This section has been written down by the author based on the established
knowledge, obtained at the lecture "Vybrané partie teorie kvantovaných polí I"
taught by RNDr. Jiří Novotný, Csc., as well as the paper 13, and book 1.

Macroscopic observables can be obtained from the microscopic descrip-
tion of the system, introduced in the preceding chapter, using the methods of
statistical mechanics. In particular, using the canonical model of thermody-
namic equilibrium, the full statistical description of a system is contained in
the canonical density operator:

ρ̂(β) = exp
(︁−βĤ

)︁
, (2.12)

where β = 1/kBT . The expectation value of an observable corresponding to
an operator Â is equal to

〈Â〉 = 1

Z
Tr

(︁
Âρ̂

)︁
, (2.13)

the partition function Z is calculated as

Z (β,λ) = Tr
(︁
ρ(λ)ˆ

)︁= Tr
[︁
exp

(︁−βĤ(λ)
)︁]︁

. (2.14)

In this expression, λ are some general parameters of the Hamiltonian. Impor-
tant thermodynamic and statistical quantities (such as free energy or internal
energy, among others) can be obtained from this function and its derivatives
using the standard methods of statistical mechanics.

The matrix elements of the canonical density operator could in principle
be directly calculated by diagonalizing the Hamiltonian. For example in the
position basis:

ρ̂(β)(x, x ′) =
∞∑︂

i=0
exp

(︁−βEi
)︁〈x|Ei 〉〈Ei |x ′〉 =

∞∑︂
i=0

exp
(︁−βEi

)︁
ψ∗

i (x ′)ψi (x), (2.15)

however, this is seldom possible for a general many-particle molecular sys-
tem. They can, nonetheless, be calculated in the position representation even
for these systems using the imaginary-time path integral approach.

The path integral formulation is in principle a separate formulation of
quantum mechanics developed in its modern form by Feynman [19] (it is thus
also often explicitly referred to as the Feynman path integral formulation),
however, note that the main ideas behind it can be traced back to Dirac [20].
This formulation can be viewed in two ways: as a consequence (and a useful
reformulation) of the regular operator formulation of quantum mechanics,
or as a separate formulation “guessed” from first principles, which can be a
posteriori shown to be equivalent to the “regular” operator formulation of
quantum mechanics [3]. The former approach will be adopted here.
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The main objects of interest of the formulation are the matrix elements of
the evolution operator in the position basis:

〈x|Û (t ) |x ′〉 =
⟨︃

x

⃓⃓⃓⃓
exp

(︃
− i

ħ Ĥ t

)︃ ⃓⃓⃓⃓
x ′

⟩︃
. (2.16)

(Time-homogeneity of the process has been assumed.) Note that the ma-
trix elements of the canonical density operator can be obtained from the ma-
trix elements of the evolution operator by performing an analytic extension
t → −iħβ, usually called the Wick rotation:

ρ̂(β) = exp
(︁−βĤ

)︁= exp

(︃
− i

ħ Ĥ(−iħβ)

)︃
= Û (−iħβ). (2.17)

Attention will thus be given primarily to the evolution operator in the deriva-
tion, keeping in mind that the canonical density operator can be obtained in
the end by performing such an analytic extension.

The main difficulty in evaluating the matrix elements of the evolution op-
erator comes from the fact, that the expression contains an exponential of an
operator composed of two non-commuting parts:

Ĥ = p̂2

2m
+Û (x̂)[︃

p̂2

2m
,Û

]︃
̸= 0.

(2.18)

The operator exponential thus cannot be written simply as a product of expo-
nentials of the individual parts. There are multiple ways to evaluate such an
exponential, the one which the derivation relies upon being the Lie–Trotter
product formula [21]

exp(A+B) = lim
n→∞

[︃
exp

(︃
A

n

)︃
exp

(︃
B

n

)︃]︃n

, (2.19)

where A and B are certain linear operators. For the details and limitations of
the applicability of this formula see for instance [22]. The expression for the
matrix elements thus becomes:⟨︃

x

⃓⃓⃓⃓
exp

(︃
− i

ħ Ĥ t

)︃ ⃓⃓⃓⃓
x ′

⟩︃
= lim

P→∞

⟨︄
x

⃓⃓⃓⃓
⃓
[︃

exp

(︃ −i p̂2

2mħP

)︃
exp

(︃−iÛ (x̂)

ħP

)︃]︃P
⃓⃓⃓⃓
⃓x ′

⟩︄
. (2.20)

In this expression, the operator exponentials only contain functions of either
the x̂ operator or the p̂ operator. These exponentials can thus be turned into
exponentials of ordinary numbers by inserting P completeness relations of
the form:

1̂=
∫︂

dn p |p〉〈p| (2.21)
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and P −1 completeness relations of the form:

1̂=
∫︂

dn x |x〉〈x| , (2.22)

where n is the total number of dimensions (for example, for a molecular sys-
tem of M nuclei as considered in this work, this number would be 3M). This
yields: ⟨︃

x

⃓⃓⃓⃓
exp

(︃
− i

ħ Ĥ t

)︃ ⃓⃓⃓⃓
x ′

⟩︃
= lim

P→∞

∫︂
dn pP

P−1∏︂
i=1

dn xi dn pi

×
P∏︂

j=1
exp

(︄ −i p2
j

2mħP

)︄
exp

(︃−iU (x j−1)

ħP

)︃⟨︁
x j

⃓⃓
p j

⟩︁⟨︁
p j

⃓⃓
x j−1

⟩︁
,

(2.23)

where it is understood that xP ≡ x and x0 ≡ x ′. Using⟨︁
x

⃓⃓
p

⟩︁= 1

(2πħ)
n
2

exp

(︃
i

ħp ·x

)︃
(2.24)

one gets⟨︃
x

⃓⃓⃓⃓
exp

(︃
− i

ħ Ĥ t

)︃ ⃓⃓⃓⃓
x ′

⟩︃

= lim
P→∞

∫︂
dn pP

P−1∏︂
i=1

dn xi dn pi

(2πħ)nP

P∏︂
j=1

exp

[︃
i

ħp j · (x j −x j−1)−H(p j , x j−1)

]︃
.

(2.25)

This expression is known as the phase space path integral. For all forms of
the potential U (x) considered in this work, the function H in this expression
is equal to the classical Hamiltonian. Note, however, that this is generally not
the case — if a magnetic field is present, for example, this term may contain
quantum corrections as a consequence of the ordering ambiguity. The final
form of the path integral formulation is obtained by performing the P Gaus-
sian integrations over the coordinates p j :⟨︃

x

⃓⃓⃓⃓
exp

(︃
− i

ħ Ĥ t

)︃ ⃓⃓⃓⃓
x ′

⟩︃

= lim
P→∞

∫︂ P−1∏︂
i=1

dn xi

(︃
mP

2πiħt

)︃ nP
2

exp

{︄
i

ħ
P∑︂

j=1

[︃
mP

2t
(x j −x j−1)2 − t

P
U (x j−1)

]︃}︄
.

(2.26)

The expression in the exponential can be viewed as a discrete approximation
to the classical action,

lim
P→∞

P∑︂
j=1

t

P

[︄
m

2

(︄
x j −x j−1

t
P

)︄2

−U (x j−1)

]︄
=

∫︂ t

0
dt ′

(︃
1

2
mẋ2 −V (x)

)︃
= S(t ),

(2.27)



2 Theoretical background 12

and the whole expression can be understood as an “integral over all pos-
sible classical paths starting from x at time 0 and ending at x ′ at time t”
of exp

(︁ i
ħS(x(t ))

)︁
(hence the name of the formulation) and is usually written

compactly as ∫︂ x(t )=x ′

x(0)=x
Dx exp

(︃
i

ħS(x(t ))

)︃
. (2.28)

Note, however, that this is just a useful notation. After performing the Wick
rotation the following is obtained:⟨︁

x
⃓⃓
exp

(︁−βĤ
)︁ ⃓⃓

x ′⟩︁
= lim

P→∞

∫︂ P−1∏︂
i=1

dn xi

(︃
mP

2πħ2β

)︃ nP
2

exp

{︄
−

P∑︂
j=1

[︃
mP

2ħ2β
(x j −x j−1)2 + β

P
U (x j−1)

]︃}︄
,

(2.29)

where xP = x and x0 = x ′. This can again be formally understood as∫︂ x(β)=x ′

x(0)=x
Dx exp

(︁−SE(x(β))
)︁
, (2.30)

where β now plays the role of an imaginary time and SE is the Euclidean ac-
tion

SE =
∫︂ β

0
dτLE, (2.31)

LE = 1

2
mẋ2 +U (x) = H . (2.32)

The equation (2.29) for the matrix elements of the canonical density operator
is what is to be taken as the most relevant result of this derivation for this
work.

Some important properties and consequences of equation (2.29) will now
be shown. The partition function is calculated according to equation (2.14) as
the trace of the density operator. Carrying out this trace in the position basis
and using equation (2.29) one gets:

Z =
∫︂

dn x
⟨︁

x
⃓⃓
exp

(︁−βĤ
)︁ ⃓⃓

x
⟩︁

= lim
P→∞

∫︂ P∏︂
i=1

dn xi

(︃
mP

2πħ2β

)︃ nP
2

exp

{︄
−

P∑︂
j=1

[︃
mP

2ħ2β
(x j −x j−1)2 + β

P
U (x j−1)

]︃}︄
,

(2.33)

with a cyclic boundary condition xP = x0. Returning to the “integral over
paths” interpretation of the current formulae, the partition function can thus
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be understood as the integral of exp(−SE) over all paths which return to their
starting point after the imaginary time interval ħβ, integrated over all possi-
ble starting points x. The mean of any operator Â(x̂) can also be computed
using this formula and equation 2.13 as

〈Â〉 = 1

Z

∫︂
dn x A(x)

⟨︁
x

⃓⃓
exp

(︁−βĤ
)︁ ⃓⃓

x
⟩︁

= 1

Z
lim

P→∞

∫︂ P∏︂
i=1

dn xi A(xP )

(︃
mP

2πħ2β

)︃ nP
2

×exp

{︄
−

P∑︂
j=1

[︃
mP

2ħ2β
(x j −x j−1)2 + β

P
U (x j−1)

]︃}︄
,

(2.34)

again with the condition xP = x0.
Next, the centroid will be defined as

xc = 1

β

∫︂ β

0
dτx(τ), (2.35)

which can also equivalently be written as

xc = lim
P→∞

1

P

P∑︂
i=1

xi . (2.36)

This quantity corresponds to the average position of the particle along its
path through imaginary time. Using this quantity, the equation 2.33 can be
formally rewritten as

Z =
∫︂

dn x

(︃
m

2πħ2β

)︃ n
2

exp
(︁−βW (x)

)︁
, (2.37)

where

W (x) =− 1

β
ln

(︁
ρc (x)

)︁
, (2.38)

ρc (x) = lim
P→∞

∫︂ P∏︂
i=1

dn xi P
n
2

(︃
mP

2πħ2β

)︃ n(P−1)
2

δ(xc (xi )−x)

×exp

{︄
−

P∑︂
j=1

[︃
mP

2ħ2β
(x j −x j−1)2 + β

P
U (x j−1)

]︃}︄
.

(2.39)

Here, ρc (x) is the centroid probability distribution and W (x) is its Boltzmann
inverse — it is thus a free energy of the system with the centroid fixed at
xc = x. Note that this formal substitution turns the problem of quantum
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statistics into a rather ordinary problem of classical statistics, of the same di-
mensionality. This is only a formal simplification, as practically obtaining the
exact free energy surface W (x) amounts to solving the original problem. This
approach can, however, prove useful as the free energy surface W (x) can ei-
ther be approximated [13] or as is newly proposed in this work – numerically
constructed. This will be explained in detail in later sections. Later in subsec-
tion 2.4, the centroid and the free energy surface W (x) will also be shown to
play a significant role in approximating quantum dynamics.

As a last note — the issue of exchange symmetry of the particles has not
been discussed yet. As it turns out, though, for molecular systems at reason-
able temperatures, the atomic nuclei can be safely approximated as distin-
guishable particles (as has been assumed so far). For more details regarding
this fact, see appendix C.

2.3 Linear response theory

This subsection will review mostly established knowledge. For the classical
formulation, this knowledge has been obtained by the author at the lecture
"Vybrané kapitoly z nerovnovážné statistické fyziky I" taught by RNDr. Karel
Netočný, Ph.D. For the quantum formulation the derivation, as presented,
was put together by the author based on the books 1 and 23, as well as the
article 24.

Having established an equilibrium statistical description of the systems
at hand, attention will now be directed to the dynamical behavior of these
systems. The primary focus will be given to the dynamics of macroscopic
observables. In equilibrium, these observables can be calculated using the
methods of the preceding chapter. The goal will thus be to establish how the
dynamics of the macroscopic observables of the system can be calculated
from the knowledge of the microscopic dynamics and the equilibrium sta-
tistical description. In general, this is the topic of non-equilibrium statistical
mechanics.

A useful framework developed within this field to treat such problems is
linear response theory. Within this framework, the system is assumed to be
perturbed from equilibrium by a time-dependent force weak enough to keep
only terms linear in this force in the total Hamiltonian:

H = H0(X)−B(X)F (t ). (2.40)

Here, B(X) is a function on the phase space (the minus sign being a conven-
tion) and H0 is a time-independent Hamiltonian (which determines the equi-
librium). The symbolX denotes the phase space coordinates of the system. It
is more common to work at the classical level in linear response theory, how-
ever, it can still be formulated at the quantum level — the functions H , H0,
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and B becoming operators. The following discussion will start at the classi-
cal level and show several relevant formulae such as the famous fluctuation–
dissipation theorem. Afterward, the quantum formulation will be discussed.

2.3.1 Classical formulation

As was stated previously, within linear response theory, only terms linear in
the perturbing force are kept in the total Hamiltonian (equation 2.40). With-
out loss of generality, the mean value of some macroscopic observable A at
some time t can be written as

〈∆A(t )〉 =
∫︂ ∞

−∞
dsRAB (t , s)F (s), (2.41)

where RAB is called the response function and ∆A is the deviation of the
quantity A from its equilibrium value. Assuming time homogeneity, the fol-
lowing must hold:

RAB (t , s) = RAB (t − s,0) = RAB (0, s − t ) ≡ RAB (t − s). (2.42)

Furthermore, should RAB respect causality, the following must hold also:

RAB (t − s) = 0; ∀t − s < 0. (2.43)

To show how the response function RAB can be calculated from the knowl-
edge of equilibrium properties of the system, consider the following special
F (t ):

F (t ) = Fθ(−t ). (2.44)

In such a case, 〈∆A〉 does not depend on time for t < 0 and can be expressed
as

〈∆A〉 = 1

Z

∫︂
dΩ(X)∆A(X)exp

[︁−β (H0(X)−B(X)F )
]︁
, (2.45)

dΩ being the normalized phase-space volume element. Keeping only orders
linear in F , this reduces to

〈∆A〉 = 1

Z
β

∫︂
dΩ(X)F B(X)∆A(X)exp

(︁−βH0
)︁=βF 〈∆A(X)B(X〉0

=βF 〈∆A(X)∆B(X)〉0.

(2.46)

The brackets 〈A〉0 denote an average with respect to the equilibrium ensem-
ble. The last equality follows from 〈∆A〉0 = 0:

〈∆A(X)B(X)〉0 = 〈∆A(X)∆B(X)〉0 +B0〈∆A(X)〉0 = 〈∆A(X)∆B(X)〉0. (2.47)

B0 has been used to denote the equilibrium average of B . At the same time, it
should hold for t < 0 that

〈∆A〉 =
∫︂ ∞

0
dsRAB (s)F ; ∀t < 0, (2.48)
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implying that ∫︂ ∞

0
dsRAB (s) = 1

β
〈∆A(X)∆B(X)〉0 (2.49)

for t < 0.
In the case of t ≥ 0, making use of the fact that the distribution in t = 0 is

an equilibrium one, determined by H(X):

〈∆A(t )〉 =
∫︂

dΩ(X)∆A(Y)P (X(t ) =Y|X(0) =X)exp
[︁−β(H0 −B(X)F )

]︁
. (2.50)

In this equation, P (X(t ) = B |X(0) = A) is used to denote the conditional prob-
ability that the system will be found at the phase-space point B at time t if
it is known to have been at the point A at time 0. Keeping again only terms
linear in F and using 〈∆A(t )〉0 = 0 yields

〈∆A(t )〉 =β
∫︂

dΩ(X)F B(X)∆A(Y)P (X(t ) =Y|X(0) =X)exp
(︁−βH0

)︁
=βF 〈∆A(t )B(0)〉0 =βF 〈∆A(t )∆B(0)〉0.

(2.51)

Comparing this again to the response function prescription

〈∆A(t )〉 =
∫︂ ∞

0
dsRAB (s)F (s) = F

∫︂ ∞

t
dsRAB (s) (2.52)

yields ∫︂ ∞

t
dsRAB (s) = 1

β
〈∆A(t )∆B(0)〉0. (2.53)

Taken together with equation 2.49, the final result can be written as:

RAB (t ) =−βθ(t )
dC AB (t ,0)

dt
, (2.54)

where 〈∆A(t )∆B(0)〉0 has been denoted as C AB (t ,0) and will be from now on
referred to as a time correlation function. Due to the linearity of the whole
procedure in F , this relation holds not only for the special form of F (t ) consid-
ered above but for any F (t ). This result is known as the fluctuation–dissipation
theorem. The theorem establishes a relation between the response of a sys-
tem to a weak external perturbation (encoded in RAB ) and the equilibrium
fluctuations of the system (encoded in C AB ). The time correlation functions
have the following properties. Assuming time homogeneity, the time correla-
tion functions are functions of one time variable only:

C AB (t , s) =C AB (t − s,0) ≡C AB (t − s). (2.55)

This further implies that

C AB (t ) = 〈∆A(t )∆B(0)〉0 = 〈∆A(0)∆B(−t )〉0 =CB A(−t ). (2.56)
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Furthermore, it follows from the time-reversal symmetry of the microscopic
dynamics that

C AB (t ) = (C AB (t ))∗ =CB∗A∗(t ), (2.57)

where ∗ denotes time inversion which in the classical case corresponds to the
substitution A(x, p)∗ = A(x,−p). The last equality follows from the time in-
version of equation 2.51. Assuming that the quantities A and B change under
time reversal in the simple manner:

Q∗ = ϵQQ; ϵQ =
{︄
+1

−1
, (2.58)

ϵ being the parity of the observable, this equation takes the form

C AB (t ) = ϵAϵBCB A(t ). (2.59)

Together with equation (2.56), this yields

C AB (t ) = ϵAϵBC AB (−t ). (2.60)

As a consequence of this, time autocorrelation functions — time correlation
functions with A = B — of quantities with well-defined parity are even func-
tions of time. A property expected from time correlation functions on physi-
cal grounds is

〈A(t )B(0)〉0
t→∞= 〈A〉0〈B〉0, (2.61)

meaning that the quantities A and B become decorrelated for large time sep-
arations. This then further implies:

〈∆A(t )∆B(0)〉0
t→∞= 0. (2.62)

In general, multiple perturbing forces may be present, or a perturbing force
may be a vector. Even though the present discussion has worked with only a
single quantity A and a single quantity B , the generalization of the framework
to multiple variables A and multiple variables B (corresponding to multiple
weakly perturbing forces or a multicomponent one) is straightforward:

〈Ai (t )〉 =
N∑︂

j=1

∫︂ ∞

0
dsRAi B j (s)FB j (t − s). (2.63)

The matrix elements RAi B j are in relation to the time correlation functions
C Ai B j according to the fluctuation–dissipation theorem. Another useful set of
relations can be derived from the fluctuation–dissipation theorem. Working
again with just a single A and B (keeping in mind the straightforward exten-
sion to multiple variables), which are assumed to have the same parity, one
can define:

jB = dB

dt
, (2.64)
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and similarly j A. It then holds that

〈 j A〉0 = d〈A〉0

dt
= 0, (2.65)

〈 j A〉 =
∫︂ t

−∞
dsR j

AB (t − s)F (s), (2.66)

R j
AB = dRAB

dt
, (2.67)

combining this with the fluctuation–dissipation theorem (equation (2.54))
one gets

R j
AB (t − s) = d

dt
(−βθ(t − s)

d

dt
C AB (t − s)) =−βδ(t − s)

d

dt
C AB (t − s)

+β d2

dtds
C AB (t − s) =β d2

dtds
〈∆A(t )∆B〉0 =β〈 j A(t ) jB (s)〉0

≡βC j
AB (t − s).

(2.68)

The term with δ(t − s) d
dt C AB (t − s) is zero, because the function C AB is even

(due to the quantities A and B having the same parity), which implies its
derivative is odd and thus is zero for t − s = 0. This result is known as the
Green–Kubo relations and will be important later.

An important application of the fluctuation–dissipation theorem is the
study of the dynamics of a Brownian particle. For simplicity, work will be
carried out in one dimension, the generalization to more dimensions being
again straightforward. A Brownian particle is a particle immersed in a heat
bath, which exerts a force on the particle. This force can be split into a system-
atic part, and a random part with a mean value equal to zero (corresponding
to thermal noise):

fB (X (t )) = 〈 fB 〉(X (t ))+∆ fB , (2.69)

X (t ) denoting the particle position. The systematic part can be calculated us-
ing the fluctuation–dissipation theorem. The system considered to be weakly
perturbed from equilibrium will be the heat bath in direct contact with the
particle, and the weak “force” will be the particle position:

H = H0 + fB (X (t ))(X (s)−X (t )). (2.70)

Using linear response theory and the fluctuation-dissipation theorem yields

〈 fB 〉 = 〈 fB 〉0 +
∫︂ ∞

0
ds

(︃
−βθ(s)

dC f f (s)

ds

)︃
(X (t − s)−X (t )). (2.71)

The equilibrium average 〈 fB 〉0 is zero for a homogeneous bath, the second
term can be integrated by parts:

〈 fB 〉 =−β
∫︂ ∞

0
dsθ(s)C f f (s)Ẋ (t − s). (2.72)
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The boundary terms do not contribute as for s = 0 X (t )− X (t ) = 0 and for
s =∞ C f f = 0. Having obtained the expression for the systematic part of the
force exerted on the Brownian particle by the bath, the equations of motion
can be put together:

Ẋ = P

m
,

Ṗ =−∂U

∂X
−

∫︂ ∞

0
dsΓ(s)Ẋ (t − s)+ξ(t ),

(2.73)

where Γ(s) = βθ(s)C f f (s) is the memory kernel and ξ(t ) is a random noise
term with properties consistent with ∆ fB :

〈ξ(t )〉 = 0,

〈ξ(t )ξ(s)〉 =C f f (t − s).
(2.74)

The second equation of equations 2.73 is called the generalized Langevin equa-
tion (GLE). If the velocity of the Brownian particle changes little over the char-
acteristic relaxation time of C f f (a timescale on which C f f decays to zero),
then the second term in this equation may be further approximated as∫︂ ∞

0
dsΓ(s)Ẋ (t − s) ≈ Ẋ (t )

∫︂ ∞

0
dsΓ(s) ≡ γẊ (t ), (2.75)

which is the same as writing Γ(s) = 2γδ(s) =⇒ C f f (s) = 2γ
β δ(s) (the factor 2

is present due to
∫︁ ∞

0 dsΓ(s) = 1
2

∫︁ ∞
−∞ dsΓ(s) = γ). The stochastic term then has

the following statistical properties:

〈ξ(t )〉 = 0

〈ξ(t )ξ(s)〉 =C f f (t − s) = 2
γ

β
δ(t − s),

(2.76)

implying it is a white noise term. This approximation is called the memory-
less or Markovian approximation, and it results in the Langevin equation (LE)
[25]:

Ṗ =−∂U

∂X
−γẊ +ξ(t ). (2.77)

This equation has the formal solution:

exp
(︂
− γ

m
s
)︂ d

ds

[︂
P (s)exp

(︂ γ
m

s
)︂]︂

= ξ(s)− ∂U (X (s))

∂X
, (2.78)

or equivalently

P (t ) = P (0)exp
(︂
− γ

m
t
)︂
+

∫︂ t

0
ds exp

[︂
− γ

m
(t − s)

]︂(︃
ξ(s)− ∂U (X (s))

∂X

)︃
. (2.79)
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which has implications concerning the statistics of P (t ). Assuming the parti-
cle is free ( ∂U (X (t ))

∂X = 0) yields

〈P (t )〉 = P (0)exp
(︂
− γ

m
t
)︂

(2.80)

alongside

〈P 2(t )〉 = P 2(0)exp
(︂
−2

γ

m
t
)︂
+ m

β

[︂
1−exp

(︂
−2

γ

m
t
)︂]︂

, (2.81)

which for t >> m
γ gives

〈P 2(t )〉 = m

β
=⇒

⟨︃
P 2

2m

⟩︃
= 1

2

1

β
. (2.82)

This implies that the distribution of the momenta approaches the Maxwell-
Boltzmann distribution. Another consequence of equations 2.80 and 2.81 is
that the quantity P (t ) is a normal distributed random number with a mean
value P (0)exp

(︁− γ
m t

)︁
and variance equal to m

β

(︁
1−exp

(︁−2 γ
m t

)︁)︁
. The formal

solution to the Langevin equation for a free particle can thus be written as:

P (t ) = P (0)exp
(︂
− γ

m
t
)︂
+

√︄{︃
m

β

[︂
1−exp

(︂
−2

γ

m
t
)︂]︂}︃

ζ(t ), (2.83)

ζ(t ) being a normal distributed random number with unit variance and zero
mean. These points will become important later in subsection 2.4.

Another important special case of a time-dependent external perturba-
tion within linear response theory is a harmonic potential:

F (t ) = F cos(ωt ) = F Re(exp(iωt )). (2.84)

Using the formulae of linear response theory the following is obtained:

〈∆Â〉 = F Re

[︃∫︂ ∞

−∞
dsRAB (s)exp(iω(t − s))

]︃
= F Re(RAB (ω))cos(ωt )−F Im(RAB (ω))sin(ω(t )),

(2.85)

where RAB (ω) is the Fourier transform of RAB (t ). From linear response theory,
it is also known that

RAB (t ) =−βθ(t )
dC AB (t )

dt
≡ θ(t )R̃ AB (t ), (2.86)

where R̃ AB is a real function. The presence of the θ(t ) follows from causality,
and the presence of this function implies that the following relations hold for
the real and imaginary parts of RAB (ω):

Re(RAB (ω)) = 1

π
P

∫︂ ∞

−∞
dω′ Im(RAB )(ω′)

ω−ω′

Im(RAB (ω)) =− 1

π
P

∫︂ ∞

−∞
dω′ Re(RAB )(ω′)

ω−ω′ ,

(2.87)
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which are known as the Kramers–Kronig relations. The symbol P is used
to denote a principal value integral. The function Im(RBB (ω)) (B being the
quantity “coupled” to the external force) has a thermodynamic interpretation
— it is proportional to the mean heat dissipated to the system by a harmonic
external force of frequency ω averaged over a single period:⟨︃

d′Q
dt

⟩︃
= 1

2
F 2ω Im(RBB (ω)). (2.88)

The derivative on the left hand side is primed as a reminder of the non-potential
nature of heat. Using integration by parts and equation (2.54), this relation
can also be brought into the form:⟨︃

d′Q
dt

⟩︃
= 1

4
βF 2ω2CBB (ω), (2.89)

or equivalently: ⟨︃
d′Q
dt

⟩︃
= 1

4
βF 2C jB jB (ω). (2.90)

2.3.2 Quantum formulation

In the quantum case, the approach is similar, with only terms linear in the
perturbing force kept in the Hamiltonian:

Ĥ = Ĥ 0 − B̂F (t ), (2.91)

with the linear response prescription (equation (2.41)) still holding:

〈∆Â〉(t ) =
∫︂ ∞

0
dsRAB (s)F (t − s), (2.92)

the only difference is that the left-hand side is an expectation value of an
operator (over a statistical ensemble of states). It can be expected from the
classical case, that the response function RAB can be calculated from a quan-
tum analogy of the time correlation function C AB . To show this, alongside
what this analogy should be, the special F (t ) used in the classical case —
F (t ) = θ(−t )F will be used. For t < 0 the average does not depend on time
again and is equal to:

〈∆Â〉 = 1

Z
Tr

{︁
∆Â exp

[︁−β(Ĥ 0 − B̂F )
]︁}︁= Tr

{︁
∆Â exp

[︁−β(Ĥ 0 − B̂F )
]︁}︁

Tr
{︁
exp

[︁−β(Ĥ 0 − B̂F )
]︁}︁ . (2.93)

As the operators Ĥ 0 and B̂ do not generally commute, the exponential cannot
be simply expanded as in the classical case. Instead, the following formula
[23] will be used:

exp
[︁−β(Ĥ 0 − B̂F )

]︁= exp
(︁−βĤ 0

)︁{︃
1+F

∫︂ β

0
dλexp

(︁
λĤ 0

)︁
B̂ exp

[︁−λ(Ĥ 0 − B̂F )
]︁}︃

,

(2.94)
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which reduces, keeping only terms linear in F , to

exp
[︁−β(Ĥ 0 − B̂F )

]︁= exp
(︁−βĤ 0

)︁[︃
1+F

∫︂ β

0
dλexp

(︁
λĤ 0

)︁
B̂ exp

(︁−λĤ 0
)︁]︃

.

(2.95)
The expression for the expectation value thus becomes

〈∆Â〉 =
Tr

{︂
∆Â exp

(︁−βĤ 0
)︁[︂

1+F
∫︁ β

0 dλexp
(︁
λĤ 0

)︁
B̂ exp

(︁−λĤ 0
)︁]︂}︂

Tr
{︂

exp
(︁−βĤ 0

)︁[︂
1+F

∫︁ β
0 dλexp

(︁
λĤ 0

)︁
B̂ exp

(︁−λĤ 0
)︁]︂}︂ . (2.96)

Keeping again only terms linear in F and using that by definition Tr
[︁
∆Â exp

(︁−βĤ 0
)︁]︁ = 0,

this equation becomes

〈∆Â〉 = F

Z0
Tr

[︃
∆Â exp

(︁−βĤ 0
)︁∫︂ β

0
dλexp

(︁
λĤ 0

)︁
∆B̂ exp

(︁−λĤ 0
)︁]︃

= F

Z0
Tr

{︃[︃∫︂ β

0
dλexp

(︁
λĤ 0

)︁
∆B̂ exp

(︁−λĤ 0
)︁]︃
∆Â exp

(︁−βĤ 0
)︁}︃

.

(2.97)

For t ≥ 0, using the fact that at t = 0 ρ̂ = 1
Z exp

(︁−β(Ĥ 0)− B̂F
)︁

and that given a
time-independent Hamiltonian, the density operator evolves according to:

ρ̂(t ) = exp

(︃
− i

ħ Ĥ t

)︃
ρ̂(0)exp

(︃
i

ħ Ĥ t

)︃
, (2.98)

the following is obtained:

〈∆Â〉(t ) = 1

Z
Tr

{︃
∆Â exp

(︃
− i

ħ Ĥ 0t

)︃
exp

[︁−β(Ĥ 0 − B̂F )
]︁

exp

(︃
i

ħ Ĥ 0t

)︃}︃
= 1

Z
Tr

{︃
exp

(︃
i

ħ Ĥ 0t

)︃
∆Â exp

(︃
− i

ħ Ĥ 0t

)︃
exp

[︁−β(Ĥ 0 − B̂F )
]︁}︃

= 1

Z
Tr

{︁
∆Â(t )exp

[︁−β(Ĥ 0 − B̂F )
]︁}︁

,

(2.99)

where ∆Â(t ) now denotes a Heisenberg operator evolved to time t . Keeping
only terms linear in F and using the same formulae as in the t < 0 case yields

〈∆Â〉(t ) = F

Z0
Tr

{︃[︃∫︂ β

0
dλexp

(︁
λĤ 0

)︁
∆B̂ exp

(︁−λĤ 0
)︁]︃
∆Â(t )exp

(︁−βĤ 0
)︁}︃

.

(2.100)
A new function KB A(t ) can thus be defined as

KB A(t ) = 1

βZ0
Tr

{︃[︃∫︂ β

0
dλexp

(︁
λĤ 0

)︁
∆B̂ exp

(︁−λĤ 0
)︁]︃
∆Â(t )exp

(︁−βĤ 0
)︁}︃

,

(2.101)
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which will be referred to as the Kubo-transformed time correlation function.
Comparing the obtained results with the linear response prescription 2.92,
one obtains similar expressions to the classical case:

〈∆Â〉(t ) =
∫︂ ∞

0
dsRAB (s)F (t − s) = F

∫︂ ∞

t
dsRAB (s)

= FβKB A(t ),

(2.102)

which implies

RAB =−βθ(t )
dKB A(t )

dt
. (2.103)

The only difference is that the classical time correlation function is replaced
by the quantum Kubo-transformed correlation function. Note that the Kubo-
transformed time correlation function shares many properties of the classi-
cal time correlation function [8]. In particular, a property that was already
assumed in the definition 2.101 is stationarity (if time homogeneity is also
assumed):

KB A(t ,0) = KB A(t + s, s) = KB A(t ). (2.104)

Furthermore, it holds that

KB A(t ) = K AB (−t ), (2.105)

and if Â and B̂ are Hermitian operators

K AB (−t ) = KB A(t )∗. (2.106)

Both equations can be verified by direct computation. Together, these two
equations imply that KB A(t ) is real. Equation 2.105 also implies that a Kubo-
transformed autocorrelation function is even, as is the classical autocorre-
lation function. For a time-inversion symmetric Hamiltonian, it is also true
that

KB A(t ) = ϵAϵB K ∗
B A(−t ), (2.107)

where ϵQ is again the operator parity, now defined as:

Θ̂Q̂Θ̂
−1 = ϵQQ̂ ϵQ =

{︄
+1

−1
, (2.108)

Θ being the time inversion operator. Together with the previous two equa-
tions, this implies that the Kubo-transformed time correlation function is
generally even for Â and B̂ of the same parity. Although the Kubo-transformed
time correlation function is the most useful quantum equivalent of the clas-
sical correlation function in the context of the present work, multiple non-
equivalent candidate analogues of the classical time correlation function ex-
ist in the quantum case. This is due to the (general) non-commutativity of Â
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and B̂ . In particular using the formula [24]

[︁
exp

(︁−βĤ 0
)︁
, Â

]︁= exp
(︁−βĤ 0

)︁∫︂ β

0
dλ

dÂ(−iħλ)

dt
, (2.109)

and using

d

dt
KB A = 1

βZ0
Tr

{︃[︃∫︂ β

0
dλexp

(︁
λĤ 0

)︁
∆B̂ exp

(︁−λĤ 0
)︁]︃ d∆Â(t )

dt
exp

(︁−βĤ 0
)︁}︃

= 1

βZ0
Tr

[︃∫︂ β

0
dλ∆B̂(−iħλ)

d∆Â(t )

dt
exp

(︁−βĤ 0
)︁]︃

=− i

ħβZ0
Tr

[︃∫︂ β

0
dλ

d∆B̂(−iħλ)

dt
∆Â(t )exp

(︁−βĤ 0
)︁]︃

,

(2.110)

one obtains

RAB (t ) = i

ħZ0
Tr

(︁[︁
exp

(︁−βĤ 0
)︁
,∆B̂

]︁
∆Â(t )

)︁
= i

ħZ0
Tr

[︁[︁
∆B̂ ,∆Â(t )

]︁
exp

(︁−βĤ 0
)︁]︁= i

ħ
⟨︁[︁
∆B̂ ,∆Â(t )

]︁⟩︁
0 .

(2.111)

This expression can be commonly found in literature and it presents another
candidate equivalent of the classical time correlation function — the com-
mutator of ∆B̂ and ∆Â(t ). The usefulness of the Kubo-transformed time cor-
relation function comes from the fact that it shares the same properties and
symmetries as the classical time-correlation function. Within linear response
theory, the transition from classical to quantum description is done simply
by changing C AB → K AB and vice versa. For instance, using 2.102 and 2.54 the
quantum equivalent of the Green-Kubo relation can be immediately written
down as

R j
AB (t ) =βK j

AB (t ), (2.112)

where K j
AB is a Kubo-transformed time correlation function of ĵ A = dÂ

dt and

ĵ B = dB̂
dt . The operators Â and B̂ are again assumed to have the same parity.

An application of linear response theory that is of particular interest in
the context of the present work, is the theoretical modeling of vibrational
spectroscopy. Several different experimental methods fall in the category of
vibrational spectroscopy. The theoretical description of these different tech-
niques is similar and will be illustrated on the example of infrared absorption
spectroscopy.

In infrared spectroscopy, a sample is irradiated by a weak (in comparison
to the energy scales of intermolecular and intramolecular interactions) elec-
tromagnetic radiation of a long wavelength (again, compared to the charac-
teristic length scales present in the system). The measured quantity in such
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an experiment is the portion of the energy flux of the radiation absorbed by
the sample as a function of frequency ω.

This experimental setup can be theoretically described using linear re-
sponse theory, taking the weak perturbation to be the electric component of
an electromagnetic wave in the long-wave limit:

Ĥ = Ĥ 0 −µ ·E cos(ωt ), (2.113)

where µ is the total dipole moment of the system. The direction of the elec-
tric field can be taken without loss of generality to be in the z direction. The
portion of the radiation absorbed can be calculated using equation (2.90):⟨︃

d′Q
dt

⟩︃
= 1

4
βE 2Cµ̇z µ̇z

(ω). (2.114)

For an isotropic system, all spatial directions are equal and thus

Cµ̇z µ̇z
(ω) = 1

3
Cµ̇µ̇(ω). (2.115)

If it is the case that the constituent particles can be assigned a definite charge,
the total dipole moment can be decomposed into contributions from the in-
dividual particles as

µ̇=
N∑︂

i=1
ei vi (2.116)

and thus

Cµ̇µ̇(ω) =
∫︂ ∞

−∞
dt exp(−iωt )〈µ̇z(t )µ̇z(0)〉0

=
N∑︂

i=1

N∑︂
j=1

ei e j

∫︂ ∞

−∞
dt exp(−iωt )〈vzi vz j 〉0 =

N∑︂
i=1

N∑︂
j=1

ei e j Cvi v j (ω).

(2.117)

Note, however, that this can be used only rarely and was not in fact used in
this work, as the particles generally cannot be ascribed a well-defined charge.
However, the behavior of the particle velocities still remains relevant, as the
dipole can be, without loss of generality, decomposed using:

µ̇=
N∑︂

i=1

∂µ

∂x⃗i
(t )

dx⃗i

dt
=

N∑︂
i=1

∂µ

∂x⃗i
(t )v⃗ i . (2.118)

The explicit time dependence of the derivative of the total dipole with respect

to the position of a specific particle ∂µ
∂x⃗i

has been highlighted, as this implies
that the infrared spectra will not be constructed from the time correlation
functions Cvi v j of the velocities themselves, but of the velocities multiplied
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by these derivatives. If these derivatives were constant, the calculation would
reduce to the previous case.

The diagonal elements C v⃗ i v⃗ i (ω) of the Fourier transform of the velocity–
velocity correlation functions are within the context of molecular systems
referred to as the vibrational density of states (VDOS) of particle i . All the
quantities C v⃗ i v⃗ j (ω) taken together are referred to as generalized VDOS [26].
These functions are also connected to the Fourier transforms of the position–
position correlation functions through the relation

C v⃗ i v⃗ j (ω) =ω2C x⃗i x⃗ j (ω), (2.119)

which follows from the properties of the Fourier transform.
In this work, the VDOS of a chosen particle, or set of particles, was one of

the objects of main interest. Its significance comes mainly from the fact that
the main characteristics of the motion of the constituent particles, relevant
in the calculation of vibrational spectra, are well captured in it. Vibrational
spectra include the aforementioned infrared spectrum, but also the related
Raman spectrum, among others. These differ in the derivatives multiplying
the velocities, for instance for the Raman spectrum these would be ∂α

∂x⃗i
, where

α is the total polarizability of the system. Since the VDOS is free from the mul-
tiplication by these derivatives, it encapsulates the features in these spectra
arising from the dynamics of the particles themselves. A peak in the VDOS
might have a different intensity or even position in a specific vibrational spec-
trum, or in fact not be present in some of them at all, but this peak can usually
be mapped to a specific peak in the VDOS, and interpreted as arising from a
specific motion of a specific particle.

2.4 Molecular dynamics

The established knowledge, which will be shown in this section has been
sourced from the book 1 as well as from the lectures "Molecular dynamics
I" and "Molecular dynamics II" taught by RNDr. Ondřej Maršálek, Ph.D.

In classical statistical mechanics of the canonical ensemble, an average of
some quantity A(x), which is only a function of particle coordinates x, can be
calculated by performing the averaging

〈A〉 =
∫︂ ∞

−∞
dn x A(x)ρ(x) (2.120)

where ρ(x) is a probability distribution function given by

ρ(x) = 1

Q
exp

(︁−βU (x)
)︁
, (2.121)

where U (x) is the potential energy. Q is the configurational integral - the con-
figurational contribution to the partition function Z which can be calculated



2 Theoretical background 27

using

Q =
∫︂ ∞

−∞
dn x exp

(︁−βU (x)
)︁
. (2.122)

Carrying out such an integral analytically is, however, possible for only a lim-
ited set of U (x) and A(x). In particular, for a molecular system treated classi-
cally, the total Hamiltonian is given by equation 2.11, and the potential U (x) is
equal to the electronic energy for the given configuration of the nuclei, which
can be rather general. Numerical methods are thus needed to perform such
integrals. The most often used methods of carrying out such integrals numer-
ically for systems of many particles are Monte-Carlo methods, in particular,
the Metropolis algorithm [27], and methods of molecular dynamics.

The main motivating feature behind the method of molecular dynamics
is the fact that any phase space probability distribution ρ(X) is preserved by
classical Hamiltonian dynamics. This is the well-known Liouville’s theorem
and can be written in mathematical form as

dρ

dt
+ {ρ, H } = 0, (2.123)

where {..., ...} denotes the Poisson bracket. One could thus obtain the aver-
age of a certain quantity A(X) = A(x) over the canonical distribution by first
generating some, relatively low, number of samples from the distribution and
then letting them evolve according to Hamiltonian dynamics. This process is
usually called a “simulation” and it yields a sequence of phase space configu-
rations p(t ), x(t ) collectively known as a trajectory which are still distributed
according to the original distribution. The average value of the quantity of in-
terest A(x) can then be calculated by simply averaging over these configura-
tions. Other probability distributions could in principle be used, such as the
microcanonical or grand canonical ensembles. Which one is used in practice
depends on the apriori known thermodynamic properties of the studied sys-
tem. In this work the canonical ensemble has been used exclusively, and as
such NVT molecular dynamics will be used.

It is often the case that the system one wants to study using molecular dy-
namics is macroscopic in size. Such a system would be too large to simulate
on any existing computer. Therefore, a different approach is used. A relatively
small system, defined by its particle number and the potential energy U (x),
is usually considered. This system is to be constructed in such a way that all
intensive quantities of interest are equal to their macroscopic limit.

Since generating the initial samples is generally not easy itself, NVT molec-
ular dynamics is most often performed by numerically integrating Hamilton’s
equations from a single initial condition while using an additional numerical
algorithm (referred to as a thermostat) to enforce the canonical ensemble.
This is most often done by perturbing the particle momenta to keep them
consistent with the Maxwell–Boltzmann distribution. A useful perspective
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on this procedure is that the thermostat effectively generates the initial sam-
ples “on the fly”. Molecular dynamics itself is thus effectively used to gen-
erate the initial samples. Generating the one initial condition itself might
still be a problem, however as the canonical ensemble contains technically
all phase space points — most just have exceedingly low probability — the
initial condition may be in principle any configuration. Practically, choos-
ing a highly improbable initial condition will bias the beginning of the sim-
ulation, until the thermostat has enough time to ensure representative sam-
pling. This period is known as “equilibration” and the samples obtained from
it are usually discarded. The length of this period can be decreased by choos-
ing a phase–space configuration which is as close to a typical representative
structure from the ensemble as possible. For momenta, this simply means
randomly sampling them from the Maxwell–Boltzmann distribution. For po-
sitions, however, an a priori insight into the structure of the system is usually
needed to do this.

The most commonly used algorithm for numerical integration of Hamil-
ton’s equations is the velocity Verlet [28] algorithm. This algorithm can be
formulated in multiple different ways which all yield the same trajectories.
The formulation which will be used here is due to Berne and Tuckerman [29].
To obtain this algorithm, one can start from the general relation

A(t ) = exp(i Lt )A(0), (2.124)

which holds within classical mechanics. In this relation, A(t ) is some function
on phase space — the most important such function being the phase space
coordinates themselves, and L is the Liouville operator defined as

i L = {. . . , H } = ∂H

∂p

∂

∂x
− ∂H

∂x

∂

∂p
= i Lx + i Lp . (2.125)

For a Hamiltonian in of the form H = p2

2m +U (x), the operators i Lq and i Lp

are equal to:

i Lx = p

m

∂

∂x
= v

∂

∂x
, (2.126)

i Lp =−∂U

∂x

∂

∂p
= F

∂

∂p
. (2.127)

The exponential in equation 2.124 thus cannot be simply evaluated for such
a Hamiltonian, as the operators i Lx and i Lp do not commute. A way around
this is to use the Lie–Trotter product formula [21]

exp(i Lt ) = lim
n→∞

{︃
exp

[︃
i Lp

(︃
t

2n

)︃]︃
exp

[︃
i Lx

(︃
t

n

)︃]︃
exp

[︃
i Lp

(︃
t

2n

)︃]︃}︃n

(2.128)

This formula holds exactly for n → ∞, however, it can be truncated for nu-
merical purposes at some high enough n. The leading correction term is in
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such a case O
(︂(︁ t

n

)︁2
)︂
. This formula can be conveniently written using indi-

vidual operators exp(i Lϵ) which evolve the trajectory through a single time
step ϵ= t/n:

exp(i Lt ) = exp(i Lϵ)n +O(ϵ2)

exp(i Lϵ) = exp
(︂
i Lp

ϵ

2

)︂
exp(i Lxϵ)exp

(︂
i Lp

ϵ

2

)︂
+O(ϵ3)

(2.129)

The individual exponentials can now be applied directly to the function of
interest using the property:

exp

(︃
l

d

dx

)︃
f (x) = f (x + l ), (2.130)

which implies that

exp(i Lxϵ) f (x, p) = f (x + vϵ, p), (2.131)

exp
(︁
i Lpϵ

)︁
f (x, p) = f (x, p +Fϵ). (2.132)

The velocity Verlet algorithm is thus obtained, in which the following steps
are repeated as long as needed:

p ← p +F
ϵ

2

x ← x + vϵ

F (x) ← F (x + vϵ)

p ← p +F
ϵ

2
.

(2.133)

The notation x ← y denotes a numerical update of the quantity x and is to
be understood as replacing the value of x by the value of y (the name of the
variable stays the same). This notation is often encountered in literature on
molecular dynamics (for example [30]) and will thus be also adopted here. To
start off the loop, the forces need to be calculated one additional time.

This algorithm is time-reversal symmetric, and as such it cannot produce
systematic drifts in the total energy (within the limits of finite precision arith-
metic). Another advantage of the velocity Verlet algorithm is its symplectic
nature — the transformation: (︃

x(0)
p(0)

)︃
→

(︃
x(ϵ)
p(ϵ)

)︃
(2.134)

constitutes a canonical transformation, preserving the form of Hamilton’s
equations. Stated in another way — propagating one step with the velocity
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Verlet algorithm preserves the canonical 2-form dx ∧dp. Stated in yet an-
other way, this implies that Liouville’s theorem holds for such an integrator
and the phase-space volume is preserved by it.

It is worth noting that any consistent numerical algorithm for integrat-
ing ordinary differential equations shares these properties when applied to
Hamilton’s equations in the limit ϵ→ 0. The important advantage of the ve-
locity Verlet algorithm is that it possesses these properties for (in principle)
any ϵ. Within molecular dynamics simulations, it is desirable to use as high
as possible ϵ, as this gives the most simulation time (and thus the most infor-
mation) given limited computational resources — hence the advantage of the
velocity Verlet algorithm. In practice, this time step is limited by the shortest
timescale present in the simulation. Another important point is that in the
majority of cases, the most time-consuming step of the velocity Verlet algo-
rithm is the calculation of the forces. For molecular systems, as outlined in
the preceding section, these come from the solution of the electronic prob-
lem. But even if a pair potential approximation for the electronic energy is
employed, the computational costs of evaluating the forces typically dom-
inate over the cost of evolving the system in time. This highlights another
advantage of the velocity Verlet algorithm — it requires only one evaluation
of the forces per step. In principle, more accurate algorithms could be de-
vised using the same derivation as was showcased here, but using a symmet-
ric Lie–Trotter product formula of a higher order. These would also share all
the previously mentioned advantages of the velocity Verlet algorithm. Such
algorithms are however rarely used, as they would require more evaluations
of the forces per step.

A thermostat will now be introduced by artificially adding another term to
the Liouville operator:

L = Lx +Lp +LT . (2.135)

The Lie–Trotter formula can now be used to symmetrically split the exponen-
tial of the Liouville operator, while preserving the basic velocity Verlet struc-
ture, in two different possible ways. The first scheme is:

exp(i Lϵ) = exp
(︂
i Lp

ϵ

2

)︂
exp

(︂
i Lx

ϵ

2

)︂
exp(i LT ϵ)exp

(︂
i Lx

ϵ

2

)︂
exp

(︂
i Lp

ϵ

2

)︂
+O(ϵ3),

(2.136)

while the other is:

exp(i Lϵ) = exp
(︂
i LT

ϵ

2

)︂
exp

(︂
i Lp

ϵ

2

)︂
exp(i Lxϵ)exp

(︂
i Lp

ϵ

2

)︂
exp

(︂
i LT

ϵ

2

)︂
+O(ϵ3).

(2.137)

There are multiple possible choices for the operator exp(i LT ϵ) itself. A simple
yet useful choice is a thermostat based on the Langevin equation 2.77 [31]. As
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was shown beforehand in equation 2.82, the distribution of momenta of par-
ticles obeying the Langevin equation converges for to the Maxwell–Boltzmann
distribution t → ∞, and as such, this is a valid approach for constructing a
thermostat. To this end, the equation 2.83 will be useful while making a reas-
signment γ

m → γ often employed in literature on Langevin thermostats.
According to this equation, the thermostat consists of two components

— a friction part and a stochastic part, both being connected through the
parameter γ. In a single thermostat step, the friction part is first applied by
rescaling the momenta:

p ← exp
(︁−γϵ)︁p (2.138)

and afterward, the stochastic part is applied by adding a random vector to the
momenta:

p ← p +
√︄

m

β

[︁
1−exp

(︁−2γϵ
)︁]︁
ζ(t ), (2.139)

where ζ is a vector of normally distributed random numbers of zero mean,
unit variance, and same size as the vector of momenta p. For a Langevin
thermostat, the Liouville operator splitting in equation 2.136 was found to
possess better numerical properties than the alternative in equation 2.137
[31]. The parameter γ controls the rate of convergence of the momenta to the
thermal distribution and is usually referred to as the “strength” of the ther-
mostat. On timescales τ >> 1

γ , the distribution of the momenta of the par-
ticles reproduces the Maxwell–Boltzmann distribution, while on timescales
τ<< 1

γ
the momenta behave more like they would in Hamiltonian dynamics.

This brings forth the idea that a simulation with a Langevin thermostat could
in principle be used to calculate time correlation functions for timescales
t << 1

γ . However, the thermostat as described here still perturbs the Hamil-
tonian dynamics too much for such correlation functions to be of use. This is
due to the thermostat being a local one. A thermostat is called local if, in each
application of the thermostat, every momentum degree of freedom is acted
upon by the thermostat separately (as is the case here). In contrast to this, a
global thermostat acts on a set of momentum degrees of freedom (usually all
of them) as a whole. A global thermostat is typically needed to obtain reason-
able Hamiltonian dynamics for timescales t << 1

γ , as it “distributes” the effect
of the thermostat over multiple degrees of freedom and thus perturbs each
individual one less. A global version of the Langevin thermostat (for more de-
tails of this version see appendix D) can be constructed [32], often called the
Canonical sampling through velocity rescaling (CSVR) thermostat [32]. The
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algorithm for a single thermostat step is:

α2 = c + (1− c)
(︁∑︁N

i=1 ζ
2
i

)︁
2βK

+2ζ1

√︄
c(1− c)

2βK

sign(α) = sign

(︄
ζ1 +

√︄
2βK c

(1− c)

)︄
p ←αp,

(2.140)

where N is the number of momentum degrees of freedom, c = exp
(︁−2γϵ

)︁
, K

is the kinetic energy of the considered particles, and ζi are again normally
distributed random numbers with zero mean and unit variance. In the case
N = 1 this thermostat reduces to the local case:

α2 = c + m1(1− c)ζ2
1

βp2
1

+2ζ1

√︄
m1c(1− c)

βp2
1

=
(︄

c + 1

p1

√︄
m1

β

[︁
1−exp

(︁−2γϵ
)︁]︁
ζ1

)︄2

p1 ← p1 +
√︄

m1

β

[︁
1−exp

(︁−2γϵ
)︁]︁
ζ1

(2.141)

The use of NVT molecular dynamics is not limited just to the problems of
classical statistics. Using the path integral formulation, the partition function
of a system of distinguishable quantum particles is given by equation (2.33):

Z =
∫︂

dn x
⟨︁

x
⃓⃓
exp

(︁−βĤ
)︁ ⃓⃓

x
⟩︁

= lim
P→∞

∫︂ P∏︂
i=1

dn xi

(︃
mP

2πħ2β

)︃ nP
2

exp

{︄
−

P∑︂
j=1

[︃
mP

2ħ2β
(x j −x j−1)2 + β

P
U (x j−1)

]︃}︄
.

(2.142)

With the condition x0 = xP . For the sake of numerical approximation, this ex-
pression may be truncated at some large enough but finite P . The expression
then looks just like a classical configuration integral for a system composed
of nP

3 particles in three dimensions with the potential energy equal to:

U (x) =
P∑︂

j=1

1

2
mω2

P (x j −x j−1)2 +U (x j−1) (2.143)

at a higher temperature corresponding to β/P . The definition ωP ≡ P/(ħβ)
was introduced. The analogy with the classical case can be completed by per-
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forming nP reverse Gaussian integrations, the expression becoming:

Z =
∫︂ P∏︂

i=1
d 3pi

P∏︂
i=1

d 3xi ·

×exp

{︄
−β

P

P∑︂
j=1

[︄
p2

j

2m′ +
1

2
mω2

P (x j −x j−1)2 +U (x j )

]︄}︄
,

(2.144)

where formally m′ = m
(2πħ)2 , however as an overall constant prefactor of the

partition function has no effect on the thermodynamic quantities obtained
from it, this parameter may be chosen freely. The quantum partition func-
tion thus can be calculated as the classical partition function of an extended
system of P times the original number of particles with the Hamiltonian:

H(x) =
P∑︂

j=1

p2
j

2m′ +
1

2
m′ m

m′ω
2
P (x j −x j−1)2 +U (x j ) (2.145)

at a P times the temperature. Such a Hamiltonian corresponds to a series
of “ring polymers” (each replacing one quantum particle) with each of its P
“beads” (or alternatively “replicas”) harmonically coupled to its two neigh-
bors. This mapping between a problem of quantum statistics of a single dis-
tinguishable particle and a problem of classical statistics of a ring polymer
is sometimes referred to as “classical isomorphism” [33]. Since this is now
a problem of classical statistics, the thermodynamic and statistical proper-
ties of a quantum mechanical system of distinguishable particles can thus
be obtained by simulating such a system using the established methods of
molecular dynamics.

A point worth noting is the fact that the second term in equation 2.145 has
been rather suggestively rewritten to stress the important role which m′ plays
in the dynamics of the ring polymer. Not only does it play the role of the iner-
tial mass of the constituent beads of the ring polymer, but it also determines
the frequency of the harmonic coupling between the beads, the frequency
being equal to

ω=
√︃

m

m′ωP (2.146)

As this parameter may be chosen freely, as was previously discussed, so can
the frequency be chosen freely. Different beads can even in principle have dif-
ferent choices of m′ → m′

j and thus different coupling frequencies (the only
difference still being an overall numerical prefactor of the partition function).
This point will be further touched upon later in subsection 3.1.

The expectation value of any operator Â = A(x̂) may be calculated follow-
ing equation 2.34 as (integrating out the momenta again, to make the equa-
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tion simpler)

〈Â(x̂)〉 = 1

Z

∫︂ P∏︂
i=1

dn xi

(︃
mP

2πħ2β

)︃ nP
2

A(xP )

×exp

{︄
−β

P

P∑︂
j=1

[︃
1

2
mω2

P (x j −x j−1)2 +U (x j−1)

]︃}︄
,

(2.147)

where the condition xP = x0 still applies. Since all of the ring polymer beads
are equivalent, this relation may be rewritten as

〈Â(x̂)〉 = 1

Z

∫︂ P∏︂
i=1

dn xi

(︃
mP

2πħ2β

)︃ nP
2

(︄
P∑︂

j=1

1

P
A(x j )

)︄

×exp

{︄
−β

P

P∑︂
j=1

[︃
1

2
ω2

P (x j −x j−1)2 +U (x j−1)

]︃}︄
.

(2.148)

Calculating the mean in this fashion is advantageous as it increases the nu-
merical sampling, and thus accelerates the convergence of 〈Â〉. The quantity
1
P

∑︁P
j=1 A(x j ) is referred to within the context of path-integral molecular dy-

namics as the estimator of the operator Â. To compute the expectation value
of an operator that is not diagonal in the position basis, the off-diagonal el-
ements of the density matrix are required. The calculation of these would
necessitate the condition xP = x0 to be lifted, and the system would thus re-
semble classical polymers with free ends. An exception to this is the opera-

tor of quantum kinetic energy T (p̂) = p̂2

2m , which can be calculated from ring
polymer simulations. This results from the fact that the mean total energy
can be calculated from the partition function using the relation

〈E〉 =− 1

β
ln(Z )

= P

2β
− 1

Z

∫︂ P∏︂
i=1

dn xi

(︃
mP

2πħ2β

)︃ nP
2 1

P

[︄
P∑︂

j=1

1

2
ω2

P (x j −x j−1)2 +U (x j−1)

]︄

×exp

{︄
−β

P

[︄
P∑︂

j=1

1

2
ω2

P (x j −x j−1)2 +U (x j−1)

]︄}︄
,

(2.149)

which is an average of the quantity

P

2β
− 1

P

[︄
P∑︂

j=1

1

2
ω2

P (x j −x j−1)2 +U (x j−1)

]︄
(2.150)
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over the canonical ensemble of the ring polymer configurations. In the third
term of this expression, one can recognize the estimator of the potential en-
ergy operator Û (x̂). The rest thus corresponds to an estimator of the kinetic
energy operator and is accordingly called the primitive kinetic energy estima-
tor. From a numerical point of view, this operator suffers from relatively large
fluctuations due to its linear dependence on P . A kinetic energy estimator
with fluctuations of smaller magnitude can be constructed by employing the
virial theorem [34], which gives:

P

2β
−

⟨︄
1

P

[︄
P∑︂

j=1

1

2
ω2

P (x j −x j−1)2

]︄⟩︄
=

⟨︄
1

P

P∑︂
j=1

1

2
x j
∂U

∂x j

⟩︄
. (2.151)

The expression 1
P

∑︁P
j=1

1
2 x j

∂U
∂x j

is thus referred to as the virial kinetic energy

estimator.
The final discussion of this section will concern the usage of molecular dy-

namics for the calculation of time correlation functions. The technical details
of these calculations themselves will however be left for subsection 3.5. As
the current framework of molecular dynamics can generate both numerical
approximations to classical trajectories, as well as samples from the canoni-
cal ensemble, it can be used to calculate classical time correlation functions
C AB (t ). The situation is quite different in the quantum case. Any quantum
time-correlation function involves operators evolved according to the Heisen-
berg picture:

B̂(t ) = exp

(︃
i

ħ Ĥ t

)︃
B̂(0)exp

(︃
− i

ħ Ĥ t

)︃
. (2.152)

The calculation of quantum time correlation functions thus requires integra-
tion over the complex exponential exp

(︁ i
ħ Ĥ t

)︁
. The established methods of

molecular dynamics (as well as Monte Carlo methods) cannot be used to cal-
culate such integrals using the path integral approach, as the exponential is
not positive definite, and as such all sampling schemes fail. The integrals
also cannot be carried out efficiently using other numerical techniques (be
it by using the path integral formulation or not) in high-dimensional sys-
tems due to convergence issues connected with the numerical sign problem.
Loosely speaking, the numerical sign problem stems from the fact that such
integrals contain a large number of mutually nearly-canceling terms, all of
which need to be accounted for to yield a reasonable result. Such integrals
can thus be carried out only for low-dimensional systems, as the number of
terms that need to be considered scales with the total volume of the system,
which scales exponentially with the dimension. The problem can be circum-
vented by diagonalizing the Hamiltonian, but this operation itself scales ex-
ponentially with the number of particles, and as such cannot be practically
used for systems of more than a few particles.

No general solution or approximation which would be generally applica-
ble, yet at the same time systematic and well-founded, exists. Within the con-
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text of molecular systems in the condensed phase, several approximations
have been developed. These mostly fall into two categories — semiclassi-
cal methods and methods based on imaginary-time path-integral molecular
dynamics. Both approaches exploit the relatively short decoherence times
which are to be expected in the condensed phase. This work will focus on a
method falling within the latter of these categories — centroid molecular dy-
namics originally put forward by Cao and Voth [35, 10]. This method approx-
imates the quantum Kubo-transformed time correlation function with the
classical time correlation function (obtained from the same system treated
at a classical level), but with the additional change U (x) →W (x), W (x) being
the centroid free energy introduced in equation 2.38. Although a formal chain
of approximations going from the exact quantum dynamics to CMD can be
established [11], using the Matsubara dynamics [12] introduced by Hele et al.
as an intermediate, there is no formal justification for taking some of these
approximation steps. As such, the method is rather ad hoc in nature, but sev-
eral motivations can be put forward. The main motivating feature behind
CMD (and all other methods based on imaginary-time path-integral molecu-
lar dynamics) is the fact that the resulting dynamics is at all times consistent
with the quantum canonical distribution, and as such satisfies the quantum
condition of detailed balance:

P (A → B)t

P (B → A)t
= P (B)

P (A)
, (2.153)

where the probabilities P (B) and P (A) are given by the quantum canonical
distribution, and A and B are some generic values of an observable. This also
implies that quantum mechanical effects present at the level of static distri-
butions — such as zero point energy and quantum tunneling — are reflected
in the resulting dynamics. The fact that the dynamics is consistent with the
condition of detailed balance also implies that it is microscopically reversible.
As such, the classical time correlation functions calculated using these meth-
ods are even functions of time (a symmetry shared by the Kubo-transformed
time correlation function). Furthermore, it can be shown that the approxi-
mation is exact in the classical and harmonic limits. Away from these limits,
the position autocorrelation functions calculated using the method can be
shown to be accurate up to O(ħ3) [36] for short timescales up to O(t 6) [37].
Despite these encouraging features, it is worth noting that CMD breaks down
for operators which are non-linear functions of the position and momentum
operators [11], which inherently limits the usage of CMD as a method. As this
method is the main topic of this work it will be discussed in greater detail in
the following sections.
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This section will go over the specific implementation choices made within
the present work when applying the theory discussed in the preceding sec-
tion. This will also include the methods used to process the data to yield the
results, which will be presented in the next section. First, an efficient imple-
mentation of path-integral molecular dynamics will be discussed. This will be
followed by a discussion on the possibilities of implementing centroid molec-
ular dynamics. Here, the machine learning approach proposed by this work
will be detailed. The final topic will be the calculation of time correlation
functions and frequency spectra.

The information presented in this section is a combination of established
knowledge and methods, which have been mostly obtained by the author
from the cited articles, as well as from discussions with the thesis advisor –
RNDr. Ondřej Maršálek, Ph.D., and newly proposed methodology. The newly
proposed methodology is mostly contained in subsection 3.4, and its appear-
ance will be emphasized in the upcoming text.

3.1 Efficient path-integral molecular dynamics

Even though path-integral molecular dynamics can in principle be carried
out in the same fashion as ordinary molecular dynamics, this approach is
most often not suitable. To see the reason for this, notice that the ring poly-
mer Hamiltonian given in equation 2.145 can be written as:

H =
P−1∑︂
j=0

p2
j

2m′ +
P−1∑︂
0=1

1

2
mω2

P xT
j M j i xi +U (x j ), (3.1)

where M is the real symmetric matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 · · · 0 −1
−1 2 −1 0 · · · 0 0

0 −1 2 −1
...

...
. . . . . . . . .

...
... −1 2 −1 0

0 0 · · · 0 −1 2 −1
−1 0 · · · 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.2)

Note that an advantageous shift of the summation indices has been performed.
Due to its translational symmetry, this matrix can be diagonalized by vectors
of the form

nk = exp

(︃
i

2πk j

P

)︃
k ∈ {0,1, . . . , (P −1)} (3.3)
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with the eigenvalues

λk = 4sin2
(︃
πk

P

)︃
. (3.4)

A coordinate transformation matrix can be constructed out of the eigenvec-
tors in equation 3.3, which form a basis of the eigenspace of the matrix M .
It is convenient to take this matrix real (which can be done, since M is sym-
metric) and orthogonal. If U is the unitary matrix, where each column is one
eigenvector from equation (3.3), then this matrix can be found as

C = 1

2
⎷

P
(U +U †), (3.5)

and its matrix elements are

Ci j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√︂
1
P , i = 0√︂
2
P cos

(︂
2πi j

P

)︂
, 1 ≤ i ≤ P

2 −1√︂
1
P (−1) j , i = P

2√︂
2
P sin

(︂
2πi j

P

)︂
, P

2 +1 ≤ i ≤ P −1.

. (3.6)

Using this matrix, the normal mode coordinates and momenta can be intro-
duced:

x̃k =
P−1∑︂
j=0

Ck j x j , p̃k =
P−1∑︂
j=0

Ck j p j , (3.7)

in which the ring polymer Hamiltonian obtains the following form:

H =
P−1∑︂
k=0

(︄
p̃2

k

2m′ +
1

2
m′ω2

k x̃2
k +Ũ (x̃)

)︄
, (3.8)

where the normal mode frequencies

ωk = 2

√︃
m

m′ωP sin

(︃
kπ

n

)︃
(3.9)

were introduced. Note that the coordinate transformation leaves the kinetic
term the same, due to the orthogonality of C , but the potential Ũ gener-
ally takes a different form than in Cartesian coordinates. It is worth noting

that the P = 0 normal mode multiplied by
√︂

1
P corresponds to a P-replica

approximation to the centroid introduced in equation 2.35. It can thus be
seen that the system contains P “stiff” harmonic modes spread over a broad
frequency range. This results in poor energy exchange between the normal
modes, as the only way for them to exchange energy is through anharmonic-
ities in Ũ (x̃) [38]. A strong enough thermostat thus needs to be attached to
each normal mode [39]. The broad frequency range spanned by the normal
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modes makes the system rather complex. The highest of these frequencies
are also often much higher than any of the physical frequencies present in
the system and thus severely limit the simulation time step. This limitation
can be overcome by performing the molecular dynamics simulation entirely
in normal modes, switching to Cartesian coordinates only to calculate forces
and write output. The switch to Cartesian coordinates is done, because the
potential Ũ is generally not known. In practice, only the forces are required
to run molecular dynamics and these can be transformed to normal modes
using the same matrix C from their Cartesian versions, and as such the Ũ is in
fact not necessary. In this approach, the equations of motion of the quadratic
part of the Hamiltonian alone are integrated exactly. These are then numeri-
cally corrected for the presence of Ũ (x̃)[30].

This results in a time evolution scheme with a thermostat:

exp(i Lϵ) = exp
(︂
i Lγ

ϵ

2

)︂
exp

(︂
i LV

ϵ

2

)︂
exp(i L0ϵ)exp

(︂
i LV

ϵ

2

)︂
exp

(︂
i Lγ

ϵ

2

)︂
+O(ϵ3),

(3.10)

where i L0ϵ corresponds to the time evolution of the free ring polymer:(︃
p̃k
x̃k

)︃
←

(︄
cos(ωkϵ) −m′

kωk sin(ωkϵ)
1

m′
kωk

sin(ωkϵ) cos(ωkϵ)

)︄(︃
p̃k
x̃k

)︃
, (3.11)

i Lp
ϵ
2 corresponds to the evolution of the momenta under the influence of

Ũ (x̃):

F̃ k ←
P−1∑︂
j=0

Ck j F j

p̃k ← p̃k + F̃ k
ϵ

2

(3.12)

and i Lγ
ϵ
2 corresponds to applying a Langevin thermostat to each normal mode:

p̃k ← exp
(︂
−γk

ϵ

2

)︂
p̃k +

√︄
m′

k

β

[︂
1−exp

(︂
−2γk

ϵ

2

)︂]︂
ζk (t ). (3.13)

As indicated, the parameter γ should in general be chosen differently for each
normal mode. An optimal choice of these parameters is [30]:

γi =
{︄

1
τ0

, k = 0

2ωk , k > 0,
(3.14)

τ0 being the desired timescale of thermalization of the centroid momenta.
This algorithm is called PILE-L (PILE standing for path integral Langevin equa-
tion, and L for local). A global CSVR thermostat can alternatively be attached
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to the particle centroids. This method is then called PILE-G. After the trans-
formation to normal modes, the parameter m′ retains its role as the inertial
mass (now, of the normal modes), while determining their frequency. This
parameter can also still be chosen freely, as was previously discussed in sub-
section 2.4. This can also be done separately for each normal mode, as has
been already suggested in equations 3.11 and 3.13. A common use of this
freedom is a shift of all the normal mode frequencies to a common lower fre-
quency, which further loosens the requirements on the simulation time step
and increases the accuracy of the numerical integration of the equations of
motion. Note that if the forces are simple enough to calculate and a high
number of particles and replicas are used, it may be the case that the transfor-
mations to and from normal modes may be the rate-limiting step of the sim-
ulation. Most often, the transformation of the coordinates is thus not done
using matrix multiplication as described before, but by using a fast Fourier
transform, which has a more advantageous scaling — O(P log(P )), compared
to the O(P 2) scaling of matrix multiplication.

To perform path-integral molecular dynamics simulations for molecular
systems, the i-Pi program [40] was used. This program (written in the Python
programming language) performs the evaluation of the scheme described
above, while taking the required forces from an external program through a
socket interface. The CP2K [41] program was used to evaluate forces based on
an existing machine learning model constructed using data from electronic
structure calculations [42].

Path-integral molecular dynamics simulations were also performed for
small model systems. These were done using a custom program written in
the Fortran programming language for this work. Within this program, the
Fastest Fourier Transform in the West library [43] was employed to perform
the coordinate transformations to and from normal modes.

3.2 Centroid molecular dynamics in practice

As was outlined before, the CMD method is defined as classical molecular
dynamics with the potential given by the path integral centroid free energy
W (x). This choice of potential yields the following equations of motion:

∂p

∂t
=−∂W (x)

∂x
(3.15)

∂x

∂t
= p

m
. (3.16)
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The derivative ∂W (x)
∂x can be, in the discrete approximation, expressed using

equations (2.38) and (2.39):

∂W (x)

∂x
= 1

ρc (x)

∫︂ P∏︂
i=1

dn xi

(︃
mP

2πħ2β

)︃ nP
2

δ(xc (xi )−x)

×
(︄

1

P

P∑︂
i=1

∂U

∂xi

)︄
exp

{︄
−

P∑︂
j=1

[︃
mP

2ħ2β
(x j −x j−1)2 + β

P
U (x j−1)

]︃}︄
.

(3.17)

The forces acting on the particles thus correspond to the mean force acting on
the centroid fixed at x. CMD should thus be performed by integrating Hamil-
ton’s equations (with or without a thermostat) while calculating forces at each
step by performing an auxiliary path-integral molecular dynamics simulation
with the centroid fixed at the current position of the particles to determine the
mean force. The computational costs associated with such a scheme would,
however, be extreme, and as such it is essentially never used. In practice, a
different approach was adopted — a path-integral molecular dynamics sim-
ulation is performed with all the non-centroid normal modes shifted (by ad-
justing the parameters m′

k ) to a common high frequency [14, 44]. There are
two ways of looking at the role of the high frequency. The first is that it ensures
that the non-centroid degrees of freedom are adiabatically separated from the
physical frequencies present in the system. This suppresses the energy ex-
change between the non-centroid degrees of freedom and the centroid. The
second perspective is that the high frequency makes it so that the force on the
centroid, averaged over short enough timescales such that the centroid can
be considered still in the vicinity of x, is close to its converged value for the
given position of the centroid x. Both of these however describe essentially
the same phenomenon. This method has been used in the past to yield re-
sults consistent with both other approximations to quantum dynamics for
molecular systems in the condensed phase [45] and with experiment [46].
These successes notwithstanding, it still suffers from a series of drawbacks.
The most readily apparent drawback is the fact that the high frequency be-
comes a new convergence parameter. Raising the frequency severely limits
the time step and it is thus desirable to keep this frequency as low as possible
while achieving adiabatic separation. Having found a suitable frequency, the
time step should then be further optimized to accommodate this frequency,
while being as long as possible. An additional issue is that the non-centroid
normal modes in reality do not occupy only a single frequency, but a rather
broad range of frequencies. This effect is caused by the thermostats attached
to these modes. To alleviate this problem, the γ parameter of the thermostats
may be lowered to eliminate any spurious effects caused by the presence of
the thermostats and to accelerate the convergence with respect to the tar-
get frequency [45]. In summary, setting up this procedure requires a gener-
ally non-trivial optimization procedure in the three-dimensional space of the
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time step, γ parameter, and the target frequency. The optimal time step nec-
essary for running adiabatic CMD however still usually ends up being more
than ten times shorter than the optimal time step for an equivalent classical
simulation. This presents a substantial computational drawback. To circum-
vent these difficulties, it is proposed in this work that instead of performing
adiabatic CMD, the centroid potential W (x) (or respectively its derivatives)
can be pre-calculated and the CMD simulations ran as purely classical molec-
ular dynamics simulations. The construction of the potential W (x) will be
detailed in subsection 3.4.

3.3 Machine learning potentials

The recent years and decades saw a rapid expansion of the possibilities of
methods of machine learning in a wide array of fields. In the context of molec-
ular dynamics, perhaps the main impact of these methods was the intro-
duction of machine learning potentials. As was previously mentioned, the
calculation of the forces — which are derivatives of the underlying Born–
Oppenheimer potential energy surface is the most costly part of molecular
dynamics. Especially in the case when these are calculated directly by solv-
ing the electronic structure problem, the cost can become extreme. Machine
learning potentials seek to solve this issue by constructing a machine learning
model which can predict the forces and potential energy for a given structure
without the necessity of solving the electronic problem every time.

These methods have been used successfully in the past to construct ac-
curate models of potential energy surfaces while using only a small set of
training structures (compared to the number of structures visited in a typi-
cal trajectory) and still remain the subject of active research.

As the theory of machine learning is rich and expansive, and its study
was not the main goal of this work, the discussion of this theory will be kept
rather brief, and only the most important (for the present work) properties of
these methods will be presented. Furthermore, although other approaches
to machine learning exist, the discussion will be limited only to feedforward
artificial neural networks, on which the machine learning methods used in
this work were based. An overview of these neural networks and specifically
their use in the prediction of potential energy surfaces of atomic and molec-
ular systems can be found for instance in the review by Behler [16]. These
networks present highly flexible (meaning they contain a large number of
free parameters, subject to optimization) non-linear models, which can be
used to approximate any function of the input data (under certain assump-
tions) [47]. The parameters of these networks are determined in a process
usually referred to as “training”, where a (case dependent) loss function of the
neural network output is constructed using a known training set of pairs of
reference input and output values. This loss function is then minimized with
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respect to the model coefficients. An advantageous feature of these networks
is that the resulting optimized model is available as an analytic function, and
as such its derivatives with respect to the input parameters are also available.

The machine learning potentials used in this work were the so-called high-
dimensional neural network potentials (HDNNPs). The defining feature of
HDDNPs is the fact that the total energy or force is calculated as a sum of
atomic contributions. This can be well illustrated on the historically first in-
stance of HDNNPs — the Behler–Parrinello [48] potentials. In the Behler–
Parrinello approach, each chemical element is assigned an artificial neural
network, which takes the atom centered symmetry functions [49], calculated
from the Cartesian coordinates of atoms within a cutoff distance of any given
atom of this element as an input, and produces a potential energy value as an
output. A slightly disadvantageous aspect of the Behler–Parrinello potentials
is the fact that in the most common implementation of these potentials, the
training of these potentials requires both the energies and the forces for the
training data. The total potential energy is then calculated as a sum of atomic
contributions from all atoms (for atoms corresponding to the same element
this energy is calculated by evaluating the same neural network model) and
the force as the derivative of this total energy with respect to the atomic po-
sitions. This is the approach on which the previously mentioned model [42]
to predict the Born-Oppenheimer potential energy surface was based, albeit
with the additional usage of committees. A point worth mentioning is, that
the symmetry functions are constructed from only the local surroundings of
each atom, long-range interactions are not explicitly present in these models.
They are present in an implicit fashion since the local surroundings of each
atom is influenced by these interactions, but even so, these models generally
perform better for short-range interactions.

A second type of machine learning potentials has been used in this work
— equivariant message-passing machine learning potentials [50]. In this slightly
different approach, a single feed-forward neural network is used for all el-
ements present in the system, however, it takes the element type as an ad-
ditional input. Furthermore, as the name suggests these potentials employ
message passing. This means that, roughly speaking, several times (in the so-
called interaction layers) information about the state of the given atomic neu-
ral network (the single neural network is evaluated for each atom separately)
is passed to all the other atomic neural networks within a cutoff distance,
which they use as further input information. Lastly, the used approach was an
equivariant one. Roughly speaking again, the neural network uses additional
tensor information as an input and preserves its tensor nature throughout the
model. This ensures that the model output (which can be in principle a ten-
sor of any order) transforms properly under coordinate transformations (be-
longing to the Euclidean group). In contrast, the previous “non-equivariant”
models were traditionally invariant with respect to these transformations,
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and thus proper behavior was ensured by them only for rank zero tensors.
Note, however, that for the prediction of potential energies and forces, an
equivariant network is not necessary as the potential energy is a rank zero
tensor. The force — minus its derivative — thus also transforms automat-
ically as a rank one tensor even if an equivariant network is not used. An
advantageous feature of this approach, in contrast to the Behler–Parrinello
approach is the fact that in most of its implementations, the training can be
done using forces only. These models likewise perform better for short-range
interactions. The NequIP program [50] was used to construct these models
and its plugin (“pair style”) for the LAMMPS [51] package was used to evalu-
ate them.

3.4 Construction of the centroid potential

In this work, it is proposed that the methodology of CMD can be improved
by performing CMD as purely classical molecular dynamics on the potential
W (x). In this approach, the derivatives of the potential ∂W (x)

∂x are calculated
beforehand as a function of the particle coordinates x for all of the coordi-
nates which are expected to be visited in a typical simulation. The reason for
pre-calculating just the forces and not the potential W (x) itself is the fact that
the potential itself is not needed (molecular dynamics requires just the forces,
not the potential itself), and in fact hard to obtain. In contrast to this, calcu-
lating the force −∂W (xi )

∂x for a given xi is relatively simple to obtain using equa-
tion 3.17 — an imaginary-time path-integral molecular dynamics simulation
is run with the centroid fixed at xi , and the average force on the centroid is
subsequently read off from this simulation, which is the force−∂W (xi )

∂x needed.
The most important question, however, is how to construct the forces for all
x (within some relevant volume of the space) from forces calculated for some
reasonable amount of configurations.

For systems of low dimensionality, this can be done rather easily. In this
work for low-dimensional systems, the forces were constructed by calculat-
ing the forces explicitly, according to the procedure mentioned in the previ-
ous paragraph, for positions lying on a grid. The resulting forces were subse-
quently interpolated using cubic splines [52], using the SciPy library [53].

For realistic molecular systems, this approach could not be used due to
their high dimensionality. Instead, methods of machine learning potentials
were used. These can successfully reproduce highly-dimensional Born–Oppenheimer
potential energy surfaces, and since the potential W (x) is itself a type of “po-
tential energy surface” (from the point of view of the classical dynamics which
results), these methods were seen as ideal candidates. Since only the forces
were available, not the absolute values of the free energies, the second of the
methods mentioned in subsection 3.3 — equivariant message-passing neural
network potentials — were used, since the available implementation allows
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training on forces only. The training set for constructing machine learning
potentials needs to be chosen with care, as the quality of the resulting po-
tential keenly depends on it. The training structures used in this work were
the same as those already used with success to construct generation 1 of the
already mentioned committee neural network potential [42]. Furthermore,
the model was trained to reproduce only the difference between the full cen-
troid force −∂W (xi )

∂x and the underlying Born–Oppenheimer force −∂U (x)
∂x , as

the correction W (x) −U (x) was assumed to be more short-range than ei-
ther potential alone. Of course, when the CMD simulation is run, the Born–
Oppenheimer force needs to be added again to this difference.

3.5 Numerical calculation of time correlation functions

As follows from the definition of a classical time correlation function (given
in equation 2.51), numerical calculation of such a time correlation function
would proceed by first performing an equilibrium simulation with a thermo-
stat, yielding representative structures from the canonical ensemble. Second,
these structures would each be used as an initial condition for a separate sim-
ulation without a thermostat (the number of these being a convergence pa-
rameter). From these simulations, products of the type A(0)B(t ) are calcu-
lated, and averaged over these separate simulations:

C AB (t ) = 1

N

N∑︂
k=1

A(xk (0))B(xk (t )). (3.18)

In these simulations only the xk (0) configuration belongs to the canonical
ensemble, and thus each trajectory contributes only once to the statistical
average of C AB (t ) for each t . However, if a weak global thermostat were at-
tached to each simulation instead, then the simulation would still reproduce
the canonical ensemble over long timescales, while still yielding reasonable
Hamiltonian dynamics at short timescales. The subsequent configurations
x(t ) thus could be used as separate initial conditions for the purposes of cal-
culating a time correlation function:

C AB (t ) = 1

N M

N∑︂
k=1

M∑︂
j=1

A(xk ( j∆t ))B(xk ( j∆t + t )). (3.19)

To avoid oversampling, the spacing ∆t should be chosen such that the
contributions are statistically decorrelated. If A = B , this is ensured by choos-
ing t > τA, τA being the correlation time of A. The most often used method
of calculating time correlation functions is using this approach while setting
N = 1 (or possibly, to another low number), sidestepping the need for an ini-
tial simulation to generate the canonical ensemble altogether [1]. In this ap-
proach, the most commonly chosen value of ∆t is ϵ — the simulation time
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step itself. The expression for the time correlation function thus becomes

C AB (nϵ) = 1

K −n

K−n∑︂
m=1

A(x(nϵ))B(x((n +m)ϵ)), (3.20)

K ϵ being the total simulated time. The time correlation function in this ap-
proach thus almost corresponds to a convolution — the difference being the
normalization factor 1/(K −n). As such, the function can be efficiently cal-
culated using a fast Fourier transform. It is clear, that if K ϵ is the length of
the simulation, then the time argument of the correlation function takes on
the values ϵ,2ϵ, . . . ,K ϵ. The value of the time correlation function at each of
these points is a statistical average of K ,K −1, . . . ,1 contributions respectively.
The statistics thus becomes progressively worse the higher the argument t is.
These contributions may simply be discarded, but a better approach might be
chosen, anticipating that the Fourier transform of the time correlation func-
tion will be calculated (such as the VDOS, or the infrared spectrum, see equa-
tion 2.117). As the number of frequencies present in the Fourier spectrum
is equal to the number of data points in the original time correlation func-
tion, simply leaving out the high t data would result in a spectrum with a low
resolution (the maximum frequency is given by ϵ via the Nyquist–Shannon
sampling theorem [54]). The high t data might simply be replaced with zeros
(zeros might even be added beyond the original simulation length), but this
would introduce a sharp jump into the correlation function, which would re-
sult in artifacts in the spectrum. A better choice is to apply a smooth window-
ing function to the time correlation function:

C AB (t ) ←C AB (t )w(t ). (3.21)

The windowing function w(t ) should have the following properties:

w(t ) = 1 for t ≲ tmax

w(t ) = 0 for t ≳ tmax,
(3.22)

where tmax is the largest timescale of interest. The function should change
slowly enough, such that artifacts are not introduced into the resulting spec-
trum. This procedure is referred to as apodization within signal processing.

If one has access to the eigenvalues and eigenstates of the Hamiltonian
Ĥ of the studied system, it is also possible to calculate the Kubo-transformed
time correlation from its definition in equation 2.101. Note that this is al-
most never the case for condensed-phase molecular systems, however, this
approach can still be used as a reference when studying model systems of
low dimensionality. Using the eigenstates as an orthonormal basis, equa-
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tion 2.101 becomes (dropping the zero denoting the equilibrium ensemble):

KX Y (t ) = 1

βZ

∑︂
AB

∫︂ β

0
dλexp[λ(EB −E A)]〈EB | X̂ |E A〉

×exp

[︃
i

ħ (E A −EB )t

]︃
〈E A| Ŷ |EB 〉exp

(︁−βEB
)︁
,

(3.23)

the partition function Z being simply:

Z =∑︂
A

exp
(︁−βE A

)︁
. (3.24)

The summations extend over the, in principle, infinite number of energy
eigenstates, however, as the contributions of high-energy states are exponen-
tially suppressed, this sum may be safely truncated at a finite number of states
and carried out numerically. The integral over λ in equation 3.23 can be sim-
ply carried out:

KX Y (t ) = 1

βZ

∑︂
AB

1

EB −E A

[︁
exp

(︁−βEB
)︁−exp

(︁−βE A
)︁]︁

×〈EB | X̂ |E A〉 ·exp

[︃
i

ħ (E A −EB )t

]︃
〈E A| Ŷ |EB 〉 .

(3.25)

The last thing which needs to be addressed before implementing this cal-
culation numerically is the evaluation of the E A = EB terms in the sum. These
involve a zero both in the denominator and the numerator, and as such can-
not be evaluated on a computer. The relevant limit may however be carried
out:

lim
EB→E A

1

EB −E A

[︁
exp

(︁−βEB
)︁−exp

(︁−βE A
)︁]︁

= lim
EB→E A

exp
(︁−βE A

)︁
EB −E A

[︁
exp

(︁−β(EB −E A)
)︁−1

]︁
= lim

EB→E A

exp
(︁−βE A

)︁
EB −E A

[︁−β(EB −E A)+O((EB −E A)2)
]︁

=−βexp
(︁
βE A

)︁
(3.26)

where E A was chosen to denote the common energy.
A useful tool in gaining insight into the properties and origins of features

in a frequency spectrum is the 2D spectrum, defined as:

ΓA(ω,ω′) = 1

t

∫︂ t

0
dt ′A(ω, t ′)A(ω′, t ′), (3.27)
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where A(ω, t ) is the time-dependent spectrum of the quantity A (a similar
concept is also often used in sound processing, where it is known as a spec-
trogram). This spectrum is defined as:

A(ω, t ) =
∫︂ ∞

−∞
dt ′C [t ]

A A(t ′)w(t ′− t )exp
(︁−iωt ′

)︁
, (3.28)

where C [t ]
A A is the autocorrelation function of the quantity A, with the time t

taken as the reference (zero) time. The windowing function is for this purpose
taken to be rather narrow (compared to its use in apodization). The purpose
of this windowing function is to restrict the spectrum, such that it captures
the properties of the system in its state around the time t . As an example, the
frequency spectrum of a molecule is dependent on its surrounding environ-
ment, which changes over time. In the calculation of the time-independent
frequency spectrum, this dependence gets averaged out, which results in the
broadening of the features present in the spectrum — an effect known as in-
homogeneous broadening. In the time-dependent frequency spectrum, the
effect of the surrounding environment is kept, being reflected by the depen-
dence of the spectrum on the time t . The 2D spectrum then gives the degree
of correlation between various features in the time-dependent spectrum. In
a numerical application, the 2D spectrum can be calculated by discretizing
the integral:

ΓA(ω,ω′) = 1

t

t/ϵ∑︂
n=1

A(ω,nϵ)A(ω′,nϵ), (3.29)

and the time-dependent spectrum can be calculated using a fast Fourier trans-
form of the discretization of C [t ]

A A(t ′)w(t ′ − t ). Lastly, if two different time-
dependent spectra are available — these may correspond, for example, to
different atomic species each, a 2D cross-spectrum may be calculated anal-
ogously using

ΓA A′(ω,ω′) = 1

t

t/ϵ∑︂
n=1

A(ω,nϵ)A′(ω′,nϵ), (3.30)

where A and A′ denote the two time-dependent spectra. The 2D cross-spectrum
can analogously be interpreted as giving the degree of correlation between
features in the two time-dependent spectra A and A′.

All methods within this subsection were implemented in the Python pro-
gramming language, in particular using the NumPy library for numerical cal-
culations [55]. To calculate the VDOS and 2D spectra of molecular systems an
existing in-house Python library was used. The Fourier DVR Python code [56]
was used to compute the energy eigenvalues and eigenfunctions of model
one-dimensional and was extended in this work to obtain these quantities for
two-dimensional systems as well. These were needed to compute the Kubo-
transformed time correlation function according to equation (3.25). This method
of calculating the function was also implemented in this work.
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4.1 Model systems

This subsection will work in reduced units, determined by the system param-
eters. They will thus not be explicitly written.

Four different simple model potentials were considered:

1. A one-dimensional harmonic oscillator:

U (x) = 1

2
x2 (4.1)

2. A one-dimensional quartic oscillator:

U (x) = 1

4
x4 (4.2)

3. A one-dimensional double-well potential:

U (x) = 1

4
(x2 −4)2 (4.3)

4. A two-dimensional Morse potential:

U (x, y) = D0

{︃
1−exp

[︃
−α

(︃√︂
x2 + y2 − req

)︃]︃}︃2

(4.4)

For all systems, work has been carried out in atomic units. For the two-
dimensional potential, the three parameters were based on publication 57
and were D0 = 0.18748,α= 1.1605,req = 1.8324. Additionally, the mass of the
particle, in this case, was also chosen according to ref. 57 as m = 1741.05198,
while for the one-dimensional systems, the mass was chosen as m = 1.

These potentials represent cases where CMD is known to be exact (the
harmonic potential), where it is not exact but still reasonably sufficient (the
quartic potential), and where CMD is known to break down or miss impor-
tant physical processes (the double well and Morse potentials). The Morse
potential is of particular interest as it can be thought of as a simplified model
of an OH bond [57] — a common feature present in many molecular systems
of interest. The performance and behavior of both implementations of CMD
will be explored in these cases.

In the investigation of model systems, attention will be directed mainly
to the position autocorrelation functions. For such small systems, these are
simple enough, such that they can be easily read, and they contain valuable
information on the underlying dynamics. The centroid correction to the force
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and to the potential, defined as the difference between the centroid poten-
tial/force and the actual “physical” potential/force, will also be studied.

For all one-dimensional potentials, centroid molecular dynamics was per-
formed by first calculating the average forces on the centroid fixed at points
on a regular grid from x =−10 to x = 10 with a step of 0.1. The average force
on the centroid was determined by averaging over 375 independent path in-
tegral simulations (with the centroid fixed) of length t = 200 with the first 10 %
of the simulations left for equilibration. The simulations used 32 replicas and
had the non-centroid normal modes set to a common frequency of 2, such
that the time step could be kept at a relatively low value of 0.01. The forces
were sampled every 10 simulation steps. The average forces were then inter-
polated with cubic splines using the SciPy library [53]. The interpolated force
was subsequently used to drive molecular dynamics simulations necessary
to calculate position autocorrelation functions.

For the two-dimensional potential, the procedure was the same but due
to computational constraints, the grid was restricted to the area x, y = −5 to
x, y = 5 with a step of 0.25 in both directions. The number of independent
simulations was also reduced from 375 to 125. Additionally, as this system
was in a quite different region of parameters from the one-dimensional sys-
tems the simulation parameters had to be adjusted. The simulations had a
length of t = 4000 and a time step of 0.1, with the first teq = 2100 discarded
for equilibration. The equilibration was observed to be more difficult, and
as such longer equilibration period was used for safety. The target frequency
used was 0.2. The number of replicas and sampling frequency of the force
were kept at the values of 32 and 10 respectively.

The autocorrelation functions of simple systems were calculated accord-
ing to the “strict” scheme, as outlined at the beginning of subsection 3.5.
There are two main reasons behind this choice. First, for a system of non-
interacting particles, a global thermostat does not make sense, and perform-
ing the “one-simulation” scheme would be rather problematic with a local
thermostat. And second, the simulations of low-dimensional systems are
simple enough, such that performing large amounts of them is not a draw-
back, but in fact, a benefit, as it allows one to parallelize them trivially.

To be more specific, the scheme to calculate a single time-correlation func-
tion was thus:

1. For the case of one-dimensional systems 375 source simulations were
performed. These had a time length of t = 100 and a time step of 0.01.
For the case of the two-dimensional system, 125 source simulations of
length t = 200000 and a time step of 10 were used. From these, the
first half has been discarded. All simulations were thermostatted with a
Langevin thermostat with a time constant of γ= 1.

2. For the one-dimensional systems, every 500 steps, starting from step
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2000, an initial condition was sampled. For the two-dimensional sys-
tem this was done every 5000, starting from step number 20000.

3. From every initial condition, an unthermostatted simulation was started
(the total number of these was thus 6000 per one-dimensional system
and 2000 for the two-dimensional system). For the one-dimensional
systems these had the same length and time step as the source simula-
tion. For the two-dimensional system these had a length of t = 10000
and a time step of 1.

4. From these simulations, structures were sampled at each step. The
value of the time correlation function at each of these time points was
calculated as an average over all contributions according to equation 3.18.

In addition to these simulations, reference simulations performed accord-
ing to the adiabatic CMD scheme were also performed. These followed the
same overall scheme as was outlined in the previous four points. The dif-
ference was that all of the simulations are path-integral molecular dynam-
ics simulations and thus needed to be adjusted accordingly. For the one-
dimensional systems, the source simulations used 32 replicas, target frequency
for the non-centroid modes equal to 2, length of t = 200, and a time step
of 0.01. The first teq = 100 of the simulation were discarded, and from this
point on the initial structures were sampled in the same fashion as outlined
before. The “production simulations” used the same number of replicas, a
target frequency of 1000, a time step of 0.0001, and a length of t = 100. The
structures were sampled with an interval of 100 simulation steps. For the two-
dimensional system, the source simulation also used 32 replicas alongside
a target frequency of 0.000002, the rest of the parameters and the sampling
were the same, as in the interpolated case. The “production simulations”
used the same number of replicas, a target frequency of 10, a time step of
0.01, and a simulation length of t = 10 000. Structures were sampled from
these every 100 simulation steps.

Reference results obtained by diagonalizing the Hamiltonian and using
matrix multiplication to calculate the Kubo transformed function according
to equation 3.25 were also performed.

The harmonic oscillator

The quantum dynamics of the harmonic oscillator can be exactly described
by CMD [10]. The system thus presents an opportunity to study the inher-
ent differences between the two implementations of CMD, and their defi-
ciencies, free from the inherent shortcomings of CMD or anharmonicities
through which the non-centroid degrees of freedom could exchange energy
with the centroid in the adiabatic implementation. As can be seen from fig-
ures 1 and 2, both implementations of CMD yield the expected result and



4 Results and discussion 52

are able to reproduce the exact Kubo-transformed autocorrelation function
(which in this case is just a harmonic function). The only slight deficiency
which can be seen is the slight dampening of the adiabatic autocorrelation
function. Due to the elimination of other sources of influence, this deviation
has to come inherently from the “averaging on the fly” procedure which un-
derlies the adiabatic implementation. Note however that this dampening is
so small that it is for all practical purposes irrelevant. Overall, these results
are encouraging, and show the implementation proposed in this work to be
in this case consistent with both exact results and the previously used adia-
batic implementation, while doing away with the difficulties and additional
problems associated with the adiabatic implementation.
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Figure 1: Position autocorrelation functions of the harmonic oscillator at a
temperature T = 0.2 calculated using equation 3.25, as well as the two differ-
ent implementations of CMD.
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Figure 2: Position autocorrelation functions of the harmonic oscillator at a
temperature T = 1.0 calculated using equation 3.25, as well as the two differ-
ent implementations of CMD.

The quartic oscillator

The quartic oscillator is a much more difficult case to describe correctly us-
ing CMD, due to its strongly anharmonic nature. Despite this, CMD can be
seen to perform at least partially well. At every considered temperature, the
position autocorrelation functions calculated using both implementations of
CMD follow the numerically exact result for at least one oscillation. For the
subsequent oscillations the agreement breaks down, the CMD time correla-
tion functions becoming damped. The agreement with the numerically ex-
act time correlation function is better at lower temperatures, where the CMD
time correlation functions, despite being damped, still agree well regarding
the “main” oscillation frequency. Note, however, that certain subtle features
are not reproduced by any implementation of CMD at all. This fact can be
most easily seen from the VDOS (figure 3), where peaks present in the VDOS
of the numerically exact solution are not present in the approximate CMD
VDOSes at all. Both implementations of CMD also yield autocorrelation func-
tions consistent with each other, the agreement breaking down slightly with
increasing temperature. The disagreement was ascribed to the residual non-
adiabaticity of the otherwise almost adiabatic CMD simulations, caused by
the smearing of the frequency range of the non-centroid normal modes by
the thermostats. As the temperature increases, this smearing gets broader
and thus results in a progressively worse agreement. Note that the anhar-
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monicity of the potential is key for this source of disagreement to come into
play, as the non-centroid normal modes can only exchange energy with the
centroid through the anharmonicities in the potential. As such, this effect
was not present in the previous case of the harmonic oscillator.

The fact that CMD is more accurate at lower temperatures for the case
of the quartic oscillator is a known, but rather unexpected one. Acknowl-
edging the fact that CMD is exact in the classical limit and that CMD tends
to yield poor results at low temperatures (this fact will be discussed along-
side the following two simple models, which exhibit examples of this behav-
ior), one would expect the agreement to increase with temperature. This dis-
agreement with expectation was discussed previously by Pérez, Tuckerman,
and Müser in ref. 58. There, they suggested that the unexpectedly good re-
sults are caused by the fact that at low temperatures only the first two energy
eigenstates are thermally available for the dynamics and the problem is thus
“effectively harmonic” — a problem that CMD can treat well.

From the previous discussion, one could thus expect that for at least sim-
ple potentials, CMD will exhibit reasonable agreement with exact results and
between both of its implementations at low temperatures, where the problem
is “effectively harmonic”, while breaking down for higher temperatures where
the anharmonicity of the system starts to come into play. Note, however, that
for temperatures high enough that the system can be treated classically, the
agreement between CMD and the numerically exact quantum solution has to
be restored, as both should yield classical dynamics in this limit.
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Figure 3: The VDOS of the quartic oscillator at a temperature T = 0.2 cal-
culated from the velocity autocorrelation function calculated using equa-
tion 3.25, as well as the two different implementations of CMD.
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Figure 4: Position autocorrelation functions of the quartic oscillator at a tem-
perature T = 0.2 calculated using equation 3.25, as well as the two different
implementations of CMD.
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Figure 5: Position autocorrelation functions of the quartic oscillator at a tem-
perature T = 1.0 calculated using equation 3.25, as well as the two different
implementations of CMD.

For this potential, the position autocorrelation functions were published
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in the past [58]. The presently proposed approach to performing CMD can
thus be checked against these results. As can be seen from figure 6, results
obtained both using the interpolated and adiabatic CMD within this work are
consistent with the previously published result.
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Figure 6: A comparison of the position autocorrelation function of the quartic
oscillator at a temperature T = 0.125. The four curves correspond to the re-
sult obtained using equation 3.25, the two different implementations of CMD,
and a result published in [58].

An advantage of the proposed “interpolated” approach to CMD is the fact
that both the forces and the potential are readily available and thus can be
easily analyzed. As a demonstration of this, the centroid correction to the
quartic potential, as a function of temperature and position, can be found in
figure 7, and the centroid correction to the corresponding force, as a function
of the same variables, can be found in figure 8. The correction, for the case
of the quartic oscillator, can be seen to make the potential more confining.
The effect is qualitatively the same across all temperatures, but its magnitude
decreases with increasing temperature (at least for positions close to x = 0).
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Figure 7: The dependence of the centroid correction to the quartic potential
on the position and temperature. The top panel gives the quartic potential
itself as a reference. All potentials have been aligned such that they are equal
to 0 at x = 0.
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Figure 8: The dependence of the centroid correction to the force of the quartic
potential on the position and temperature. The top panel gives the force of
the quartic potential itself as a reference.

At this point, a slight detour which will demonstrate the importance of the
adiabatic separation will be made. This will be showcased on the two previ-
ously shown one-dimensional models. The previously shown results for the
adiabatic implementation were obtained using a generous target frequency
of 1000. If this target frequency is systematically lowered (keeping all other
parameters the same), and the adiabaticity of the simulation thus decreased,
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the following results are obtained. For the harmonic oscillator, decreasing the
target frequency has, at least for the considered frequencies no effect on the
autocorrelation functions, regardless of the temperature (figures 9 and 10).
For the quartic oscillator at low temperatures, the autocorrelation functions
can be seen to become progressively more damped, systematically deviating
from the numerically exact result and the result obtained from the interpo-
lated implementation (figure 11). At higher temperatures, all results can be
seen to be “equally bad” when it comes to reproducing the numerically exact
result (figure 12).
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Figure 9: Position autocorrelation functions of the harmonic oscillator at a
temperature T = 0.2 obtained using the “interpolated” implementation of
CMD and the adiabatic CMD with different settings of the target frequency.



4 Results and discussion 60

0.0 20.0 40.0 60.0 80.0 100.0
t [a.u.]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

K x
x [

a.
u.

]

Interpolated Target 25 0.1

Figure 10: Position autocorrelation functions of the harmonic oscillator at
a temperature T = 1.0 obtained using the “interpolated” implementation of
CMD and the adiabatic CMD with different settings of the target frequency.
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Figure 11: Position autocorrelation functions of the quartic oscillator at a
temperature T = 0.2 obtained using the “interpolated” implementation of
CMD and the adiabatic CMD with different settings of the target frequency.
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Figure 12: Position autocorrelation functions of the quartic oscillator at a
temperature T = 1.0 obtained using the “interpolated” implementation of
CMD and the adiabatic CMD with different settings of the target frequency.

The influence of the non-centroid modes on the centroid, in the case of
the quartic oscillator at the lower temperature, can also be very well illus-
trated using the 2D cross-spectra. Roughly speaking, these give the degree
of correlation between the motion of one degree of freedom at a frequency
ω and the motion of another degree of freedom at a frequency ω′ (for more
details see subsection 3.5). Stated in another way, this spectrum gives the
degree of correlation between the intensities (at the two given frequencies)
in the respective VDOSes of the two degrees of freedom. The two degrees of
freedom considered here were the centroid and one of the non-centroid nor-
mal modes (all of which are equivalent, as they share a common frequency).
As this spectrum is used only for demonstration purposes, and the computa-
tional expenses associated with calculating such spectra are high, the result-
ing 2D spectrum has been averaged over only 375 different trajectories. The
trajectories themselves are a subset of those which were used to calculate the
autocorrelation functions in figure 11. This procedure has been carried out
for the three different target frequencies considered, and the results can be
seen in figure 13. In this figure, the physical degrees of freedom are located
near the origin (recall that according to figure 3 the peak in the VDOS of the
centroid is located at roughly 1 a.u.), while the non-centroid normal mode
frequency is located further to the higher frequencies, getting gradually closer
to the physical ones with decreasing target frequency. As can be seen, at de-
cent adiabatic separation the centroid is weakly coupled to the non-centroid
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normal mode, mainly through motion at frequencies of about 3 a.u. As the
adiabatic separation gets lower, so does this correlation get higher, finally ar-
riving at a situation where the target frequency and physical frequencies over-
lap.
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Figure 13: 2D cross spectra between the centroid and one of the equivalent
non-centroid normal modes, calculated for the quartic oscillator. The three
panels correspond to normal mode target frequency, going from top to bot-
tom, of 25, 5, and 0.1 [a.u.].
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These results underline the important role the anharmonicity plays in de-
grading the adiabaticity of the simulations. The results also showcase the fact
that the adiabatic separation necessary to obtain a converged result is de-
pendent on the temperature. In particular, the required separation decreases
with temperature. This is to be expected, as at very high temperatures the
adiabatic implementation should yield the classical result regardless of the
adiabatic separation, as should all other methods.

The double well potential

For the double-well potential, a deficiency at low temperatures of not only
CMD, but the whole class of methods based on the imaginary-time path-
integral can be observed. The double well potential has a well-known spec-
trum in which, for low quantum numbers, states appear in nearly degenerate
pairs (the two states in the pair being of even and odd parity, respectively).
The small split between these two states is responsible for slow oscillations
in which the particle tunnels from one well into the other. This split (and the
corresponding motion) is notably difficult for all methods, which start with
the classical limit as a reference, to treat correctly (in fact, the split itself can
be shown to be non-perturbative in ħ). Such is the case with CMD as well —
see figure 14. CMD is able to approximate only the short time scale oscilla-
tions while failing to capture the slow oscillations completely. Note that these
slow oscillations happen at longer timescales (see figure 15) and as such do
not appear in full in figure 14. For the short time scale oscillations, a similar
discussion as for the previous potential could be made. However, note that
the agreement here is in fact better, as the potential is locally more harmonic.
From the practical point of view, this deficiency can be expected to degrade
the performance of CMD in predicting quantities such as reaction rate con-
stants, in which similar effects can play a role. The problem can, however, be
solved while still using the general theory of imaginary-time path-integrals
using the concept of instantons [59].
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Figure 14: Position autocorrelation functions of the double well potential at a
temperature T = 1.0 calculated using equation 3.25, as well as the two differ-
ent implementations of CMD.
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Figure 15: Position autocorrelation function of the double well potential at a
temperature T = 1.0 calculated using equation 3.25.
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The 2D Morse potential

For the 2D Morse potential, which can be thought of as a simple proxy for
the OH molecular system, CMD exhibits a further deficiency known as the
curvature problem [60]. The curvature problem is perhaps the most relevant
drawback of CMD when it comes to its usage as a tool to calculate vibrational
spectra of molecular systems, as it causes artificial redshifts of peaks corre-
sponding to vibrations of OH bonds (which are very common) in the calcu-
lated infrared spectra. The curvature problem has its origin in the fact that at
lower temperatures, the path integral ring polymers tend to be more spread
out (the harmonic couplings become weaker at lower temperatures). For po-
tentials that confine the ring polymer to move along a circle or a semi-circle,
this results in the centroid (calculated as the average of the cartesian coordi-
nates of the replicas) to appear in a classically highly improbable position. As
an example, for the 2D Morse potential in the extreme case of the ring poly-
mer spread out evenly over the whole circle, this in fact results in the centroid
being located at the potential maximum.

For this potential, the position autocorrelation will be abandoned in fa-
vor of the VDOS. The reason for this is that the autocorrelation functions
already for this potential start to be rather complicated and that the VDOS
best captures the curvature problem present in CMD. The VDOSes for this
potential were calculated from the position autocorrelation functions using
equation 2.119, employing the Hann windowing function of width 16000 a.u.
and an additional 100000 a.u. worth of padding with zeroes. Calculating the
VDOS from the position autocorrelation function was found to possess bet-
ter numerical properties for this case than calculating it from the momentum
autocorrelation function. The VDOS of this model system, in the considered
temperature range, contains two main features — a low-frequency rotation
peak and a high-frequency vibration peak. As can be seen from figure 16,
both implementations yield consistent results, with some differences. Both
implementations suffer from the curvature problem, but the interpolated im-
plementation can be seen to suffer more from this problem. For T = 0.0015
the vibration peak of the VDOS calculated using the interpolated implemen-
tation is blue-shifted with respect to both the adiabatic implementation and
the “numerically exact” reference VDOS calculated using 3.25.
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Figure 16: The VDOS of the 2D Morse potential at a sequence of tempera-
tures. The three panels correspond to VDOSes calculated from the position
autocorrelation function obtained using equation 3.25, as well as the two dif-
ferent implementations of CMD.

Several propositions have recently been put forward which seek to solve
the curvature problem. These include the so-called quasi-centroid molecu-
lar dynamics (QCMD), based on path integrals in curvilinear coordinates [61],
as well as the “T-PIGS” approach [62]. According to this method, a centroid
potential calculated at a higher temperature should be used to run CMD at
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a lower temperature. The basis for doing so is the fact that the vibrational
modes present in the system are, for the temperature ranges of interest, ef-
fectively in the ground state. The shape of the potential, at least in the di-
rection of the vibrational modes, thus should not be expected to change with
decreasing temperature. This justifies one in taking the higher-temperature
centroid potential, where the curvature problem is not yet present, but the
vibrational modes are already in the ground state, and using it for lower tem-
peratures. Note, however, that in the publication 62, the centroid potential is
not really used, instead an effective potential obtained through methods of
coarse graining for running CMD is used. In this work, it is assumed that this
discussion can be applied to the centroid potential itself. This approach has
been tested by taking the T = 0.002 centroid potential and performing CMD
simulation for all four temperatures using this potential (the rest of the proce-
dure was the same). The results can be found in figure 17. As can be seen, this
approach indeed fixes the curvature problem for the vibrational peak, while
leaving the temperature dependence the same. The fact that the proposed
implementation of CMD can be easily combined with the “T-PIGS” method
to remove the curvature problem is thus another possible advantage. Some
care needs to be taken, however, when applying this method to molecular
systems. This will be discussed in the next subsection.
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Figure 17: The VDOS of the 2D Morse potential at a sequence of temperatures
calculated using the “T-PIGS” approach.

4.2 Molecular systems

For molecular systems, three different systems were considered — liquid wa-
ter at 300 K, liquid heavy water at 300 K, and liquid water at 350 K. All systems
were composed of 64 water molecules simulated in a cubic box of side length
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12.42 Å. Periodic boundary conditions were employed, as is usually done to
simulate a bulk liquid environment. Note, that this implies the omission of
thermal volume expansion for the system at 350 K, however, this is justified as
this effect is negligible over these temperature ranges. For all simulations, the
previously mentioned machine learning model of the Born–Oppenheimer
ground state potential energy surface was used [42].

The two liquid water systems were picked due to the ubiquitous, yet non-
trivial nature of water. Two temperatures were chosen to show the temper-
ature dependence of the results. The significance of the heavy water sys-
tem comes from the fact that one of the most studied and readily appar-
ent implications of the quantum nature of atomic nuclei is the isotope effect.
This is a name for the change of behavior of substances under the exchange
of isotopes of the constituent atoms. Within classical statistical mechanics,
this effect should be in principle simple — equilibrium properties should be
changed trivially, while non-equilibrium properties should be changed in a
simple manner due to the fact that the inertial masses of the atoms are dif-
ferent. In quantum statistical mechanics, the effect is generally non-trivial
and plays a role even at the level of static equilibrium properties (as an exam-
ple, the freezing point of heavy water is approximately 4 K above the freezing
point of water). For a general overview of the role of nuclear quantum effects
in liquid water, including the isotope effect, see for example ref. 63.

The main object of interest in the study of these systems was the hydrogen
atom VDOS, as it shares the main features of the experimentally measurable
infrared spectrum and provides a great deal of information about the dynam-
ics of the systems while remaining easily readable (the autocorrelation func-
tions of realistic molecular systems tend to be too complex to be of use for this
purpose). Attention was also given to the analysis of the centroid correction
to the physical potential.

For each system, centroid molecular dynamics was performed according
to the following protocol:

1. 111 path-integral molecular dynamics simulations with the centroids
of all atoms fixed at different positions were performed. The positions
were the same as used in the generation 1 training set for the machine
learning model of the liquid water electronic ground state constructed
in the original work [42]. Each of these simulations had a length of 10
ps, with the first 4 ps left for equilibration, and a time step of 0.2 fs. The
simulations used 32 replicas and all non-centroid normal modes were
shifted to a common frequency of 2000 cm−1 to allow a longer time step.
Forces on the centroids were sampled every 8 fs.

2. An average over the sampled forces was performed, thus yielding 111
samples of converged centroid forces for all 64 water molecules of the
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system. From these, the Born—Oppenheimer ground state force was
subtracted, thus yielding only the centroid correction.

3. A NequIP machine learning model was trained on these 111 samples.

4. A CMD production simulation (which, at this point, is a purely classical
simulation of 64 water molecules) was performed. The machine learn-
ing model obtained in the previous step was used to predict the cen-
troid correction, which was added to the Born-Oppenheimer ground
state force. For all considered systems, this simulation had a length of
80 ps and a timestep of 0.5 fs. A global CSVR thermostat was used, with
a time constant of 1 ps. Velocities necessary for the computation of the
VDOS were sampled every 2 fs.

The necessary simulation and equilibration lengths of the simulations in
the first step of this procedure were conservatively chosen based on analysis
of the root mean square deviation (the mean being performed over particles)
of the running average of the force on the centroid from its final value, ob-
tained by averaging over the entire trajectory (figure 18), for a sample config-
uration.
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Figure 18: Root mean squared deviation of the running average of the cen-
troid force from its final value.

To these CMD simulations, reference adiabatic CMD (henceforth referred
to as “A-CMD”) and classical simulations were performed. The classical sim-
ulations were performed in exactly the same fashion as the production CMD
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simulations, but the centroid correction was not used. The simulation set-
tings of the adiabatic CMD simulations were based on the article 45. There, it
was suggested that adiabatic separation can be achieved if the non-centroid
degrees of freedom are shifted to a common target frequency as low as 8000
cm−1. However, the time constants of the thermostats attached to these modes
need to be simultaneously scaled down from the optimal values introduced
in equation 3.14. From the supplementary information of the paper it fol-
lows that they should be scaled down by at least a factor of the order of mag-
nitude 0.01. To verify the fact that the adiabatic separation is indeed fully
reached, further benchmarks of the target frequency, thermostat scaling fac-
tor, and time step were performed (figure 21). The benchmark simulations
had a length of 20 ps each and each differs in one parameter from the finally
chosen A-CMD setup. An exception is the simulation with a higher target
frequency, which had the time step lowered as well, which was necessary to
integrate the high-frequency modes.

Based on these benchmarks, it was determined that an essentially full
(or the largest practically possible) adiabatic separation is reached with the
choice of parameters: target frequency 8000 cm−1, thermostat scaling factor
0.001, and a time step of 0.05. These settings were used to perform reference
adiabatic CMD simulations of the length 100 ps for the liquid water system
at 300 K and 20 ps for the other two systems. In these simulations, a global
CSVR thermostat with a time constant of 1 ps was also attached to the particle
centroids. The velocities were again sampled every 2 fs.

The Hann windowing function [64] with the width parameter of 1000 fs
was used to calculate the correlation functions according to subsection 3.5.
The correlation functions were additionally padded with 2500 fs worth of ze-
roes to increase the numerical resolution of their Fourier transforms (which
are the VDOSes).

The main results, compared with their classical counterparts, can be found
in figure 19. All VDOSes displayed have a shape characteristic of liquid wa-
ter infrared spectra — they consist of three dominant peaks, which corre-
spond to (going from the lowest in frequency to the highest) the libration
of the molecules, bending of the molecules, and vibration of the O-H bond.
The term libration, commonly used in literature dealing with the structure of
aqueous systems [63], refers to the hindered rotation of the molecules. The
strongest source of this hindrance is caused by the hydrogen bonds formed
by the molecule with the other molecules present in the system.

As can be seen from figure 19, the magnitude of the quantum correction
rises with the frequency of the mode and the direction of the correction is
in all cases towards lower frequencies. The magnitude of the correction is
also smaller for the heavy water system and for the 350 K system. This is ex-
pected, as quantum behavior is expected to be suppressed if the temperature
is higher, or the masses of the constituent particles are larger. Also, follow-
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ing the discussion on nuclear quantum effects, notice on the first and third
panel of figure 19 that the bulk of the difference between the liquid H2O and
D2O VDOSes is already present at the classical level — the D2O peaks being
located at lower frequencies, due to the increased mass of the constituent
atoms. The difference between quantum corrections of H2O and D2O con-
tributes comparatively little and acts in the opposite direction. Overall, these
results demonstrate that the proposed implementation is able to describe
the quantum corrections to classical dynamics for at least a simple aqueous
system while yielding behavior consistent with expectations and established
knowledge.

The comparison of “interpolated” CMD and A-CMD can be found in fig-
ure 20. For all three systems, the two implementations of CMD yield almost
identical results below 3000 cm−1, however, for all three systems, the OH
stretching peak (the highest frequency peak of the three most prominent peaks
present) is slightly redshifted in the “interpolated” machine learning imple-
mentation of CMD with respect to A-CMD. Further differences between the
two implementations can be seen in the logarithmic scale for frequencies
above the OH stretching peak. Here the (weak intensity) overtone peaks can
be seen to be smeared in the case of the adiabatic implementation, while for
the machine learning implementation, these peaks are as sharp as in the clas-
sical case. These features are also shared across all three systems. The smear-
ing is attributed to the imperfect adiabaticity of the adiabatic simulations, ex-
acerbated by the smearing of the spectra of the non-centroid normal modes
by the thermostats. In fact, a rather drastic example of this can be seen in
the third panel of figure 20. The A-CMD VDOS can be seen to be essentially
constant above 6000 cm−1, in contrast to the VDOS obtained using machine-
learning CMD.

Even though the overtone peaks are weak in intensity, they are not in-
significant. Sensitive experimental methods exist which can study these fea-
tures [65]. The fact that the proposed implementation of CMD is able to
yield better-resolved peaks in this region, free from the influence of the non-
centroid modes, is thus considered to be a major advantage.
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Figure 19: The H atom VDOS of liquid H2O at 300 K, liquid H2O at 350 K, and
liquid D2O respectively. The red and blue curves correspond to VDOSes cal-
culated from simulations with or without the CMD correction, respectively.
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Figure 20: Comparison of the H atom VDOS for the H2O 300 K system cal-
culated from simulations performed with the CMD correction (blue), with-
out the CMD correction (green), and using the A-CMD approach (red) for the
three systems considered. The y-axis is in logarithmic scale.
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Figure 21: Benchmarks of the A-CMD setup on the case of H atom VDOS
for the H2O 300 K system. The blue curves correspond to the finally chosen
setup. The first plot compares this setup to one with a higher target frequency
(and shorter time step), the second to one with just a shorter time step, and
the third to two different choices of the thermostat scaling factors (referred to
as lambda). The y-axis is in logarithmic scale.
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The proposed approach also allows further methods of investigation of
the relative importance and behavior of the classical and quantum isotope ef-
fects. Since the potential for each CMD simulation is pre-calculated, a CMD
simulation with one isotope of an element can in principle be run using a
centroid potential calculated for a different one. In this work, this was done
by running a CMD simulation of H2O at 300 K using the centroid potential
calculated for D2O at 300 K (the rest of the parameters stayed the same). Run-
ning the simulation in such a fashion effectively isolates just the quantum
contribution to the isotope effect present upon changing the hydrogen atoms
in liquid water to deuterium atoms. The comparison of the VDOS obtained
from such a CMD simulation to the VDOS obtained from the “ordinary” CMD
simulation of liquid H2O at 300 K can be seen in figure 22. As can be seen, the
quantum isotope effect is quite small and causes the peaks in the VDOS to
shift to higher frequencies. In contrast, as can be seen from figure 19, the
classical isotope effect causes the peak to shift to lower frequencies.
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Figure 22: Comparison of the H atom VDOS for the H2O 300 K system calcu-
lated from simulations with the H2O 300 K centroid correction (blue) or the
D2O 300 K centroid correction (red).

The last point which will be discussed when it comes to the VDOSes is
the recently proposed “T-PIGS” approach (already mentioned in the discus-
sion of the 2D Morse potential), which was used as a simple model of the O-H
bond. As mentioned previously, this approach has been suggested to allevi-
ate the curvature problem for CMD simulations of liquid water, and it rests
in using the CMD potential calculated at a higher temperature for a simula-
tion at a lower temperature. For the 2D Morse potential, this approach has
been shown to alleviate the spurious shift of the vibrational peaks to lower
frequencies, while leaving the rotational peak largely untouched.
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This approach has also been tested, in this work, for the liquid water sys-
tem at 300 K — a CMD simulation has been performed for this system with
a centroid potential calculated at an elevated temperature of 600 K. All other
details of the procedure were exactly the same as in the previous cases. As
can be seen from figure 23, this approach has indeed resulted in a VDOS in
which the O-H stretching peak and the bending peak are shifted to higher
frequencies compared to normal CMD. The librational peak remains largely
unaffected, although some very subtle differences can be seen.

Combining this result with the previous result for the 2D Morse potential
might seem like a great success for this approach. However, care needs to be
taken when interpreting this result. Elevating the temperature, in contrast to
the simple model potential, causes the effective potential felt by any given
atom to change, as the entire static equilibrium distribution in the system
changes. The shift of the two peaks thus contains artificial and uncontrolled
contributions from the change of the environment on top of the “ground state
correction” present for the 2D Morse potential. As a particular example of
this, elevated temperature weakens hydrogen bonding in liquid water, which
is known to cause the O-H stretching peak to shift to higher frequencies as
well. This effect is present at both the classical and quantum levels of de-
scription.
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Figure 23: Comparison of the H atom VDOS for the H2O 300 K system calcu-
lated from simulations with the 300 K centroid correction (blue), 600 K cen-
troid correction (green), or no centroid correction (red).

To gain further insight into the structure of the CMD potential, the CMD
correction to the force on the hydrogen atom has been calculated for 8000
representative thermal structures. These were obtained by sampling every 10
fs from the CMD simulations used to obtain the VDOSes. This force has then
been split into a projection along the O-H bond and a component orthogonal
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to this direction. The distributions of the projections and magnitudes of the
orthogonal components alongside the same distributions for the raw Born–
Oppenheimer (B–O) and total forces (calculated on the same structures) can
be found in figures 24 and 25.

The dependence of these two quantities on the O-H bond length has also
been studied, as both were expected to be sensitive to this parameter. The
joint distributions of the O-H bond length and the two quantities of interest
can be found in figures 26 and 27.

Several observations can be made. The distribution of the projection of
the total force along the O-H bond peaks around 0. This is an expected result
and it simply reflects the fact that the O-H covalent bonding largely defines
the potential in this direction (this being the case at both classical and quan-
tum levels). It is thus characterized by a well-defined minimum around which
the particle is most likely to be found. This is also reflected in the fact that the
projections of the B–O forces and the CMD corrections are roughly the same
in magnitude and opposite in sign. Even though adding the CMD correction
to a simulation has a relatively small impact on the calculated VDOS (com-
pared to the frequencies at which the bending and vibrational peaks are lo-
cated), this does not directly imply that the CMD correction is always smaller
than the B–O force. In the orthogonal direction, this picture is somewhat re-
stored — the distribution of the magnitude of the total force is not peaked
around zero but around a finite value which in turn is mostly determined by
the B–O force, while the CMD correction plays a smaller role.

As far as the dependence of the quantities on the O-H bond length is con-
cerned — all magnitudes of the orthogonal components of the forces on the H
atoms can be seen to be virtually independent of the bond length (figure 27).
The projection of the total force forms a narrow distribution that follows a
well-defined curve as a function of the bond length (figure 26). In contrast
to this, the distributions of the CMD correction and the B–O force are again
rather independent of the bond length. The fact that the distributions of the
total forces are as narrow as they are is something that directly follows from
the discussion in the previous paragraph. The particle in this direction is lo-
cated in a sharp potential minimum around which it oscillates. As such, the
force has to systematically rise as the bond length gets shorter and decrease
as it gets longer according to the confining potential. The fact that the distri-
bution is narrow also implies that the behavior of the O-H bond is relatively
insensitive to the surrounding environment. The B–O force and the CMD cor-
rection then have to have distributions that cancel each other in a manner
that yields this distribution. The same discussion applies to all three systems
studied.
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Figure 24: Distributions of the projections of the total, CMD correction and
B–O forces on the H atom on the O-H bond for the three systems considered.
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Figure 25: Distributions of the magnitudes of the components of the total,
CMD correction, and B–O forces on the H atoms orthogonal to the O-H bond
for the three systems considered.
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Figure 26: Joint distributions of the projection of the forces on the H atoms
on the O-H bond, and the O-H bond length for the three different systems
studied. The left-most column corresponds to the H2O 300 K system, the
middle one to the H2O 350 k system, and the right-most one to the D2O 300
K system.
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Figure 27: Joint distributions of the magnitude of the components of the
forces on the H atoms orthogonal on the O-H bond, and the O-H bond length
for the three different systems studied. The left-most column corresponds to
the H2O 300 K system, the middle one to the H2O 350 k system, and the right-
most one to the D2O 300 K system.

Another property of the centroid correction which was investigated was
its “locality”. As was stated previously in subsection 3.3, the machine learning
tools used for the construction of the centroid correction “potential” gener-
ally perform better for potentials that are more local. In this context, locality
means that the potential (or force) on a given particle significantly depends
only on the positions of other particles in the immediate surrounding of the
particle. The sensitivity of the force on a given particle i on the position of
some other particle j is contained in the matrix element of the Hessian ma-

trix ∂2U (x)
∂x⃗i∂x⃗ j

. To evaluate the locality of the centroid correction, a plot of the
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dependence of the average absolute value (the averaging being done over all
particles and spatial directions) of these matrix elements on the inter-particle
distance

⃓⃓
x⃗i − x⃗ j

⃓⃓
has been constructed. This analysis has been done on 30

structures from the CMD simulation of liquid H2O at 300 K, each separated
by 100 fs. An identical plot was also done for the B–O potential for compar-
ison. The results can be seen on figure 28. As can be seen, the average ab-
solute value of the Hessian matrix element is about an order of magnitude
lower for the CMD correction than for the B–O potential. The dependence of
this quantity on the interparticle distance is pretty much the same for both
“potentials” up to a distance of about 3 Å. After this point the centroid cor-
rection decays faster than the B–O potential. The centroid correction thus is
in some sense more local than the B–O potential, however the difference is
not as stark as was thought. However, it can be concluded that the centroid
correction should not be expected to be harder to describe using the machine
learning models than the B–O potential.
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Figure 28: The dependence of the average absolute value of the elements of
the Hessian matrix on the interparticle distance. The two curves correspond
to the Hessian matrix calculated from the centroid correction “potential”, cal-
culated for the liquid H2O system at 300 K, and the Born–Oppenheimer po-
tential. The y-axis is in logarithmic scale.

To conclude this section, the computational cost will be briefly discussed.
As was mentioned, the time step which was found to be necessary for the
A-CMD simulations was 0.05 fs. This timestep is 10 times shorter than the
time step of 0.5 fs which is commonly used for classical simulations of aque-
ous systems, which could thus also be safely used for the CMD simulations
performed according to the newly proposed “interpolated” scheme. Further-
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more, since the A-CMD simulations are, in the end, path-integral molecular
dynamics simulations, the force needs to be evaluated P times per step in
these simulations (in this work P = 32), whereas for the interpolated imple-
mentation just one evaluation of the B–O force and one evaluation of the cen-
troid correction are needed. Thus, not only do A-CMD simulations need more
simulation steps to reach equal sampling, but they can also be expected to be
more expensive per simulation step. Of course, a large chunk of the computa-
tional expenses associated with the “interpolated” scheme is “hidden” in the
preparation of the training data. This preparation requires running a num-
ber (in this work 111) of short path-integral molecular dynamics simulations.
These also require P force evaluations per step, but since the purpose of these
simulations is just to sample static equilibrium properties (with the centroid
fixed at a certain position), there is far more freedom in the choice of the sim-
ulation parameters than in the A-CMD simulations. The only two criteria on
the choice of the simulation parameters are, that the numerical integration is
of reasonable accuracy and that enough relevant samples are obtained. For
instance, in this work, the simulations to obtain the training data had a time
step of 0.2 fs and a length of 10 ps, coming in at 50 000 steps of path-integral
molecular dynamics simulations per point of training data. To obtain an 80
ps simulation, the total amount of path-integral molecular dynamics steps
used was thus still higher 50000×111 = 5550000 in the machine-learning im-
plementation than in the adiabatic one 80000/0.05 = 1600000. However, for
the proposed implementation, this number is fixed, and thus as the required
simulation length would increase, this comparison would change in its favor.
At the same time, the simulations to obtain the training data can be “embar-
rassingly” parallelized — all the training simulations could be run simultane-
ously, if the hardware is available, while the single A-CMD simulation needs
to be run strictly in sequence. Furthermore, the adiabatic implementation
requires further benchmarking and convergence tests to even arrive at the
starting parameters for the simulations, while the “interpolated” implemen-
tation mostly does not require these. The only thing really requiring such
tests being the set of configurations considered in the training set. However,
here, an advantage may be taken of methods already described in the litera-
ture, which were developed for the efficient construction of training sets for
the construction of machine learning models of the B–O potential energy sur-
faces for molecular systems.



5 Conclusions

In this work, new methodology for performing CMD simulations with the
help of machine learning has been proposed and tested. This new approach
was shown to yield results (position autocorrelation functions and VDOSes)
that are largely consistent with the previous adiabatic realization of CMD for
both low-dimensional model systems and high-dimensional molecular sys-
tems while being computationally cheaper, and easier to run. Despite this,
some slight differences were still found — most noticeably the position of
the O-H stretching peak or the resolution of the overtone peaks in the H-
atom VDOS of liquid water. Even though the nature of the former remains
unknown, in the latter case the results obtained from the newly proposed ap-
proach were deemed to be the more physical and accurate ones. The poten-
tial usage of the newly proposed methodology in the solution of the curvature
problem, present in CMD simulation were also briefly discussed. A further
advantage of the newly proposed approach is the fact that the centroid po-
tential and forces, used in CMD, are readily available. Thanks to this, their
properties were directly studied as well.

In the future, the proposed methodology can immediately be used to cal-
culate other dynamical properties of the studied systems — such as reori-
entation time correlation functions or diffusion coefficients. The proposed
approach is especially well suited for properties that require simulations with
a large amount of sampling — typically diffusion coefficients or decomposed
time correlation functions or vibrational spectra. The methodology can also
be used to run efficient CMD simulations for different, possibly quite com-
plicated systems. In particular, using the new approach, CMD simulations
could be used to answer questions about various systems that were previ-
ously unobtainable using the adiabatic implementation due to the high costs
and technical difficulties.

A further interesting application of the current methodology could be called
a “return to the original idea of Feynman and Kleinert” [13]. The original idea
of Feynman and Kleinert was to use the concept of the centroid and cen-
troid potential to simplify the calculations of quantum equilibrium proper-
ties by effectively reducing the problem of quantum statistics to a problem of
classical statistics of the same dimensionality. Using the currently proposed
approach, not only could the idea be expanded for realistic, and practically
useful, highly-dimensional systems, but also some of the original approxima-
tions made by Feynman and Kleinert, which were introduced to make the
problem tractable for computers in their time, could be eliminated.
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Appendix A Electronic structure problem

This appendix will briefly discuss the main ideas and methods used to find
approximate solutions to the electronic structure problem. This appendix will
not go into much detail, since a plethora of literature exists treating this topic
in great detail (see for instance ref. 66 or 67). The problem rests in finding the
ground state wave function and energy of a system of N electrons and M fixed
nuclei (entering the problem only as external point charges), all interacting
via the Coulomb potential. The Hamiltonian for this problem is in atomic
units:

Ĥ elec =−
N∑︂

i=1

1

2
∇2

x⃗i
+

N∑︂
i=1

N∑︂
j>i

1

|x⃗i − x⃗ j |
+

M∑︂
i=1

M∑︂
j>i

Zi Z j

|X⃗ i − X⃗ j |
−

N∑︂
i=1

M∑︂
j=1

1

|x⃗i − X⃗ j |
(A.1)

The most common starting point for finding the ground state is to employ a
mean-field ansatz (of proper exchange symmetry) for the wave function and
the Ritz variational principle to search for the lowest energy among the wave
functions in this subspace. For fermions, this method is referred to as the
Hartree–Fock method [68, 69]. As foreshadowed previously, this approxima-
tion uses the following ansatz for the many-electron wave function:

ψ(x⃗1, x⃗2, . . . , x⃗N ) = Â (φ1(x⃗1)φ2(x⃗2) . . .φN (x⃗N )), (A.2)

where Â is the antisymmetrization operator. It is thus assumed that the to-
tal wave function can be written in an antisymmetrized product form. This
corresponds to the assumption, that there is no correlation between the elec-
trons, apart from the correlation caused by the antisymmetrization. Within
the Ritz variational principle the individual one-electron wavefunctions φi

(also referred to as “orbitals”) are then subject to variation, under the con-
straint that they remain orthonormal:

δ
[︁
E [φi ]−ϵi j

(︁⟨︁
φi

⃓⃓
φ j

⟩︁−δi j
)︁]︁= 0, (A.3)

ϵi j being Lagrange multipliers. Skipping the derivation, this variation leads
to the Hartree–Fock equations:

ĥ(x⃗1) |φi (x⃗1)〉+
N∑︂

j=1

⟨︁
φ j (x⃗2)

⃓⃓
v̂(x⃗1, x⃗2)

(︁⃓⃓
φi (x⃗1)

⟩︁ ⃓⃓
φ j (x⃗2)

⟩︁− ⃓⃓
φ j (x⃗1)

⟩︁ ⃓⃓
φi (x⃗2)

⟩︁)︁
= ϵi i

⃓⃓
φi (x⃗i )

⟩︁
,

(A.4)

where

ĥ(x⃗1) =−1

2
∇2

x⃗1
+

M∑︂
k=1

1

|x⃗1 − X⃗ k |
(A.5)
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and

v̂(x⃗1, x⃗2) = 1

|x⃗1 − x⃗2|
. (A.6)

These equations for the functions φi are then usually solved in a basis. Note
that the second term on the left-hand side of these equations contains the
average electrostatic potential generated by all the other electrons (the “mean
field”), as well as a non-local exchange interaction. The left-hand side thus
depends on the functions φi for which the equations are solved, and as such
needs to be solved self-consistently. After the equations are solved and the
functions φi obtained, the ground state energy (from the point of view of this
work, the main quantity of interest) can be obtained as

E0 = E [φ0i ] =
N∑︂

i=1
ϵ0i i

− 1

2

N∑︂
i=1

N∑︂
j=1

[︁⟨︁
φ0 j (x⃗2)

⃓⃓
v̂(x⃗1, x⃗2)

(︁⃓⃓
φ0i (x⃗1)

⟩︁ ⃓⃓
φ0 j (x⃗2)

⟩︁− ⃓⃓
φ0 j (x⃗1)

⟩︁ ⃓⃓
φ0i (x⃗2)

⟩︁)︁]︁
,

(A.7)

where the zeroes denote quantities that solve the variational equation (A.3).
The slowest step of the whole calculation is the evaluation of “two-body in-
tegrals” like

⟨︁
φi (x⃗1)

⃓⃓ ⟨︁
φ j (x⃗2)

⃓⃓
v̂(x⃗1, x⃗2)

⃓⃓
φk (x⃗1)

⟩︁ ⃓⃓
φl (x⃗2)

⟩︁
and as such, the algo-

rithm scales as O(N 4). Note, however, that this scaling can be improved by
employing more advanced methods of evaluation of the interaction and ex-
change terms. The Hartree–Fock approximation is usually too drastic to yield
quantitatively useful results. The results obtained from the method are thus
usually further improved by including the electron correlation either pertur-
batively [70], variationally [71, 72], or by other correction schemes [73]. Such
improvements are however quite costly and scale quite unfavorably with the
number of electrons. An alternative approach to achieve more accurate re-
sults is thus often needed, when solving the problem for a system of a com-
paratively high number of electrons, or when the calculations are needed to
be done quickly. The most often used such alternative is Density functional
theory. The theory itself is based on the Hohenberg–Kohn theorems [74],
which, in short, state that all properties of the many-electron system can be
deduced from the ground state electron density:

ρ0(x⃗1) = N
∫︂

d
x⃗2dx⃗3 . . .dx⃗N |ψ0(x⃗1, x⃗2, . . . , x⃗N )|2, (A.8)

and this density in turn can be found by minimizing the ground state energy
functional E0[ρ] with respect to the trial ground state density. The theory
thus presents a possibility for a considerable reduction in the dimensional-
ity of the problem — from the original 3N dimensions to only 3 dimensions
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in total. To solve the electronic problem in such a way, however, would re-
quire the functional E0[ρ] to be known, which is not the case. Furthermore,
no systematic way of finding such a functional exists. Particularly problem-
atic is the kinetic energy contribution to the functional T [ρ]. The most often
used Kohn–Sham [75] approach to density functional theory takes advantage
of the fact that the ground state wave function of the form A.2 provides a rea-
sonable approximation to the quantum kinetic energy (calculated from this
wave function in the usual way using the Laplace operator). The approach
thus seeks to find such a wave function as a ground state of a Hamiltonian
with the potential energy chosen in such a way that the resulting electron
density exactly matches the exact ground state density of the original prob-
lem. The problem thus reduces again to the solution of a set of equations (the
Kohn–Sham equations) which look like the original Hartree–Fock equations,
with the two-body terms replaced by the effective potential:(︃

−1

2
∇2

x⃗1
+ veff(x⃗1)

)︃ ⃓⃓
φi (x⃗1)

⟩︁= ϵi
⃓⃓
φi (x⃗1)

⟩︁
. (A.9)

The effective potential can nowadays be reasonably approximated and the
equations solved in a basis. The scaling of the method with the number of
electrons tends to be of the order O(N 3) or lower.



Appendix B Classical approximation

This appendix will briefly deal with the motivation and applicability of replac-
ing the quantum description of a system of particles with the corresponding
classical description. Consider a single particle described by a wave function,
which solves the time-dependent Schrödinger equation:

∂ψ(x⃗, t )

∂t
= Ĥψ(x⃗, t ) (B.1)

Ĥ =− ħ2

2m
∇2 +V (x⃗). (B.2)

This wave function can be written using the ansatz:

ψ(x⃗, t ) = A(x⃗, t )exp

(︃
i

S(x⃗, t )

ħ
)︃
, (B.3)

where A and S are both taken to be real, and the global phase can be fixed
such, that A > 0. Substituting the wave function in such a form into the origi-
nal time-dependent Schrödinger equation and solving the real and imaginary
parts separately yields the following two equations:

∂S

∂t
+ (∇S)2

2m
+V = ħ2∇2 A

2m A
(B.4)

∂A

∂t
+ (∇A) · (∇S)

m
+ A

(︁∇2S
)︁

2m
= 0. (B.5)

Note that this reformulation of the time-dependent Schrödinger equation in
terms of the quantities A and S also plays a central role in the De Broglie–
Bohm interpretation of quantum mechanics [76]. The second of these equa-
tions can be rewritten in the form:

∂A2

∂t
+ ∇(︁

A2∇S
)︁

m
= 0, (B.6)

which is just the continuity equation for the probability density:

∂ρ

∂t
+∇jρ = 0. (B.7)

Taking the classical limit ħ→ 0, equation B.4 becomes:

∂S

∂t
+ (∇S)2

2m
+V = 0, (B.8)

in which the Hamilton-Jacobi equation of motion of classical mechanics [77]
can be recognized:

∂S

∂t
+H(x⃗,∇S) = 0. (B.9)
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The connection between quantum and classical mechanics can thus be
established by identifying the phase function S(x, t ) in the classical limit as
the classical action (as a function of the trajectory endpoint position and
time).



Appendix C Exchange symmetry and path integrals

To account for the indistinguishability of particles, the expressions obtained
in subsection 2.2 need to be symmetrized, in the case of bosonic particles, or
anti-symmetrized in the case of fermions:

Z± = 1

N !

∑︂
PN

(±1)Π(PN )
∫︂

dn x
⟨︁

PN (x)
⃓⃓
exp

(︁−βĤ
)︁ ⃓⃓

x
⟩︁

, (C.1)

where the sum is understood to go over all permutations of the particles,
Π(PN ) is the parity of the permutation, and PN (x) are the permuted coordi-
nates of the particles. Performing a permutation does not change the form of
the path integral expression (2.33), however, it changes the condition xP = x0

to xP = PN (x0). To put this into words, using again the “integral over paths”
interpretation: each of the terms in equation C.1 represents an integral of
exp(−SE) over all paths, where after the imaginary time interval β, each of
the particles ends at the starting point of another particle (determined by the
particular PN ). If the individual particles are assumed to be well localized (as
is the case for atomic nuclei in molecular systems in the temperature ranges
considered), the terms where the particles are permuted can be expected to
be suppressed by a factor of the order of magnitude of:

exp

(︃
−mD2

2ħ2β

)︃
, (C.2)

D being the mean distance between the particles in their well-localized po-
sitions. The contributions are thus strongly suppressed with increasing in-
terparticle distance. Using conservative estimates of these parameters for a
molecular system, m = mP , T =300 K, D=1 Å, this order of magnitude can be
estimated to be ≈ 10−2 or less. Based on this, it can be assumed that the indi-
vidual nuclei are safe to be approximated as distinguishable particles, and
thus equations 2.29 and 2.33 can be used to describe the statistics of the
atomic nuclei in the systems considered.



Appendix D A global version of the Langevin ther-
mostat

This appendix will give a brief explanation of how one can obtain the equa-
tions defining the CSVR thermostat 2.140. The explanation is based on ref. 32
where the topic is covered in full detail.

The formal solution of the Langevin equation 2.83 for a free particle in one
dimension will serve as a starting point. Setting t = ϵ and c = exp

(︁−2γϵ
)︁
, this

equation reads:

p(ϵ) =⎷
cp(0)+

√︄[︃
m

β
(1− c)

]︃
ζ. (D.1)

Considering the system to be composed of N copies of this particle (this is
done for simplicity and can be equally thought of as N /3 free Brownian parti-
cles in three dimensions), denoting the momentum of each one pi , the change
of the kinetic energy

K =
N∑︂

i=1

p2
i

2m
(D.2)

going from t = 0 to t = ϵ is equal to:

K (ϵ)−K (0) =
N∑︂

i=1

[︄
(c −1)p2

i (0)

2m
+

√︄
c(1− c)

mβ
pi (0)ζi +

(1− c)ζ2
i

2mβ

]︄
, (D.3)

where ζi is a vector of statistically independent normally distributed random
numbers with unit variance.

The goal is to obtain an algorithm that enforces the same variation and
mean value (K = N /(2β)) of the kinetic energy by minimally perturbing the
momenta. Defining the magnitude of the perturbation to be

δ=
∑︁N

i=1

(︁
pi (ϵ)−pi (0)

)︁2

m
, (D.4)

then the perturbation to the momenta that minimizes this magnitude while
keeping the chosen increment of kinetic energy constant is

pi (ϵ) =α(0)pi (0). (D.5)

For an instructive illustration of this fact see again ref. 32. This is the third of
the final CSVR equations 2.140. The increment of the kinetic energy is equal
to:

K (ϵ)−K (0) =
N∑︂

i=1

(︁
α2 −1

)︁
2m

p2
i (0). (D.6)
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Setting this increment equal to the change of the kinetic energy according to
the equation D.3 yields the first of the CSVR equations 2.140. The only non-
trivial step involves using the fact that the sum of two normally distributed
numbers is also a normally distributed number:

N (µa ,σ2
a)+N (µb ,σ2

b) =N (µa +µb ,σ2
a +σ2

b), (D.7)

and the property that a number x =σζ+µ is normally distributed with stan-
dard deviation σ and mean µ. Together these imply:

N∑︂
i=1

piζi = ζ
⌜⃓⃓⎷ N∑︂

i=1
p2

i . (D.8)

The remaining single Gaussian distributed number ζ needs to be chosen to
be the same as one of the numbers ζi to ensure proper correlation between
the individual terms in the resulting equation.

The second and final CSVR equation, eq. 2.140, which determines the sign
ofα, comes from a more detailed analysis. The main motivation for choosing
the sign in this fashion comes from the requirement to keep the probability to
observe a flip of the momenta finite while yielding correct limits in the case of
large and small N . For large N , this probability should be negligible, while for
N = 1, this probability should be the same as given by the Langevin equation.
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