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Bc. Elǐska Klimešová
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Introduction
In Newtonian theory a system consisting of extremally charged point particles

|ei| =
√

4πGϵ0mi (1)

remains in static equilibrium until acted upon by any external forces. The sign in
(1) can be freely flipped, provided consistency for all the source points. Viewed
from a Newtonian perspective of the 17th century, extremal black holes either
follow straight line geodesics or stand still (which is a special case of the former,
of course).

In contrast to Schwarzschild or non-extremal Reissner-Nordström black holes,
there exists a static solution describing a superposition of an arbitrary finite num-
ber of extremal black holes in general relativity. This solution of the source-free,
coupled Einstein-Maxwell equations was first described by S. D. Majumdar [1]
and A. Papapetrou [2] independetly in 1947. As pointed out by J. B. Hartle
and S. W. Hawking [3] a quarter century later, this Majumdar-Papapetrou
solution can be extended analytically. Moreover, in a system of static electric
charges of the same sign, all of the singularities of the spacetime are contained
within event horizons. [3]

In the universe objects are in motion rather than remaining static. How-
ever, in dynamic systems there is much more general relativity than just ”1/r2”
Newtonian law. It is then perhaps an astonishing discovery, that the motion of
extremally charged black holes can be solved analytically to the 2nd order
in velocities, as was first described by D. M. Eardley and R. C. Ferrell
[4, 5] in 1987. Even though restricting to the adiabatic evolution (moduli-space
approximation), this problem is solved in the full strong field regime of gravity
coupled to electromagnetism.

The field degrees of freedom (associated with radiation) are not present in our
approximating spacetime. We foliate the spacetime with space-like 3-dim slices
instead, assuming on any slice the gravitational and electromagnetic fields are
determined entirely in terms of positions of black holes and their velocities.

We aim to compare the motion of a test particle in the field of two massive
black holes orbiting on a common path as per solution in [4] with the motion of
a third, smaller black hole approaching the same orbiting system. Geodesics in
static Majumdar-Papapetrou solution were studied in [6] so that we will perform a
static limit here to compare our results. The moduli space metric of the maximally
charged slowly-moving dilatonic black holes was calculated in [7]. In [8] the
gravitational wave signatures of extremal black hole mergers were analytically
calculated, extended by non-zero dilatonic field.

Although based on expansion in velocities, not the gravitational field, this
works falls into the realm of post-Newtonian (1PN) and higher order corrections
to Newtonian gravity.

The outline of the thesis is as follows. We first sum up the static situation,
then proceed to the perturbed analytic solution. Though the results were already
shown in [4], we recapitulate it owing to its importance in the subsequent sections.
Afterwards we solve geodesic equations for both, uncharged and charged test
particle. Finally we compare the latter with the motion of the third black hole.

2



Geometrized units
We shall make use of geometrized units system, unless explicitly stated otherwise.
In geometrized units the base physical units are chosen such, that c = 1 = G. For
SI units of

[MA LB TC ] ,

the conversion factor from SI to geometrized units is

[GAcC−2A].

In this most likely not-peer-reviewed paper [9] we found similar results, leading
to the same formula. For the reader’s convenience, in Table 1 we list chosen
important quantities with their dimension in geometrized units.

Quantity Multiplication factor SI dimension Geometric dimension

Mass mgeom = G
c2 ·mSI M L

Time tgeom = c · tSI T L
Length lgeom = 1 · lSI L L
Velocity vgeom = 1

c
· vSI L T−1 1

Energy Egeom = G
c4 · ESI M L2 T−2 L

Charge Qgeom = 1
c2

√
G
ϵ0

·QSI T I L

Table 1: List of useful conversions between SI and geometrized units system.

The physical quantities identified with a specific value are expressed as a
multiple of another quantity of the same dimension. Typical example is r/M ,
t/M , and we scale M = 1.

Tensor formalism
In general relativity the physical quantities can be described by tensorial quanti-
ties. We use standard tensor index notation with indeces that are either covari-
ant (vectors) or contravariant (covectors). Greek indices are ranging from 0 to 3,
whereas Latin indices from 1 to 3. The 0-th component refers to time coordinate.
Tensorial contraction is represented by repeated indeces (one label is covariant
and the other contravariant), also we employ Einstein summation convention.

The signature of metric tensor is (−,+,+,+), and hence the time-like vectors
have negative magnitude.

List of abbreviations
BH: Black hole, M-P: the Majudmar-Papapetrou solution, R-N: the Reissner-
Nordström solution, EoM: equation of motion, RHS/LHS: the right/left hand
side of the equation, DoF: degree of freedom, EFE: Einstein’s field equations.

Equations carried out in the thesis were solved using the software Wolfram
Mathematica 13.0 and the package for tensor computer algebra, xAct 1.2.0.
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1. Static spacetime
The time-independent multi-black hole solution for extremal black holes not only
exists but also is very simple. Since Majumdar-Papapetrou (M-P) spacetime
describes superposition of extremally charged black holes, it is convenient to start
with description of a single charged Reissner-Nordström black hole, its metric and
interesting properties. Then we generalize R-N metric to M-P solution (it is rather
a motivation). For a rigorous derivation of M-P solution, please, visit Section 1.3.

1.1 | General spacetime and extremal

Reissner–Nordström solution
Reissner–Nordström (R–N) solution is very well known solution of EFE describing
the spacetime containing one black hole of charge Q and mass M only. One can
also directly obtain the line element for R–N solution from the line element of gen-
eral spacetime which describes a rotating (Kerr parameter a)1 electrically charged
(charge Q) black hole of mass M (as seen by an observer at infinity) in a back-
ground universe with (generally non–zero) cosmological constant Λ by putting
convenient parameters equal to zero. All the parameters are meant to be held
fixed. This Kerr–Newman–(anti–)de Sitter solution reads in Boyer–Lindquist
coordinates and natural units c = 1 = G [10]

ds2 = − ∆r

Ξ2ρ2

(
dt− a sin2 θdϕ

)2
+ ρ2

∆r

dr2 + ρ2

∆θ

dθ2+

+ ∆θ sin2 θ

Ξ2ρ2

(
adt− (r2 + a2)dϕ

)2
,

(1.1)

where
ρ2 = r2 + a2 cos2 θ,

∆r =
(
r2 + a2

) (
1 − 1

3Λr2
)

− 2Mr +Q2,

∆θ = 1 + 1
3Λa2 cos2 θ,

Ξ = 1 + 1
3Λa2.

(1.2)

Next, the event horizons of the space–time are given by ∆r(r) = 0 [10]. The
event horizon represents the set of all events that can be seen by outer observers
whose paths start at infinity and end at infinity. Moreover, all of the singularities
included in these solutions lie within the horizons. Geometries with singularities
isolated in this way are said to be black–hole solutions.

1a > 0, since we can always choose the orientation of angle ϕ in such a way, considering
coordinates (r, θ, ϕ).

4



Now, choosing wisely a = Λ = 0 one obtains our well known Reissner–
Nordström spacetime which is a static, spherically symmetric solution of Einstein-
Maxwell equations2

ds2 = −
(

1 − 2M
r

+ Q2

r2

)
dt2 + dr2(

1 − 2M
r

+ Q2

r2

) + r2dΩ2, (1.3)

where dΩ2 = dθ2 + sin2 θdϕ2 is the angular part of the metric.
Here ∆r(r) = 0 yields an equation that can be solved easily

1
grr

= 0 = 1 − 2M
r

+ Q2

r2 → r± = M ±
√
M2 −Q2. (1.4)

Obviously, a special extremal solution Q = M , i.e., satisfying (1) in natural units,
describes a double-degenerate horizon at r = M , corresponding to an extremal
black hole3. Performing a simple limit Q → M the spacetime of extremal R–N
black hole is described by

ds2 = −
(

1 − M

r

)2
dt2 + dr2(

1 − M
r

)2 + r2dΩ2
2 (1.5)

with the corresponding four-potential

ARN = Q

R
dt. (1.6)

1.1.1 | R-N solution: pathology, asymptotics

At r = M there is a coordinate singularity, which corresponds to a second-order
pole in the metric. However, one can use Eddington-Finkelstein coordinates to
extend the space-time to all r > 0. What makes extremally charged black holes
so special? Let us consider a sub-extremal black hole. Looking at the (spatial)
distance from a point r = R̄ to the horizon of such a hole we obtain

s =
∫ R̄

r+

dr(
1 − r+

r

) (
1 − r−

r

) < ∞, (1.7)

where r+, r− denote the inner and outer horizon, respectively. The proper distance
to the horizon is thus finite whereas for the extremal black hole where the horizons
coincide r− = r+ = M one arrives at infinite spatial distance.

s =
∫ R̄

M

(
1 − M

r

)2
dr = ∞ (1.8)

2rS = 2M is the Schwarzschild radius in geometrized units. In SI unit system this would
be 2M → 2GM

c2 and Q2 → GQ2

4πϵ0c4 .
3The case M < Q would cause both r± ∈ C and hence there would be no event horizons

and the singularity would be naked. Thence it is convenient to use the term extremally charged,
since it is the largest physically allowed value of charge.
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However, time-like and null geodesics can reach the horizon during a finite interval
of their affine parameter [11].

The horizon can be thought of as developing an infinite throat, see Figure 1.1.
If we restrict the Einstein-Rosen bridge just to one side, this is what we get.

Figure 1.1: Geometry of extremal
Reissner-Nordström black hole [11]

What does the geometry look like
deep inside the throat? Let us take the
near-horizon limit and write

r = r+ + ϵ.

Having ϵ ≪ M , the metric (1.5) reads

ds2 = − ϵ2

r2
+

dt2 + r2
+
ϵ2 dϵ2 + r2

+dΩ2
2. (1.9)

One can recognize in the first two terms
the Poincaré patch of 2-dim AdS space-

time, covering one half of the hyperboloid parametrizing the natural embedding
of AdS in 5-dim spacetime, whilst the last term depicts a two-sphere with con-
stant radius r+. The near horizon geometry of R-N black hole is thus AdS2×S2,
sometimes called as the Robinson-Bertotti metric [11], one of the calculations mo-
tivating AdS/CFT. For more information about AdS/CFT correspondence see for
example the work of V. E. Hubeny [12].

Now let us have a look at the asymptotics of the R-N solution. The extremal
case of R-N (1.5) can be rewritten as

ds2
RNex

= − r′2

(r′ + Σ)2 dt2 + (r′ + Σ)2

r′2 dr′2 + (r′ + Σ)2 dΩ2, (1.10)

where r′ = R − r+ and positions of horizons coalesce r+ = r− = M = |Q| ≡ Σ,
singularity clearly sits at r′ = 0 [11].

This can be reinterpreted using a harmonic function H ≡ r′+Σ
r′ = 1 + Σ

r′ (for
which □H = 0) and r′ =

√
x⃗ · x⃗ as

ds2
RNex

= −H−2(r′)dt2 +H2(r′)dx⃗ · dx⃗. (1.11)

In the asymptotic regions (R2 ≫ Q2) the metric (1.6) first goes over
to the Schwarzschild one and even further it translates to a Minkovskian flat
metric. M thus represents the source mass.
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1.2 | Majumdar–Papapetrou solution

Now we proceed with the afore mentioned heuristic generalization of R-N to M-P
spacetime, starting with the extremal R-N metric.

Motivation
The form (1.11) now admits a simple generalization to

ds2
M−P = −H−2(x⃗)dt2 +H2(x⃗)dx⃗ · dx⃗ (1.12)

where x⃗ is the usual Cartesian coordinate on R3. Then we make the following
Ansatz for the gauge field corresponding to electrically charged black holes

A = 1
H

dt.

The non-linear Einstein-Maxwell equations then reduce to a very simple linear
condition, the Laplace equation

∆H(x⃗) = 0 (1.13)

where ∆ is the Laplacian on flat R3. With flat-spacetime asymptotic boundary
conditions, (1.13) is solved by (x⃗i is position of the i-th black hole)

H(x⃗) = 1 +
n∑
i=1

1
|x⃗− x⃗i|

, (1.14)

which is known as the Majumdar-Papapetrou solution [1, 2]. Function H(x⃗) in
this section is denoted as ψ(x⃗) throughout the rest of the thesis, following the
notation of [4, 5].

ds2 = −ψ−2dt2 + ψ2dx⃗ · dx⃗

ψ(x⃗) = 1 +
N∑
i=1

mi

|x⃗− x⃗i|

A = 1
ψ

dt.

(1.15)

J. B. Hartle & S. W. Hawking showed in [3] that either the Majumdar–
Papapetrou geometries contain naked singularities or correspond to systems of
extremally charged black holes in equilibrium under their mutual electrostatic
forces and gravitational interaction.
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1.2.1 | M-P solution: asymptotics, horizons

Large distance
The Majumdar-Papapetrou (M-P) metric for the case of two equally massive
black holes (M1 = M2 = M) is asymptotically (|x⃗| ≫ |x⃗1|, |x⃗| ≫ |x⃗2|, |x⃗| ≡ r)

ds2
MPasymp.

= −
(

1 + 2M
r

)−2
dt2 +

(
1 + 2M

r

)2
dx⃗ · dx⃗ (1.16)

which after putting Σ = 2M and r′ = r becomes (1.11). Thus, the M-P metric
of two black holes asymptotically behaves as the R-N metric with extremally
charged source of mass 2M .

Vicinity of the hole
If we put the two black holes into (0, 0, α) and (0, 0,−α) in Cartesian coordinates,
one can write the master function as

ψ(x⃗) = 1 + m1√
x2 + y2 + (z − α2)

+ m2√
x2 + y2 + (z + α2)

. (1.17)

It seems convenient to translate this into shifted spherical coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z − α = r cos θ (1.18)

and find ψ(r, θ, ϕ) as

ψ(r, θ, ϕ) = 1 + m1

r
+ m2√

r2 + 4αr cos θ + 4α2
(1.19)

and the metric becomes

ds2 = −ψ(r, θ, ϕ)−2dt2 + ψ(r, θ, ϕ)2 ·
(
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
. (1.20)

This can be expanded and one recovers that the series (up to the first order)
match perfectly with R-N solution. The result is that M-P geometry in the
vicinity of the first black hole, i.e. limr→0 (1.20), behaves as R-N metric with one
dominating extremally charged source (sitting in the origin of shifted spherical
coordinates).

Horizons
The event horizons of the holes lie at the points x⃗ = x⃗a. Introducing convenient
coordinates into the M-P metric, that is (1.20), one can simply calculate the
properties such as the surface of horizon of the first black hole SH . Alternatively
one can calculate the second black hole horizon.

SH = lim
r→0

∫ 2π

0

∫ π

0

√
gθθgϕϕdθdϕ = lim

r→0

∫ 2π

0

∫ π

0
ψ2r2 sin θdθdϕ = 4πm2

1 (1.21)
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The final term corresponds to the surface of a 2-sphere with radius m1. After
a simple coordinate transformation one can see this is the null hypersufrace of
the extremal R-N. Generaly, M-P metric implies that the invariant area of any
2-sphere that surrounds the origin r = 0 is given by

S(r) = 4πr2ψ2.

1.2.2 | ADM mass (static)

Given a 3D manifold M with an asymptotically flat and positive definite metric
g the ADM mass for the space (M, g) can be defined as [13, 14]

M = 1
16π lim

S2→i0

∫
S2
gij (gik,j − gij,k)nkd2A, (1.22)

where S2 is a topological 2-sphere, nk is outward pointing unit normal vector and
d2A is the area element. The above integral is defined for a restricted class of
coordinate systems with spatial being asymptotic Euclidean. The metric compo-
nents in such a system are required to be of the form gij = δij+O

(
1
r

)
. We choose

xi = {x, y, z}, parameter of a 2-sphere S2 is the radial distance r =
√
x2 + y2 + z2.

We carry out the integral over the hypersurface r = const., t = const. and hence
we have ni = ∂r

∂xi
= xi

r
. In stationary spacetimes the ADM mass reduces to the

conserved charge associated with the time translational symmetry.
Our Majumdar-Papapetrou metric

ds2 = − 1
ψ2 dt2 + ψ2dx⃗ · dx⃗, ψ = 1 +

N∑
a=1

ma

|x⃗− x⃗a|
(1.23)

asymptotically goes to ηµν , allowing us to directly use the formula for the ADM
mass. We can work out the spatial partial derivatives with respect to any spatial
coordinate

gij,k = gij
ψ2∂kψ

2 = −2δijψ
N∑
a=1

ma

|r⃗ − x⃗a|3
(rk − (xa)k)

which can be expanded for large r

gij,k
⏐⏐⏐
r≫1

= −2δij
xk
r3

N∑
a=1

ma + O
( 1
r3

)
.

Plugging this into the formula for the ADM mass (1.22) we obtain

MADM = 1
16π lim

S2→i0

∫
S2

(
N∑
a=1

ma

[
−2δik

xi

r3 + 2δijδij
xk
r3

]
+ O

( 1
r3

))
xk

r
d2A

=
∑N
a=1 ma

16π lim
S2→i0

∫
S2

(
− 2
r2 + 6

r2 + O
( 1
r3

))
d2A

=
∑N
a=1 ma

16π lim
S2→i0

∫
S2

( 4
r2 + O

( 1
r3

))
d2A.

(1.24)
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Translating into spherical coordinates d2A = r2d(cos θ)dϕ we finally obtain

MADM =
∑N
a=1 ma

16π lim
S2→i0

∫ 2π

0

∫ 1

−1

( 4
r2 + O

( 1
r3

))
r2d(cos θ)dϕ =

N∑
a=1

ma. (1.25)

The ADM mass of Majumdar-Papapetrou spacetime is, as expected, just a
sum of the partial masses of the extremally charged bodies. We will compare this
with the value calculated for a perturbed system in Section 3.1.3.

1.3 | Rigorous derivation of M-P

Let us derive somewhat more rigorously the Majumdar-Papapetrou solution. M-
P spacetime is a vacuum solution to coupled Einstein-Maxwell partial differential
equations of the second order. We first proceed with general background-space
metric hij and in the last stage we assume it to be flat. It is a generalisation of
[15], where they have chosen Cartesian coordinates already at the beginning. We
also turn Cartesian, however in the second part only. The beginning of procedure
freely follows [16]. To regularize the singularities during calculation we choose to
smudge extremal black holes to a charge-dust with a given distribution, as done
in [4, 5]. Charged-dust Einstein-Maxwell equations read

Gµν = 8πTµν , (1.26)

F µν
;ν = 8πJµ, (1.27)

where Gµν , F
µν denote Einstein and Maxwell tensor, respectively. The total

energy-momentum (en-mom) tensor of a charged dust Tµν is given by the sum of
Maxwell en-mom tensor and the matter en-mom tensor with four-velocity uµ. Let
ρ be a smooth distribution of pressureless dust with charge-to-mass ratio unity.

Tµν = 1
4π

(
FµαF

α
ν − 1

4gµνFαβF
αβ
)

+ ρuµuν (1.28)

The four-current is four-velocity multiplied by charge density σ

Jµ = σuµ. (1.29)

Let us assume a static spacetime and an Ansatz for conformastatic metric [17]

ds2 = −Q2dt2 + 1
Q2hijdx

idxj, (1.30)

with the background metric hij and master function Q depend on spatial coor-
dinates xi only. Let us further assume an electrostatic form of four-potential,
four-current and also we have four-velocity of time-like particle satisfying nor-
malization uµu

µ = −1:

Aα = A0(xi)δ0
α, Jα = σ(xi)

Q(xi)δ
α
0 , uα = 1

Q(xi)δ
α
0 . (1.31)
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If we use the definition of Maxwell tensor Fµν = ∂µAν − ∂νAµ, we see that (1.27)
includes only one non-trivial equation (h = det(hij), hij is inverse of hij)

1√
h
∂i

(√
h
hij

Q2∂jA0

)
= 4πσ

Q3 (1.32)

Now we are left with EFE (Einstein field equations). We can calculate the com-
ponents of Einstein tensor.

G00 = 2Q3∆(h)Q− 3Q2(∇(h)Q) · (∇(h)Q) + 1
2Q

4R(h)

G0i = 0

Gij = R(h)ij − 2
Q2∂iQ∂jQ+ hij

(
1
Q2 (∇(h)Q) · (∇(h)Q) − 1

2R(h)

) (1.33)

Here ∇(h), ∆(h), R(h)ij, R(h) denote the gradient, Laplace operator, Ricci tensor
and Ricci scalar associated with the background space metric hij. En-mom tensor
is given as follows.

T00 = 1
8πQ

2(∇(h)A0) · (∇(h)A0) + ρQ2

T0i = 0

Tij = 1
4π

(
− 1
Q2∂iA0∂jA0 + 1

2
1
Q2hij(∇(h)A0) · (∇(h)A0)

) (1.34)

Now we are allowed to put down an explicit form of EFE, giving us only seven
non-trivial equations.

Furthermore, we assume the background space is Euclidean in Cartesian co-
ordinates; hij = δij. Equation for G00, Gij become (now the operators ∇,∆
operate on flat space)

−3∇Q · ∇Q+ 2Q∆Q = ∇A0 · ∇A0 + 8πρ (1.35)

−2∇iQ∇jQ+ δij∇Q · ∇Q = −2∇iA0∇jA0 + δij∇A0 · ∇A0 (1.36)

Spatial-spatial part Gij = 8πTij

Now we contract (1.36) with δij, use δijδij = 3 and obtain

∇Q · ∇Q = ∇A0 · ∇A0 (1.37)

which we can substitute back into (1.36) and obtain

∇iQ∇jQ = ∇iA0∇jA0 (1.38)

and that we integrate (with additive integration constant equal to zero)

A0 = αQ, α2 = 1. (1.39)
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Time-time part G0 = 8πT00

Now one can substitute A0 (1.39) into (1.35), hence one eliminates A0 and gets
equation in terms of Q only. Then we use a somewhat artificial identity

Q∆Q = 2∇Q · ∇Q−Q3∆
(

1
Q

)

and we obtain an equation of Poisson type

∆
(

1
Q

)
+ 4πρ 1

Q3 = 0. (1.40)

Maxwell equation F 0ν
;ν = 4πJ0

Equation F 0ν
;ν = 4πJ0 is the Gauss law for M-P coordinate system. Here we

substitute for A0 from (1.39) into Maxwell equation (1.32) and we arrive at

∆
(

1
Q

)
+ 4πσ

α

(
1
Q3

)
= 0. (1.41)

Comparing the resulting equations (1.40) and (1.41) we obtain the relation be-
tween σ and ρ

σ = αρ (1.42)

This relation (1.42) is the characterisation of Majumdar-Papapetrou class of static
solution of Einstein-Maxwell-(extremally)-charged-dust equations [16].

Master function ψ

To determine the black hole solution we need the matter distribution to be sin-
gular. Fortunately, this can be done without any difficulties and it was known
to Majumdar and Papapetrou already [5]. The geometry of a spacetime with an
uncharged mass looks as a well deepening as the mass increases, similar to Figure
1.1. For a maximally charged matter the bottom of the well falls down and the
throat keeps lenghtening. As the distribution becomes a δ-function (singularity)
the throat is infinitely long [5], depicted in Figure 1.14.

The black hole limit means that smooth distribution of pressureless extremally
charged dust ρ is allowed to turn into a sum of point-like sources, mathematically
expressed as

ρψ3 →
∑
a

maδ
3(x⃗− x⃗a),

where a goes over the black holes and we denoted

ψ ≡ 1/Q.

4Due to our limited opportunities only a finite part of the well is plotted, the reader is
encouraged to extrapolate the infinite remainder in his/her mind.
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All of the infinities will, out of the blue, cancel out, leaving us with working
regularization (and hence with no need of further renormalization). Our equation
to solve is now Poisson’s equation

∆ψ = −4π
∑
a

maδ
(3)(x⃗− x⃗a). (1.43)

One can see ψ has just turned into Green’s function for 3D Laplace operator.
General prescription for the equation and its solution is well known

∆G(x⃗, x⃗′) = δ(3)(x⃗− x⃗′)

G(x⃗, x⃗′) = − 1
4π

1
|x⃗− x⃗′|

.

The Laplace equation is linear, and hence the full solution to our equation (1.43)
is clearly given by superposition of individual solutions

ψ = 1 +
∑
a

ma

|x⃗− x⃗a|
. (1.44)

The solution is normalized to unity on the boundary, the metric is thus asymp-
totically flat (limx→∞ ψ = 1 trivially solves the Laplace equation). Thus the
resulting form of metric is the desired Majumdar-Papapetrou static solution

ds2 = − 1
ψ2 dt2 + ψ2dx⃗ · dx⃗

A = 1
ψ

dt.
(1.45)
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2. Perturbed spacetime

2.1 | Analytic form of metric

We have already met the static solution, called the Majumdar-Papapetrou solu-
tion for a set of extremally charged static black holes (1.45). We aim to describe
a more realistic situation with mutual motion, since not much of the universe is
really static. We achieve this by giving our black holes non-zero initial velocities.
One can easily see that such perturbation causes a lot of non-trivial physics in
our space-time. While in the static case the electrostatic repulsion cancelled ex-
actly with gravito-static interaction, now we need to take into account different
electro-dynamic and general-relativistic processes.

This undoubtedly very complex problem is still in the full strong-field regime
of gravity (even though restricting to slow motion). Regarding this, it is quite
amazing that such a solution can be found analytically within the framework of
general relativity to the lowest order in the velocity perturbation.

Regarding the metric, only the terms quadratic in first-order perturbation of
fields can survive through O(v2). In addition to that, all the first-order pertur-
bations even under the time reversal vanish. Thus, there is no perturbation in
gtt, gij and At. The general analytic form of perturbed spacetime is then [5]

ds2 = −ψ−2dt2 + 2N⃗ · dx⃗ dt+ ψ2dx⃗ · dx⃗

A = −
(

1 − 1
ψ

)
dt+ A⃗ · dx⃗,

(2.1)

where the perturbation is expressed using two first-order three-tensorial quantities
N⃗ , A⃗ on the t = const. spacetime slice. Instead of the original form (2.1) we
further use A0 = 1/ψ for the time component of the 4-potential, i.e. normalisation
to unity at infinity. Subtracting unity yields an equivalent form, i.e. leaves the
equations of motion unchanged. We write the Lagrangian to second order in
these perturbative quantities and velocity v⃗.

2.1.1 | Slow-motion approximation

Let us begin with the salient feature of slow-motion approximation. Within the
framework of general relativity a number of effects is connected with charged,
massive and moving bodies; namely gravitational and electromagnetic radiation,
magnetic and frame-dragging (gravitomagnetic) forces, etc. Regarding radiation
we are left with an infinite number of field degrees of freedom (DoF).

Imposing the low-velocity condition, circumstances begin to turn in our favor.
The radiation is a consequence of the finite speed of propagation of field distur-
bances. If we neglect radiation, then the fields are entirely determined by initial
positions and velocities and the speed of propagating information can be treated
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as infinite, compared to v. Moreover, the retarded time then merges with stan-
dard time coordinate and we can neglect, so to say, the phase shift proportional
to r

c
. As is well known, black holes have only three DoF. An infinite number of

radiation DoF is thus truncated to a finite number of black hole DoF within
slow-motion approximation.

Our approach is based on coming through a sequence of static configurations
within a quasistatic motion. The system thus pursues a path in moduli space,
such an approach is called moduli space approximation [4, 5]. The velocities are
small v ≪ 1 (or v ≪ c in SI units) and we find the corrections to Newtonian
gravity to the order of v2 (or v2/c2 in SI units), which falls into the realm of post-
Newtonian corrections (1PN). While velocities are small the gravitational field
is still quite strong so we cannot provide a limit c → ∞, terms of type GM/c2

are finite and nonzero. As stated above, we work in full strong-field regime of
gravitation. Note, that the finiteness of the last term provides a finite limitation
to the separation of two extremal R-N holes r ≥ GM

c2 .

Looking at a snapshot of the system at a constant time, the gravitational
interaction and electrostatic repulsion cancel exactly, no matter the positions.
The only remainder will be magnetic and gravito-magnetic (sometimes being
referred to as frame-dragging) interactions. Let us have two slowly moving (v ≪
1) charges q separated by distance r. Then a simple calculation makes an estimate
of the ratio of magnetic force to electric force exerted on the second charge by
the first one (let us work in SI units for a second)

|F⃗B| = q|(v⃗ × B⃗)| = µ0

4π
q2v2

r2 , |F⃗E| = ke
q2

r2

FB
FE

= v2

c2 .

Magnetic interactions are of the order v2, hence they influence motion in our
approximation and give rise to electric currents, affecting charges.

How about the other forces1? In the low velocity limit of extremal BH
the gravitational reaction interactions scale as v5, the electromagnetism reaction
forces (currents) scale as v3 [18] and frame-dragging effects remain small enough
as long as the velocities are small [5]. The gravitational waves (GW) emitted by
the slowly rotating system are of the order v5 [4, 5]. So far so good, everything
can be neglected as O(v3). A query could arise since in case of coalescence the
GW can be even of order v2 [8]. However, we do not study such a case here,
having a stationary, mutually orbiting system instead and our situation is safe.

1We take the word “force” with a grain of salt, especially regarding gravity.
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2.2 | Approximate action

We keep perturbations through up to the second order, since we are interested in
first-order field equations. We start with the prescription for total exact action in
general relativity and derive the perturbed action, which is to be varied to obtain
the right Einstein-Maxwell equations.

2.2.1 | Total exact action

The total action is given by a sum of four pieces, that is gravity, Maxwell fields,
action from current and from matter.

S = Sgravity + SEM-fields + Scurrent + Smatter. (2.2)

These are to be evaluated as

S =
∫

d4x
√

−g ·
(
R

16π − F 2

16π + Aµρu
µ − ρ

)
. (2.3)

The determinant of perturbed metric (2.1) is

√
−g = ψ2

√
1 + N⃗ · N⃗ .

Action from Maxwell fields
For electromagnetic field we have

SEM = − 1
8π

∫
M

F ∧ F ∗ = − 1
16π

∫
dt d3x

√
−gFµνF µν , (2.4)

where M denotes in general Lorentzian manifold. F µν has the following “Hodge-
like” structure

F µν =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −G1 −G2 −G3

G1 0 H3 −H2

G1 −H3 0 H1

G3 H2 −H1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where we introduced the following functions for brevity

G⃗ ≡ 1
ψ2(1 + N⃗2)

(
ψ2∂tA⃗+ ∇ψ + N⃗ × (∇ × A⃗)

)
H⃗ ≡ 1

ψ4(1 + N⃗2)
N⃗ ×

(
∇ψ + ψ2∂tA⃗+ N⃗ × (∇ × A⃗)

)
+ (∇ × A⃗)(1 + N⃗2)

= N⃗ × G⃗

ψ2 + (∇ × A⃗)(1 + N⃗2).

(2.5)

16



The Maxwellian field F 2 ≡ FµνF
µν reads

F 2 = 2

[
N⃗ ×

(
∇ψ + ψ2∂tA⃗+ N⃗ × (∇ × A⃗)

)
+ (∇ × A⃗)(1 + N⃗2)

]
·
(
∇ × A⃗

)
ψ4(1 + N⃗2)

− 2

(
ψ2∂tA⃗+ ∇ψ + N⃗ × (∇ × A⃗)

)
·
(
ψ2∂tA⃗+ ∇ψ

)
ψ4(1 + N⃗2)

≡ 2
{
H⃗ · (∇ × A⃗) − ψ−2G⃗ ·

(
ψ2∂tA⃗+ ∇ψ

)}
(2.6)

Note, that each time derivative brings another order of v

A⃗ ∼ v, N⃗ ∼ v, ∂tA⃗ ≡ ˙⃗
A ∼ v2

simply because ∂tQ(xi) = (∂jQ) · (dxi/dt) = (∂jQ) · v for any quantity.
Now, let us drop O(v3) in F 2. Identites that we used during derivation of the
action from Maxwell fields are written in chronological order of usage here.

N⃗ × (∇ × A⃗) · (∇ψ) = −(∇ × A⃗) ·
(
N⃗ × (∇ψ)

)
(2.7)

∇ × (ψN⃗) = ψ∇ × N⃗ + (∇ψ) × N⃗ (product rule) (2.8)
→ N⃗ × (∇ψ) = −(∇ψ) × N⃗ = ψ(∇ × N⃗) − ∇ × (ψN⃗) (2.9)

∇ ×
(
ψ2N⃗

)
= ψ2∇ × N⃗ +

(
∇
(
ψ2
))

  
2ψ(∇ψ)×N⃗

×N⃗ (2.10)

→ − (∇ψ) × N⃗ = 1
2ψ

(
ψ2∇ × N⃗ − ∇ ×

(
ψ2N⃗

))
(2.11)

|∇ × (ψN)|2 = ∇ × (ψN) ·
(

1
ψ

(∇ × (ψ2N)) − (∇ψ) ×N

)
(2.12)

Then we use this
(∇ × (ψN)) · [(∇ψ) ×N ] =

=

“clever zero”  
1
ψ2 |∇ × (ψ2N)|2 − 1

ψ
(∇ × (ψN)) · (∇ × (ψ2N)) − 1

ψ
∇ × (ψ2N) · [(∇ψ) ×N ]

+ (∇ × (ψN)) · [(∇ψ) ×N ].
(2.13)

Another useful identity is

− 1
ψ

(∇ × (ψN)) · (∇ × (ψ2N) − (∇ × A) · (∇ × (ψN)) =

= − 1
ψ

(∇ × (A+ ψN)) · (∇ × (ψ2N)) + (∇ × A) · ((∇ψ) ×N).
(2.14)

Combining the preceding identities one can obtain this identity

− 1
ψ

(
∇ × (ψ2N)

)
· ((∇ψ) ×N) + (∇ × (ψN)) · ((∇ψ) ×N) = − |(∇ψ) ×N |2 .

(2.15)
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Then, after tedious operations we arrive at the resulting action from Maxwell
fields (to the order O(v2)). Using the Taylor expansion we have 1/

√
1 +N2 .=

1 − 1
2N

2. The only contribution containing N2 from expansion of denominator
originates in (∇ψ)2, which is the only term O(v0), the rest is neglected as N⃗2 ·
O(v) = O(v3).
We can integrate by parts one of the ongoing expressions, the first term on the
RHS vanishes due to the asymptotical flatness

1
4π

˙⃗
A · (∇ψ) =

���
����⌃

0(
A⃗ · (∇ψ)

)
˙

4π − 1
4πA⃗ · (∇ψ)̇ (2.16)

After quite a lot of manipulations we arrive at

SEM =
∫

dt d3x
(

− 1
8π

⏐⏐⏐A⃗+ ψN⃗
⏐⏐⏐2

ψ2 + 1
4π

[∇ × (A⃗+ ψN⃗)] · [∇ × (ψ2N⃗)]
ψ3

− 3
32π

⏐⏐⏐∇ × (ψ2N⃗)
⏐⏐⏐2

ψ4 − 1
4πA⃗ · (∇ψ)̇

+ 1
32π |∇ × N⃗ |2 − 1

16π
[∇ × ψ2N⃗ ].[∇ × N⃗ ]

ψ2

+ 1
8π

(∇ψ)2

ψ2

(
1 − 1

2N⃗ · N⃗
))

.

(2.17)

From now on, the terms highlighted in “blue” match exactly with the terms in
[5]. The remaining terms are expected to cancel with other parts of action or be
vanishing hidden Gauss-divergences.

Action from current
We begin with

Scurrent =
∫

dt d3x
√

−gρAµUµ, (2.18)

where we have the four-velocity uµ = dt
dτ (1, vi) ≡ γ(1, vi) and normalization for

time-like object gµνuµuν = −1. Now we have

−1 = γ2
(

− 1
ψ2 + ψ2v2 + 2N⃗ · v⃗

)
and hence

γ
.= ψ + ψ3

2 (ψ2v2 + 2N⃗ · v⃗).

Then we use Taylor expansion to the leading order
√

1 + N⃗ · N⃗ .= 1 + 1
2N⃗ · N⃗ .

Scurrent =
∫

dt d3x
√

−gAµρ
dxµ
dτ =

=
∫

dt d3x ρψ2
(
ψ + ψ3

2 (ψ2v2 + 2N⃗ · v⃗)
)(

1 + 1
2N

2
)(

−1 + 1
ψ

+ A⃗ · v⃗
)

=
∫

dt d3x
(
ρψ2 − ρψ3 + A⃗ · v⃗ρψ3 + 1

2ρψ
2
[(
N⃗ + v⃗ψ2

)]2
(1 − ψ)

)
.

(2.19)
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Action from matter

Smatter =
∫

dt d3x
(

−ρψ2 − 1
2ρψ

2N⃗2
)

(2.20)

Einstein gravitational action
Einstein (or Einstein-Hilbert) action reads

Sgrav = 1
16π

∫
dt d3x

(
1 + 1

2N⃗ · N⃗
)

× (−1)
⎛⎝

− 2
ψ

[
3 ψ̈ψ4 + 6 ψ̇2ψ3 − ∆ψ

]
+ 2

[
3ψψ̇

(
∇ · N⃗

)
+ ψ

( ˙⃗
N · ∇ψ

)
+ ψ2

(
∇ · ˙⃗

N
)

+ 4ψ
(
N⃗ · ∇ψ̇

)
+ 2ψ̇

(
N⃗ · ∇ψ

)]

+ 1
2ψ2

⎡⎣
���������������������⁓∼ v4 ∼ 0

24ψ̇2ψ4N2 + 12ψ5
(
ψ̈N2 + ψ̇

(
N⃗ · ˙⃗

N
))

+ ψ2
(

(∇ × N⃗).(∇ × N⃗) + ∆(N⃗ .N⃗) − 2
(
∆N⃗

)
.N⃗ − 4(∇ × (∇ × N⃗)).N⃗

− 2(∇ · N⃗)2
)

− 4ψ
⎛⎝(N⃗ · ∇ψ

) (
∇ · N⃗

)
+ N⃗ · (∇∇ψ) · N⃗

⎞⎠
+ 4

(
2
(
N⃗ · ∇ψ

)2
+
(
N⃗ × ∇ψ

)2
− 2N2 (∇ψ)2

) ]⎞⎠.
(2.21)

We drop the 4th line due to the order of approximation. In the first line we can
use

ψ̈ψ3 = (ψ̇ψ3)̇ − 3ψ2ψ̇2. (2.22)

By Sgravi
we denote the i-th line of Einstein action. The first line of Einstein

action (combined with other actions) produces the right term matching with [5],
highlighted again in “blue”

Sgrav1 =
∫

dt d3x

[
− 3

8π ψ̇
2ψ2 − (1 + 1

2N
2) 1

8π
∆ψ
ψ

]
. (2.23)

For the second line we use the following identity, where after integration LHS
vanishes

∇ ·
(
ψ2N⃗

)
˙ = ψ2∇ · ˙⃗

N + ˙⃗
N · ∇ψ2 + (ψ2)̇∇ · N⃗ + N⃗ · ∇(ψ2)̇

= ψ2∇ · ˙⃗
N +

( ˙⃗
N · ∇ψ

)
2ψ + 2ψψ̇∇ · N⃗ + 2N⃗ ·

(
ψ∇ψ̇ + ψ̇∇ψ

)
(2.24)

and hence we arrive at

Sgrav2 =
∫

dt d3x
[

− 1
8πψψ̇∇ · N⃗− 1

4πψN⃗ · ∇ψ̇ + 1
8πψ

˙⃗
N · ∇ψ

]
. (2.25)
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Finally, we use that ˙⃗
N · (ψ∇ψ) = 1

2
˙⃗
N · ∇ψ2 which after integration by parts with

respect to the time gives only −1
2N⃗ · ∇(ψ2)̇. The “black” terms on RHS cancel

and the only nonzero remainder is

Sgrav2 =
∫

dt d3x
[
− 1

4πψN⃗ · ∇ψ̇
]
. (2.26)

2.2.2 | Total approximate action

The total action was separated into several parts with respect to their origin, i.e.,
current, matter, electromagnetic and gravitational action.

Stotal = Scurrent + Smatter + SEM + Sgrav1 + Sgrav2 + Sgrav4,5 (2.27)

In what follows, we treat all of the terms in (2.28) as if under the sum to see
explicit cancellations, being able to track down the origin of terms according to
the LHS. The cancelling counterparts are crossed out in the same graphic manner.

Scurrent =
∫

dt d3x
(
�
��ρψ2−ρψ3 + A⃗ · v⃗ρψ3 +

[
��

���HHH
HH

1
2N

2ρψ2 + ψN⃗ · v⃗ρψ3 + 1
2v

2ψ6ρ
]

− ψ
[1
2N

2ρψ2 + ψN⃗ · v⃗ρψ3 + 1
2v

2ψ6ρ
] )

Smatter =
∫

dt d3x
(

−�
��ρψ2 −

���
��HH

HHH

1
2ρψ

2N2
)

SEM =
∫

dt d3x
(

− 1
8π

⏐⏐⏐A⃗+ ψN⃗
⏐⏐⏐2

ψ2 + 1
4π

[∇ × (A⃗+ ψN⃗)] · [∇ × (ψ2N⃗)]
ψ3

− 3
32π

⏐⏐⏐∇ × (ψ2N⃗)
⏐⏐⏐2

ψ4 − 1
4πA⃗ · (∇ψ)̇

+
�������1
32π |∇ × N⃗ |2 − 1

16π
[∇ × ψ2N⃗ ].[∇ × N⃗ ]

ψ2

+ 1
8π

(∇ψ)2

ψ2

(
A1 − 1

2N⃗ · N⃗
))

Sgrav1 =
∫

dt d3x

[
− 3

8π ψ̇
2ψ2 − (A1 + 1

2N⃗ · N⃗) 1
8π

∆ψ
ψ

]

Sgrav2 =
∫

dt d3x
[
− 1

4πψN⃗ · ∇ψ̇
]

Sgrav4,5 =
∫

dt d3x

[
− 1

32π
(˂

˂˂˂˂˂˂˂˂˂
(∇ × N⃗).(∇ × N⃗) +�����∆(N⃗ .N⃗) − 2

(
∆N⃗

)
.N⃗

− 4(∇ × (∇ × N⃗)).N⃗ − 2(∇ · N⃗)2
)

+ 1
8π

1
ψ

((
N⃗ · ∇ψ

) (
∇ · N⃗

)
+ N⃗ · (∇∇ψ) · N⃗

)
+ 1

8π
1
ψ2

(
N⃗ × ∇ψ

)2
]

(2.28)
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The “violet” 1 and -1 from SEM and Sgrav1 cancelled, since

∆ψ
ψ

= ∇ · ∇ψ
ψ

− ∇ψ−1
ψ2 ∇ψ = ∇ · ∇ψ

ψ
+ (∇ψ)2

ψ2 , (2.29)

where after integration the divergence vanishes.
The “red” crossed term ∆(N⃗ · N⃗) vanishes after the integration, since

∆f = ∇2f = ∇ · (∇f),

following the preceding argument. Note the structure of the terms, namely in
Einstein action there appears in each term twice ∇, twice N⃗ and ψ with the
same exponent in both numerator and denominator. One could also use

∇ × (∇ × N⃗) = ∇(∇ · N⃗) − ∆N⃗ in Sgrav4,5 .
To summarize this, the action can be written as a sum of the “blue” part which
is the right one to be derived [5] and the remaining terms.

Sapprox =
∫

d4x

⎛⎝− 3
8π ψ̇

2ψ2 − ρψ3 + ρv2ψ6

2 +(A⃗+ ψN⃗) ·
(
ρψ3 − (∇ψ)̇

4π

)

+ 1
8π

⏐⏐⏐A⃗+ ψN⃗
⏐⏐⏐2

ψ2 + 1
4π

[∇ × (A⃗+ ψN⃗)] · [∇ × (ψ2N⃗)]
ψ3

− 3
32π

⏐⏐⏐∇ × (ψ2N⃗)
⏐⏐⏐2

ψ4

⎞⎠+ Srest

(2.30)

The remainder reads

Srest = −ψ
[1
2N

2ρψ2 + ψN⃗ · v⃗ρψ3 + 1
2v

2ψ6ρ
]

− 1
16π

[∇ × (ψ2N⃗)].[∇ × N⃗ ]
ψ2

− 1
16π

(
N⃗ · N⃗

) (∇ψ)2

ψ2 − 1
16π

(
N⃗ · N⃗

) ∆ψ
ψ

− 1
32π

(
− 2

(
∆N⃗

)
.N⃗ − 4(∇ × (∇ × c⃗)).N⃗ − 2(∇ · N⃗)2

)
+ 1

8π
1
ψ

((
N⃗ · ∇ψ

) (
∇ · N⃗

)
+ N⃗ · (∇∇ψ) · N⃗

)
+ 1

8π
1
ψ2

(
N⃗ × ∇ψ

)2
.

(2.31)

In accordance with [5], we expect these terms to cancel and vanish.
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2.2.3 | Variation of action

The approximate action is to be varied with respect to fields N⃗ and A⃗ (first order
quantities) to obtain equations for the metric. The mass distribution ρ doesn’t
vary freely, it is rather regulated to provide us with the matter conservation
during other variations. The field perturbations are fully determined in terms
of the perturbations of matter ρψ3, v⃗ by constraint equations to the order of
O(v2) in perturbed Einstein-Maxwell equations. We shall use the following linear
combinations

P⃗ = A⃗+ ψN⃗

Q⃗ = ψ2N⃗
(2.32)

using which the first order field equations take the form [4]

∇ ×

⎛⎝∇ × P⃗

ψ2 − ∇ × Q⃗

ψ3

⎞⎠ = ∇ ×
(
∇ × K⃗

)

∇ ×

⎛⎝∇ × P⃗

ψ3 − 3∇ × Q⃗

4ψ4

⎞⎠ = 0.
(2.33)

The vector operators operate on flat R3 with Cartesian-like coordinates, we denote

K⃗ = −4π∇−2(ρψ3v⃗) (2.34)
Rather symbolic meaning of ∇−2 should be clear during following manipulations,
we will not need to perform the operation explicitly. Note, that equations (2.33)
are linear combinations of the first order approximations of Ampere’s law and
super-momentum constraint, which are now our initial value equations

F ιj
;ι = 4πJ j

G0i = 8πT 0i.

On the other hand, Gauss’s law and the zeroth-order Hamiltonian constraint

F i0
;i = 4πJ0

G00 = 8πT 00

are satisfied (to the order we need) by ϕ = 1
ψ

and the Majumdar-Papapetrou
spacetime ds2 = −ψ−2dt2 + ψ2dx⃗ · dx⃗.

The solution to (2.33) in its full generality is [4]

∇ × P⃗ = − 3ψ2∇ × K⃗ − 2∇χ− 3ψ2∇ξ
∇ × Q⃗ = − 4ψ3∇ × K⃗ − 4ψ∇χ+ 4χ∇ψ − 4ψ3∇ξ,

(2.35)

where the “integration constants” ξ, χ can be determined taking the divergence,
∇· (2.35). However, in the black hole limit contribution of these scalar functions
to the effective action vanishes. We still need to solve equations for P⃗ and Q⃗.
The charge conservation equation is

∇ · (ρψ3v⃗) + ∂t(ρψ3) = 0. (2.36)
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We also have the Laplace equation

∆ψ = −4πρψ3. (2.37)

We take the time derivative of (2.37), then we substitute from the charge conser-
vation (2.36) and finally substitute in the definition of K⃗

ψ̇ = −4π∂t∇−2(ρψ3) = 4π∇−2(∇ · (ρψ2v⃗)) = −∇ · K⃗. (2.38)

Using this we can adjust the right hand side of the first equation of (2.33)

∇ ×
(
∇ × K⃗

)
= ∇(∇ · K⃗) − ∆K⃗ = 4π∇

(
∂t∇−2(ρψ3)

)
+ 4π∆

(
∇−2(ρψ2v⃗)

)
and obtain2

∇ ×
(
∇ × K⃗

)
= −∇ψ̇ + 4πρψ3v⃗. (2.39)

In the black hole limit we have

ρψ3 →
∑
a

maδ
(3)(x⃗− x⃗a)

and we are looking for Green’s function of Laplace operator. From (1.43) we
obtain the black hole limit of K⃗, where a labels the black hole, ra = |x⃗− x⃗a| and
v⃗a = dx⃗a

dt

K⃗ =
∑
a

ma

ra
v⃗a. (2.40)

2In [4] one curl in equation (2.39) is missing.
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3. Geodesics
One of the main goals of this thesis is to study the motion of test particles on
the background of two maximally charged black holes stationary orbiting on a
common circular orbit as per solution in [5]. Orbiting distance is determined
by their masses [19]. Existence of such solution is a salient feature of general
relativity framework, we comment on this below.

In the preceding chapters we introduced equations to solve (2.35), obtained
by varying the approximate action.

In this chapter we solve them, obtain the metric and proceed with geodesic
equation. We thereby investigate the geodesic motion of test particles with dif-
ferent charge-to-mass ratio κ. As we shall see, such motions depend crucially on
the value of κ. Charged test particles are affected by both electro-magnetic force
and gravitational interaction, while the uncharged test particles are affected by
the latter only. We concentrate ourselves on maximally charged test particles, we
aim to compare their motion with motion of the third black hole. Three black
hole system will be studied in the next chapter.

Two orbiting black holes
One may naturally wonder about the existence of solution containing two ex-
tremal black holes on a common circular path. In Newtonian situation the forces
of extremally charged bodies exerted on each other cancel exactly F⃗e = −F⃗g, in
motion all of them act as free bodies. Turning into general relativity we have to
take into account various effects, such as relativistic mass mrel = γm0, spacetime
curvature or gravitational waves.

Existence of mutually orbiting binary system of two equally massive ex-
tremally charged holes was already shown in [4, 5]. We generalized this for an
arbitrary ratio of their masses in [19], the boundary allowed values of orbiting ra-
dius in center of mass system are rcirc(m1=m2) =

√
3−1
2 ≈ 0.366 and rcirc(m1≫m2) = 1

2 .
It may seem counterintuitive, why the extremally charged black holes can

mutually orbit. Even just the argument based on special relativistic observations,
namely mass increasing with velocity, provides us with an answer. Later we
will calculate the Lorentz-like γ-factor explicitly. The gravitational interaction is
therefore a bit stronger than electrostatic repulsion (magnitude of which remains
unchanged throughout the evolution).

3.1 | Lagrangian density

We shall make use of Lagrange formalism of mechanics. The dynamics of the
gravito-electro-magnetic system is managed by the appropriate Lagrangian den-
sity L, scalar function of particle’s coordinate and velocity. There are several
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equivalent1 definitions of Lagrangian density, we shall choose the following one

L = 1
2gµν ẋ

µẋν + κẋµAµ. (3.1)

The charge-to-mass ratio of test particle κ ∈ {−1, 0, 1} describes a particle of
opposite-sign extremal charge, no charge and same-sign extremal charge respec-
tively. Correspondence means with respect to the sign of charge of orbiting sys-
tem. The choice of κ has far-reaching consequences already in the leading order,
i.e. electrostatic approximation.

Let us find out an explicit form of gµν .

3.1.1 | Metric as a solution of Poisson equation

Let us begin with finding the perturbed metric. Our framework is 3+1 splitting
of spacetime. The field equations we want to obtain will be the initial value
equations for tensorial quantities N⃗ , A⃗ on the initial 3-dim spacelike (t = const.)
hypersurface. One can vary the approximate action (2.30) with respect to the
fields N⃗ and A⃗ and obtain equations (2.33). These are solved by (3.2), we are
halfway through the way to our metric.

∇ × P⃗ = −3ψ2∇ × K⃗

∇ × Q⃗ = −4ψ3∇ × K⃗
(3.2)

As said before, the scalar functions, integration ”constants”, do not contribute
into effective action after performing the black hole limit, hence we dropped
them. Once we solve (3.2), the metric and four-current functions N⃗ , A⃗ can be
easily obtained from P⃗ , Q⃗ by solving almost trivial algebraic equations (2.32).
Schematically written procedure is as follows

Sapprox → P⃗ , Q⃗
K⃗−→ A⃗, N⃗ → gµν .

Solving equations
Each vector field can be written as a sum of divergence-free and curl-free part

V⃗ = ∇ × α⃗ + β⃗,

moreover, fixing the gauge
∇ · α⃗ = 0

allows the Poisson equation for α

∆α⃗ = f⃗ ,

which we can solve by method of Green’s function of Poisson’s equation. We write
our fields P⃗ , Q⃗ in this way and substitute into (3.2). Then, after substituting
(2.40), that is

K⃗ =
∑
a

ma

ra
v⃗a,

1They yield the same equations of motion.
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into our system of equations (3.2) we obtain rather general solution

P⃗ (x⃗) = 3
4π

∫ ψ2(r⃗′)
|x⃗− r⃗′|3

(
x⃗− r⃗′

)
×
(
∇′ × K⃗(r⃗′)

)
dV ′

Q⃗(x⃗) = 1
π

∫ ψ3(r⃗′)
|x⃗− r⃗′|3

(
x⃗− r⃗′

)
×
(
∇′ × K⃗(r⃗′)

)
dV ′.

(3.3)

Given the positions of black holes, what are these fields? Let us use

∇′ × K⃗(r⃗′) =
2∑

a=1
mav⃗a × r⃗′ − x⃗a

|r⃗′ − x⃗a|3
(3.4)

and apply the well known vector identity

a⃗× (⃗b× c⃗) = b⃗(⃗a · c⃗) − c⃗(⃗a · b⃗).

Finally we arrive at the explicit form of P⃗ and Q⃗, which holds generally for any
perturbation, provided the slow-motion limit.

P⃗ (x⃗) = 3
4π

2∑
a=1

ma

⎡⎣v⃗a ∫ ψ2(r⃗′)

(
x⃗− r⃗′

)
·
(
r⃗′ − x⃗a

)
|x⃗− r⃗′|3|r⃗′ − x⃗a|3

dV ′

−
∫
ψ2(r⃗′)

⎛⎝v⃗a ·

(
x⃗− r⃗′

)
|x⃗− r⃗′|3

⎞⎠
(
r⃗′ − x⃗a

)
|r⃗′ − x⃗a|3

dV ′

⎤⎦
(3.5)

Q⃗(x⃗) = 1
π

2∑
a=1

ma

⎡⎣v⃗a ∫ ψ3(r⃗′)

(
x⃗− r⃗′

)
·
(
r⃗′ − x⃗a

)
|x⃗− r⃗′|3|r⃗′ − x⃗a|3

dV ′

−
∫
ψ3(r⃗′)

⎛⎝v⃗a ·

(
x⃗− r⃗′

)
|x⃗− r⃗′|3

⎞⎠
(
r⃗′ − x⃗a

)
|r⃗′ − x⃗a|3

dV ′

⎤⎦
(3.6)

3.1.2 | Fate of the perturbation

We have gone through somewhat tedious procedure up to now to obtain an ex-
plicit integral expression for P⃗ , Q⃗. Equations (3.5) and (3.6) provide us with a
fully general prescription for perturbation, restricted to low velocities only. No
limitation on position of particle has been done till now. Let us now move on
to its particular form for the field of an extremally charged binary stationary
orbiting on circular path, i.e. substitute for the known x⃗1, x⃗2.

The second line of Q⃗ vanishes...

Let us begin with the function Q⃗, since it contains all of the terms in P⃗ . Once
we have Q⃗ we get result for P⃗ for free. We start with the 2nd line of Q⃗ in (3.6),
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which looks easier to calculate and also could provide a tool to evaluate the 1st
line. The 2nd line reads

Q⃗line 2(x⃗) = 1
π

2∑
a=1

ma

⎡⎣−
∫
ψ3(r⃗′)

⎛⎝v⃗a ·

(
x⃗− r⃗′

)
|x⃗− r⃗′|3

⎞⎠
(
r⃗′ − x⃗a

)
|r⃗′ − x⃗a|3

dV ′

⎤⎦. (3.7)

At first, let us split the integration region into regions Γ and Λ (and also Ω
which contributes negligibly). A very detailed description of this procedure can
be found in Chapter 4.3. Figure 4.3 provides a brief sketch of our approach. The
main point now is that we arrived at a couple of integrals that do not always
allow us to solve them analytically. The remedy for this issue is separation of
the integration domain and the individual integrals can be solved analytically
(although we will use approximation).

From now on, integral with separated integral domains we will denote by bar
⃗̄Q and with corresponding subscript (Γ or Λ). Let us first have a look at the
vicinity of the origin, the region Γ.

⃗̄Qline 2 Γ = − 1
π

2∑
a=1

ma

∫ (
1 + m1

|r⃗′ − x⃗1|
+ m2

|r⃗′ − x⃗2|

)3 (
v⃗a · x⃗

x3

)
r⃗′ − x⃗a

|r⃗′ − x⃗a|3
d3r′

(3.8)
We denote

ψ
(
r⃗′, x⃗1, x⃗2

)
=
(

1 + m

|r⃗′ − x⃗1|
+ m

|r⃗′ − x⃗2|

)
.

Now let us write out the sum and use

m1 = m2 ≡ m. (3.9)

⃗̄Qline 2 Γ = −m

π

∫
ψ(r⃗′, x⃗1, x⃗2)3

⎡⎣(v⃗1 · x⃗
x3

)
r⃗′ − x⃗1

|r⃗′ − x⃗1|3

+
(
v⃗2 · x⃗

x3

)
r⃗′ − x⃗2

|r⃗′ − x⃗2|3

⎤⎦d3r′

(3.10)

Subsequently, imposing the physical setting-conditions considering the two hole
system is spinning around the origin

x⃗2 = −x⃗1, v⃗2 = −v⃗1. (3.11)

our function reads

⃗̄Qline 2 Γ = −m

π

(
v⃗1 · x⃗

x3

)∫
ψ (r⃗′, x⃗1,−x⃗1)3

⎡⎣ r⃗′ − x⃗1

|r⃗′ − x⃗1|3
− r⃗′ + x⃗1

|r⃗′ + x⃗1|3

⎤⎦d3r′. (3.12)

The two terms under the bracket look perhaps similar, hence one wonders whether
they could cancel. Let us transform the integration variable in the integral asso-
ciated with the term in bracket r⃗′−x⃗1

|r⃗′−x⃗1|3 in (3.12)

r⃗′ → −r⃗′
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and keep the original variable in the integral associated with − r⃗′+x⃗1
|r⃗′+x⃗1|3 . Notice,

that ψ(r⃗′, x⃗1,−x⃗1) does not change under such transformation. Accordingly, the
sum becomes

⃗̄Qline 2 Γ = −m

π

(
v⃗1 · x⃗

x3

)
×

×

⎡⎣ ∫ (
1 + m

| − r⃗′ − x⃗1|
+ m

| − r⃗′ + x⃗1|

)3 −r⃗′ − x⃗1

| − r⃗′ − x⃗1|3
(−d3r′)

−
∫ (

1 + m

|r⃗′ − x⃗1|
+ m

|r⃗′ + x⃗1|

)3
r⃗′ + x⃗1

|r⃗′ + x⃗1|3
d3r′

⎤⎦
(3.13)

This altogether means, that
⃗̄Qline 2 Γ = 0. (3.14)

Within Λ we have a slightly different approximation.

⃗̄Qline 2 Λ = − 1
π

2∑
a=1

ma

∫ (
1 + m1

|r⃗′|
+ m2

|r⃗′|

)3 (
v⃗a · x⃗− r⃗′

|x⃗− r⃗′|3
r⃗′

|r⃗′|3

)
d3r′ (3.15)

We put m1 = m2 ≡ m again and write the sum out.

⃗̄Qline 2 Λ = − 1
π
m
∫ r⃗′

|r⃗′|3

(
1 + 2m

|r⃗′|

)3 [
(v⃗1 + v⃗2) · x⃗− r⃗′

|x⃗− r⃗′|3

]
d3r′ (3.16)

After we substitute our motion (3.11), i.e., v⃗2 = −v⃗1 into the last formula, it is
obviously zero

⃗̄Qline 2 Λ = 0. (3.17)

The first line of Q⃗ vanishes, too.
Looking closer at the first line, using the above trick with r⃗ → −r⃗ we can follow
the procedure of the second line. We further omit the argument of ψ, the meaning
should be clear.

⃗̄Qline 1 Γ = m

π

2∑
a=1

v⃗a

∫
ψ3 x⃗

x3 · r⃗′ − x⃗a
|r⃗′ − x⃗a|3

d3r′

= m

π
v⃗1

[∫
ψ3 x⃗

x3 · r⃗′ − x⃗1

|r⃗′ − x⃗1|3
d3r′ −

∫
ψ3 x⃗

x3 · r⃗′ + x⃗1

|r⃗′ + x⃗1|3
d3r′

]

= m

π
v⃗1

[
−
∫
ψ3 x⃗

x3 · −r⃗′ − x⃗1

| − r⃗′ − x⃗1|3
d3r′ −

∫
ψ3 x⃗

x3 · r⃗′ + x⃗1

|r⃗′ + x⃗1|3
d3r′

]
⃗̄Qline 1 Γ = 0

(3.18)

In the region Γ the entire perturbation vanishes.
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Finally, the region Λ. (Maybe a sign of repetitive pattern can be noted...)

⃗̄Qline 1 Λ = m

π

2∑
a=1

v⃗a

∫
ψ3 x⃗− r⃗′

|x⃗− r⃗′|3
· r⃗′ − x⃗a

|r⃗′ − x⃗a|3
d3r′

= m

π
v⃗1

(∫
ψ3 x⃗− r⃗′

|x⃗− r⃗′|3
· r⃗′

|r⃗′|3
d3r′ −

∫
ψ3 x⃗− r⃗′

|x⃗− r⃗′|3
· r⃗′

|r⃗′|3
d3r′

)
⃗̄Qline 1 Λ = 0

(3.19)

We have determined Q⃗ completely; this function vanishes identically

⃗̄Q = 0.

All of the integrals contained in Q⃗ are contained in P⃗ as well. As stated before,
we are done, because P⃗ differs from Q⃗ only in factor ψ3 → ψ2, where ψ does
not change under the transformations we carried out and the numerical prefactor
1
π

→ 3
4π does not affect any crucial point of our calculation. The terms involved

in ⃗̄P cancel in the same way as in case of ⃗̄Q. Finally we conclude

P⃗
.= ⃗̄P (x⃗) = 0 = ⃗̄Q(x⃗) .= Q⃗.

substituting into (2.32) yields vanishing analytic perturbation of metric and four-
potential

N⃗ = 0 = A⃗. (3.20)

The only difference in perturbed metric we arrived at is that now ψ(x⃗, x⃗1(t), x⃗2(t)),
the master function is a function of time and the functions x⃗1(t), x⃗2(t) are given,
since we have circular motion. The diagonal form of metric surprisingly remains.

3.1.3 | Step aside: ADM mass with motion

Does the ADM mass in perturbed space-time differ from the ADM mass cal-
culated of the static solution for N black holes from Section 1.2.2 ADM mass
(static)? Considering our black hole binary system with two extremal black holes
on a mutual circular orbit, the preceding section revealed that perturbation iden-
tically vanishes. Consequently, the metric (3.22) remains, except the fact that
all black hole positions, included in ψ(x⃗, x⃗1(t), x⃗2(t)), are now functions of time.
Throughout the calculation of the ADM mass neither time derivatives nor time
integration occurred and hence the ADM mass is the same for both perturbed
and static binary system

MADM =
2∑

a=1
ma. (3.21)
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3.2 | Equation of geodesic

Once we found the perturbed metric we can proceed with solving equation of
geodesic, that describes motion of test-particles on the background of two orbiting
black holes. We can study the motion of an uncharged particle which we will call
geodesic, or a charged one which will be dubbed as electrogeodesic for obvious
reason.

The perturbation vanished and the only consequence in metric is the time
dependence of positions of black holes x⃗1(t), x⃗2(t). Our spacetime is

gµν = diag(−ψ−2, ψ2, ψ2, ψ2)

A = 1
ψ

dt,
(3.22)

where the master function ψ is

ψ = ψ(x⃗, x⃗1(t), x⃗2(t)) = 1 + M

|x⃗− x⃗1(t)|
+ M

|x⃗− x⃗2(t)|
. (3.23)

During calculations we scale the problem such a way that M = 1. We chose the
Lagrangian density following [10], it reads

L = 1
2gµν ẋ

µẋν + κẋµAµ. (3.24)

Here κ is the charge-to-mass ratio of the studied test particle, xµ is the position
and ẋµ = dxµ

dτ is its total derivative with respect to an affine parameter. Having
a time-like particle we can identify the affine parameter τ with proper time of our
particle and hence ẋµ becomes a four-velocity of the particle uµ. For the time-like
particle, i.e. moving slower than light, we have normalization

gαβu
αuβ = −1. (3.25)

The first term of (3.24) measures the invariant distance along a path, so
our parametrisation with the proper time should lead to the simplest form of
equations of motion.

By inserting our spacetime (3.22) into L (3.24) we obtain

L = 1
2
(
−ψ−2ṫ2 + ψ2

(
ẋ2 + ẏ2 + ż2

))
+ κṫ

1
ψ
. (3.26)

Our equations of motion are the well known Euler-Lagrange equations of the
second kind

d
dτ

(
∂L
∂ẋα

)
= ∂L
∂xα

. (3.27)

Note, that equations (3.27) are equivalent to traditional form of electrogeodesic
equation with the source on right hand side

Duµ
dτ ≡ duµ

dτ + Γµαβuαuβ = κF µ
νu

ν . (3.28)
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Christoffel’s symbols are defined in the traditional way. The source term in (3.28)
corresponds to electromagnetic interaction [20]. This can be seen easily after a
few somewhat simple algebraic manipulations with (3.27).

Let us stick to Lagrangian for now. Derivative with respect to affine parameter
is denoted as ẋµ. Taking the derivatives we obtain

∂L
∂ẋα

= gαβẋ
β + κAα =

(
− ṫ

ψ2 + κ

ψ
, ψ2ẋ, ψ2ẏ, ψ2ż

)
d
dτ

∂L
∂ẋα

= gαβẍ
β + gαβ,γẋ

β ẋγ + κAα,βẋ
β

(3.29)

d
dτ

∂L
∂ẋi

= ψ2ẍi + 2ψẋi (ẋαψ,α)

d
dτ

∂L
∂ṫ

= − 1
ψ2 ẗ+ 2 ṫ

ψ3 (ẋαψ,α) − κ

ψ2 (ẋαψ,α)
(3.30)

∂L
∂xα

= 1
2gµν,αẋ

µẋν + κẋµAµ,α

= 1
2
(
g00,αṫṫ+ gij,αẋ

iẋj
)

+ κṫA0,α

= ψ,α

(
1
ψ3 ṫ

2 + ψ
(
ẋ2 + ẏ2 + ż2

)
− κṫ

1
ψ2

)
.

(3.31)

The derivatives of our master function read

ψ,i = −M (xi − x1i(t))
|x⃗− x⃗1(t)|3

− M (xi − x2i(t))
|x⃗− x⃗2(t)|3

ψ,0 = M (x⃗− x⃗1(t)) · ∂tx⃗1(t)
|x⃗− x⃗1(t)|3

+ M (x⃗− x⃗2(t)) · ∂tx⃗2(t)
|x⃗− x⃗2(t)|3

,

(3.32)

where the derivative with respect to coordinate time is denoted by explicit par-
tial derivative sign. Hence we obtain equations of motion with two independent
structures, so to say time and spatial part.

α = 0 : − 1
ψ2 ẗ+ 2 ṫ

ψ3 (ẋαψ,α) − κ

ψ2 (ẋαψ,α)

= ψ,0

(
1
ψ3 ṫ

2 + ψ
(
ẋ2 + ẏ2 + ż2

)
− κṫ

1
ψ2

)
(3.33)

α = i : ψ2ẍi + 2ψẋi (ẋαψ,α)

= ψ,i

(
1
ψ3 ṫ

2 + ψ
(
ẋ2 + ẏ2 + ż2

)
− κṫ

1
ψ2

)
(3.34)
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3.2.1 | Static solution

First, let us choose a static solution xµ = (t, x0, y0, z0) with spatial coordinates
independent of time. From geodesic equation we have the following equations.

Time component α = 0

α = 0 : − 1
ψ2 ẗ+ 2ṫ2

ψ3 ψ,0 = ψ,0
ṫ2

ψ3 (3.35)

ẗ− ṫ2

ψ
ψ,0 = 0 (3.36)

[
ln ṫ

]
˙ = [lnψ (t(τ))]˙ (3.37)

Integrating both sides with respect to τ , the result is

ṫ = C ψ(t(τ)), (3.38)

where C = lnC0 is the integration constant. We must have ṫ2 = ẗψ/ψ,0 ≥ 0.
Substituting ψ,0 = 0 we obtain simplified solution for unperturbed M-P binary,
(3.36) then yields ẗ = 0. This “static result” agrees with [6].

Spatial components α = i

α = i : 0 = ψ,i

(
ṫ2

ψ3 − κṫ
1
ψ2

)
(3.39)

From definition provided ψ,i ̸= 0 we have

ṫ = κ ψ(t(τ)) (3.40)

The equations for α ∈ {0, 1, 2, 3} must be satisfied at the same time. Hence,
comparing the preceding result (3.38) with (3.40) we obtain following condition
for the integration constant

C = κ. (3.41)

Solving the equation (3.40) we obtain the result in integral form

t = κ
∫
ψ(t(τ))dτ. (3.42)

In case of original static Majumdar-Papapetrou black-hole solution ψ(◁t, x, y, z)
this becomes x0 = t = ψτ. The “static result” again agrees with [6].

We still long for a condition on κ. We expect one, since the set of extremal
black holes should intuitively provide a static solution for an extremally charged
particle only (κ = 1). For a particle with κ ̸= 1 one would expect non-existence
of such static solution, since the forces exerted on the particle would not cancel
at all.
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The only unused, however useful, equation is the normalisation (3.25). From
uµu

µ = −1 one can see that for static solution with ui = ui = 0 we necessarily
have

u0 = ṫ = ψ(t(τ)). (3.43)

Comparing (3.43) to (3.40) fixes a value of κ, as we expected

κ = 1. (3.44)

Interpreting the last equality, extremality is the necessary condition for a particle
to be able to remain static in the field of two2 extremal black holes in motion.
Putting our results all together, our solution is thus following

xµ =
(∫

ψ dτ, x0, y0, z0

)
. (3.45)

We also studied geodesic equation from the other side, by which we mean
u̇µ + Γµαβuαuβ = κF µ

αu
α. Result is that the Taylor expansion of ẍi as a function

of time and evaluated at the initial moment is proportional to (1 − κ) and hence
all of the higher order terms such as acceleration vanish for extremal particle. For
the detailed description, please, visit Appendix B: Taylor expansion of geodesic
equation.

3.2.2 | Charged vs. uncharged particle

One would like to compare the motion of a charged particle and an uncharged
particle. Charge is imprinted in electro-geodesic equations, determined by value
of κ in (3.24). If the sign of charges (of black holes and particle) is the same,
e.g., everything is positively extremally charged, we have charge-to-mass ratio
κ = 1. Conversely, κ = −1 describes extremally charged test particle, charged
oppositely than the system of black holes. Finally, κ = 0 describes a particle with
no electric charge, only gravity acting upon it.

In a flat space the electrostatic potential for a particle placed at r⃗0 is exactly
ϕ(r⃗) = q

|r⃗−r⃗0| . Giving the charge a small velocity, that is r⃗0 = r⃗0(t), then the
scalar potential is approximately ϕ(r⃗) ≈ q

|r⃗−r⃗0(t)| and the vector potential is close
to A⃗(r⃗) ≈ qv⃗0

|r⃗−r⃗0(t)| with v⃗0 = dr⃗0
dt . These are also approximate solutions to Maxwell

equations. Hence, we expect the 0th order approximation (the leading order)
to follow the laws of electrostatics. Dynamical corrections to the motion are
of a higher order. In Figure 3.1 and Figure 3.3 we observe that electrostatics
determines crucially the character of motion.

Also the time-scale of motion is affected by κ, although as a consequence of
electrostatics. The particle with κ = −1, being pulled by approximately twice
the gravitational force, travels about twice faster than that of no charge κ = 0,
studied numerically in several cases. And hence the travelled distance of κ = −1
is around twice the distance of κ = 0, which follows our basic physical intuition.
This can best be seen from Figure 3.1.

2Or more holes, in principle.

33



-0.2 -0.1 0.0 0.1 0.2 0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

x

z

κ=-1

(a) κ = −1

-0.2 -0.1 0.0 0.1 0.2 0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

x

z

κ=0

(b) κ = 0

-1.5×10
-16
-1.×10

-16
-5.×10

-17 0 5.×10
-17

1.×10
-16

1.5×10
-16

-1.5×10
-16

-1.×10
-16

-5.×10
-17

0

5.×10
-17

1.×10
-16

1.5×10
-16

x

z

κ=1

(c) κ = +1

0 1 2 3 4 5 6

-0.010

-0.005

0.000

0.005

τ

y κ=-1

(d) κ = −1

0 2 4 6 8

0.000

0.001

0.002

0.003

0.004

τ

y
κ=0

(e) κ = 0

0 2 4 6 8

-3.×10
-20

-2.×10
-20

-1.×10
-20

0

1.×10
-20

2.×10
-20

τ
y κ=1

(f) κ = +1

Figure 3.1: Comparing electrostatics. Initial conditions of particle: x⃗(t0) =
(0.3, 0, 0.3), ˙⃗x(t0) = (0, 0, 0). On one hand, during the given time interval an
uncharged particle κ = 0 travelled about half the distance than that of opposite
charge κ = −1. On the other hand, κ = {0,−1} are both attracted, as expected.
Notice the small range of wavy y-perturbations, each wave corresponds to one
approach of the nearer BH. Both motions resolve into uniform rectilinear motion
in late times. The motion starts at “red” and ends up at “blue”, the color encodes
the passing of time. We shifted the position of κ = 1 into the origin to arrive
at better numerical resolution. κ = 1 stands still, fluctuations of velocity on the
scale 10−20 are caused by numerical noise only; this scale is closely related to
numerical precision which we set.

3.2.3 | Important classes of motions

Between the infinite number of initial conditions there is a set of those reflecting
some characteristics of the system. For us this will be, e.g., standing on the
z-axis, the motion along the z-axis or motion in the z = 0 plane.

Standing still on the z-axis
We expect static solution on the z-axis to exist, since from physical point of
view the z-axis is, roughly said, axis of symmetry of gravito-electro-magnetic
interactions.

However, this is not the only allowed static position. We found out analytically
that κ = 1 particle can stand still wherever wished. The calculations are carried
out in Appendix B: Taylor expansion of geodesic equation. This conjecture was
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also confirmed numerically. See Figure 3.1, (c) and (f) describe particle with
κ = 1 and the velocity is one the scale of numerical noise 10−20. For further
details about these issues, please, visit Appendix C: Magic of numerics, where we
sketch the process we went through with the most interesting points.

Motion along the z-axis, origin
The motion along z-axis is described in Figure 3.2, where z0 ̸= 0, ż0 ̸= 0. Particle
with κ = 1 just flies through the origin and escapes to infinity. The κ = 0 and
κ = −1 particles act naturally as harmonic oscillators.

What if we put the particle in z0 with zero initial velocity? κ = (0,−1) parti-
cles are pulled towards the system and, as one would expect, turn into harmonic
oscillators with turnarounds at the initial points, satisfying the energy conserva-
tion.

In origin all of the particles with κ = (−1, 0, 1) can stand still, the origin thus
stands out from the whole space.

Equatorial plane
The equatorial plane can give us a good insight concerning what really happens.
Considering κ = (0,−1) particles, it is clear that due to the gravitational and
electrostatic interaction, respectively, no matter the initial position of a static
particle, it is at first pulled towards the gravitating charged system of black
holes.

Forces acting upon extremally charged particle κ = 1 are cancelled exactly in
the electrostatic order and the remainder is of the order O(v2), hence the resulting
force is perhaps weak, although still present. Let us compare the motion in Figure
3.3.

Vicinity of the black holes
The Newtonian prescription for gravitational interaction is

Fg = κ
m1m2

r2 = κ
m01m02

r2 γ2. (3.46)

From normalisation of four-velocity we find an approximate value of Lorentz-like
γ-factor

γ2 .= ψ2
(
1 + ψ4v2 + 2ψ2N⃗ · v⃗

)
(3.47)

We have N⃗ = 0, also v2 = ṙ2 + r2ϕ̇2 =
(
r21
2

)2 .= 0.033 with r = r21 = const., we
fix ϕ̇ ≡ ω = 1. Obviously, γ-factor increases considerably in the vicinity of each
hole only (regarding ψ dependence). Matching expectations, the moving κ = 1
particles show signs of attraction in Figure 3.2 (c).
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Figure 3.2: Motion along z-axis: positions, velocities, coordinate time as func-
tions of the particle’s proper time. Initial conditions of particle: z(t0) = 30,
ż(t0) = −0.1. Black holes orbit in z = 0 plane. Again, in (a) κ = −1 took
a longer path than κ = 0 in (b). κ = (0,−1) keep oscillating, satisfying the
conservation of energy, κ = 1 flies through origin to infinity along z-axis.
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F⃗Σ = F⃗g − F⃗E = O(v2)

0 20 40 60 80 100 120

0

20

40

60

80

100

x

y

κ=2

(d) Particle is strongly repelled al-
ready in the electrostatic order.
F⃗Σ = F⃗g − 2F⃗E

.= −F⃗g

Figure 3.3: Equatorial plane. Comparing motion of un/charged test particles
in the field of two extremal black holes orbiting in x−y plane with diameter rcirc =√

3−1
2 . Particle’s initial conditions: x⃗(t0) = (1, 1, 0), ˙⃗x(t0) = (−0.05, 0.05, 0). We

have F⃗Σ = F⃗G − κF⃗E which denotes electrostatic order of total force, where F⃗g
is the gravitational “force” on unit mass, F⃗E electrostatic force on unit charge,
κ = q

m
. We can assume that F⃗g

.= F⃗E in geometrized units (clarifying the
equalities below plots).
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4. Three black hole Lagrangian
In this chapter we shall make use of Euler-Lagrange equations of the 2nd kind,
having the Lagrangian control the motion of our system. The two-body La-
grangian is derived in Section 4.2. A detailed calculation of the three-body La-
grangian is somewhat longer. In Section 4.3, we only outline the main points of
the tedious procedure here, the whole calculation is carried out in Appendix A:
Calculation of three-body Lagrangian.

We foliate the spacetime with equal-time space-like slices and assume that on
any given slice the electromagnetic and gravitational fields are fully determined
in terms of positions and velocities of black holes, instead of being independent
degrees of freedom (DoF) of Lagrangian density. We can take steps in this way,
since there are no field DoF associated with radiation in slow-motion approxi-
mation. The initial value equations of general relativity and electromagnetism
in slow-motion approximation provide the relation between the black holes and
fields.

The resulting formula prescribes an effective action that reduces the problem
to classical mechanics of point particles with the dynamics being managed by the
effective Lagrangian.

We first sum up basic information about motion of two extremal black holes
and derive the Lagrangian. Then we investigate the motion of three black
holes, one of the main goals of this thesis. Even though the binary systems
are not trivial, they are still relatively simple, compared to general three-body
problem.

The general three-body motion is far from having a general closed-form solu-
tion and thus some restrictions are inevitable. We assume the restricted three
body problem, where a black hole moves under the influence of two black holes
at a large distance and all of the black holes have charge-to-mass ratio unity
with non-zero mass. Moreover, we require that the two black holes orbit around
origin at a constant radius, determined by the two black hole Lagrangian. Hence
we assume we can neglect the back-reaction of the oncoming black hole on the
orbiting circular binary.

Restriction to slow motion approximation allows the analytical prescription
for perturbation of spacetime-metric with the fields N⃗ , A⃗. This approximation
for two black holes remains valid within wide range of motion satisfying [5]

r ≫ v2
∞M, (4.1)

where v∞ ≪ 1 is the initial relative velocity of the two black holes, r their distance
and M is the mass of each.

Condition for the restricted three body problem is the same. We find La-
grangian of the third black hole moving in the field of the orbiting binary as a
(not necessarily small) perturbation of the two-body Lagrangian, assuming large
distance from the binary. The charged binary asymptotically behaves like R-N
black hole. The condition (4.1) is then naturally fulfilled (r denotes the distance
of the third black hole from center of mass of the binary).

Although restricting to the slow-motion limit, we still work in the full strong-
field regime of gravitation coupled to electromagnetism. The analytical solv-
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ability of the problem is perhaps amazing.

4.1 | Multi black hole Lagrangian

Substituting (3.2) into the action Sapprox (2.30) and performing the black hole
limit (while keeping terms up throughO(v2)) one obtains that action approaches a
finite limit Seff. This effective action manages the motion of n extremally charged
non-rotating black holes in slow motion approximation and can be written as a
sum of two pieces [4, 5]

Seff =
∫

dt (Lfree + Lint) . (4.2)

The foliation of space-time is now obviously useful, since it allows us to write Seff
in such a simple form. General prescription for the Lagrangian in black hole limit
is given by a sum of free and interacting part, which read (the Latin indices label
the black holes) [4, 5]

Lfree = 1
2
∑
a

mav
2
a −

∑
a

ma

Lint = 3
8π

∫
ψ2∑

b ̸=c

mbmc

(rbrc)3

[1
2 |v⃗b − v⃗c|2(r⃗v · r⃗c) − (v⃗b × v⃗c) · (r⃗b × r⃗c)

]
d3x,

(4.3)

where
r⃗a = x⃗− x⃗a, v⃗a = d

dt x⃗a, ψ2 = 1 + 2
∑
d

md

rd
+
∑
d,e

mdme

rdre
.

According to polynomial dependence of Lint on masses mi the Lagrangian de-
scribes only interactions through up to four bodies.

4.2 | Two-body Lagrangian

In this section we derive the Lagrangian for two black holes. Their motion was
previously studied [4, 5], extended to arbitrary black-hole masses in [19] and
coupling with dilatonic fields was added in [8]. We verify here the calculation of
Lagrangian and sum up the main results.
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Derivation
Let us first denote

M = m1 +m2

µ = 1
m1

+ 1
m2

r⃗ = x⃗1 − x⃗2

v⃗ = dr⃗
dt = v⃗1 − v⃗2

V⃗ = m1v⃗1 +m2v⃗2

M
.

One can express the free part as

Lfree = −M + 1
2m1v

2
1 + 1

2m2v
2
2,

= −M + 1
2

(
m2

1 +m1m2

M
v2

1 + m2
2 +m1m2

M
v2

2

)
+
(
m1m2

M
− µ

)
v⃗1 · v⃗2

= −M + 1
2

(
m2

1v
2
1 +m2v

2
2 + 2m1m2v⃗1 · v⃗2

M

)
+ 1

2µ
(
v2

1 + v2
2 − 2v⃗1 · v⃗2

)
= −M + 1

2MV⃗ · V⃗ + 1
2µv⃗ · v⃗,

(4.4)
which coincides with [5]. For the interaction part we have

Lint = 3
8π

∫
⎛⎜⎜⎜⎜⎜⎝ 1

I1

+ 2m1

r1  
I2

+ 2m2

r2  
I′

2

+ m2
1

r2
1
I3

+ m2
2

r2
2
I′

3

+ 2m1m2

r1r2  
I4

⎞⎟⎟⎟⎟⎟⎠×

× 21
2 v⃗ · v⃗ r⃗1 · r⃗2

(r1r2)3m1m2 d3x,

(4.5)

where the explicitly written 2 in the second line comes from the symmetry in
indices {b, c} = {1, 2}. We transform the coordinate using the shift vector r⃗ ≡
x⃗2 − x⃗1 and calculate particular integrals

x⃗− x⃗1 = y⃗, x⃗− x⃗2 = y⃗ − r⃗.

I1 =
∫ r⃗1 · r⃗2

(r1r2)3 d3x =
∫ (x⃗− x⃗1) · (x⃗− x⃗2)

|x⃗− x⃗1|3 |x⃗− x⃗2|3
d3x =

∫ y⃗ · (y⃗ − r⃗)
y3|y⃗ − r⃗|3

d3y =

=
∫ 2π

0
dϕ
∫ 1

−1

⎛⎝∫ ∞

0

y2 (y2 − yr cos θ)
y3 (y2 + r2 − 2yr cos θ)

3
2
dy
⎞⎠ d(cos θ) =

= 2π
∫ 1

−1

⎛⎝∫ ∞

0

y − r cos θ
(y2 + r2 − 2yr cos θ)

3
2
dy
⎞⎠ d(cos θ) =

= − 2π
∫ 1

−1

1√
r2 + y2 − 2yr cos θ

⏐⏐⏐⏐⏐
y=∞

y=0
d(cos θ) =

= 2π
∫ 1

−1

1
r

d(cos θ) = 4π
r
,

(4.6)
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The second integral is, using the same substitution,

I2 = 2m1

∫ r⃗1 · r⃗2

r4
1r

3
2

d3x = 2m1

∫ (y⃗ − r⃗) · y⃗
|y⃗ − r⃗|4y3 d3y =

= 4πm1

∫ 1

−1

(∫ ∞

0

y − r cos θ
(y2 + r2 − 2yr cos θ)2 dy

)
d(cos θ) =

= 4πm1

∫ 1

−1

(
−1

2

) 1
r2 + y2 − 2yr cos θ

⏐⏐⏐⏐y=∞

y=0
d(cos θ) =

= 2πm1

r2

∫ 1

−1
d(cos θ) = 4πm1

r2 .

(4.7)

If we exchange the indices {1, 2} this result will remain valid, except the mass
term in the numerator and hence a sum of the counterparts becomes

I2 + I ′
2 = 4πM

r2 .

Then we have

I3 = m2
1

∫ r⃗1 · r⃗2

r5
1r

3
2

d3x = m2
1

∫ y⃗ · (y⃗ − r⃗)
y3|y⃗ − r⃗|5

d3y =

= 2πm2
1

∫ 1

−1

(∫ ∞

0

y − r cos θ
(y2 − 2yr + r2)5/2 dy

)
d(cos θ) =

= −2πm2
1

∫ 1

−1

1

3
√
r2 − 2ry cos(θ) + y2

3

⏐⏐⏐⏐⏐⏐
y=∞

y=0

d(cos θ) =

= 2πm2
1

3

∫ 1

−1

1
r3 d(cos θ) = 4πm2

1
3r3 ,

(4.8)

which is, again, symmetric under {1 ↔ 2} exchange, except the mass term and
summing the counterparts gives

I3 + I ′
3 = 4π

3
m2

1 +m2
2

r3 = 4π
3
M2 − 2µM

r3 .

Now if we use µM = m1m2 for the constant factor in the integral (4.5), we arrive
at the desired formula.

Thus, the other integrals, that is I4 and also the last term of (4.3), must
vanish. Let us have a coordinate system such, that the two black holes are placed
symmetrically with respect to the origin, x⃗1 = −x⃗2 =: −L⃗. This setting is
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depicted in Figure 4.1, and one can integrate

I4 =
∫ r⃗1 · r⃗2

(r1r2)4 d3x =

=
∫ (x⃗− x⃗1) · (x⃗− x⃗2)

|x⃗− x⃗1|4|x⃗− x⃗2|4
d3x =

=
∫ (x⃗+ L⃗) · (x⃗− L⃗)

|x⃗+ L⃗|4|x⃗− L⃗|4
d3x =

=
∫ x2 − L2

(x2 + L2 + 2x⃗ · L⃗)2(x2 + L2 − 2x⃗ · L⃗)2
d3x =

=
∫ x2 − L2(

(x2 + L2)2 − 4(x⃗ · L⃗)2
)2 d3x =

=
∫ π

0

∫ ∞

0

x2 − L2

((x2 + L2)2 − 4x2L2 sin2 θ)2 2πx2dx sin θdθ.

(4.9)

After the definite integration with respect to x one obtains 0 for x → 0, while for

x → ∞ one has −
iπ2eiθ

(
1√

e−2iθ
−

√
e2iθ

)
4(−1+e2iθ)2

L3
, which, after the definite integration with

respect to θ also vanishes. Note, that θ measures the deviation of x⃗ from the axis
z, while the angle between x⃗ and L⃗ is (π/2 − θ), which produces sine in the very
last denominator.

Another vanishing integral is of the type∫ r⃗1 × r⃗2

(r1r2)n
d3x

for n natural. Following the geometrical insight one can easily see it vanishes, as
described in the caption for Figure1 4.1. The last term in (4.3) vanishes upon the
integration over a symmetric integration domain.
Thus, we arrive at the final formula in full accordance with [4, 5]

L2B = Lfree + Lint

Lfree = −M + 1
2MV⃗ · V⃗ + 1

2µv⃗ · v⃗

Lint = 3
2µMv⃗ · v⃗

(
1
r

+ M

r2 + M2 − 2µM
3r3

)
,

(4.10)

We sum up the features of two body motion, beginning with impact parameter.
Let the two holes approach from infinity with initial speed v∞ ≪ 1 and with
an impact parameter b. Impact parameter describes the perpendicular distance
of projectile and target at infinite distance. There are two classes of solutions
separated by the critical value bcrit, which solves [19]

−4
3b

6 + 9M2b4 − 36µM3b2 − 36µ2M4 = 0 (4.11)

1We use the arrow notation, where the dot in circle depicts a tip of an arrow pointing out
of a paper, while the inscribd cross denotes the end of the arrow, heading towards the paper.
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Figure 4.1: About the vanishing integral
∫ r⃗1 × r⃗2

(r1r2)n
d3x for n natural. We de-

scribe the axially symmetric system by a single plane, with “angular dimension”
suppressed. The two black holes are placed symmetrically with respect to the
origin, θ describes the deviation of x⃗ from z-axis. One can see that each point of
the upper hemisphere r⃗1 × r⃗2 defined by the actual position x⃗ of the integration
has its counterpart in the lower hemisphere. Contributions of these two points,
placed symmetrically with respect to x-axis, cancel out exactly within integration
over a symmetric domain and we end up with zero.

where µ is the reduced mass. For general ratio of masses the solution is rather
long and uninformative algebraic Cardano-type expression, which can be found
in [19], eq. (2.50). For two equally massive black holes m1 = m2 the solution
becomes [5, 8, 19]

bcrit =
√

3 + 3
2

√
3M .= 2.366M. (4.12)

The critical value separates two classes of motion, coalescence and scattering.
See Figure 4.2 with representatives of these motions. In between there is a crit-
ical circular orbit, on which the two black holes can orbit steadily (within our
approximation)2. Two limits of critical circular radius (two equally massive BHs
and BH + test particle) correspond with other works [5] and the well know value
for the test particle

requal-mass =
√

3 − 1
2 , rtest-particle = 1

2 . (4.13)

This critical radius was found to be not only a critical path that the holes
can inspiral to, but also a path of two maximally charged black holes, mutually
orbiting at a constant distance. This system will form the background for evo-
lution in the thesis. According to its importance, we mention again, that such a

2There are gravitational waves of the order ∆Erad ∼ v5
∞M [5], which we do not take into

account in our order of approximation.
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situation is allowed in relativistic approach only, not in Newtonian physics, where
the bodies would move along straight lines.

Moreover, the circular velocity of orbiting holes ϕ̇ is for two equal black holes
proportional to the initial angular momentum L (which is preserved)

ϕ̇ = 8(
√

3 − 1)
3(

√
3 + 1)

L. (4.14)

-0.5 0.5

x(t)

M

-0.4

-0.2

0.2

0.4

0.6

0.8

y(t)

M

Figure 4.2: Trajectories of two black holes in center of mass coordinates for equal
mass black holes and various values of impact parameter. The dashed “red”
line corresponds to critical case bcrit .= 2.366 × M , “orange” coalescing line to
b = 0.99 × bcrit, “blue” scattering line to b = 1.01 × bcrit and the “black” straight
line to head-on collision with b = 0. The initial conditions are ϕ0 = 0.5, r0 = 1.5,
the same for all of the cases.

4.3 | Three-body Lagrangian

We begin with a general integral prescription, including our restrictions and
known paths x⃗1, x⃗2. In contrast to the preceding two-body case, the situation
we experience here is quite a bit more complicated, since the integrals in La-
grangian do not seem to provide us with any analytical solution3.

The subsequent calculation is rather tedious, the detailed calculation can be
found in Appendix A: Calculation of three-body Lagrangian. In this section we
sketch the procedure of calculation in one example and reproduce the result only.

3Unfortunately, not even after hours and hours of looking for the right variable system and
inventing a list of creative analytical mechanisms.
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Separating Lagrangian
We will separate the whole Lagrangian into two parts; the two-body Lagrangian
independent of x⃗3 and the remainders. The two-body formula for L2B is already
known from previous sections and the rest will be thought of as a perturbation
(depending on x⃗3). We shall denote it suggestively as “perturbation”. Since the
positions of black holes often appear subtracted from x⃗, we denote

r⃗a = x⃗− x⃗a,

where x⃗ is position in spacetime and x⃗a is position of the a-th black hole, a ∈
{1, 2, 3}. The Lagrangian then reads

L3B = L2B(r1, r2,��r3) + perturbation(r1, r2, r3) (4.15)

where L2B is known and we have to calculate the perturbation

perturbation ≡ − 3
8π

∫ ⎛⎝2m3
(
m1
r1

+ m2
r2

+ 1
) (

m1m2 r⃗1·r⃗2|v⃗1−v⃗2|2
r3

1r
3
2

)
r3

+
m2

3

(
m1m2 r⃗1·r⃗2|v⃗1−v⃗2|2

r3
1r

3
2

)
r2

3

+

m1m3 r⃗1·r⃗3|v⃗1−v⃗3|2
(

m1
r1

+ m2
r2

+1
)

2

r3
1

+
m2m3 r⃗2·r⃗3|v⃗2−v⃗3|2

(
m1
r1

+ m2
r2

+1
)

2

r3
2

r3
3

+

2m1m2
3 r⃗1·r⃗3|v⃗1−v⃗3|2

(
m1
r1

+ m2
r2

+1
)

r3
1

+
2m2m2

3 r⃗2·r⃗3|v⃗2−v⃗3|2
(

m1
r1

+ m2
r2

+1
)

r3
2

r4
3

+
m1m3

3 r⃗1·r⃗3|v⃗1−v⃗3|2
r3

1
+ m2m3

3 r⃗2·r⃗3|v⃗2−v⃗3|2
r3

2

r5
3

⎞⎠d3x

(4.16)

From now on we denote the i-th line of (4.16) as “pert(i)”.

Integration strategy
Looking at the Lagrangian (4.16) for some time, one convinces herself to use
the afore mentioned restrictions rather than chase an apparently non-existent
analytical solution. A very small subset of integrals in (4.16) can be solved
analytically by the preceding techniques, if the denominator is a monomial of the
form rmi r

n
j , instead of rmi rnj rok, for which we need an approximation.

Our physical setting is such, that the two extremally charged massive black
holes (interacting with each other and creating gravito-electro-magnetic field
around) are near the origin and the third black hole, extremally charged as well,
approaches from infinity. We shall definitely make use of this restriction when
choosing the regions of integration.
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The integration domains are chosen so that each domain covers the area of
dominant contribution, within each of which we can use a convenient approxima-
tion, allowing us to evaluate it analytically. Regions are depicted in Figure 4.3
and analytically defined by

r21 ≪ Γ ≪ x3 ≪ Λ.

Here r⃗21 is the distance between the two orbiting black holes, Γ,Λ are the radii
of the corresponding regions and x⃗3 is the distance of the 3rd black hole from
origin. Furthermore, there are regions that contribute negligibly to our integral.
This is namely the white region Ω in Figure 4.3. Let us show that we can neglect
its contribution in good conscience.

In Ω, i.e. very far from origin, one has

|r⃗2| ≈ |r⃗1| ≈ |r⃗3| ≈ |x⃗|

Looking at lines of (4.16), after substituting the last “approximative equality”
one can see, that the weakest decrease is on the 3rd line, falling as∫ d3x

x4 ∼ 1
x

⏐⏐⏐⏐
x=Ω

,

which vanishes as we approach infinity with Ω. The other terms of perturbation
Lagrangian fall off even faster (and vanish), hence one need not worry about the
region Ω. Performing the final limit of radial parameter Λ → ∞ also effectively
includes even the furthest regions and according to this discussion, extending
the integration domain to infinity does not bring any contributions that could
blow-up and hence is safe4. Now we calculate one of the integrals as an example,
leaving the rest to Appendix A: Calculation of three-body Lagrangian.

Example: 1st line of the perturbation
As an example of tedious work involved in calculation of “perturbation” we per-
form the calculation of one integral from the 1st line of Lagrangian (4.16). The
rest of procedure can be found in the Appendix Appendix A: Calculation of
three-body Lagrangian. Velocities are, of course, independent of positions.

−8π
3 · pert(1) = 2m1m2m3 |v⃗1 − v⃗2| 2

∫ (
m1

r1
+ m2

r2
+ 1

)
r⃗1 · r⃗2

r3
1r

3
2

1
r3

d3x. (4.17)

The unity from parenthesis on the right hand side gives

I1 =
∫ r⃗1 · r⃗2

r3
1r

3
2

1
r3

d3x ≡ I1Γ + I1Λ.

This integral cannot be analytically solved in general. We use the restrictions
stated above and separate the space–time region into several domains, see Figure
4.3.

4Moreover, for us it will be very desirable, since after such a limit contributions caused by
finiteness of integration area Λ ultimately drop out.
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The shifts we use in later calculations, for example centering our integration
coordinate system at x⃗2 instead of the origin, might seem inaccurate at the first
sight. However, our condition r21 ≪ Γ ≪ x3 ≪ Λ and the initial distance of the
3rd black hole from the system of two black holes allows us to shift integration
region by a small distance (small with respect to the actual size of the region, at
least two orders) with consequences of negligible order.

Figure 4.3: Sketch of splitting the integration domain into three parts, each of
which either contributes significantly to our integral (Γ - small sphere, Λ - larger
spherical shell) or contributes negligibly (remaining Ω region). We define the
regions by the condition r21 ≪ Γ ≪ x3 ≪ Λ. In each of these regions the
individual integrals simplify significantly.

In the first area Γ contribution of the part r⃗1·r⃗2
r3

1r
3
2

dominates, we have |x⃗| ≪ |x⃗3|,
and hence r3 = |x⃗− x⃗3| ≈ |x⃗3| = const, which can be factored out of the integral.
Since we split the integral into independent parts, coordinates can be chosen
differently in each integral. After we introduce the shift of coordinates

r⃗2 = x⃗− x⃗2 = y⃗, r⃗1 = x⃗− x⃗1 = y⃗ + x⃗2 − x⃗1 ≡ y⃗ − r⃗21 (4.18)

it is convenient to use locally spherical coordinates in a similar way to what we
did when integrating L2B, i.e., θ measures the angle between y⃗ & r⃗12, where
r⃗12 = x⃗2 − x⃗1 is the relative position shift vector. One should proceed carefully
since integration with respect to y⃗ in region Γ is not over a sphere centered at
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origin; however, as stated above, the difference is negligible.

I1Γ =
∫

Γ

r⃗1 · r⃗2

r3
1r

3
2

1
r3

d3x
.= 1
x3

∫
Γ

r⃗1 · r⃗2

r3
1r

3
2

d3x =

= 1
x3

∫ 2π

0
dϕ
∫ 1

−1
d(cos θ)

⎡⎣ −1√
y2 + r2

12 − 2yr12 cos θ

⎤⎦y=Γ

y=0

=

= 2π
x3

∫ 1

−1
d(cos θ)

⎡⎣ −1√
Γ2 + r2

12 − 2Γr12 cos θ
+ 1
r12

⎤⎦ =

= 2π
x3

[
1

Γr12
1

Γ−r12

− 1
Γr12

1
Γ+r12

+ 2
r12

]
=

= 4π
x3

[ 1
r12

− 1
Γ

]

(4.19)

Notice, that we could use r12 ≪ Γ and drop the blue term, however, it will cancel
exactly with its counterpart later. Since in Λ we have x1, x2 ≪ x, one can write
in this region

r1 = |x⃗− x⃗1| ≈ r2 = |x⃗− x⃗2| ≈ |x⃗|.

In the second line we introduce locally spherical coordinates, that describe a
spherical shell with radial coordinate y ∈ [Γ,Λ]. In the last step we perform the
limit Λ → ∞ and hence we cover the entire rest of space–time region.

I1Λ =
∫

Λ

r⃗1 · r⃗2

r3
1r

3
2

1
r3

d3x
.=
∫

Λ

x⃗ · x⃗
x6

1
|x⃗− x⃗3|

d3x =
∫

Λ

d3x

x4|x⃗− x⃗3|
=

=
∫ 2π

0
dϕ
∫ Λ

Γ
dx
∫ 1

−1
d(cos θ) 1

x2
√
x2 + x2

3 − 2xx3 cos θ
=

= −2π
x3

∫ Λ

Γ
dx 1
x3

[√
x2 + x2

3 − 2xx3 cos θ
]cos θ=1

cos θ=−1
=

= +2π
x3

∫ Λ

Γ

|x+ x3| − |x− x3|
x3 =

= 2π
x3

2
∫ x3

Γ

1
x2 dx+ 2π

x3
2x3

∫ Λ

x3

1
x3 dx =

= −4π
x3

[1
x

]x3

Γ
− 2π

[ 1
x2

]Λ

x3

=

=
(

−4π
x2

3
+ 4π
x3Γ

)
− 2π

⎛⎜⎜⎝
◁
◁
◁�
0

1
Λ2 − 1

x2
3

⎞⎟⎟⎠

(4.20)

The “blue” counterterms in I1Γ and I1Λ cancel exactly and I1 gives

I1 = 4π
x3r12

− 2π
x2

3
.
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Overall perturbation
After carrying out the rather lengthy calculation, see Appendix A: Calculation of
three-body Lagrangian, we arrived at Lagrangian of the 3rd black hole. Having
the Lagrangian at hand we can proceed with equations of motion. The worrisome
term with 1/x2

3Γ, the only surviving term containing Γ, need not concern us since
later we will dispose of it during the 1st and 2nd order approximation. It is in
high demand that our choice of the actual size of the integration domain does
not affect the results.

LBH3(x3x, x3y, x3z, v3x, v3y, v3z) ≡ perturbation =

=
5∑
i=1

pert(i) =

= −3
2m1m2m3 |v⃗1 − v⃗2|2

⎛⎝ 2
x3

1
r12

+ 1
x2

3
+

+ (m1 +m2)
[

1
x3

1
r2

21
− 1
x3

3

]⎞⎠
− 3

2m
2
3m1m2|v⃗1 − v⃗2|2

(
1
x2

3

1
r12

)

− 3
2m1m3 |v⃗1 − v⃗3|2

(
1
r31

+ m1

r2
31

+ m2

x2
3

+ 1
3
m2

1
r3

31
+ 2

3
m1m2

x3
3

+m2
2

(
− 1
r21

x3z

x3
3

+ 1
3

1
x3

3

))

− 3
2m2m3 |v⃗2 − v⃗3|2

(
1
r32

+ m2

r2
32

+ m1

x2
3

+ 1
3
m2

2
r3

32
+ 2

3
m1m2

x3
3

+m2
1

(
+ 1
r21

x3z

x3
3

+ 1
3

1
x3

3

))

− 3
2m

2
3

(
m1|v⃗1 − v⃗3|2

r2
13

+ m2|v⃗2 − v⃗3|2

r2
23

)

− 3
2m

2
3m1m2

(
|v⃗1 − v⃗3|2 + |v⃗2 − v⃗3|2

)
·
(

−1
4

1
x2

3Γ

)

− m3
3

2

(
m1|v⃗1 − v⃗3|2

r3
31

+ m2|v⃗2 − v⃗3|2

r3
32

)

(4.21)
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4.4 | Equation of motion: 3rd BH

We will state properly which approximations take place there to obtain the 1st
and 2nd order Lagrangian. In addition to that, in each order of Lagrangian we
comment on its asymptotical freedom and compare with physical expectations.
The resulting plots with comments close down each section.

Setting the scene
Our current physical setting is such that the binary rotates near the origin as the
third black hole approaches from large distance.

x⃗2 = −x⃗1

v⃗1 = −v⃗2 ≡ v⃗, 1 ≫ v, 1 ≫ v3

|v⃗1 − v⃗2|2 = 4v2,

|v⃗1 − v⃗3|2 + |v⃗2 − v⃗3|2 = 2
(
v2 + v2

3

)
|v⃗1 − v⃗3|2 − |v⃗2 − v⃗3|2 = −4v⃗ · v⃗3

r21 = |x⃗2 − x⃗1| = const. = rcirc

x3 ≫ r21

(4.22)

In this context, velocity is a time derivative of the position with respect to the
coordinate time

v⃗i = dx⃗i
dt .

Unlike in section about geodesics, now the only time we use is the coordinate
one. The constant distance of two rotating black holes of equal mass is [19]

r21 ≡ r =
√

3 − 1
2 ≈ 0.366

For the approximation we use our preceding conditions, namely

r21 ≪ Γ, r21 ≪ x3

x3 ≫ x1, x2 =⇒ r31 ≈ x3 ≈ r32

(m1 = m2 ≡ m ≫ m3)
(4.23)

The last condition regarding m3 will be discussed later. It is useful condition for
comparing the black hole behavior with motion of test particle.
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4.4.1 | First-order approximation

Let us proceed with the first order approximation of our Lagrangian. That is, we
keep the largest terms only. The interaction part of perturbation is then

LBH3C1 = −3
2m1m2m3 |v⃗1 − v⃗2|2

⎛⎝ 2
x3

1
r12

+ (m1 +m2)
[

1
x3

1
r2

21

]⎞⎠
− 3

2m1m3 |v⃗1 − v⃗3|2
(

1
r31

)
− 3

2m2m3 |v⃗2 − v⃗3|2
(

1
r32

)
.

Now we add the free part of Lagrangian, too. Having the above conditions (4.22)
and (4.23) at hand, the full Lagrangian finally reads5

LBH3C1F = LBH3C1 + L3Free = LBH3C1 + 1
2m3v

2
3 −m3

LBH3C1F = −3
2m3

(
− v2

3
3 + 2

3 + 8m2v2
[ 1
x3r

+ m

x3r2

]
+ 2m

x3

[
v2 + v2

3

] )
(4.24)

The Lagrangian (4.24) gives rise to the equations of motion (EOM) which are
three Euler–Lagrange equations of the 2nd kind

d
dt

∂L

∂v3i
= ∂L

∂x3i
, i = 1, 2, 3.

Also the Lagrangian (4.24) controls asymptotically free motion

lim
x3→∞

∇v⃗3LBH3C1 = m3v⃗3.

The asymptotical freedom manifests itself as a straight path at late times in Figure
4.4. It is an expected result, consistent with the limiting Newtonian situation,
which we used to check our results.

Moreover, the whole Lagrangian is proportional to m3 (no other m3 occurs).
We can thus conclude that, to the leading order, the limit of small or large black
hole does not affect the motion qualitatively.

5Legend to the subscript: BH3 – the third black hole, C – circular, 1 – the first order, F –
full, including free terms.
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(a) Whole trajectory of the third black hole (b) Beginning of
the trajectory

Figure 4.4: First order approximation, using the Lagrangian (4.24). The trajec-
tory of the 3rd black hole starts at “red”, finishes at “cyan”, the color shows the
passing of time. System of two mutually rotating holes is located in the vicinity
of origin. Initial conditions: x⃗3(t0) = (0, 50, 20), v⃗3(t0) = (0, 0, 0.05).

4.4.2 | Second-order approximation

In the second-order approximation we impose (4.23) again. Then we simply count
the “order of smallness” of each term with respect to the largest term (of the same
structure) in (4.24). To begin with, each 1

x3
≪ 1

r
brings one order of smallness.

LBH3C2 = −3
2m1m2m3 |v⃗1 − v⃗2|2

⎛⎝ 2
x3

1
r12

+ 1
x2

3
+

+ (m1 +m2)
[

1
x3

1
r2

21

]⎞⎠
− 3

2m
2
3m1m2|v⃗1 − v⃗2|2

(
1
x2

3

1
r12

)

− 3
2m1m3 |v⃗1 − v⃗3|2

(
1
r31

+ m1

r2
31

+ m2

x2
3

−m2
2

1
r21

x3z

x3
3

)

− 3
2m2m3 |v⃗2 − v⃗3|2

(
1
r32

+ m2

r2
32

+ m1

x2
3

+m2
1

1
r21

x3z

x3
3

)

− 3
2m

2
3

(
m1|v⃗1 − v⃗3|2

r2
13

+ m2|v⃗2 − v⃗3|2

r2
23

)

(4.25)

In addition, we could impose m3 ≪ m1 = m2 ≡ m, which would bring another
order of smallness, further simplifying the Lagrangian. Despite this tempting
option, let us first proceed with general m3, thereupon the Lagrangian controls
the motion of a black hole of any m3, which is amazing. We will compare behavior
of the limits m3 ≪ m and m3 ≫ m.

Using trivial algebraic manipulations and conditions (4.23), one can convert
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Lagrangian into the following form (r ≡ r21 = const.). The full Lagrangian6 is
again the sum of free and interaction part.

LBH3C2F = LBH3C2 + L3Free = LBH3C2 + 1
2m3v

2
3 −m3

LBH3C2F1 = −3
2m3

(
− v2

3
3 + 2

3 + 4m2v2
[

1
x2

3
+ 2
x3r

+ 2m
x3r2 + m3

x2
3r

]
+

+
[

1
x3

+ 2m
x2

3
+ m3

x2
3

]
2m

[
v2 + v2

3

]
+ m3

r

x3z

x3
3

(4v⃗ · v⃗3)
)
.

(4.26)

So far the rotation of our binary system around the origin did not manifest
itself in our Lagrangian. Now such a possible term appeared. x3z is a projection
of x⃗3 onto the rotating axis r⃗21, which connects the two holes. Furthermore,
velocity v⃗ = v⃗1 = −v⃗2 rotates in the same manner as r⃗21, although the phase is
shifted by one quarter period. We use trivial goniometric operations to obtain a
simple-shaped term.

x3z = x⃗3 · r⃗21

r21
= x3 cos(ωt)

v⃗ · v⃗3 = vv3 cos
(
ωt− π

2

)
= vv3 sin(ωt)

x3z

x3
3

(v⃗ · v⃗3) = vv3

x2
3

sin(ωt) cos(ωt) = vv3

x2
3

1
2 sin(2ωt)

4m3

r

x3z

x3
3

(v⃗ · v⃗3) = 2m3

r

vv3

x2
3

sin(2ωt)

The coordinate system we just transformed into is rotating. Our Cartesian-like
z-axis is now given by z⃗ = r⃗21. That requires a bit of comment on interpretation
of the following plots. Planes characterised by z = const. in plots are orbiting
with frequency ω rather than static.

Substituting the above into Lagrangian we arrive at

LBH3C2F2 = −3
2m3

(
− v2

3
3 + 2

3 + 4m2v2
[

1
x2

3
+ 2
x3r

+ 2m
x3r2 + m3

x2
3r

]
+

+
[

1
x3

+ 2m
x2

3
+ m3

x2
3

]
2m

[
v2 + v2

3

]
+ 2m3

r

vv3

x2
3

sin(2ωt)
)
.

(4.27)

The Lagrangian LBH3C2F describes asymptotically free motion. The straightness
of the path at later times in figures, again, agrees with this observation, matching
our expectation based on Newtonian physics.

lim
x3→∞

∂LBH3C2F

∂v3i
= m3v

i
3

6Legend to the subscript: BH3-3rd black hole, C-circular, 2-2nd order, F-full and includes
free terms, 1-the first written form.
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4.5 | Comparison of results

Comparing 1st and 2nd order approximation
The 1st order Lagrangian allows a black hole of low-mass, compared to that of
the binary. We will study numerically the deviation of solutions of equations of
motion associated with the 1st and 2nd order Lagrangian.
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Δ(t)

(a) ∆ is deviation of the 1st and 2nd order solution

1st order

2nd order

(b) Both solutions in one plot.

Figure 4.5: Comparison of plots, numerical solution to the EoMs associated with
the 1st and 2nd order Lagrangian of the 3rd black hole, m3 ≪ m. System of
two rotating black holes is located in the vicinity of origin. Initial conditions:
x⃗3(t0) = (10, 10, 10), v⃗3(t0) = (−0.05, 0, 0). Deviation is a distance between the
two solutions at each time, ∆ =

√
δx2 + δy2 + δz2.

Comparing mass limits in the 2nd order
The 2nd order Lagrangian allows not only the limit of a small hole, but also
the limit of large black hole! This result is worth the effort. The dependence
on m3 is more complicated than just proportionality. We can separate motions
of the third black hole into two classes, representing the two limits. The first,
m3 ≪ m, results in scattering and the second, m3 ≫ m, results in coalescence.
The particular value of m3 is entirely our choice. Limit of large black hole brings
an interesting behavior. The limit of a small black hole is convenient for later
comparison with motion of an extremally charged test particle.

– Collinear initial velocity and position
We show the difference between m3 ≫ m and m3 ≪ m black hole in the
second-order. The case of collinear initial velocity and position (small velocity
heading away from origin) reveals a surprising difference between the two limits.
The low-mass black hole m3 ≲ 30m is repelled, while the interaction between
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a very heavy black hole and orbiting binary causes they are attracted towards
each other7.

Let us compare both paths at Figure 4.6. In Figure 4.7 one can see the radial
measure of the black hole from origin. Figure 4.8 shows velocities of the hole in
x-direction, there is one-to-one correspondence with the paths of Figure 4.7.

(a) 0.01m = m3 ≪ m, escapes (b) 500m = m3 ≫ m, dragged back

Figure 4.6: Comparison of two mass limits (heavy and light). Motion of the
3rd black hole associated with the 2nd order Lagrangian. System of two black
holes m1 = m2 ≡ m orbits in the vicinity of origin. Initial conditions x⃗3(t0) =
(10, 10, 10), v⃗3(t0) = (0.05, 0.05, 0.05). While the small black hole escapes, the
heavy one recedes for some time, then reaches the turning point and flies back
towards the binary.

7Considering Newton’s Third Law: Action & Reaction, there is no need of specifying which
object is being attracted and which actually attracts. Let us understand attracting of m3 and
the binary in this way throughout this chapter.
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Figure 4.7: Comparison of radial measure of the 3rd BH from origin |x⃗3| =√
x2

3x
+ x2

3y
+ x2

3z
for various m3, m is the mass of each orbiting BH. Initial con-

ditions x⃗3(t0) = (10, 10, 10), v⃗3(t0) = (0.05, 0.05, 0.05). Corresponding velocities
are at Figure 4.8. m3 = m is the case of three equally massive BHs.
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Figure 4.8: Comparison of velocity in x-direction of the 3rd BH various m3, initial
conditions: x⃗3(t0) = (10, 10, 10), v⃗3(t0) = (0.05, 0.05, 0.05). For this init. condi-
tions the directions are equivalent, we chose x. Corresponds to radial measures
in Figure 4.7. The smaller holes show signs of wavy-like behavior.

z-axis
As one would expect according to the preceding discussion, the small black hole
escapes with ease, while the large one attracts the binary, see Figure 4.9.
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(a) m3 ≪ m BH is repelled.
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Figure 4.9: Comparing evolution of the low- and large-mass black hole on z-axis.
System of two rotating black holes m1 = m2 = m is located in the vicinity of
origin. Initial conditions: x⃗3(t0) = (0, 0, 20), v⃗3(t0) = (0, 0, 0).

z = 0 plane
Another case of evolution within z = 0 plane is shown in Figure 4.10.

20 25 30 35 40 45 50

20

22

24

26

28

x

y

(a) m3 ≪ m is repelled.

20 30 40 50

20

25

30

35

x

y

(b) m3 = 30m is still re-
pelled.

0 5 10 15 20

0

5

10

15

20

x

y

(c) m3 ≫ m is attracted
(and attracting, too).

Figure 4.10: Comparing evolution of the small, medium and large-mass black
hole within z = 0 plane. System of two extremally charged mutually orbiting
black holes m1 = m2 = m is located in the vicinity of origin. Initial conditions:
x⃗3(t0) = (20, 20, 0), v⃗3(t0) = (0.05,−0.05, 0). Based on z-axis motion, the results
match our expectations.

57



Conclusion
Expecting similar outcomes grounded in physics, we studied motion of a smaller
charged black hole and of a charged test particle on the background of an orbit-
ing charged binary black hole. Restricting to slow-motion limit and extremally
charged bodies, we aimed to compare their evolution.

In Chapter 1 we covered the basic properties of static spacetimes, namely the
Majumdar-Papapetrou (MP) solution and its detailed derivation in Section 1.3.

In Chapter 2 we started with the general exact action and reproduced a tedious
derivation of approximate action up to the order O(v2). Our result contains
exactly the right terms of the action of [5] but also several redundant terms,
which seem difficult to get rid off. During further calculation we assumed that
the paper [5] is correct and discarded the remaining terms.

As an aside, we showed that the ADM mass of a perturbed MP system is the
same as that of a static one.

Then we solved the set of equations obtained by varying the action. The
general form of perturbation was found in Chapter 3. Surprisingly, based on the
symmetries of our rotating system, the perturbation vanished.

Afterwards, in Section 3.2, we compared motion of some selected test particles
with a charge-to-mass ratio κ = (−1, 0, 1) via equation of electro-geodesic.

We showed that the evolution of the test particles in the field of two extremally
charged black holes orbiting each other obeys the laws of electrostatics in the
leading order. The initially static position of κ = 1 was studied numerically
and analytically via the electro-geodesic equation. Both approaches resulted in
a fixed position of the test particle throughout its evolution. The particle with
κ = 1 moving along the z-axis can pass through the origin and escape to infinity,
according to symmetries, whilst κ = (−1, 0) particles after passing the origin
reach the turning point and harmonically oscillate.

In Chapter 4 we studied the motion of an extremally charged massive black
hole. Starting with the general n-body Lagrangian, we first reproduced the two-
body Lagrangian and its consequences for the evolution, describing our back-
ground. Calculation of the three-body Lagrangian required a new approximating
technique based on separation of integration area into several parts, since most
of the integrals were not analytically solvable.

The Lagrangian of the third black hole describes asymptotically free motion
up to the second order (consistent with Newtonian mechanics). The second-order
Lagrangian also allows the limit of the third black hole-mass much larger that
those of its binary components, unlike the first order. This case results in the
coalescence of the third black hole and the binary system.

The goal of the thesis was to compare the motion of the smaller black hole
and of an extremally charged test particle. The static initial position in electro-
geodesic equation provided us with a static solution.

We concluded, that the black hole evolves in a totally different way. The
smaller black hole is repelled throughout its evolution and ultimately escapes.

Based on our calculations, the outcome is that, perhaps surprisingly, there
is no straightforward analogy between the motion of the small black hole in the
field of a massive binary, consisting of two extremally charged black holes, and
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the motion of an extremally charged test-particle managed by the field of the
massive black-hole binary. According to the recent observations of motions of
heavy objects near the center of the Galaxy, where small-distance encounters
and scattering seem to occur frequently, these results might be of interest. In
our future work, we will attempt to drop some of the assumptions used here to
investigate various cases not covered here.
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Appendix A: Calculation of
three-body Lagrangian
The three-body Lagrangian reads

perturbation ≡ − 3
8π

∫ ⎛⎝2m3
(
m1
r1

+ m2
r2

+ 1
) (

m1m2 r⃗1·r⃗2|v⃗1−v⃗2|2
r3

1r
3
2

)
r3

+
m2

3

(
m1m2 r⃗1·r⃗2|v⃗1−v⃗2|2

r3
1r

3
2

)
r2

3

+

m1m3 r⃗1·r⃗3|v⃗1−v⃗3|2
(

m1
r1

+ m2
r2

+1
)

2

r3
1

+
m2m3 r⃗2·r⃗3|v⃗2−v⃗3|2

(
m1
r1

+ m2
r2

+1
)

2

r3
2

r3
3

+

2m1m2
3 r⃗1·r⃗3|v⃗1−v⃗3|2

(
m1
r1

+ m2
r2

+1
)

r3
1

+
2m2m2

3 r⃗2·r⃗3|v⃗2−v⃗3|2
(

m1
r1

+ m2
r2

+1
)

r3
2

r4
3

+
m1m3

3 r⃗1·r⃗3|v⃗1−v⃗3|2
r3

1
+ m2m3

3 r⃗2·r⃗3|v⃗2−v⃗3|2
r3

2

r5
3

⎞⎠d3x.

(28)

In Section 4.3 Three-body Lagrangian we sketched an example process which we
follow in derivation of the Lagrangian, we also described the integration strategy
in detail. The whole calculation proceeds in a similar manner. We will not
reproduce the paragraph here, on the contrary, we will continue with calculation.
Let us reproduce here Figure 4.3, depicting the splitting of integration domain.

Figure 11: Separating
integration domain
into three parts, each
of which either con-
tributes significantly
(Γ, Λ) or negligibly
(Ω). The definition is
r21 ≪ Γ ≪ x3 ≪ Λ.
In each of these re-
gions the particular
integrals simplify
significantly.

We also repeat the shift of coordinates, used, in variations, in most of the
calculations.

r⃗2 = x⃗− x⃗2 = y⃗, r⃗1 = x⃗− x⃗1 = y⃗ + x⃗2 − x⃗1 ≡ y⃗ − r⃗21 (29)
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We denote the i-th line of (28) as by ”pert(i)” for better orientation during
calculation, r⃗a = x⃗ − x⃗a is shifted Cartesian position of the a-th black hole,
its velocity is (of course, independent of position) v⃗a = dx⃗a

dt . Moreover, Γ and
Λ denote either the part of 3-dim integration domain, or, in locally spherical
coordinates, the boundary of radius coordinate. We tried to avoid ambiguities,
the meaning should be clear during evaluation.

1st line of perturbation
To summarize results from Section 4.3, the first line and integral associated with
unity from the RHS parenthesis read

−8π
3 · pert(1) = 2m1m2m3 |v⃗1 − v⃗2| 2

∫ (
m1

r1
+ m2

r2
+ 1

)
r⃗1 · r⃗2

r3
1r

3
2

1
r3

d3x. (30)

I1 =
∫ r⃗1 · r⃗2

r3
1r

3
2

1
r3

d3x = 4π
x3r12

− 2π
x2

3
.

Note, that the |r⃗12| = r12 = r21 is a fixed constant distance between two black
holes rather than a free parameter. Its physical value is given uniquely by the
mass ratio of the two extremally charge mutually orbiting black holes [19], for
two equally massive holes it is [4]

r12 =
√

3 − 1
2 .

Another contributing terms are associated with m1
r1
, m2

r2
in the parenthesis on

RHS of (30). It is enough to calculate one of the only, since both of these terms
contribute in the same way (however with indices swapped r⃗12 ↔ r⃗21). We denote
them as I2 and I ′

2.

I2 =
∫ m1

r1

r⃗1 · r⃗2

r3
1r

3
2

1
r3

d3x = m1

(∫
Γ

r⃗1 · r⃗2

r4
1r

3
2r3

d3x+
∫

Λ

r⃗1 · r⃗2

r4
1r

3
2r3

d3x

)
≡ m1 (I2Γ + I2Λ)

I ′
2 =

∫ m2

r2

r⃗1 · r⃗2

r3
1r

3
2

1
r3

d3x

In the following we split the integration domain as in Figure 11. In the vicinity
of the two holes it holds

∀x⃗ ∈ Γ : r3 = |x⃗− x⃗3| ≈ |x⃗3| = const. (31)
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We introduce the shift of coordinates (29) and then transform into locally spher-
ical coordinates.

I2Γ =
∫

Γ

r⃗1 · r⃗2

r4
1r

3
2

1
r3

d3x
.= 1
x3

∫
Γ

r⃗1 · r⃗2

r4
1r

3
2

d3x = 1
x3

∫
Γ

(y⃗ − r⃗21) · y⃗
|y⃗ − r⃗21|4y3 d3y =

= 1
x3

∫ 2π

0
dϕ
∫ 1

−1
d(cos θ)

⎛⎜⎝∫ Γ

0

y − r21 cos θ√
y2 + r2

21 − 2yr21 cos θ
4 dy

⎞⎟⎠
= 2π
x3

(
−1

2

) ∫ 1
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d(cos θ)

[
1

y2 + r2
21 − 2yr21 cos θ

]y=Γ

y=0
=

= π

x3r21

(
2
r21

− 1
Γ log

⏐⏐⏐⏐⏐r21 + Γ
r21 − Γ

⏐⏐⏐⏐⏐
)

Γ≫r21−−−−→ 2π
x3r2

21

(32)

The logarithmic term is, indeed, a consequence of finiteness of the integration
region. However, in vanishes in the last step after performing the limit based on
our choice r21 ≪ Γ.

Now let us compute the contribution of Λ, i.e. we are far away from origin
x1, x2 ≪ x. Then we have

∀x⃗ ∈ Λ : r1 = |x⃗− x⃗1| ≈ |x⃗| ≈ |x⃗− x⃗2| = r2. (33)

We introduce locally spherical coordinates as in (4.20).

I2Λ =
∫

Λ
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r4
1r

3
2

1
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d3x
.=
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=
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∫ x3
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1
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=

= −2π
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− 1
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⎡⎢⎢⎣ 1
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Γ2

(34)

The ”orange” term in (34) can be neglected with respect to the result of (32),
according to r21 ≪ Γ. All of the dangerous terms from pert(1) that could blow
up, are now discarded. As discussed, we obtain I ′

2 from I2 by the exchange of
indices 1, 2 and arrive at

I2 = m1

[
2π
x3

1
r2

21
− 2π

3
1
x3

3

]
, I ′

2 = m2

[
2π
x3

1
r2

21
− 2π

3
1
x3

3

]
.
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To summarize this, we have

pert(1) = −3
2m1m2m3 |v⃗1 − v⃗2|2

⎛⎝ 2
x3

1
r12

+ 1
x2

3
+

+ (m1 +m2)
[

1
x3

1
r2

21
− 1
x3

3

]⎞⎠.
(35)

Similarly we will proceed with the remaining integrals.

2nd line of the perturbation
Till now we introduced several ways how to integrate effectively the mixed terms,
so we can have a look at terms of higher order in m3. Concerning the second
order, we work with pert(2) and pert(4).

pert(2) = − 3
8πm

2
3m1m2|v⃗1 − v⃗2|2

∫ r⃗1 · r⃗2

r3
1r

3
2

1
r2

3
d3x  

K1

(36)

Due to the mixed denominator we have to split the integration domain to Γ and
Λ, i.e.,

K1 = K1Γ +K1Λ.

In the following lines we first use x ≪ x3 as (31) and then within the same
procedure as in (4.19) we arrive at the result.
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(37)

In Λ we use (33) and the shift of coordinates x⃗−x⃗3 = y⃗, then transform into locally
spherical coordinates and finally some simple algebraic manipulations. Neglecting
the terms which are associated with finiteness of the integration region always
involves either the limit Λ ≫ x3 (occassionally Λ → ∞) or Γ ≪ x3, we neglect
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with respect to corresponding larger terms.

K1Λ =
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Moving to the very last last line we used a Taylor series of the function and
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In (40) we use an obvious inequality based on our choice of parameters 1
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3rd line of the perturbation
The 3rd line reads

pert(3) = − 3
8π

2∑
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∫

d3x
r⃗i · r⃗3

r3
i r

3
3

(
m1

r1
+ m2

r2
+ 1

)2
=

= − 3
8πm1m3 |v⃗1 − v⃗3|2

∫
d3x

⎡⎣ r⃗1 · r⃗3

r3
1r

3
3  

J1

+2m1
r⃗1 · r⃗3

r4
1r

3
3  

J2

+ 2m2
r⃗1 · r⃗3

r3
1r2r3

3  
J3

+m2
1
r⃗1 · r⃗3

r5
1r

3
3  

J4

+2m1m2
r⃗1 · r⃗3

r4
1r2r3

3  
J5

+m2
2
r⃗1 · r⃗3

r3
1r

2
2r

3
3  

J6

⎤⎦

+
⎡⎣the same with swapped {1 ↔ 2}

⎤⎦.

(41)

We have six independent integrals, with of which we have to deal in quite a
different manner. We already know, how to integrate J1, J2 and J4 exactly from
the section about Lagrangian of two black holes. First we introduce the shift of
coordinates

x⃗− x⃗1 = y⃗, x⃗− x⃗3 = y⃗ − r⃗31

and then transfer into spherical coordinates d3y = y2dy d(cos θ)dϕ, analogically
for all of these three integrals.
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31 − 2yr31 cos θ)
3
2
dy = 4π

r31

J2 :=
∫ r⃗1 · r⃗3

r4
1r

3
3

d3x = 2π
r2

13

J4 :=
∫ r⃗1 · r⃗3

r5
1r

3
3

d3x = 4
3
π

r3
13

(42)

The exact part of this job has already been done and now we shall have a look
at the remaining integrals, compound of mixed terms, i.e. J3, J5 and J6.

The denominator of J3 is of the mixed form rm1 r
n
2 r

o
3 with nonzero exponents,

hence we have to split the integration area to Γ & Λ regions,

J3 = J3Γ + J3Λ.

In the area Γ we use the traditional feature r3 ≈ x3. Then we introduce the
shift of coordinates x⃗− x⃗1 = y⃗, x⃗− x⃗2 = y⃗− r⃗21. We use the relationship of local
spherical coordinates and cartesian coordinates, i.e., yx = |y| sin θ cosϕ, yy =
|y| sin θ sinϕ, yz = |y| cos θ, moreover we set z-axis parallel to r⃗21, so that θ mea-
sures deviation of y⃗ and r⃗21. We observe that due to

∫ 2π
0 cosϕdϕ=

∫ 2π
0 sinϕdϕ = 0

only the 3rd term x3zyz from the dot product of numerator in the 3rd line is
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nonzero. At the final step in (43) we perform the limit Γ ≫ r21, after which we
obtain the result.

J3Γ :=
∫ r⃗1 · r⃗3

r3
1r2r3

3
d3x =

∫ (x⃗− x⃗1) · (x⃗− x⃗3)
|x⃗− x⃗1|3|x⃗− x⃗2||x⃗− x⃗3|3

d3x
.=

.= − x⃗3

x3
3

·
∫ x⃗− x⃗1

|x⃗− x⃗1|3|x⃗− x⃗2|
d3x = − x⃗3

x3
3

·
∫ y⃗

y3|y⃗ − r⃗21|
d3y =

= − 1
x3

3

∫ 2π

0

∫ π

0

∫ Γ

0
y
x3x sin θ cosϕ+ x3y sin θ sinϕ+ x3z cos θ

y3
√
y2 + r2

21 − 2yr21 cos θ
×

× y2dy sin θdθdϕ

= −2π
x3

3

∫ Γ

0

∫ 1

−1

x3z cos θ√
y2 + r2

21 − 2yr21 cos θ
d(cos θ)dy =

= −2πx3z

x3
3

∫ Γ

0

√
(r21 + y) 2 (y2 − r21y + r2

21)
3r2

21y
2

−

√
(y − r21) 2 (y2 + r21y + r2

21)
3r2

21y
2 dy

= −2πx3z

x3
3

⎡⎢⎢⎣
√

(r21+y)2(y3−2r3
21)

r21+y −
√

(y−r21)2(2r3
21+y3)

y−r21

6r2
21y

⎤⎥⎥⎦
y=Γ≫r21

y=0

=

= 0

(43)

We proceed with Λ, in the following integral we first shift the coordinates and
again use the salient feature of actual integration domain r1 ≈ x ≈ r2. During
transition from the 3rd line from the end to the 2nd line from the end we use

[x− x3 > 0]...x ∈ [x3,Λ] → |x− x3| = x− x3

[x− x3 < 0]...x ∈ [Γ, x3] → |x− x3| = −x+ x3

[x+ x3 > 0]...∀x ∈ [Γ,Λ], a

|a|
= sign(a),

(44)
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J3Λ :=
∫

Λ

r⃗1 · r⃗3

r3
1r2r3

3
d3x

.=
∫

Λ

x⃗ · (x⃗− x⃗3)
x4 |x⃗− x⃗3|3

d3x =

=
∫ 2π

0
dϕ
∫ 1

−1
d(cos θ)

∫ Λ

Γ
dx x3 (x− x3 cos θ)

x4
√
x2 + x3

3 − 2xx3 cos θ
3 =

= 2π
∫ Λ

Γ
dx

⎛⎜⎝∫ 1

−1
d(cos θ) 1

x

(x− x3 cos θ)√
x2 + x3

3 − 2xx3 cos θ
3

⎞⎟⎠ =

= 2π
∫ Λ

Γ
dx
⎡⎣ x cos θ − x3

x3
√
x2 + x2

3 − 2xx3 cos θ

⎤⎦cos θ=1

cos θ=−1

=

= 2π
∫ Λ

Γ
dx
⎛⎝ x− x3

x3
√
x2 − 2xx3 + x2

3

− −x− x3

x3
√
x2 + 2xx3 + x2

3

⎞⎠ =

= 2π
∫ x3

Γ
dx(−1)

◁
◁
◁1
x3 + 2π

∫ Λ

x3
dx 1
x3 + 2π

∫ x3

Γ
dx

�
�
�+1

x3 + 2π
∫ Λ

x3
dx+1

x3

= 2 · 2π
∫ Λ

x3

dx
x3 = 4π

(
−1

2

)(
◁
◁
◁1

Λ2 − 1
x2

3

)
.= 2π
x2

3

(45)

During the computation of the integral J5 = J5Γ+J5Λ we will proceed similarly
as in (43) and (45), so it is not necessary to describe it again in such a detail. We
obtain zero after the integration.

J5Γ :=
∫ r⃗1 · r⃗3

r4
1r2r3

3
d3x =

∫ (x⃗− x⃗1) · (x⃗− x⃗3)
|x⃗− x⃗1|4|x⃗− x⃗2||x⃗− x⃗3|3

d3x
.=

.= − x⃗3

x3
3

·
∫ x⃗− x⃗1

|x⃗− x⃗1|4|x⃗− x⃗2|
d3x = − x⃗3

x3
3

·
∫ y⃗

y4|y⃗ − r⃗21|
d3y =

= −2π
x3

3

∫ Γ

0

∫ 1

−1

x3z cos θ
y
√
y2 + r2

21 − 2yr21 cos θ
d(cos θ)dy =

= 0

(46)
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J5Λ :=
∫

Λ

r⃗1 · r⃗3

r4
1r2r3

3
d3x

.=
∫

Λ

x⃗ · (x⃗− x⃗3)
x5 |x⃗− x⃗3|3

d3x =

=
∫ 2π

0
dϕ
∫ 1

−1
d(cos θ)

∫ Λ

Γ
dx x3 (x− x3 cos θ)

x5
√
x2 + x2

3 − 2xx3 cos θ
5 =

= 2π
∫ Λ

Γ
dx

⎛⎜⎝∫ 1

−1
d(cos θ) 1

x

(x− x3 cos θ)√
x2 + x2

3 − 2xx3 cos θ
5

⎞⎟⎠ =

= 2π
∫ Λ

Γ
dx 1
x4

⎡⎣ x cos θ − x3√
x2 + x2

3 − 2xx3 cos θ

⎤⎦cos θ=1

cos θ=−1

=

= 2π
∫ Λ

Γ
dx 1
x4

⎛⎝ x− x3√
(x− x3)2

− −x− x3√
(x+ x3)2

⎞⎠ =

= 2π
∫ x3

Γ
dx(−1)

◁
◁
◁1
x4 + 2π

∫ Λ

x3
dx+1

x4 + 2π
∫ x3

Γ
dx

◁
◁
◁1
x4 + 2π

∫ Λ

x3
dx+1

x4

.= −4π
3

(
◁
◁
◁1

Λ3 − 1
x3

3

)
.= 4π

3
1
x3

3

(47)

The 6th integral we calculate as

J6 = J6Γ + J6Λ

as per (43) and (45), however this time we do not obtain zero for J6.

J6Γ :=
∫ r⃗1 · r⃗3

r3
1r

2
2r

3
3

d3x =
∫ (x⃗− x⃗1) · (x⃗− x⃗3)

|x⃗− x⃗1|3|x⃗− x⃗2|2|x⃗− x⃗3|3
d3x

.=

.= − x⃗3

x3
3

·
∫ x⃗− x⃗1

|x⃗− x⃗1|3|x⃗− x⃗2|2
d3x = − x⃗3

x3
3

·
∫ y⃗

y3|y⃗ − r⃗21|2
d3y =

= −2π
x3

3

∫ Γ

0

∫ 1

−1

x3z cos θ
y2 + r2

21 − 2yr21 cos θd(cos θ)dy =

= −2πx3z

x3
3

∫ 1

−1

⎡⎣cos θ tanh−1
(

r21 cos θ−y
r21

√
cos2 θ−1

)
r21

√
cos2 θ − 1

⎤⎦y=Γ≫r21

y=0

d(cos θ)

  
2

r21

= −2πx3z

x3
3

2
r21

(48)

J6Λ :=
∫

Λ

r⃗1 · r⃗3

r3
1r

2
2r

3
3
d3x

.=
∫

Λ

x⃗ · (x⃗− x⃗3)
x5 |x⃗− x⃗3|3

d3x = J5Λ = 4π
3

1
x3

3
(49)

Till now we have covered half of the integrals of pert(3), i.e., we still have to
work out the terms with exchanged indices (1 and 2). We just need to switch
indices 1 ↔ 2 in the original integrals, having trivial consequences regarding all
of the results, except J6Γ.

Note, that sign of the result J6Γ changes after we switch indices (1 and 2) in
the integral. That is because x3z is the projection of x⃗3 onto the z-axis of the
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system (in the locally spherical coordinate system). At first this z-axis is r⃗21 and
then, after the swap, it is r⃗12 = −r⃗21. Written schematically,

x3z
1↔2−−→ −x3z.

Other integrals with such a complicating property vanished. Let us summarise
the results in the following table.

Original calculated terms Switched 1 ↔ 2

J1 =
∫ r⃗1·r⃗3
r3

1r
3
3
d3x = 4π

r31
→ J ′

1 =
∫ r⃗2·r⃗3
r3

2r
3
3
d3x = 4π

r32

J2 =
∫ r⃗1·r⃗3
r4

1r
3
3
d3x = 2π

r2
31

→ J ′
2 =

∫ r⃗2·r⃗3
r4

2r
3
3
d3x = 2π

r2
32

J3 =
∫ r⃗1·r⃗3
r3

1r2r3
3
d3x = 2π

x2
3

→ J ′
3 =

∫ r⃗2·r⃗3
r3

2r1r3
3
d3x = 2π

x2
3

J4 =
∫ r⃗1·r⃗3
r5

1r
3
3
d3x = 4

3
π
r3

31
→ J ′

4 =
∫ r⃗2·r⃗3
r5

2r
3
3
d3x = 4

3
π
r3

32

J5 =
∫ r⃗1·r⃗3
r4

1r2r3
3
d3x = 4

3
π
x3

3
→ J ′

5 =
∫ r⃗2·r⃗3
r4

2r1r3
3
d3x = 4

3
π
x3

3

J6 =
∫ r⃗1·r⃗3
r3

1r
2
2r

3
3
d3x = −2πx3z

x3
3

2
r21

+ 4
3
π
x3

3
→ J ′

6 =
∫ r⃗2·r⃗3
r3

2r
2
1r

3
3
d3x = +2πx3z

x3
3

2
r21

+ 4
3
π
x3

3

Table 1: Table of integrals of the 3rd line {1 ↔ 2}.

Summarising the lines above, the 3rd line reads

pert(3) =

= − 3
8π

2∑
i=1

mim3 |v⃗i − v⃗3| 2
∫

d3x
r⃗i · r⃗3

r3
i r

3
3

×

×
(

1 + 2
(
m1

r1
+ m2

r2

)
+
(
m1

r1

)2
+ 2m2m1

r2r1
+
(
m2

r2

)2
)

=

= − 3
8πm1m3 |v⃗1 − v⃗3|2

(
1 · J1 + 2m1J2 + 2m2J3 +m2

1J4 + 2m1m2J5 +m2
2J6

)

− 3
8πm2m3 |v⃗2 − v⃗3|2

(
1 · J ′

1 + 2m1J
′
3 + 2m2J

′
2 +m2

1J
′
6 + 2m1m2J

′
5 +m2

2J
′
4

)

= − 3
8πm1m3 |v⃗1 − v⃗3|2

(
4π
r31

+ 2m1
2π
r2

31
+ 2m2

2π
x2

3
+m2

1
4
3
π

r3
31

+ 2m1m2
4
3
π

x3
3

+m2
2

(
−2πx3z

x3
3

2
r21

+ 4
3
π

x3
3

))

− 3
8πm2m3 |v⃗2 − v⃗3|2

(
4π
r32

+ 2m1
2π
x2

3
+ 2m2

2π
r2

32
+m2

1

(
+2πx3z

x3
3

2
r21

+ 4
3
π

x3
3

)

+ 2m1m2
4
3
π

x3
3

+m2
2
4
3
π

r3
32

)
.

(50)

69



After trivial algebraic manipulations the result reads

pert(3) = −3
2m1m3 |v⃗1 − v⃗3|2

(
1
r31

+ m1

r2
31

+ m2

x2
3

+ 1
3
m2

1
r3

31
+ 2

3
m1m2

x3
3

+m2
2

(
− 1
r21

x3z

x3
3

+ 1
3

1
x3

3

))

− 3
2m2m3 |v⃗2 − v⃗3|2

(
1
r32

+ m2

r2
32

+ m1

x2
3

+ 1
3
m2

2
r3

32
+ 2

3
m1m2

x3
3

+m2
1

(
+ 1
r21

x3z

x3
3

+ 1
3

1
x3

3

))
.

(51)

4th line of the perturbation
The other contributions O(m2

3) are produced by the fourth line of (28).

pert(4) = − 3
8π2m2

3m1|v⃗1 − v⃗3|2
∫ ⎛⎝

M1  
r⃗1 · r⃗3

r3
1r

4
3

+m1

M2  
r⃗1 · r⃗3

r4
1r

4
3

+m2

M3  
r⃗1 · r⃗3

r3
1r

4
3

1
r2

⎞⎠d3x

− 3
8π2m2

3m2|v⃗2 − v⃗3|2
∫ ⎛⎝

M ′
1  

r⃗2 · r⃗3

r3
2r

4
3

+m2

M ′
2  

r⃗2 · r⃗3

r4
2r

4
3

+m1

M ′
3  

r⃗2 · r⃗3

r3
2r

4
3

1
r1

⎞⎠d3x

(52)

We are already familiar with some of these. Namely we have already calculated
M1,M

′
1 exactly, looking at (4.7) and also M2, M

′
2 using the procedure and result

of (4.9).
M1 =

∫ r⃗1 · r⃗3

r3
1r

4
3

d3x = 2π
r2

13

M ′
1 =

∫ r⃗2 · r⃗3

r3
2r

4
3

d3x = 2π
r2

23

M2 =
∫ r⃗1 · r⃗3

r4
1r

4
3

d3x = 0

M ′
2 =

∫ r⃗2 · r⃗3

r4
2r

4
3

d3x = 0

(53)

Now we are left with M3, M
′
3 only. Since their denominators include mixed terms,

we have to split the integration area again. We proceed in the same way, as in
(43).

M3 =
∫ r⃗1 · r⃗3

r3
1r

4
3

1
r2

d3x ≡ M3Γ +M3Λ.
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M3Γ =
∫

Γ

(x⃗− x⃗1) · (x⃗− x⃗3)
|x⃗− x⃗1|3|x⃗− x⃗3|4|x⃗− x⃗2|

d3x
.= − x⃗3

x4
3

·
∫

Γ

x⃗− x⃗1

|x⃗− x⃗1|3|x⃗− x⃗2|
=

= − x⃗3

x4
3

·
∫

Γ

y⃗

y3|y⃗ − r⃗21|
d3x = −2π

x4
3

∫ Γ

0

∫ 1

−1

x3z cos θ d(cos θ)dy√
y2 + r2

21 − 2yr21 cos θ
=

= |Γ ≫ r21| = 0

M3Λ =
∫

Λ

(x⃗− x⃗1) · (x⃗− x⃗3)
|x⃗− x⃗1|3|x⃗− x⃗3|4|x⃗− x⃗2|

d3x
.=
∫

Λ

x⃗ · (x⃗− x⃗3)
x4 |x⃗− x⃗3|4

d3x =

=
∫ 2π

0
dϕ
∫ Λ

Γ
dx
(∫ 1

−1
d(cos θ) �x3

�x3 x

x− x3 cos θ
(x2 + x2

3 − 2xx3 cos θ)2

)

= 2π
∫ Λ

Γ
dx
(

1
x2 (x2 − x2

3)
+ 1

4x3x3

[
log(x+ x3)2 − log(x− x3)2

])

= 2π
x3

⎛⎝ 1
2x3x

− 1
2x2

3
log |x− x3|

|x+ x3|
+ 1

4x2
3

log |x+ x3|
|x− x3|

+ 1
8x2 log (x− x3)2

(x+ x3)2

⎞⎠⏐⏐⏐⏐⏐⏐
x=Λ

x=Γ

= 2π
x3

⎛⎝ 1
2x3◁

◁
◁1

Λ − 1
2x3Γ

− 1
4x2

3
log |Λ − x3|

|Λ + x3|  
→0

+ 1
4x2

3
log |Γ − x3|

|Γ + x3|  
→0

+ 1
8

1
Λ2 log (Λ − x3)2

(Λ + x3)2  
→0

−1
8

1
Γ2 log (Γ − x3)2

(Γ + x3)2

⎞⎠
.= 2π
x3

(
−1

2
1
x3Γ

+ 1
4

1
x3Γ

)
= −π

2
1

x2
3 Γ

(54)

To obtain the very last line we used the familiar limit (39). In total the fourth
row of perturbation reads

pert(4) = −3
2m

2
3

(
m1|v⃗1 − v⃗3|2

[
1
r2

13
− 1

4
m2

x2
3Γ

]
+m2|v⃗2 − v⃗3|2

[
1
r2

23
− 1

4
m1

x2
3Γ

])
.

(55)
The terms containing Γ will be the source of limitation of applicability and validity
of our Lagrangian.
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5th line of the perturbation
Here we have to integrate

pert(5) = − 3
8πm

3
3

⎛⎜⎜⎜⎜⎜⎝m1|v⃗1 − v⃗3|2
∫ r⃗1 · r⃗3

r3
1r

5
3

d3x  
N1

+m2|v⃗2 − v⃗3|2
∫ r⃗2 · r⃗3

r3
2r

5
3

d3x  
N ′

1

⎞⎟⎟⎟⎟⎟⎠ .
(56)

However, that is what we have already calculated exactly in (4.8), so we have

N1 =
∫ r⃗1 · r⃗3

r3
1r

5
3

d3x =
∫ y⃗ · (y⃗ − r⃗31)
y3|y⃗ − r⃗31|5

d3y = 4π
3

1
r3

31
,

N ′
1 = 4π

3
1
r3

32
.

(57)

Thus, we end up with

pert(5) = −m3
3

2

(
m1|v⃗1 − v⃗3|2

r3
31

+ m2|v⃗2 − v⃗3|2

r3
32

)
. (58)

We can finally sum over all of the preceding results to get the whole perturbation.
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Overall perturbation
Now, after this somewhat lengthy calculation we are competent to write the
overall result. This Lagrangian controls the motion of the 3rd extremally charged
black hole approaching from large distance towards two extremally charged black
holes orbiting around origin on a common circular path.

LBH3(x3x, x3y, x3z, v3x, v3y, v3z) ≡ perturbation =

=
5∑
i=1

pert(i) =

= −3
2m1m2m3 |v⃗1 − v⃗2|2

⎛⎝ 2
x3

1
r12

+ 1
x2

3
+

+ (m1 +m2)
[

1
x3

1
r2

21
− 1
x3

3

]⎞⎠
− 3

2m
2
3m1m2|v⃗1 − v⃗2|2

(
1
x2

3

1
r12

)

− 3
2m1m3 |v⃗1 − v⃗3|2

(
1
r31

+ m1

r2
31

+ m2

x2
3

+ 1
3
m2

1
r3

31
+ 2

3
m1m2

x3
3

+m2
2

(
− 1
r21

x3z

x3
3

+ 1
3

1
x3

3

))

− 3
2m2m3 |v⃗2 − v⃗3|2

(
1
r32

+ m2

r2
32

+ m1

x2
3

+ 1
3
m2

2
r3

32
+ 2

3
m1m2

x3
3

+m2
1

(
+ 1
r21

x3z

x3
3

+ 1
3

1
x3

3

))

− 3
2m

2
3

(
m1|v⃗1 − v⃗3|2

r2
13

+ m2|v⃗2 − v⃗3|2

r2
23

)

− 3
2m

2
3m1m2

(
|v⃗1 − v⃗3|2 + |v⃗2 − v⃗3|2

)
·
(

−1
4

1
x2

3Γ

)

− m3
3

2

(
m1|v⃗1 − v⃗3|2

r3
31

+ m2|v⃗2 − v⃗3|2

r3
32

)

(59)
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Appendix B: Taylor expansion of
geodesic equation
We analyse the geodesic equation (GE) with generally nonzero right hand side.
Studying higher derivatives we determine overall proportionality of the Taylor
expansion to (1 − κ).

Duµ

dτ = u̇µ + Γµαβuαuβ = κF µ
αu

α (60)

The Maxwell tensor is

F µ
ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −∂xψ −∂yψ −∂zψ

−∂xψ
ψ4 0 0 0

−∂yψ
ψ4 0 0 0

−∂zψ
ψ4 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (61)

Let us take the spatial part, we choose x (one proceeds analogically for the
other spatial coordinates). The nonzero Christoffel’s symbols Γxµν , defined in a
traditional way, read

Γxtt = −∂xψ

ψ5 , Γxµx = ∂µψ

ψ
, Γxyy = Γxzz = −∂xψ

ψ
, (62)

where the partial derivatives’ indices are lower, indices {t, x, y, z} denote the
particular components. In the equation below we dropped the zero Christoffel
symbols, occasional factor 2 appears due to symmetry Γα(βγ).

ẍ = −
(

Γxtt(ut)2 + 2Γxtxutux + 2Γxxyuxuy + 2Γxxzuxuz

+ Γxxx(ux)2 + Γxyy(uy)2 + Γxzz(uz)2
)

+ κF x
tu
t

(63)

We can substitute (62) into the last equation and obtain

ẍ =∂xψ
ψ5 (ut)2 − 2∂tψ

ψ
utux − 2∂yψ

ψ
uxuy − 2∂zψ

ψ
uxuz

− ∂xψ

ψ
(ux)2 + ∂xψ

ψ
(uy)2 + ∂xψ

ψ
(uz)2 − κ

∂xψ

ψ4 u
t.

(64)

Considering again the initially static particle x⃗(t0) = (x0, y0, z0), u⃗0 = ˙⃗x(t0) = 0
we also drop the zero velocity terms and the equation at t = 0 becomes

ẍα + Γαttutut = κFα
tu
t. (65)

From normalisation we already have

ṫ = ut = ψ(t).
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Hence the equations for the time and space are now at t = 0

ẗ = ψ∂tψ (66)

and
ẍi = giν∂νψ

ψ
(1 − κ) = ∂iψ

ψ3 (1 − κ). (67)

Solution to the time-component equation is t =
∫
ψdτ and the space-component

equations are trivial for κ = 1.
Let us have a look at higher order derivatives of geodesic equation. The

initially static case at t = 0 is described by (we drop zero terms)
...
x = −

(
Γ̇xtt(ut)2 + 2Γxttutu̇t + 2Γxtxutu̇x

)
+ κḞ x

tu
t + κF x

tu̇
t (68)

which after substitution of particular values of Christoffel’s symbols is

...
x =

⎛⎝∂xψ
ψ5

⎞̇⎠ ψ2 + 2
⎛⎝∂xψ
ψ5

⎞⎠ψψ̇ − 2∂tψ
ψ
ψẍ− κ

⎛⎝∂xψ
ψ4

⎞̇⎠ ψ − κ
∂xψ

ψ4 ψ̇ (69)

and after substituting (67) into the last equation we get

...
x =

⎛⎝∂xψ
ψ5

⎞̇⎠ ψ2 + 2
(
∂xψ

ψ5

)
ψψ̇

⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓

− 2∂tψ
ψ
ψ
∂xψ

ψ3 (1 − κ)
. . . . . . . . . . . . . . . . . . .

− κ

⎛⎝∂xψ
ψ4

⎞̇⎠ ψ − κ
∂xψ

ψ4 ψ̇
⁓⁓⁓⁓⁓⁓⁓

(70)
The third term of the last equation can be rewritten using time-component equa-
tion ψ̇ = ψ∂tψ as

−2∂tψ
ψ
ψ
∂xψ

ψ3 (1 − κ)
. . . . . . . . . . . . . . . . . . . . .

= 2ψ̇ ∂xψ
ψ4 (κ− 1) . (71)

Combination of the first and one before the last term of the equation is⎛⎝∂xψ
ψ5

⎞̇⎠ ψ2 − κ

⎛⎝∂xψ
ψ4

⎞̇⎠ ψ = (∂xψ)̇
ψ3 (1 − κ) + ∂xψ

ψ̇

ψ4 (−5 + 4κ) (72)

and adding the second and the last term we obtain

2
(
∂xψ

ψ5

)
ψψ̇ − κ

∂xψ

ψ4 ψ̇
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓

= ∂xψ

ψ4 ψ̇ (2 − κ) . (73)

Substituting the last three results into (70) after somewhat easy algebraic ma-
nipulations we arrive at

...
x = (∂xψ)̇

ψ3 (1 − κ) + ∂xψ
ψ̇

ψ4 [(−5 + 4κ) + (2 − κ) + 2(κ− 1)] (74)

and using ψ̇
ψ4 = −1

3

(
1
ψ3

)̇
we obtain

...
x = (1 − κ)

⎛⎜⎝(∂xψ)̇
ψ3 + 5

3∂xψ
⎛⎝ 1
ψ3

⎞̇⎠
⎞⎟⎠ (75)
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This seems to contradict the few expectations we had on this matter, since we
rewrite this as

...
x =

⎛⎝∂xψ
ψ3

⎞̇⎠ (1 − κ) + 2
3∂xψ

⎛⎝ 1
ψ3

⎞̇⎠(1 − κ) (76)

and we obtain ...
x ∝ (1 − κ) at t = 0. Thus the acceleration and its derivative

vanish for κ = 1.
Differentiating once more, one obtains on the RHS another function of lower

derivatives of the original equation. Whenever derivatives appear, we substitute
from the known equations, thus gradually expressing all the higher derivatives in
terms of the first and second derivatives of xµ. The former as well as the latter
is proportional to (1 − κ) at t = 0. From these circumstances we may conclude,
that the entire Taylor expansion is fully proportional to (1 − κ).
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Appendix C: Magic of numerics
During numerical solution of our electro-geodesic equations for κ = 1 particle we
ran into problems regarding numerics of small numbers. Numerical solutions of
equations with static particle starting at different positions led to different initial
velocities, some of them greater and the rest smaller than zero. However, this
velocity was analytically proved to be exactly zero at t = 0, hence we decided to
study numerics properly to eliminate as many numerical errors as possible. We
bring a brief sketch of useful information below. We followed [21] in this section,
equations were solved using Wolfram Mathematica 13.0, using the package xAct.
Also we list some of our results and their interesting numerical subtleties.

Description of methods
ND Solve is the basic function to numerically solve given differential equations
with corresponding number of initial conditions. ND Solve also allows user to
specify the precision or accuracy of the result, the function makes the time step
it takes smaller and smaller until our solution reaches either the AccuracyGoal
(AG) or PrecisionGoal (PG).

AG determines the absolute error tolerance in the reached solution, while PG
determines the relative error of any such solution. If values of the tracked solution
come close to zero, one typically increases AG setting. AG and PG allow us to
control the error locally at particular time step. Sometimes it may occur that
this error accumulates and either precision of accuracy of the resulting solution
at the end of the time step may be much less than expected form setting AG and
PG. Letting AG→ ∞ asks NDSolve to use PG only.

WorkingPrecision is and option to specify how many digits of precision should
Mathematica maintain in internal computations during various numerical oper-
ations. Specifying large values of AG and PG requires increasing WorkingPre-
cision. The default setting of both (AG, PG) is equal to half of the setting of
WorkingPrecision.

NDSolve also allows the user to choose the preferred method of solving, it
has several methods built in or one can also add his own additional method.
With the default setting Method → Automatic, NDSolve will choose on its
own, which is quite useful for a wide range of non-problematic problems. How-
ever, some of our equations appeared to be stiff during evaluation, remedy for
which was the method StiffnessSwitching, which automatically switches be-
tween nonstiff and stiff solver, testing stiffness during calculation. This was
useful namely for solution in range of affine parameter about [0, 1

1000000 ], when
studying dynamics of the beginning of motions. Another very useful method is
EquationSimplification → Residual, which presolves a problem, i.e. converts
equations, that were originally unable to be solved, into the form easier to manage
for NDSolve. For lower PG, AG ∼ 4 it is convenient to use four-step Runge-
Kutta method RK4, while for larger values of PG, AG ∼ 20, as in our case, one
should stick to different methods, e.g. those mentioned above.
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Numerical subtleties of our results
For κ ̸= 1 the resulting numerical solutions obtained by different methods are the
same, since the functions which NDSolve works with are well behaved and their
magnitude is also reasonably large, compared with e.g. double precision machine
epsilon ϵ = 2−52 ≈ 2.22 × 10−16.

As said before, equations for the case κ = 1 are extraordinary, considering
that numbers and terms in question are all about the same magnitude but with
opposite sign. At t = 0 the terms on RHS explicitly vanish, as we showed in
Appendix B: Taylor expansion of geodesic equation. We speculated whether the
RHS remains zero at t > 0 as per our analytic result or any motion appears.

For κ = 1 the method we choose to solve the system of equations is crucial.
Not only determines the choice of method whether NDSolve can solve it, but
also how precise the solution is. For us it was decisive whether the particle (which
stands still at first) starts moving little by little or whether this apparent motion
is just a numerical noise, entirely unaffected by physics.

0 2 4 6 8

-0.04

-0.03

-0.02

-0.01

0.00

v3 x

v3 y

v3 z

(a) Low precision (AG=4, PG=5),
method EquationSimplification→
Residual. Deviation from zero about 102

times larger than the desired precision.

0 2 4 6 8

-4.×10
-15

-2.×10
-15

0

2.×10
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4.×10
-15

σ
v3 x

v3 y

v3 z

(b) High precision (AG = 20, PG = 19),
method StiffnessSwitching. Accumulated
error about 104 times larger than the desired
precision, however yet 1013 times better preci-
sion than (a). The zero here is much stronger.

Figure 12: Comparision of methods and precision. Velocity calculated from nu-
merical solution (positions). Particle’s properties: κ = 1, x⃗(t0) = (0.2, 0, 0),
˙⃗x(t0) = 0. The numerical error in (a) accumulates and one would erroneously
conclude that particle leaves the initial position. Let us spill the beans and say
it is only caused by numerics, since looking at calculation (b) where we increase
precision and accuracy, the fluctuation around equilibrium, i.e. zero, is obvious.
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[19] E. Klimešová. Properties of Multi Black-hole Spacetimes. Bachelor the-
sis, Charles University Prague, Institute of Theoretical Physics, 2021.
2021. URL https://dspace.cuni.cz/bitstream/handle/20.500.11956/
149293/130315782.pdf?sequence=1&isAllowed=y.

[20] M. Blau. Lecture notes on general relativity, November 2022. URL http:
//www.blau.itp.unibe.ch/newlecturesGR.pdf.

[21] Introduction to Advanced Numerical Differential Equation Solving in the
Wolfram Language, 06 2023. URL https://reference.wolfram.com/
language/tutorial/NDSolveIntroductoryTutorial.html.

80

https://doi.org/10.1088/0264-9381/32/12/124010
https://doi.org/10.1088/0264-9381/32/12/124010
https://www.sciencedirect.com/science/article/abs/pii/S0003491698958699?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0003491698958699?via%3Dihub
https://doi.org/10.48550/arXiv.gr-qc/0109010
https://doi.org/10.1103/PhysRevLett.57.1492
https://doi.org/10.1103/PhysRevLett.57.1492
https://dspace.cuni.cz/bitstream/handle/20.500.11956/149293/130315782.pdf?sequence=1&isAllowed=y
https://dspace.cuni.cz/bitstream/handle/20.500.11956/149293/130315782.pdf?sequence=1&isAllowed=y
http://www.blau.itp.unibe.ch/newlecturesGR.pdf
http://www.blau.itp.unibe.ch/newlecturesGR.pdf
https://reference.wolfram.com/language/tutorial/NDSolveIntroductoryTutorial.html
https://reference.wolfram.com/language/tutorial/NDSolveIntroductoryTutorial.html

	Introduction
	Static spacetime
	General spacetime and extremal Reissner–Nordström solution
	R-N solution: pathology, asymptotics

	Majumdar–Papapetrou solution
	M-P solution: asymptotics, horizons
	ADM mass (static)

	Rigorous derivation of M-P

	Perturbed spacetime
	Analytic form of metric
	Slow-motion approximation

	Approximate action
	Total exact action
	Total approximate action
	Variation of action


	Geodesics
	Lagrangian density
	Metric as a solution of Poisson equation
	Fate of the perturbation
	Step aside: ADM mass with motion

	Equation of geodesic
	Static solution
	Charged vs. uncharged particle
	Important classes of motions


	Three black hole Lagrangian
	Multi black hole Lagrangian
	Two-body Lagrangian
	Three-body Lagrangian
	Equation of motion: 3rd BH
	First-order approximation
	Second-order approximation

	Comparison of results

	Conclusion
	Appendix A: Three-body Lagrangian
	Appendix B: Taylor expansion of geodesic equation
	Appendix C: Magic of numerics
	Bibliography

