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Study programme: Informatika

Study branch: Obecná informatika
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Abstract: We define and study a symmetric homophily-preserving opinion dif-
fusion model on clusters of voters. This model is symmetric, which means that
clusters of voters influence each other. The model is also homophily-preserving,
meaning when a voter changes their opinion, their neighborhood also changes,
which is a frequently observed property of social sites. We present proper-
ties of the diffusion model, such as convergence, ϵ-convergence for some types
of graphs, and polyhedral description of the set of fixed points, as well as general-
izations on graphs with weighted edges and directed graphs and their properties.
We provide the definition of the threshold diffusion process. We study fixed points
of the diffusion and threshold diffusion process. We also provide a program for
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1. Introduction
Modern technologies, especially social media, heavily influence political cam-
paigns. Social media made it easier for those running a campaign to influence
potential voters, discourage them from voting for their opponents, and for the vot-
ers to access much more information about the candidates. It became easier and
more difficult at the same time to control the voters in a way that would benefit
the campaigners. For that reason, those behind the campaigns started studying
the behavior of the voters based on their opinions, the groups they meet with,
their surroundings, and the choices of their social media so they could target
groups of voters using fake news [AG17], [SK19]. Opinion diffusion processes
on graphs try to model groups of voters with their opinions and the changes
in their opinions.

There are many papers and studies created that research opinion diffusion pro-
cesses on different voter models with different rules and properties. One paper
that studies opinion diffusion is that of Faliszewski et al. [Fal+22]. A group of vot-
ers with similar preferences is represented as a cluster with the main idea of study-
ing peer pressure. If any group has a strict majority of voters in a neighborhood,
then everyone in that neighborhood changes their opinion to the majority. This
model is good because it gives a great balance between realism and tractability
in a way that, in this model, some problems have fast algorithms which were not
common before. However, this model is unrealistic because the whole group is
changing an opinion together, so if individuals are in one group together, they
have the same opinion throughout the process. To get a more realistic process,
we look at the stochastic analogy of the process of Faliszewski et al. [Fal+22].
Usually, in the models of opinion diffusion, a voter changes their opinion to one
of a random neighbor. In our model, the voter changes not only their opinion
but also their neighborhood. This is more realistic because if voters change their
opinion, it usually means they change the blogs they read, the sites they visit,
and possibly their friends. This property is called homophily in social network
analysis, and our model is homophily-preserving.

1.1 Our Contribution
Our contributions are as follows.

Stochastic Model. We define the stochastic analogy of the model of Fal-
iszewski et al. [Fal+22] as follows. A voter of type i looks around the closed
neighborhood and changes their opinion to a randomly selected neighbor based
on the number of voters in each group. That means the probability of them being
a type j in the next step of the opinion diffusion is exactly equal to a relative
representation of voters of type j in the closed neighborhood of i. In expectation,
the number of voters changing their opinion from type i to type j is exactly equal
to the number of people in type i, which is (wi), multiplied by the relative repre-
sentation of j in the closed neighborhood of i. In reality, this is an average, and
the numbers are not exact. However, we deal with elections with many voters,
and we can imagine wi as a percentual representation and society as a contin-
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uum. Thanks to the CLT (Central Limit Theorem) [Fis10], the numbers will be
exact not only in the expectation but also almost surely. That means that from
the stochastic process, we got a deterministic process over percentages, which
is the process we study. The opinion process is defined over undirected graphs,
and φ is denoted as a function of the diffusion process. We provide definitions
of generalizations of the diffusion process, such as the process defined on directed
graphs or a version with stubbornness and weighted edges. We also define a nat-
ural simplification of the diffusion process by establishing a δ > 0, and if a weight
of a vertex gets below δ, its weight is set to 0. Function φ̄δ is denoted as a function
of the threshold diffusion process.

Software for Experimental Analysis. We provide a program that can be
used to study the properties of our diffusion model and visualize them. The soft-
ware is described in Chapter 3. We used random instance generating described
in Section 3.3.1 and black-box optimization described in Section 3.3.2 to verify
assumptions and find counterexamples.

Ruling Out Simple Reasons for Convergence. For the undirected version,
our main goal was to prove that the process converges for every initial state
on undirected graphs. We also study ϵ-convergence. The process ϵ-converges
if the difference between two states in two consecutive steps differs by at most ϵ.
If the process converges, it also ϵ-converges for every ϵ. We have yet to prove
the convergence or the ϵ-convergence on general undirected graphs. Still, it seems
it holds because the black-box optimization only managed to generate graphs
on which the process ϵ-converges in hundreds, maximum lower thousands of steps.
Another property we study is in what types of graphs the state becomes a fixed
point of the diffusion in some step l. That means the state stays the same for every
step greater or equal to l. Notice it holds that if the state is a fixed point of dif-
fusion, the process converges. We tried different approaches to prove convergence.

Contractivity. One of the means to prove that a function always has a fixed
point and hence converges is to prove that the function is a contraction which
means that for every two points x, y, their distance is greater than the distance
of their image.

1. In Lemma 9, we prove that there is a state such that φ is not contracting
in the first 2 steps.

However, our experiments make it seem that the diffusion process always becomes
contracting eventually, so it is tempting to think that there must be some con-
stant, e.g., only depending on n such that φ becomes contracting after at most
g(n) steps.

2. In Theorem 10, we prove that for every k there is a state such that φ is not
contracting in steps k and k + 1.

Vertex Monotonicity. Another way to help us prove convergence is by proving
that every graph is vertex monotone.

3. Thanks to the Theorem 4, we know that vertex monotonicity implies con-
vergence.
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Experimentally, we showed that most randomly generated graphs are not vertex
monotone. But there is still a possibility that graphs become vertex monotone
during the process after a finite number of steps. We have not yet proved nor
disproved this, and it would still imply convergence. This seems true because
the black-box optimization did not find a graph that would not become vertex
monotone during the process after a finite number of steps. We tried to construct
a graph with a vertex with g(n) changes where g(n) is a function of the number
of vertices of the graph. We have yet to find this construction.

Edge Monotonicity. Edge monotonicity would help us to get closer to the con-
vergence. This is similar to vertex monotonicity. We found graphs that are not
edge monotone but have yet to find graphs that are not edge monotone from
a finite step or prove that every graph is edge monotone after some finite step.

Complete Graphs. Since we have not proved nor disproved the convergence
and ϵ-convergence for every undirected graph, we study special cases of graphs
and prove some of their properties. Firstly, we studied complete graphs.

4. Theorem 2 states that every initial state is a fixed point of φ on complete
graphs; hence the process converges.

Trees. Other special cases of undirected graphs were trees and their vertices.
In the first place, we study leaves and their properties.

5. In Lemma 7, which we will refer to as the ”Leaf lemma” henceforth, we
prove that every leaf in a graph is decreasing and Theorem 11 states that
if a graph has a leaf, it also has a vertex converging to zero.

The Leaf lemma is a crucial lemma that helps us prove many different Lemmas
and Theorems.

6. In Theorem 12, we prove that every initial state of a tree becomes a fixed
point of the threshold diffusion φ̄δ in a finite number of steps.

7. In Lemma 13, we prove convergence for star graphs.

Polyhedral characterization of fixed-points. We also study different prop-
erties. We show that for every fixed support S, the set of fixed points with support
S is an e-polytope. E-polytope is a polytope defined by a set of inequalities, some
of which can be strict.

8. In Theorem 15, we prove that the subset of a set of all fixed points of φ
with support S ⊆ V is an e-polytope.

Generalizations of the Diffusion Process. We also study the properties
of the generalizations of the diffusion process, such as graphs with a stubborn-
ness representing the stubbornness of a group of voters and weight on edges
representing the mutual influence between two groups of voters.

9. Lemma 16 shows that there exists a graph with a stubbornness of all vertices
equal to zero that does not ϵ-converge.
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10. In Lemma 17, we prove that the Leaf Lemma 7 does not hold in graphs
with weighted edges.

Another generalization is to work with directed graphs. Properties on a directed
graph are different than in the undirected version.

11. Lemma 18 shows that there exists an initial state and a graph on which the
process does not ϵ-converge. And Theorem 19 states that for every directed
cycle with no self-loops, the process cycles for every state, which does not
have all coordinates equal.

However, we proved some positive properties for the directed version of the dif-
fusion process.

12. Theorem 22 states that every initial state of a directed acyclic graph be-
comes a fixed point of the threshold diffusion φ̄δ in a finite number of steps.

13. In Lemma 24, we prove that the process converges on every directed star
graph.

1.2 Organization of the Thesis
We begin with introducing the necessary preliminaries (Section 2). Then, in Sec-
tion 3, we discuss our software for experimental evaluation and study of the dif-
fusion process, its functionality (3.2), the kind of instances it can deal with (3.3),
and examples of usage (3.4). The bulk of our work (Section 4) focuses on the basic
diffusion process on undirected graphs, where we study different types of graphs.
We start with complete graphs (4.1), state-induced graphs (4.2), and vertex mono-
tone graphs(4.3). From that, we move to graphs with few vertices(4.4). We also
study trees (4.6.1), star graphs (4.6.2), and undirected graphs in general (4.7),
where we study the generalization of the Leaf lemma(14) and polyhedral descrip-
tion of the set of fixed points (4.7.2). In Section 5, we briefly study generalizations
of the diffusion process on undirected graphs; in Section 6, we consider directed
graphs. We close with several open problems and research directions in Section 7.

1.3 Related Work
In this thesis, we study a symmetric homophily-preserving opinion diffusion
model. There are quite a few papers studying opinion diffusions, election control,
and bribery on many models. In this section, we present some of the closest re-
lated work papers regarding the topic of this thesis, and we show the differences
and similarities between them and this thesis.

Faliszewski et al. [Fal+22]. The most closely related paper to this thesis is
that of Faliszewski et al. [Fal+22], and our model is based on it. They study
the possibility of manipulating election outcomes using a deterministic discrete
model. The model uses undirected graphs to represent elections and voters, where
each node is a cluster of voters, and each edge symbolizes influence between two
clusters/voter groups. The main difference is in the voters’ representation and
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the diffusion process. Faliszewski et al. [Fal+22] represent the voters as the num-
ber of individuals in each cluster, using natural numbers. In each step, everyone
in the vertex together decides if they want to change the opinion of the vertex
as a whole or remain with the same opinion. As stated in the intro, this definition
of diffusion is good. Still, it is unrealistic because the whole group with the same
opinion has to change or remain, which means that their model is not individual.
Therefore, we generalize the model of Faliszewski et al. [Fal+22] to match real
situations better.

Vorobeychik and Wilder [WV18]. Another paper, which is closely related
to this thesis, is the model of Vorobeychik and Wilder [WV18]. Wilder and Vorob-
eychik’s paper aims to make one candidate either win (construction model) or lose
(destruction model) the election by using social influence, such as fake news,
to change the opinions of individual voters. They represent society as an undi-
rected graph, but each vertex represents one individual voter rather than a cluster
of voters. This is the main difference in the representation of the voters compared
to our thesis. Each voter has an ordering of preferred candidates, and each voter
casts one vote for their number one candidate. The ordering is needed in the diffu-
sion process, which is also different from ours. Every edge in the graph represents
one person influencing another person. Every edge is evaluated with the prob-
ability that the person succeeds in persuading and changing the position of one
candidate by one place in the ordering of the other person in each step. The voter
influencing other voters is called an attacker, and they can choose if they decrease
the position of one candidate by one or increase the position of their preferred
candidate by one. The attacker also selects a set of seed vertices, which are influ-
enced at the start of the diffusion process. The weights of each vertex are always
one because the process changes the ordering of that one candidate, meaning each
voter has its vertex for the whole process. Using the probabilities in each discrete
step means that the diffusion process is not deterministic but rather stochastic.
Influence spreads via ICM, the independent cascade model. ICM considers di-
rectional influence, such as fake news, whereas we mostly use both directional
influences, such as peer pressure in a friend group or family. The process ends
when there are no new changes made. Wilder and Vorobeychik [WV18] also
showed algorithms for both of their models.

Bredereck and Elkind [BE17]. They have studied manipulating opinion dif-
fusion in social networks. They consider opinion diffusion in binary influence net-
works. Bredereck and Elkind [BE17] assume that each operation, such as bribery,
creating new edges, or deleting edges, has a cost, and they study if it is possi-
ble to get the desired outcome of the election in the budget given at the start
of the elections. This is different because we do not consider any budget or have
a definition for creating new edges and vertices in the middle of the process.
The deletion of vertices and edges in our model is only allowed in the special-
ized case of threshold diffusion. Bredereck and Elkind [BE17] use LTM, a linear
threshold model. They consider a model where every agent has a binary opinion,
0 or 1. Each voter can have only a limited number of opinions. We use a more
realistic model with an arbitrary number of opinions. This model also sees one
individual as one vertex, which is different from ours, where we use one vertex
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as a cluster of voters. Bredereck and Elkind’s [BE17] model can be deterministic
for a synchronous model, which studies voters changing their opinions in a single
lockstep. But they mainly study the asynchronous model, which is stochastic.
The asynchronous model makes each step a sequence of changes. The order
of changes is different for each run. Hence they study worst-case and best-case
scenarios for different outcomes. As in the papers above, one individual changes
their opinion if their neighborhood is in a strict majority in a different opinion.
Another paper studying binary influence networks is that of Goles and Olivos
[GO80].

Silva [Sil16]. There are more related papers studying bribery, for example
[Sil16]. They studied a bribery model, where agents with opinions are repre-
sented throughout [0,1], and the process has a budget. They use a synchronous
version of the problem and use threshold opinion. The goal is to have all agents
have at least the opinion of the threshold within a given budget. Silva presents
algorithms based on linear programming to show the computation of this type
of problem. More papers studying bribery are [Bau+15],[ERY20],[Fal+09].

Corò et al. [Cor+19]. Another paper that studies election control is that
of Corò et al.[Cor+19]. They use LTR, linear threshold ranking, where they con-
sider a scenario with elections, in which each voter has an ordering of his preferred
candidates and scores them accordingly. Then the sum of scores from each voter
is assigned to each candidate. To represent the elections, Corò et al. [Cor+19]
use a directed graph, and the goal is to make one candidate win or lose the elec-
tions. LTR gets a budget, and the diffusion is defined in discrete steps. The main
difference between our thesis and the work of Corò et al. [Cor+19] is the same
as between our thesis and LTM. LTR is a more generalized model of LTM, where
one candidate can be moved by more than one position in the voters’ ranking
if the influence is strong enough.

There are more papers studying control of elections and bribery. To name
a few more, there are [Yin+18],[FR16],[CFG20]. In most cases, the difference
between our thesis and the above papers is in the diffusion process.
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2. Preliminaries

2.1 Definitions
Firstly, we present definitions and notions used in the thesis. We will use notations
from Diestel’s Graph Theory [Die17] for the terminology of graphs. This section
only defines unusual definitions and the diffusion process itself.
Definition 1. A vertex weighted graph is a pair (G, w), where G is a graph
and w = (w1, . . . , wn) ∈ Rn is a vector of weights (state), where wi is the weight
of the i-th vertex.

Our model is defined locally for each vertex. That means each vertex’s weight
depends only on that vertex and its neighborhood.
Definition 2. The open neighborhood of a vertex i in G = (V, E) is N(i) =
{j ∈ V | ij ∈ E}. The closed neighborhood of i is N [i] = N(i) ∪ {i}. For
directed graphs out-neighborhood is N+[i] = {j | ij ∈ E} and in-neighborhood
is N−[i] = {j | ji ∈ E}.

If we mention neighborhood in the thesis, we mean closed neighborhood, if not
stated differently. The support of a vector w ∈ Rn is supp(w) = {i ∈ [n] | wi >

0}. By ∥w∥p, 1 ≤ p ≤ +∞ we mean the ℓp-norm ∥w∥p = p

√︂
(wp

1 + wp
2 + · · · + wp

n),
where ∥w∥∞ = maxi∈[n] |wi|. Unless stated otherwise, we use ∥w∥ to designate
the Euclidean norm, i.e., ∥w∥ = ∥w∥2.
Definition 3 (State-induced graph). Let w be a state and G a graph. Then
Gw = G[supp(w)] is the state-induced graph of G (induced by state w).

Definition 4 (Diffusion process). Let G = ([n], E) be an undirected graph, and
let w0 ∈ Rn

≥0. The diffusion process proceeds in discrete steps w0, w1, . . . , where
each step consists of applying a function φG : Rn

≥0 → Rn
≥0 to the current state

wk, thus obtaining the new state wk+1 = φG(wk). The function φG is defined
as follows: Given w ∈ Rn

≥0, for all j ∈ N [i], define

mij = wi
wj∑︁

k∈N [i] wk

to be the weight transferred from i to j; notice that this also defines mji as the we-
ight transferred from j to i. Thus, for each i ∈ [n],

φ(w)i =
∑︂

j∈N [i]
mji =

∑︂
j∈N [i]

wj
wi∑︁

p∈N [j] wp

.

If G is clear from the context, we use only φ instead of φG. If we say φk, we
mean k compositions of φ, and if we say mk

ij, we mean the weight transferred
from i to j in the kth step.

Remark. The directed version of the process is defined the same, except the di-
rected edge ij ∈ E means that vertex j influences vertex i, so we replace N [i]
with N+[i] in the definition of mij so

mij = wi
wj∑︁

k∈N+[i] wk

9



and
φ(w)i =

∑︂
j∈N−[i]

mji =
∑︂

j∈N−[i]
wj

wi∑︁
p∈N+[j] wp

.

The directed version has different properties than the undirected version. See
Section 6

Definition 5. The diffusion process is cyclic if there exist steps i, k ∈ N : i ̸= k
such that wi = wk.

Definition 6 (Change of a weight of a vertex in one step). We define change
of a weight of a vertex i ∈ V in one step as ∆i = φ(w)i − wi

Definition 7 (ϵ-stable state). Given an ϵ > 0, wk is an ϵ-stable state on G
if ∥wk −wk+1∥∞ < ϵ. If G is clear from the context, we say that wk is an ϵ-stable
state.

Definition 8. We say that the process ϵ-converges on (G, w) if it reaches an ϵ-
stable state in finitely many steps.

Remark. The definition of the ϵ-convergence does not mean that the limit goes to
some distribution. The process may get to the ϵ-stable state in a finite number
of steps, but in future steps, the process may leave the ϵ-stable state.

Definition 9. We say that the process converges on (G, w) if there exists u ∈ Rn
≥0

such that limk→∞ wk = u.

Definition 10. w is a fixed point of the diffusion φ if φ(w) = w. A vertex i is
stable in w under φ if φ(w)i = wi.

Remark. Notice that if the process converges, it also ϵ-converges for every ϵ > 0.

Definition 11. A function f : Rn → Rn is a contraction with respect to a norm
∥ • ∥ if, for all x, y ∈ Rn, ∥f(x) − f(y)∥ < ∥x − y∥.

Notice that if f is a contraction, then also ∥fk+1(x) − fk(x)∥ < ∥fk(x) −
fk−1(x)∥ for every k > 1, and thus limk→∞ ∥fk(x) − fk−1(x)∥ = 0, i.e., the func-
tion converges for every x. However, the converse is not true – f may converge
for every x without being a contraction.

Definition 12 (Threshold diffusion process). The δ-threshold diffusion process
is the process defined by an iterative application of a function φ̄δ : Rτ

≥0 → Rτ
≥0

defined as follows:

φ̄δ(w)i =
⎧⎨⎩φ(w)i if φ(w)i ≥ δ

0 if φ(w)i < δ,

i.e., after each step, we replace all weights that dropped below δ by zero.

Definition 13. Consider the diffusion process on (G, w). We say that a vertex
i ∈ V is:

• increasing if wk
i < wk+1

i for all steps k.

• decreasing if wk
i > wk+1

i for all steps k.
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• non-decreasing if wk
i ≤ wk+1

i for all steps k.

• non-increasing if wk
i ≥ wk+1

i for all steps k.

Vertex i is monotone in G if i is either decreasing or increasing for all steps k.
G is vertex monotone if all vertices of G are monotone.

Now we define what we mean by the flow along an edge.

Definition 14. In an undirected weighted graph (G, w), the flow along edge ij ∈
E in the k-th step is defined as

f(ij)k =
⃓⃓⃓⃓
⃓wk

i

wk
j∑︁

p∈N [i] wk
p

− wk
j

wk
i∑︁

p∈N [j] wk
p

⃓⃓⃓⃓
⃓

Informally, flow is defined as a difference in weight flowing between two ver-
tices. With flow defined, we can define edge monotone graphs.

Definition 15. Consider the diffusion process on (G, w). We say that an edge
ij ∈ E is:

• increasing, if f(ij)k < f(ij)k+1.

• decreasing, if f(ij)k > f(ij)k+1.

• non-decreasing, if f(ij)k ≤ f(ij)k+1.

• non-increasing, if f(ij)k ≥ f(ij)k+1.

Edge ij is monotone in G if it is either increasing or decreasing for all steps k.
Graph G is edge monotone if all edges of G are monotone.
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3. Simulation
We made a program to help us experimentally determine some of the properties
of the diffusion process (Definition 4). In this section, we present the function-
ality of the program and some examples of its usage. For the source code, see
Attachment A.1. For a more detailed explanation of the functions of the program
and how the program works, see the Technical documentation (Attachment A.3)
and the User documentation (Attachment A.2).

3.1 Libraries and Technology Used
The program is made in Python [VD09] and Jupyter notebook [Klu+16]. We
used several libraries. The main library used for graph-related functions is Net-
workX [HSS08]. This library can create graphs based on a configuration, has a ran-
dom graph generation, etc. Another library used for the program is Nevergrad
[RT18], a black-box optimization library. We also used NumPy [Har+20] for
the calculation of more difficult problems and Matplotlib [Hun07]. For the an-
imation and the slider in the program, we used Jupyter interactive widgets
[com15] and IPython [PG07]. Other used libraries are SciPy [Vir+20], scikit-
-learn [Ped+11].

3.2 Functionality
The core function of the program is the ability to simulate one step of the dif-
fusion process defined by Definition 4 on both directed and undirected graphs.
A visualization of the process accompanies the simulator. The visualization has
multiple features

• A graph drawing. The visualization can draw graphs from a given configu-
ration from the user.

• A diffusion process slider. The slider is the main controlling element of
the visualization of the diffusion process. A user can slide through different
steps of the process from the 0th step to the step of ϵ-convergence. Every
step is drawn using the graph drawing function, and there are more elements
added to the picture

– The weight of each vertex is represented by labeling vertices with their
weight.

– The size of each vertex corresponds to its weight. Vertices with higher
weights have bigger sizes.

– The flow on edges is represented by a number written on top of each
edge as well as by the thickness of the edge and the direction of a flow
is expressed by an arrow pointing toward the direction in which more
weight flows.

• Animation. The program can also make a .gif file to display an animation
of the process on a given graph.

12



The program can follow the parameters of the diffusion process, which allow us
to study some of its properties

• Number of steps to ϵ-convergence. We can find the number of steps it takes
for the diffusion process to ϵ-converge for an arbitrary ϵ > 0 and a given
directed or undirected graph and a state.

• Monotonicity. The program can test a given graph for monotonicity. It
can print the number of monotonic vertices and their type of monotonicity,
the number of monotonic edges, and their type of monotonicity. The pro-
gram can also test the vertices of a graph for the number of changes each
non-monotonic vertex goes through during the diffusion process. (Defini-
tions 13 and 15)

• Norm and contraction. We want to study if the function φ does not break
the definition of a contraction in some steps, so we programmed a function
that calculates the norm of a step. The program can also print in which
steps the function φ does not break the definition of a contraction and
in which steps it does (Definition 11).

Note that most of the program’s functions, such as slider and animation, are only
for the undirected graphs.

3.3 Random and Adversary Instances
So far, we have presented all of the program’s functions for one given graph and
state w. Still, we also wanted to study the properties and parameters of the pro-
cess on multiple different graphs and initial weights.

3.3.1 Random Instances
The most basic approach is to generate several random graphs with random w
and then study their properties. For random graph generation, we use functions
from the NetworkX library, which has a function for random graph generation
based on the parameters given. The user can choose from multiple different
graph choices. All of the graphs are connected graphs made on n vertices, and
the choices are as follows

• Barabási-Albert graph. This is the base type of the graph we use. This type
of graph is based on a Barabási–Albert model [AB02]. This type of graph’s
main property is that it generates scale-free networks, which many human-
made systems are close to (the Internet, World Wide Web, and some social
networks).

• Watts–Strogatz small-world graph. This graph is based on a Watts–Stro-
gatz model [WS98]. This model is specific for its high clustering and short
average path lengths.

• Random regular graph. This is a random d-regular graph.
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When the graph is generated, a random w is generated using a distribution desired
by the user. The available distributions are

• Uniform distribution. This is the base type of distribution we use. Every
number has the same chance of being chosen.

• Normal distribution (Gaussian distribution). This type of distribution has
a higher chance of picking a number in the middle of the given interval.

• Exponential distribution. Lower numbers have a higher probability of being
chosen.

Every time the random graph with random w is generated, the program tests
it on a diffusion process and remembers the parameters of this graph. After all
the graphs and states are tested, the program prints the results.

3.3.2 Adversary Instances
We also wanted a way to find a (G, w) that can disprove some of the properties we
thought of more efficiently than generating several random instances and trying
to find a suitable (G, w) among them. We formulated the properties as an opti-
mization problem. Our solution space is an input space for the diffusion process
where the input is (G, w0) and our purpose function c is a function that takes
(G, w0) and outputs a number based on the property we want to study. We
can try to minimalize or maximize c. For example, we want to find a graph and
a state on which φ breaks the definition of a contraction as soon as possible. This
problem is not structured, so we use black-box optimization. There is a black-box
optimization library called Nevergrad [RT18], and we use it for the optimization.
Thanks to the Nevergrad optimization, we found a graph and state on which φ
breaks the definition of a contraction in the start of the process (see Lemma 9).

3.4 Examples of the Usage
In this section, we show three examples of the usage of the program.

3.4.1 Simulation of the Process and Slider Generation
As a first example, we show the generation of a given graph with a slider and
simulate the diffusion process. Let us take (G, w0) where |V | = 5, G is a cycle
and w0 = (0.5, 0.5, 0.5, 0.5, 1). Before we run the simulation, we have to set
the parameters we want to test

generateMyGraph = True
testMyGraph = True
slider = True
animation = False
testvernum = numberOfMyVertices
myConffiguration = [testvernum,[1,1,0],

[1,0.5,1],
[1]*testvernum,[1]*math.comb(testvernum,2)]
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This configuration means the program generates the desired graph, runs the dif-
fusion process, and generates a slider. testvernum is the number of vertices and
myConffiguration is the configuration of the graph. The result printed is

Number of monotonicity types: [1, 1, 1]
Steps to convergence: 26
{’NumberofVertices’: 3,
’Num_Of_Mon_Fun’: 1,
’Num_Of_NonIncreasing_Vertices’: 2,
’Num_Of_NonDecreasing_Vertices’: 1}
{’NumberofEdges’: 5,
’Num_Of_NonDecreasing_Flows’: 3,
’Num_Of_NonMonotonic_Flows’: 2}

We can see all of the parameters of the graph, and below, we can see the generated
visualization

0

0.10175

0

0.0763125

0

1.41

0.26

0.82

Figure 3.1: Example of a graph in the 2nd step of the diffusion.

3.4.2 Making Random Instances
In the second example, we show the generation of random graphs and test them.
We use the Barabási-Albert graphs on six vertices with uniform distribution, and
we generate 100 of these graphs and test them. The configuration in the program
looks like this

testLoops = 100
graphType = "Bar"
graphArguments = [NumberOfVertices,NumberOfVertices//3]
distribution = "Uni"
DistributionArguments = [0,1,(NumberOfVertices,1)]
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And the configuration of the block is

generateRandomGraph = False
showRandomGraph = False
randomGraphCalculate = False
testRandomGraphs = True
testMonotonicity = True

The result looks like this

{’NumberofVertices’: 600,
’Num_Of_Mon_Fun’: 44,
’Num_Of_NonIncreasing_Vertices’: 376,
’Num_Of_NonDecreasing_Vertices’: 144,
’Num_Of_NonMonotonic_Vertices’: 80}
{’NumberofEdges’: 1400,
’Num_Of_NonDecreasing_Flows’: 643,
’Num_Of_NonMonotonic_Flows’: 756,
’Num_Of_NonIncreasing_Flows’: 1}

The program also generated a histogram of the number of steps it took to ϵ-
convergence

20 40 60 80 1000
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10
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14

Figure 3.2: Histogram of the number of steps to ϵ-convergence

3.4.3 Nevergrad Optimalization
The last example is from the Nevergrad optimization. We want to find a graph
with three vertices where φ breaks the definition of a contraction in most steps.
We use the base Nevergrad optimizer NGOpt, and we run the optimization using
12 workers simultaneously with a budget of 10000. Then we draw the graph
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and print the number of steps where φ breaks the definition of a contraction.
The setup looks like this

optimizer = ng.optimizers.NGOpt(parametrization= instrum,
budget = 10000,num_workers=12)

with futures.ProcessPoolExecutor() as executor:
recommend = optimizer.minimize(undir.latest_false_nev,

executor=executor,
batch_mode=False)

idealSoc = undir.generating_undirected_soc(numberOfVertices,
recommend.value[0][1],
recommend.value[0][2],
recommend.value[0][3],
recommend.value[0][4])

draw.draw_society(idealSoc)

And we get these results

Steps to convergence: 40
Number of not contractions: 4

0

0 0

0

0

0.8

0.05

0.66

Figure 3.3: Highest number of steps where φ breaks the definition of a contraction
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4. Undirected Graphs
This chapter studies the diffusion process defined in Definition 4 on undirected
graphs.

4.1 Complete Graphs
This section proves that every w ∈ Rn

≥0 is a fixed point of φ from the start
of the process on complete graphs.

Lemma 1. Let G be a graph and i, j ∈ V neighbors with the same neighborhood
N [i] = N [j], then mij = mji.

Proof. We look at the amount of weight transferred between i, j ∈ V in one step.
The weight transferred from vertex i to vertex j is equal to

mij = wi
wj∑︁

k∈N [i] wk

.

The weight transferred from j to i in one step is equal to

mji = wj
wi∑︁

k∈N [j] wk

.

By assumption, we know N [i] = N [j] and so the weight transferred between i, j
is

mji = wj
wi∑︁

k∈N [j] wk

= wi
wj∑︁

k∈N [i] wk

= mij .

Theorem 2. Let Kn be a complete graph. Then every w ∈ Rn
≥0 is a fixed point

of φ from the start of the process.

Proof. By definition of a complete graph, we know that for every two vertices
i, j ∈ V , it holds N [i] = N [j]. Now we can use Lemma 1 to say that for every
two vertices, mij = mji. The weight transferred between every two vertices is
the same. That means f(ij)k = 0 for all edges ij ∈ E and all steps k = 1, 2, . . .
Since the flow of all edges in the graph is equal to 0, ∆i = 0 for all i ∈ V , and
φ(w) = w in each step. Thus w = w0 = w1 = . . . , and w ∈ Rn

≥0 is a fixed point
of φ.

4.2 State-induced Graphs
In this section, we show an essential theorem used in some of the proofs from
now on. For the following theorem, we need the fact that if a graph G has more
than one component, we can study each component independently. The reason
is there are no neighbors between every two components, so the diffusion process
runs on each component independently.

Theorem 3. Let w ∈ Rn
≥0 be a state, G a graph and Gw a state-induced graph

of G. These statements are equal
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1. The diffusion process converges on G for w.

2. The diffusion process converges on Gw for w.

Proof. To prove the equivalence between these two statements, we prove that
vertices with a weight of zero are not interacting in any way with the diffusion
process. Let i be a vertex and wi = 0 its weight. In every step, we look into
the interactions of i with other vertices. If a vertex is not a neighbor of i, then
i trivially does not interact with it. For vertices neighboring of i, the weight
transferred from i to j ∈ N [i] is equal to

mij = wi
wj∑︁

k∈N [i] wk

= 0 wj∑︁
k∈N [i] wk

= 0 .

So i does not give any weight to any vertex. Now let us look if any vertex gives
i any weight.∑︂

j∈N [i]
mji =

∑︂
j∈N [i]

wj
wi∑︁

k∈N [j] wk

=
∑︂

j∈N [i]
wj

0∑︁
k∈N [j] wk

= 0

and since wi stays 0 for the whole process, i does not contribute to any weight
exchange between some j ∈ N [i]. Thus i does not interact with the rest of the ver-
tices in any way during the process; hence statements 1. and 2. are equivalent.

Corollary. The diffusion process ϵ-converges on G for w if and only if the diffusion
process ϵ-converges on Gw for w.
Corollary. State w ∈ Rn

≥0 is a fixed point of the diffusion φ on G if and only if
state w is a fixed point of the diffusion φ on Gw.

We abuse the notation and use w to denote both the state on G and Gw,
which is a subgraph of G. From now on, if not stated differently by a graph, we
mean a state-induced graph, so we assume every vertex to have a weight greater
than 0.
Remark. Notice that a result analogous to Theorem 3 about the diffusion process
on directed graphs (Remark 2.1) also holds since the proof would not be different.

4.3 Vertex Monotone Graphs
This section is about vertex monotone graphs. We show that the diffusion process
defined on a vertex monotone graph converges for every w ∈ Rn

≥0.
Proposition 1. Suppose (ak)k∈N is a monotonic sequence of real numbers. Then
(ak)k∈N converges if and only if it is bounded. [Rud76]

Theorem 4. If G is vertex monotone, the diffusion process converges for every
w ∈ Rn

≥0.

Proof. We apply Proposition 1 to the sequence of weights (wk
i )i∈N for an arbitrary

vertex i ∈ V . The sequence of weights (wk
i )i∈N is bounded from below by 0 by

the definition of φ and bounded from above by ∑︁
j∈V wj. Thus (wk

i )k∈N has
a limit and converges to some number ai ∈ R≥0. This means that every vertex
converges to some limit. Now we can take a = (a1, a2, a3, . . . , an) and we know
that limk→∞ wk = a.
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4.4 Graphs with Few Vertices
Now we look into smaller graphs with 1-3 vertices. We discuss the convergence
and monotonicity of the diffusion process on these graphs.

4.4.1 Convergence and Monotonicity
We now show that for every G with ≤ 3 vertices and every w ∈ Rk

≥0, k ∈ {1, 2, 3}
the diffusion process converges in a finite number of steps, and G is vertex mono-
tone. We show this using case analysis.

Lemma 5. The diffusion process converges for every w ∈ R≥0.

Proof. The process defined on one vertex trivially converges.

Lemma 6. For every w ∈ R2
≥0 and G with 2 vertices the diffusion process con-

verges.

Proof. If |V (G)| = 2, it is either an edge or two isolated vertices. If we have two
isolated vertices, we can use Lemma 5 on each one, and we are done. If an edge
exists between the two vertices, we use Theorem 2.

Now we show a crucial lemma that we need for different proofs in the thesis.

Lemma 7 (Leaf lemma). Every vertex, which is a leaf in a graph G with at least
3 vertices and which has a neighbor with at least one other neighbor, is decreasing
for every w ∈ Rn

≥0.

Proof. By the definition of a leaf in a graph, each leaf has a degree of 1. Its
neighborhood consists of the leaf itself and one neighbor. We know that its
neighbor has a degree of at least 2. Let us denote the leaf as i and the neighbor
of i as j. The weight transferred from i to j is equal to

mij = wi
wj

wj + wi

and the weight transferred from j to i is

mji = wj
wi

wj + wi +∑︁
k∈N [j]\{j,i} wk

.

We know that ∑︁k∈N [j]\{j,i} wk > 0 thus

mji = wj
wi

wj + wi +∑︁
k∈N [j]\{j,i} wk

< wi
wj

wj + wi

= mij .

This means ∆i < 0 in every step; hence i is decreasing.

Lemma 8. The process converges for every w ∈ R3
≥0 and G with three vertices.

Proof. We use case analysis on the number of edges in G. If |E| ∈ {0, 1}, we
are done by using Lemma 5 and Lemma 6 on each component. If |E| = 2, G is
a path on three vertices. We can denote the three vertices as i, j, k where i, k are
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external vertices and j is internal. By the Leaf lemma 7, we know i and k are
decreasing. We want to show that j is increasing. We know that

mji = wj
wi

wj + wi + wk

< wi
wj

wj + wi

= mij

and
mjk = wj

wk

wj + wi + wk

< wk
wj

wj + wk

= mkj .

Thus

wj
wi

wj + wi + wk

+ wj
wk

wj + wi + wk

< wi
wj

wj + wi

+ wk
wj

wj + wk

mji + mjk < mij + mkj .

In every step, more weight is transferred from the external vertices to the internal
vertices than from the internal vertices to the external ones. Therefore j is
increasing, and G is vertex monotone; hence the process converges by Theorem 4.
If |E| = 3, we have a complete graph on three vertices, and the process converges
by Theorem 2.

4.5 Contractions
This section shows that the function φ defined in Definition 4 can be non-
contracting in an arbitrary finite step. To show this, we find a graph for which
a function defined in the diffusion process has a pre-image for every step and that
there exists a non-contracting configuration on the first two steps.

Lemma 9. There exists a graph and a state w ∈ Rn
≥0 on which the function φ is

not a contraction.

Proof. Finding a graph and a state on which the function φ is not a contraction
is simple. For example, we can take a path on three vertices that looks like this

1

i

1
4

j

1

k

Figure 4.1: Example of a graph on which φ is not a contraction.

We run two steps of the diffusion process. If φ is a contraction, it holds

∥φ2(w0) − φ1(w0)∥ < ∥φ1(w0) − φ0(w0)∥ .

We show that this does not hold.

φ0(w0) = (w0
i , w0

j , w0
k) = (1,

1
4 , 1)
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We calculate φ1(w0) as (w1
i , w1

j , w1
k) where

w1
i = wj

wi

wi + wk + wj

+ wi
wi

wi + wj

= 1
4 · 1

9
4

+ 1 · 1
5
4

= 41
45

w1
j = wi

wj

wi + wj

+ wj
wj

wi + wk + wj

+ wk
wj

wk + wj

= 1 ·
1
4
5
4

+ 1
4 ·

1
4
9
4

+ 1 ·
1
4
5
4

= 77
180

w1
k = wj

wk

wi + wk + wj

+ wk
wk

wk + wj

= 1
4 · 1

9
4

+ 1 · 1
5
4

= 41
45

φ1(w0) =
(︃41

45 ,
77
180 ,

41
45

)︃
.

And similarly, we calculate φ2(w0) as (w2
i , w2

j , w2
k)

φ2(w0) =
(︃3484057

4392225 ,
11657569
17568900 ,

3484057
4392225

)︃
.

Then, we calculate the norms

∥φ2(w0) − φ1(w0)∥ ≈ 0.289

∥φ1(w0) − φ0(w0)∥ ≈ 0.218 .

Clearly
∥φ2(w0) − φ1(w0)∥ > ∥φ1(w0) − φ0(w0)∥ .

Thus φ is not a contraction.

Theorem 10. For every l there is a w0 such that ∥φl+2(w0) − φl+1(w0)∥ >
∥φl+1(w0) − φl(w0)∥.

Proof. To prove this claim, we proceed as follows. First, we find a graph where
function φ breaks the definition of a contraction in the first two steps, and then
we show that for this function, there always exists a pre-image of w. Informally,
every step in the diffusion process has a pre-step. If we prove those two things,
we can shift the steps where the contraction does not hold to an arbitrary step l.
We showed the first part in Lemma 9. Now, we want to show that every state w
on this type of three-vertex graph has a pre-image. We can take advantage
of the fact that the state used as an example above has outer vertices with
the same weight. Let b be the weight of i and k and a be the weight of j.
After one step of the diffusion process, the new weights a′ and b′ are

a′ = a2

a + 2b
+ ab

a + b
+ ab

a + b
(4.1)

and
b′ = ab

a + 2b
+ b2

a + b
. (4.2)

We want to show that given a′, b′ ∈ R≥0 there exist a and b satisfying equations
4.1 and 4.2. We use the fact that a + 2b = c where c ∈ R≥0 is an arbitrary
constant. We can use it because we can scale w to have the sum c. We solve
the system for a + 2b = 1 and find every possible solution for a and b. We
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use WolframAlpha [Wol23] to solve the set of equations 4.1,4.2. We also add
constraints

a > 0, b > 0, a′ > 0, b′ > 0 and a + 2b = 1 .

We get one possible solution

a = 1
6(− 22 2

3 (3b′ + 1)
3
√︂

3
√

6b′3 + 42b′2 − 18b′ + 3 − 18b′ + 5

+ 2 3
√︂

6
√

6b′3 + 42b′2 − 18b′ + 3 − 36b′ + 10 + 2)

b = 1
12( 22 2

3 (3b′ + 1)
3
√︂

3
√

6b′3 + 42b′2 − 18b′ + 3 − 18b′ + 5

− 2 3
√︂

6
√

6b′3 + 42b′2 − 18b′ + 3 − 36b′ + 10 + 4)

and
0 < b′ < 0.5
a′ = 1 − 2b′

There are conditions for a′ and b′, but these conditions are trivially satisfied
because we are scaling to a + 2b = 1. Thus b′ cannot be > 0.5, and a′ is always
1−2b′ so the sum stays the same. From the constraints, we know that a > 0, b > 0,
and we have to verify the denominator will not be zero and that the polynomials
6b′3 + 42b′2 − 18b′ + 3 and 3

√
6b′3 + 42b′2 − 18b′ + 3 − 18b′ + 5 are greater than

zero. We verify this using WolframAlpha [Wol23]. The solution we get is

6b′3 + 42b′2 − 18b′ + 3 ≤ 0 for b′ < −7.41

and
3
√

6b′3 + 42b′2 − 18b′ + 3 − 18b′ + 5 is never ≤ 0 .

All of the conditions are always satisfied; hence we proved that there always
exists a pre-image of w. This means that for every l there is a w0 such that
∥φl+2(w0) − φl+1(w0)∥ > ∥φl+1(w0) − φl(w0)∥.

4.6 Trees
In this section, we prove that every w ∈ Rn

≥0 becomes a fixed point in a finite
number of steps on a tree during the threshold diffusion process. Before that, let
us prove a different theorem that helps us greatly in the proof.

Theorem 11. Let w ∈ Rn
≥0 be an arbitrary initial state and G an undirected

graph with ≥ 3 vertices. If G has a leaf, there exists a vertex in G that converges
to 0.

Proof. Let i ∈ E be a leaf in G. From Leaf lemma 7, i is decreasing during
the diffusion process. Since i is decreasing, i either converges to 0 or i converges
to some δ > 0. If i converges to 0, then i is the sought vertex in G. If i converges
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to some δ > 0, then from the definition of the diffusion process (Definition 4), we
know that ∑︁i∈V wi stays the same during the process. Thus in the limit, the sum
of flows of the neighborhood is equal to zero, and at the same time, the weight
that flows to each neighbor is greater than zero. Formally, limk→∞ f(ij)k = 0
and f(ij) > 0 for j ∈ N [i]. Now we break down the flow, and we get

lim
k→∞

f(ij)k = lim
k→∞

(mij − mji)k =

= lim
k→∞

(︄
wi

wj

wi + wj

− wj
wi

wi + wj +∑︁
l∈N [j]\{i,j} wl

)︄k

= 0 .

That means
lim

k→∞

∑︂
l∈N [j]\{i,j}

wk
l =

∑︂
l∈N [j]\{i,j}

lim
k→∞

wk
l = 0 .

Thus
∀l ∈ N [j] \ {i, j} : lim

k→∞
wk

l = 0 .

And the sought vertices are wl for every l ∈ N [j] \ {i, j} where j ∈ N [i].

4.6.1 Fixed Points of the Threshold Diffusion on Trees
Theorem 12. Let G be a tree. Then every initial state w ∈ Rn

≥0 becomes a fixed
point of the threshold diffusion φ̄δ in a finite number of steps.

Proof. We prove this by induction on the number of vertices of the tree n.
The base case n = 1 is trivial. As an induction hypothesis, let us assume the state-
ment of the theorem holds for every tree of size k′ < k. Let G be a tree on k
vertices. This means that G has a leaf. Thus by Theorem 11, there exists at
least one vertex whose weight converges to zero and whose weight is reset to zero
in some step l during the threshold diffusion process. We take Gwl , which has less
than k vertices because at least one vertex got deleted and its state u ∈ Rk′

≥0. Gwl

is either a tree or a forest. No cycles can be created by vertex and edge deletion,
but the tree can fall apart. If it does fall apart, we use the induction hypothesis
on each tree in the forest. Then by the induction hypothesis, u ∈ Rk′

≥0 becomes
a fixed point of φ̄δ in a finite number of steps on Gwl ; hence by Corollary 4.2,
w ∈ Rk

≥0 becomes a fixed point of φ̄δ in a finite number of steps on G.

4.6.2 Convergence of Star Graphs
We had already discussed one of the properties of the star graphs in Lemma 9,
and we proved that the function φ on star graphs is not always a contraction.
Now we prove more properties such as monotonicity and convergence. We have
two types of vertices in a star graph. One type is an inner vertex. There is only
one in each star graph, with a degree n − 1 and outer vertices, which all have
degrees of 1.

Lemma 13. Let G be a star graph. Then the diffusion process converges for
every w ∈ Rn

≥0.
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Proof. Let i be an inner vertex and j be an arbitrary outer vertex. By the Leaf
lemma 7, we know that j is decreasing. Hence∑︂

j∈N [i]
wi

wj

wj + wi +∑︁
k∈N [i]\i,j wk

<
∑︂

j∈N [i]
wj

wi

wj + wi

∑︂
j∈N [i]

mij <
∑︂

j∈N [i]
mji .

So in each step, the outer vertices transfer more to i than i to the outer vertices.
That means the weight of the inner vertex increases in each step. Since we know
that the outer vertices are decreasing by the leaf lemma, G is vertex monotone,
and by Theorem 4, the diffusion process converges for every w ∈ Rn

≥0.

4.7 Undirected Graphs in General
In this section, we look at general undirected graphs and graphs properties
of the diffusion process on them.

4.7.1 Vertices with Neighborhoods Subsets of the Neigh-
borhood of Another Vertex

We can generalize the Leaf lemma 7 further as follows:

Lemma 14. Let i, j ∈ V and N [i] ⊊ N [j] then ∆i < 0 in every step of the
diffusion process; hence i is decreasing.

Proof. The neighborhood of i is a strict subset of the neighborhood of j. Again,
we shall look into the weights transferred in each step. The weight transferred
from i to j is equal to

mij = wi
wj∑︁

k∈N [s] wk

and the weight transferred from j to i is equal to

mji = wi
wj∑︁

k∈N [s] wk +∑︁
l∈N [i]\N [s] wl

.

Since the neighborhood of i is a strict subset of j it holds ∑︁l∈N [i]\N [s] wl > 0 and
thus

mij = wi
wj∑︁

k∈N [s] wk

> wi
wj∑︁

k∈N [s] wk +∑︁
l∈N [i]\N [s] wl

= mji

That means that ∆i < 0 in every step and i is decreasing.

4.7.2 Polyhedral Description of the Set of Fixed Points
We first introduce the notations used in this chapter. The set of all fixed points
of φ on G is FP (G) = {w ∈ Rn

≥0|φ(w) = w}.
For S ⊆ V : FPS(G) = {w ∈ FP (G)|supp(w) = S} is the subset of FP (G)
of fixed points with support S. Evenly convex polyhedra (e-polyhedra) is a set
of points that satisfy a set of linear inequalities. Some of them are strict, and

25



some of them are not. E-polytope is an e-polyhedra that a ball of a finite radius
can enclose. The difference between e-polytope and polytope is that polytope
does not have strick inequalities. There are more names for the e-polyhedra men-
tioned, such as wholefaced polyhedra in [WW69], convex polyhedra in [BHZ05],
semiclosed polyhedra in [YY10] and G-polyhedra in [Zhe09].

Theorem 15. Let S ⊆ V . Then FPS(G) ⊆ Rn is an e-polytope.

Proof. To prove this theorem, we first prove that ∀w ∈ FPS(G) and ∀u, v ∈ S,
muv = mvu i.e. f(uv) = 0. We prove this by contradiction. Suppose there exists
u, v ∈ S such that mvu > muv, i.e., f(uv) > 0 We will show that then there must
be a cycle v = v0, v1, . . . , vk = u such that f(vi, vi+1 mod k+1) for each i = 0, . . . , k.
Since u, v ∈ S are stable (i.e., φ(wu) = u, φ(wv) = v) and mvu > muv, this means
that v is losing weight to u and the weight loss has to be compensated, otherwise
v would not be stable. Specifically, there must exist a neighbor of v compensating
the weight loss of v by transferring some of its weight to v. Since this neighbor is
stable, its weight loss is in turn compensated by one of its neighbors, and so on.
By repeating this argument, we get the desired cycle.

However, by definition of the diffusion process, the fact that f(uv) > 0 implies

1∑︁
k∈N [v] wk

>
1∑︁

l∈N [u] wl

and thus

w(N [v]) < w(N [u]) .

Applying this observation along the cycle, we get that w(N [v]) < w(N [u]) <
· · · < w(N [v]), a contradiction. That means that w(N [v]) = w(N [u]). Thus,
the following set of inequalities characterizes FPS(G):

w(N [v]) = w(N [u]) for every edge uv s.t. u, v ∈ S

∀v ∈ S : wv > 0 .

Notice that due to the last strict inequality, this is not a polytope, but it is
an e-polytope.

Clearly FP (G) = ⋃︁
S⊆V FPS(G), so FP (G) is an union of at most 2n e-

polytopes.
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5. Generalizations of the
Diffusion Process on Undirected
Graphs
In this chapter, we look into generalizations of the diffusion process on undirected
graphs. Specially, we look at the diffusion process on an undirected graph with
stubbornness and weighted edges.

5.1 Graphs with Stubbornness
This section is dedicated to a process defined on graphs, where every vertex has
an additional parameter sv ∈ R≥0 representing its stubbornness.

Definition 16 (Perception). We say that the vertex v ∈ V perceives vertex i ∈
N [v] with a weight of wviwi if in every step

mvi = wv
wiwiv

wiwiv +∑︁
k∈N [v]\wi

wk

and ∀j ∈ N [v] \ i

mvj = wv
wj

wiwiv +∑︁
k∈N [v]\wi

wk

Definition 17. A stubbornness of a vertex v ∈ G is a sv ∈ R≥0 indicating v
perceives itself with a weight of svwv.

Definition 18. The diffusion process on a graph with stubbornness is defined
the same as the diffusion process (Definition 4) but every i ∈ E has si.

Let us first consider the case where every vertex has a stubbornness of zero.
This means that the vertex does not influence itself. We prove that the process
on this type of graph does not necessarily ϵ-converge.

Lemma 16. There exists (G, w, s) such that the diffusion process (Definition 18)
does not ϵ-converge.

Proof. Let G be a cycle with four vertices. Let us take graph (G, [wa = 2, wb =
1, wc = 1, wd = 1], [sa = 0, sb = 0, sc = 0, sd = 0]). We show that the process
defined in this configuration is cyclic (Definition 5), meaning that the process can
not ϵ-converge. We calculate the weights of each vertex in the first three steps:

w0
a = 2

w0
b = w0

c = w0
d = 1

After one step, the weights are

w1
a = w0

b

w0
a

w0
a + w0

d

+ w0
c

w0
a

w0
a + w0

d

= 12
3 + 12

3 = 4
3
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w1
b = w0

a

w0
b

w0
c + w0

b

+ w0
d

w0
b

w0
b + w0

c

= 21
2 + 11

2 = 3
2

w1
c = w0

a

w0
c

w0
c + w0

b

+ w0
d

w0
c

w0
c + w0

b

= 21
2 + 11

2 = 3
2

w1
d = w0

c

w0
d

w0
a + w0

d

+ w0
b

w0
d

w0
d + w0

a

= 11
3 + 11

3 = 2
3

and similarly

w2
a = w1

b

w1
a

w1
a + w1

d

+ w1
c

w1
a

w1
a + w1

d

= 3
2

4
3

4
3 + 2

3
+ 3

2

4
3

4
3 + 2

3
= 2

w2
b = w0

a

w1
b

w1
c + w1

b

+ w1
d

w1
b

w1
b + w1

c

= 4
3

3
2

3
2 + 3

2
+ 2

3

3
2

3
2 + 3

2
= 1

w2
c = w1

a

w1
c

w1
c + w1

b

+ w1
d

w1
c

w1
c + w1

b

= 4
3

3
2

3
2 + 3

2
+ 2

3

3
2

3
2 + 3

2
= 1

w2
d = w1

c

w1
d

w1
a + w1

d

+ w1
b

w1
d

w1
d + w1

a

= 3
2

2
3

4
3 + 2

3
+ 3

2

2
3

2
3 + 4

3
= 1

The graph in particular steps looks like

2

a

1
b

1
c

1
d

4/3

a

3/2

b

3/2

c

2/3

d

2

a

1
b

1
c

1
d

. . .

Figure 5.1: Cycle of states on G

Clearly, w0 = w2 and the process keeps switching between the states w0 and
w1, thus never ϵ-converges.

5.2 Weighted Edges
This section is dedicated to the process defined on graphs with edge weight.

Definition 19 (Edge weight). Edge uv ∈ E has a weight of αuv = αvu if u per-
cieves v (Definition 16) with the weight of αuvwv and v percieves u with the weight
of αuvwu.

Now we look into properties of the undirected graphs where every edge e ∈ E
has an edge weight. The leaf lemma (Lemma 7) does not necessarily hold for
graphs with weighted edges.

Lemma 17. There exists a w ∈ Rn
≥0 and a graph with weighted edges G s.t.

the Leaf lemma 7 does not hold.
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Proof. We prove this lemma by constructing an example of a graph where the Leaf
lemma does not hold. We take the following graph

1
i

2

j

1
k1 10

Figure 5.2: Example of a graph on which the Leaf lemma does not hold.

We calculate mjk and mkj as

mjk = wj
wkαjk

wi + wj + αjkwk

= 2 · 1 · 10
1 + 2 + 10 · 1 = 20

13

mkj = wk
wjαjk

wk + αjkwj

= 1 · 2 · 10
1 + 10 · 2 = 20

21 .

We can see that mjk > mkj, and since k is a leaf, the Leaf lemma does not
hold.

Since the Leaf lemma 7 does not hold, we cannot use the same proof for many
properties. We cannot prove Lemma 8, Lemma 13 nor generalize the Leaf lemma
as in Lemma 14.
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6. Directed Graphs
This chapter is dedicated to the diffusion process on directed graphs. The process
is defined in Remark 2.1. Even though the definition of the process is the same,
the directedness of the underlying graph fundamentally changes the properties
of the process. Below, we look further into the fundamental properties of the dif-
fusion process on directed graphs.

6.1 ϵ-Convergence
The first property we look into is ϵ-convergence. In directed graphs, we can prove
that the process never ϵ-converges for certain initial states.

Lemma 18. There exists a w ∈ Rn
≥0, and a directed graph G s.t., the directed

version of the diffusion process does not ϵ-converge.

Proof. To prove this lemma, we find a directed graph on which the process is
cyclic (Definition 5). Let us take a directed graph (G, [wa = 1

4 , wb = 1
4 , wc = 1

2 ])
where G = ({a, b, c, d}, E) and G is a cycle. We calculate the weights of all
vertices in the first four steps

w0
a = w0

b = 1
4

w0
c = 1

2 .

After one step, the weights are

w1
a = wb

wa

wa

= 1
4

1
4
1
4

= 1
4

w1
b = wc

wb

wb

= 1
2

1
4
1
2

= 1
2

w1
c = wa

wc

wc

= 1
4

1
4
1
4

= 1
4 .

After the second step, the weights are

w2
a = wb

wa

wa

= 1
2

1
4
1
2

= 1
2

w2
b = wc

wb

wb

= 1
4

1
4
1
4

= 1
4

w2
c = wa

wc

wa

= 1
4

1
4
1
4

= 1
4

and similarly, the third step

w3
a = wb

wa

wa

= 1
4

1
4
1
4

= 1
4
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w3
b = wc

wb

wb

= 1
4

1
4
1
4

= 1
4

w3
c = wa

wc

wc

= 1
2

1
4
1
2

= 1
2 .

We look at the diffusion process graphically

1/4

a

1/4

b

1/2

c

1/4

a

1/2

b

1/4

c
1/2

a

1/4

b

1/4

c
1/4

a

1/4

b

1/2

c
. . .

Figure 6.1: Cycle of states on G

Clearly w0 = w3 and hence the process keeps switching states w0, w1, w2,
thus never ϵ-converges.

Now we can generalize Lemma 18 for every directed cycle with no self-loops.

Theorem 19. Let G be the directed cycle on n vertices without self-loops. Then,
the process cycles for every w ∈ Rn

≥0, which does not have all coordinates equal.
On the other hand, every w which has all coordinates equal is a fixed point.

Proof. Since we have a directed cycle with no self-loops, for arbitrary vertices
i ∈ V and j ∈ N−[i], it holds

φ(w)i = wj
wi

wi

= wj .

Vertex i, after each step, has a weight of the one vertex in N−[i]. If all of the co-
ordinates are equal, i.e., wi = wj for all i, j ∈ V , then w0 = w1 = . . . and w
is a fixed point. If not all of the coordinates are equal, the process does not
ϵ-converge because the weight of all vertices shifts in the direction of edge orien-
tation before reaching vertex i again after n steps, so w0 = wn = w2n = . . . , and
the process keep cycling between the states w0, w1, . . . , wn−1.

6.2 Directed Acyclic Graphs
In the undirected version, we successfully proved that the threshold diffusion
process ϵ-converges on trees. We can show something similar for the directed
graphs. Firstly, we show the directed version of the Leaf lemma 7 and Theorem 11.

Definition 20. Let G be a directed graph. Vertex v with |N−[v]| = 0 is called
a source and a vertex k with |N+[k]| = 0 is called a sink.

Lemma 20 (Source lemma). Let G be a directed graph with at least two vertices,
and let v be its source with at least one out-neighbor. Then v is decreasing for
every w ∈ Rn

≥0.
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Proof. By the assumption, the source has at least one vertex in the out-neighbor-
hood N+[i] and has no vertices in the in-neighborhood N−[i]. The weight trans-
ferred from i to its neighbors is equal to∑︂

j∈N+[i]
mij =

∑︂
j∈N+[i]

wi
wj

wj + wi

> 0 .

Since i has no in-neighbors, i does not receive any weight in the process; hence,
i is decreasing.

Lemma 21. Let w ∈ Rn
≥0 be an arbitrary initial state and G a directed graph

with ≥ 2 vertices. Then, if G has a source, there exists a vertex in G whose
weight converges to 0.

Proof. Let i ∈ E be a source in G. From the Source lemma 20, we know that i
is decreasing. We use the same argument as in Theorem 11 and say that i either
converges to 0 and i is the sought vertex or i converges to some δ > 0. Then
we know that in the limit, the sum of flows of the neighborhood is equal to zero,
and at the same time, the weight that flows to each neighbor is greater than zero.
Formally, limk→∞

∑︁
j∈N+[i] f(ij)k = 0 and f(ij)k > 0 for each j ∈ N+[i]. If we

break down the flow, we get

lim
k→∞

∑︂
j∈N+[i]

f(ij)k = lim
k→∞

∑︂
j∈N+[i]

(mk
ij − mk

ji)

and since mk
ji = 0 for every k and every j ∈ N+[i] and N−[i] = ∅ we have

lim
k→∞

∑︂
j∈N+[i]

wi

wk
j

wk
i + wk

j

=
∑︂

j∈N+[i]
lim

k→∞
wk

i

wk
j

wk
i + wk

j

= 0 .

Since the sum of all limits is equal to 0, this means that either limk→∞ wk
i = 0

or for every j ∈ N+[i], limk→∞ wk
j = 0; hence all the out-neighbors of i have

the desired property.

6.2.1 Fixed Points of the Threshold Diffusion on Directed
Acyclic Graphs

Now we prove that if a directed graph does not have a cycle, the state w becomes
a fixed point of the threshold diffusion in a finite number of steps.

Theorem 22. Let G be a directed acyclic graph. Then every initial state w ∈ Rn
≥0

becomes a fixed point of the threshold diffusion φ̄δ in a finite number of steps.

Proof. We prove this by induction on the number of vertices of the directed acyclic
graph n. The base case n = 1 is trivial. As an induction hypothesis, let us assume
the statement of the theorem holds for every directed acyclic graph of size k′ < k.
Let G be a directed acyclic graph on k vertices. This means that G has a source.
Thus by Theorem 21, there exists at least one vertex whose weight converges
to zero and whose weight is reset to zero in some step l during the threshold
diffusion process. We take Gwl , which has less than k vertices because at least
one vertex got deleted and its state u ∈ Rk′

≥0. Gwl is either a directed acyclic
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graph or the graph falls apart into multiple directed acyclic graphs. No cycles
can be created by vertex and edge deletion. If the directed acyclic graph falls
apart, we use the induction hypothesis on each directed acyclic graph. Then by
the induction hypothesis, u ∈ Rk′

≥0 becomes a fixed point of φ̄δ in a finite number
of steps on Gwl ; hence by Corollary 4.2, w ∈ Rk

≥0 becomes a fixed point of φ̄δ in
a finite number of steps on G.

Corollary. If a directed graph with no self-loops G has a cycle, there exists w ∈
R≥0 s.t. the process is cyclic on G, and if G does not have a cycle, then the process
does not cycle on every w ∈ R≥0.

Proof. If G has a cycle, we can choose w by setting the weight of every vertex
in a cycle using Theorem 19 and the weight of all vertices that do not belong
in the cycle to zero, and the process is cyclic. If G does not have a cycle, then it
is a directed acyclic graph, and by Theorem 22 ϵ-converges; hence the process is
not cyclic on G.

6.2.2 Convergence of Directed Star Graphs
Now, we define the star graph as an undirected star graph, but the direction
of the edges is from the outer vertices to the inner vertex. Meaning the inner
vertex influences every outer vertex in a graph.

Lemma 23. If G is vertex monotone, the directed diffusion process converges for
every w ∈ Rn

≥0.

Proof. Follows directly from the proof of Theorem 4.

Lemma 24. Let G be a directed star. Then the diffusion process converges from
every initial state w ∈ Rn

≥0.

Proof. A directed star graph is a directed acyclic graph, and if vertex i is a source
in a directed acyclic graph, then i is decreasing. But that means that every outer
vertex is decreasing, and because the inner vertex is not influenced by any other
vertex, it gets the weight from all of the outer vertices and is increasing; hence
the graph is vertex monotone and the process converges.
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7. Conclusion
In this thesis, we defined and studied a symmetric homophily-preserving opin-
ion diffusion model. Our main goal was to study our model’s properties and
prove the process’s convergence. We have not proved convergence for every type
of graph and initial state. We have taken several approaches and shown their
infeasibility. One of the approaches we tried was proving that φ is a contraction,
which would directly imply convergence. Another approach that would directly
imply convergence was to prove the vertex monotonicity of all graphs during
the process. We note that experiments indicate the possibility that graphs be-
come vertex monotone in the diffusion process from some finite step onward,
which would still imply convergence. We studied the generalization of the diffu-
sion model on graphs with stubbornness, where we disproved ϵ-convergence, which
is a weaker property than convergence. We also studied a variant of the diffu-
sion process on graphs with weighted edges. We found out that even the Leaf
lemma 7 does not hold in graphs with weighted edges. Another generalization we
studied was on directed graphs, where we provided examples of states and graphs
on which the process periodically cycles through a finite set of states.

On the other hand, we proved convergence in the undirected version of the dif-
fusion model for some types of graphs. We proved convergence for complete
graphs (4.1) and proved that the vertices in complete graphs do not change
the weight at all during diffusion. We proved convergence for vertex monotone
graphs (4.3), as well as star graphs (4.6.2). For trees, we proved that every initial
state becomes a fixed point of φ̄δ in a finite number of steps (4.6.1).

For the generalization on directed graphs, we proved convergence for star
graphs (6.2.1). We also proved that every initial state becomes a fixed point
of φ̄δ on directed acyclic graphs (6.2.1). This made a dichotomy that says that if
a directed graph with no self-loops has a cycle, there exists a state s.t. the process
is cyclic, and if it does not have a cycle, then the process does not cycle on every
state.

7.1 Future Work
Our intuition is that in our model, ϵ-convergence could imply convergence or that
our proofs should be somewhat easily extendable to convergence, even though this
is generally not true since there are sequences that ϵ-converge but do not converge.

Proving the convergence on more types of graphs would be good. For example,
it is tempting to study the convergence for undirected cycles. The same approach
could be used in the process with weighted edges where the convergence of paths,
trees, or cycles could be studied. The process does not converge on graphs with
stubbornness, but we have no information about trees or paths with stubbornness,
which is also worth exploring.

For the directed graphs, we know that if a directed graph with no self-loops
has a cycle, there exists a state on which the process is cyclic. It would be good
to prove it for directed graphs with self-loops and to prove a characterization
where the initial state has full support, meaning the non-zero vertices can also
be outside the cycle.
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Another direction that could be explored in more detail is the approaches
to prove the convergence for all undirected graphs. As stated above, experiments
indicate the possibility that graphs become vertex monotone in the diffusion
model from some finite step. If proved, it would directly imply convergence.
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A. Attachments

A.1 Simulator
This attachment is a directory that contains the source code to the simulation
program described in Section 3.

A.2 user documentation.pdf
This is the user documentation for the simulation program described in Section 3.

A.3 technical documentation.pdf
This is the technical documentation for the simulation program described in Sec-
tion 3.
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