
BACHELOR THESIS

Lukáš Polák

Extension of web-based interface for
protein binding sites prediction

Department of Software Engineering

Supervisor of the bachelor thesis: doc. RNDr. David Hoksza, Ph.D.

Study programme: Programming and software

development Bc.

Study branch: IPP2

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources. It has not been used to

obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

ii

I would like to thank doc. RNDr. David Hoksza, Ph.D. for supervising my thesis,

and introducing me to bioinformatics. I appreciate the useful consultations and

feedback I received. Thanks to Mgr. Petr Škoda, Ph.D. for consultations related to

PrankWeb architecture. I also want to thank my family for all of their support

during my studies.

iii

iv

Title: Extension of web-based interface for protein binding sites prediction

Author: Lukáš Polák

Department: Department of Software Engineering

Supervisor: doc. RNDr. David Hoksza, Ph.D., Department of Software Engineering

Abstract: Protein-ligand binding sites are positions on the protein structure where

the protein interacts with other molecules. PrankWeb is a web server developed

at MFF UK allowing prediction of such places. These predictions are essential

in fields such as bioengineering and computational drug discovery. The goal

of this thesis was to update this web server, i.e., replace old and unsupported

components with new ones. Another goal was to extend the server architecture

to enable the simple addition of modules for the postprocessing of the predicted

binding sites. These modules can be implemented either on the client side in case

of simple computations, or on the server side in case of complex computations.

As part of the thesis, we have implemented a client module for computing the

volume of active sites and a server module allowing the docking of small proteins

into predicted binding sites. The thesis describes not only the interventions in the

architecture but also provides a short introduction to the problem of protein-ligand

binding sites and their prediction.

Keywords: bioinformatics web software protein

v

vi

Contents

Introduction 3

1 Introduction and background 5
1.1 Introduction to molecular biology 5

1.1.1 Amino acids and proteins 5

1.1.2 Protein functions . 6

1.2 Used data formats . 7

1.2.1 JSON . 7

1.2.2 PDB . 7

1.2.3 PDBx/mmCIF . 9

1.2.4 FASTA . 9

1.2.5 CSV . 10

1.3 P2Rank tool . 10

1.4 PrankWeb architecture . 10

1.4.1 Gateway . 13

1.4.2 RabbitMQ . 13

1.4.3 Flower . 13

1.4.4 Web-server . 14

1.4.5 Executor-P2Rank . 14

1.4.6 Executor-Docking . 15

1.4.7 Prometheus . 15

1.5 Similar web-tools . 15

1.5.1 IntFOLD . 15

1.5.2 COACH . 16

1.5.3 DeepSite . 17

2 Programming documentation 19
2.1 Frontend . 19

2.1.1 High-level overview . 20

2.1.2 MolStar . 21

2.1.3 RCSB Saguaro 1D Feature Viewer 27

1

2.1.4 React components . 30

2.2 Plug-ins . 31

2.2.1 Client-side plug-ins . 32

2.2.2 Server-side plug-ins . 34

3 User documentation 41
3.1 Deployment . 41

3.1.1 Docker deployment . 41

3.1.2 Local deployment . 43

3.2 User guide . 44

3.3 Developer . 47

3.3.1 Client-side plug-ins . 48

3.3.2 Server-side plug-ins . 49

Conclusion 51

Bibliography 53

A Attachments 57
A.1 Source codes . 57

A.2 GitHub . 57

A.3 Abbreviations . 58

A.4 Pocket detail designs . 58

2

Introduction

Detection of protein ligand-binding sites is a vital aspect of nowadays drug

discovery and development. Identification of the potential binding sites allows an

understanding of various molecule interactions, which is the first step of rational

drug discovery pipelines. Recognizing the binding sites is thus very important

for further bioinformatic research and studies [1].

P2Rank is a machine-learning-based tool developed at MFF UK which allows

users to predict the ligand-binding sites for a given protein structure. P2Rank

works standalone and outperforms most of the existing binding sites prediction

tools [2]. PrankWeb is a web-based tool that provides a user-friendly interface for

P2Rank. A significant difference between PrankWeb and other web-based tools is

that PrankWeb does not employ either JMol or JSMol for structure visualization

of the results [3]. These libraries are rather old-fashioned. The original PrankWeb

authors decided to use the LiteMol for structure visualization and Protael for

sequence visualization. Although these libraries are still working, they are not

actively developed anymore.

There were two main goals of this thesis. The first goal was to update the

PrankWeb interface to use different libraries for the visualization, namely MolStar

[4] and RCSB Saguaro 1D Feature Viewer [5]. This improves not only the visual

appearance of the results but also the performance. Furthermore, the updated

libraries are actively developed and thus potentially more reliable in the future.

The second goal was to update the PrankWeb architecture, so that post-processing

may be done on the predicted binding sites both on the client side and the server

side. This introduces the potential to create custom plug-ins for the web interface.

The thesis presents a working version of the updated PrankWeb tool. The

updated tool should keep the current functionality of the website and visualize

the results via a more user-friendly interface. The tool should also be able to

perform computations on the predicted binding sites.

In the first chapter, the reader will be introduced to the basics of protein

and ligand-binding sites problematic, later in this chapter the current PrankWeb

architecture and the P2Rank tool itself will be covered. The reader will also

be briefly introduced to similar web tools. The second chapter will cover the

3

programming part of the work. Firstly, the usage of the updated libraries and other

frontend design decisions will be introduced. Secondly, the plug-in architecture

including both the client-side and the server-side computations will be covered in

the respective subchapters. In the third chapter, the tool usage will be described

from two perspectives - a user and a developer. The conclusion will cover the

results and the potential extensions to the tool.

4

Chapter 1

Introduction and background

PrankWeb is a web-based tool for predicting ligand-binding sites for a given

protein structure. PrankWeb uses a tool called P2Rank for the prediction of

binding sites on the backend. In this thesis, an improved version of PrankWeb is

introduced, with an emphasis on the modernization of the frontend and creating

a potential for implementing post-processing features, such as docking.

In this chapter, we will discuss the basics of protein and ligand-binding sites

problematic to get briefly acquainted with the topic. A short intro to the used data

formats in this thesis will follow. Later in this chapter, we will cover the current

PrankWeb architecture and the P2Rank tool itself to get a better understanding

of the project. The reader will also be briefly introduced to similar web tools for

the prediction of ligand-binding sites.

1.1 Introduction to molecular biology
In this section, we will briefly introduce the basics of molecular biology. We

will focus on the protein structures and their interactions with other molecules.

The reader is assumed to have a basic knowledge of protein structures and this

terminology to understand the concepts of the entire thesis.

1.1.1 Amino acids and proteins
Amino acids are in general molecules containing an amino group (-NH2), a

carboxyl group (-COOH), and a R group (also called side chain). Although there

are hundreds of known amino acids, 20 of them provide the key to the structure of

thousands of different proteins. In this thesis, we will focus on the 20 proteinogenic

amino acids that are used in the protein structures. Amino acids are the building

blocks for proteins that serve as diverse products, such as enzymes, hormones,

5

antibodies, muscle fibers, transporters, and many more.

Proteins are polymers consisting of a linear chain of amino acids. Each of the

so-called amino-acid residues is connected to its neighbor by a covalent bond.

The connected amino acids form a chain. Proteins are occurring in all cells and all

parts of the cells. Proteins are the molecular instruments through which genetic

information is expressed. Cells may produce proteins with substantially different

properties and activities just by joining them in a different sequence (also called

primary structure). The 3D protein representation based on a sequence of the

protein’s amino acids is called the tertiary structure [6].

Billions of proteins are known by their sequence, but only a small fraction of

them are known by their tertiary structure. The structures may be determined

by experiments, we call these structures experimental. Despite the effort to

determine the structures, the vast majority of actual protein structures remain

unknown. Nowadays, various tools are used for predicting unknown structures. A

notable example is a neural network called AlphaFold that allows the prediction of

a protein structure based on its sequence by assigning a probability to each amino

acid in the sequence (called pLDDT). We refer to these structures as predicted
[7].

1.1.2 Protein functions

The functions of proteins depend not only on the protein structures but also on

the environment in which they are located. Many protein functions are involved

by the reversible binding to other molecules. A molecule that is reversibly bound

to a protein is called a ligand (also protein ligand). A ligand may be any kind

of molecule, including another protein, or a small molecule.

One ligand binds on a part of the protein surface. This is called the ligand-
binding site. This binding is not only defined by its molecule, but also by other

properties such as shape, size, and charge. We refer to the binding site as a pocket
[6].

In PrankWeb, the main focus is to create a prediction of the potential locations

and interacting residues of small molecule ligands for a given protein structure.

These predictions may or may not be based on various physical and chemical

properties of spots on the protein surface, and evolutionary conservation score

of the residues. The conservation score is a measure of how similar the residues

are in different protein structures. In PrankWeb, evolutionary conservation is

explicitly visualized.

One of the PrankWeb extensions is the possibility to dock a ligand to a binding

site. Docking is a complex process of computing the mutual positions of the ligand

and the protein structure. This computation also provides information about

6

the potential energy of the protein-ligand complex. This altogether allows us to

predict the potential of real-life binding of the ligand to the protein structure [8].

1.2 Used data formats
PrankWeb uses several data formats for the input and output of data throughout

the application. In this section, we will briefly introduce the used data formats.

1.2.1 JSON
JSON (JavaScript Object Notation) is a data format used for storing JavaScript

objects. The syntax of this format is simple and the main advantages of this

format are its readability and simple usage on the frontend. The main idea of

JSON is to store its data in key-value pairs. The keys are strings and the actual

values may be in any format such as string, number, boolean, array, or another

object.

Listing 1.1 An example of a JSON file used for storing information about the
prediction for the 2SRC protein structure.

1 {
2 "id": "2SRC",
3 "database": "v3",
4 "created": "2023-02-25T20:58:07",
5 "lastChange": "2023-02-25T20:58:26",
6 "status": "successful",
7 "metadata": {
8 "predictionName": "2SRC",
9 "structureName": "structure.cif"

10 }
11 }

1.2.2 PDB
PDB (Protein Data Bank format) is a file format that is used for describing three-

dimensional protein structures. This format stores information about the atom

coordinates and their connections [9]. Alongside this information, the PDB format

may contain additional metadata as well. It is still used for many protein structures,

but the format size is limited and thus it does not support large structures, so in

some cases, it is replaced by the PDBx/mmCIF format (section 1.2.3) [10]. A large

database of PDB files for protein structures is called RCSB PDB
1
.

1
PDB database is available at https://www.rcsb.org/.

7

https://www.rcsb.org/

Listing 1.2 An edited example of a PDB file used for storing information about
the 2SRC protein structure.

1 HEADER TYROSINE-PROTEIN KINASE 29-DEC-98 2SRC
2 TITLE CRYSTAL STRUCTURE OF HUMAN TYROSINE-PROTEIN KINASE C-SRC,
3 TITLE 2 IN COMPLEX WITH AMP-PNP
4 COMPND MOL_ID: 1;
5 COMPND 2 MOLECULE: TYROSINE-PROTEIN KINASE SRC;
6 COMPND 3 CHAIN: A;
7 COMPND 4 FRAGMENT: RESIDUES 86-836, CONTAINING SH2, SH3, KINASE 2
8 COMPND 5 DOMAINS AND C-TERMINAL TAIL;
9 COMPND 6 SYNONYM: C-SRC, P60-SRC;

10 COMPND 7 EC: 2.7.1.112;
11 COMPND 8 ENGINEERED: YES
12 ...
13 JRNL AUTH W.XU,A.DOSHI,M.LEI,M.J.ECK,S.C.HARRISON
14 JRNL TITL CRYSTAL STRUCTURES OF C-SRC REVEAL FEATURES OF ITS
15 JRNL TITL 2 AUTOINHIBITORY MECHANISM.
16 JRNL REF MOL.CELL V. 3 629 1999
17 JRNL REFN ISSN 1097-2765
18 JRNL PMID 10360179
19 JRNL DOI 10.1016/S1097-2765(00)80356-1
20 ...
21 DBREF 2SRC A 83 533 UNP P12931 SRC_HUMAN 85 535
22 SEQADV 2SRC PTR A 527 UNP P12931 TYR 529 MODIFIED RESIDUE
23 SEQRES 1 A 452 MET VAL THR THR PHE VAL ALA LEU TYR ASP TYR GLU SER
24 ...
25 MODRES 2SRC PTR A 527 TYR O-PHOSPHOTYROSINE
26 HET PTR A 527 16
27 HET ANP A 1 31
28 HETNAM PTR O-PHOSPHOTYROSINE
29 HETNAM ANP PHOSPHOAMINOPHOSPHONIC ACID-ADENYLATE ESTER
30 HETSYN PTR PHOSPHONOTYROSINE
31 FORMUL 1 PTR C9 H12 N O6 P
32 FORMUL 2 ANP C10 H17 N6 O12 P3
33 FORMUL 3 HOH *269(H2 O)
34 HELIX 1 1 SER A 134 TYR A 136 5 3
35 HELIX 2 2 ARG A 155 LEU A 162 1 8
36 HELIX 3 3 LEU A 223 TYR A 229 1 7
37 ...
38 SHEET 1 A 2 PHE A 86 ALA A 88 0
39 SHEET 2 A 2 VAL A 137 PRO A 139 -1 N ALA A 138 O VAL A 87
40 SHEET 1 B 3 THR A 129 PRO A 133 0
41 SHEET 2 B 3 TRP A 118 SER A 123 -1 N ALA A 121 O GLY A 130
42 SHEET 3 B 3 LEU A 108 ASN A 112 -1 N ASN A 112 O LEU A 120
43 ...
44 LINK N PTR A 527 C GLN A 526 1555 1555 1.33
45 LINK C PTR A 527 N GLN A 528 1555 1555 1.33
46 CISPEP 1 GLU A 332 PRO A 333 0 -0.29

8

47 SITE 1 AC1 20 LEU A 273 GLY A 276 VAL A 281 ALA A 293
48 SITE 2 AC1 20 LYS A 295 THR A 338 GLU A 339 TYR A 340
49 SITE 3 AC1 20 MET A 341 SER A 345 ASP A 386 ARG A 388
50 SITE 4 AC1 20 ASN A 391 LEU A 393 ASP A 404 HOH A1064
51 SITE 5 AC1 20 HOH A1147 HOH A1200 HOH A1208 HOH A1230
52 CRYST1 50.590 72.970 172.690 90.00 90.00 90.00 P 21 21 21 4
53 ...
54 ATOM 1 N THR A 84 33.954 62.803 55.198 1.00 38.76 N
55 ATOM 2 CA THR A 84 32.735 62.188 54.583 1.00 39.76 C
56 ATOM 3 C THR A 84 32.941 60.717 54.186 1.00 37.91 C
57 ATOM 4 O THR A 84 32.021 60.068 53.678 1.00 36.13 O
58 ATOM 5 CB THR A 84 32.285 62.973 53.319 1.00 41.34 C
59 ATOM 6 OG1 THR A 84 33.424 63.240 52.489 1.00 41.84 O
60 ATOM 7 CG2 THR A 84 31.616 64.288 53.711 1.00 40.28 C
61 ATOM 8 N THR A 85 34.140 60.192 54.419 1.00 35.88 N
62 ATOM 9 CA THR A 85 34.437 58.806 54.075 1.00 34.00 C
63 ATOM 10 C THR A 85 34.001 57.804 55.154 1.00 33.76 C
64 ...
65 CONECT 3547 3554
66 CONECT 3554 3547 3555
67 CONECT 3555 3554 3556 3558
68 ...
69 MASTER 276 0 2 17 15 0 5 6 3915 1 49 35
70 END

1.2.3 PDBx/mmCIF
PDBx/mmCIF (Protein Data Bank extended / macromolecular Crystallographic

Information File) is an extension to the CIF format that stores crystallographic

data. It was developed to overcome the limitations of the existing formats [11].

1.2.4 FASTA
FASTA (FAST-All) is a text format that describes either a nucleotide sequence

or a protein sequence. In our case, this format is used in the second sense. This

format is simple as it only contains a brief description of the protein on the first

line starting with the ">" character and the sequence itself on the next line. The

sequence is represented by a string of letters that represent the amino acids. This

format was created for the FASTA program that was used for sequence alignment

[12].

Listing 1.3 An example of a FASTA file used for storing information about the
7VNU sequence.

9

1 >7VNU_1|Chains A, B, C, D|Nucleoprotein|Severe acute respiratory syndrome
coronavirus 2 (2697049)

2 GASNNTASWFTALTQHGKEDLKFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGKMKDLSPRWY
FYYLGTGPEAGLPYGANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQLPQGTTLPKGFYAE

1.2.5 CSV
CSV (Comma-Separated Values) is a text format that is used for storing tabular

data in plain text. The first line of the file contains the column names and the

following lines contain the actual data. The data are separated either by commas

or semicolons. This format is simple and easy to use, but it does not support

complex data types such as arrays or objects.

1.3 P2Rank tool
P2Rank allows its users to predict the ligand-binding sites for a given protein. In

contrast to other projects, P2Rank was one of the first tools to employ machine

learning for predicting pockets. Most of the other tools use geometry-based,

energetic-based, or template-based methods. P2Rank outperforms most of the ex-

isting binding sites prediction tools [2]. Moreover, P2Rank works as a standalone

application and is fully automated, which makes the tool very intuitive and easy

to use.

P2Rank works with specific file formats such as PDB and PDBx/mmCIF. After

running the tool on a specific protein structure file, the tool will provide a CSV

output file with the prediction and residue-level scores. The output file includes

predicted pockets, their ranks, center coordinates, adjacent residues, related

surface atoms and a probability score.

The tool was written in Java and requires only the JRE
2

to run. Additionally,

the source codes are publicly available at GitHub
3
. This allows the users to

potentially modify the tool to their respective needs.

1.4 PrankWeb architecture
PrankWeb consists of several components that cooperate together. Currently, the

application is deployed via Docker
4

containers that are described in the Docker-

2
Java Runtime Environment.

3
Source codes for P2Rank are available at https://github.com/rdk/p2rank.

4
Docker is a virtualization tool providing a stable interface for isolating and running applica-

tions. More information is available at https://www.docker.com/.

10

https://github.com/rdk/p2rank
https://www.docker.com/

compose configuration file. The application consists of the following components:

• gateway - a reverse proxy that is responsible for routing the requests to

the respective backend services and for serving the frontend

• rabbitmq - a broker that is used for communication between the web

server and the backend services

• flower - a tool for monitoring the RabbitMQ broker and Celery workers

• web-server - a Flask server responsible for communication between the

gateway and the RabbitMQ broker

• executor-p2rank - a backend service that is responsible for running the

P2Rank tool, employs Celery workers

• executor-docking - a backend service that is responsible for running the

docking tool, employs Celery workers

• prometheus - a tool for monitoring the Docker containers

A diagram of the architecture is shown in figure 1.1. This diagram is a simpli-

fied version of the C4 model [13] for PrankWeb, dark blue boxes represent the

containers, light blue boxes represent the components, and the arrows represent

the communication between the services. For the completed C4 model with more

details, see the original wiki page
5
. The diagram includes retrieving information

about the structures from external databases from AlphaFold [14] and RCSB PDB

[15].

Some of the containers include environment variables that are required for

the proper functionality. The environment variables are specified in the docker-

compose configuration file. The user may modify these also by creating a .env
file in the root directory of the project.

The docker-compose configuration file thus contains the entire PrankWeb

logic. When employing a new plug-in or a new feature, a container may be

introduced to this file to get easily integrated into the application.

Each of the containers is defined by a respective Dockerfile. Some containers

are dependent on the order of deployment, some containers include a Docker

volume definition that ensures the persistence of the data.

Now we will present the current Docker containers in more detail to get a

broader knowledge of the architecture.

5
The original wiki page is available at https://github.com/cusbg/p2rank-framework

/wiki/PrankWeb-architecture

11

https://github.com/cusbg/p2rank-framework/wiki/PrankWeb-architecture
https://github.com/cusbg/p2rank-framework/wiki/PrankWeb-architecture

Figure 1.1 A simplified C4 model of the PrankWeb architecture.

12

1.4.1 Gateway

The gateway container is a reverse proxy that is responsible for routing the

requests to the backend. In PrankWeb, we utilize Nginx
6

as a reverse proxy. The

Nginx configuration file is located in the gateway/nginx.conf file. The server

configuration includes not only the reverse proxy routes but a mapping to the

Flower and Prometheus services as well.

Moreover, gateway/Dockerfile is responsible for the installation of the

frontend. The frontend is a React
7

application built via webpack
8
. PrankWeb

utilizes two main external libraries for the bioinformatic part of the application,

MolStar and RCSB Saguaro Feature 1D Viewer. We will discuss these libraries in

more detail in section 2.1.

The entire frontend is written in TypeScript, JavaScript, CSS, SCSS, and HTML.

1.4.2 RabbitMQ

RabbitMQ
9

is a message broker that is used to provide communication between

the web server and the backend workers, in our case Celery. RabbitMQ is config-

ured via the respective configuration file. PrankWeb does not require a complex

configuration of this service, although the service is still necessary for communi-

cation.

1.4.3 Flower

Flower
10

is a tool for monitoring the broker and Celery
11

workers’ functionality.

The Flower container does not need any specific configuration, it is only necessary

to correctly run it alongside the RabbitMQ container.

6
Nginx is a web server used for serving static HTML content and acts as a reverse proxy. More

information is available at https://www.nginx.com/.

7
React is a library for creating modern and intuitive user interfaces for web browsers. More

information is available at https://react.dev/.

8
webpack is a module bundler used to bundle JavaScript for web browsers. More information

is available at https://webpack.js.org/.

9
More information about RabbitMQ is available at https://www.rabbitmq.com/.

10
Source codes for Flower are available at https://github.com/mher/flower.

11
Celery is a distributed task queue for Python. This allows the users to distribute given tasks

around multiple workers (in our case threads), so multiple tasks may run in parallel. Source codes

are available at https://github.com/celery/celery.

13

https://www.nginx.com/
https://react.dev/
https://webpack.js.org/
https://www.rabbitmq.com/
https://github.com/mher/flower
https://github.com/celery/celery

1.4.4 Web-server
The web-server container is a WSGI server that is responsible for serving the

web application. Currently, we employ the Gunicorn
12

server. The second main

part of this container is Flask
13

framework. The Flask application defines all of

the REST API endpoints for interaction between the frontend and the backend.

This application also defines a Celery client that is responsible for sending the

tasks to the backend Celery workers based on the API calls.

1.4.5 Executor-P2Rank
This container is responsible for creating the prediction via the P2Rank tool.

P2Rank executor is written in Python and utilizes the Celery framework for task

management. Celery enables the server to use multiple threads and process the

requests in parallel. The executor’s Celery listener first receives a request for the

prediction given a directory with the name of the structure. Subsequently, the

executor prepares the necessary information for the P2Rank tool.

The tool is then run and the results are saved in the

predictions/<db-name>14/<structure-short>15/<structure-name>
directory. The current hierarchy contains the following:

• input/configuration.json - a JSON file required for a configuration of

the P2Rank tool, containing the structure code, name of the structure file,

conservation and others

• public/structure.cif.gz - a gzipped
16

mmCIF/PDB file of the structure

• public/prediction.json - a JSON file containing the prediction results

derived from the P2Rank tool specifically for easier parsing in the frontend

• public/prankweb.zip - a zip file containing unmodified, verbose output

files directly from the P2Rank tool

• info.json - a JSON file containing current prediction status

• log - a log file containing the output of the P2Rank tool

12
More information about Gunicorn is available at https://gunicorn.org/.

13
Flask is a micro-framework for Python used for creating simple web applications. Source

codes are available at https://github.com/pallets/flask.

14
Represents the current version of database such as v2, v3, v3-alphafold, v3-conservation-hmm

etc.

15
The shortcut consists of second two letters of the structure identifier, i.e SR for 2SRC or 5V

for Q5VSL9.

16
Gzip is an Unix-based tool for file compression.

14

https://gunicorn.org/
https://github.com/pallets/flask

All of the listed files are exposed via the REST API to the frontend. After

posting a prediction request, the frontend periodically polls the info.json file to

get the current status of the prediction. Meanwhile, the log file is continuously

updated with the output of the P2Rank tool. The log file is also shown in the

frontend to provide the user with the current status of the prediction.

1.4.6 Executor-Docking
This container is responsible for the docking backend task. More information

about the docking task is available in section 2.2.2.

1.4.7 Prometheus
Prometheus

17
is a tool for monitoring the Docker containers. It is not necessary

for the proper application functionality but is useful for debugging purposes. The

Prometheus container is configured via the respective configuration file. The

interface is exposed at the 9090 port.

1.5 Similar web-tools
The main motivation for the creation of PrankWeb was to provide a web-based

ligand binding site prediction tool that employs the newest technologies. One

of the goals of this thesis is to replace the outdated plugins for the structure and

binding site visualization to keep the application relevant and up-to-date.

There are a few working web tools that can predict binding sites for the

structure as well. The main issue with these tools is that most of them are utiliz-

ing outdated technologies and do not appear to be as intuitive as PrankWeb[3].

Moreover, PrankWeb focuses on the visual side of the prediction and provides a

more detailed view of the results, while the other tools are relying on the user to

interpret the downloadable results in other tools such as PyMOL [16].

We will cover a few of the existing web tools to provide a better understanding

of some of the existing solutions for the ligand binding site prediction which are

currently available.

1.5.1 IntFOLD
IntFOLD

18
is a tool that may be used for predicting protein tertiary structures

alongside disordered protein regions and ligand binding sites. This tool utilizes the

17
More information about Prometheus is available at https://prometheus.io/.

18
Available at https://www.reading.ac.uk/bioinf/IntFOLD/.

15

https://prometheus.io/
https://www.reading.ac.uk/bioinf/IntFOLD/

Figure 1.2 JSmol view of ligand binding residues prediction for T1114s2. Available at
https://www.reading.ac.uk/bioinf/servlets/nFOLD/IntFOLD7results.js
p?time=17_8_50_25_11-5-2022_CASP_ALL_mesu41b7re376c8l&md5=mesu41b7
re376c8l&targetname=T1114s2. The structure is shown in dark green, the binding
sites prediction is shown in blue. Predicted ligands are shown yellow-orange. Available
as a sample prediction from IntFOLD.

FunFOLD algorithm to create the predictions effectively [17]. IntFOLD appears

to be still actively developed and is easily accessible to any potential user. The

user interface is easy to use and requires only the protein sequence (FASTA) to

be entered. On the other side, IntFOLD uses the JSMol library for visualizing the

protein binding sites. JSMol is more of a simple viewer with fewer options than the

LiteMol library used in PrankWeb. Both the visuals and the user interaction are

limited. The user may modify the representation with a right mouse button click,

but the interface is pretty complicated and non-intuitive. An example prediction

is shown in Figure 1.2. Like PrankWeb, IntFOLD also provides a download option

for the prediction results for PyMOL. The prediction takes a long time to be

computed, typically around 24 hours.

1.5.2 COACH
COACH

19
is a web-based tool designed specifically for binding site prediction, like

PrankWeb. COACH uses a combination of substructure-comparison (TM-Site) and

sequence-alignment (S-Site) methods for the computations of potential binding

sites [18]. This combination of methods is generally slower than the machine

learning method used in P2Rank, so the prediction once again is available to the

user after a long time, typically around 24 hours. This tool allows the user not

19
Available at https://seq2fun.dcmb.med.umich.edu/COACH/

16

https://www.reading.ac.uk/bioinf/servlets/nFOLD/IntFOLD7results.jsp?time=17_8_50_25_11-5-2022_CASP_ALL_mesu41b7re376c8l&md5=mesu41b7re376c8l&targetname=T1114s2
https://www.reading.ac.uk/bioinf/servlets/nFOLD/IntFOLD7results.jsp?time=17_8_50_25_11-5-2022_CASP_ALL_mesu41b7re376c8l&md5=mesu41b7re376c8l&targetname=T1114s2
https://www.reading.ac.uk/bioinf/servlets/nFOLD/IntFOLD7results.jsp?time=17_8_50_25_11-5-2022_CASP_ALL_mesu41b7re376c8l&md5=mesu41b7re376c8l&targetname=T1114s2
https://seq2fun.dcmb.med.umich.edu/COACH/

Figure 1.3 JSmol view of a COACH prediction result for a sample protein available at ht
tps://seq2fun.dcmb.med.umich.edu/COACH/CH000001/. Compared to IntFOLD,
the structure has implicitly fewer details and the user may change the representation
only with a right mouse button click via JSMol settings.

only to enter a FASTA sequence but also to upload or paste a PDB file. COACH

allows the user to download the prediction results as well and does not focus on

the very limited web visualization. An example prediction is shown in Figure 1.3.

1.5.3 DeepSite
DeepSite

20
is one of the newest tools for predicting binding sites. DeepSite is

a part of the PlayMolecule framework that aims at the visual representation of

the protein structures and their interactions in a user-friendly web interface [19]

[20], which is highly applicable in computational drug discovery. DeepSite uses

machine-learning-based methods to precisely predict the binding sites, which

20
Available at https://www.playmolecule.com/deepsite/

17

https://seq2fun.dcmb.med.umich.edu/COACH/CH000001/
https://seq2fun.dcmb.med.umich.edu/COACH/CH000001/
https://www.playmolecule.com/deepsite/

Figure 1.4 A DeepSite prediction for the 2SRC structure available at https://www.
playmolecule.com/deepsite/job/BD2ED307. The surface representation is shown
in white, underlying cartoon representation is colorful. The binding site prediction is
shown by a red sphere.

makes the tool very fast [21]. The waiting times are significantly slower and the

prediction is available to the user after a few minutes. The user may enter the PDB

structure ID, which is a lot more convenient way to describe the structure than by

entering the entire PDB file. On the other side, entering a custom format is a more

generic way that does not limit the user to the existing PDB database. DeepSite

utilizes the MolStar library for the results visualization and is similar to PrankWeb

in terms of visual representation. On the other side, DeepSite provides the user

only with a visualization of the center of the binding site and does not provide

any information about the residues that are involved in the binding directly in

the web viewer. The structure is shown in a surface representation. An example

prediction is shown in Figure 1.4. The pros of this tool are definitely the speed of

the prediction and an above-average visual representation. On the other side, the

user is provided with little information about the binding site and may be used

for a rather quick overview of the potential binding sites.

18

https://www.playmolecule.com/deepsite/job/BD2ED307
https://www.playmolecule.com/deepsite/job/BD2ED307

Chapter 2

Programming documentation

This chapter will introduce the reader to the code changes made to the original

PrankWeb interface. The first part will focus on the frontend, the second part will

focus on the plug-ins.

2.1 Frontend
The frontend of PrankWeb works as a TypeScript application. TypeScript is

transpiled to JavaScript and bundled using Webpack. The application uses React

for rendering a panel containing a toolbox (see figure 2.1), structure information

and pocket data. Styles are provided by CSS files and SCSS Bootstrap. The

application uses Material UI for a few of the component designs. All packages

used in PrankWeb are installed using the npm tool. This architecture was already

present in the original interface.

Figure 2.1 The toolbox component.

19

The former interface was based on the LiteMol library for visualizing the

structure. LiteMol is no longer developed, so one of the goals was to replace this

plug-in with a new, modern structure viewer from the same authors - MolStar.

Not only have the visuals significantly improved, but the overall performance of

MolStar is also much better [4].

Before the current change, PrankWeb used a different library for rendering

the 1D sequence visualization. The original implementation used the Protael

library for a simple visual representation of the pockets, binding sites and scores.

This library is intended for creating customizable visualizations for a protein

structure [22]. Protael is an old plug-in and in the original implementation, it

needed to be modified in a significant way to fit the needs of PrankWeb. The

new implementation presented in this thesis uses the RCSB Saguaro 1D Feature

Viewer, which provides a more convenient way to display the pockets, binding

sites and scores.

2.1.1 High-level overview

Firstly, let’s describe the typical data flow between the frontend and backend.

Assuming that this section works with the frontend folder of the repository, this

folder contains all of the frontend logic including plug-in configuration files for

Webpack and static assets. The static assets are located in the public subfolder.

Those include several libraries (such as jQuery), CSS files and static images.

Moving onto the visualization logic to the viewer subfolder, the user starts at

the index.js page, where they enter either a protein structure file or an RCSB

protein identifier. A request via REST API is then sent from the frontend to the

backend workers. If there is a free worker, the job is immediately processed. If

there are no free workers, the job is queued and processed as soon as a worker

becomes available. The backend workers then process the job and create a result

file (see section 1.4.5 for details). Right after the request, the user is redirected

to the analyze.ts file. The frontend periodically fetches both the status file

and the log file to display the current job progress. When the job is finished, the

user is redirected to the viewer.ts file. The entry point to the viewer is the

renderProteinView method, which will be covered later on. The viewer file is

responsible for visualizing the structure, the pockets, binding sites and scores.

The last step is to combine the plug-ins so that the user can interact with the

structure and the data.

An overview of the entire frontend architecture including is shown in fig-

ure 2.2.

20

Figure 2.2 An UML diagram of the PrankWeb frontend architecture.

2.1.2 MolStar
MolStar (also Mol*) is a TypeScript library for visualizing protein structures.

MolStar combines the strengths of the LiteMol [23] and NGL [24] libraries to

provide a high-performance tool for bioinformatic scientists. The library is open-

source and the code may be found on GitHub
1
. One downside of MolStar is that it

lacks detailed documentation. There are some examples available in the GitHub

repository either directly in the source codes or in issues, but for more complicated

code, the user may need to create their own issue and ask the developers directly.

An example of the visualization is shown in figure 2.3.

After invoking the renderProteinView method, a MolStar viewer instance

is created by calling the createPluginUI method from the library. An instance

of PluginUIContext is returned. This instance is saved and used throughout the

entire existence of the session. After the initialization, the main React component

called Application is rendered for the first time. After mounting the component,

the main visualization method sendDataToPlugins is called. This method from

data-loader.ts is responsible for sending the prediction data for both plugins.

Some of the mentioned methods were already present in previous versions of

PrankWeb. One of the goals of this thesis was to integrate MolStar into PrankWeb

1
https://github.com/molstar/molstar

21

Figure 2.3 A screenshot of the MolStar viewer for the 2SRC structure. The structure is
shown in cartoon representation and is colored by the conservation score. The pockets
are shown in the surface representation.

22

by replacing LiteMol. This led to the removal of the original LiteMol-related

code and introduced a few changes to the existing methods of loading data

into the viewer. All of the MolStar-related code was written from scratch to

fit the needs of PrankWeb. Most of the code related to MolStar is located in

the molstar-visualise.ts file. The following text describes the flow of the

MolStar-related interactions that create the core functionality of PrankWeb. These

newly introduced methods call the MolStar library methods to create the visu-

alization just from the data available in the prediction file and the structure

file.

Firstly, the program asks for the API endpoint URL which resolves to a struc-

ture file. This file is loaded into MolStar via the loadStructureIntoMolstar
method. This method parses the structure based on the file format and creates all

of the available representations, such as surface, cartoon and ball-and-stick. It

also tries to show the water molecules and ligands, if there are any.

When the structure is successfully shown to the user, a prediction is fetched

from the API. Then, the 1D viewer is initialized. The 1D viewer connects to

the MolStar plugin via callbacks. When the user hovers over a residue in the

1D viewer, the residue is highlighted in the MolStar plugin as well. When the

user clicks a residue (or a pocket block), then the specific residue is focused

in the MolStar plugin. The 1D viewer calls the highlightInViewerAuthId
and highlightInViewerLabelIdWithoutFocus methods. See section 2.1.3 for

more details about the code that explains the interactions between the 1D viewer

and the MolStar plugin.

After initializing the viewer and visualizing the structure, we need to show

the pockets as well. The current implementation uses the following procedure:

process each of the pockets and create a custom colored representation that will be

added to the visualization. This is done in the createPocketsGroupFromJson
method, which simply invokes createPocketFromJson for each of the pockets.

That method creates multiple representations to allow the user to decide between

various ways to display the pocket. Currently, a ball-and-stick and surface rep-

resentations colored by either surface atoms or the entire residues are available.

In the future, more representations may be added. By default, only the surface

atoms are shown as a pocket. The representations are added to a global variable

containing all of them to allow switching between them based on user inputs

from the React components.

For predicted structures, there is a special case. The predicted structure may

contain areas that have not been properly analyzed, because no similar structures

may be known. So, each of the residues is ranked with an AlphaFold pLDDT

score that indicates how well a residue is predicted. Residues ranked with a score

below 70 are ranked as low-confidence [7]. PrankWeb enables the user to hide

these residues from the visualization. This is done by creating a second structure

23

visualization containing only the high-confidence residues. The user can switch

between the two visualizations using a React component. For the creation of

the second structure, we employ the addPredictedPolymerRepresentation
method, which works in a similar way as creating the pockets.

After resolving the predicted structure, we have to ensure only the selected

representations are visible to the user to ensure the best performance. This is

done via the showAllPocketsInRepresentation method. Then, MolStar has

to be linked to the 1D viewer, but in the opposite direction. Hovering over a

residue in MolStar should highlight the corresponding residue in the 1D viewer.

The method is called linkMolstarToRcsb and uses MolStar hover callbacks to

achieve this behavior. The code is inspired by the MolArt library [25].

In the last step, it is necessary to compute average conservation (and poten-

tially pLDDT) scores for each of the pockets. The JSON file provided by P2Rank

contains the average scores only at the residue level, so the pocket-level average

needs to be computed. As we assume that the pockets are not large, this compu-

tation is done in the frontend and is not cached in any way. This is done in the

computePocketConservationAndAFAverage method.

In this step, the MolStar visualization is complete and ready to use. The user

may interact with the structure either via the 1D viewer, the MolStar plugin,

or the React components. The last part of the code is responsible for enabling

interactions with the React tools. Currently, the user may interact with MolStar

from the components in the following ways:

• Change structure representation

• Change pockets representation

• Color residues by conservation or pLDDT scores

• Hide low-confidence residues for predicted structures

• Hide/show all pockets

• Hide/show individual pockets

• Highlight a pocket including zoom

All of the interactions are handled by calling the respective methods directly

from the React components, which are described in section 2.1.4. We will not cover

details of the code, as it is mostly straightforward and the code is documented.

The main idea is to apply transforms to the MolStar structure which is then

re-rendered by the library.

24

In the end, we will show a brief code structure of the molstar-visualise.ts
file containing the vast majority of MolStar-related code, just to give an overview

of the MolStar integration.

Listing 2.1 A slightly edited version of a declaration file
molstar-visualise.d.ts.

1 import { PluginUIContext } from 'molstar/lib/mol-plugin-ui/context';
2 import { PredictionData, PolymerColorType, PolymerViewType,

PocketsViewType, Point3D } from '../custom-types';
3 import { RcsbFv } from '@rcsb/rcsb-saguaro';
4 import { StateObjectSelector } from 'molstar/lib/mol-state';
5 import { Expression } from 'molstar/lib/mol-script/language/expression';
6 /**
7 * Loads the structure to be predicted and adds the polymer

representations to the viewer.
8 * @param plugin Mol* plugin
9 * @param structureUrl URL of the structure to be predicted

10 * @returns An array containing the model and structure.
11 */
12 export declare function loadStructureIntoMolstar(plugin: PluginUIContext,

structureUrl: string): any;
13 /**
14 * Method used to show only the currently selected representation.
15 * @param value Currently shown type of polymer representation
16 * @param plugin Mol* plugin
17 * @param showConfidentResidues Whether to show only the confident

residues
18 * @returns void
19 */
20 export declare function updatePolymerView(value: PolymerViewType, plugin:

PluginUIContext, showConfidentResidues: boolean): void;
21 /**
22 * Method used to overpaint the currently selected polymer representation.
23 * @param value Currently shown type of polymer representation
24 * @param plugin Mol* plugin
25 * @param prediction Prediction data
26 * @returns void
27 */
28 export declare function overPaintPolymer(value: PolymerColorType, plugin:

PluginUIContext, prediction: PredictionData): Promise<void>;
29 /**
30 * Method to create the pocket holder group (called "Pockets" in the tree)
31 * @param plugin Mol* plugin
32 * @param structure Mol* structure (returned from the first call of

loadStructureIntoMolstar())
33 * @param groupName Group name (in this case "Pockets")
34 * @param prediction Prediction data
35 */

25

36 export declare function createPocketsGroupFromJson(plugin:
PluginUIContext, structure: StateObjectSelector, groupName: string,
prediction: PredictionData): Promise<void>;

37 /**
38 * Method which sets the visibility of one pocket in the desired

representation
39 * @param plugin Mol* plugin
40 * @param representationType Type of the representation to be shown
41 * @param pocketIndex Index of the pocket
42 * @param isVisible Visibility of the pocket
43 * @returns void
44 */
45 export declare function showPocketInCurrentRepresentation(plugin:

PluginUIContext, representationType: PocketsViewType, pocketIndex:
number, isVisible: boolean): void;

46 /**
47 * Method which sets the visibility of all the pockets in the desired

representation
48 * @param plugin Mol* plugin
49 * @param representationType Type of the representation to be shown
50 * @returns void
51 */
52 export declare function showAllPocketsInRepresentation(plugin:

PluginUIContext, representationType: PocketsViewType): void;
53 /**
54 * Method which focuses on the residues loci specidfied by the user, can

be called from anywhere
55 * @param plugin Mol* plugin
56 * @param chain Chain (letter) to be focused on
57 * @param ids
58 * @returns void
59 */
60 export declare function highlightInViewerLabelIdWithoutFocus(plugin:

PluginUIContext, chain: string, ids: number[]): void;
61 /**
62 * Highlights the selected surface atoms, if toggled, the method will

focus on them as well
63 * @param plugin Mol* plugin
64 * @param ids Surface atoms ids
65 * @param focus Focus on the surface atoms (if false, it will only

highlight them)
66 * @returns void
67 */
68 export declare function highlightSurfaceAtomsInViewerLabelId(plugin:

PluginUIContext, ids: string[], focus: boolean): void;
69 /**
70 * Method which adds predicted structure representation to the viewer
71 * @param plugin Mol* plugin
72 * @param prediction Prediction data

26

73 * @param structure Mol* structure (returned from the first call of
loadStructureIntoMolstar())

74 * @returns void
75 */
76 export declare function addPredictedPolymerRepresentation(plugin:

PluginUIContext, prediction: PredictionData, structure:
StateObjectSelector): Promise<void>;

77 /**
78 * Method which gets selection of the confident residues (plddt > 70) for

predicted structures
79 * @param prediction Prediction data
80 * @returns Expression with the selection of the confident residues
81 */
82 export declare function getConfidentResiduesFromPrediction(prediction:

PredictionData): Expression;
83 /**
84 * Method which focuses on the loci specified by the user
85 * @param plugin Mol* plugin
86 * @param chain Chain (letter) to be focused on
87 * @param ids Residue ids
88 * @returns void
89 */
90 export declare function highlightInViewerAuthId(plugin: PluginUIContext,

chain: string, ids: number[]): void;
91 /**
92 * Method which returns coordinates of the surface atoms
93 * @param plugin Mol* plugin
94 * @param ids Surface atom ids
95 * @returns An array of coordinates
96 */
97 export declare function getPocketAtomCoordinates(plugin: PluginUIContext,

ids: string[]): Point3D[];
98 /**
99 * Method which connects Mol* viewer activity to the RCSB plugin

100 * @param plugin Mol* plugin
101 * @param predictionData Prediction data
102 * @param rcsbPlugin Rcsb plugin
103 * @returns void
104 */
105 export declare function linkMolstarToRcsb(plugin: PluginUIContext,

predictionData: PredictionData, rcsbPlugin: RcsbFv): void;

2.1.3 RCSB Saguaro 1D Feature Viewer
Alongside the MolStar plugin, we use the RCSB Saguaro 1D Feature Viewer to

display the pockets, actual binding sites and scores in a simple view mapped to

the residues, which is the key feature of this plugin. The viewer is designed to

27

easily identify multiple annotations on a single residue.

The RCSB Saguaro 1D Feature Viewer is a TypeScript library for visualizing

protein features in a 1D view. An example usage is shown in figure 2.4. The code

is available on GitHub
2
. Documentation is available and the usage is simple, but

it is important to keep in mind that the library is still under active development

and the interface may change in the future.

Figure 2.4 The RCSB Saguaro 1D Feature Viewer for the 2SRC structure.

In the original PrankWeb implementation, Protael was used for mapping the

annotation to the single residues. In this thesis, we decided to use the RCSB

Saguaro 1D Feature Viewer instead. The main reason for this decision is that

the RCSB Saguaro 1D Feature Viewer is a more extensible library and is actively

maintained. So, all of the code related to Protael was removed and replaced

with new code using the RCSB Saguaro 1D Feature Viewer to provide the same

functionality.

Most of the methods are defined in the rcsb-visualise.ts file. In

our case, as described in section 2.1.2, the 1D viewer gets initialized by the

sendDataToPlugins method. This calls the initRcsb method which prepares

all of the data for the plug-in.

The first thing to notice is calculating the viewer’s actual width. This is done

in the calculateViewerWidth method. Unluckily, the viewer allows only a fixed

width measured in pixels. This is a problem, as the viewer is not responsive and

every time the user resizes the window, the viewer would have to be re-initialized,

which would be pretty inefficient. So, for the first time the page loads, we calculate

the width of the viewer based on a knowledge of the desired width that is set via

CSS. We also have to subtract a certain amount of pixels to account not only for

the viewer itself but also for the margins, paddings and a custom viewer scrollbar,

which is, once again, in-built in the viewer and is not customizable. We discussed

this issue and concluded that the best solution is to add better-looking custom

scrollbars to the viewer to provide a better user experience until the viewer is

made responsive.

Then, the RCSB board is configured to interact with the MolStar viewer. This

is done via the onHighlight and elementClicked methods. The first method

2https://github.com/rcsb/rcsb-saguaro

28

https://github.com/rcsb/rcsb-saguaro

is called when the user hovers over a certain residue in the 1D viewer. The actual

callback is debounced to prevent lagging. A request for highlighting the specific

residue in MolStar is then sent. The second method is called when the user clicks

on a residue in the 1D viewer. A similar request is sent to MolStar with the

difference that the residue is also zoomed in.

The last step is to prepare the actual data for each of the so-called tracks.

A track represents one row (or multiple rows) containing information about a

specific annotation. This is done in the createRowConfigDataRcsb method. A

sequence track simply contains the protein amino acids. The binding track con-

tains the actual binding sites computed by P2Rank. Pocket tracks are distinguished

by different colors, which are picked firstly based on color-blind schemes to en-

sure the best accessibility, and secondly randomly. The pocket color is changed

in the original pocket data as well so that the same colors for the pockets are

used throughout the application. The last tracks are the conservation and pLDDT

tracks, if available. The computation of the pocket tracks is not straightforward,

as the JSON file provided by P2Rank does not fit the viewer’s interface, so the

method highly relies on the JSON structure.

The 1D viewer does not rely on any React components and the only interaction

may be done via the MolStar plugin simply by hovering over the residues, as

described in section 2.1.2.

Similarly to MolStar, let’s have a look at the rcsb-visualise.ts file structure

and the most important methods.

Listing 2.2 A slightly edited version of a declaration file rcsb-visualise.d.ts.
1 import { RcsbFv, RcsbFvTrackDataElementInterface,

RcsbFvRowConfigInterface } from '@rcsb/rcsb-saguaro';
2 import { PluginUIContext } from 'molstar/lib/mol-plugin-ui/context';
3 import { PredictionData } from '../custom-types';
4 /**
5 * Method which initializes the Rcsb viewer and adds the tracks to it.
6 * @param data Prediction data
7 * @param molstarPlugin Mol* plugin
8 * @returns The rendered Rcsb plugin.
9 */

10 export declare function initRcsb(data: PredictionData, molstarPlugin:
PluginUIContext): RcsbFv;

11 /**
12 * Method to calculate the width of the viewer.
13 * @returns The width
14 */
15 declare function calculateViewerWidth(): number;
16 /**
17 * Method called when any element is clicked in the viewer.
18 * @param predictionData Prediction data

29

19 * @param molstarPlugin Mol* plugin
20 * @param trackData Data of the clicked track
21 * @param event Mouse event
22 * @returns void
23 */
24 declare function elementClicked(predictionData: PredictionData,

molstarPlugin: PluginUIContext, trackData?:
RcsbFvTrackDataElementInterface, event?: MouseEvent): void;

25 /**
26 * Method called when any element is highlighted in the viewer.
27 * @param data Prediction data
28 * @param molstarPlugin Mol* plugin
29 * @param trackData Data of the clicked track
30 * @param event Mouse event
31 * @returns void
32 */
33 declare function onHighlight(data: PredictionData, molstarPlugin:

PluginUIContext, trackData: Array<RcsbFvTrackDataElementInterface>):
void;

34 /**
35 * Method which creates all of the tracks for the Rcsb viewer.
36 * @param data Prediction data
37 * @returns Configuration for the viewer
38 */
39 declare function createRowConfigDataRcsb(data: PredictionData):

RcsbFvRowConfigInterface<{}, {}, {}, {}>[];

2.1.4 React components
This section will describe the React components that are related to the structure

visualization. Most of the components were already present in the previous

version of PrankWeb, but there was a need to refactor them to make them more

modular and reusable, as well as to add new features and improve the user

experience.

The application uses the following components:

• Application - the main component of the app, responsible for the overall

structure of the page including the viewers

• ToolBox - a component containing tools for changing the structure repre-

sentation, coloring residues, hiding low-confidence residues and download-

ing data

• StructureInformation - a component containing the structure name

30

• PocketList - a component containing a list of all pockets with their scores

and a button for hiding/showing all of them

• Pocket - a component containing a single pocket with its information

and buttons for hiding/showing the pocket, highlighting the pocket and

opening a dialog with the pocket details

• PocketDetails - a component defining the information of a Pocket compo-

nent

• PocketProperty - a component visualizing a single property of a Pocket

component

Other components will be covered in section 2.2 as they are related to the

plug-ins.

All React components are defined in their own files in the components subdi-

rectory. The components extend the React.Component class to utilize the props

and state features of React. The components invoke the responsible RCSB and

MolStar methods on various value changes, clicks on buttons and other events.

Some of the props get passed from the parent component to the children, which

allows easy communication between them and enforces best practices and mini-

mizes code duplication. Some of the components have state variables as well that

mostly indicate their current visibility.

The components are styled as Bootstrap cards and thus they are responsive.

Although we expect the user to use PrankWeb mainly on a desktop computer, it is

necessary to provide a good first experience when encountering the application

on a smaller screen.

2.2 Plug-ins
The second goal of this thesis was to introduce the possibility to extend the

current functionality of the application by adding new plug-ins (also called tasks,

these terms are used interchangeably). The plug-ins enable the postprocessing of

the pockets.

After a discussion, we created the following plug-in categories: client-side and

server-side. It is assumed that the client-side plug-ins will be used for simpler tasks

that may be computed from the existing data in each session, on the contrary, the

server-side plug-ins will be used for complex tasks that are more time-consuming

and possibly utilize third-party software.

The PrankWeb interface for both of the tasks works as a set of React com-

ponents that are modular, so new plug-ins may be introduced easily without

modifying much of the current code.

31

For easy access to plug-ins, we have created a possibility to view the pocket

details not only directly in the pocket list but in a draggable dialog as well. This

dialog is defined in the DraggableDialog and PocketDialogDetails classes

that provide the implementation. The user may open multiple dialogs at once as

well as drag them around the screen. The dialogs allow interaction behind them,

so the user may still manipulate both of the viewers.

This decision was discussed more and multiple designs were proposed and

tested. All of the possible variants are listed in appendix A.4. The final decision

was made based on the fact that a vast majority of users are expected to use a

big-screen device, so to keep the original usage easy and intuitive, we decided to

keep the original design. One downside of this implementation is that the dialogs

are not intended to be used on mobile devices. In other words, the dialogs are not

available for small screens which makes this section irrelevant for those devices.

On the other side, we believe that this is a reasonable trade-off.

In the following subsections, we will introduce the general plug-in interface

and the implemented plug-ins.

2.2.1 Client-side plug-ins
The main intention of client-side plug-ins is to create a possibility to enable simple

post-processing from the prediction data directly in the application. The tasks

computed on the client-side stay in the current session.

Currently, the client-side plug-ins are defined in a PocketDialogDetails
component as they are dialog-specific. A new interface for these plug-ins was

created in the PocketClientTask component. Let’s have a look at the interface.

Listing 2.3 An edited version of the pocket-client-task.tsx component.
1 import React from "react";
2 import { ClientTaskData, ClientTaskType, PocketData } from

'../../custom-types';
3 import { PluginUIContext } from "molstar/lib/mol-plugin-ui/context";
4 import { PredictionInfo } from "../../prankweb-api";

6 export default class PocketClientTask extends React.Component
7 <{
8 title: string,
9 inDialog: boolean,

10 pocket: PocketData,
11 plugin: PluginUIContext,
12 taskType: ClientTaskType,
13 prediction: PredictionInfo,
14 compute: () => Promise<ClientTaskData>,
15 renderOnComplete: (data: ClientTaskData) => JSX.Element

32

16 }, {
17 taskData: ClientTaskData | undefined,
18 computed: boolean,
19 loading: boolean
20 }> {
21 //...
22 }

Some of the props and state variables are self-explanatory, and some of them

are passed from the parent component. We will focus on the client-side specific

props and state variables that define their behavior.

Firstly, let’s take a look at the taskType prop. This prop defines the type

of task that is defined in the ClientTaskType enum. This enables a possible

behavior difference of the client-side plug-ins based on their type. The next prop

is a method called compute. This is the key method of the plug-in that provides

the actual post-processing of the prediction data. The behavior is defined by

the parent component. In the plug-in definition, the compute method is called.

We expect this method to return a promise containing data conforming to the

ClientTaskData interface. After receiving the result, the result needs to be

rendered. During this entire process, state variables taskData, computed and

loading are used to indicate the current computation progress.

Originally, one implementation for showing the result was created, but to

provide a more generic approach to the problem, a second method was introduced

to the props - the renderOnComplete method. This method takes the computed

data as a parameter and returns a JSX component that renders the data inside the

original dialog.

Currently, the client-side plug-ins are defined in the tasks subdirectory. The

actual implementations are .tsx files and should contain both of the methods

for the computation and rendering to keep the code clean.

As an example of a client-side plug-in, we have implemented a plug-in that

computes the expected volume of the pocket. For this purpose, we have created

a tasks/client-atoms-volume.tsx file that contains computePocketVolume
and renderOnTaskVolumeCompleted methods that conform to the compute and

renderOnComplete props of the PocketClientTask component. In this post-

processing, we are using a convex hull algorithm to get the coordinates of the hull

vertices. Then, we use a simple formula to compute the volume of the convex hull

using the coordinates of the vertices based on triangulation of the hull [26]. The

result is then rendered in the dialog as a simple number. This implementation

saves the computed results in a hashmap directly in the implementation file. This

is not the most efficient way to store the results, on the other hand, it is a simple

solution that is sufficient for this use case.

Creating a custom new client-side plug-in is covered in detail in section 3.3.

33

2.2.2 Server-side plug-ins
Server-side plug-ins create an opportunity to perform more complex postprocess-

ing that takes more time to compute. We intended to allow users to use third-party

software for postprocessing. Server-side tasks are meant to be parametrized by

the user in some way.

The plug-ins are defined in a similar way as the P2Rank executor, which may

be processed by Docker containers (as mentioned in section 1.4).

There are a few steps that have to be done to implement a new server-side

plug-in. First, API endpoints for the plug-in, as well as the folder and file structure,

need to be defined. This is done in the web-server folder in Flask. Usually, it is

expected that Flask will prepare the needed directories and files for the actual

Docker container. For this process, it is typical to create a new Python class to

contain all of this logic.

Then, in the Celery client configuration file in Flask, new bindings are cre-

ated for the new plug-in. This includes creating a new Celery queue as well as

introducing a new task that gets executed on the backend identified by its name.

After completing all of the Flask tasks, a new Docker container has to be

created. The container should install Python with Celery and any other tools

needed for the post-processing. It is expected that a new Dockerfile will be

created for this purpose. After setting up the container, Celery bindings have to

be created in a similar way as in Flask. Then, any method may be called from this

Celery binding. This means that the actual post-processing may be finally done

here. The first option is to do this in Python entirely, but it is also possible to call

any other tool from the container. The only requirement is to have everything

set up properly.

The Docker container is also responsible for saving the results of the post-

processing. This means that either some of the Python files or the third-party

tool itself has to save the results in the correct location. Keep in mind that the

location is very likely to depend on the API endpoints defined in Flask. Now, the

Docker container is ready to be used.

It is highly recommended to include the newly created container in the Docker-

compose file. This makes the deployment easy and allows simpler testing of the

new plug-in
3
.

After completing all of the steps, the new plug-in should be ready to be used.

The only thing left is to include the plug-in to the frontend. For the frontend

interaction, a new React component was introduced.

PocketServerParametrizedTask is meant to be used for the server-side

plug-ins that require some parameters to be set by the user. This component is

3
With Docker-compose, it is possible to restart just one of the containers, which makes the

debugging faster.

34

used in PocketDialogDetails similarly to client plug-ins (more about dialog in

section 2.2.1). Let’s have a look at the server plug-in component.

Listing 2.4 An edited version of the pocket-server-parametrized-task.tsx
component.

1 import React from "react";
2 import { PocketData, ServerTaskData, ServerTaskType } from

'../../custom-types';
3 import { PluginUIContext } from "molstar/lib/mol-plugin-ui/context";
4 import { PredictionInfo } from "../../prankweb-api";

6 export default class PocketServerParametrizedTask extends React.Component
7 <{
8 title: string,
9 inDialog: boolean,

10 pocket: PocketData,
11 plugin: PluginUIContext,
12 taskType: ServerTaskType,
13 prediction: PredictionInfo,
14 serverTasks: ServerTaskData[],
15 modalDescription: string,
16 compute: (hash: string) => Promise<any>
17 renderOnComplete: (responseData: ServerTaskData, hash: string) =>

JSX.Element
18 hashMethod: (prediction: PredictionInfo, pocket: PocketData,

formData: string) => string
19 }, {
20 taskData: ServerTaskData | undefined,
21 computed: boolean,
22 loading: boolean,
23 modalOpen: boolean,
24 formData: string,
25 hash: string
26 }> {
27 //...
28 }

The component works similarly to the client-side plug-in component. There

are two methods that are responsible for the computation and rendering of the

results. One of the differences is that these two methods are now identifiable by a

hash that has to be computed from the parameters before the actual computation.

The computation of a hash is done via the hashMethod method. This hash is

not only used for frontend identification but also for the backend. It is up to the

developer, whether they will consider it as a possible input or just as a string for

identification. This technique allows us to differentiate between multiple tasks of

the same type with different parameters.

35

There are more state variables as well. modalOpen and formData were in-

troduced for receiving input from the user, the current implementation opens a

modal dialog with a text area. The hash is then computed from the input stored

in the formData variable.

As the task results are persistent on the server, a new variable called

serverTasks was introduced in the main component of the app. This component

then periodically checks for all computed tasks for the given structure. The

objects in this array are mutable and are modified for the purpose of the frontend

rendering, so only the response data for tasks completed in this session are saved.

This allows us to render the hashes of the tasks that were computed both

in this session and in previous ones. For this purpose, a new component called

TaskList was introduced to display the list of tasks.

One last change was made to the PocketDialogDetails component. A new

component PocketRunningTasks was created to display a list of tasks that are

either running or completed in this session. This is done to make sure that the

task results are available to the user in case the dialog is closed and reopened.

Moreover, this allows the user to enter multiple parameters for the same task and

see the results for all of them.

One of the goals of this thesis was to implement basic server-side molecular
docking. Docking may be computationally very demanding, which makes it a

perfect candidate for a server-side plug-in.

Firstly, we designed a public API for docking requests. There were three main

needs:

1. Starting a new docking task with a given user input.

2. Receiving task results.

3. Receiving information about all tasks (including their status).

The API routes were added to the Flask configuration file. The routes are defined

as follows:

Listing 2.5 An edited version of the api_v2.py file.
1 from .docking_task import DockingTask
2 from flask import Blueprint, request
3 api_v2 = Blueprint("api_v2", __name__)
4 # ...
5 @api_v2.route(
6 "/docking/<database_name>/<prediction_name>/post",
7 methods=["POST"]
8)
9 def route_post_docking_file(database_name: str, prediction_name: str):

10 data = request.get_json(force=True) or {}

36

11 dt = DockingTask(database_name=database_name)
12 return dt.post_task(prediction_name.upper(), data)

14 @api_v2.route(
15 "/docking/<database_name>/<prediction_name>/public/<file_name>",
16 methods=["POST"]
17)
18 def route_get_docking_file_with_param(database_name: str,

prediction_name: str, file_name: str):
19 data = request.get_json(force=True)
20 param = data.get("hash", None)
21 if data is None or param is None:
22 return "", 404
23 dt = DockingTask(database_name=database_name)
24 return dt.get_file_with_post_param(prediction_name.upper(),

file_name, param)

26 @api_v2.route(
27 "/docking/<database_name>/<prediction_name>/tasks",
28 methods=["GET"]
29)
30 def route_get_all_docking_tasks(database_name: str, prediction_name: str):
31 dt = DockingTask(database_name=database_name)
32 return dt.get_all_tasks(prediction_name.upper())

After designing the routes, a new class called DockingTask was created.

DockingTask class is responsible for serving the API requests. This includes the

definition of the directory structure, saving the input files, preparing the info

file, and calling the actual docking tool on the backend. Most of the file errors

are handled in this class, as there are many opportunities for wrong inputs and

requests. As all of the methods are important, we will focus on the one that is

responsible for the actual docking. That is the submit_directory_for_docking
defined in the Celery client configuration file. This method sends a task named

docking to the Celery queue. Note that for docking, a new Celery queue was

created in the configuration file.

Listing 2.6 An edited version of the celery_client.py file.
1 import os
2 import celery
3 prankweb = celery.Celery("prankweb")
4 prankweb.conf.update({
5 "task_routes": {
6 # the key is the name of the task, the value is the name of the

queue
7 'prediction': 'p2rank',
8 'docking': 'docking',

37

9 }
10 })
11 #...
12 def submit_directory_for_execution(directory: str):
13 prankweb.send_task("prediction", args=[directory])

15 def submit_directory_for_docking(directory: str, taskId: int):
16 prankweb.send_task("docking", args=[directory, taskId])

Then, a new Docker container was created in the executor-docking direc-

tory and added to the Docker-compose files. We introduced a new Docker volume

to preserve the results as well. An important part of this step is to mark this

container with the right Celery queue in the command.

Listing 2.7 An edited extract from the docker-compose.yml file.
1 executor-docking:
2 build:
3 context: ./
4 dockerfile: ./executor-docking/Dockerfile
5 args:
6 UID: ${UID}
7 GID: ${GID}
8 command: ["celery", "--app=celery_docking", "worker",

"--queues=docking", "--concurrency=4",
"--hostname=executor-docking"]

9 restart: unless-stopped
10 volumes:
11 - docking:/data/prankweb/docking
12 - predictions:/data/prankweb/predictions
13 depends_on:
14 rabbitmq:
15 condition: service_healthy

The newly created Docker container is described in the Dockerfile. All

of the needed tools for docking are downloaded and set up there. After set-

ting up the container, Celery bindings are created similarly as in Flask in the

celery_docking.py file. This file contains routing for the Celery task sent from

the Flask server. This calls methods from run_task.py that contains that handle

all of the work with the info file for the given structure (updates the status and

timestamps). From there, the dock_molecule method is called. dock_molecule
is responsible for the actual docking.

Firstly, the structure is unzipped from the gzipped file created during the

initial prediction. Then, we treat .pdb files a bit differently, structures in this file

format are cleaned using the lePro tool to remove unnecessary information. After

the possible structure cleanup, a tool called prepare_receptor from the ADFR

38

Suite to prepare the structure for docking [27]. Moving on, ligand preparation

is done using the rdkit and meeko Python packages [28]. The last step before

docking is to prepare the bounding box for the docking program. This is done

manually by parsing the input file, saving the result to a text file.

In this stage, everything is properly set up for the docking. We use the

AutoDock Vina [29] program for the docking. AutoDock Vina enables us to

dock the ligand in a simple and fast way, on the other side, the results are not as

accurate. We still decided to use this tool due to a rather simple setup and fast

computation. The docking program is invoked with the prepared parameters and

the results are saved to a public folder.

After the docking, the info file is updated with the result. The output file then

may be downloaded by the actual user. The file may be viewed in several tools,

such as PyMOL.

Now, the only thing left is to implement the frontend components to provide

a user-friendly way to dock the molecules.

We created a ServerTaskData enum for the potential to introduce new

server-side plug-ins. Alongside the enum, the ServerTaskDataContents in-

terface for data from the server side. The main logic of server-side plugins

is defined by implementing the PocketServerParametrizedTask component

that was added to the PocketDialogDetails component in a similar way to

the client plug-ins (see section 2.2.1). The implementation was done in the

tasks/server-docking-task.tsx file. This file has private methods that com-

pute a bounding box for docking before submitting the task, and public exported

methods that are responsible for calling the API and displaying the results. One of

the methods could hash the input, but as long as we are using SMILES molecule

representation [30], there is no need to hash the input.

To finish the frontend implementation, a few more components were updated

in order to show all results correctly. Firstly, we modified the Application com-

ponent to keep all of the docking tasks in their state variable. This is done in the

getTaskList method to create an ability to show all results of the completed

tasks in the current session. This state variable called serverTasks then propa-

gates to other components. Lastly, we bound the previously created methods to

the PocketRunningTasks component to display the results of the docking tasks

in the dialog window.

Creating a custom new server-side plug-in is briefly described in section 3.3.

39

40

Chapter 3

User documentation

In this chapter, the user documentation is presented. Firstly, the deployment

process is described. We distinguish between two types of users, regular users

and developers. We expect regular users to use PrankWeb without modifying the

existing code. On the other side, we expect developers to add their own plug-ins

or make other changes to the existing architecture. For this purpose, we describe

a guide for both types of users.

3.1 Deployment
This section describes how to deploy the application. The preferred way is to

deploy PrankWeb using Docker.

3.1.1 Docker deployment
Firstly, Docker and Docker Compose need to be installed

1
.

After installing Docker, the PrankWeb repository needs to be cloned, prefer-

ably using Git
2
.

1. Create a directory for the PrankWeb repository and navigate to it.

2. Clone the repository using the following command:

1 git clone https://github.com/cusbg/prankweb.git .

3. Create directories for each of the volumes.

1
Downloadable from the official website at https://docs.docker.com/get-docker/

2
Downloadable from the official website at https://git-scm.com/downloads

41

https://docs.docker.com/get-docker/
https://git-scm.com/downloads

4. Create mounts for each of the volumes in the docker-compose.yml file.

The mounts are created as follows, simply update the /tmp/ paths to the

paths of the directories created in the previous step:

1 docker volume create --name prankweb_rabbitmq --opt type=none --
opt device=/tmp/rabbitmq --opt o=bind

3 docker volume create --name prankweb_conservation --opt
type=none --opt device=/tmp/conservation --opt o=bind

5 docker volume create --name prankweb_predictions --opt type=none
--opt device=/tmp/predictions --opt o=bind

7 docker volume create --name prankweb_services --opt type=none --
opt device=/tmp/services --opt o=bind

9 docker volume create --name prankweb_docking --opt type=none --
opt device=/tmp/docking --opt o=bind

5. Optionally, create a .env file to change the default variables defined in the

docker-compose.yml file. Notice that UID and GID need to have the write

permissions to the directories created in the previous steps.

6. Build the Docker images using the following command:

1 docker-compose build

7. Optionally, download the conservation database (keep in mind that this

database is large, around 30 GB):

1 docker-compose run --rm executor python3
/opt/hmm-based-conservation/download_database.py

8. Start the containers using the following command:

1 docker-compose up

The application is now accessible at http://localhost:8020/.

Although the main deployment process will not change much, the best way

to get the current information is to refer to the official documentation at https:
//github.com/cusbg/p2rank-framework/wiki/PrankWeb-deploy-wit
h-Docker.

42

http://localhost:8020/
https://github.com/cusbg/p2rank-framework/wiki/PrankWeb-deploy-with-Docker
https://github.com/cusbg/p2rank-framework/wiki/PrankWeb-deploy-with-Docker
https://github.com/cusbg/p2rank-framework/wiki/PrankWeb-deploy-with-Docker

3.1.2 Local deployment

Local deployment is not recommended, as the support for some components is

limited.

The only component that is developed better locally is the frontend (when

not considering backend API changes). To run the frontend locally, firstly clone

the repository as described in 3.1.1. Then, navigate to the frontend directory.

It is recommended to have a look at the server/configuration.js file

to set up the proxy server that will serve potential calls. The proxy service

should be running, it is possible to use the default PrankWeb website at https:
//prankweb.cz.

This is the default configuration:

1 // This configuration is used only in develop mode.
2 module.exports = {
3 // Port used to run-develop instance.
4 "port": 8075,
5 // Use this to server data from files. Thus, you can develop
6 // frontend without the need to run another component.
7 //"proxy-directory": "../../data/database/",
8 // Use the option below to proxy commands to the task runner

instance.
9 // This allows you to run tasks or connect to an existing instance

(https://prankweb.cz).
10 "proxy-service": "https://prankweb.cz",
11 }

After setting up the proxy server, the frontend npm modules need to be

installed. This can be done using the following command:

1 npm ci

Then, it is possible to run the frontend using the following command:

1 npm run dev

The frontend is now accessible at http://localhost:8075/ (with the port

specified in the configuration file).

Some of the tools from the executors like P2Rank may work from the command

line as used in the Python scripts or Dockerfiles, for more information refer to

those.

Official documentation for the local deployment is available at https://gi
thub.com/cusbg/p2rank-framework/wiki/PrankWeb-deploy-for-devel
opment.

43

https://prankweb.cz
https://prankweb.cz
http://localhost:8075/
https://github.com/cusbg/p2rank-framework/wiki/PrankWeb-deploy-for-development
https://github.com/cusbg/p2rank-framework/wiki/PrankWeb-deploy-for-development
https://github.com/cusbg/p2rank-framework/wiki/PrankWeb-deploy-for-development

3.2 User guide
Regular users are not expected to modify the existing code. The following section

describes how to use the application.

The only requirement is to have a web browser with JavaScript and WebGL

support.

Firstly, select a protein structure for the analysis in an input form. Expected

inputs are either a protein structure code for experimental structures from the

RCSB PDB, a custom PDB or mmCIF file, or a UniProt ID of a predicted structure.

It is possible to use conservation data from the HMM-based conservation database

to provide more information for the prediction. For experimental structures, it

is possible to restrict the prediction just to specified chains. The input form is

shown in figure 3.1.

Figure 3.1 Input form for the PrankWeb application.

Then, a prediction task is created and sent to the backend. During the predic-

tion, a log of the task is shown. After the task finishes, the viewers are shown.

The PrankWeb viewers are shown in figure 3.2.

Once the protein visualization is loaded, three main panels appear - sequence

visualization, structural visualization and the pocket panel.

On the left side, both viewers visualizing the structure are shown. There is

the RCSB 1D Saguaro Viewer on the top for the 1D visualization of the properties

of the structure and predicted binding sites. On the bottom, we may see the Mol*

viewer for the 3D visualization of the structure and pockets.

By default, the protein surface is displayed, and individual pocket areas are

highlighted with different colors. Ligands may be displayed as separate molecules

as well, if available. It is possible to change the colors of the protein based on the

44

Figure 3.2 The main PrankWeb interface showing visualizations of the P21802 UniProt
structure.

conservation or plDDT score in the toolbox on the right side. For conservation

coloring, darker residues depict a higher score. For plDDT coloring, the colors

are defined by the AlphaFold confidence score [14].

The 3D structure may be rotated by dragging the mouse while holding the

left mouse button. The zoom is controlled by the mouse wheel or by pinching

on touch devices. For moving the protein structure, the right mouse button may

be used. The structure may be reset to the default position by clicking the reset

button in the top right corner of the 3D viewer.

Mol* provides more features for visualization. Using the buttons in the top-

right corner, one can:

• Reset the camera.

• Create a snapshot of the current visualization.

• Toggle the advanced control panel.

• Toggle full-screen mode.

• Setup the scene such as the visualization background or the field of view.

• Toggle the selection mode.

After toggling the advanced control panel, the following may be done:

45

• Work with the structure and download it.

• Toggle the state tree and thus toggle multiple of the available representa-

tions.

• Save the current plugin state.

• View the help panel.

For more information, please refer to the Mol* documentation at the official

website
3
.

The RCSB 1D Saguaro Viewer displays the protein sequence. We implemented

the functionality in a way the viewer does the following:

• All chains are concatenated into a single sequence and shown at once.

• Colored rectangles depict the predicted binding sites. The colors are the

same as in the 3D viewer.

• Real binding sites are shown as well. As real binding sites, we consider any

residues within 4 Å from a ligand atom.

• If available, conservation and plDDT scores are shown as well.

The Mol* viewer and the 1D Saguaro Viewer are synchronized. This means

that when hovering over a residue in the 1D viewer, the corresponding residue

in Mol* is highlighted. The same applies to the 3D viewer. When hovering over

a residue in Mol*, the corresponding residue in the 1D viewer is highlighted.

Furthermore, after clicking on a residue in the 1D viewer, Mol* focuses on the

corresponding residue.

The right panel consists of a toolbox component, a structure information

component, a task list component and a pocket list component.

The toolbox component allows a change in the coloring of the protein structure

as mentioned before, and to download information about the prediction.

The structure information component simply shows the structure code.

The task list component shows the list of all backend tasks that have been

created (i.e. docking tasks).

The pocket list component shows the list of all pockets in the structure. The

pockets are sorted by their probability score. The pockets contain several buttons

for the following interactions:

• Display details about the pocket.

3
The Mol* documentation is available at https://molstar.org/viewer-docs/

46

https://molstar.org/viewer-docs/

• Show only the selected pocket.

• Focus on the pocket in Mol*.

• Hide the pocket.

The details about the pocket are shown in a modal dialog. From the dialog,

it is possible to run the client-side and server-side tasks. The dialog window is

shown in figure 3.3.

Figure 3.3 The pocket details dialog component.

3.3 Developer
Developers may modify the existing code to their needs. They may edit any of

the existing containers described in section 1.4. One of the expected changes is to

implement custom client-side and server-side plug-ins. The following sections

describe how to do that.

Before reading the contents of this section, please familiarize yourself with

the topic of plug-ins described in section 2.2.

47

3.3.1 Client-side plug-ins
Implementing custom client-side plug-ins is simple. The creation may be simpli-

fied into the following steps:

1. Introduce a new task type in the frontend/custom-types.ts file by

adding a new value to the ClientTaskType enum.

2. Create a new .tsx file, preferrably in the frontend/tasks directory.

3. In this file, implement a method that will compute the task and returns a

Promise<ClientTaskData>.

4. Implement a method that will render the completed task in the dialog win-

dow. This method takes the ClientTaskData as an argument and returns

a React component - JSX.Element. An example is shown in listing 3.1.

5. Optionally, implement saving the computed volumes at least to a hashmap

or implement another sort of caching.

6. Add the new task component anywhere to be rendered. We suggest adding

it to the existing dialog window represented by the PocketDialogDetails
component. An example is shown in listing 3.2.

Listing 3.1 An example client-side task (in this case referred to as
frontend/tasks/client-sample-task.tsx).

1 import React from "react";
2 import { ClientTaskData, ClientTaskType } from "../custom-types";

4 export async function computeTask(params: any): Promise<ClientTaskData> {
5 //Do some computation here...
6 return {
7 "data": 42069, //computed value (any type)
8 "type": ClientTaskType.SampleTaskCount
9 }

10 };

12 export function renderTask(data: ClientTaskData): JSX.Element {
13 return <span style={{float: "right", marginLeft:

"1rem"}}>{data.data};
14 }

After this implementation, the client-side plug-in is ready to be used.

48

Listing 3.2 A modified PocketDialogDetails compo-
nent including the newly introduced client-side plug-in
(frontend/viewer/components/pocket-dialog-details.tsx).

1 import React from "react";

3 import PocketClientTask from "./pocket-client-task";
4 import { ClientTaskType } from "../../custom-types";
5 import { computeTask, renderTask } from "../../tasks/client-sample-task";

7 export default class PocketDialogDetails extends React.Component
8 <
9 //...

10 >
11 {
12 //...
13 render() {
14 return (
15 <div>
16 //other tasks
17 //...
18 <PocketClientTask inDialog={this.props.inDialog} title="A

sample task" pocket={this.props.pocket}
plugin={this.props.plugin}
taskType={ClientTaskType.Sample}
prediction={this.props.prediction} compute={() =>
computeTask(this.props.prediction)}
renderOnComplete={renderTask}/>

19 </div>
20);
21 }
22 }

3.3.2 Server-side plug-ins
Implementing custom server-side plug-ins is more complicated than the client-

side ones. Creating a new server-side plug-in consists of the following steps:

1. Design a public API for requests.

2. Add the routes and implement the API in the Flask application.

3. Create a new Docker container (and possibly volume) for the new plug-in.

4. Connect the new container to the existing Docker-compose network.

5. Bind the Celery configuration files to the new container.

49

6. Implement the wanted functionality in the Docker container.

7. Introduce the new server task to the frontend components and enums.

8. Provide communication between the frontend and the new server-side task

via API calls.

Implementing a new server-side plug-in is a complex task and different plug-

ins may require different approaches. Therefore, it is highly recommended to have

a look at our molecular docking example that is described in detail in section 2.2.2

to understand the integration process.

50

Conclusion

There were two main goals of this thesis. The first one was to update the existing

PrankWeb frontend with newer technologies and to improve the visual design

of the application. This was done by introducing the 1D RCSB Saguaro Viewer

and Mol* libraries for the structure visualization and by using React to provide a

good-looking and responsive user interface. The second goal was to introduce the

possibility to add new plug-ins to PrankWeb that allow further postprocessing

of the pockets. This was done by creating two interfaces for client-side and

server-side plug-ins.

Both of the goals were successfully achieved. The new frontend is more

user-friendly and thanks to the used libraries, the visualization is faster than ever

before. The plug-in system allows the developers to easily add new features to

PrankWeb and deploy these features to their specific users.

Although the current state of PrankWeb is good, there is still room for im-

provement. There are multiple possibilities to improve the application, on the

frontend, the results of docking could be visualized in the Mol* viewer, the 1D

viewer could be improved by resizing dynamically according to the window size,

and the options for the user could be extended. On the backend, we could add

a better program for the docking plug-in, add more plug-ins, and improve the

performance of the application.

Still, we believe that the current state of PrankWeb has improved and the

application is ready to be used by the scientific community.

51

52

Bibliography

[1] Jianyi Yang, Ambrish Roy, and Yang Zhang. “Protein–ligand binding site

recognition using complementary binding-specific substructure compari-

son and sequence profile alignment”. In: Bioinformatics 29.20 (Aug. 2013),

pp. 2588–2595. issn: 1367-4803. doi: 10.1093/bioinformatics/btt447.

eprint: https://academic.oup.com/bioinformatics/article-pdf/
29/20/2588/48894365/bioinformatics_29_20_2588.pdf. url:

https://doi.org/10.1093/bioinformatics/btt447.

[2] Radoslav Krivák and David Hoksza. “P2Rank: machine learning based

tool for rapid and accurate prediction of ligand binding sites from protein

structure”. In: Journal of cheminformatics 10 (2018), pp. 1–12.

[3] Lukas Jendele et al. “PrankWeb: a web server for ligand binding site pre-

diction and visualization”. In: Nucleic acids research 47.W1 (2019), W345–

W349.

[4] David Sehnal et al. “Mol* Viewer: modern web app for 3D visualization and

analysis of large biomolecular structures”. In: Nucleic Acids Research 49.W1

(May 2021), W431–W437. issn: 0305-1048. doi: 10.1093/nar/gkab314.

eprint: https://academic.oup.com/nar/article- pdf/49/W1/
W431/38842088/gkab314.pdf. url: https://doi.org/10.1093/nar/
gkab314.

[5] Joan Segura et al. “RCSB Protein Data Bank 1D tools and services”. In:

Bioinformatics 36.22-23 (Dec. 2020), pp. 5526–5527. issn: 1367-4803. doi:

10.1093/bioinformatics/btaa1012. eprint: https://academic.oup.
com/bioinformatics/article- pdf/36/22- 23/5526/36856041/
btaa1012.pdf. url: https://doi.org/10.1093/bioinformatics/
btaa1012.

[6] David L Nelson, Albert L Lehninger, and Michael M Cox. Lehninger princi-
ples of biochemistry. Macmillan, 2008.

[7] John Jumper et al. “Highly accurate protein structure prediction with Al-

phaFold”. In: Nature 596.7873 (2021), pp. 583–589.

53

https://doi.org/10.1093/bioinformatics/btt447
https://academic.oup.com/bioinformatics/article-pdf/29/20/2588/48894365/bioinformatics_29_20_2588.pdf
https://academic.oup.com/bioinformatics/article-pdf/29/20/2588/48894365/bioinformatics_29_20_2588.pdf
https://doi.org/10.1093/bioinformatics/btt447
https://doi.org/10.1093/nar/gkab314
https://academic.oup.com/nar/article-pdf/49/W1/W431/38842088/gkab314.pdf
https://academic.oup.com/nar/article-pdf/49/W1/W431/38842088/gkab314.pdf
https://doi.org/10.1093/nar/gkab314
https://doi.org/10.1093/nar/gkab314
https://doi.org/10.1093/bioinformatics/btaa1012
https://academic.oup.com/bioinformatics/article-pdf/36/22-23/5526/36856041/btaa1012.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/22-23/5526/36856041/btaa1012.pdf
https://academic.oup.com/bioinformatics/article-pdf/36/22-23/5526/36856041/btaa1012.pdf
https://doi.org/10.1093/bioinformatics/btaa1012
https://doi.org/10.1093/bioinformatics/btaa1012

[8] Vladimir B Sulimov, Danil C Kutov, and Alexey V Sulimov. “Advances in

docking”. In: Current medicinal chemistry 26.42 (2019), pp. 7555–7580.

[9] Frances C Bernstein et al. “The Protein Data Bank: a computer-based

archival file for macromolecular structures”. In: Journal of molecular biology
112.3 (1977), pp. 535–542.

[10] Paul D Adams et al. “Announcing mandatory submission of PDBx/mmCIF

format files for crystallographic depositions to the Protein Data Bank

(PDB)”. In: Acta Crystallographica Section D: Structural Biology 75.4 (2019),

pp. 451–454.

[11] Philip E Bourne et al. “[30] Macromolecular crystallographic information

file”. In: Methods in enzymology. Vol. 277. Elsevier, 1997, pp. 571–590.

[12] David J Lipman and William R Pearson. “Rapid and sensitive protein simi-

larity searches”. In: Science 227.4693 (1985), pp. 1435–1441.

[13] Andrea Vázquez-Ingelmo, Alicia García-Holgado, and Francisco J García-

Peñalvo. “C4 model in a Software Engineering subject to ease the com-

prehension of UML and the software”. In: 2020 IEEE Global Engineering
Education Conference (EDUCON). IEEE. 2020, pp. 919–924.

[14] Alessia David et al. “The AlphaFold database of protein structures: a biolo-

gist’s guide”. In: Journal of molecular biology 434.2 (2022), p. 167336.

[15] Andrei Kouranov et al. “The RCSB PDB information portal for structural

genomics”. In: Nucleic acids research 34.suppl_1 (2006), pp. D302–D305.

[16] Warren L DeLano et al. “Pymol: An open-source molecular graphics tool”.

In: CCP4 Newsl. Protein Crystallogr 40.1 (2002), pp. 82–92.

[17] Liam J McGuffin et al. “IntFOLD: an integrated web resource for high

performance protein structure and function prediction”. In: Nucleic Acids
Research 47.W1 (May 2019), W408–W413. issn: 0305-1048. doi: 10.1093/
nar / gkz322. eprint: https : / / academic . oup . com / nar / article -
pdf/47/W1/W408/28880002/gkz322.pdf. url: https://doi.org/10.
1093/nar/gkz322.

[18] Jianyi Yang, Ambrish Roy, and Yang Zhang. “Protein–ligand binding

site recognition using complementary binding-specific substructure com-

parison and sequence profile alignment”. In: Bioinformatics 29.20 (2013),

pp. 2588–2595.

[19] Gerard Martínez-Rosell, Toni Giorgino, and Gianni De Fabritiis. “Play-

Molecule ProteinPrepare: a web application for protein preparation for

molecular dynamics simulations”. In: Journal of chemical information and
modeling 57.7 (2017), pp. 1511–1516.

54

https://doi.org/10.1093/nar/gkz322
https://doi.org/10.1093/nar/gkz322
https://academic.oup.com/nar/article-pdf/47/W1/W408/28880002/gkz322.pdf
https://academic.oup.com/nar/article-pdf/47/W1/W408/28880002/gkz322.pdf
https://doi.org/10.1093/nar/gkz322
https://doi.org/10.1093/nar/gkz322

[20] Miha Skalic et al. “PlayMolecule BindScope: large scale CNN-based virtual

screening on the web”. In: Bioinformatics 35.7 (Aug. 2018), pp. 1237–1238.

issn: 1367-4803. doi: 10.1093/bioinformatics/bty758. eprint: https:
//academic.oup.com/bioinformatics/article-pdf/35/7/1237/
48968406/bioinformatics_35_7_1237_s2.pdf. url: https:
//doi.org/10.1093/bioinformatics/bty758.

[21] J Jiménez et al. “DeepSite: protein-binding site predictor using 3D-

convolutional neural networks”. In: Bioinformatics 33.19 (May 2017),

pp. 3036–3042. issn: 1367-4803. doi: 10.1093/bioinformatics/btx350.

eprint: https://academic.oup.com/bioinformatics/article-pdf/
33/19/3036/49041330/bioinformatics_33_19_3036_s6.pdf.

url: https://doi.org/10.1093/bioinformatics/btx350.

[22] Mayya Sedova, Lukasz Jaroszewski, and Adam Godzik. “Protael: protein

data visualization library for the web”. In: Bioinformatics 32.4 (Oct. 2015),

pp. 602–604. issn: 1367-4803. doi: 10.1093/bioinformatics/btv605.

eprint: https://academic.oup.com/bioinformatics/article-pdf/
32/4/602/49017631/bioinformatics_32_4_602.pdf. url: https:
//doi.org/10.1093/bioinformatics/btv605.

[23] David Sehnal et al. “LiteMol suite: interactive web-based visualization of

large-scale macromolecular structure data”. In: Nature Methods 14.12 (2017),

pp. 1121–1122.

[24] Hai Nguyen, David A Case, and Alexander S Rose. “NGLview–interactive

molecular graphics for Jupyter notebooks”. In: Bioinformatics 34.7 (2018),

pp. 1241–1242.

[25] Veronika Scheuerová. “Webový plugin pro kombinovanou sekvenčně

strukturní analýzu proteinů”. Bachelor’s Thesis. Univerzita Karlova,

Matematicko-fyzikální fakulta, Katedra softwarového inženýrství, 2021.

[26] Cha Zhang and Tsuhan Chen. “Efficient feature extraction for 2D/3D objects

in mesh representation”. In: Proceedings 2001 International Conference on
Image Processing (Cat. No. 01CH37205). Vol. 3. IEEE. 2001, pp. 935–938.

[27] Pradeep Anand Ravindranath et al. “AutoDockFR: advances in protein-

ligand docking with explicitly specified binding site flexibility”. In: PLoS
computational biology 11.12 (2015), e1004586.

[28] Greg Landrum et al. “RDKit: A software suite for cheminformatics, compu-

tational chemistry, and predictive modeling”. In: Greg Landrum 8 (2013).

55

https://doi.org/10.1093/bioinformatics/bty758
https://academic.oup.com/bioinformatics/article-pdf/35/7/1237/48968406/bioinformatics_35_7_1237_s2.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/7/1237/48968406/bioinformatics_35_7_1237_s2.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/7/1237/48968406/bioinformatics_35_7_1237_s2.pdf
https://doi.org/10.1093/bioinformatics/bty758
https://doi.org/10.1093/bioinformatics/bty758
https://doi.org/10.1093/bioinformatics/btx350
https://academic.oup.com/bioinformatics/article-pdf/33/19/3036/49041330/bioinformatics_33_19_3036_s6.pdf
https://academic.oup.com/bioinformatics/article-pdf/33/19/3036/49041330/bioinformatics_33_19_3036_s6.pdf
https://doi.org/10.1093/bioinformatics/btx350
https://doi.org/10.1093/bioinformatics/btv605
https://academic.oup.com/bioinformatics/article-pdf/32/4/602/49017631/bioinformatics_32_4_602.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/4/602/49017631/bioinformatics_32_4_602.pdf
https://doi.org/10.1093/bioinformatics/btv605
https://doi.org/10.1093/bioinformatics/btv605

[29] Oleg Trott and Arthur J Olson. “AutoDock Vina: improving the speed and

accuracy of docking with a new scoring function, efficient optimization,

and multithreading”. In: Journal of computational chemistry 31.2 (2010),

pp. 455–461.

[30] David Weininger. “SMILES, a chemical language and information system.

1. Introduction to methodology and encoding rules”. In: Journal of chemical
information and computer sciences 28.1 (1988), pp. 31–36.

56

Appendix A

Attachments

A.1 Source codes
Source codes of PrankWeb are attached to this thesis in the ZIP archive. The

archive contains all of the source codes, not only the work done in this thesis as

the work was done in a fork of the same repository as the rest of the PrankWeb

application. The directories that were added or intensively modified in this thesis

are listed below:

• frontend - contains the source codes of the frontend application

• executor-docking - contains the source codes of the docking plug-in

• web-server - contains the source codes of the Flask application

For the individual changed files, check the GitHub commits. For the current

state of the source codes, check the GitHub repository.

A.2 GitHub
The source codes are publicly available on GitHub at https://github.com/c
usbg/prankweb.

The official documentation of the PrankWeb architecture and P2Rank tool is

available at https://github.com/cusbg/p2rank-framework/.

The development was done in a fork of the PrankWeb repository at https:
//github.com/luk27official/prankweb. The fork branches are continuously

merged into the upstream repository after the pull request is approved.

57

https://github.com/cusbg/prankweb
https://github.com/cusbg/prankweb
https://github.com/cusbg/p2rank-framework/
https://github.com/luk27official/prankweb
https://github.com/luk27official/prankweb

A.3 Abbreviations
• 1D - one dimensional

• 3D - three dimensional

• ADFR - AutoDockFR

• API - Application Programming Interface

• CIF / mmCIF - Macromolecular Crystallographic Information File

• CSS - Cascading Style Sheets

• CSV - Comma Separated Values

• FASTA - FAST-All

• JRE - Java Runtime Environment

• JSX - JavaScript Syntax Extension

• JSON - JavaScript Object Notation

• PDB - Protein Data Bank

• PDBx - Protein Data Bank eXtended

• pLDDT - per-residue Local Distance Difference Test

• RCSB - Research Collaboratory for Structural Bioinformatics

• REST - Representational State Transfer

• SCSS - Sassy CSS

• SMILES - Simplified Molecular Input Line Entry System

• WSGI - Web Server Gateway Interface

A.4 Pocket detail designs
This section contains all pocket detail designs that were considered for displaying

more information about a pocket. In the end, the figure A.4 was chosen. For more

information refer to section 2.2.

58

Figure A.1 The first option for displaying pocket information.

Figure A.2 The second option for displaying pocket information.

59

Figure A.3 The third option for displaying pocket information.

Figure A.4 The fourth and chosen option for displaying pocket information.

60

	Introduction
	Introduction and background
	Introduction to molecular biology
	Amino acids and proteins
	Protein functions

	Used data formats
	JSON
	PDB
	PDBx/mmCIF
	FASTA
	CSV

	P2Rank tool
	PrankWeb architecture
	Gateway
	RabbitMQ
	Flower
	Web-server
	Executor-P2Rank
	Executor-Docking
	Prometheus

	Similar web-tools
	IntFOLD
	COACH
	DeepSite

	Programming documentation
	Frontend
	High-level overview
	MolStar
	RCSB Saguaro 1D Feature Viewer
	React components

	Plug-ins
	Client-side plug-ins
	Server-side plug-ins

	User documentation
	Deployment
	Docker deployment
	Local deployment

	User guide
	Developer
	Client-side plug-ins
	Server-side plug-ins

	Conclusion
	Bibliography
	Attachments
	Source codes
	GitHub
	Abbreviations
	Pocket detail designs

