
BACHELOR THESIS

Dmitry Simonov

Portfolio performance evaluation

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Filip Zavoral, Ph.D.
Study programme: Computer Science

Study branch: Programming and Software
Development

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor RNDr. Filip Zavoral, Ph.D. for his time,
patience, and help provided during implementation of this thesis.

ii

Title: Portfolio performance evaluation

Author: Dmitry Simonov

Department: Department of Software Engineering

Supervisor: RNDr. Filip Zavoral, Ph.D., Department of Software Engineering

Abstract: The goal of this work is to develop a tool for tracking and analysis
of investment portfolios, with support for automatic financial data retrieval and
highly customizable chart creation. In this thesis, we research existing invest-
ment tracking tools, comparing them based on their supported features. We also
analyze different methodologies of evaluating performance of an investment. Fol-
lowing this, we develop a web application allowing the user to import, track, and
chart their investments. Financial data for tracked securities is automatically
fetched from various data sources using a handcrafted library, which can be used
for retrieval of any kind of data from different sources, while supporting easy
addition or replacement of such sources. Finally, we evaluate the implemented
application and suggest possible extensions and improvements.

Keywords: investment performance, web application, react, .net

iii

Contents

Introduction 4
Glossary . 4

1 Analysis 6
1.1 Evaluating portfolio performance 6

1.1.1 Problem . 6
1.1.2 Money-Weighted Return 7
1.1.3 Time-Weighted Return . 8
1.1.4 Conclusion . 8

1.2 Financial data sources . 9
1.2.1 Evaluation criteria . 9
1.2.2 Alpha Vantage . 9
1.2.3 Finnhub . 10
1.2.4 Tiingo . 10
1.2.5 RapidAPI Mboum Finance 11
1.2.6 Yahoo Finance . 11
1.2.7 Exchange Rate Host . 12
1.2.8 Open Exchange Rates . 12
1.2.9 Conclusion . 13

1.3 Related work . 14
1.3.1 Evaluation criteria . 14
1.3.2 Yahoo Finance . 14
1.3.3 Digrin . 15
1.3.4 Portfolio Performance . 15
1.3.5 Sharesight . 16
1.3.6 Conclusion . 16

1.4 Requirements . 17
1.4.1 Functional requirements 17
1.4.2 Non-functional requirements 18
1.4.3 Use cases . 19

2 Design 26
2.1 Choice of technologies . 26

2.1.1 Platform . 26
2.1.2 Backend . 26
2.1.3 Frontend . 26
2.1.4 Database . 28

2.2 Conceptual model . 28
2.3 Backend . 31

2.3.1 Domain . 31
2.3.2 Persistence . 32
2.3.3 Financial data sources . 32
2.3.4 Jobs . 33
2.3.5 API . 33
2.3.6 Architecture . 33

1

2.4 Frontend . 34
2.4.1 User interface . 35
2.4.2 Chart rendering . 38
2.4.3 State management . 38

3 Implementation 40
3.1 Development environment . 40
3.2 Backend . 40

3.2.1 API . 41
3.2.2 Services . 43
3.2.3 Calculators . 43
3.2.4 CSV processing . 45
3.2.5 Background jobs . 45
3.2.6 Data fetching . 45

3.3 Frontend . 47
3.3.1 Routing . 47
3.3.2 Styling . 47
3.3.3 Dashboard . 48
3.3.4 Charts . 48
3.3.5 Tables . 48
3.3.6 Backend communication 49

4 Implementation Details 50
4.1 Backend . 50

4.1.1 Project structure . 50
4.1.2 PortEval.Application . 50
4.1.3 PortEval.Application.Model 51
4.1.4 PortEval.Application.Core 52
4.1.5 PortEval.DataFetcher . 55
4.1.6 PortEval.Domain . 57
4.1.7 PortEval.Infrastructure . 58
4.1.8 PortEval.Tests.Unit . 59
4.1.9 PortEval.Tests.Integration 59

4.2 Frontend . 60
4.2.1 Project structure . 60
4.2.2 Shared components . 61
4.2.3 Views . 61
4.2.4 Tables . 62
4.2.5 Forms . 62
4.2.6 Charts . 63
4.2.7 Hooks . 64
4.2.8 Redux . 65

5 Testing 66
5.1 Automated testing . 66

5.1.1 Backend . 66
5.1.2 Frontend . 67

5.2 Performance evaluation . 68
5.2.1 Test data . 68

2

5.2.2 Environment . 69
5.2.3 Results . 69

Conclusion 71
Future work . 71

Bibliography 73

List of Figures 74

List of Abbreviations 75

A Attachments 77
A.1 Electronic attachment . 77
A.2 Administrator documentation . 78

A.2.1 Data sources . 78
A.2.2 Docker Compose . 78
A.2.3 Custom deployment . 79
A.2.4 Setup bundle . 80

A.3 User documentation . 81
A.3.1 Workflow . 81
A.3.2 Getting started . 81
A.3.3 Instrument management 81
A.3.4 Portfolio management . 84
A.3.5 Chart management . 86
A.3.6 Dashboard . 88
A.3.7 Data import and export 88
A.3.8 Currency management . 91
A.3.9 User settings . 91

3

Introduction
Investment tracking and evaluation are some of the most important activities per-
taining to investment management. With the rise of online trading platforms and
increased access to financial markets, more individuals are seeking to invest their
financial resources to achieve short-term or long-term gains. However, managing
these investments can be a complex and time-consuming process, more so if they
are spread across different portfolios. Furthermore, evaluating their performance
is challenging without the proper tools and knowledge.

While numerous tools exist to assist investors in making investment decisions,
many such tools are either proprietary or narrowly specialized. This indicates
a need for a generic application which would allow investors to aggregate and
track their investments in a single place, while providing key performance metrics
assisting them in their decision-making.

This work aims to provide investors with such an application. It should be
as easy to use as possible, while being flexible enough to accomodate the more
specific use cases needed by advanced investors.

To achieve this, the application should be able to automatically retrieve and
maintain financial data, ensuring up-to-date information on the performance of
tracked investments. Furthermore, as one of the key tools investors use to mea-
sure their investments are charts, the application should allow the user to chart
their investments using highly configurable multi-line charts, enabling comparison
between the performance of different investments or securities. The user should
then be able to display multiple such charts in a single view, allowing them to
see relevant information at a single glance.

This work consists of three key parts. First, we analyze the specific require-
ments stemming from the goals of this work, while also discussing the methodol-
ogy of evaluating an investment’s performance and existing solutions.

Then, we design, develop, and test the application according to requirements
discovered in the analysis phase.

Finally, we evaluate the application and suggest possible extensions, while
also describing how these extensions could be implemented in the application’s
architecture.

Glossary
Before delving into analysis and development of the application, it would be
beneficial to establish basic terminology which is commonly used throughout this
work:

• Instrument: A priced and typically tradable asset, such as company
stocks, cryptocurrencies, exchange-traded funds (ETFs), commodities, or
indexes. These assets typically have a name and a symbol, such as Apple
Inc. with an AAPL ticker symbol.

• Instrument price: The price at which the instrument was traded at a
certain time.

4

• Position: The amount of a particular instrument held by the investor.

• Transaction: An increase or a decrease of a position, executed at a certain
time for a certain price.

• Portfolio: A collection of positions.

• Value: Instrument value refers to the price of the instrument at a specific
time, position or portfolio value refers to current market value of assets held
in the investment.

• Profit: Instrument profit refers to the change of instrument’s price over
a specific time period, position or portfolio profit refers to the monetary
return on investment.

• Performance: Instrument performance refers to percentage change of in-
strument’s price over a specific time period, position or portfolio perfor-
mance refers to percentage return on investment.

• Chart: A multi-line chart consisting of instrument, portfolio, or position
lines.

– Value chart: Charts the value of selected financial entities.
– Profit chart: Charts the profit of selected financial entities between

the start and end of the chart date range.
– Performance chart: Charts the performance of selected financial

entities between the start and end of the chart date range.
– Aggregated profit chart: Charts the profit of selected financial

entities between each two points of the chart.
– Aggregated performance chart: Charts the performance of se-

lected financial entities between each two points of the chart.

5

1. Analysis
In the following chapter, we further analyze the goals described in Introduction.
We start by discussing the different methodologies for investment performance
evaluation.

Following this, we analyze available financial data sources and existing solu-
tions.

Finally, based on the results of the analysis, we formulate the functional and
non-functional requirements. Additionally, we describe the use cases of the ap-
plication, providing example use case scenarios for several of them.

1.1 Evaluating portfolio performance
In this section, we examine the methods available for measuring the performance
of an investment and select the approach that best fits the needs of the applica-
tion.

1.1.1 Problem
As was indicated in the goals of this work, the primary metric in which we are
interested is the returns earned by portfolios and their individual positions based
on market changes. This means that this analysis will focus on techniques which
can be used to measure such returns, and not techniques for measuring metrics
such as risks or return efficiency.

The return of an investment can generally be defined as a ratio relating how
much was gained or lost given how much was risked [Feibel, 2003]. For example,
if we invest $10 in a fund and we get $15 back, we have gained $5. To express
this return as a percentage, we can use the following calculation:

5
10 × 100 = 50%

Such calculation is enough to measure the performance of individual instru-
ments, where gains or losses are triggered by changes in the market value of the
instrument. However, for investment portfolios this simplified approach does not
accurately reflect reality due to several complications [Feibel, 2003]:

• Investors may contribute and withdraw from their portfolios at arbitrary
times.

• Returns produced by the investment manager and returns experienced by
the investor need to be evaluated differently.

• Returns spanning multiple valuation periods may need to be compounded.

To account for these complications, two different measures of return were
developed:

• Money-Weighted Return (MWR)

6

• Time-Weighted Return (TWR)

In the following subsections, we examine both of these measures and the
methods used to calculate them.

1.1.2 Money-Weighted Return
The Money-Weighted Return is a statistic reflecting how much money was earned
during the measurement period, and can be described as a measurement reflecting
the performance as experienced by the investor [Feibel, 2003]. Additionally, it
accounts for timing and size of the cash flows inbetween. It does so by calculating
a weighting adjustment for each cash flow, representing the proportion of the
period during which the cash flow is available to be invested.

There are two common methods of calculating MWR - internal rate of
return (IRR) and Modified Dietz method.

Internal Rate of Return

The internal rate of return is defined as the rate of interest at which the present
value of net cash flows from the investment is equal to the present value of net
cash flows into the investment [Kellison, 2008, p.252]. Essentially, it is the value
r which satisfies the following formula:

N∑︂
n=0

Cn

(1 + r)n
= 0 (1.1)

where:

• N - the total number of subperiods

• Cn - cash flow (positive or negative) in subperiod n

The resulting r represents the rate of return on each cash flow in and out of
the portfolio, compounded over the time during which the cash flow was available
for investment.

Alternatively, by substituting t for 1 + r and multiplying both sides of the
equation by tN , the formula can be rewritten as follows:

N∑︂
n=0

(CntN−n) = 0 (1.2)

While IRR is a fairly intuitive measure, the formula above is a high degree
polynomial, which is computationally expensive to solve.

Modified Dietz method

The modified Dietz method can be defined as an approximation of MWR us-
ing simple interest rate principle (compared to IRR which uses a compounding
principle). The Modified Dietz return R is calculated as follows [Feibel, 2003]:

R = S − E − ∑︁N
n=1 Cn

S + ∑︁N
n=1(Cn ∗ N−n

N
)

(1.3)

7

where:

• S - starting market value

• E - ending market value

• N - total number of subperiods

• Cn - cash flow (positive or negative) in subperiod n

The advantage of the modified Dietz method compared to IRR is ease of
calculation, as the formula above is a closed-form solution.

1.1.3 Time-Weighted Return
Contrary to MWR, the Time-Weighted Return eliminates the effect of external
flows, such as contributions or withdrawals from a portfolio. This means that
this statistic only accounts for changes in value caused by market changes or a
reallocation of assets. This is achieved by splitting the total measurement period
into multiple subperiods, the boundaries of which are determined by the dates of
each cash flow. The return for each subperiod is then calculated and compounded,
resulting in the following formula for total return R [Feibel, 2003]:

R =
N∏︂

n=1
(1 + Rn) (1.4)

where:

• N - total number of subperiods

• Rn - return in subperiod n

Because TWR does not account for timely contributions or withdrawals by
the investor, it can be described as a metric measuring the performance of the
investment manager, rather than the investor [Feibel, 2003].

Additionally, to calculate the return for each subperiod, we need to know the
portfolio valuation at the time of each cash flow, whereas for MWR only the
valuation at the start and the end of the measurement period is necessary.

1.1.4 Conclusion
As the application is aimed towards investors measuring the performance of their
own investments, MWR seems to be the more appropriate choice.

Out of two discussed methods for calculating MWR, IRR has the benefit of
higher accuracy, while the modified Dietz method has the benefit of easier calcula-
tion. Due to the nature of this work, higher accuracy of IRR is perceived as more
important than ease of calculation. For this reason, IRR was the methodology of
choice for portfolio performance calculation.

To correctly use IRR in the application, two points need to be considered:

• IRR represents the average rate of return in each subperiod, not the return
over the whole measurement period.

8

• IRR cannot be calculated directly, it requires an iterative trial-and-error
approach.

Knowing IRR r, it is trivial to calculate the return over the whole measure-
ment period. Assuming N subperiods, r can be compounded over these periods
by calculating rN .

However, with IRR formula being a high degree polynomial, finding its real
roots algebraically might not be possible. For this reason, an approximation root-
finding algorithm can be used. Several such algorithms exist, such as Newton’s
method, the secant method, or Horner’s method [Atkinson, 1989].

Because of its relative simplicity, we utilize Newton’s Method in this work.
Additionally, to further simplify the calculation, formula 1.2 is used.

1.2 Financial data sources
As is evident from the goals of this work, the application should be able to auto-
matically retrieve and maintain financial data, such as instrument prices, instru-
ment splits, and currency exchange rates. In this section, we examine possible
options and evaluate their suitability for the application’s needs.

1.2.1 Evaluation criteria
Before evaluating individual data sources, it would be beneficial to establish some
key criteria based on which the choice could be made.

• Scope of data: The number of different instruments, exchanges, or cur-
rencies supported, and the type of data available.

• Rate limits: Many public data sources limit the number of requests which
a single IP address or a single token may use, which could reduce the avail-
ability of financial data in the application.

• Ease of integration: The number of requests needed to retrieve necessary
data, or the perceived complexity of implementation.

1.2.2 Alpha Vantage
Alpha Vantage1 is a popular freemium API (Application Programming Interface)
providing stock market data.

• Scope of data - The API provides a wide range of financial data, with
reported support for 100 000 instruments. The API provides historical
adjusted EOD (end of day) prices, intraday adjusted prices, stock split
information, and (crypto)currency exchange rates.

• Rate limits - 5 requests per minute and 500 requests per day for the free
version, up to 1200 requests per minute and no daily limits for paid versions.

1https://www.alphavantage.co/

9

https://www.alphavantage.co/

• Ease of integration - Alpha Vantage is a traditional RESTful API returning
JSON (JavaScript Object Notation) data, allowing retrieval of complete
price and exchange rate history with a single request.

Alpha Vantage can be considered a viable option, with its only drawback
being its fairly strict rate limits.

1.2.3 Finnhub
Finnhub2 is a freemium API which provides real-time and historical prices and
cryptocurrency exchange rates.

• Scope of data - The API’s primary focus is on US-based stocks, with several
types of data (such as stock split data) being provided only as part of the
premium package.

• Rate limits - 30 requests per second and 60 requests per minute for the free
version, up to 900 requests per minute for the paid versions.

• Ease of integration - Similar to Alpha Vantage, Finnhub provides a RESTful
API returning JSON data. In addition, it offers a WebSocket endpoint for
real-time price updates.

While Finnhub generally seems like a valid choice, it is important to note
its limitations with regard to its focus on US-based instruments and stocks in
particular.

1.2.4 Tiingo
Tiingo3 is a financial markets API providing intraday and historical instrument
prices, as well as cryptocurrency exchange rates. The intraday prices are based
on raw feeds provided by IEX exchange.

• Scope of data - Tiingo reports 84 000 supported securities with a 30-year
price history. The API provides historical adjusted EOD (end of day)
prices, intraday prices, stock split information, and (crypto)currency ex-
change rates.

• Rate limits - 50 requests per hour and 1000 requests per day for the free
version, up to 5000 requests per hour and 50000 requests per day for the
paid version.

• Ease of integration - Tiingo provides a RESTful API returning JSON data
with a WebSocket endpoint enabling direct access to the IEX feed. However,
due to the nature of the IEX feed, the intraday prices retrieved from this
API will not be adjusted for stock splits.

While Tiingo does not provide adjusted intraday prices, its extensive price
history can be used for downloading historical daily prices.

2https://finnhub.io/
3https://www.tiingo.com/

10

https://finnhub.io/
https://www.tiingo.com/

1.2.5 RapidAPI Mboum Finance
Mboum Finance4 is a freemium financial data API provided by RapidAPI.

• Scope of data - Mboum Finance provides 10 years of historical EOD prices
and 1 month of intraday prices. Additionally, it provides a stock split
history for supported stocks. The total number of supported instruments
is unknown, however, preliminary experiments showed support for certain
European ETFs which were not available in previous sources.

• Rate limits - 10 requests per minute and 500 requests per month for the free
version, up to 600 requests per minute and unlimited requests per month
for the paid version.

• Ease of integration - Mboum Finance is a RESTful API returning JSON
data. One advantage of this API is ease of retrieval of stock splits, as it
provides a complete split history in a single request.

Mboum Finance has fairly strict rate limits, however, it seems to support
more instruments than other considered data sources.

1.2.6 Yahoo Finance
Yahoo Finance5 is a complete service providing financial data, reports, and news.
It additionally offers various personal finance tracking tools, including portfolio
tracking, which will be further discussed in the next section.

While Yahoo used to provide a direct access to their financial API, it was
officially discontinued several years ago. Nevertheless, due to the fact that Yahoo
Finance data is commonly used in similar applications, and due to the volume of
data provided, it should be considered for this work as well.

Currently, the only two methods of retrieving data from Yahoo Finance are
web scraping or their internal APIs6.

• Scope of data - Yahoo Finance provides complete instrument price, stock
split, and currency exchange rate histories for a large number of tickers and
currencies.

• Rate limits - Unknown

• Ease of integration - Yahoo’s internal APIs are not official, which means
that there is no documentation available for them. It is also impossible
to know when specific APIs will get discontinued. On top of that, Yahoo
seems to be trying to prevent unauthorized access to such APIs7, however,

4https://rapidapi.com/sparior/api/mboum-finance
5https://finance.yahoo.com/
6It is important to note that several organizations published their own unofficial APIs pro-

viding Yahoo Finance data retrieved using one of the methods above. However, their reliability
is questionable, with one of the most popular APIs unexpectedly going out of service as re-
cently as February 2023. For analysis purposes, we ignore such APIs and assume that a custom
retrieval mechanism needs to be implemented.

7https://github.com/ranaroussi/yfinance/issues/1407

11

https://rapidapi.com/sparior/api/mboum-finance
https://finance.yahoo.com/
https://github.com/ranaroussi/yfinance/issues/1407

this does not seem to affect their quote and price history endpoints. It
would also be possible to scrape the necessary data from Yahoo Finance
website, however, it requires significant development time, while providing
little reliability due to possible website changes.

One major advantage of Yahoo Finance is that it does not require registration
or an API token to use, while also providing large volumes of data to the users. In
the context of this work, Yahoo Finance could be implemented as a valid default
source if the user does not want to register for other data sources.

1.2.7 Exchange Rate Host
ExchangeRate.host8 is a free service providing current and historical currency
and cryptocurrency exchange rates.

• Scope of data - Reports 170 supported currencies and 6000 supported cryp-
tocurrencies with 20 years of historical data.

• Rate limits - The rate limits are IP-based, dynamic, and are reported in
response headers. Preliminary experiments showed a consistent rate limit
of 2000 requests per minute.

• Ease of integration - ExchangeRate.host provides a RESTful API return-
ing JSON, comma-separated values (CSV), TSV (tab-separated values), or
XML (Extensive Markup Language) data. Downloading historical data is
limited to 366 days per request.

Similar to Yahoo Finance, ExchangeRate.host does not require any credentials
to use, while also providing generous rate limits that are more than sufficient for
the application’s needs. The only drawback of this API is its limitation on the
amount of historical data that can be downloaded per request, but this issue can
be easily worked around.

1.2.8 Open Exchange Rates
Open Exchange Rates9 is an API providing current and historical currency ex-
change rates.

• Scope of data - The API reports 200 currencies with 20 years of historical
data. The free version is limited to exchange rates from USD only with
hourly exchange rate updates.

• Rate limits - 1000 requests per month for the free version, up to unlimited
requests for the paid version. However, for historical data, each day is
counted as one request, so the free version only enables retrieval of 1000
days per month.

8https://exchangerate.host/
9https://openexchangerates.org/

12

https://exchangerate.host/
https://openexchangerates.org/

• Ease of integration - The API provides RESTful endpoints for historical,
time-series, and latest exchange rates. The time-series endpoint is limited
to one month of data per request, which significantly increases the number
of requests needed to download the complete history of exchange rates for
a single currency.

The biggest disadvantage of Open Exchange Rates is its restriction to USD
exchange rates for the free version.

1.2.9 Conclusion
While there are numerous financial data sources available, none of them com-
pletely cover the application’s needs. Furthermore, due to fairly strict rate limits,
the application cannot be reasonably expected to retrieve necessary information
in real time.

This means that the application should maintain its own financial data, which
would be composed from data retrieved from different data sources. Additionally,
to maximize reliability, the application should be able to switch between data
sources in case of their unavailability, or in case a data source’s rate limit is
exceeded.

For the purposes of this application, we do not need to maintain complete and
continuous price and exchange rate histories for each instrument and currency,
which would require a significant amount of storage space. Instead, the following
intervals were deemed to be enough:

• Five minutes for instrument prices in the past day.

• One hour for instrument prices in the past five days.

• One day for instrument prices older than five days.

• One day for currency exchange rates from user-selected default currency.
If the application requires currency conversion between non-default curren-
cies, the appropriate exchange rate can be estimated using exchange rates
from the default currency.

Based on the information provided in the previous subsections, we have opted
for the following data sources and data types:

• Yahoo Finance

• Alpha Vantage

• Tiingo

• RapidAPI Mboum Finance

• Exchange Rate Host

• Open Exchange Rates

13

1.3 Related work
In this section, we examine existing portfolio tracking solutions and compare
them to the application being built.

1.3.1 Evaluation criteria
With regards to this work’s goals, we examine related solutions based on the
following set of criteria:

• Custom data support: The level at which the solution supports tracking
of custom instruments or positions.

• Tracking capabilities: Financial metrics which can be tracked in the
application and scope of available market data.

• Charting capabilities: Configurability and usability of charts.

• User experience: How easy it is to learn and use the application. This
criterion is primarily subjective.

• Business model: Whether the application is free to use, and whether its
source code is publicly available.

1.3.2 Yahoo Finance
Yahoo Finance was first discussed in the Financial data sources section in the
context of their API, however, they also provide a web-based portfolio tracking
tool, which is the target of this analysis.

• Custom data support - Yahoo Finance enables tracking custom positions,
however it does not support maintaining custom price or split histories, so
the analysis is limited only to returns based on entered transactions.

• Tracking capabilities - Yahoo Finance offers an incredibly large volume of
data with real-time updates, while also enabling tracking of multiple port-
folios, their returns, and various financial metrics of individual instruments.

• Charting capabilities - Yahoo Finance enables creation of highly config-
urable charts. However, these charts cannot be saved or laid out in a single
view.

• User experience - The interface of Yahoo Finance is unreasonably cluttered
to the level where it is hard to find necessary information at a single glance.
On the other hand, its chart configuration functionality is very flexible and
easy to use.

• Business model - All the tools provided by Yahoo Finance are free to use,
but closed-source.

Yahoo Finance provides a large volume of data and very powerful charting
and analysis capabilities, with its drawbacks being lack of support for custom
data and inability to save charts.

14

1.3.3 Digrin
Digrin10 is a web-based portfolio manager with focus on dividend returns. This
project was originally created as a bachelor’s thesis11 at Masaryk University, with
further improvements being made in a master’s thesis12 by the same author.

• Custom data support - Digrin maintains its own list of supported instru-
ments, which means that there is no option to create and track custom
instruments or positions. However, the users can attempt to add an unsup-
ported symbol on a separate page, after which the application will attempt
to load the data for that symbol from Yahoo Finance.

• Tracking capabilities - Digrin’s primary focus is tracking of dividend growth,
however, it also reports changes in portfolio value based on market changes.

• Charting capabilities - Digrin renders basic charts for portfolio value, po-
sition value, and dividend statistics. However, there is no option to create
custom charts.

• User experience - Generally Digrin’s interface is well structured and easy
to use.

• Business model - Digrin operates on a freemium model, with some features
only being available to paid subscribers. Free users are also limited in the
number of portfolios or transactions they can enter into the application.
The application is closed-source.

Digrin’s approach to portfolio tracking is quite similar to this work, with the
main difference being its focus on dividends, rather than market-based perfor-
mance and customized charting.

1.3.4 Portfolio Performance
Similar to this work, Portfolio Performance13 is an investment portfolio manager
with focus on portfolio performance tracking. It is a desktop application available
on Windows, Linux, and macOS.

• Custom data support - Portfolio Performance fully supports tracking cus-
tom instruments and positions.

• Tracking capabilities - Portfolio Performance retrieves its data from multiple
data sources, and allows tracking of multiple key metrics, such as IRR
and risk indicators. However, it only maintains daily historical prices of
instruments.

• Charting capabilities - Portfolio Performance supports custom charts, how-
ever, their configurability is limited to date range and data interval. Custom
charts can be saved as separate views or exported to a file, with no option
to lay multiple charts in a single view.

10https://www.digrin.com/
11https://is.muni.cz/th/ia1o6/?lang=en
12https://is.muni.cz/th/gve1x/?lang=en
13https://www.portfolio-performance.info/en/

15

https://www.digrin.com/
https://is.muni.cz/th/ia1o6/?lang=en
https://is.muni.cz/th/gve1x/?lang=en
https://www.portfolio-performance.info/en/

• User experience - The user interface of the application can be described as
outdated with a steep learning curve.

• Business model - The application is free to use and is open-source. Its
source code is available on GitHub14.

Out of all projects discussed in this section, Portfolio Performance’s func-
tionality and goals align the most with this work. Its main drawbacks are its
unintuitive user interface and limited chart configurability.

1.3.5 Sharesight
Sharesight15 is a popular commercial web application for portfolio tracking and
analysis, reporting both capital gains and dividends.

• Custom data support - Sharesight supports tracking custom instruments
and positions with the exception of instrument splits, which are managed
on the level of individual positions.

• Tracking capabilities - Sharesight offers a vast number of supported instru-
ments from different regions and exchanges, and is capable of tracking cap-
ital gains, dividends, and currency gains of whole portfolios and individual
positions.

• Charting capabilities - Sharesight renders simple charts displaying changes
in instrument price, portfolio performance, or position performance. While
these charts support basic configurability, such as the date range of the
chart or its type, there is no option to build custom multi-line charts, save
them, or display them in a single view.

• User experience - Sharesight offers a modern and clean user interface which
is easy to learn.

• Business model - Sharesight is a freemium project with severe limitations
imposed on free users, such as limited number of portfolios and positions.
The application is closed-source.

One of Sharesight’s biggest advantages is its integration with over 180 bro-
kers, which enables the application to automatically import transactions from
supported brokers. However, it is a commercial project which is hardly usable
with a free plan. Additionally, it lacks support for custom charts.

1.3.6 Conclusion
As can be seen in the previous sections, there are many different approaches to
tracking investments. With that in mind, we can summarize the goals of this
work (referred to as PortEval) using the same evaluation criteria:

14https://github.com/buchen/portfolio
15https://www.sharesight.com/

16

https://github.com/buchen/portfolio
https://www.sharesight.com/

• Custom data support - PortEval offers complete support for custom instru-
ments and positions, including instrument prices and splits.

• Tracking capabilities - PortEval automatically retrieves market data from
multiple different sources. It is capable of tracking monetary and percentage
capital gains of portfolios and individual positions. Reported gains are
automatically adjusted for currency exchange rate movements.

• Charting capabilities - PortEval supports creation of custom multi-line
charts, enabling comparisons between different portfolios, positions, or in-
struments. Multiple types of charts are supported, with configurable date
range, currency, data intervals, aggregation frequencies, and line styles.
Charts are automatically saved on each change, and the application sup-
ports laying out saved charts in a custom grid.

• User experience - PortEval offers a simple and modern user interface, pro-
viding a good balance between the scope of data displayed in a single view,
and the complexity of the interface.

• Business model - PortEval is free to use and open-source.

1.4 Requirements
Based on conducted analysis, we can formulate the requirements of the applica-
tion. The following section describes the functional and non-functional require-
ments of the application, as well as use cases generated from these requirements
including sample use case scenarios.

The functional requirements describe the concrete functionality which the
application must offer to its users. These requirements are constructed as high-
level statements which outline the specific tasks that the application must be able
to perform.

In contrast, the non-functional requirements characterize the properties and
limitations of the system. They provide the constraints under which the func-
tional requirements must be fulfilled.

1.4.1 Functional requirements
FR1 The application must allow the user to track various investment instru-

ments, including their prices and splits.

FR2 The application must allow the user to create investment portfolios.

FR3 The application must allow the user to open positions in their portfolios.

FR4 The application must allow the user to enter new transactions executed
within a position.

FR5 The application must allow the user to see the value, profit, and performance
of instruments, portfolios, and positions.

17

FR6 The application must allow the user to create and save custom multi-line
charts showing the value, profit, performance, aggregated profit, or aggre-
gated performance of selected instruments, portfolios, or positions.

FR7 Chart lines rendered by the application must additionally display small
icons indicating the transactions performed on the underlying instrument,
portfolio, or position.

FR8 The application must allow the user to display saved charts in a custom
grid.

FR9 The application must allow the user to set different currencies for portfolios
and charts, executing currency conversion automatically where needed.

FR10 The application must allow the user to import instruments, portfolios, po-
sitions, prices, and transactions in CSV format.

FR11 The application must allow the user to export available data in CSV format.

FR12 The application must be able to download instrument prices automatically
from external sources.

FR13 The application must be able to download currency exchange rates auto-
matically from external sources.

FR14 The application must be able to download stock splits automatically from
external sources.

FR15 The application must allow the user to manually add prices and splits to
an instrument.

FR16 The application must allow the user to set an application-wide default cur-
rency, which will then be automatically pre-set for portfolios, instruments,
and charts.

1.4.2 Non-functional requirements
NFR1 The application must attempt to maintain five-minute intervals between

instrument prices in the past day.

NFR2 The application must attempt to maintain one-hour intervals between in-
strument prices in the past five days.

NFR3 The application must attempt to maintain one day intervals between in-
strument prices older than five days.

NFR4 The application must attempt to maintain one day intervals between cur-
rency exchange rates from the application-wide default currency to at least
100 other currencies.

NFR5 The application must prevent uncontrolled growth of its storage size by
cleaning up overabundant data.

18

NFR6 The application must allow integration of new data sources without any
changes to application logic.

NFR7 The application must support at least two different external instrument
price sources, and two different external currency exchange rate sources.

NFR8 The application must be able to render any chart containing 10 lines in
under two seconds.

NFR9 The application must enable drag-and-drop functionality for the custom
chart grid.

NFR10 The application must allow the user to configure date and number formats.

1.4.3 Use cases
In this subsection, we define the use cases of the application, drawing upon the
requirements specified in the previous section. For this purpose, five UML (Uni-
fied Modeling Language) diagrams were created using PlantUML16, each covering
one part of the system’s expected functionality. These diagrams are contained in
figures 1.1, 1.2, 1.3, 1.4, and 1.5.

Additionally, we describe several such use cases using use case scenarios. Sim-
ple use cases were omitted for brevity.

Actors

In the context of the system, we will define two actors:

• User: The human user of the system, typically an investor who wants to
track the performance of their investments.

• Timer: A time-based scheduling mechanism which triggers certain actions
within the system.

Use case: Configure chart

• Goal: A user should be able to configure the chart’s type, date range,
currency, frequency, and lines.

• Initial state: The user has the chart editing view open for a specific chart.

• Normal flow:

1. The user sets the chart type to price, profit, performance, aggregated
profit, or aggregated performance

2. If the chart type is set to price, profit, or aggregated profit, the user
may change the currency of the chart. By default, the application-wide
default currency is set.

16https://plantuml.com/

19

https://plantuml.com/

3. If the chart type is set to aggregated profit or aggregated performance,
the user may change the aggregation frequency. By default, weekly
aggregation frequency is used.

4. The user may set a specific start and end date of the chart, or they
may use one of the pre-defined ranges, such as 5 days, 1 month, 3
months, or 1 year.

5. The user may add lines to the chart or remove lines from the chart.
Each line corresponds to an existing instrument, portfolio, or position.

6. The user may change the color, dash style, or width of each line added
to the chart.

7. The user may rename the chart.

• Final state: The chart is saved in the application under the specified name.

Use case: Add an instrument

• Goal: A user should be able to add a new instrument to the application.

• Initial state: The user has the instrument creation form open.

• Normal flow:

1. The user fills in the name of the instrument, its symbol, its currency,
and its type.

2. Optionally, the user may fill in the exchange where the instrument is
traded or a note.

3. The user submits the instrument for creation.

• Exception: An instrument with the specified symbol already exists in the
system.

– Exception flow: The instrument is not created and an error message
is displayed to the user.

• Final state: The instrument is created in the system.

Use case: Download missing instrument prices

• Goal: The system should automatically download price history for created
instruments. Additionally, it should periodically attempt to download any
missing prices of existing instruments.

• Initial state: A new instrument was created or 24 hours have elapsed since
the last missing price download for an existing instrument.

• Normal flow:

1. The system analyzes the existing prices of the instrument, finding pe-
riods with missing prices.

20

2. The system attempts to find missing prices for such periods using
external data sources.

3. If any prices were found, then these prices are saved into the system.
If there are missing intervals in the downloaded prices, for example
during times when the instrument is not traded, then prices in these
intervals are extrapolated based on the last known price before the
missing interval.

• Exception: Communication with an external data source fails in step 2.

– Exception flow: The system retries the data source, while addition-
ally attempting to download the data from an alternative source. If no
data source is responsive after multiple retries, then the normal flow
continues as if no prices were found.

• Final state: Downloaded missing prices are saved into the system.

Use case: Validate position

• Goal: The system should not allow changes in transactions which result in
a position’s size falling below zero.

• Initial state: A transaction was created, modified, or deleted.

• Normal flow:

1. The system calculates the size of the position after each known trans-
action.

2. The change to the position’s transactions is allowed to continue.

• Exception: Position size falls below zero at any point in step 1.

– Exception flow: The system prevents the change from being exe-
cuted, displaying an error message to the user.

• Final state: The change is successfully executed.

Use case: Open a position

• Goal: The user should be able to open positions in portfolios.

• Initial state: The user has the position creation form open.

• Normal flow:

1. The user selects an instrument from the list of instruments available
in the application.

2. The user enters the price and the size of the initial transaction.
3. Optionally, the user may enter a note to be displayed in the position.
4. The user saves the position.

21

• Exception: The user enters an invalid price or size.

– Exception flow: The position is not created and an error message is
displayed to the user.

• Final state: The position is successfully created and is visible to the user.

Use case: View portfolios

• Goal: The user should be able to view all their portfolios, including their
positions and transactions.

• Initial state: The user has the portfolios view open.

• Normal flow:

1. The system displays all the user’s portfolios including their name, cur-
rency, profit, performance, and note.

2. The user may expand any given portfolio to see the positions belonging
to the portfolio, including their instrument symbol, current size, profit,
performance, break-even point, and note.

3. The user may expand any given position to see the transactions exe-
cuted within that position, including its time, size, price per unit, and
note.

4. The user may expand all portfolios and positions by pressing a single
Expand all button.

5. The user may collapse all portfolios and positions by pressing a single
Collapse all button.

22

Figure 1.1: Use case diagram - instrument management

23

Figure 1.2: Use case diagram - portfolio management

PortEval

Change default currency

View currency exchange rates

Download missing exchange rates

User

Timer

«extends»

Figure 1.3: Use case diagram - currency management

24

Figure 1.4: Use case diagram - chart management

Figure 1.5: Use case diagram - application management

25

2. Design
In the following chapter, we describe the architecture and key decisions made
during the project design phase.

2.1 Choice of technologies
In this section we examine the platforms, programming languages, and frame-
works we can use to build the application.

2.1.1 Platform
One of the critical decisions which needs to be made early is the platform the
application will run on. The three most common options are desktop, web, and
mobile. Out of these, web offers the most versatility, such as the ability to
potentially expand into a Software as a service (SaaS) model, lower hardware re-
quirements for end-users, and easier scalability. For these reasons, the application
was developed as a web application, consisting of the following layers:

• Frontend

• Backend

• Database

In the following subsections, we explore the available technologies for each of
these layers.

2.1.2 Backend
There is a wide array of choices available for the backend layer. Some of the most
popular combinations include Node.js with Express1, Java with Spring2, Python
with Django3 or Flask4, and C# with ASP.NET Core5 [Stack Overflow, 2022].
Due to prior experience with .NET, the extensive ecosystem of the framework,
its native support for multi-threading, and high performance in common scenar-
ios [TechEmpower, 2022], ASP.NET Core was the framework of choice for the
backend layer of the application.

2.1.3 Frontend
While it would be possible to build the frontend using only vanilla JavaScript or
libraries such as jQuery, this could result in longer development time, as the appli-
cation is expected to require a large number of Document Object Model (DOM)

1https://expressjs.com/
2https://spring.io/
3https://www.djangoproject.com/
4https://flask.palletsprojects.com/
5https://learn.microsoft.com/en-us/aspnet/core/

26

https://expressjs.com/
https://spring.io/
https://www.djangoproject.com/
https://flask.palletsprojects.com/
https://learn.microsoft.com/en-us/aspnet/core/

manipulations and complex state management. For this reason, we instead only
consider modern frontend frameworks, which can significantly simplify develop-
ment of the application.

This presents us with a smaller pool of viable options compared to the backend
layer, with the most widely used frameworks being React6, Vue.js7, and Angular8

[Stack Overflow, 2022]. All three frameworks offer a large ecosystem of libraries
and modules, so the decision ultimately hinges on performance and familiarity
with the framework.

To compare performance between these frameworks, prototype versions of
the application were developed using each. These prototypes incorporated the
following functionality, which was expected to be the most performance-intensive:

• Three-level expandable table containing portfolios, positions, and transac-
tions

• SVG (Scalable Vector Graphics) multi-line chart rendering using d3.js9

The performance was then measured using Time to Interactive (TTI) metric10,
which represents the time needed for the application to render useful content and
be able to respond to user interactions.

The following operations were benchmarked:

• Three-level expandable table comprising 10 portfolios, 10 positions each,
and 100 transactions each

– Expand all items
– Collapse all items
– Expand one item
– Collapse one item

• Chart rendering of 18 charts with 50 lines each

The benchmarks were done over 10 iterations in Google Chrome version 91
running on Windows 10, on a desktop computer with an AMD Ryzen 5 3600
CPU and 16GB of RAM.

The averaged results can be seen in Table 2.1. The frameworks produced sim-
ilar results, with React slightly outperforming Vue and Angular in all operations
except ”collapse all”. For this reason, and based on personal preference, React
was chosen for the frontend layer of the application.

6https://reactjs.org/
7https://vuejs.org/
8https://angular.io/
9https://d3js.org/

10https://github.com/WICG/time-to-interactive

27

https://reactjs.org/
https://vuejs.org/
https://angular.io/
https://d3js.org/
https://github.com/WICG/time-to-interactive

Prototype Table -
expand all

Table -
collapse all

Table -
expand

one

Table -
collapse

one

Charts

React 17 1497.14ms 268.04ms 318.92ms 305.22ms 547.46ms
Angular

11
1818.56ms 221.74ms 347.24ms 331.38ms 819.50ms

Vue 4 1617.26ms 230.52ms 385.34ms 381.68ms 635.14ms

Table 2.1: Frontend framework performance comparison

2.1.4 Database
The application needs to be backed by a data storage to persist user and financial
data.

The first decision to be made is whether to choose a relational or a non-
relational (NoSQL) database. Relational databases, such as MySQL11, Post-
greSQL12, Oracle13, or Microsoft SQL Server14, are based on a relational model,
which organizes data into tables with well-defined relationships between them.
Generally, the benefit of the relational model is its rigid structure, allowing for
stricter validation of data consistency and integrity.

NoSQL databases, on the other hand, do not use a relational model. Instead,
they utilize structures such as key-value pairs, graphs, or objects. Examples
of such databases include MongoDB15, Cassandra16, Neo4J17, or Couchbase18.
NoSQL databases typically offer higher schema flexibility and easier horizontal
scalability compared to relational databases, at the cost of lack of standardization,
and in some cases, violation of ACID (atomicity, consistency, isolation, durability)
properties.

As this work is expected to have a fairly consistent and well-defined data
model, and currently there are no requirements necessitating horizontal scalabil-
ity, we use the relational model for this application.

The second decision is the database management system (DBMS) to use. The
most popular options for relational databases are MySQL, PostgreSQL, Microsoft
SQL Server, and Oracle [Stack Overflow, 2022]. Due to its well-supported inter-
operability with ASP.NET Core, Microsoft SQL Server seemed like the natural
choice for the database layer.

2.2 Conceptual model
Before discussing the design of the individual parts of the application, it would
be beneficial to define the domain of the application. To achieve that, we have
built a conceptual model using UML class diagrams.

11https://www.mysql.com/
12https://www.postgresql.org/
13https://www.oracle.com/database/
14https://www.microsoft.com/en-us/sql-server/
15https://www.mongodb.com/
16https://cassandra.apache.org/_/index.html
17https://neo4j.com/
18https://www.couchbase.com/

28

https://www.mysql.com/
https://www.postgresql.org/
https://www.oracle.com/database/
https://www.microsoft.com/en-us/sql-server/
https://www.mongodb.com/
https://cassandra.apache.org/_/index.html
https://neo4j.com/
https://www.couchbase.com/

In the model, we use the following stereotypes:

• Entity: A mutable, long-lived concept or object, the equality of which is
based on identity.

• Interface: A base element defining attributes which all its implementations
must contain.

• Enum: A set of named identifiers.

• Value object: An immutable concept or object, the equality of which is
not based on identity.

For clarity, the model will be described using two diagrams. The first dia-
gram outlines the core model of the application, which includes entities such as
portfolios and instruments. The second diagram covers the chart model. These
diagrams can be seen in figures 2.1 and 2.2.

<<Entity>>
Instrument

+ name: string
+ symbol: string
+ note: string

<<Entity>>
Instrument price

+ price: number
+ time: datetime

<<Entity>>
Currency

+ code: string
+ name: string
+ is_default: boolean

<<Entity>>
Currency exchange rate

+ exchange_rate: number
+ time: datetime

<<Entity>>
Position

+ note: string

<<Entity>>
Portfolio

+ name: string
+ note: string

<<Entity>>
Transaction

+ amount: number
+ price: number
+ time: datetime

<<Entity>>
Exchange

+ name: string
+ code: string

<<Entity>>
Instrument split

+ time: datetime
+ factor: number

<<Enum>>
Instrument type

stock
mutual fund
etf
cryptocurrency
index
other

1

0..*+ portfolio

0..*

1

+ instrument

11..*

+ transactions

+ exchange

0..*1

+ type 1

0..*

+ prices 1+ splits

0..*

0..*

+ currency

1

1 1

0..* 0..*

+ currency_from + currency_to

0..*

+ currency

1

Figure 2.1: Conceptual model - core

29

<<Entity>>
Instrument

+ name: string
+ symbol: string
+ note: string

<<Entity>>
Currency

+ code: string
+ name: string
+ is_default: boolean

<<Entity>>
Position

+ note: string

<<Entity>>
Portfolio

+ name: string
+ note: string

<<Entity>>
Chart

+ name: string

<<Interface>>
Chart line

+ width: number
+ color: string

<<Entity>>
Instrument chart line

<<Entity>>
Portfolio chart line

<<Entity>>
Position chart line

<<Value object>>
Date range

+ name: string

<<Enum>>
Chart type

price
profit
performance
aggregated_profit
aggregated_performance

<<Enum>>
Aggregation frequency

daily
weekly
monthly
yearly

1

0..*

0..*

+ currency

0..*+ instrument 0..*+ position 0..*+ portfolio

10..*

+ portfolio

0..*+ currency

+ type
+ date_range

+ frequency

<<Enum>>
Dash type

solid
dashed
dotted

+ dash

0..*1

+ instrument

0..*+ currency

1

+ lines

<<Value object>>
Fixed date range

+ from: datetime
+ to: datetime

<<Value object>>
To-date range

+ value: number

<<Enum>>
Time unit

hour
day
week
month
year

0..1

+ unit

1

1
1 1

Figure 2.2: Conceptual model - charts

30

2.3 Backend
As is evident from the requirements of this work, the backend of the application
is expected to have a large number of responsibilities, such as:

• Retrieval and storage of financial markets data.

• Management of user data, such as portfolios or charts.

• Calculation of financial metrics, and consequently, chart data generation.

• Provision of an API enabling access to the backend’s functionality.

The design choices described in this section should reflect these responsibil-
ities, while fulfilling the non-functional requirements described in the previous
chapter.

2.3.1 Domain
The domain of the application was first introduced in the Conceptual model sec-
tion. Due to the complexity of the domain and the expected complexity of appli-
cation logic, it would be beneficial to separate the two, implementing the domain
as a separate independent layer.

To implement the domain, we took inspiration from several principles of
domain-driven design (DDD), such as [Evans, 2003]:

• Aggregates: Entities are contained in aggregate trees representing the
scope of business invariants related to these entities, where each operation
on an entity in the tree will need to be executed through the root of the
tree.

• Domain services: Domain services implement operations spanning mul-
tiple aggregates.

• Domain events: Operations emit domain events, which can then be han-
dled by the application logic.

Aggregates of this application are quite simple, typically consisting of a single
entity, with two exceptions:

• Position: The domain should not allow a position’s amount to fall be-
low zero at any time. For this reason, Transaction entities are part of
the Position aggregate, where Position is responsible for validating entered
transactions.

• Chart: The domain should not contain duplicate chart lines. For this rea-
son, Chart line entities are part of the Chart aggregate, where Chart is
responsible for validating its chart lines.

31

2.3.2 Persistence
As the application is backed by an SQL Server database, the backend needs to
be able to communicate with that database, ideally in the language of entities
described in the previous section.

For this reason, it makes sense to use an object-relational mapping (ORM)
framework to facilitate such communication. The obvious choice in the .NET
ecosystem is Entity Framework (EF), which is an ORM framework developed by
Microsoft. It supports LINQ19 queries, automatic change tracking, and schema
migrations. Additionally, it allows for a Code First approach, where the database
schema is generated from the domain entities defined in the application, which
helps us focus on the business logic of the application, rather than persistence
concerns.

While relying on a fully fledged ORM for all persistence-related functionality
may simplify development, it poses a performance problem, especially if we are to
rely on domain aggregates for all read and write operations. It can be expected
that the number of read operations will be substantially higher than the number
of write operations. In this context, it might make sense to use a different method
of reading data from the database, one which minimizes the overhead caused by
EF or domain concerns. This approach also makes sense considering that the
backend does not necessarily return domain entities to its clients. Instead, it will
typically use Data Transfer Objects (DTOs), which may be comprised of data
from multiple entities, or data calculated on-the-fly.

For these reasons, the read operations are instead implemented using Dap-
per20, which can be described as a micro-ORM providing only the mapping be-
tween object models and relational structures. With Dapper, we can build custom
SQL queries retrieving only the data necessary to fulfill a client’s request.

2.3.3 Financial data sources
According to the requirements analyzed in the previous chapter, the application
needs to be able to download and store instrument prices, instrument splits,
and currency exchange rates. We have also identified several data sources which
provide such data.

One of the important properties of the data retrieval mechanism is the ability
to use any of the implemented data sources to retrieve necessary data, while
possibly switching to a different one in case of failure. Additionally, according
to non-functional requirement NFR6, data source implementations should be
independent of this ability, allowing for easy replacement or extension of the
existing sources.

For this reason, the data retrieval functionality can be viewed as two separate
concerns:

• Data retrieval mechanism - Responsible for delegating the requests for spe-
cific types of data to data sources supporting retrieval of such data.

• Data source implementations - Responsible for providing integrations with
the data sources.

19LINQ - Language-Integrated Query is a data querying technology integrated into .NET.
20https://github.com/DapperLib/Dapper

32

https://github.com/DapperLib/Dapper

In .NET context, it makes sense to implement the data retrieval logic as a class
library. This library should not rely on any specific data sources, instead allowing
the user to plug their own implementations into the library, assuming that the
implementation fulfills the interface defined by the library. This approach can be
achieved using reflection.

The integrations with specific data sources can then be implemented as part
of the application itself.

2.3.4 Jobs
In the previous chapter we have outlined multiple requirements concerning asyn-
chronous data processing, such as FR12 or NFR5. These requirements can be
fulfilled by having a layer responsible for scheduling and executing background
jobs.

To achieve this, we can use Hangfire21, which is a .NET library providing
extensive background processing functionality. One key advantage of Hangfire is
its ability to persist jobs, allowing them to be monitored or reattempted even
after application restart. Additionally, it guarantees that a successfully created
job will run at least once.

2.3.5 API
The backend needs to provide an API for the frontend to access its data. Com-
monly used API types include REST (Representational state transfer), GraphQL,
or SOAP (Simple Objects Access Protocol). To minimize the size of transferred
data, and to simplify the communication on the frontend side, we would like to
avoid using XML-based APIs such as SOAP. Furthermore, while GraphQL pro-
vides a lot of flexibility to the clients of the API, implementing it optimally on
the server side is challenging, especially considering file processing requirements
FR10 and FR11. Therefore, we have decided to utilize a RESTful JSON API.

2.3.6 Architecture
With the decisions made in previous sections, we can now describe the architec-
ture of the application backend. We use a variant of the layered architecture,
called the Onion Architecture, first described in a series of articles by Jeffrey
Palermo [2008]. In the remainder of this section, we provide a brief overview of
the backend layers and their respective responsibilities and design.

Domain

The Domain layer implements the domain model and the domain logic, either as
part of the domain entities, or as part of domain services.

Application logic

The Application logic layer implements functionality which is not part of the
domain logic. It means that it covers the following concerns:

21https://www.hangfire.io/

33

https://www.hangfire.io/

1. Read and write operations on application data

2. Asynchronous background jobs

3. CSV processing

4. Financial metrics calculation

5. Chart data generation

This logic is typically exposed by services, where each method of a service
represents a specific use case.

Infrastructure

The Infrastructure layer implements concerns related to communication with the
database and other external sources. In the context of this application, these
concerns are:

1. Definition of the database schema based on domain entities

2. Access to the database and ORM functionality

3. Implementations of external data sources

In point 2, it is important to make the distinction between EF-based and
Dapper-based communication as discussed in Persistence. For domain entities, we
utilize the Repository pattern [Fowler, 2005] implemented with EF. Repositories
provide a collection-like interface for storage of domain entities.

For simple data retrieval which does not need to work with domain entities,
we develop queries, which utilize Dapper with handcrafted SQL to retrieve the
necessary data as optimally as possible.

It is the responsibility of the aforementioned services to determine whether
repositories or queries should be used to fulfill a specific use case.

Presentation

In the context of the backend, the User interface layer can instead be described
as the Presentation layer, which is responsible for the implementation of the API
endpoints. These endpoints are implemented in controllers, which use function-
ality provided by services from the Application logic layer.

2.4 Frontend
The frontend of the application is expected to provide an interactive graphical
user interface (GUI), allowing users to view and manipulate application data.
As was established in the previous chapter, the frontend is built as a single-page
application (SPA) using React.

34

2.4.1 User interface
This subsection describes the user interface (UI) design of the web application by
presenting several mockups. These mockups do not represent the final software,
rather providing a general structure of the key views of the application and their
content.

Logo

Portfolios

Dashboard

Instruments

Charts

Currencies

Import

Settings

Dashboard Edit

Figure 2.3: UI design - dashboard

The dashboard (Figure 2.3) is a page allowing the user to place their created
charts into a custom grid. These charts can then be moved, resized, or removed
from the dashboard.

Logo

Portfolios

Dashboard

Instruments

Charts

Currencies

Import

Settings

Portfolios Create

Expand all Collapse all

EditOpen position DeletePortfolio 1

EditOpen position DeletePortfolio 2

Portfolio 3 EditOpen position Delete

Position 1 Edit DeleteAdd transaction

Position 1 Edit DeleteAdd transaction

Edit DeleteTransaction 1

Edit DeleteTransaction 2

Figure 2.4: UI design - portfolios

The portfolios view (Figure 2.4) contains an expandable list of all user’s portfo-

35

lios. When a given portfolio is expanded, it displays a list of positions contained
in the portfolio, which can then be further expanded to display the position’s
transactions.

Instruments

Edit DeleteInstrument 1

Edit DeleteInstrument 2

Edit DeleteInstrument 3

Edit DeleteInstrument 4

Edit DeleteInstrument 5

Edit DeleteInstrument 6

Edit DeleteInstrument 7

Edit DeleteInstrument 8

Edit DeleteInstrument 9

Edit DeleteInstrument 10

Edit DeleteInstrument 11

Edit DeleteInstrument 12

Logo

Portfolios

Dashboard

Instruments

Charts

Currencies

Import

Settings

Create

Figure 2.5: UI design - instruments

The instruments page (Figure 2.5) allows the user to see all instruments cre-
ated in the application and navigate to their pages. Furthermore, this view
enables the user to add new instruments to the application, or manage existing
ones.

Logo

Portfolios

Dashboard

Instruments

Charts

Currencies

Import

Settings

Tesla, Inc.
Name: Tesla Inc.

Symbol: TSLA

Currency: USD

Exchange: NASDAQ

Current price: $193.81

Note: note

Split history

2022/08/25 Rollback3-for-1

Create

Price history

2023/03/07 15:15 $193.81 Edit Delete

2023/03/07 15:10 $193.74 Edit Delete

2023/03/07 15:05 $193.77 Edit Delete

2023/03/07 14:55 $193.82 Edit Delete

2023/03/07 14:50 $193.90 Edit Delete

2023/03/07 14:45 $193.88 Edit Delete

Create

Figure 2.6: UI design - single instrument

The instrument page (Figure 2.6) contains key information about the instru-
ment, its price chart, and allows the user to manage the instrument’s splits or
prices.

36

Logo

Portfolios

Dashboard

Instruments

Charts

Currencies

Import

Settings

Portfolio 1
Name: Portfolio 1

Current value: $1934.71

Total profit: +$211.15

Total performance: +10.91%

Daily/weekly/monthly profit: +$4.78 / +$28.49 / +$29.19

Daily/weekly/monthly performance: +0.73% / +3.74% / + 3.91%

Note: note

Positions

Position 1 Edit DeleteAdd transaction

Transaction 1 Edit Delete

Transaction 2 Edit Delete

Open

Figure 2.7: UI design - single portfolio

The portfolio page (Figure 2.7) looks similar to the instrument page, display-
ing information about the portfolio, its value chart, and an expandatable position
table.

Logo

Portfolios

Dashboard

Instruments

Charts

Currencies

Import

Settings

Chart
Options

Portfolio 2 AddPositions

Portfolio 1 AddPositions

Instrument 1 Add

Instrument 2 Add

Instrument 3 Add

Instrument 4 Delete

Instrument 5 Add

Instrument 6 Add

Figure 2.8: UI design - chart editing

The chart editing page (Figure 2.8) contains the chart, its configuration op-
tions, and a list of instruments and portfolios which can be added to the chart.
To add positions, the user can press the Positions button on the parent portfolio,
which displays a similar list of available positions.

37

Logo

Portfolios

Dashboard

Instruments

Charts

Currencies

Import

Settings

Currencies
Default currency: USD

Exchange rates

EUR €0.98

CZK 22.81 Kč

CAD $1.37

GBP £0.85

CHF ₣0.94

Figure 2.9: UI design - currencies

The currencies page (Figure 2.9) enables the user to change the default cur-
rency, while additionally displaying a list of current exchange rates from the
selected default currency.

2.4.2 Chart rendering
One of the frontend’s key responsibilities is the ability to render multi-line charts.
When working with web graphics, the first decision to make is whether to use
vector or raster graphics. Vector graphics are defined by paths, which allows for
creation of resolution-independent graphics, while raster graphics use bitmaps,
where a value is stored for each pixel of the image. For images such as line
charts, vector graphics seem like a natural choice, as the final image will consist
only of lines and text.

While there are numerous libraries available for SVG line chart rendering, none
of them completely fulfilled the requirements of this application, performance
being the common bottleneck. For this reason, a custom rendering logic was
built with d3.js, which has proven itself during the prototyping phase.

2.4.3 State management
The frontend of the application needs to manage large amounts of application
state, typically containing data retrieved from the backend. While it would be
possible to use React component state to maintain such state, it poses problems
when sharing state across multiple components, as it would need to be explicitly
passed down to each component using the data. Similarly, any changes to the
state would need to be passed back up using explicitly defined callbacks.

38

In the React ecosystem, there are two common methods of resolving these
problems: the Context API22 and Redux23.

The Context API provides a way to share data in a tree of React components
using statically defined context objects. While it seems to resolve the state man-
agement problems, there are several caveats to consider. First, any change to
the context triggers a re-render of all the components subscribed to that context,
even if the components do not use the affected data. This means that frequent
updates to the state will significantly degrade performance of the application.
Second, because the contexts are statically defined, they are not extensible, and
any changes to the contexts may require changes in the code which uses them.

Redux, on the other hand, is a library inspired by the Flux architecture24.
It revolves around the concept of actions which can be plugged into reducers to
modify application state. Subscribers to the changed piece of state can then be
re-rendered without affecting other components.

It can be expected that data managed by the backend will be frequently
updated in the frontend. For this type of data, we use Redux to manage state.
Nevertheless, for data specific to the frontend, the application instead utilizes
React features mentioned above.

Backend integration

The frontend needs to communicate with the backend to retrieve necessary data
and perform mutations on such data. While it would be possible to simply
fetch the data from the backend whenever it is needed, this would result in a
large number of requests for unchanged data, incurring unnecessary load on the
backend.

A more effective approach would be to cache the retrieved data and reuse
it until expiration. Cached data should be part of the global application state
handled by Redux. To achieve this, we can use the Redux Toolkit (RTK)25 library,
which simplifies working with Redux state and offers a module for streamlined
API integration with built-in caching support.

22https://react.dev/learn/passing-data-deeply-with-context
23https://redux.js.org/
24https://facebook.github.io/flux/docs/in-depth-overview/
25https://redux-toolkit.js.org/

39

https://react.dev/learn/passing-data-deeply-with-context
https://redux.js.org/
https://facebook.github.io/flux/docs/in-depth-overview/
https://redux-toolkit.js.org/

3. Implementation
This chapter describes the key decisions made during the implementation of the
application. First, we describe the development environment, listing the tools and
dependencies used during implementation. Then, we describe implementations
of the backend and the frontend respectively.

The source code of the application is available in a public GitHub repository1.
Instructions on how to use the software can be found in attachment A.3.

3.1 Development environment
The backend of the application was developed using Visual Studio 2022 as an
ASP.NET Core 7.0 Web API. Additionally, we used the ReSharper2 and dot-
Cover3 extensions for code and test coverage analysis. To compile the application,
.NET 7.0 SDK (software development kit) must be installed on the machine. In
order to run the application, both .NET 7.0 and ASP.NET Core 7.0 runtimes
must also be installed. Both these runtimes are provided by Microsoft as a single
hosting bundle4.

Alternatively, developers may opt to use Linux-based Docker5 images, which
are defined in Dockerfiles located in the root directory of the solution. These
Dockerfiles build the application using images for the aforementioned SDK and
run it in development or production environments with the appropriate runtime
image.

On the other hand, the frontend was developed using Visual Studio Code as
a React 17 application. To streamline bundling and the initial configuration, we
used the Create React App (CRA)6 toolchain. To build the frontend, Node.js
must be installed on the machine. Similar to the backend, compilation and run-
ning of the frontend can also be accomplished using Dockerfiles located in the
root directory of the application.

Further information on deployment of the application can be found in attach-
ment A.2.

3.2 Backend
As discussed in Design, the backend of the application was implemented in several
layers as per the Onion Architecture, with dependencies of these layers flowing
inward. This was accomplished by heavy use of the dependency injection and
inversion principles, taking advantage of the ASP.NET built-in Inversion of Con-
trol (IoC) container.

This section often references injectable functionality, which means that it was
implemented as an interface/class pair, registered in the IoC container at applica-

1https://github.com/simonodm/porteval
2https://www.jetbrains.com/resharper/
3https://www.jetbrains.com/dotcover/
4https://dotnet.microsoft.com/en-us/download/dotnet/7.0
5https://www.docker.com/
6https://create-react-app.dev/

40

https://github.com/simonodm/porteval
https://www.jetbrains.com/resharper/
https://www.jetbrains.com/dotcover/
https://dotnet.microsoft.com/en-us/download/dotnet/7.0
https://www.docker.com/
https://create-react-app.dev/

tion startup. The classes which use such functionality then receive the interfaces
as constructor parameters, while the IoC container is responsible for providing
the correct implementation.

3.2.1 API
The backend provides 82 RESTful endpoints, implemented in 13 controllers. Each
controller covers a specific type of data located in a specific route. These routes
are the following:

• /instruments/*

• /instruments/{id}/prices/*

• /instruments/{id}/splits/*

• /portfolios/*

• /positions/*

• /transactions/*

• /currencies/*

• /currencies/{code}/exchange_rates/*

• /charts/*

• /dashboard/*

• /exchanges/*

• /imports/*

• /exports/*

These controllers only handle the basic request/response flow, utilizing in-
jected services for actual data processing or retrieval.

The API is documented using Swagger/OpenAPI7. This documentation is
available at the root URL of the API.

Request validation

Before a request is processed, its body is validated according to a pre-defined set
of rules. For example, the name field of a portfolio is configured as required, and
its length is limited to 64 characters. This validation was implemented with the
FluentValidation8 library, which allows us to implement strongly-typed validators
using a fluent API. These validators can then be executed manually, or they
can be plugged into the ASP.NET Core validation pipeline, which executes the
validation before the request body is available in the controller. In this work, we
have opted for the second option for simplicity.

If a validation fails, a response of the following format is returned to the client:
7https://swagger.io/
8https://fluentvalidation.net/

41

https://swagger.io/
https://fluentvalidation.net/

{
" errors ": {

"name": [
"The length of ’Name ’ must be 64 characters or

fewer. You entered 177 characters ."
]

},
"type": "https :// tools.ietf.org/html/ rfc7231 #section

-6.5.1" ,
"title": "One or more validation errors occurred .",
" status ": 400,
" traceId ": "00-2 a3f43485b41224eac26989d7a7a7fd3 -665

ee622d068a140 -00"
}

Error handling

There is always a possibility that an exception will occur during processing of the
request. In this case, the clients will expect the API to return a valid response
describing the error.

To achieve this, an exception-catching middleware was implemented. This
middleware wraps the processing logic in a try-catch sequence, distinguishing
between exceptions caused by invalid user input, and application exceptions. In
the first case, the API returns a 400 Bad Request response containing the excep-
tion message, while in the second case, it returns a 500 Internal Server Error
response with a generic ”An error has occurred.” message.

An example error response looks as follows:
{

" statusCode ": 400,
" errorMessage ": " Currency USDZ does not exist ."

}

Notifications

To assist clients in synchronizing the displayed data with the backend data, a
real-time notification mechanism was implemented. This mechanism utilizes the
SignalR9 framework, which allows the backend to push content to connected
clients using the WebSocket protocol.

Notifications are emitted whenever backend downloads data from external
sources, or whenever it finishes some background processing, such as a CSV im-
port or a post-split price adjustment. This is achieved with a single SignalR hub,
which is additionally wrapped in a notifications application service, enabling easy
replacement of the underlying real-time communication mechanism.

9https://dotnet.microsoft.com/en-us/apps/aspnet/signalr

42

https://dotnet.microsoft.com/en-us/apps/aspnet/signalr

3.2.2 Services
As defined in Design, application services are stateless classes which implement
application use cases. They are designed to be injected into controllers or other
services. Examples of implemented services include PortfolioService, which
implements read and write operations on portfolios, or CsvExportService, which
implements conversion of data into CSV format. In total, 13 such services were
implemented.

Services typically depend upon repositories or queries, which facilitate com-
munication with the application database. These repositories and queries are
implemented in the infrastructure layer. Furthermore, services also utilize in-
jected calculators and chart data generators to perform additional processing
where needed, i. e. to generate chart line data.

Each public service method returns an OperationResponse wrapper, which
provides information on whether the operation was successful, and the operation
result where applicable.

3.2.3 Calculators
The application logic layer additionally implements several calculators, which
are injectable classes responsible for calculating financial metrics of portfolios,
positions, and instruments. These calculators typically accept a list of prices
and/or transactions and return a single numeric value representing the metric.

A relevant example of such a calculator is PositionPerformanceCalculator,
which evaluates the performance of a set of positions using the calculation dis-
cussed in Analysis. It does so by plugging the positions’ transactions into formula
1.2 as cash flows, where purchases represent negative cash flows, and sales rep-
resent positive cash flows. Additionally, to account for the current size of the
positions and the underlying instruments’ current price, the calculation adds ad-
ditional positive cash flows simulating the complete sale of the positions at their
instruments’ current price. As an example, assuming a position with the following
transactions:

• January 1, 2023 - 10 units purchased at $100

• February 1, 2023 - 5 units sold at $110

• March 1, 2023 - 3 units sold at $115

And assuming that the instrument’s current price is $120, the calculation
performed on April 1, 2023 would build the following equation:

−10 × 100r90 + 5 × 110r59 + 3 × 115r31 + 2 × 120r0 = 0
This equation is encapsulated in a PolynomialEquation instance, which im-

plements the operation of solving the equation using Newton’s method. To do
so, it requires an initial guess to be provided. The initial guess for the algorithm
is calculated as follows:

N

√︄
S + E

P

43

where:
• S - total sell value (the sum of all sale transactions in the period)

• E - end market value (position size at the end of the period multiplied by
the instrument’s current price)

• P - total purchase value (the sum of all purchase transactions in the period)

• N - total number of subperiods in IRR calculation
This formula represents a simple estimate of the position’s performance in

one subperiod. It was arrived at somewhat experimentally, resulting in the least
number of iterations of Newton’s method compared to several attempted alter-
natives.

Chart data generators

One of the more challenging responsibilities for the application’s backend is chart
data generation. According to non-functional requirement NFR8, the applica-
tion must be able to render 10 chart lines in under two seconds, irrespective
of the type of the chart or the entities depicted by its lines. Although the im-
plementation of the chart rendering mechanism in the frontend also affects this
performance, the aggregation and processing of the data on the backend can be
expected to play a much more significant role. This is because the backend is
responsible for several performance-intensive tasks, such as retrieving necessary
data, aggregating it according to the chart’s frequency, calculating metrics, and
in some cases, converting currency.

To fulfill these requirements while maximizing the performance of the data
generation, our goal was to minimize the number of database queries performed,
while also minimizing the time needed to process retrieved data. The imple-
mented algorithm for a single chart line can be described as follows:

1. Retrieve all the necessary data sorted by time and store it as in-memory
collections. This data might include instrument prices, position transac-
tions, and currency exchange rates, depending on the configuration of the
chart and the financial entity represented by the line.

2. Split the chart time range into sub-intervals (T1, T2) based on the fre-
quency of the chart. Each such sub-interval will ultimately represent a
single point of the chart line.

3. Define an iterator for each collection from step 1.

4. For each sub-interval (T1, T2) from step 2, do the following:

(a) Advance each iterator from step 3 until it points to the last element
with time earlier than T2.

(b) Calculate the value of the chart point at T2 based on visited elements
using an appropriate injected calculator.

5. Return the chart line as a collection of (time, value) pairs.
This algorithm allows for a fixed number of database queries per line, and it

works in linear time with regards to the sum of sizes of all retrieved collections.

44

3.2.4 CSV processing
CSV import and export can generally be described as two separate concerns:
(de-)serialization of CSV files and bulk data processing. To facilitate conversions
from and to CSV format, we used the CsvHelper10 library, which enabled us to
easily convert between application DTOs and their CSV representation.

CSV export logic then simply retrieves the necessary data using the appro-
priate service, and converts that data to CSV using CsvExportService, which
encapsulates conversion to CSV implemented using CsvHelper.

CSV imports are slightly more complex, as they require validation and involve
data mutations. However, the core idea remains the same: the user’s CSV file is
first deserialized into application DTOs, which are then validated and imported
using appropriate application services.

3.2.5 Background jobs
As was established in the previous chapter, the application uses asynchronous
background jobs to handle various long-running data processing needs. Specifi-
cally, based on the requirements from Analysis, nine such jobs have been imple-
mented, further described in Table 3.1.

Recurring jobs are scheduled at application startup using cron-like syntax,
while one-off jobs are typically scheduled by an appropriate domain event handler.
For example, the initial price download job is triggered during processing of the
Instrument created event emitted by the domain layer. The jobs are then executed
by Hangfire at an appropriate time.

Several jobs are responsible for bulk insertion of data into the database. This
has proven to be fairly slow with out of the box EF functionality, even with
several optimizations in place (such as disabling automatic change tracking). Ul-
timately, we opted for the EF Core BulkExtensions11 library, which provides a
set of extension methods for optimized bulk operations.

3.2.6 Data fetching
As was discussed in Design, the data fetching mechanism was implemented in
two parts. The first part is a library enabling retrieval of homogenous data from
different data sources. The second part is the implementations of individual data
sources. These implementations are contained in the infrastructure layer and are
designed to work with the aforementioned library.

The library was designed to not make any assumptions about the type of
data it is going to retrieve, delegating this responsibility to data source imple-
mentations. Instead, it only implements two core operations: registration of data
sources and request processing.

To enable arbitrary data sources to be registered in the library, we had to
implement certain constraints. In particular, the data sources need to be im-
plemented as classes inheriting from the DataSource abstract class provided by
the library. This abstract class provides its implementations with a configuration

10https://joshclose.github.io/CsvHelper/
11https://github.com/borisdj/EFCore.BulkExtensions

45

https://joshclose.github.io/CsvHelper/
https://github.com/borisdj/EFCore.BulkExtensions

Job Description Trigger
Data import Processes a user-initiated

CSV data import
A CSV file is uploaded by
the user.

Import cleanup Deletes import entries and
files older than 24 hours.

Every 24 hours or on appli-
cation restart.

Price cleanup Deletes overabundant
prices to maintain appro-
priate intervals.

Every 24 hours or on appli-
cation restart.

Initial price down-
load

Downloads the complete
price history for an instru-
ment.

An instrument is created by
the user.

Missing price
download

Downloads missing instru-
ment prices.

Every 24 hours or on appli-
cation restart.

Latest price down-
load

Downloads the current
prices of all created instru-
ments.

Every 5 minutes.

Missing exchange
rates download

Downloads missing ex-
change rates from the
default currency.

Every 24 hours or on appli-
cation restart.

Split download Downloads unaccounted-for
share splits for all instru-
ments.

Every 24 hours or on appli-
cation restart.

Split adjustment Retrospectively adjusts in-
strument prices and trans-
actions for splits.

An instrument split is cre-
ated or rolled back.

Table 3.1: Implemented background jobs

object and an HTTP client. The ability to process requests for specific types of
data can then implemented as methods with a RequestProcessor attribute.

When the library receives a request for a certain type of data, it first uti-
lizes reflection to discover all registered data sources containing a method with
a matching RequestProcessor attribute. It then attempts to use the first regis-
tered data source to fulfill the request. If this succeeds, the response is returned
to the client of the library and request processing is terminated. Otherwise, the
library starts distributing the request among all supported data sources. In case
of network failure, each such data source, including the originally attempted one,
is retried according to the retry policy specified during the initialization of the
library.

This request handling process is completely parallelized, resulting in each data
source being attempted independently of others. If any of the attempted data
sources succeed, processing of all other sources is immediately terminated.

The public interface of the library is defined in a single Facade, which is
configured and injected into the application during startup as a Singleton [Erich
et al., 1994].

46

3.3 Frontend
The frontend was implemented in TypeScript as a React SPA, utilizing modern
React development practices and tools. Among other things, this means that
the application is composed of various functional components, which internally
use hooks for state and lifecycle management. Functional components are simply
JavaScript functions which return markup, while hooks are functions prefixed
with use which can only be called at the top level of a component or another
hook.

3.3.1 Routing
As the frontend is an SPA, routing was implemented on JavaScript level, utilizing
the commonly used react-router12 package. As was hinted in the User interface
section, the following routes were implemented:

• /[dashboard] displays the user-configured dashboard, possibly containing
charts created by the user.

• /portfolios displays a list of user portfolios, positions, and transactions.

• /portfolios/{id} displays portfolio details.

• /instruments displays a list of user instruments.

• /instruments/{id} displays instrument details.

• /charts displays a list of charts.

• /charts/view/[{id}] displays a full-page view of a chart.

• /currencies displays currency exchange rates and allows the user to change
the default currency.

• /import allows the user to export or import data in CSV format.

• /settings allows the user to change their formatting settings.

3.3.2 Styling
While we could style the application using custom CSS (Cascading Style Sheets)
only, it is easier to use a CSS framework. For this reason, we used Bootstrap13,
specifically the react-bootstrap14 package, which provides a set of React compo-
nents corresponding to components defined by Bootstrap.

This approach is enough to cover most of the application’s styling needs.
Nonetheless, for rare scenarios requiring a more customized approach, we utilized
vanilla CSS stylesheets. Although usage of CSS preprocessors like Sass or LESS
was also considered, they were ultimately unnecessary.

12https://reactrouter.com/
13https://getbootstrap.com/
14https://react-bootstrap.github.io/

47

https://reactrouter.com/
https://getbootstrap.com/
https://react-bootstrap.github.io/

3.3.3 Dashboard
According to requirements FR8 and NFR9, the application should allow the
user to drag-and-drop charts into a custom grid, where the charts can be moved
and resized. As was further discussed in Use cases and User interface sections,
this grid should be contained on a separate dashboard page.

To achieve this, we have utilized the react-grid-layout15 package, which pro-
vides a responsive grid system with dragging functionality. The implemented
grid is 6 columns wide on desktop screens, compacting itself down to 1 column
on smaller screens.

3.3.4 Charts
As was discussed in Design, chart rendering was implemented using custom logic
built with d3.js. This logic is encapsulated in the SVGLineChart JavaScript class,
which provides a fluent API to configure the chart and append it to a DOM
container.

These charts were implemented to be as configurable as possible, with partic-
ular focus on line styling, label formatting, and tooltip contents. Furthermore,
according to requirement FR7, the chart lines render indicators for executed
transactions. This functionality was achieved by enabling the client to set up a
custom rendering callback which is called for each data point of the chart. The
callback provided in the application renders a small + or - SVG icon on the line
point if any transactions were executed since the time represented by the previous
data point.

A similar approach was used for rendering tooltips. By default, tooltips dis-
play the time of the data point and the values of all the chart lines at that point.
This can be further configured by a separate callback, which allows the client to
append additional information to the tooltip. This is used in the application to
render details about transactions executed at that data point. The SVGLineChart
class additionally memoizes internal tooltip rendering and the configured callback
to prevent recalculation on each mouse movement.

When manipulating the DOM directly, one needs to be careful to avoid con-
flicts with the virtual DOM managed by React. Specifically, issues may arise if
custom DOM logic will be applied to elements which are tracked by React. To
circumvent this, the SVGLineChart class does not do any mutations on existing
DOM elements, simply appending the chart to a pre-defined container. For this
approach to work, the container’s size must be known in advance, with possible
resizing of the container triggering a re-render of the chart. This is encapsu-
lated in the React LineChart component, which is responsible for creating the
container, initializing the SVGLineChart instance, appending it to the container,
and registering event handlers.

3.3.5 Tables
The application utilizes several tables to display various data sets to the user, such
as portfolios, instrument prices, currency exchange rates, and so forth. Many of

15https://github.com/react-grid-layout/react-grid-layout

48

https://github.com/react-grid-layout/react-grid-layout

these tables were designed with additional requirements in mind, such as the
ability to expand individual rows, sort the table by a specific column, group
columns, or display a more compact version of the table on smaller screen sizes.

To achieve this, a generic strongly-typed DataTable component was imple-
mented, supporting all of the functionalities above. One of the key features of this
component is the ability to declaratively define the columns of the table, mapping
them to the fields of the underlying collection of objects. This collection is then
provided to the component as props.

Internally, DataTable is backed by the react-table16 package, which provides
hook-based utilities to build data tables. react-table is a headless library, which
means that it does not handle any visual aspects of these tables, such as specific
markup or styles. Instead, it is responsible for building the contents of the table,
while additionally providing sorting and expansion functionality. The ability to
expand and collapse all rows as discussed in use case analysis is then implemented
on top of this library using custom JavaScript events.

3.3.6 Backend communication
As was established in Design, communication with the backend was implemented
with RTK, specifically its RTK Query submodule. This submodule allows the
user to define various endpoints, which implement queries or mutations performed
against a web API. These queries and mutations are then available to the appli-
cation as automatically generated React hooks.

RTK Query is also responsible for caching and invalidation of query responses.
Each query response is automatically cached in the underlying Redux store. In-
validation is then achieved primarily using tags, which are string identifiers that
can be provided by queries. The application can then invalidate these tags either
manually or after a mutation, forcing RTK to re-fetch affected queries when they
are needed.

RTK endpoints were defined for most API endpoints provided by the backend.
Typically these endpoints are fairly simple, representing a single HTTP request
to the backend. However, some of them required additional custom logic, such
as pagination or aggregation of data from multiple API endpoints.

Furthermore, the frontend connects to the SignalR notification endpoint pro-
vided by the backend. Whenever a notification representing new data availability
is emitted by the backend, RTK tags are invalidated, forcing the frontend to
refresh its data.

16https://react-table-v7.tanstack.com/

49

https://react-table-v7.tanstack.com/

4. Implementation Details
The following chapter contains the technical description of the implementation,
detailing the structure of the application’s source code and the key components
of individual layers. Individual classes and other low-level details are then docu-
mented in the docs/ folder of the electronic attachment (Attachment A.1).

4.1 Backend
The backend of the application is implemented in a single Visual Studio solution,
with different concerns further separated into different projects of that solution.

4.1.1 Project structure
The solution consists of the following projects:

• PortEval.Application is the entry point of the backend. This project im-
plements the API, controllers, middleware, and configures the application’s
IoC container.

• PortEval.Application.Model implements the application model, which
includes request and response models, DTOs, and validators.

• PortEval.Application.Core implements the application logic, which in-
cludes services, calculators, background jobs, and domain event handlers.

• PortEval.DataFetcher implements the data fetcher library.

• PortEval.Domain implements the domain layer of the application.

• PortEval.Infrastructure implements the infrastructure layer, which in-
cludes repositories, queries, Code First configurations, database migrations,
and integrations with external data sources.

• PortEval.Tests.Unit implements unit tests.

• PortEval.Tests.Integration implements integration tests.

The following sections describe the implementation details of each of these
projects.

4.1.2 PortEval.Application
PortEval.Application is an ASP.NET Core Web API project which is respon-
sible for configuring the application and starting the Kestrel web server. The
entry point of this project is the Main method of the Program class. This
method initializes the application host and configures it using the Configure
and ConfigureServices methods of the Startup class. These methods are re-
sponsible for setting up the API and registering dependencies in the application’s
IoC container.

50

• Extensions/ folder implements various helper extension methods, which
are typically extensions related to application configuration and registration
of dependencies.

• Controllers/ folder implements the API controller classes.

• Static/ directory contains data which is seeded into the database at first
startup, specifically currency and stock exchange information.

• Middleware/ directory contains custom ASP.NET middleware, specifically
the exception-catching middleware first described in Implementation.

Controllers

Specific API endpoints are implemented as methods of controller classes from the
Controllers/ directory, each with an attribute defining the route and HTTP
method of the endpoint. These controllers typically depend upon service inter-
faces from the PortEval.Application.Core project.

Furthermore, all controllers inherit from a PortEvalControllerBase abstract
class, which provides methods allowing conversion of OperationResponse re-
turned by services to ActionResult representing the HTTP response returned
to the client. This allows the endpoint implementations to be fairly compact,
as in the following example of a method implementing the retrieval of a single
instrument:
private readonly IInstrumentService _instrumentService ;

// GET instruments /1
[HttpGet ("{id}")]
public async Task < ActionResult < InstrumentDto >>

GetInstrument (int id)
{

OperationResponse < InstrumentDto > response = await
_instrumentService . GetInstrumentAsync (id);

return GenerateActionResult (response);
}

4.1.3 PortEval.Application.Model
PortEval.Application.Model is a class library implementing the application
logic models and several related concerns, such as validation and serialization.

• DTOs/ directory implements the application’s DTOs.
These DTOs are then used to generate responses to clients, or to transfer
data between different layers of the application. They are implemented as
simple objects containing no behavior, instead only providing a set of public
properties.
The Converters/ subdirectory additionally contains several converters,
which handle custom serialization of application models into JSON or text
representations. This is needed for types such as Color, which is serialized

51

into an RGB string for JSON responses. This also includes CsvHelper class
maps, which handle conversion between CSV and DTOs and are located in
the ClassMaps/ subdirectory.

• Validators/ folder implements application model validators using the Flu-
entValidation library.

• FinancialDataFetcher/ directory implements models which are used as
response types in the data source implementations, such as PricePoint
representing a single externally retrieved price, or ExchangeRates repre-
senting a collection of exchange rates from a single currency at a certain
time.

• QueryParams/ folder contains models for query parameter deserialization,
such as PaginationParams, which encapsulates page and limit parameters
used for paginated endpoints.

4.1.4 PortEval.Application.Core
PortEval.Application.Core is a class library implementing the application
logic. This project contains the majority of application’s code, as it is respon-
sible for implementation of services, background jobs, calculators, domain event
handlers, and other important concerns.

• BackgroundJobs/ directory contains implementations of background jobs.

• Common/ directory contains various functionality which does not belong to
a single service or background job.
This functionality includes concerns such as calculators, chart data genera-
tors, and CSV import processing.

• DomainEventHandlers/ directory contains domain event handlers.

• Extensions/ directory contains extension methods used in the application
logic layer.

• Hubs/ directory contains the definition of the notifications SignalR hub.

• Interfaces/ directory contains various interfaces used for dependency in-
jection.
Most of these interfaces are implemented by classes in this project, how-
ever, implementations of several of them are a responsibility of the in-
frastructure layer. These implementations will be discussed further in the
PortEval.Infrastructure project.

• Services/ directory contains implementations of application services.

52

Background jobs

Background job implementations are located in the BackgroundJobs/ directory.
Most of these implementations are fairly simple and self-sustaining, exposing only
a single Run method, which acts as the entry point of the job.

Jobs which are responsible for downloading data from external sources typi-
cally utilize the injected IFinancialFetcher instance, which is implemented in
the infrastructure layer. Instrument price retrieval jobs LatestPricesFetchJob,
MissingPricesFetchJob, and InitialPriceFetchJob additionally inherit from
the InstrumentPriceFetchJobBase abstract class. This class provides its inher-
iting classes with several wrapper methods over the injected IFinancialFetcher
instance.

Calculators

Financial metric calculators are implemented in the Common/Calculators/ di-
rectory. These calculators are simple stateless classes, typically providing only
a single method to calculate the metric, as in the following implementation of a
position break-even point calculator:
public class PositionBreakEvenPointCalculator :

IPositionBreakEvenPointCalculator
{

public decimal CalculatePositionBreakEvenPoint (
IEnumerable < TransactionDto > transactions

) {
decimal realizedProfit = 0m;
decimal positionAmount = 0m;

foreach (var transaction in transactions)
{

realizedProfit += transaction . Amount *
transaction .Price;

positionAmount += transaction . Amount ;
}

var bep = positionAmount != 0
? realizedProfit / positionAmount
: 0;

return bep;
}

}

Chart data generators

Chart data generators are responsible for building a chart line based on the chart’s
configuration and the underlying financial entity’s data. These generators are
located in the Common/ChartDataGenerators/ directory.

These generators provide methods to generate price, profit, performance, ag-
gregated profit, and aggregated profit lines. Internally, they use injected calcula-
tors to determine the value of each chart point.

53

As discussed in Implementation, these generators accept multiple collections
of financial data. These collections are then plugged into a range data generator,
which is responsible for aggregating necessary data for each chart point based
on data from the provided collections. Range data generators act as iterators
themselves, providing a GetNextRangeData method to retrieve data for the next
chart point, and an IsFinished method to determine whether there is any more
data to be generated.

For example, assuming an input of the following instrument prices:

1. 2023-01-01: $100.00

2. 2023-01-02: $110.00

3. 2023-01-03: $120.00

4. 2023-01-04: $130.00

5. 2023-01-05: $140.00

And the following chart point intervals:

1. 2023-01-01 - 2023-01-03

2. 2023-01-03 - 2023-01-05

InstrumentRangeDataGenerator would behave as follows:

1. First call to GetNextRangeData: range from 2023-01-01 to 2023-01-03,
price at range start is $100.00, price at range end is $120.00.

2. Second call to GetNextRangeData: range from 2023-01-03 to 2023-01-05,
price at range start is $120.00, price at range end is $140.00.

3. Third and subsequent calls to GetNextRangeData: return nothing

The caller can use this data to calculate needed values for each chart point.

Domain event handlers

Side effects of domain events are implemented in domain event handlers, which
can be found in the DomainEventHandlers/ directory. These handlers are typi-
cally responsible for starting a background job using the IBackgroundJobClient
interface provided by Hangfire.

The process of handling domain events is facilitated by the MediatR1 li-
brary, which exposes two interfaces: INotification, which represents a message
to be processed, and INotificationHandler<TNotification>, which defines a
Handle(INotification) method. This poses a problem, as domain events are
defined by the domain layer, and having them implement the INotification
interface would result in a violation of separation of concerns.

To circumvent this, the DomainEventNotificationAdapter<TEvent> wrap-
per class was created, which contains a reference to the domain event while

1https://github.com/jbogard/MediatR

54

https://github.com/jbogard/MediatR

implementing the INotification interface. Specific handler implementations
then accept a parameter of this type, which fulfills the contract defined by
INotificationHandler<TNotification>, and allows these handlers to be reg-
istered in MediatR.

The adapter class is implemented as follows:
public class DomainEventNotificationAdapter <T> :

INotification where T : IDomainEvent
{

public T DomainEvent { get; private set; }

public DomainEventNotificationAdapter (T domainEvent)
{

DomainEvent = domainEvent ;
}

}

Bulk import

Functionality related to processing of bulk data imports can be found in the
Common/BulkImport/ directory. The ImportProcessor generic abstract class
provides an ImportRecords method, which imports the provided records into
the system, while creating a log entry for each one.

Classes derived from ImportProcessor are then expected to implement the
ProcessItem method, which is responsible for importing a single record.

This functionality is used by the CSV processing mechanism implemented in
the DataImportJob background job.

Services

Services are classes located in the Services/ directory and they implement var-
ious application use cases.

These services typically utilize injected repository and query interfaces to read
and write data to the application’s database.

4.1.5 PortEval.DataFetcher
PortEval.DataFetcher implements the data fetcher library as discussed in Im-
plementation. This library’s functionality is exposed in the DataFetcher class,
which implements behavior related to registration of data sources and request
processing. The exact mechanisms will be described in the following subsections.

Implementation of data sources

The library does not implement any data sources itself, instead delegating it to
the infrastructure layer. Implemented data sources must be derived from the
DataSource abstract class, which provides the following protected properties:

• Configuration - contains credentials of the data source

• HttpClient - the HTTP client to be used by the data source

55

These properties are set using reflection when the data source is first registered
with the library.

Each implemented data source is expected to provide methods enabling pro-
cessing of specific request types returning specific result types. The exact way
these methods are implemented is left to the client, however, they should fulfill
the following constraints to be successfully detected and called:

• have the [RequestProcessor(typeof(TRequest), typeof(TResult)) at-
tribute.

• accept a single argument of type TRequest, where TRequest implements
the IRequest interface provided by the library

• return a Response<TResult> or Task<Response<TResult>> instance,
where TResult is the type of the fetch operation result

The data source class itself has only one constraint: it must have a parame-
terless constructor.

See the following example of a valid data source implementation:
public class WeatherRequest : IRequest {

public string City { get; set; }
public string CountryCode { get; set; }
public DateTime Time { get; set; }

}

public class WeatherResponse {
public decimal CelsiusTemperature { get; set; }
public decimal ChanceOfRain { get; set; }
...

}

public class WeatherDataSource : DataSource {
[RequestProcessor (typeof (WeatherRequest),

typeof (WeatherResponse))]
public async Task <Response < WeatherResponse >>

GetWeather (WeatherRequest request) {
WeatherResponse data = /* retrieve from somewhere ,

e. g. an API */;

return new Response < WeatherResponse > {
StatusCode = StatusCode .Ok ,
Result = data

};
}

}

56

Registration of data sources

The data sources are registered in the DataFetcher instance. For this, it provides
a RegisterDataSource<TDataSource>() generic method, where TDataSource is
the type of the data source. This method accepts one optional parameter, which
is an instance of DataSourceConfiguration. Following up on the example from
the previous subsection, the WeatherDataSource can be registered as follows:
IDataFetcher dataFetcher = new DataFetcher ();
dataFetcher . RegisterDataSource < WeatherDataSource >(new

DataSourceConfiguration {
Credentials = new DataSourceCredentials {

Token = "api -refresh -token",
Username = "client -id",
Password = "client - secret "

}
});

Request handling

Requests are then processed using the ProcessRequest<TRequest, TResult>()
method on the DataFetcher instance. This method will attempt to find all
registered data sources which contain a processing method for TRequest and
TResult request/result combination, after which it will delegate the processing
of the request to the RequestHandler<TRequest, TResult> generic class. In-
ternally, this class encapsulates communication with each provided data source
in a RetryableAsyncJob instance, which implements retry functionality on an
asynchronous operation according to the provided RetryPolicy.

Following up on our running example, the ProcessRequest method can be
used as follows:
var request = new WeatherRequest {

City = " Prague ",
CountryCode = "CZ",
Time = DateTime . UtcNow

};
var response = await dataFetcher . ProcessRequest <

WeatherRequest ,
WeatherResponse

>(request);
if(response . StatusCode == StatusCode .Ok) {

var data = response . Result ;
Console . WriteLine (data. CelsiusTemperature);

}

4.1.6 PortEval.Domain
PortEval.Domain implements the domain layer of the application.

• Events/ directory contains domain events. These events are simple data
objects, only containing enough information to handle the event. All events

57

implement the IDomainEvent interface.

• Exceptions/ directory contains domain exceptions. All domain exceptions
inherit from the PortEvalException abstract class.

• Models/ directory contains the domain model. This model consists of en-
tities, value objects, and enums, which can be found in the Entities/,
ValueObjects/, and Enums/ subdirectories respectively.
All entities inherit from the Entity base class, which is further extended
by the VersionedEntity class, which provides version tracking. Aggregate
roots additionally implement the IAggregateRoot interface located in the
root of the Models/ directory.

• Services/ directory contains implemented domain services, specifically the
CurrencyDomainService, which implements the operation of changing the
application’s default currency.

4.1.7 PortEval.Infrastructure
PortEval.Infrastructure implements the infrastructure layer of the applica-
tion, which includes communication with the database and external data sources.

Communication with the application’s database is implemented in two classes:
PortEvalDbContext, which implements and configures an EF database context,
and PortEvalDbConnectionCreator, which acts as a factory for SQL connections
to the application’s database..

• Configurations/ folder contains Code First configurations implemented
using EF Core, which define the database schema using domain entities
from PortEval.Domain.

• FinancialDataFetcher/ directory contains implementations of individual
data sources, which can then be integrated with the data fetcher library.
These data sources are implemented as simple API clients, utilizing a cus-
tom HttpClient.GetJson() extension method for data retrieval, which
returns a response of type Response used by the data fetcher library. Addi-
tionally, the infrastructure layer implements the IFinancialDataFetcher
interface defined in PortEval.Application.Core, which acts as a facade
over the data fetcher library.

• Queries/ directory contains implementations of read queries according to
interfaces defined by the PortEval.Application.Core project. They are
implemented using Dapper extension methods, and they typically return
DTOs to the caller.

• Migrations/ folder contains auto-generated database migrations based on
configurations from the Configurations/ directory. These migrations were
generated using the Add-Migration2 command provided by EF Core, and
are executed on application startup.

2Further information can be found here: https://learn.microsoft.com/en-us/ef/core/
managing-schemas/migrations/?tabs=dotnet-core-cli

58

https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/?tabs=dotnet-core-cli
https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/?tabs=dotnet-core-cli

• Repositories/ directory contains implementations of EF repositories ac-
cording to interfaces defined by the PortEval.Application.Core project.
These repositories return domain entities to the caller.

The infrastructure layer is also responsible for dispatching domain events so
they can be processed by appropriate domain event handlers from the application
logic layer. Such events are dispatched in the Commit() and CommitAsync()
methods of PortEvalDbContext class, and are dispatched after the underlying
transaction is committed.

4.1.8 PortEval.Tests.Unit
PortEval.Tests.Unit implements the unit tests for the application.

• BackgroundJobTests/ directory contains unit tests validating behavior of
individual background jobs.

• ControllerTests/ directory contains unit tests validating behavior of con-
trollers.

• CoreTests/ directory contains unit tests of services, domain event handlers,
calculators, chart data generators, and bulk import and export functional-
ity.

• DataFetcherTests/ directory contains unit tests of the data fetcher library.
This library was tested with a fake API implementation contained in the
HelperTypes/ subdirectory.

• DomainTests/ directory contains unit tests of the domain layer.

• ModelTests/ directory contains unit tests of application model validators.

• Helper/ directory contains utility functionality, such as extension methods
for creating mocks, or test data for testing CSV processing.

4.1.9 PortEval.Tests.Integration
PortEval.Tests.Integration implements integration tests for the application.
These tests focus on testing behavior which needs to communicate with the
database or external services. This includes queries, repositories, and financial
data sources.

• QueryTests/ directory contains integration tests for application queries.

• RepositoryTests/ directory contains integration tests for repositories.

• FinancialDataSourceTests/ directory contains integration tests for indi-
vidual data sources implemented by the infrastructure layer.

59

4.2 Frontend
The frontend is implemented as a Node.js TypeScript React application. Its
implementation can be found in the app/web/ directory.

4.2.1 Project structure
The root directory of the project contains the configuration files of the project.
These files include:

• package.json: A manifest file describing the package and its dependencies.

• package-lock.json: A lockfile holding information about the dependency
versions used.

• .eslintrc.json: A configuration file defining ESLint3 rules.

• jsdoc.json: A configuration file for JSDoc4 documentation generator.

• tsconfig.json: A configuration file for TypeScript compilation.

The package itself is structured as follows:

• nginx/ directory contains nginx5 configuration, which is used in production
Docker environment.

• public/ directory contains static files, such as index.html, the favicon,
and robots.txt.

• src/ directory contains the source code of the application, and is further
structured as follows:

– tests / directory contains automated tests and related data.
– components/ directory contains React components.
– context/ directory contains definitions of React Context objects.
– hooks/ directory contains custom React hooks.
– redux/ directory contains the definition of the Redux store and the

implementations of RTK Query endpoints.
– utils/ directory contains various non-React utilities.
– constants.ts file implements various application constants.
– index.tsx file implements the entry point of the application.
– setupProxy.js file implements a reverse proxy to the application’s

backend for the development Node.js environment.
– setupTests.ts file configures Jest tests.
– types.ts file defines TypeScript types which are shared across multi-

ple concerns.
3https://eslint.org/
4https://jsdoc.app/
5https://www.nginx.com/

60

https://eslint.org/
https://jsdoc.app/
https://www.nginx.com/

4.2.2 Shared components
The frontend implements a set of cross-cutting components which do not belong
to any particular view. These components are:

• App: Root component of the application, which also sets up the SignalR
connection to the backend’s notification system.

• Layout: Implements the general layout of the application and handles rout-
ing.

• Header: Renders the header of the application.

• Sidebar: Renders the sidebar of the application.

• OffcanvasSidebar: Wraps the sidebar in a responsive drawer, which is
hidden by default on mobile screens.

• ModalWrapper: Renders a modal window with the specified children using
the react-modal6 package.

• LoadingWrapper: Provides a wrapper for components which depend on
asynchronously fetched data, displaying a loading animation until the fetch
finishes.

• LoadingSpinner: Renders a loading spinner animation.

• LoadingBubbles: Renders a loading bubbles animation.

• PageHeading: Renders a page heading.

• PageSelector: Renders pagination controls.

4.2.3 Views
Different pages of the application are implemented as views, and can be found in
the components/views/ directory. The following views have been implemented:

• Dashboard: Renders the dashboard of the application.

• PortfolioListView: Renders an expandable list of all user’s portfolios .

• PortfolioView: Renders an overview of a single portfolio.

• InstrumentListView: Renders a paginated list of all created instruments .

• InstrumentView: Renders an overview of a single instrument.

• ChartListView: Renders a list of charts created by the user.

• ChartView: Renders an interface to configure a line chart .
6https://github.com/reactjs/react-modal

61

• CurrenciesView: Renders a form to change the application’s default cur-
rency and a list of current exchange rates .

• ImportExportView: Renders an interface to export or import CSV data .

• SettingsView: Renders a form to change user settings.

These views are typically comprised of multiple components, the most impor-
tant of which will be described in the following sections.

4.2.4 Tables
The application implements the following tables:

• ChartsTable: Displays all created charts.

• ExchangeRatesTable: Displays current exchange rate from the specified
currency code.

• ImportsTable: Displays all initiated CSV imports.

• InstrumentPricesTable: Displays paginated price history of a specific
instrument.

• InstrumentSplitsTable: Displays split history of a specific instrument.

• InstrumentsTable: Displays paginated instruments.

• PortfoliosTable: Displays all created portfolios.
This table is expandable, displaying PositionsTable on expansion.

• PositionsTable: Displays positions of a specific portfolio.
This table is expandable, displaying TransactionsTable on expansion.

• TransactionsTable: Displays transactions of a specific position.

These tables are backed by a generic DataTable component, which renders the
table based on the provided data and column definitions. DataTable addition-
ally uses the DataTableExpandableComponent wrapper for expandable content.
Furthermore, it allows different column definitions based on screen size, which
is represented by Bootstrap’s breakpoints. This functionality is utilized for wide
tables, such as PortfoliosTable, where a more compact version of the table is
displayed on mobile screens.

4.2.5 Forms
The frontend utilizes multiple forms for data editing. They can be found in the
src/components/forms/ directory. These forms are:

• CreateInstrumentForm: Renders an instrument creation form.

• CreateInstrumentPriceForm: Renders an instrument price creation form.

62

• CreateInstrumentSplitForm: Renders an instrument split creation form.

• OpenPositionForm: Renders a form to open a new position in a portfolio.
This form additionally enables the user to create a corresponding instru-
ment.

• CreatePortfolioForm: Renders a portfolio creation form.

• CreateTransactionForm: Renders a transaction creation form.

• EditChartMetaForm: Renders a form for editing a chart’s name.

• EditInstrumentForm: Renders an instrument edit form.

• EditPortfolioForm: Renders a portfolio edit form.

• EditPositionForm: Renders a position edit form.

• EditTransactionForm: Renders a transaction edit form.

• ExportDataForm: Renders a form for exporting data in CSV format.

• ImportDataForm: Renders a form for importing data in CSV format.

• ChangeDefaultCurrencyForm: Renders a form to change the default cur-
rency of the application.

• SettingsForm: Renders a form to change the user settings.

• ChartLineConfiguratorForm: Renders a form to change the style of a
chart line.

Forms are composed of custom form fields located in the fields/ subdirectory.
They are also responsible for calling the appropriate mutation hooks generated
by RTK on form submit. However, they additionally enable custom callbacks on
success, which are typically used to display a toast notification or to close the
parent modal.

4.2.6 Charts
The main facade for chart rendering is the PortEvalChart component, which
accepts the chart definition as a prop and retrieves the appropriate chart data
from the backend using the useGetChartDataQuery hook generated by RTK.

The actual rendering of the chart is then delegated to the LineChart com-
ponent, which is a React wrapper for custom d3.js code implemented in the
src/utils/lineChart.ts file as an SVGLineChart class.

The application additionally implements several components for chart config-
urability. These components are:

• ChartConfigurator: Enables configuration of chart settings, such as type
or date range.

• ChartPreview: Renders a chart preview with a link to the full-sized chart.

63

• InstrumentPicker: Renders a list of instruments which can be added to
the chart.
Individual instruments are rendered using the InstrumentPickerItem com-
ponent.

• PortfolioPicker: Renders a list of portfolios which can be added to the
chart.
Individual portfolios are rendered using the PortfolioPickerItem compo-
nent.

• PositionPicker: Renders a list of portfolio positions which can be added
to the chart.
Individual positions are rendered using the PositionPickerItem compo-
nent.

• LinePreview: Renders a small preview of the chart line based on its con-
figuration.

Some of these components depend on the ChartLineConfigurationContext
React Context, which is used to read and update the configuration of the parent
chart.

4.2.7 Hooks
Several custom hooks were also implemented. These hooks encapsulate function-
ality which requires usage of different, often built-in React hooks. They can be
found in the src/hooks/ directory.

• useGetQueryParam: Retrieves the value of the specified query parameter.

• useGetRouteState: Retrieves the value of the provided route state.

• useInstrumentPriceAutoFetchingState: A custom state wrapper which
enables automatic fetching of instrument price at the specified time, while
auto-refreshing whenever this time changes.

• useLocalStorage: Provides a state-like interface enabling retrieval and
storage of data in the browser’s local storage.

• usePageTitle: Sets the title of the page.

• useUserSettings: Provides a state-like interface enabling retrieval of user
settings saved in the browser’s local storage.

64

4.2.8 Redux
As discussed in Implementation, state management was implemented using Redux
and RTK. Additionally, communication with the RESTful API provided by the
backend was implemented using the RTK Query submodule.

These implementations are contained in the src/redux/ directory. It contains
a store.ts file, which exports a factory function for initializing the Redux store.
The api/ subdirectory then implements the individual endpoints of the RESTful
API. They are implemented across multiple files, typically separated by a specific
type of data.

65

5. Testing
The following chapter describes the methodology used for testing the final appli-
cation.

5.1 Automated testing
To test correctness of the application’s behavior, numerous automated tests were
developed for both backend and frontend. This section discusses these tests and
describes how to run them.

5.1.1 Backend
As the backend contains the majority of the application’s source code, extensive
emphasis was placed on testing its functionality. This was achieved by a set of unit
and integration tests, where unit tests validate the behavior of individual classes
and methods, while integration tests validate behavior spanning multiple layers,
typically including communication with the database or external data sources.

These tests can be executed by running the dotnet test command in the
solution’s root directory.

Unit tests

Backend’s unit tests were implemented using the xUnit1 testing framework. As
much of the application’s behavior utilizes some injected dependencies, it was
necessary to isolate tested functionality from these dependencies by providing
mocks in their stead. To simplify creation of such mocks, Moq2 mocking library
was used.

Furthermore, the AutoFixture3 library was used to facilitate creation of test
data, and to act as an IoC container allowing injection of mock dependencies.
Together with Moq, this allows unit test implementations to focus on behavior,
instead of configuration concerns.

In total, 652 unit tests were implemented, covering the following concerns:

• Background jobs

• Controllers

• Domain services

• Domain event handlers

• Services

• Calculators
1https://xunit.net/
2https://github.com/moq/moq4
3https://github.com/AutoFixture/AutoFixture

66

https://xunit.net/
https://github.com/moq/moq4
https://github.com/AutoFixture/AutoFixture

• CSV processing

• Data fetcher library

• Application model validators

Integration tests

Similar to unit tests, integration tests were also built using the xUnit framework.
These tests focus primarily on behavior which requires communication with an
external system, such as:

• Queries
Query tests are executed against a fully running backend using a test SQL
Server database with fake seeded data. This test database is initialized in
a Docker container using the Testcontainers4 library. This means that the
Docker daemon must be running for these tests to be executed successfully.

• Repositories
These tests are executed against an in-memory database, which was deemed
sufficient for the level of complexity of implemented repositories, as they do
not utilize engine-specific functionality.

• Financial data sources
These tests validate the behavior of implemented financial data sources and
their integration with the data fetcher library. They are executed with a
mock of an HTTP client returning stub responses on calls to expected data
source endpoints.

In total, 140 such tests were implemented.

5.1.2 Frontend
The frontend implemented a separate set of integration tests using Jest5. Their
goal is to test specific use cases and user interactions within the application,
mirroring the way the user is expected to use it. This means that these tests are
generally executed against the top-level views of the application, and do not test
individual components. This approach is facilitated by React Testing Library6.

As frontend depends on the backend’s API for a significant part of its function-
ality, this API needs to be mocked. For this, the Mock Service Worker7 library
was utilized, which intercepts network requests and allows the user to handle the
request completely in-memory, while providing a stub response to the client.

These tests can be executed by running the npm run test command in the
package’s root directory.

4https://dotnet.testcontainers.org/
5https://jestjs.io/
6https://testing-library.com/docs/react-testing-library/intro
7https://mswjs.io/

67

https://dotnet.testcontainers.org/
https://jestjs.io/
https://testing-library.com/docs/react-testing-library/intro
https://mswjs.io/

5.2 Performance evaluation
According to non-functional requirement NFR8, the application must be able
to render any chart containing 10 lines in under two seconds. Fulfilling this
requirement is not easy, as chart rendering needs to process and transfer large
amounts of data, which requires several layers of the application to function
optimally:

• Database and queries

• Financial metric calculators

• Chart data generation algorithm

• Currency conversion

• Communication between frontend and backend

• SVG chart rendering mechanism

To evaluate the fulfillment of this requirement, multiple end-to-end bench-
marks were performed on several test charts. These benchmarks are described in
the following subsections. It should be noted that the goal of these benchmarks
is not to provide an extensive analysis of the chart rendering mechanism, but
rather to present us with a general estimate of its performance, which can enable
discussion about the fulfillment of the aforementioned requirement.

5.2.1 Test data
Before executing the benchmarks, the application had to be populated with
enough data to enable creation of reasonably complex multi-line charts. For this
reason, 15 instruments included in Dow Jones Industrial Average (DJIA) were
imported into the application, which consequently downloaded complete price
histories for each of them.

After this, 15 portfolios were created, each with 1 position and 1 transac-
tion executed in November 2022. Each such position constituted a different in-
strument, so each imported instrument was represented at least once in created
portfolios.

Based on this data, the following types of charts were created:

• USD price chart containing instrument lines

• USD price chart containing portfolio lines

• EUR price chart containing instrument lines

• EUR price chart containing portfolio lines

• Performance chart containing instrument lines

• Performance chart containing portfolio lines

For each of these types, 4 charts were created, containing 1, 5, 10, and 15
different lines respectively.

68

Chart type Line entity Currency Line count Time
Price Instrument USD 1 190.0 ms
Price Instrument USD 5 558.7 ms
Price Instrument USD 10 953.8 ms
Price Instrument USD 15 1430.5 ms
Price Instrument EUR 1 347.2 ms
Price Instrument EUR 5 1068.1 ms
Price Instrument EUR 10 1820.0 ms
Price Instrument EUR 15 2764.7 ms
Price Portfolio USD 1 176.3 ms
Price Portfolio USD 5 497.7 ms
Price Portfolio USD 10 929.0 ms
Price Portfolio USD 15 1355.1 ms
Price Portfolio EUR 1 338.5 ms
Price Portfolio EUR 5 1002.9 ms
Price Portfolio EUR 10 1750.3 ms
Price Portfolio EUR 15 2742.8 ms
Performance Instrument 1 163.1 ms
Performance Instrument 5 451.9 ms
Performance Instrument 10 757.7 ms
Performance Instrument 15 1171.6 ms
Performance Portfolio 1 151.6 ms
Performance Portfolio 5 401.2 ms
Performance Portfolio 10 717.4 ms
Performance Portfolio 15 1082.3 ms

Table 5.1: Chart rendering mechanism benchmark results

5.2.2 Environment
The benchmarks were executed on a Windows machine with a Ryzen 5 3600 CPU
and 16GB of RAM, which was running both the backend and the frontend of the
application in Internet Information Services (IIS).

To measure the performance in a way that would most align with the users’
experience, charts were placed on the dashboard page and scaled to fill the width
and the height of the browser window. This was done independently for each
chart to prevent interference caused by rendering multiple charts.

The benchmarks were then executed in Google Chrome version 111 using
Chrome DevTools. Specifically, we measured the time difference between the first
API request for data and the moment the chart was visible and interactive, which
was defined as the moment when all rendering, layout shifting, and callbacks were
finished.

5.2.3 Results
The benchmarks were performed 10 times for each chart. The averaged results
can be seen in Table 5.1, with 10 line measurements highlighted in bold.

69

Several observations can be made from these results. First of all, charts re-
quiring currency conversions from USD to EUR performed the worst in these
benchmarks, in some cases being twice as slow as their USD counterparts. While
they fulfilled the requirement, this indicates a good starting point for further
optimizations.

On the other hand, portfolio charts have shown very good results, slightly
outperforming instrument charts with the same line count. As portfolio chart
lines generally require more data than instrument lines, the most likely reasons
are sub-optimal database access for instrument data, or an inefficient algorithm
for instrument chart generation.

Overall, requirement NFR8 can be described as fulfilled. Nevertheless, some
improvements can be considered:

• Database indexing
Inefficient or fragmented database indexes are a possible reason for sub-
optimal currency conversion performance, as the current version of the ap-
plication does not rebuild or reorganize these indexes, and the currency
exchange rates table will generally contain up to a million records.

• Line aggregation
Currently, each line’s data is retrieved by executing a separate API request.
This was done to allow the frontend to cache individual lines instead of
whole charts. Alternatively, the backend can be modified to provide the
complete chart data in a single request, allowing reuse of database connec-
tions or retrieved data.

• Backend caching
While the frontend can cache individual lines, implementing caching in
the backend could prove to be a significant performance improvement, as
intermediary data (such as prices, transactions, or currency exchange rates)
could be cached as well.

70

Conclusion
The goal of this work, as stated in Introduction, was to design and implement
an application enabling tracking and evaluation of investment portfolios, with
support for user-defined charts and data retrieval from various data sources, which
must be implemented in a modular fashion.

By implementing PortEval, this goal has been fully achieved. The project is
functional in accordance with requirements from the Requirements section, and
can be used to track portfolios consisting of different instruments, with financial
market data being regularly retrieved from different data sources. Additionally,
the application allows creation and saving of custom charts, which can then be
laid out in a user-defined grid on a single page.

Future work
In this section, we will describe possible future extensions of the application, each
with a short description of how it could be achieved in the current design.

Alerts
As the application already supports real-time notifications displayed in the front
end, the system could be further improved to display alerts based on certain
triggers, such as rapid portfolio value decrease. Detection of such triggers could
be implemented as side-effects of instrument price creation, or as separate asyn-
chronous jobs.

For these notifications to be useful, they should be displayed to the user even if
they do not have the application open at the time. To achieve that, a notification
queue would need to be implemented as well, either as a part of the existing
database, or as a separately deployed service.

Multi-user support
In its current version, the application does not support multiple users, each track-
ing their own set of portfolios. To achieve this, an authorization mechanism would
need to be implemented in the application. Additionally, user-specific entities
(such as portfolios or charts) would need to be extended with a relationship to a
specific user. On the other hand, instruments tracked by the application should
remain global.

Dividend analysis
The application could additionally support tracking and analysis of dividends.
They could be imported using the existing data fetcher library, possibly by ex-
tending existing data sources. These dividends could then be incorporated into
profit and performance evaluation as additional cash flows. Furthermore, these
dividends could be displayed in separate charts, or they could be added to the
existing charts’ tooltips.

71

Broker integration
The application could be further improved by importing transactions automati-
cally from various brokers, such as InteractiveBrokers8 or eToro9. To achieve this,
an integration with each broker’s API would need to be implemented, with addi-
tional jobs handling regular data retrieval. Communication with the APIs could
be implemented as part of the existing data fetcher library, or using a different
solution altogether.

8https://www.interactivebrokers.com/en/home.php
9https://www.etoro.com/

72

https://www.interactivebrokers.com/en/home.php
https://www.etoro.com/

Bibliography
Kendall E. Atkinson. An Introduction to Numerical Analysis. Second Edition.

Wiley, 1989. ISBN 0-471-62489-6.

G. Erich, H. Richard, V. John, and G. Booch. Design Patterns: Elements of
Reusable Object-Oriented Software. 1st Edition. 1994. ISBN 978-0-201-63361-
0.

E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
1st Edition. Addison-Wesley Professional, 2003. ISBN 0-321-12521-5.

Bruce J. Feibel. Investment Performance Measurement. Wiley, 2003. ISBN
978-0-471-44563-0.

M. Fowler. Patterns of Enterprise Application Architecture. 1st Edition. 2005.
ISBN 0-321-12742-0.

S. Kellison. The Theory of Interest. 3rd Edition. McGraw-Hill, 2008. ISBN
978-0-073-38244-9.

Palermo, J. The Onion Architecture: part 1, 2008. URL https:
//jeffreypalermo.com/2008/07/the-onion-architecture-part-1/. [Ac-
cessed: 4 March 2023].

Stack Overflow. Stack Overflow Developer Survey 2022, 2022. URL https:
//survey.stackoverflow.co/2022/. [Accessed: 25 February 2023].

TechEmpower. Web Framework Benchmarks, 2022. URL https://www.
techempower.com/benchmarks/#section=data-r21&test=composite. [Ac-
cessed: 25 February 2023].

73

https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://www.techempower.com/benchmarks/#section=data-r21&test=composite
https://www.techempower.com/benchmarks/#section=data-r21&test=composite

List of Figures

1.1 Use case diagram - instrument management 23
1.2 Use case diagram - portfolio management 24
1.3 Use case diagram - currency management 24
1.4 Use case diagram - chart management 25
1.5 Use case diagram - application management 25

2.1 Conceptual model - core . 29
2.2 Conceptual model - charts . 30
2.3 UI design - dashboard . 35
2.4 UI design - portfolios . 35
2.5 UI design - instruments . 36
2.6 UI design - single instrument . 36
2.7 UI design - single portfolio . 37
2.8 UI design - chart editing . 37
2.9 UI design - currencies . 38

A.1 Instruments page . 82
A.2 Instrument creation form . 82
A.3 Instrument page . 83
A.4 Split creation form . 84
A.5 Portfolios page . 84
A.6 Portfolio page . 85
A.7 Charts page . 86
A.8 Chart editing page . 87
A.9 Dashboard in Edit mode . 88
A.10 Data import and export page . 89
A.11 Currencies page . 91
A.12 User settings page . 92

74

List of Abbreviations
CSV comma-separated values

UML Unified Modeling Language

SaaS Software as a service

SVG Scalable Vector Graphics

TTI Time to Interactive

ACID atomicity, consistency, isolation, durability

DBMS database management system

MWR Money-Weighted Return

IRR internal rate of return

TWR Time-Weighted Return

API Application Programming Interface

REST Representational state transfer

JSON JavaScript Object Notation

TSV tab-separated values

XML Extensive Markup Language

SVG Scalable Vector Graphics

EOD end of day

ETF exchange-traded fund

ORM object-relational mapping

EF Entity Framework

DTO Data Transfer Object

UI user interface

GUI graphical user interface

SPA single-page application

SOAP Simple Objects Access Protocol

DDD domain-driven design

SDK software development kit

75

CRA Create React App

CSS Cascading Style Sheets

DOM Document Object Model

RTK Redux Toolkit

IoC Inversion of Control

IIS Internet Information Services

DJIA Dow Jones Industrial Average

TLS Transport Layer Security

76

A. Attachments

A.1 Electronic attachment
This work comes with an electronic attachment PortEval.zip, which has the
following structure:

• app/ directory contains the source code of the application.

– server/ subdirectory contains the Visual Studio solution of the appli-
cation backend.

– web/ subdirectory contains the Node package of the application fron-
tend.

– docker-compose.yml file is a Docker Compose configuration file for
the production environment.

– docker-compose.development.yml file is a Docker Compose config-
uration file for the development environment.

– .env file is a configuration file for production Docker Compose envi-
ronment variables.

– .env.dev file is a configuration file for development Docker Compose
environment variables.

• docs/ directory contains documentation generated from the application’s
source code.

– backend/ subdirectory contains documentation generated from the
backend’s XML comments using Doxygen.

– frontend/ subdirectory contains documentation generated from the
frontend’s comments using JSDoc.

• setup/ directory contains the experimental Windows setup bundle for the
whole application.

• test data/ directory contains examples of CSV import files.

77

A.2 Administrator documentation
This documentation describes how to configure and run PortEval. The applica-
tion consists of three layers, each of which needs to be running for the application
to function as expected. These layers are a React frontend, an ASP.NET Core
backend, and an SQL Server database.

The application is located in the app/ directory of the electronic attachment.
The commands described below need to be executed from that directory.

A.2.1 Data sources
Several data sources require a valid API key to function correctly. These keys
can be retrieved at the following URL addresses:

• Mboum: https://rapidapi.com/sparior/api/mboum-finance/

• Tiingo: https://api.tiingo.com/account/api/token

• Alpha Vantage: https://www.alphavantage.co/support/#api-key

• Open Exchange Rates: https://openexchangerates.org/signup

However, the application supports Yahoo Finance and ExchangeRate.host out
of the box, so while usage of the data sources above is recommended for reliability
reasons, it is ultimately optional.

A.2.2 Docker Compose
The easiest and recommended way to run the whole application is using the
Docker Compose configuration located in the application’s root directory. The
application can be built and started using the following commands:
$> docker compose build
$> docker compose up

The application will then be available at http://localhost:3080/.
If the administrator wants to utilize additional data sources in addition to

default ones, they need to provide valid API keys for these sources. These keys
should be provided to the application as environment variables1. The easiest way
to do so is using the .env file, which should be located in the same directory as
the docker-compose.yml configuration file.
PORTEVAL_Tiingo_Key =[key]
PORTEVAL_RapidAPI_Mboum_Key =[key]
PORTEVAL_AlphaVantage_Key =[key]
PORTEVAL_OpenExchangeRates_Key =[key]

Listing A.1: Example .env file

1More information on supplying environment variables to a Docker Compose environ-
ment can be found here: https://docs.docker.com/compose/environment-variables/
set-environment-variables/

78

https://rapidapi.com/sparior/api/mboum-finance/
https://api.tiingo.com/account/api/token
https://www.alphavantage.co/support/#api-key
https://openexchangerates.org/signup
https://docs.docker.com/compose/environment-variables/set-environment-variables/
https://docs.docker.com/compose/environment-variables/set-environment-variables/

A.2.3 Custom deployment
It is possible to deploy each part of the application manually. This subsection
provides information about deployment of each of these parts.

SQL Server

PortEval was developed and tested using SQL Server 20192. The application only
needs one SQL Server instance, and it is the responsibility of the administrator
to configure it on the platform of their choice.

Backend

To compile and run the backend of the application, the target machine must have
the following installed:

• .NET 7.0 SDK

• .NET 7.0 runtime

• ASP.NET Core 7.0 runtime

The Visual Studio solution can be found in the app/server/ directory. It can
then be compiled using the dotnet publish command, for example:
$> dotnet publish -c Release -f net7 .0 -o /var/www/api

/p: EnvironmentName = Production PortEval . Application /

The example above compiles the backend in a production environment, storing
the compiled application into the /var/www/api directory.

Before running the application, the administrator will need to configure the
port, the database connection, the file storage directory, and optionally the data
source API keys. These settings can be configured using the appsettings.json
file in the root directory of the deployed application, for example as follows:
{

" ConnectionStrings ": {
" PortEvalDb ": " connection string "

},
" PORTEVAL_Tiingo_Key ": "key",
" PORTEVAL_RapidAPI_Mboum_Key ": "key",
" PORTEVAL_AlphaVantage_Key ": "key",
" PORTEVAL_OpenExchangeRates_Key ": "key",
" PORTEVAL_File_Storage ": "path to storage directory ",
"Urls": "http ://0.0.0.0:8080"

}

Listing A.2: Example appsettings.json file

2The free Express version can be downloaded at the following address for Windows machines:
https://www.microsoft.com/en-us/download/details.aspx?id=101064. For Linux dis-
tributions, refer to the following guide: https://learn.microsoft.com/en-us/sql/linux/
sql-server-linux-setup

79

https://www.microsoft.com/en-us/download/details.aspx?id=101064
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup
https://learn.microsoft.com/en-us/sql/linux/sql-server-linux-setup

Alternatively, these values can be provided as environment variables. The
database connection string should be provided in a CUSTOMCONNSTR PortEvalDb
variable, while all other configuration values should be provided using names
corresponding to keys from the configuration file above.

The backend can then be started by running the following command in the
directory of the compiled application:
$> dotnet PortEval . Application .dll

Frontend

The frontend is located in the app/web/ directory of the electronic attachment.
To build it, Node.js version 17+ must be installed on the target machine. The
application can then be built using the following commands:
$> npm install
$> npm run build

The compiled frontend will then be located in the build/ subdirectory.
The frontend expects the backend’s API to be available at /api relative URL.

It is the responsibility of the administrator to configure correct reverse proxy set-
tings on the web server of their choosing to allow the frontend to access the API.
Additionally, to support WebSocket notifications, the web server (and the reverse
proxy) should support HTTP connection upgrade3. An example nginx configura-
tion file supporting all of the above can be found at app/web/nginx/nginx.conf.

A.2.4 Setup bundle
For Windows 64bit machines, the administrator can use the setup bundle which
can be found in the setup/ directory of the electronic attachment. This bundle
installs the full application to the machine’s IIS server at port 5432, including
dependencies such as SQL Server and URL Rewrite. It should be noted that this
bundle is experimental, and it cannot automatically resolve possible issues with
already installed components. It should also be noted that installation of this
bundle will typically require a machine restart.

The bundle will first install the required dependencies, after which it will open
a PortEval installer. Installation instructions are as follows:

1. Click Next.

2. A dialog window will appear allowing the user to optionally configure API
access keys for instrument and currency data. To configure access for a
specific source, select the source from the list box and enter the required
credentials in text fields below the list box.

3. Click Next

4. Wait for the installation to finish.

The application will then be available at http://localhost:5432/.
3https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Upgrade

80

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Upgrade

A.3 User documentation
This documentation describes how to use the application, outlining the basic
features and the general workflow.

A.3.1 Workflow
The workflow of the application revolves around three key financial entities:

• Instrument: A priced entity the price of which evolves over time, such as
stocks, ETFs, and cryptocurrencies.

• Position: An instrument traded in a portfolio.

• Portfolio: A collection of positions.

As is evident from these definitions, everything in the application ultimately
revolves around instruments, which can then be composed into positions and
portfolios. This is also reflected in the structure of this documentation, which first
describes how to manage these instruments, and only then getting into advanced
topics such as portfolio or chart management.

A.3.2 Getting started
After the user opens the application, they will be greeted by the dashboard. On
first start, this dashboard will be empty. However, eventually it will contain
charts created by the user, laid out in a custom flexible grid.

To the left of each page the user will see a navigation sidebar. Each link in
this sidebar will lead to a different page, which will be further described in the
following subsections.

In the top-right corner there is a refresh button, forcing the application to
update displayed data. However, most of the times it is going to be unnecessary,
as the application will typically refresh its data automatically, maintaining up-
to-date financial information.

A.3.3 Instrument management
The user may navigate to the instruments page (Figure A.1) by pressing the
Instruments link in the navigation bar. This page contains a paginated list of
all instruments created in PortEval, together with their current price.

An instrument can be added to the application by pressing the Create new
instrument button in the top-right corner of the page. Pressing this button
opens a modal window containing the instrument creation form (Figure A.2).

This form contains the following fields:

• Name: Full name of the instrument, such as Alphabet Inc.

• Symbol: Instrument ticker, such as GOOGL.

• Exchange: The stock exchange at which the instrument is traded, such as
NASDAQ. This field is optional.

81

Figure A.1: Instruments page

Figure A.2: Instrument creation form

• Type: The type of the instrument, such as Stock.

• Note: A custom note for the instrument. This field is optional.

After an instrument is created, PortEval will use the provided instrument
information to try and retrieve the instrument’s price history from integrated
external sources. When this process finishes, a notification will be displayed in
the web application, indicating whether any prices were downloaded.

82

Viewing an instrument

Clicking on instrument’s name in the table will navigate the user to the instru-
ment’s page (Figure A.3).

Figure A.3: Instrument page

This page contains key information about the instrument including several
metrics and a price chart. Additionally, it contains histories of the instrument’s
splits and prices. Both these histories should be maintained automatically by
the application, however, in some cases the user may want to make their own
changes.

Existing prices can be removed by pressing the Remove button in the Actions
column of the price row, while a new price can be created by pressing the Add a
price buttons above the table.

Splits are more complex than prices, as creating a split will retrospectively
adjust the prices of the instrument and the transactions of the related positions
according to the specified split factor. Pressing the Add a split button will
open the split creation form (Figure A.4).

In this form, the date field should indicate the date and time when the in-
strument starts being traded on a split-adjusted basis, which is typically the
start of trading hours on the following day after the split. The numerator and
denominator fields then specify the split factor, where numerator/denominator
represents the multiplier of the total number of shares in circulation. For exam-
ple, a three-for-one split’s numerator would be 3, while its denominator would be
1.

After a split is created, the application will automatically adjust the prices
and transactions affected by this split, dividing the instrument and transaction
prices by the split factor, while multiplying the transaction amounts by the same
factor.

An invalid split can be rolled back by pressing the Rollback button next to
its entry in the split history table. This will perform reverse operations on the

83

Figure A.4: Split creation form

same prices and transactions, reverting them to the values before the split was
created.

A.3.4 Portfolio management
The Portfolios link in the navigation bar will lead to the portfolios management
page (Figure A.5). This page contains an overview of all portfolios created by
the user.

Figure A.5: Portfolios page

Each portfolio can be expanded and collapsed by pressing the arrow button
next to the name of the portfolio, which will display the portfolio’s positions

84

under the portfolio row. Similarly, individual positions can be expanded as well,
displaying the expanded position’s transactions.

A portfolio can be created by pressing the Create new portfolio button in
the top-right corner of the page. Pressing this button opens a modal window
containing the portfolio creation form, where the portfolio’s name, currency, and
optionally a note can be specified.

After a portfolio is created, the user can start opening positions in it by
pressing the Open position button in the Actions column of the portfolio row.

A position requires an instrument and an initial purchase transaction to be
provided. If the instrument does not yet exist, the user may check the Create new
instrument checkbox below the instrument dropdown to create the instrument
in the same form.

Further transactions can then be added to the position by pressing the Add
transaction button in the Actions column of the transaction row. This opens a
transaction creation form, where the transaction’s date, amount, price per unit,
and optionally a note can be specified. A positive amount indicates a purchase,
while a negative amount indicates a sale.

Viewing a portfolio

Clicking on the portfolio’s name in the table will navigate the user to the portfo-
lio’s page (Figure A.6).

Figure A.6: Portfolio page

This page contains key information about the portfolio including its metrics
and a performance chart. Additionally, it contains a table of portfolio’s positions,
which is equivalent to the expandable list of positions on the portfolios page.

85

A.3.5 Chart management
Pressing the Charts link in the navigation bar will open the charts page (Figure
A.7). This page contains all the charts created by the user.

Figure A.7: Charts page

There are multiple ways to start creating custom charts in the application.
Portfolio, position, and instrument tables outlined in previous subsections contain
a Chart button in the Actions column, which opens a chart editing page with the
selected financial entity already added. Alternatively, the charts page contains
the Create new chart button in the top-right corner, which opens an empty
chart.

Chart configuration

The chart editing page (Figure A.8) allows the user to view and configure their
chart.

There are several configuration options available above the chart. The leftmost
dropdown menu allows the user to select the type of the chart. The available types
are:

• Price: At point X, a chart line will display the value of the financial entity
at X.

• Profit: At point X, a chart line will display the profit of the financial entity
between the start of the chart and X.

• Performance: At point X, a chart line will display the performance of the
financial entity between the start of the chart and X.

• Aggregated profit: At point X, a chart line will display the profit of the
financial entity between the previous chart point and X.

86

Figure A.8: Chart editing page

• Aggregated performance: At point X, a chart line will display the perfor-
mance of the financial entity between the previous chart point and X.

Other configuration options include:

• Currency: Currency in which price values should be displayed. This option
will only be displayed for price, profit, and aggregated profit charts.

• Date range start: Determines the date at which the chart should start,
unless to-date range is selected.

• Date range end: Determines the date at which the chart should end, unless
to-date range is selected.

• Frequency: Determines the interval between two chart points. This option
will only be displayed for aggregated profit and aggregated performance
charts.

• To-date range: Pre-configured date range. Charts with to-date range will
always show data in the selected range, ending at current date and time.

The rightmost column contains two panels for adding lines to the chart. The
top panel displays available portfolios, while the bottom panel displays available
instruments. To add positions to the chart, the user can press the Positions
button next to the portfolio containing the desired position. This will open a
modal window allowing the user to add positions from the selected portfolio.

Each chart is automatically saved in five-second intervals.

87

A.3.6 Dashboard
The application dashboard is a configurable grid-like view of selected charts. To
add a chart to the dashboard, the user can press the Add charts button in the
top-right corner of the dashboard. After pressing the button, a modal window
will appear listing the existing charts which have not yet been added to the
dashboard. The user can then add one of these charts by starting to drag the
chart name box, after which it can be dropped onto the desired position on the
dashboard.

After the chart is dropped onto the dashboard, it switches into Edit mode
(Figure A.9), where charts can be resized, moved, or removed from the dashboard.
A chart can be resized by dragging an arrow in the bottom-right corner of the
chart, or moved by holding the left mouse button over the chart and moving it.

When the user is done editing the dashboard, they can press the Toggle
dashboard edit button in the top-right corner of the page. The same button
can then be used to switch back into Edit mode.

Figure A.9: Dashboard in Edit mode

A.3.7 Data import and export
The Import and export navigation link will lead the user to the data import
and export page (Figure A.10). On this page, the user can import or export
application data in CSV format.

The user can initiate an export by selecting the desired data type in the Export
data type dropdown and pressing the Export button. This will download a CSV
file containing the requested data to the user’s device.

Data can then be imported into the application using one of the predefined
import templates. These templates can be downloaded by selecting the appro-
priate template in the Import template dropdown and pressing the Download
template button.

88

Figure A.10: Data import and export page

After filling in the template, the user can upload the data by selecting the file
from their device using the Choose import file control and then pressing the
Upload button. It is important to note that the type of the template being up-
loaded needs to be selected in the Import template dropdown before uploading
the file.

After the import file is uploaded, it will be immediately scheduled for pro-
cessing and its import status will be displayed in the imports table. When the
processing is finished, the import status in the table will change to Finished
or Error. In case of an error, a detailed error message will be displayed in the
Status message column. Otherwise, an error log will be available for download
in the Error log column.

Import templates

Import templates allows the user to insert or modify a specific type of data.
To determine whether an entry should be inserted or modified, matching is per-
formed based on key columns, outlined in bold below. The only exception is the
Instrument prices template, which only allows insertion, not modification.

• Portfolios

– Portfolio ID: An ID of an existing portfolio, must be left empty to
create a new portfolio.

– Name: Name of the portfolio.
– Currency: Portfolio currency as a three-letter currency code, such as

USD.
– Note: User-defined note.

89

• Positions

– Position ID: An ID of an existing position, must be left empty to
create a new position.

– Instrument ID: ID of the instrument represented by this position.
– Portfolio ID: ID of the parent portfolio.
– Note: User-defined note.
– Time: UTC date and time of the initial transaction in MM/DD/YYYY

HH:mm format.
– Amount: Amount of the initial transaction.
– Price: Price of the initial transaction per 1 unit.

• Transactions

– Transaction ID: An ID of an existing transaction, must be left empty
to create a new transaction.

– Position ID: ID of the parent position.
– Price: Price of the transaction per 1 unit.
– Amount: Amount of the transaction, positive amount indicates a pur-

chase, negative amount indicates a sale.
– Time: UTC date and time of the transaction in MM/DD/YYYY HH:mm

format.
– Note: User-defined note.

• Instruments

– Instrument ID: An ID of an existing instrument, must be left empty
to create a new instrument.

– Symbol: Instrument’s ticker.
– Name: Name of the instrument.
– Exchange: Exchange at which the instrument is traded.
– Type: Instrument type, allowed values are stock, bond, mutual fund,

etf, commodity, cryptocurrency, index, or other.
– Currency: Instrument currency as a three-letter currency code, such

as USD.
– Note: User-defined note.

• Instrument prices

– Instrument ID: ID of the parent instrument
– Price: Instrument price at the provided time.
– Time: UTC date and time of the price in MM/DD/YYYY HH:mm format.

Example templates are available in the test data/ directory of the electronic
attachment.

90

A.3.8 Currency management
By navigating to the Currencies page (Figure A.11), the user can view the cur-
rent available exchange rates and configure the application-wide default currency.

Figure A.11: Currencies page

The application only maintains the exchange rates for the selected default cur-
rency. If the default currency is changed, then the application will automatically
attempt to download the exchange rates for the newly selected default currency.

A.3.9 User settings
The Settings page (Figure A.12) allows the user to change their formatting
settings.

The following settings can be configured:

• Date format: format to be used when displaying dates or parsing entered
dates in date selectors. The following placeholders are allowed:

– d: one-to-two-digit day of the month, such as 9 or 24
– dd: two-digit day of the month, such as 09
– M: one-to-two-digit month number, such as 7 or 12
– MM: two-digit month number, such as 07
– MMM: short month name, such as Jan

– MMMM: full month name, such as January

– yy: two-digit year number, such as 23
– yyyy: four-digit year number, such as 2023

• Time format: format to be used when displaying times or parsing entered
times in date selectors. The following placeholders are allowed:

91

Figure A.12: User settings page

– H: one-to-two-digit hour in 24-hour format, such as 9 or 23
– HH: two-digit hour in 24-hour format, such as 09 or 23
– h: one-to-two-digit hour in 12-hour format, such as 9 or 11
– hh: two-digit hour in 12-hour format, such as 09 or 11
– mm: two-digit minutes, such as 55
– aa: AM or PM

• Decimal separator: character(s) to be used for decimal points.

• Thousands separator: character(s) to be used to separate thousands in
larger numbers.

92

	Introduction
	Glossary

	Analysis
	Evaluating portfolio performance
	Problem
	Money-Weighted Return
	Time-Weighted Return
	Conclusion

	Financial data sources
	Evaluation criteria
	Alpha Vantage
	Finnhub
	Tiingo
	RapidAPI Mboum Finance
	Yahoo Finance
	Exchange Rate Host
	Open Exchange Rates
	Conclusion

	Related work
	Evaluation criteria
	Yahoo Finance
	Digrin
	Portfolio Performance
	Sharesight
	Conclusion

	Requirements
	Functional requirements
	Non-functional requirements
	Use cases

	Design
	Choice of technologies
	Platform
	Backend
	Frontend
	Database

	Conceptual model
	Backend
	Domain
	Persistence
	Financial data sources
	Jobs
	API
	Architecture

	Frontend
	User interface
	Chart rendering
	State management

	Implementation
	Development environment
	Backend
	API
	Services
	Calculators
	CSV processing
	Background jobs
	Data fetching

	Frontend
	Routing
	Styling
	Dashboard
	Charts
	Tables
	Backend communication

	Implementation Details
	Backend
	Project structure
	PortEval.Application
	PortEval.Application.Model
	PortEval.Application.Core
	PortEval.DataFetcher
	PortEval.Domain
	PortEval.Infrastructure
	PortEval.Tests.Unit
	PortEval.Tests.Integration

	Frontend
	Project structure
	Shared components
	Views
	Tables
	Forms
	Charts
	Hooks
	Redux

	Testing
	Automated testing
	Backend
	Frontend

	Performance evaluation
	Test data
	Environment
	Results

	Conclusion
	Future work

	Bibliography
	List of Figures
	List of Abbreviations
	Attachments
	Electronic attachment
	Administrator documentation
	Data sources
	Docker Compose
	Custom deployment
	Setup bundle

	User documentation
	Workflow
	Getting started
	Instrument management
	Portfolio management
	Chart management
	Dashboard
	Data import and export
	Currency management
	User settings

