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Introduction
Reinforcement learning is a subfield of machine learning that aims to train agents
to make decisions that will maximize a reward signal [Sutton and Barto, 2018].
This approach has been widely applied in the field of artificial intelligence, par-
ticularly in the context of training agents to play games. In a game setting, an
agent’s actions can be evaluated based on their impact on the agent’s score or
likelihood of winning. Through the process of reinforcement learning, the agent
learns to make strategic decisions that maximize its reward by receiving positive
reinforcement for good moves and negative reinforcement for suboptimal moves.
This allows the agent to adapt and improve its performance over time as it plays
the game. Research on reinforcement learning in games has demonstrated its
effectiveness in a variety of contexts, including board games, video games, and
real-time strategy games.

In the field of artificial intelligence, games can be classified as either continuous
or discrete based on the nature of the action space and state space. Continuous
games have a continuous action space, meaning that the possible actions an agent
can take are not limited to a fixed set of options, but can vary continuously within
a certain range. In contrast, discrete games have a discrete action space, meaning
that the possible actions are limited to a fixed set of options. Continuous games
are often characterized by a high-dimensional state space, as they may involve a
large number of variables that describe the game state. Discrete games, on the
other hand, typically have a lower-dimensional state space, as the number of pos-
sible states is limited by the discrete action space. In general, continuous games
are more challenging to model and solve than discrete games, as they require
more complex decision-making algorithms and may require more computational
resources.

In this thesis, we will investigate the application of reinforcement learning to
train agents to play a continuous 3D tunnel game, which I designed and imple-
mented myself for this thesis work. The continuous game environment will be
discretized into a set of states, and different reinforcement learning algorithms
will be applied to train agents to play the game. The goal of this study is to
determine whether it is possible for any of the agents to win the whole game, and
to compare the performance of different agents that use different reinforcement
learning algorithms.

The results of this study will contribute to the understanding of the poten-
tial of reinforcement learning for training agents to use discrete algorithms in a
naturally continuous environment, and to provide insight into the strengths and
weaknesses of different reinforcement learning algorithms in this context.
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1. Game Design
For this thesis work I designed and implemented a game called Space-Run, which
involves attempting to accumulate the highest score possible by navigating
through three distinct tunnels while avoiding various obstacles. The game is end-
less in nature, as the speed increases each time the player successfully completes
all three tunnels.

It is worth noting that, in designing this game, I was inspired by the pre-
existing Tunnel Rush (tun [2023]). Tunnel Rush and Space-Run are both 3D
tunnel games that involve advancing through a tunnel to avoid traps. However,
there are several key differences between the two games. Tunnel Rush is a web-
based game played in first-person perspective, while Space-Run is a desktop-based
game played in third-person perspective. Tunnel Rush has levels, some of which
are inverted with the traps on top of the tunnel and the player outside of it.
Space-Run, since inspired by Tunnel Rush, also has levels, but they are all inside
the tunnel and features not only traps but also creatures that the player must
avoid or shoot. Additionally, Space-Run has a computer-themed setting, with
elements such as battery, bugs, and viruses.

1.1 Player and Movement

Figure 1.1: Movement

In Space-Run the player assumes control of a character named Hans (see
Figure 1.2) who continually advances at a constant speed through the tunnels.
To navigate through the game, the player must use the left and right arrow
keys to rotate the current tunnel and avoid obstacles (as shown in Figure 1.1).
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Figure 1.2: Hans

In addition to these lateral movements, Hans also has the
ability to shoot bullets (also shown in Figure 1.1) by press-
ing the space key, which can be used to defeat certain in-
game creatures and earn a higher score. The player must
utilize these abilities in order to progress through the game
and achieve a high score.

1.2 Obstacles
As previously stated, the player must navigate through var-
ious obstacles in the game. These obstacles can be divided
into three distinct categories, and each tunnel contains a
unique subset of them. In the subsequent sections, we will delve deeper into these
categories in order to better understand the challenges faced by the player.

1.2.1 Traps

Figure 1.3: Traps

As depicted in Figure 1.3, a selection of the various trap types that the char-
acter Hans must avoid is presented. These traps, of which there are a total of 10,
vary in their level of difficulty and can be either static or animated. In Figure
1.3 the arrows show in which direction the animated traps move. The traps can
be encountered in any of the three tunnels, and if the player fail to successfully
evade them, they result in an instant death.
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1.2.2 Bugs
In addition to traps, the game also features bugs as an obstacle. In Figure
1.4, going from left to right, we see LadybugWalking, Worm and LadybugFlying
bugs. They appear in the second tunnel and are designed to rotate around the
tunnel toward the player’s position, making them more challenging to evade.
Nevertheless, it is still possible to avoid these obstacles. If the player chooses to
engage with the bugs, they can be defeated by shooting three bullets at them. If
the player collides with a bug, Hans will lose 25% of his battery life, eventually
leading him to loose the game (for more information on battery life, see Section
1.3).

Figure 1.4: Bugs

1.2.3 Viruses
The third and final type of obstacle in the game are viruses (illustrated in Figure
1.5). These viruses are found in the third tunnel and, similar to bugs, can be
eliminated through the use of three bullets. They also, just like bugs, rotate
around the tunnel toward the player’s position. Bacteriophage, a subtype of
virus, will result in an instant death if the player comes into contact with them.
Rotaviruses, on the other hand, will cause the player’s character to become sick
for a brief period of time. During this illness, it is crucial for the player to avoid
coming into contact with another Rotavirus, as this will result in the end of the
game.

Figure 1.5: Bacteriophage and Rotavirus
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Figure 1.6: Battery and Energy Token

1.3 Additional Features
There are several other features of the game that are worth mentioning. One of
the most significant of these is the battery life of the player’s character, Hans,
which is displayed on the right side of the screen (as shown in Figure 1.6). As
Hans is designed to resemble a computer, it is necessary for him to recharge his
battery throughout the game by collecting energy tokens (Figure 1.6). This will
fully restore his battery capacity. There are three main ways in which Hans can
lose battery life: running causes a constant reduction of 1% every 0.5 seconds,
each bullet shot costs 1% of the battery life, and coming into contact with a
bug results in a reduction of 25% (as described in Section 1.2.2). If the battery
reaches 0%, Hans will die and the game will end.

Finally, it should be noted that upon successfully navigating through all three
types of tunnels, the game will increase in speed and the player will once again
encounter the same tunnels, looping through them indefinitely until the player
loses.

1.4 Score Count and Winning
The score of the game is based on the length of time that the player is able to
survive. Additionally, each time a player successfully shoots down a bug or virus,
their score increases by 10 points. As previously mentioned, the game is designed
to be played indefinitely, but for the purpose of this study, we have set the game
to be considered won after an agent successfully completes nine tunnels, reaching
level 15.
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2. Implementation of the Game
Space-Run was developed using the Godot Engine (version v3.2.3.stable), an
open-source game engine licensed under the MIT License. It is a cross-platform
tool that offers a range of features for game development, including a visual
scripting language, 2D and 3D graphics support, and a powerful physics engine.
The Godot Engine utilizes a node-based architecture, where nodes are organized
within scenes that can be reused, instanced, inherited, and nested. This structure
allows for efficient project management and development within the engine. The
game was written entirely in GDScript, the primary scripting language of the
Godot Engine (Linietsky [2021]).

In addition to using the Godot Engine, I also utilized Blender (version 6.2.0)
(Roosendaal [2023]) for creating and animating the characters in the game.
Blender is a popular open-source 3D modelling and animation program that offers
a range of features for creating detailed and realistic characters. The characters
were then imported into the Godot Engine using the .glTF 2.0 (Khronos [2023])
file format, which is a widely supported file format for exchanging 3D graphics
data.

The game can be run on any platform provided within the Godot engine, and
its source code, and the source code for the whole thesis can be found online
(Adilović [2023]).

2.1 The top-level organization

Figure 2.1: Structure of Game.tscn

The main scene for the game, referred to as Game.tscn, is depicted in Figure
2.1. It includes several nodes, including Ground, UI, Sounds, Game, Hans, and
Tunnels. The Ground node is a CSGBox1 that serves as the ground in the game,
while the UI and Sounds nodes handle the user interface and audio aspects,
respectively. The Game, Hans, and Tunnels nodes contain the majority of the
game’s functionality. Specifically, the Game node manages the overall gameplay,

1A CSGBox is a 3D object that represents a box with a Constructive Solid Geometry (CSG)
shape.
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the Hans node controls the player character, and the Tunnels node manages the
movement and appearance of the tunnels.

For a more in-depth understanding, let us examine some of the core aspects
of the game in the following sections.

2.2 Game
The script for the Game node is the initial point of the game session and includes
both the start() and game over() methods. It also serves as a link between
the game and the agent environment described in Chapter 3, and as such includes
all of the necessary set methods for the agent environment. These methods allow
for communication between the game and the agent environment, enabling the
agent to interact with and influence the game.

The following text describes the core functionalities of the main methods
within Game.gd:

• The ready() function is called at the start of the game’s execution and,
after setting up the environment, it triggers the start() function. This
function initiates the gameplay and sets the necessary conditions for the
game to proceed.

• As described in more detail in Chapter 3, the user can specify environment
parameters and a starting level for the agent through the command line.
These parameters determine the obstacles that the player will face and the
starting position of the player character, Hans. The start() function
incorporates these parameters into the obstacle arrays and positions Hans
accordingly. The function also generates the obstacles for the designated
starting level. The creation and deletion of obstacles during gameplay is
discussed in Section 2.4 of this chapter.

• The game over() function manages the end of the game and sends a signal
to the top-level script, Main.gd (described in Chapter 3), indicating that the
game has ended. It also provides Main.gd with the necessary information
about the game’s status and outcome.

2.3 Hans
The next node we want to examine is Hans. While Hans.tscn is a scene with the
main character and its necessary animations, what interests us more is Hans.gd
and its key components.

The primary function within Hans.gd is physics process(), which is called
on every tick of the game. It handles the main aspects of the player character
through the use of various methods and functions. These include deleting passed
obstacles, creating new obstacles every 50 meters, updating the score, handling
the movement of the player character, bugs and viruses, and determining the
current state of the player. The state label, which is displayed on the upper
right corner of the screen (as shown in Figure 2.2), is the primary information
that agents receive when making decisions about their next move, as described in
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Chapter 3. The physics process() function also handles collisions and shoot-
ing if the player chooses to do so. Overall, this function plays a crucial role in
the gameplay and management of the player character.

func physics_process (delta):
tunnels . delete_obstacle_until_x (...)
if translation .x < new_trap :

create_new_trap ()

score. _on_Meter_Passed () # update score
velocity = Vector3 .LEFT * speed
velocity = move_and_slide ( velocity )
check_collisions ()
tunnels . bug_virus_movement (delta , curr_tunnel )

if isShootingButtonPressed :
shoot ()

state. update_state (...)

It is also worth noting that this script handles the movement of the tunnels
to the back as Hans passes them, with the first tunnel being moved to be after
the third one. This feature allows for the game to be infinite, as the tunnels are
constantly cycled and reused.

Figure 2.2: State
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2.4 Tunnels
The Tunnels node, which is a child of the main scene in the game tree, contains
three child nodes of the Spatial type2 (level1, level2, and level3) and each of these
nodes includes a CSGTorus3 node, which represents the physical appearance of
the tunnels. Obstacles are added to the appropriate level node as instances. The
Tunnels.gd script, which is attached to the Tunnels node, handles many of the
previously mentioned functions such as obstacle creation and deletion and tunnel
rotation. In the following code snippets, we will examine the Tunnels.gd script
in greater detail.

func physics_process (delta):
var move = game.agent.move (...)
if move [0] == 1:

tunnel = get_child (hans. get_current_tunnel ())
tunnel . rotate_object_local ( Vector3 .RIGHT , -ROTATE_SPEED *

delta)
elif move [0] == -1:

tunnel = get_child (hans. get_current_tunnel ())
tunnel . rotate_object_local ( Vector3 .LEFT , -ROTATE_SPEED *

delta)

# If it is not instanced we can ’t switch animation
if hans != null:

# Shoot if move [1] returned 1
hans. switch_animation (move [1] == 1)

The physics process() function within the Tunnels.gd script serves as the
primary connection between the agent and the game. As shown in the provided
code, the function retrieves the next move from the agent and rotates the tunnel
accordingly, potentially including shooting as well. It should be noted that, in
the case of the Keyboard agent, function move() returns the user’s input from
the keyboard.

func create_first_level_traps ( tunnel ):
var level = tunnel
var num_of_traps = rand_range ( MIN_TRAPS_PER_TUBE ,

MAX_TRAPS_PER_TUBE )
x = position of the first trap

for n in range( num_of_traps ):
# update x positon
x -= rand. randi_range ( TRAP_RANGE_FROM , TRAP_RANGE_TO )
if x is outside the tunnel :

break
create_one_obstacle (level , x)

2A Spatial node is a type of node that represents a 3D object or transformation in the game
world. It is a versatile node that can be used to create and manipulate 3D objects, including
meshes, materials, and lighting. Spatial nodes are often used as the root node for 3D objects in a
scene, and they can be nested inside other Spatial nodes to create hierarchical transformations.

3A CSGTorus node is a type of 3D object that represents a torus shape in the game world.
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The function depicted in the code above serves to generate obstacles in the
starting tunnel. By periodically creating traps in the tunnel ahead, the game is
able to prevent lag caused by an excessive number of objects existing simultane-
ously. For that reason, this function is used only once, at the beginning of the
game.

func create_one_obstacle (level , x):
var scene = pick_which_kind_of_obstacle_will_be_added
var tunnel = get_the_level_we_are_making_traps_for
var i = randomly_pick_an_obstacle

# make an instance
var obstacle = scene[i]. instance ()
obstacle . translation .x = x

tunnel . add_child ( obstacle )
rotate_obstacle ( obstacle )

The tunnels are positioned along the x axis, and this function allows for the
creation of obstacles within them at specific x positions and a random rotation.

func delete_obstacle_until_x (level , x):
var tunnel = get_current_tunnel ()
for obstacle in tunnel . get_children ():

if obstacle is an obstacle type:
if obstacle . translation .x > x:

obstacle . queue_free ()
else:

return

As previously mentioned, by dynamically deleting passed obstacles, the game
is able to maintain a stable performance and avoid overloading the system.
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3. Structure of the Experimental
Setting
To train an agent on a specific environment, the user must utilize a command-
line interface. There are various options available to cater to the user’s needs.
This chapter will outline all of the provided options and how they are encoded.
However, we will first consider how the game represents discrete states.

3.1 State
The majority of the implemented agents in the game utilize the concept of state to
facilitate learning. The agent will determine its next action based on the current
state in which it finds itself. By dividing the game into discrete states, we are able
to utilize discrete learning algorithms to train an agent to play this continuous
game. Once one obstacle is passed, the value of the state indicated refers to the
next one. Each state is represented by a triplet consisting of distance, rotation,
and next obstacle type.

It is important to note that the game uses meters as the standard unit of
distance measurement in Godot. This unit is used to represent the size, position,
and movement of objects in the game world. Hans is approximately 12 meters
tall and has starting speed of 35 meters per second. Additionally, each tunnel in
the game has a width and height of approximately 45 meters and a depth of 2800
meters.

The distance value indicates Hans’ from the next obstacle in meters. For
example, if we set the dists parameter (indicated by the user, see 3.2.1) to 2,
there are two possible distance values for the state: >50, >0, indicating that the
agent is more than 50 meters away from the obstacle and somewhere between 1
and 50 meters away from the obstacle, respectively. If the dists parameter is
set to 1, the distance value remains constant at >0. In the Chapter 7 we will
see that all types of environments in this game are able to learn when the dists
parameter is equal to 1.

The tunnel circumference is divided into into a fixed number of intervals de-
termined by the command-line parameter rots (see 3.2.1). As the tunnel rotates,
the state label will indicate the rotation value to which Hans is aligned at the
moment (in Figure 3.1 Hans is aligned with rotation value 240). If the rots pa-
rameter is set to 360, this would correspond to the number of degrees in a circle
and result in 360 possible rotations. However, the obstacles in this game do not
require such a high number of rotations and agents can be trained to avoid most
obstacles using fewer than 10 rotations.

Finally, the obstacle type value indicates the type of the next obstacle ahead
of Hans in the tunnel. Each obstacle has its own unique string representation,
which allows the agent to learn to recognize the safe rotation for different types of
obstacles. Using this information, along with the distance parameter, the agent
can decide whether to move left, right, forward, or shoot in combination with
any of these actions. To further explain this notion let’s look back at Figure 3.1.
At first glance, it may seem that a rotation of 240 would allow Hans to easily
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Figure 3.1: Rotations when rots = 6

pass through the obstacle. However, upon closer inspection, it becomes clear that
only a specific portion of the 240 rotation value is safe. The agent does not know
the difference between being at any point of the 240 rotation and thus can easily
make a fatal mistake. For this obstacle, indeed, there would be more rots needed
in order for Hans to have at least one safe rotation value (meaning that the whole
piece of the obstacle that rotation value covers is considered safe).

In Chapter 7, a noteworthy concept is presented where the agent can recognize
a safe edge between two rotations, even if it is not provided with a completely
safe rotation. By quickly shifting between these rotations, the agent is able to
successfully navigate through the obstacle.

3.2 Command-line options

n=int number of games
stoppingPoint=int stop after the agent wins this many consecutive games
agent=string name of the agent
level=int number of the level to start from
env=[string] list of obstacles that will be chosen in the game
shooting=string enable or disable shooting
dists=int number of states in a 100-meter interval
rots=int number of states in 360 degrees of rotation
agentSeedVal=int seed value for the random moves the agent takes
database=string read the data for this command from an existing file

and/or update the data after the command is executed
ceval=bool performs continuous evaluation
debug=bool display debug print statements
options displays options

14



3.2.1 Command-line option descriptions
In this section, a more comprehensive clarification for the table presented earlier
is provided. It is important to note that any of the options listed can be left out,
as they all have default values assigned to them. In the event that no options are
specified, a regular game with the Keyboard agent will be executed.

n

Number of games the agent will train on in this session. The default is 100.

stoppingPoint

If the agent manages to win this many consecutive games, the experiment is
stopped. This is used to avoid long experiments if the agent has already learned
the right policy and would simply keep winning. The default value is 25.

agent

Name of the desired agent.
Options: [Keyboard, Static, Random, MonteCarlo, SARSA, QLearning,
ExpectedSARSA, DoubleQLearning]
sub-options (only for the learning agents):
[gam (range [0,1]), eps (range [0,1]), epsFinal (range [0,1]),
initOptVal (range [0,∞))]
Example usage: “agent=MonteCarlo:eps=0.1,gam=0.2”
The meaning of the suboptions is explained in Section 5.3.1.

level

Number of the level to start from. Default value is 1.
Options: [1, ... , 15]
Note: after the 15th level, the agent is considered to have won the game.

env

List of obstacles that will be chosen in the game,
Options (any subset of): [Traps, Bugs, Viruses, Tokens, I, O, MovingI, X, Walls,
Hex, HexO, Balls, Triangles, HalfHex, Worm, LadybugFlying, LadybugWalking,
Rotavirus, Bacteriophage]
Note: if this parameter is not included, the environment will contain all available
obstacles (i.e. the full game).
Example usage: “env=HexO,I,Bugs”

shooting

Enable or disable shooting.
Options: [enabled, disabled, forced]
This option is disabled by default or if the environment does not have any bugs
or viruses.
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dists

Number of states in a 100-meter interval.
This parameter is part of the state label and typical options range from 1 to 3.
Default value is 1.

rots

Number of states in 360 degrees of rotation. This parameter is part of the state
label and the minimum viable option is 6. This is also the default value.

agentSeedVal

Seed value for the agent.
This parameter is used to produce multiple experiments with different random
actions to verify if the agent can really learn under certain conditions or if it has
simply been “lucky” with the random moves.

database

Read or write data for this command from/to a file.
The results of the experiments are generally stored in two folders:
Agent databases and Command outputs. So by data, we mean storing the final
policy of the agent inside the Agent databases and score of each game and the
final policy inside Command outputs. If continuous evaluation is performed, it
stores only the evaluation games. The files from the former folder can be used
start another session of the agent’s training from the last point of the previous
session or to run a game with visuals and observe the agent’s performance, while
the files from the latter are used for plotting the results.
Options: [read, write, read write]
Note: This option does not affect the Keyboard, Static, or Random agents. De-
fault option for this parameter is to neither read nor write.

ceval

Performs continuous evaluation.
This parameter indicates that after each training game, a test game will be played
using only the policy(s) learned thus far. For example, if the user specifies n=100,
a total of 200 games will be executed, with 100 of them being training games and
the remaining 100 being test games. This allows for the assessment of the agent’s
progress and performance during the training process. Options: [true,false
(default)]

debug

Display debug print statements. Options: [true,false (default)]

options

Displays all of the mentioned options.
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3.2.2 Running the program
There are several possibilities for running the game from the command line. In
addition to various combinations of the options listed above, the user has the
choice of running an experiment with or without the graphical interface. If they
opt for the first possibility, the window will open and the game will be played at
its normal speed. On the other hand, if the experiment is run without graphics,
it will be over 200 times faster and the output will only be displayed in the
terminal. The program achieves this speedup by hiding the CSG geometry in
every node and performing a few other tricks. The computational power required
to perform union, intersection, etc. on the CSG shapes is quite high and thus by
not performing those calculations a game can run much faster. These shapes are
not necessary for the experiments run without graphics, since the collision shapes
are the ones that play a role in determining what happened in the game1.

The experiments we conducted in this study are entirely reproducible owing
to the predetermined seed values for all the random variables. However, it should
be noted that the values produced by a seed can differ across different versions of
the Godot Engine. In order to obtain identical results to the experiments detailed
in Chapter 7, we recommended to use Godot Engine v3.2.3.stable.

To run the program in the command line, the user should add the directory
containing the Godot executable to the PATH environment variable. This will
allow them to start the application from the command line simply by entering
the command godot while inside the same directory as the project.godot file.

By default, running the program in this manner will launch a normal game
with the graphical interface and the Keyboard agent. However, the user can
customize their experiment by using a combination of the options listed above.
For example:

$ godot database =write agent=SARSA: initOptVal =100.0 , eps =0.3 env=
HexO n=10 dists =1 rots =8

Alternatively, the user may choose to train the agent faster by disabling the
graphical interface and increasing the speed of the program. This can be achieved
by modifying the previous command as follows:

$ godot --no - window --fixed -fps 1 --disable -render -loop database =
write agent=SARSA: initOptVal =100.0 , eps =0.3 env=HexO n=10 dists
=1 rots =8

To view a list of available options, the user can simply enter the command
godot options.

1The collision shapes refer to the shapes that are used to define the physical bounds of an
object for the purpose of collision detection.
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3.3 Main
The Main.tscn scene is the top level scene in the game and consists of a single
Node type node. The script attached to this node, Main.gd, is responsible for
ensuring that all options specified in the command line (as discussed in Section
3.2) are executed correctly. This script is the starting point of the training and
handles the initialization and execution of one or more game sessions. There are
several key functions within the Main.gd script that are worth discussing in more
detail.

func _ready ():
var unparsed_args = OS. get_cmdline_args ()
if unparsed_args .size () == 1 and unparsed_args [0] == ‘‘

options ’’:
display_options ()

... # parse args

if set_param (args) == false:
display_options ()

else:
instance_agent ()
build_filename ()
if not agent_inst .init (...):

print (‘‘ Something went wrong , please try again ’’)
display_options ()

play_game ()

The ready() function is the starting point of the program when run from
the command line. It is responsible for parsing all of the arguments and checking
their validity. If any issues are encountered, the program will display options
and terminate. If the arguments are valid, an agent will be instantiated and
initialized. In cases where everything is in order, first game will be played by
calling the play game() function.

func play_game ():
if agent == ‘‘Keyboard ’’ and VisualServer . render_loop_enabled

:
... # play a regular game

elif n > 0:
n -= 1
game = game_scene . instance ()
set_param_in_game ()
agent_inst . start_game ( is_eval_game )

else:
agent_inst .save(write)
print_and_write_ending ()
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The play game() function is called each time a game is played. Firstly, it will
check if the agent selected was the Keyboard agent, and if so, the program will
start one game session where the user has control of Hans. Otherwise, one of the
remaining agents will take over and play the specified number of games (defined
by the n parameter). If n games have already been played, the program will
terminate after performing the last few tasks needed to save all of the knowledge
gained from this particular session. Otherwise, a single game will be executed
and number of games left decreased.

func on_game_finished (score , ticks , win , time):
print_and_write_score (score , win)
agent_inst . end_game (score , time)
play_game ()

The game over() function is called when the game emits a signal indicating
that it has finished. Upon execution, this function outputs the necessary infor-
mation, updates the agent through the end game() function, and then calls the
play game() function to continue the game session.
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4. Applied Algorithms
In this chapter, we will discuss the algorithms employed to create agents for the
game, which broadly fall into the categories of Monte Carlo methods and Tempo-
ral Difference (TD) Learning. In essence, the agents aim to maximize their reward
by selecting actions that yield the greatest possible benefit. To comprehend the
functioning of these algorithms, it is necessary to introduce several fundamental
concepts.

A state represents the current status of the environment, while an action
denotes a decision made by the agent in response to the current state. A reward
is a scalar value that reflects the immediate feedback received by the agent for
its action in a given state. The discount factor, usually denoted as γ, is a
value between 0 and 1 that represents how much the agent values future rewards
compared to immediate rewards. An episode refers to a sequence of states,
actions, and rewards that begins with an initial state and ends when a terminal
state is reached. It represents one run or iteration of the agent interacting with
the environment. The length of an episode can vary depending on the problem
and the algorithm being used (e.g. in a game, an episode may correspond to a
single game). A policy is a mapping from states to actions that determines the
actions an agent takes in each state. An ϵ-greedy policy is a policy in which the
agent selects the action that maximizes the expected reward with a probability of
(1 - ϵ), while taking a random action with a probability of ϵ. Two types of value
functions exist, namely state-value functions and action-value functions. The
former predict the expected long-term reward of being in a particular state, while
the latter predict the expected long-term reward of taking a specific action in a
particular state and always following the optimal policy thereafter. Action-value
and state-value functions evaluate the relative effectiveness of different actions or
states, serving as a measure to determine the optimal action in a particular state.

Before looking into individual algorithms, there is one more key concept to
introduce: exploration vs exploitation. In the field of reinforcement learning,
the exploration-exploitation trade-off refers to the balancing act between discov-
ering new information or strategies and utilizing existing knowledge to maximize
reward. Exploration involves trying out different actions or strategies in order to
gather more information about the environment and its rewards, while exploita-
tion involves utilizing the information gathered to maximize reward. Finding
the right balance between exploration and exploitation is crucial in reinforce-
ment learning, as excessive use of either can result in suboptimal results. To
balance out these two concepts within these algorithms two methods are used:
the formerly mentioned ϵ-greedy policy as well as the optimistic initial val-
ues which is a technique which sets the initial value of all state action pairs to a
high number, encouraging the agent to visit as many states as possible in order
to learn their true value [Sutton and Barto, 2018].

4.1 Monte Carlo
Monte Carlo (MC) methods are a type of reinforcement learning algorithm that
estimate the value of a state or action by averaging the total reward received from
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sample episodes. Unlike some other methods, such as dynamic programming, MC
methods do not require knowledge of the transition probabilities between states
or the reward function. Instead, they learn from experience by directly observing
the outcomes of sample episodes.

During each episode, the agent follows its policy to select actions, receives
rewards from the environment, and transitions to the next state. Once an episode
terminates, the total reward received from that episode is recorded. This total
reward is used to update the value estimates for each state and action that were
encountered during the episode.

There are two types of MC learning: on-policy and off-policy. On-policy
learning means that the agent is using the same behavior policy to collect samples
as it is using to improve the value function. Off-policy learning, on the other hand,
means that the agent is using a different policy to collect samples than the policy
it is using to improve the value function.

One variant of on-policy MC learning is first-visit Monte Carlo. This method
only considers the first time a state is visited in an episode, as opposed to all
visits. The goal of using this method is to reduce variance in the value estimates
and improve learning efficiency [Sutton and Barto, 2018].

To ensure exploration during learning, the ϵ-greedy policy is often used in
conjunction with MC methods. Additionally, setting an initial optimistic value
can encourage the agent to visit more states to learn their true values. While
Monte Carlo methods are guaranteed to converge to an optimal policy with an
infinite number of samples, convergence can be slow and estimates can be noisy
(i.e., have high variance) with a small number of samples.

The pseudocode for the first-visit Monte Carlo can be seen in Algorithm 1
[Sutton and Barto, 2018]1.

To clarify this and future algorithms, here are further explanations to some
of the elements that might be encountered:

• S- The set of all possible states.

• A(s) - The set of actions possible in state s.

• St or At - Specific state or action taken at time step t.

• Rt - The reward received by the agent at time step t.

• G - The actual total return that the agent received from a single episode.
In other words, it is the sum of all the rewards that the agent received from
the start state until the end of the episode.

• Returns(s, a) - A list that stores the observed returns (i.e., sum of rewards)
that are obtained from following the policy and taking action a in state s.
These returns are later used to update the action-value function Q(s, a)
for the state-action pair (s, a). The list is maintained for each state-action
pair to keep track of the returns obtained from that state-action pair across
different episodes.

1Note that all of the pseudocode in this chapter is derived from the Sutton/Barto text.
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• Q(s, a) - The expected cumulative reward an agent would receive if it takes
action a while in state s and follows a certain policy thereafter. It is a
function that maps a state-action pair to a scalar value. The value of
Q(s, a) is updated iteratively as the agent interacts with the environment
and learns from experience.

• π - particular policy the agent is following. Furthermore, π(St, a) represents
the probability of taking action a at state St under a given policy π.

Algorithm 1 On-policy first-visit Monte Carlo
Require: small ϵ > 0

1: Initialize:
2: Q(s, a)← initial optimistic value ∀s ∈ S, a ∈ A(s)
3: Returns(s, a)← initial optimistic value ,∀s ∈ S, a ∈ As
4: repeat
5: Generate an episode following policy π: S0, A0, R1, . . . , ST −1, AT −1, RT

6: G← 0
7: for t = T − 1, T − 2, . . . , 0 do
8: G← γG + Rt+1
9: if (St, At) does not appear in S0, A0, S1, A1, . . . , St−1, At−1 then

10: Append G to Returns(St, At)
11: Q(St, At)← average(Returns(St, At))
12: end if
13: end for
14: until convergence

In Chapter 5 of this work, we will provide a detailed discussion of the specific
Monte Carlo algorithm implementation employed.

4.2 Temporal Difference Learning
Temporal Difference (TD) learning is another type of reinforcement learning al-
gorithm that is, similarly to Monte Carlo, model-free. The main idea behind it is
to update the estimated value of a state or action based on the difference between
the expected return and the actual return obtained from that state or action.

TD learning is similar to Monte Carlo methods in that it learns from expe-
rience by interacting with the environment and observing the rewards received.
However, these methods update their estimates after every time step, rather than
waiting for an entire episode to complete like in MC methods. This makes Tem-
poral Difference learning more efficient in terms of the amount of data needed to
learn a good estimate of the value function.

Like Monte Carlo methods, TD methods can also be on-policy or off-policy. In
on-policy learning, the agent learns about the value of the policy it is currently
following, whereas in off-policy learning, the agent learns about the value of a
different policy.

One important parameter in TD learning is the step size or learning rate
(usually denoted by the symbol α), which determines the size of the update to
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the value estimates. A larger step size will result in faster learning, but may also
make the learning process more unstable.

In this chapter, we shall introduce four distinct TD learning algorithms,
namely SARSA, Q-Learning, Expected SARSA and Double Q-Learning [Sut-
ton and Barto, 2018]. We shall illustrate that while SARSA and Q-Learning
are prominent algorithms for control problems, Expected SARSA and Double Q-
Learning are variations that cater to specific limitations of the original algorithms.
The objective is to highlight both the commonalities and differences among them.

4.2.1 SARSA
SARSA stands for State-Action-Reward-State-Action. With this algorithm, the
agent learns the value of a state-action pair Q(S’,a) by estimating the expected
return over all possible actions from state S’. SARSA is an on-policy algorithm,
meaning it learns the value of state-action pairs while following the same policy
used to select actions. This makes it well-suited for control problems, where the
goal is to find an optimal policy.

Algorithm 2 SARSA
1: Initialize:
2: Q(s, a)← initial optimistic value ∀s ∈ S, a ∈ A(s)
3: repeat
4: Initialize S
5: Choose A from S using policy derived from Q (e.g., ϵ-greedy)
6: repeat
7: Take action A, observe R, S ′

8: Choose A′ from S ′ using policy derived from Q (e.g., ϵ-greedy)
9: Q(S, A)← Q(S, A) + α

[︂
R + γQ(S ′, A′)−Q(S, A)

]︂
10: S ← S ′

11: A← A′

12: until S is terminal
13: until convergence

4.2.2 Q-learning
Q-learning, unlike SARSA, is an off-policy algorithm that learns the value of a
state-action pair Q(s,a) by estimating the maximum expected return over all pos-
sible actions from state s. In other words, it learns the value of the best action
in each state. Since Q-learning is an off-policy algorithm it learns the optimal
action-value function regardless of the current policy being followed. This makes
Q-learning more flexible in terms of exploration and can result in faster conver-
gence to the optimal policy. However, Q-learning tends to overestimate the value
of actions in environments with high variance, which can lead to suboptimal poli-
cies. On the other hand, SARSA is more stable and less prone to overestimating
the value of actions. Nevertheless, it can converge to suboptimal policies if the
exploration is insufficient, and it can take longer to converge to the optimal policy
compared to Q-learning.

23



Algorithm 3 Q-learning
1: Initialize:
2: Q(s, a)← initial optimistic value ∀s ∈ S, a ∈ A(s)
3: repeat
4: Initialize S
5: Choose A from S using policy derived from Q (e.g., ϵ-greedy).
6: repeat
7: Take action A, observe R, S ′

8: Q(S, A)← Q(S, A) + α [R + γ maxa Q(S ′, a)−Q(S, A)]
9: S ← S ′

10: until S is terminal
11: until convergence

4.2.3 Expected SARSA
Expected SARSA is another off-policy TD algorithm that learns the value of
a state-action pair Q(S’,a) by estimating the expected return over all possible
actions from state S’, taking into account the probabilities of selecting each action
according to the current policy. Expected SARSA can be seen as a compromise
between SARSA and Q-learning, as it considers the value of both the current and
the best action in each state. This algorithm considers all possible actions and
their expected values, which makes it more robust to noisy or uncertain rewards.

Algorithm 4 Expected SARSA
1: Initialize:
2: Q(s, a)← initial optimistic value ∀s ∈ S, a ∈ A(s)
3: repeat
4: Initialize S
5: repeat
6: Choose A from S using policy derived from Q (e.g., ϵ-greedy)
7: Take action A, observe R, S ′

8: Q(S, A)← Q(S, A) + α · [R + γ
∑︁

a π(S ′, a)Q(S ′, a)−Q(S, A)]
9: S ← S ′

10: until S is terminal
11: until convergence

4.2.4 Double Q-learning
Double Q-learning is a variant of Q-learning that uses two action-value functions
to estimate the value of each action. The two functions are updated indepen-
dently, and the final action-value estimate is the average of the two estimates. In
Q-Learning, a single estimate of the action values is used to update the policy
and make decisions. This means that when selecting an action in the next state,
we always select the action with the highest estimated value (here we do not
take into account using an ϵ-greedy policy), even if that estimate is not accurate.
This can result in overestimation of the true value of that action, particularly in
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situations where the policy is still exploring the environment. Double Q-Learning
addresses the overestimation issue in Q-Learning which can lead to more accurate
value estimates and better performance in some cases.

Algorithm 5 Double Q-learning
1: Initialize:
2: Q(s, a)← initial optimistic value ∀s ∈ S, a ∈ A(s)
3: repeat
4: Initialize S
5: repeat
6: Choose A from S using policy derived from Q1 + Q2 (e.g., ϵ-greedy)
7: Take action A, observe R, S ′

8: if rand() < 0.5 then
9: A′ ← argmaxaQ1(S ′, a)

10: Q1(S, A)← Q1(S, A) + α[R + γQ2(S ′, A′)−Q1(S, A)]
11: else
12: A′ ← argmaxaQ2(S ′, a)
13: Q2(S, A)← Q2(S, A) + α[R + γQ1(S ′, A′)−Q2(S, A)]
14: end if
15: S ← S ′

16: until S is terminal
17: until convergence
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5. Implementation of the Agents
In this project, the reinforcement learning (RL) agents agents are designed such
that their functionality is encapsulated within a top-level scene called Main.tscn.
Within this scene, there is an instance of the selected agent, and the code makes
use of several functions implemented by the agent in order to interact with
the environment. Specifically, the required functions include: move(), init(),
start game(), end game(), save().

The purpose of most of these functions is self-explanatory. init() and save()
are used to initialize and save the agent’s internal state, respectively, and are
called only once per experiment. start game() and end game() are called at
the beginning and end of each episode, while move() is called by the Tunnels.gd
script, and it is in this function that the agent makes a decision about which
action to take based on the current state and score.

5.1 Hierarchy

Figure 5.1: Agents hierarchy inside the project

In the current design of the game, there are a total of 8 agents implemented, 5
of which utilize some form of reinforcement learning algorithm. These RL agents
share a common superclass called LearningAgent, while 3 of them are further
subclasses under the TDAgent class (see Figure 5.1). As previously discussed, the
RL algorithms can be broadly divided into two categories: Monte Carlo methods
and temporal difference (TD) learning. The TD algorithms differ only in their
update function, and so it was deemed appropriate to group them under the same
superclass. However, the Double Q-Learning agent, which uses separate policies
and requires additional modifications, was implemented as a separate subclass of
the LearningAgent. The implementation details of these agents will be further
elaborated upon in the subsequent sections.

As previously mentioned when describing the state in Section 3.1, the agent
has the ability to perform movements in various directions, including moving
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right, forward, or left, and each of these movements can be performed in com-
bination with shooting. Therefore, on each time step, the move function of the
agent returns a list of two elements: the first element signifies the movement di-
rection, where a value of -1 represents left, 0 represents forward, and 1 represents
right; while the second element determines whether the agent will shoot or not,
with a value of 1 indicating yes and 0 indicating no for shooting.

5.2 Simple Agents
To facilitate testing of the game environment, several simple agents were imple-
mented. These agents serve as baseline models and were used to ensure that the
environment was functioning as intended before more sophisticated RL agents
were developed. There are three simple agents in total: a “Keyboard agent”
that receives input from the player via the keyboard, a “Static agent” that al-
ways chooses the forward action without shooting, and a “Random agent” that
chooses a random action at each time step.

5.3 Learning Agent
This class serves as a base class for all the reinforcement learning agents in this
project. It provides a set of shared functions and features that are used by all
agents, such as reading and writing data to a file and debugging statements.
In terms of decision-making, these agents all follow an ϵ-greedy policy, whereby
they select the action with the highest value for a given state with a certain
probability, or randomly choose any action with the remaining probability. Each
of the subclasses of the LearningAgent class then implements specific code that
is unique to that particular agent.

func choose_action ( action ):
epsilon_action = false
if not is_eval_game : # Used for continuous evaluation

epsilon_action = rand. randf_range (0 ,1) < EPSILON
if epsilon_action :

action = ACTIONS [rand. randi_range (0, len( ACTIONS ) - 1)]
return action

5.3.1 Common parameters and behaviours
In regards to the present implementation of the reinforcement learning algorithms
for the 3D tunnel game, certain aspects of the game learning step and parameter
implementation are unique to this project and merit discussion. For instance, we
should look into the learning step in the game. The agent will not request a new
move until the state has changed, despite the fact that it may seem more natural
for a new decision to be made on every game tick. This has the effect of reducing
the number of decisions that the agent must make in a given episode, but also
results in intriguing policy behaviours that are elaborated upon in Chapter 7.
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Furthermore, there are several parameters that are common to all learning
agents, some of which were briefly discussed in the preceding chapter. In this
section, we will examine in more detail how these parameters were integrated into
this particular project. The initial optimistic value parameter is the simplest one
to explain, as it is implemented in a straightforward manner. In particular, each
time a state-action pair is added to the policy, its value is set to a predetermined
number. This number (initOptVal), along with the other agent’s sub-options
parameters mentioned subsequently in this subsection, are specified through the
command line (see 3.2).

The following two parameters worth noting are eps and epsFinal, which
are responsible for the random moves executed by the ϵ-greedy policy. These
parameters allow the user to specify the starting and ending values of ϵ. Then,
at the end of each game, the new ϵ value is calculated by multiplying the current
ϵ value with the decrease which is computed as follows1:

decrease = (epsF inal

eps
) 1.0

n

Here, n represents the number of games being played. The reason behind
this epsilon decrease is to change the ratio between exploration and exploitation
over time. At the beginning of the experiment, the eps value is higher, and thus
random moves happen more often, causing the agent to try actions it would oth-
erwise oversee. Later, when the policy is a bit stabilized, the eps value becomes
smaller so it would allow the agent to play longer games and possibly win (if
the eps value was high throughout the whole experiment, the agent would have
a bigger chance of choosing an inadequate move and thus untimely ending the
game).

Finally, it is pertinent to discuss the discounting value γ (defined by gam). In
this project, discounting is used in the following manner:

γnext step.time−curr step.time

In many reinforcement learning environments, all learning steps have the same
duration, so each reward is discounted by γn, where n is the number of steps that
elapsed between the time when an action was taken and the time when the reward
was received. And so in a typical implementation that iterates over the steps in
an episode, the accumulated discount rate is multiplied by γ in each iteration.
However, as previously stated, learning steps in this implementation do not occur
on every tick, but instead occur when the state changes. As a result, they may
vary in size. To avoid uneven discounting, the time (in milliseconds) is calculated
for each new decision made by the agent using this formula:

(game.num of ticks ∗ 33)/1000.0

5.3.2 Monte Carlo Agent
The Monte Carlo method is a type of reinforcement learning algorithm that up-
dates its policy only after an episode is completed. This is done by iterating

1This computation is performed once, when initializing the agent.
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through the entire episode, going from the last step towards the first, and in-
creasing the number of visits and total return for each state-action pair, if this is
their first visit inside this episode. The total return is calculated using the for-
mula shown in the code above, while the number of visits is simply incremented
by 1. To determine the optimal action, the agent compares the ratio of total
return to number of visits for each possible action at a given state2. This calcula-
tion is performed at each state transition during the episode. To clarify, instead
of calculating a new move each time the move() function is called, the agents
will always choose the same action based on the current state. Only once the
state has changed, the new action is chosen based on the accumulated score and
the new state. This implementation has resulted in a certain behaviour of the
agents which will be more discussed in Section 7.7. As previously mentioned, the
γ constant in the equation shown in the code serves as a discount factor, meaning
that the last move made, which resulted in termination of the game, will receive
the highest penalty. As we move further down the list of moves, their significance
decreases. It is important to note that if the value of γ is set to 1, all moves are
given equal weight.

# MonteCarlo agent update
var R = ( next_step .score - curr_step .score)
G = pow(GAMMA , next_step .time - curr_step .time) * (R + G)

# since we are using the first visit approach ,
# we only need the first occurrence of this state_action
if is_first_occurrence (...):

total_return [ curr_step . state_action ] += G
visits [ curr_step . state_action ] += 1

5.3.3 TD Agent
Unlike the Monte Carlo methods, which update their policies only after the com-
pletion of an episode, TD agents update their policies in real time, after each
action is taken. To accomplish this, all TD agents have a shared function called
move(), which calls the function displayed in the code provided below.

# TD agents update
visits [ last_state_action ] += 1
var alpha = 1.0 / visits [ last_state_action ]
var new_state_val = 0 if terminal else new_state_action
var new_gamma = pow(GAMMA , curr_time - prev_time )
q[ last_state_action ] += alpha * ( new_gamma * (R + new_state_val )

- q[ last_state_action ])

2The pseudocode in Algorithm 1 keeps a list of all returns for each state/action pair, while in
our implementation a return for a particular state/action pair is calculated with the mentioned
ratio.
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The update of the policy for a specific state value in TD learning involves
multiple variables, most of which have been previously discussed. One new vari-
able is α, which represents one devided by the total number of visits for a given
state action pair. Furthermore, to make this calculation, a variable uniquely com-
puted by each TD algorithm, known as new state action, is required. Various
methods for computing this variable can be found in the code-snippets below. If
the current state is a terminal state, the new state action will not be used and
instead, it will be replaced with a value of 0, as indicated in the update code.

# SARSA agent new_state_action variable calculation
func get_update (state , new_action , _best_action ):

return q[ get_state_action (state , new_action )]

# QLearning agent new_state_action variable calculation
func get_update (state , _new_action , best_action ):

return q[ get_state_action (state , best_action )]

# ExpectedSARSA agent new_state_action variable calculation
func get_update (state , _new_action , best_action ):

var sum = 0.0
# Calculate and return the expected value
for action in ACTIONS :

var probability = EPSILON / len( ACTIONS )
if action == best_action :

probability += 1 - EPSILON
sum += probability * Q(state , action )

return sum

In SARSA, the new state val is calculated based on the value of the next
action the agent will take, denoted as new action. On the other hand, Q-
learning uses the value of the best action possible in the next state, denoted
as best action. These two variables are equal if a greedy policy is implemented.
However if we consider a ϵ-greedy policy, then they might differ based on whether
a random action has been chosen. Expected SARSA combines these two ap-
proaches by taking the expected value of all possible actions in the next state.

Similar to the agents in the TD class, the update for the Double Q-Learning
agent occurs each time the agent changes its state. The update process is slightly
different. In this method, two separate action-value functions, denoted as q1
and q2, are used to estimate the maximum action value for a given state. At
each update step, one of the Q-values is selected randomly and updated using
the other one as a reference. This process helps to reduce the overestimation of
action values and leads to more stable learning.
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# DoubleQLearning agent update
visits [ last_state_action ] += 1
var alpha = 1.0 / visits [ last_state_action ]
var new_gamma = pow(GAMMA , curr_time - prev_time )

if rand. randf_range (0 ,1) < 0.5:
var new_state_val = 0 if terminal else

q2[ get_state_action (state ,. best_action (state ,q))]
q[ last_state_action ] += alpha * ( new_gamma * (R +

new_state_val ) -q[ last_state_action ])
else:

var new_state_val = 0 if terminal else
q[ get_state_action (state ,. best_action (state ,q2))]

q2[ last_state_action ] += alpha * ( new_gamma * (R +
new_state_val ) -q2[ last_state_action ])
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6. Testing and Plotting
In this chapter we want to explain how the experiments were conducted and
how to interpret the plots what will be used to showcase the results of those
experiments in Chapter 7. We also want to show how to use the testing and
plotting systems implemented as part of this project.

6.1 Conducting the experiments
The process of conducting experiments encountered several challenges and fluctu-
ations. the primary concern was to determine the minimum number of rotations
(rots) and distances (dists) required to make learning feasible for each obsta-
cle type. After experimenting with up to 30 rotations in some cases, and not
getting satisfying results with seemingly any combination of other parameters,
it was determined that the game’s difficulty in later levels was the root of the
problem, as it was impossible to play with some environments(confirmed by hu-
man players). Consequently, the game had to be adjusted and thus, there are
slight variations in parameters, such as the starting speed and distances between
obstacles, in the version of the Space-Run game used in this thesis, as compared
to the original. As per a human player’s assessment, it is now possible to play all
environment combinations until level 15 or even beyond. It is noteworthy that
level 10 was the initial choice for the winning level, which was later shifted to
level 15 to prevent the agent from settling for a mediocre policy and to find the
optimal policy. However, this shift did not yield significant results, and the same
behaviour could likely be achieved by increasing the number of games, allowing
the ϵ-greedy policy to perform random moves more frequently for an extended
period. Despite this, level 15 was used in all subsequent experiments.

Figure 6.1: rots values used for each obstacle type

However, for obstacles such as Walls and Balls, this method was not viable.
The reason being that running env=Balls or env=Walls with visuals caused the
game to lag significantly due to the number of animations playing simultaneously.
As a result, Walls received the same number of rotations as Hex trap, while Balls
received 15 rotations, the number at which the agent managed to learn. For
bug, virus, and token obstacles, the default and minimum value of 6 rotations
was assigned, with which they all trained successfully. Concerning the dists
parameter, it was concluded during the experiments that all agents could learn
any obstacle with dists=1, and increasing this number needlessly would only
increase the number of states required for training.
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After addressing the the issue of game not being playable, the most straight-
forward method for identifying the number of rotations required was to play the
game manually with decreased speed. The results obtained from these experi-
ments are displayed in Figure 6.1 and were used in all experiments conducted.
However, this method was not viable for obstacles such as Walls and Balls due
to game lag. Thus, we assigned the same number of rotations to Walls as to
the Hex trap, and to Balls, we assigned 15 rotations, the number at which
the agent learned. Bug, virus, and token obstacles were assigned a default and
minimum value of 6 rotations, which proved to be sufficient for successful train-
ing. During experiments, it was observed that all agents could learn any obstacle
with dists=1, and increasing this parameter needlessly increased the number of
required states.

The remaining values to be determined for the experiments were the sub-
options for each agent (see 3.2.1). Even thought some of the experiments were
omitted from this study, they provided useful insights that could be utilized. For
instance, in many of those experiments, the agent performed best with eps values
ranging from 0.2 to 0.4, with 0.2 being the most common, in combination with
an epsFinal value of 0.0001. The rationale for using a low epsFinal value is
that towards the end, the agent almost exclusively exploits the current policy,
and a more gradual decrease in epsilon values is suitable for larger values of n.
Furthermore, initOptVal of 20.0 and 100.0 was promising in most experiments.
The gam value will be discussed in a later subsection.

Throughout the months dedicated to conducting experiments, they gradually
converged towards checking combinations of the values mentioned above. Due
to their length, the experiments and the number of parameters requiring adjust-
ment, were kept systematic towards the end. Unless specified otherwise, each
combination was tested on ten seeds for each agent, with the combinations con-
sisting of eps parameter taking a value of either 0.2 or 0.4, and the initOptVal
being either 20.0 or 100.0. Discounting was kept at the value of 1.0 (see Section
7.7) and epsFinal was 0.0001.

Finally, it should mentioned how we shoose the number of games for an ex-
periment. The general practice was to choose n 10 to 15 times greater than
the number of obstacles the environment used for a particular experiment. This
approach was found to be sufficient for facilitating the training of the agents.
However, when incorporating the shooting actions, it was deemed appropriate to
increase the value of n by approximately 25%. Although this increase appeared
reasonable, there was no specific rationale behind it.

6.2 Interpreting the plots
In Chapter 7, a number of plots similar to the one shown in Figure 6.2 will be
presented. This section has been dedicated to explaining the different components
of these plots and how to read them. While some plots may differ slightly from
the one in Figure 6.2, the meaning behind them can still be easily deduced.

The top part of the figure displays all the necessary information that was
used in the experiment. Most of the values have been previously described,
except for “Previous games”. This value is meant for experiments that used
the database=read option and were performed on an agent that had trained for
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Figure 6.2: Plot example

some number of games. This number specifies the how many of games the agent
had previously trained on.

Moving further down, there is a plot with three lines and a legend in the top
right corner. The data line, as indicated on the figure, represents the score that
the agent achieved on a particular episode. However, some plots may show the
average value of the agent’s score for each episode over several different seeds used
for the random actions. Additionally, there may be multiple data lines on the
plot, each averaged between many seeds and each representing a different agent.
Every agent is labelled with their respective color inside the legend.

The mean line represents the average score value for the entire experiment,
while the winning score represents the winning threshold which is the score that
the agent achieves after passing level 15. This score will be constant (a little
over 500), except in the cases where the environments contains any of the bugs
and viruses and the agent is allowed to shoot. The winning score then depends
on how many of those obstacles the agent successfully shoots. In this case the
line will show the winning score of the last game in which the agent won. It
should be noted that if the agent did not win any games, or the plot is displaying
multiple agents, the winning score line will be omitted. Furthermore, the data
line is averaged to appear smoother. This is why even though the winning rate is
62/150 in this sample plot, the data line doesn’t touch the winning score threshold
at any point.

As mentioned in Section 3.2, it is possible to perform continuous evaluation on
experiments, meaning one learning game is played with random actions, followed
immediately by an evaluation game using only the current policy that the agent
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is performing. In all experiments conducted, the data line only represents the
evaluation games.

At the very bottom of the figure, there is a table which only appears in plots
that contain a single data line that is not averaged over different seeds and has
only one seed value. In the table, all rotation values for this experiment define
the columns, while each row has a tuple of distance value and type of the next
obstacle ahead. Each cell then represents a particular discrete state, and the
arrow it shows is the action that the agent takes in that state. If the arrow has
* attached to it, it means that the agent will also shoot. Since all experiments
are performed with dists=1, the number of rows will match only the number of
different obstacles used in the experiment.

It should be emphasized that parameters such as the number of seeds in the
averaged data line or the size of the smoothing window will be clearly specified
for each plot mentioned in the rest of the chapter. This prevents any form of
ambiguity or confusion regarding the details of the experiment.

6.3 Testing and plotting systems usage
To produce the experiments and plots for this study, two scripts were written - one
for conducting tests and the other for creating plots. In this chapter, we provide
a brief overview of how to use these scripts in case readers wish to replicate our
experiments. Both scripts have an additional .txt file describing the process in
more detail. Additionally, both of these systems produce a folder containing log
files so that the user might see more closely what was happening during the run
of either of the programs.

6.3.1 Testing
The ./test.py script is designed to facilitate the running of multiple experiments
at once, eliminating the need for users to manually run each experiment through
the command line.

There are two types of variables: immutable and mutable. Immutable vari-
ables remain constant throughout all experiments, while mutable variables can
be specified as a range of values. For each combination of mutable variables, the
agent will run an experiment.

Immutable variables include n, stoppingPoint, shooting, env, agent,
m, level, database, ceval, and debug, which are defined in Section 3.2. The
variable m represents a range of agentsSeed values, with the default value of
m=[0,9] (inclusive).

Mutable variables include sub-options for each agent, which are specified in
the following format: [min,max(not inclusive),step].

Additionally, there are top-level experiment options such as all traps,
all bugs, and all viruses, which run experiments for each individual trap,
bug, or virus, respectively. There is also the option of all agents, which runs
experiments with each learning agent, and all shooting, which runs experiments
with both shooting on and off. These options overwrite equivalent immutable
variables for env, agent, and shooting.
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Note that the values for rots and dists for each env are hardcoded and
cannot be changed.

Example usages are provided in the following code excerpts.

# print description options
$ python ./ test.py --description

# for 10 seeds run 100 full games with MonteCarlo agent
# perform continuous evaluation and write the output to the

database
$ python ./ test.py

# for each agent 5 times run 50 games on the environment with X
trap

$ python ./ test.py --m=[0 ,4] --n=50 --all_agents --env =[X]

# for 10 different seed values run 800 games for all combinations
of:

# each of the DoubleQLearning and SARSA agents ,
# on the Bugs environment with epsilon value 0.2
# and each of the initOpt values 20.0 and 100.0
$ python ./ test.py --n=800 --agent =[ DoubleQLearning ,SARSA] --env

=[ Bugs] --eps =[0.2 ,0.3 ,0.1] --initOptVal =[20.0 ,180.0 ,80.0]

6.3.2 Plotting
The plots.py script utilizes the files generated in the Command outputs folder
to plot the outcomes of the experiments. The folder and its contents are au-
tomatically produced when the write option of the database is enabled. These
files contain scores for each game in a single experiment, the resulting policy, and
other relevant information that are displayed on the plots as described in Section
6.2 of this chapter.

Compared to the testing script, this system is much simpler as it only in-
volves 2 parameters. The first parameter, window, has a default value of 10 and
determines the number of neighboring points that will be averaged to produce
smoother plots.

The second parameter is option whose value can be either 1 or 2. Option
1 generates 1 plot for each file in the Command outputs folder, while option 2
combines multiple files. In this case, for each distinct environment presented
in the files, a single plot is created, with a data line for each agent averaged
over multiple seeds. The number of seed values included and which agents are
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displayed depend solely on the accuracy of the files in the Command outputs
folder.

Example usage is depicted in the command below.

$ python ./ plot.py --option =2 window =100
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7. Experiments
In this chapter, we will evaluate the performance of the various agents when con-
fronted with different combinations of obstacles, as well as presenting interesting
observations made during the experiments. One of the key questions we aim to
answer is whether any of the agents are capable of learning to play the entire
game.

7.1 Individual traps environments
This section discusses the performance of agents in environments containing only
a single type of trap, and no other obstacles such as bugs or viruses.

Figure 7.1: Performance of all agents in single-trap environments

In Figure 7.1, for each type of trap, there is a plot with eps=0.2 and
initOptVal=20 and how each agent performed in an environment containing only
that trap type1. These values were picked because with most traps the agents

1For the purpose of having all of these plots in one figure, they were manually modified.
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performed well under these conditions.
It should be noted that all plots within this section have smoothing applied

with window=10. Thus certain spikes may not be visible. Additionally, unless
otherwise suggested, you can assume that the values that were produced are an
average of 5 different seeds. The aim is to show a realistic picture on how the
agent would perform, and not show the occurrences in which the outcome was
satisfactory but rather account for the failures in reproducing the perfect policy
as well.

In some cases, of course, the hyperparameters used in the experiments in
Figure 7.1 were not ideal. However, for most trap/agent pairs, we managed to find
at least one combination of hyperparameters where the agent found an optimal or
a policy that won some games but not consecutively, across multiple seeds. The
only exceptions were the MonteCarlo agent with the Hex trap, DoubleQLearning
with the HexO, Triangles, and X traps, and SARSA and QLearning with the HexO
trap. ExpectedSARSA was the only agent that produced a good policy on multiple
occasions for all individual trap types and even performed exceptionally well with
certain hyperparameters for the Hex, I, MovingI, O, and Walls traps, in which
cases it found an optimal policy across multiple seed values.

Figure 7.2: Balls trap experiments

Choices of the hyperparameters are a very important factor. Most exper-
iments described in this section used the hyperparameter values eps=0.2 and
initOptVal=20.0 or initOptVal=100.0. A good example of how much hyper-
parameters can influence the outcome is visible in Figure 7.2. Performance in the
Balls trap environment varies significantly based on the initial optimistic value
used. This plot underscores the importance of carefully selecting hyperparameters
for reinforcement learning.

In some cases the aforementioned variations in hyperparameter selection lead
to highly desirable outcomes. This is exemplified by the results presented in
Figures 7.3 and 7.4, which demonstrate the efficacy of the ExpectedSARSA agent.
Notably, on the right hand side of the both plots, the ExpectedSARSA agent was
able to achieve optimal performance early on in the game with all seed values. The
ExpectedSARSA agent, in a very large number of experiments, has outperformed
its counterparts, sometimes by a significant amount. This is particularly evident

However, the calculations are still the same as described in the previous chapter.
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Figure 7.3: I trap experiments

Figure 7.4: MovingI trap experiments

when considering its performance in simpler environments such as traps I and
MovingI, where it is apparent that the agent is capable of learning extremely
well. While other agents have performed well on these specific traps as well, their
success may not be immediately apparent from the averaged results depicted in
the plots.

Although performing these experiments with a larger number of seeds would
ideally yield even more accurate results, we hope that the picture we presented
provides a reasonable representation of the agents’ performance in the demon-
strated environments.

7.2 Traps environment
This section delves into the exploration of a highly intricate environment of all
traps combined, which is the most complex one barring the full game. To clarify,
the Traps environment contains all 10 trap types mentioned in the previous sec-
tion, and omits any bugs, virus or token type of obstacles. As depicted in Figure
7.5, the majority of agents were unable to perform optimally in this environment.
ExpectedSARSA was the only agent able to learn an optimal policy for almost
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Figure 7.5: All traps experiments

all random seeds tested, as evidenced by its score nearing 500 in the right plot2,
which was the approximate winning score value in all experiments. Moreover,
ExpectedSARSA not only managed to learn an optimal policy once but did so
with different hyperparameters and seed values on multiple occasions, leading
to winning streaks of 30 games and early termination of the experiment. This
outcome is the most favourable for any environment. The figure displays the
averaged value of 9 seeds for all agents under the specified parameters.

The experiments conducted for this environment were systematic and involved
matching commonly used eps and initOptVal to test if the agents could learn.
In these experiments, the difference in learning between the ExpectedSARSA agent
and the others is even more pronounced. However, on the left plot visible in Fig-
ure 7.5, where eps=0.4 and initOptVal=20, the MonteCarlo agent performed
reasonably well, attaining an average score of approximately 100, which is sub-
stantially superior to the other agents, except for ExpectedSARSA.

When training in the all-traps environment we set the rots parameter to 22.
That’s because this environment contains the Hex and Walls traps, which require
a minimum of 22 rotations for learning to be feasible at all. This means that our
experiments in this environment had many more states than in any single-trap
environment. Considering that in this case we have 10 different trap types, there
are 220 states with Traps environment. For that reason we picked n=2500 for
all of the experiments in this section. That’s because in our experiments we’ve
generally found that learning is most successful when the number of episodes is
at least 10 times the number of states. As a result of having this many rots
values, with some simpler traps, there can be many safe rotations that the agent
can choose from. For that reason, going forward could be viable in multiple
adjacent states, when the next trap ahead requires for example rots=6 when
trained individually.

The table in Figure 7.6 provides a comparison of policies from three different
experiments, each reproduced with only one seed value, that yielded a policy that
managed to win enough times to have an average score between 100 and 200 or
more. The purpose is to see how far off the agents were from an optimal policy.
The blue rows represent the ExpectedSARSA agent, in an experiment performed

2The plots for this environment have been smoothed with window=100.
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Figure 7.6: All traps with ExpectedSARSA, MonteCarlo and QLearning agents

with eps=0.2 and initOptVal=100. The agent stopped an experiment early, af-
ter 437 games with initial number of games (n) being 2500. Considering it won
30 games in a row, each one lasting 15 levels, we can assume that the learned
policy is optimal for this environment. The red rows represent the MonteCarlo
agent, which performed reasonably well with eps=0.2 and initOptVal=20, win-
ning 282/2500 games, but the experiment did not terminate early, suggesting a
suboptimal policy. The pink rows represent the QLearning agent, which won
142/2500 games with eps=0.4 and initOptVal=20. It should be noted that the
combination of a seed value and hyperparameters that yielded the best results
were picked for the MonteCarlo and QLearning agents, and in other cases, they
won fewer or no games under this environment. Lastly it should be noted that,
SARSA and DoubleQLearning performed poorly, with average scores in all exper-
iments under all hyperparameter combinations, being not more than 20.

Multiple instances in the data show the phenomenon discussed in Section
7.7 of this chapter. For instance, upon closer examination of rotation values
54 and 71 in the rows pertaining to the Balls trap, it becomes evident that
the ExpectedSARSA agent opted to alternate between those two rotation types,
whereas the other two agents, Monte Carlo and QLearning, chose to proceed
using only one or both of the rotations. This trend can be observed in several
other cases within the data, and it is highly probable that, with so many rotation
options available, any of the three methods would lead to the agent safely passing
the trap. Nevertheless, it is a fact that ExpectedSARSA learned a better policy
than MonteCarlo and QLearning. However, for certain traps, all or at least two
of the agents had satisfactory policies (such as the Hex trap), whereas for others,
MonteCarlo and/or QLearning were observed taking actions that could not be
deemed optimal when compared to the ExpectedSARSA agent. An example of
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such an instance can be found in rotation values 275 and 292 with trap X, where
the QLearning agent attempted to switch between the two rotations to pass, while
both ExpectedSARSA and MonteCarlo avoided it, suggesting that remaining in
that rotation was not safe and that the agent should try to move to another
rotation in a timely manner.

7.3 Tokens environment

Figure 7.7: Tokens experiment

The Tokens environment is characterized by its simplicity, as it lacks obstacles
that pose a lethal threat to the agent. The agent’s task is to collect tokens at
regular intervals to prevent its battery from draining completely. The number
of rotations needed in this environment is six, making it relatively easy to train.
Figure 7.7 illustrates that the average performance of all agents is commendable,
even when n=203. In subsequent sections, we will delve into more intriguing
findings when tokens are incorporated into a larger environment, and explore
their impact on the behaviour of the agents.

7.4 Individual Bugs and Viruses environments
This section depicts individual performance of bug and virus type obstacles. They
include three (Worm, LadybugWalking, LadybugFlying) and two
(Bacteriophage, Rotavirus) obstacles, respectively, and are different from en-
vironments that consist solely of traps. One key difference is that the agent can
also use its ability to shoot in Bugs and Viruses environments. This means that,
for the first time in this chapter, our agents have 6 actions to choose from, and
we aim to analyse how this affects their behaviour.

We begin by showcasing the performance of all agents in environments con-
taining only a single type of bug or virus. For this purpose, we have evaluated
their performance on 50 games, each with eps=0.2 and initialOptVal=100.0.

3Note that no smoothing was applied to this plot.
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Figure 7.8: LadybugFlying, LadybugWalking and Worm environments experi-
ments

We chose these parameters as they resulted in the best overall performance of the
agents. The plots presenting all agents in this section are an average of five differ-
ent seeds, and each plot has been smoothed with a window=10. The left-hand side
of both figures displays the agents’ performance when shooting was not enabled,
whereas the right-hand side depicts the scores when the agents could shoot.

The category of obstacles referred to as bugs in the game environment behaves
differently from viruses or traps. This is due to the fact that Hans only loses
energy upon contact with any of the bug type obstacles, and only when the
battery life is depleted to 0% does the game terminate, or when the game is won.
The performance of some agents in this environment is lower than in others, as
illustrated in Figure 7.8. However, the MonteCarlo agent consistently performs
well, particularly with the LadybugWalking obstacle. Conversely, the QLearning
agent appears to perform poorly in this environment, suggesting that it may not
be the most suitable method for these seemingly inconsistent bug obstacles. As
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Figure 7.9: LadybugWalking with MonteCarlo agent experiments

battery life is not part of the state value, the ideal behaviour for the agent would
be to either always shoot (if permitted) or always avoid the these obstacles. This
behaviour is precisely what is observed in Figure 7.9, where the MonteCarlo agent
does not shoot at all in the left plot (suggesting that its avoiding the obstacles),
while in the right one, it shoots in almost all actions. Although the left plot may
not have achieved an optimal policy, it has derived one that allows the agent to
win at least 50% of the time.

Figure 7.10: Bacteriophage and Rotavirus environments experiments

Figure 7.10 displays the performance of the agents for each virus type obstacle.
Notably, ExpectedSARSA exhibited a high level of performance in both cases
where shooting was not enabled. However, in the case of Rotavirus when the
shooting was involved, it performed the worst out of all the agents. It is possible
that the agent was confused by the Rotavirus behaviour, since when Hans hits
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a Rotavirus for the first time, he becomes sick, and if it is hit again during his
sick period, it results in his death. In contrast, the behaviour of Bacteriophage
is more akin to the traps, as it kills Hans on the spot upon contact.

Figure 7.11: Rotavirus environment with DoubleQLearning agent experiments

To diverge a little from the performance of the agents all together, let’s take
a look at Figure 7.11 which shows two instances of the DoubleQLearning agent
with the Rotavirus obstacle and shooting=enabled. Each plot used only one
seed value and the smoothing was not applied. In both of the cases in this figure,
the agent learned an optimal policy and thus terminated the game early. How-
ever, for the left plot, even though there are some actions in which the agent
chooses to shoot, it doesn’t actually shoot down any obstacles. This is evident by
the fact that the winning score is only around 500, which is the minimum win-
ning score achieved after 15 levels. This might explain why in these conditions,
the DoubleQLearning agent did not perform as well as some of the others in the
overall performance analysis (Figure 7.10). On the other hand, the right plot
shows a policy in which that the agent learned to shoot down the Rotavirus ob-
stacles and achieved a much higher winning score, demonstrating the importance
of properly utilizing the shooting action when it is enabled.

7.5 Bugs and Viruses environments
The current section compares the performance of agents in the full Bugs or
Viruses environments and their combination with Tokens when run with the
same hyperparameters. Plots that display the performance of all agents in this
section are averaged over 10 seeds and smoothed with window=100. In Figure
7.12 we see the average performance of the agents when shooting is not allowed.
Similar to the traps environment, the ExpectedSARSA agent exhibited the best
performance. On the other hand, when faced with the full Bugs environment,
QLearning agent showed similar behaviour to that seen on individual bugs ob-
stacles and performed worse than the other agents.

Figure 7.13 shows plots where shooting actions are available to the agent.
Here, the MonteCarlo agent had the best performance in all four cases. An inter-
esting result is that when faced with env=[Bugs,Tokens], this agent performed
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Figure 7.12: Bugs and Viruses environments experiments

Figure 7.13: Bugs, Viruses and their combination with Tokens experiments

better than in the only Bugs environment, while with env=[Viruses,Tokens],
it performed worse than with Viruses alone. Considering how running into a
bug influences Hans, adding Tokens to the Bugs environment was beneficial as
long as the tokens were picked up when possible and the agent was conservative
with shooting. In contrast, in the environment containing both Viruses and
Tokens, the agent could still easily lose if Hans ran into Bacteriophage once or
Rotavirus twice in a row. When having unlimited shooting in the Viruses en-
vironment alone, all agents performed much better than when Tokens were part
of it as well.

Overall, in environments that include Tokens, the ratio of shooting and no
shooting actions was approximately even.

In Figure 7.14, the performance of MonteCarlo agent shown environments is
displayed for specific hyperparameters and with the same seed value (smoothing
window value is 100). For each environment, two plots were created, one where
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Figure 7.14: Bugs and Viruses with and without shooting comparison

the agent is allowed to shoot and another where shooting is disabled. The two
plots depicting Bugs exhibit noticeable differences, as the agent found an optimal
policy when shooting was not available. With shooting enabled, even though the
direction of the agent’s movement for each state is quite similar to the ones in the
first plot, it failed to win any games. In contrast, with the Viruses environment,
the agent’s movement is almost identical in both cases, and the plot shows that
the agent performed similarly well, with the right plot showing an average and
winning scores approximately 10 times higher than on the left, as a consequence
of the ability to shoot and due to that gain higher scores.

7.6 Full game environment
In this section, we explore the performance of the agents in the most challenging
environment, the full game. The results of these experiments are not surprising,
given the complexity of the environment. In the figures presented in this section,
we averaged the results of 10 seeds, and each plot was smoothed with a window of
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100. The plots on the left side show the performance of the agents in the environ-
ment where shooting is disabled, while the right side ones show the environment
where shooting is enabled. The right side was trained on 2000 more games than
the left one considering that the number of actions possible increased.

Figure 7.15: Full game experiment

Looking at Figure 7.15, we can see that in the environment without shooting,
ExpectedSARSA performed the best, as expected. The scores of MonteCarlo and
QLearning agents were not too bad, considering the complexity of the environ-
ment and the fact that QLearning agent underperformed in the Bugs environ-
ment. On the right plot, ExpectedSARSA is still in the lead compared to the other
agents. However, considering that the agents were allowed to shoot in this case,
the scores did not improve significantly.

Figure 7.16: Catastrophic forgetting experiment

In Figure 7.16 we can observe an occurrence that has not been discussed before
but is present throughout our experiments, namely the concept of catastrophic
forgetting, Stuart and Peter [2010]. As the name suggests, this is the notion that
the agent learns a good policy and due to further exploration of the environment,
the policy changes to something suboptimal. Ideally, the agent would come back
to the previous policy, but more often than not, this is not the case. In the plot
on the right, we can see that this is exactly what happened to the ExpectedSARSA
agent during this experiment. The policy it learned in the first couple of thousand
games was far from optimal, but it achieved a better score than the policies used
after the sudden drop at approximately 2500 games.

The highly anticipated encounter detailed in Figure 7.17 showcases a note-
worthy outcome, as it portrays the ExpectedSARSA agent learning to play a full
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Figure 7.17: Full game with ExpectedSARSA experiment

game by discovering an optimal policy under specific parameter settings and only
one seed value. It is important to highlight that this experiment was conducted
while the winning level was 10 and not 15, thus the winning score is lower than
in the other examples shown in this chapter. As part of the figure we can see
the policy the agent acquired. This example serves as an illustration of how re-
inforcement learning agents are capable of learning to play this game when given
the right conditions. However, it is important to note that this was a singular
occurrence, and no similar outcomes were observed when shooting actions were
introduced to the experiments. It is reasonable to conclude that while it may
not be impossible for the agent to learn such a policy again, it may necessitate
obtaining a fortuitous seed value.

7.7 Interesting behaviours
In this chapter, we aim to discuss certain unexpected findings that surfaced during
our experimentation. One of the immediate observations can be seen in Figure
7.184. We conducted experiments on two distinct environments, env=[I] and

4No smoothing was applied to any of the plots in this subsection.

50



Figure 7.18: Discounting example

env=[X], and for each environment, we carried out experiments with discount
rates of gam=0.85 and gam=1.0 for all agents. As evident from the plots, the
lower gamma value exhibited considerably poorer performance than when no
discounting (gam=1.0) was applied. This trend is not limited to these specific
environments and testing conditions but rather observed consistently across all
our experimentation. This result is counterintuitive since it seems logical that
penalizing the last action more than previous ones would result in a better policy.

Figure 7.19: Discounting explanation

Upon further investigation, we discovered that in some cases, a lost game
for the agent does not result from the last action directly but rather from a
chain reaction initiated by a previous bad decision. As seen in Figure 7.19, the
agent’s last action of going right at rotation 360 to reach a safe one, 60, is
not a poor decision in itself but rather the best possible action in that state5.
However, analysing the last four actions taken by the agent, it becomes clear

5As confirmed by a human player, rotation 60 is safe for trap type I.
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that it attempted to reach rotation 60 by going right from the rotation 180.
With a high score of 451.7 (Figure 7.18), the agent undeniably had high speed
value, making it move forward very quickly, and while this policy may have been
effective in the early game before the agent attained its current speed6, there is
simply not enough time for the agent to rotate at this point in the game. In this
case, one could argue that the fourth action from the last was responsible for the
agent’s loss. For cases like this, we believe that the agent performs better when
all actions are penalized equally, i.e. when gam=1.0.

Figure 7.20: Triangles example

Another intriguing behaviour emerged as a result of our learning architecture.
As previously noted, we chose to have the agent not take a new action every time
its move() function is called, but rather return the same action until the state
changes. This resulted in a substantial reduction in the number of different actions
taken by the agent, given that the move function is invoked every game tick, while
state changes occur less frequently. This approach led to a behaviour that could
not have been predicted at the outset. Figure 7.20 provides an illustration of this
behaviour (with some sentiment env=[Triangles] was chosen as this was the
first environment on which the behaviour was noticed).

Ordinarily, env=[Triangles] does not offer any safe rotations unless rots=7
or more. As shown in the plot, the agent will certainly learn with this rotation
value. However, if the agent is given only 6 rotation values to choose from, it
will develop a policy that rapidly oscillates between two rotations, keeping the
player character, Hans, on the edge of those rotations, allowing him to safely pass
through the trap. This behaviour is not confined to situations where the agent is
“forced” to make such a decision. During training, in many instances, the agent
will learn to stay on the edge rather than advance into a completely safe rotation.
There does not appear to be a preference for one or the other; rather, the policy
the agent discovers first is determined by other experimental factors. It can be
concluded that this behaviour arose solely because the agent did not alter its

6It should recalled that after every 3 levels the agent’s speed increases.
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action until the state changed. In my opinion, this discovery is one of the most
exciting outcomes of this project.
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Conclusion
In conclusion, this thesis has investigated the efficacy of different reinforcement
learning algorithms in various environments in a game implemented in the Godot
game engine. The results showed that the ExpectedSARSA algorithm performed
moderately or exedingly well in all environments, while the performance of other
algorithms varied. In particular, MonteCarlo demonstrated impressive results
in environments featuring bug and virus obstacles. All algorithms displayed ade-
quate performance in environments with individual trap types, while performance
in environments with multiple obstacle types was not as consistent. The results
underscore the importance of the random actions that the agent receives during
training and the balance between exploration and exploitation in reinforcement
learning. Future research could explore ways to influence these random actions
to potentially achieve better outcomes.

54



Bibliography
Tunnel Rush, 2023. URL https://tunnelrush2.com/.
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