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invaluable support and guidance during the process of writing my thesis. Profes-
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Introduction
Many cryptographic settings [1] and their proper configuration rely on the dis-
crete logarithm problem in the group of an elliptic curve defined over a finite
field (ECDLP). The reason for this is that the properties of elliptic curves allow
these settings to reach an excellent level of security while keeping the amount
of necessary resources low, in contrast to other techniques. According to [2], for
example, using a 4096-bits key in the RSA protocol achieves the same level of
security as a key of size about 7% of that in a setting based on elliptic curves.

The difficulty of the discrete logarithm problem (DLP) depends on the group
in which it is considered. While the problem is trivial in (Zn,+), breaking the
DLP in E(Fq) is considered impossible for certain types of elliptic curves. It
is obvious that choosing a good candidate for security-based systems based on
ECDLP depends on the properties of the group E(Fq). Knowing its order is
clearly on the list of properties we should be interested in, because once we know
the order, we can make several conclusions about the difficulty of the ECDLP. For
instance, due to Pohlig-Helmann [1], it is advised to use a prime-order subgroup
of the group of an elliptic curve.

René Schoof published an algorithm [3] for finding the order of E(Fq) which
runs in O(log8 q) time. This was a substantial enhancement at the time, however,
it was later significantly improved by Atkin and Elkies. The resulting algorithm,
called the SEA algorithm [2], runs in O(log6 q) time and thus makes the original
algorithm obsolete. In spite of this, Schoof’s original algorithm was ground-
breaking as a solution to the problem of determining the order of E(Fq), and is
therefore worth discussing in detail.

First three chapters of this thesis introduce the mathematical background es-
sential to comprehend Schoof’s algorithm, encompassing the definition of a Weier-
strass curve, torsion groups, division polynomials, and elliptic curves over finite
fields. Chapter 4 provides a full description of Schoof’s algorithm along with its
time complexity. Chapter 5 then presents our implementation of Schoof’s algo-
rithm in C++ with the support of NTL (A Library for doing Number Theory)
[5].
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1. Elliptic Curves

1.1 Weierstrass Curve
We start with the definition of an elliptic curve. From the algebraic point of view,
an elliptic curve is a curve of genus one. This can be rephrased in a less abstract
way by saying that such a curve is birationally equivalent to a smooth Weierstrass
curve [4], which is a more suitable definition for our purposes, especially when
addressing their arithmetic properties.

Definition 1.1.1. A Weirstrass curve E over a field K is the set

E = {(x, y) ∈ A2 | y2 + yg(x) = f(x)} ∪ {∞},

where g(x) = a1x+ a3 and f(x) = x3 + a2x
2 + a4x+ a6 for some a1, . . . , a6 ∈ K.

The equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1.1)

is called the Weierstrass equation.

The reason for including the special point ∞ is based on the interpretation
of an elliptic curve as a group and can be identified with the point at infinity in
the projective plane, see below. The other points on the curve are called affine
points. An affine point (x, y) ∈ A2(K) is called K-rational or simply rational if
the field K is clear from the context.

Now, though using the Weierstrass equation (1.1) is possible, the equation
can be further simplified when char(K) ̸= 2, 3. Since we will be mostly interested
in elliptic curves over finite fields of large characteristics, this assumption will not
limit us at all.

Suppose char(K) ̸= 2 and let E be a Weierstrass curve given by (1.1). Rewrite
it as

y2 + g(x)y = f(x), (1.2)

where g(x) = a1x+ a3 and f(x) is the polynomial on the RHS of (1.1). The LHS
of (1.2) can be completed to a square as follows:

(︄
y + g(x)

2

)︄2

= f(x) + g(x)2

4 .

Using the substitution ỹ = (y+ g(x)/2), which is defined since char(K) ̸= 2, and
after a little rearrangement, we obtain

ỹ2 = x3 + a′
2x

2 + a′
4x+ a′

6

for some new constants a′
2, a

′
4, a

′
6 ∈ K. Therefore, a Weierstrass curve may be

considered in the form y2 = f(x) for some monic cubic polynomial f(x) ∈ K[x]
whenever char(K) ̸= 2.
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Moreover, if we assume char(K) ̸∈ {2, 3}, then we can get rid of the term x2

in f(x). Here we are using the fact that cubing the expression x̃ = (x + a′
2/3)

produces the term containing x2. Thus

ỹ2 = x̃3 +
(︄
a′

4 −
(a′

2)2

3

)︄
x̃+

(︄
a′

6 + 2(a′
2)3

27 − a′
2a

′
4

3

)︄
.

In this way we have transformed (1.1) to the equation

E : y2 = x3 + Ax+B (1.3)

for some A,B ∈ K. Equation (1.3) is sometimes referred to as the short Weier-
strass equation of E.

Depending on A,B, the elliptic curve can have various properties. In this
text, the most important property we will require is the smoothness of an elliptic
curve.

Proposition 1.1.1. A Weierstrass curve E given by y2 = f(x), where f(x) ∈
K[x] is monic cubic polynomial, defined over a field K with char(K) ̸= 2 is
smooth if and only if f is separable.

Proof. A Weierstrass curve is smooth at (x0, y0) if and only if not all partial
derivatives vanish, namely when

∂(y2 − f(x))
∂x

(x0, y0) ̸= 0 or ∂(y2 − f(x))
∂y

(x0, y0) ̸= 0

holds.
Let us find all points at which the curve is not smooth. The conditions about

partial derivatives become

f ′(x) = 0 and 2y = 0. (1.4)

Now we see that E is not smooth at (x0, y0) ∈ E if and if y0 = 0 and f ′(x0) = 0.
Since (x0, y0) ∈ E, the constraints imposed by (1.4) imply that E is smooth at
every point if and only if f has no multiple roots in K.

Proposition 1.1.1 can be restated by using the discriminant of f(x) [6]. Assume
char(K) ̸∈ {2, 3}, so f(x) = x3+Ax+B. Under this assumption, f(x) is separable
if and only if

4A3 + 27B2 ̸= 0.

Example 1.1.1. The elliptic curve E given by y2 = x3 − x + 1 over the finite
field F11 is smooth since 4 · (−1) + 27 ̸= 0. In fact, it is smooth at all 9 points of
the elliptic curve; the points are listed in Table 1.1.

In the rest of the text, we will only work with smooth elliptic curves given
by a short Weierstrass equation, i.e. those given by (1.3) with the constraint
4A3 + 27B2 ̸= 0.
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1.2 The Group of an Elliptic Curve
Once we have the set of points of an elliptic curve, it is natural to study this
set from the algebraic point of view. In particular, there exists an operation on
the set of points of an elliptic curve which, quite surprisingly, gives rise to an
abelian group with the neutral element ∞. We shall now give a definition of this
operation and derive some facts about it.

Definition 1.2.1. Let P,Q ∈ E be affine points on an elliptic curve E, let ℓ ⊆ A2

be the line through these points if P ̸= Q, and the tangent line of E at P when
P and Q coincide. If P = (x1, y1) and Q = (x2, y2), the result of P ⊕ Q is then
defined as follows:

(a) (x1 = x2)

• If P ̸= Q or y1 = y2 = 0, set P ⊕Q =∞,
• otherwise there exists at most one point T ∈ ℓ ∩E, T ̸= P . If no such

point T exists, set T = P . Then P ⊕ Q = R, where R ∈ E is the
second point of intersection of the elliptic curve E and the vertical line
through T .

(b) (x1 ̸= x2)

• (|ℓ ∩ E| = 3) let T ∈ (ℓ ∩ E) \ {P,Q},
• (|ℓ∩E| = 2) let T ∈ {P,Q} be the point at which ℓ is the tangent line

at T .

Then P ⊕ Q = R, where R ∈ E is the second point of intersection of
the elliptic curve E and the vertical line through T if such R on E exists.
Otherwise, set R = T .

(c) R⊕∞ =∞⊕R = R for all R ∈ E.

The definition can be rephrased by viewing an elliptic curve in the projective
plane P2 with axes x, y and using the fact, which will be mentioned later, that,
geometrically, ∞ = (0 : 1 : 0) represents a vertical direction – the affine lines
passing through the point ∞ are precisely those parallel to the y-axis. Then, for
some points P,Q on an elliptic curve E, P ⊕Q can be thought of as the reflection
of the point R over the x-axis, where the reflection of ∞ is again ∞. Figure 1.1
illustrates the result of P ⊕Q when P ̸= Q and P = Q.

It turns out (E(K),⊕) yields a group:

Theorem 1.2.1. Let E(K) be the set of K-rational points of an elliptic curve
E over a field K together with ∞. Then

(a) (Commutativity) ∀P,Q ∈ E(K) : P ⊕Q = Q⊕ P ,

(b) (Neutral element) ∀P ∈ E(K) :∞⊕ P = P ⊕∞ = P ,

(c) (Inverses) ∃(⊖P ) ∈ E(K) : P ⊕ (⊖P ) =∞,

(d) (Associativity) ∀P,Q,R ∈ E(K) : (P ⊕Q)⊕R = P ⊕ (Q⊕R).
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P

Q

R

P ⊕Q

(a) Addition of two distinct
points

P
R

P ⊕ P

(b) Addition of a point to it-
self

Figure 1.1: Addition of points on an elliptic curve

In other words, (E(K),⊕,⊖,∞) forms an abelian group.

Proof. The properties (a)-(b) follow immediately from the definition of ⊕. To
prove (c), notice the inverse element of an affine point (x, y) ∈ E(K) is (x,−y) ∈
E(K), the inverse element of ∞ is again ∞. However, proving associativity of ⊕
is a rather tedious task when working with the formulas for addition, see [1].

From now on, let E(K) denote the abelian group of K-rational points with
the neutral element ∞ and operation ⊕.

Based on the Weierstrass equation, we can derive simple formulas for deter-
mining P ⊕ Q. We omit the proof as it is quite a straightforward calculation,
details are outlined in [1].

Proposition 1.2.1. Let E be an elliptic curve given by the Weierstrass equation
y2 = x3 +Ax+B over a field K with char(K) ∈ {2, 3} and let P,Q ∈ E be affine
points on E, so P = (x1, y1), Q = (x2, y2). Then R = P ⊕Q is defined as follows:

(1) If x1 = x2 and y1 ̸= y2, then R =∞.

(2) If Q = P = (x1, y1) and y1 = 0, then R =∞.

(3) (Doubling formula) If Q = P = (x1, y1) and y1 ̸= 0, then R = (x3, y3) is
given by

x3 = λ2 − 2x1, y3 = λ(x1 − x3)− y1, where λ = 3x2
1 + A

2y1
.

(4) (Addition formula) Otherwise R = (x3, y3) is an affine point satisfying

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1, where λ = y1 − y2

x1 − x2
.

The case when either P or Q is a point at infinity follows from the definition
of ⊕.
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For adding a point P on an elliptic to itself repeatedly, we adopt the following
convention:

[n]P =
n times⏟ ⏞⏞ ⏟

P ⊕ P ⊕ · · · ⊕ P if n > 0,
[0]P =∞,
[n]P = (⊖P )⊕ (⊖P )⊕ · · · ⊕ (⊖P )⏞ ⏟⏟ ⏞

|n| times

otherwise if n < 0.

Example 1.2.1. Viewing the elliptic curve E given by y2 = x3 − x+ 1 over F11
as the group E(F11) and using the points P = (3, 5), Q = (5, 11), we can find new
rational points of E by applying addition formulas; for example

[2]P = (10, 1) and P ⊕Q = (1, 1).

Table 1.1 enumerates all points on the elliptic curve E.

Point P = (x, y) Inverse ⊖P = (x,−y)
(5, 0) (5, 0)
(0, 1) (0,−1)

(−1, 1) (−1,−1)
(1, 1) (1,−1)
(3, 5) (3,−5)

Table 1.1: The list of points on the elliptic curve E given by y2 = x3−x+ 1 over
F11.

One can easily verify that this group is cyclic with P = (0, 1) as its generator.
Moreover, the group contains 10 points (including ∞ not listed in the table), so
it is isomorphic to the additive group Z10.

1.3 Projective Elliptic Curve
So far we have worked with elliptic curves in the affine plane A2. Replacing A2

with the projective plane P2 means adding a variable to the Weierstrass equation,
so that the resulting polynomial is homogeneous. Introducing an extra variable
to the Weierstrass equation, which will be mostly of no use in the upcoming
sections, will help us understand the notion of the point at infinity.

Let E be an elliptic curve given by the Weierstrass equation defined over
a field K and consider it as an equation in K[X, Y, Z]. First, we homogenize the
equation to get

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (1.5)

In this case, the elliptic curve E is the set of points (x : y : z) ∈ P2 satisfying
(1.5). There is no need to explicitly involve the point∞ in the set since it can be
identified with one of the points in P2. Notice the affine version of the equation
can be attained by setting x = X/Z and y = Y/Z.
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To see that the point ∞ is a projective point, namely a point at infinity, set
Z = 0 to obtain

0 = X3. (1.6)

It is now clear that the only point at infinity on E is ∞ = (0 : 1 : 0), for at least
one coordinate of a projective point in the projective plane must be non-zero.

1.4 Endomorphisms
Let E,E ′ be two smooth projective elliptic curves over a field K. A morphism
ψ : E ↦→ E ′ defined over K is a map that may be represented by (F1 : F2 : F3)
where Fi ∈ K[X, Y, Z], 1 ≤ i ≤ 3 are homogeneous polynomials of the same
degree such that, except for finitely many points, for any P ∈ E there exists 1 ≤
j ≤ 3 with Fj(P ) ̸= 0. The morphism ψ does not have a unique representation:
ψ = (F1 : F2 : F3) = (G1 : G2 : G3) where G1, G2, G3 ∈ K[X, Y, Z] if and only if
FiGj −FjGi vanishes on E for 1 ≤ i < j ≤ 3. It may be proved [6] that if P ∈ E
is a point such that Fi(P ) = 0 for all 1 ≤ i ≤ 3, then there exist Gi, 1 ≤ i ≤ 3
such that ψ = (G1 : G2 : G3) and Gi(P ) ̸= 0 for at least one i. This means that
the morphism ψ is defined at every point P on E.

In the context of elliptic curves, a special attention is drawn to a specific
type of morphism called isogeny. An isogeny is a morphism ϕ : E ↦→ E ′ such
that ϕ(∞E) = ∞E′ , where ∞E,∞E′ are the neutral elements in the groups
E(K), E ′(K) respectively. Moreover, it can be shown [1] that isogenies are ac-
tually homomorphisms between groups E(K) and E ′(K) (notice the definition
of an isogeny involves a necessary condition for a map to be a homomorphism).
Another interesting result [4] related to isogenies says that for any two isogenies
ψ1, ψ2 from E to E ′, the map ψ1 ⊕ ψ2 defined as (ψ1 ⊕ ψ2)(P ) = ψ1(P )⊕ ψ2(P )
for any point P ∈ E is also an isogeny.

In this section, we will mainly deal with endomorphisms, the isogenies map-
ping E(K) to itself. In particular, a special emphasis in our analysis of endo-
morphism will be laid on multiplication-by-n endomorphisms, which send a point
P ∈ E(K) to [n]P , where n is a positive integer. Later in Chapter 2, we will
discover that there exists an explicit formula for computing [n]P for any positive
integer n and point P ∈ E(K).

Maps between elliptic curves are usually in the form of rational maps. Since
we will mostly work with affine curves we shall now define what is a rational
map of two affine curves, and then explain how such a map may be converted to
a morphism of correspoding projective curves.

Affine rational maps are represented by (r1/s1, r2/s2) for some polynomials
ri, si ∈ K[x, y], 1 ≤ i ≤ 2. Every rational map of this form can be expressed as
a morphism and vice versa.

To convert a rational map represented by (r1/s1, r2/s2) to a morphism, choose
polynomials Ri(X, Y, Z), Si(X, Y, Z) with deg (Ri) = deg (Si) and gcd(Ri, Si) = 1
satisfying Ri(x, y, 1)/ Si(x, y, 1) = ri(x, y)/si(x, y) for 1 ≤ i ≤ 2. It follows that
(R1/S1 : R2/S2 : 1) represents (r1/s1, r2/s2) in the projective plane. A morphism
corresponding to the given rational map can be taken to be (R1S/S1 : R2S/S2 :
S), where S = lcm(S1, S2). On the other hand, a morphism (A1 : A2 : A3)
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can be transformed to a rational map in the affine plane by taking the map
(π(A1)/π(A3), π(A2)/π(A3)), where π : K[X, Y, Z] ↦→ K[X, Y ] is defined as fol-
lows:

π(X) = X, π(Y ) = Y, π(Z) = 1.

It is now clear that the situation when the denominator of every representative
of a rational map is zero corresponds to the case when the point (X : Y : 0) ∈ P2

is being mapped, in our case, to the point ∞.
Let ϕ : E(K) ↦→ E(K) be an endomorphism defined for any point P = (x, y) ∈

E(K) as

ϕ(P ) = ϕ(x, y) = (R1(x, y), R2(x, y)), (1.7)

where Ri = ri(x, y)/si(x, y), 1 ≤ i ≤ 2, are rational functions with r1, r2, s1, s2 ∈
K[x, y]. The definition of rational maps as in (1.7) can be adjusted by replacing
each y2 on the RHS of (1.2) and doing a few algebraic changes, leaving us with

ri(x, y) = p
(i)
1 (x) + p

(i)
2 (x)y

q(i)(x)

for some p(i)
j , q

(i)
j ∈ K[x, y]. Moreover, by applying some basic facts about ho-

momorphisms, we may even assume that there exist rational functions r1 =
u1(x)/v1(x), r2 = u2(x)/v2(x) satisfying

ϕ(P ) = (r1(x), r2(x)y) . (1.8)

Indeed,

⊖ϕ(x, y) = ϕ(⊖(x, y)) = ϕ(x,−y)

implies

r1(x,−y) = r1(x, y),
r2(x,−y) = −r2(x, y)

from which it follows that p(1)
2 = 0 and p

(2)
1 = 0 (we are assuming char(K) ̸= 2).

Hence ϕ(P ) may be written as in (1.8).
This shows that the x-coordinate of an endomorphism is always given by

a rational function in only one variable. This will turn out to be useful from the
computational point of view later in the discussion of Schoof’s algorithm.

Not only are the endomorphism of elliptic curves defined everywhere, but they
also turn out to be surjective, the only exception being the trivial endomorphism
[0] : E(K) ↦→ E(K) sending every point to ∞ [1].

Theorem 1.4.1. Every non-trivial endomorphism ϕ : E(K) ↦→ E(K) of an
elliptic curve E defined over a field K is surjective.

Apart from multiplication-by-n endomorphisms, the qth-power Frobenius map
ϕq is another example of an endomorphism. As we will discover later, the Frobe-
nius map is crucial to Schoof’s algorithm.
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Definition 1.4.1. Let E be an elliptic curve over a finite field Fq. The Frobenius
map ϕq : E(Fq) ↦→ E(Fq) applies the Frobenius automorphism ϕq : Fq ↦→ Fq to
each coordinate. In other words,

ϕq(P ) =
⎧⎨⎩∞ if P =∞,

(xq, yq) otherwise, where P = (x, y) ∈ E(Fq).
(1.9)

It is easy to show that ϕq is actually an endomorphism E, so referring to the
Frobenius map on an elliptic curve as the Frobenius endomorphism on the elliptic
curve is justified:

Proposition 1.4.1. The Frobenius map ϕq : E(Fq) ↦→ E(Fq) is an endomorphism
on an elliptic curve E defined over a field Fq.

Proof. Let the elliptic curve E be given by the equation y2 = f(x) for some
monic cubic f ∈ Fq[x]. First, we need to show that ϕq(P ) ∈ E(Fq) for each point
P ∈ E(Fq). Since by definition ϕq(∞) = ∞, we may assume P = (x, y) ∈ A2.
Raising the equation for E to q and using the fact that (a + b)q = aq + bq in Fq

and aq = a for all a ∈ Fq gives

(yq)2 = (x3 + Ax+B)q = (xq)3 + Axq +B.

Hence ϕq(P ) ∈ E. Finally, since ϕq is an isogeny, it immediately follows that ϕq

is a homomorphism.

Repeated composition of Frobenius maps as ϕq◦· · ·◦ϕq, the composition being
applied n-times, yields again a Frobenius map, namely ϕqn . Therefore, it makes
sense to use the notation ϕn

q = ϕq ◦ · · ·◦ϕq, where the Frobenius is composed with
itself n times.

Similarly as in the finite fields, it holds that P ∈ E(Fq) if and only if ϕq(P ) =
P . Hence, the group E(Fq) can be characterised by the kernel of ϕq ⊖ [1], see [1].

Proposition 1.4.2. Let E be an elliptic curve defined over the finite field Fq.
Then Ker(ϕq − 1) = E(Fq).

Proof. A point P ∈ E(Fq) lies in Ker(ϕq − 1) if and only if ϕq(P ) = P , which
occurs if and only if P ∈ E(Fq).

In Chapter 3, we will see a connection between the Frobenius endomorphism
and the group of an elliptic curve defined over a finite field.
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2. Torsion Groups

2.1 Torsion Groups
Definition 2.1.1. Let E be an elliptic curve defined over a field K and let n be
a positive integer. The n-torsion subgroup of E(K), denoted by E[n], is defined
as

E[n] = {P ∈ E(K) | [n]P =∞}.

The natural question is, how to find all such points of order dividing a given
n. We will now look at the trivial cases when n ∈ {2, 3} to explore the idea
behind searching for all points in E[n].

Let

E : y2 = f(x)

be an elliptic curve given by the Weierstrass equation defined over a field K with
char(K) ̸∈ {2, 3}. Trivially, ∞ ∈ E[n] for any positive integer n. For n = 2,
our task is to find all involutions of the group E(K), in other words, all affine
points P ∈ E(K) satisfying [2]P = ∞, which is equivalent to P = ⊖P . Using
the fact that ⊖P = (x,−y) if P = (x, y) ∈ E(K) is an affine point, it must be
the case that y = 0, so the points of E[2] are determined by the x-coordinate.
The x-coordinates are exactly the roots of f(x). Hence, the 2-torsion subgroup
of E(K) is

E[2] = {(r, 0) | f(r) = 0} ∪ {∞}.

In addition, |E[2]| = 3 + 1 = 4, which follows from separability of the polynomial
f(x). Also notice that the group E(Fq) contains no rational point of order 2 if
and only if f is irreducible over K. This remark will turn out to be useful when
describing Schoof’s algorithm in Chapter 4.

To solve the case for n = 3, observe that a point P ∈ E[3] \ {∞} is subject to
the equality [2]P = ⊖P . Assuming f(x) = x3 +Ax+B, we can use the formulas
for addition to show the equality holds for a point P = (x, y) if and only if

3x4 + 6Ax2 + 12Bx− A2 = 0. (2.1)

It may be proved [1] that (2.1) is separable, from which we can conclude that
there are exactly 8 different affine points P = (x, y) ∈ E[3] as each of the four
different roots of (2.1) gives rise to two points (y = 0 is only possible for points
in E[2]). Hence, after including the point ∞, we have |E[3]| = 9.

The following theorem [1] answers our question of the structure of E[n] for
any positive integer n.
Theorem 2.1.1. Let E be an elliptic curve defined over a field K with charac-
teristic char(K) = p. Let n be a positive integer. Then

E[n] ∼= Zn ⊕ Zn (2.2)

if p = 0 or p ∤ n. Otherwise, by writing n as n = pkn′ so that p ∤ n′, the following
holds:

E[n] ∼= Zn′ ⊕ Zn′ or E[n] ∼= Zn ⊕ Zn′ . (2.3)
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It follows from Theorem 2.1.1 that E[n] forms a group generated by some
α1, α2 ∈ E(K). Furthermore, ϕq(E[n]) ⊆ E[n] for any endomorphism ϕ : E ↦→ E,
so ϕq ↾E[n] can be described, in similar fashion as a linear map, by a matrix (ϕ)n

over Zn: if ϕ(α1) = aα1 + bα2 and ϕ(α2) = cα1 + dα2, then

(ϕ)n =
(︄
a b
c d

)︄
∈ Z2×2

n . (2.4)

2.2 Division Polynomials
It might be tempting to conclude, after investigating the trivial cases, that a point
P ∈ E(K) \ {∞} belongs to E[n] if and only if there exists a polynomial
ψn ∈ K[x, y] such that ψn(P ) = 0. Indeed, we will now see that there exists
a polynomial ψn ∈ K[x, y] for any positive integer n, called nth division polyno-
mial, satisfying this property [1].

Assume the Weierstrass curve E is given by y2 = f(x) over a field with
characteristic p. Let n be an integer not divisible by p. Notice that when P =
(x, y) ∈ E[n], then also ⊖P = (x,−y) and vice versa, since E[n] is a group.
Hence, when n is odd, every root of ψn represents the x-coordinate of a point and
its inverse. Therefore, degψn = (n2 − 1)/2. On the other hand, when n is even,
E[n] contains points of order two, so in this case we have (n2−|E[2]|)/2 + |E[2]|,
but we already know that |E[2]| = 4, so we have degψn = (n2 + 4)/2.

Lastly, it remains to answer the question of how to actually construct the
polynomials ψn. Fortunately, according to the proposition below, we can do so
by applying a recursive rule.

Proposition 2.2.1. For an elliptic curve E given by y2 = x3 + Ax + B defined
over a field K, the division polynomial ψn can be defined recursively as follows:

ψ0 = 0,
ψ1 = 1,
ψ2 = 2y,
ψ3 = 3x4 + 6Ax2 + 12Bx− A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3),
ψ2n+1 = ψn+2ψ

3
n − ψn−1ψ

3
n+1 when n ≥ 2,

ψ2n = ψn

2y (ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1) when n ≥ 3.

The nth division polynomials, defined as above, characterize the points in
E[n]:

Theorem 2.2.1. Let E be an elliptic curve defined over a field K and let P ∈
E(K) \ {∞}. Then P ∈ E[n] if and only if ψn(P ) = 0.

The division polynomial can also be utilized to explicitly express the coor-
dinates of [n]P for any positive integer n and a point P ∈ E(K) satisfying
[n]P ̸=∞.
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Theorem 2.2.2. Let E be an elliptic curve over a field K and let P ∈ E(K).
Then

[n]P =
(︄

θn(x)
ψ2

n(x, y) ,
ωn(x, y)
ψ3

n(x, y)

)︄
,

where

θn = xψ2
n − ψn+1ψn−1 and

ωn = ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1

4y

for any positive integer n such that [n]P ̸=∞.

The case [n]P = ∞ can be treated separately since, by Theorem 2.2.1, it
occurs if and only if ψn(P ) = 0. The following proposition becomes useful in the
analysis of the time complexity of Schoofs’ algorithm.

Proposition 2.2.2. deg θn(x) and degψ2
n(x) satisfy

deg θn(x) = n2 and
degψ2

n(x) = n2 − 1.

It follows from Proposition 2.2.2 that the division polynomial ψn is separable
for any odd n not divisible by the characteristic of the field: by Theorem 2.1.1,
the number of affine points in E[n] equals |E[n]| − 1 = n2 − 1, so there are
(n2 − 1)/2 = degψn distinct x-coordinates among the points in E[n].

In fact, the division polynomials may also be defined as univariate polynomials
f̄n ∈ K[x] [4], sharing the property with polynomials ψn that P ∈ E[n] \ {∞} if
and only if f̄n(P ) = 0:

f̄n =
⎧⎨⎩ψn if n is odd, and
ψn/2y if n even.

Their recursive definition is given below.

f̄ 0 = 0,
f̄ 1 = 1,
f̄ 2 = 1,
f̄ 3 = 3x4 + 6Ax2 + 12Bx− A2,

f̄ 4 = 2(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3),

f̄ 2n+1 =
⎧⎨⎩f̄n+2f̄

3
n − 16(x3 + Ax+B)2f̄n−1f̄

3
n+1 when n ≥ 3 is odd,

16(x3 + Ax+B)2f̄n+2f̄
3
n − f̄n−1f̄

3
n+1 when n ≥ 2 is even,

f̄ 2n = f̄n(f̄n+2f̄
2
n−1 − f̄n−2f̄

2
n+1) for n ≥ 2.
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3. Elliptic Curves over Finite
Fields
As we have already seen, the subgroup E[n] of the group of an elliptic curve
defined over an arbitrarily large field K can be briefly described as the direct
sum Zn ⊕ Zn. If we turn our attention to the case when K is finite, the group
E(K) of rational points becomes a torsion group as well. Moreover, E(Fq) is
clearly a subgroup of E[n] ∼= Zn ⊕ Zn for a sufficiently large n divisible by the
order of E(Fq). Hence, by applying the structure theorem for finite abelian groups
[7], E(Fq) ∼= Zn1 ⊕ Zn2 for some integers n1, n2 satisfying n1 | n2. The theorem
below [4] imposes yet another restriction on n1:

Theorem 3.0.1. Let E be an elliptic curve defined over a finite field Fq. Then
there exist integers n2 ≥ n1 ≥ 1 satisfying n1 | n2 and n1 | q − 1 such that

E(Fq) ∼= Zn1 ⊕ Zn2 .

In the rest of this chapter, our attention turns to estimating the order of
E(Fq), the importance of which derives from cryptography applications in which
it is used, for example, for checking desired properties of the group order of E(Fq).
In the context of counting points on an elliptic curve, the order of E(Fq) is usually
denoted #E(Fq).

Each element x ∈ Fq gives rise to at most two y ∈ Fq such that (x, y) is
a point on an elliptic curve. Hence, including the neutral element∞, there are at
most 2q + 1 rational points on the curve. In fact, the number of rational points
lies somewhere around q + 1. Hasse’s theorem [1], a major theorem applied to
the problem of counting rational points, says how close around q + 1 the value
#E(Fq) lies.

Theorem 3.0.2 (Hasse, 1933). The number of rational points #E(Fq) on an
elliptic curve defined over a finite field Fq satisfies

|q + 1−#E(Fq)| ≤ 2√q.

The quantity t = q+1−#E(Fq) is sometimes referred to as the trace of Frobe-
nius. The name originates from the next theorem, which relates the Frobenius
endomorphism to the quantity t.

Theorem 3.0.3. Let E be an elliptic curve over a finite field Fq and let ϕq : E ↦→
E denote the Frobenius endomorphism on E. Then

ϕ2
q ⊖ [t]ϕq ⊕ [q] = [0], (3.1)

and the value of t that satisfies (3.1) is unique. Moreover, the quantity t satisfies
the congruence

t ≡ Trace((ϕq)n) (mod n) (3.2)

for all integers n coprime to q.
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Remark. Although we do not provide a complete proof of Theorem 3.0.3, we at
least show the part about the trace of Frobenius t for prime n (Schoof’s algorithm
uses only E[n] for n prime). Taking the matrix (ϕq)n, introduced in Chapter 2,
we find the characteristic polynomial of (ϕq)n:

det (λI2 − (ϕq)n) ≡ det
(︄
λ− a b
c λ− d

)︄
≡ λ2 − (a+ d)λ+ (ad− bc) (mod n).

(3.3)

By the Cayley-Hamilton theorem, the matrix (ϕq)n satisfies

(ϕq)2
n ⊕ (a+ d)(ϕq)n ⊕ [ad− bc] ≡ 0 (mod n), (3.4)

where 0 stands for the zero matrix. Equation (3.4) states that (3.1) holds for all
points in E[n]. Combining (3.1) with (3.4) and the uniqueness of t yields

Tr((ϕq)n) ≡ a+ d ≡ t (mod n)

for all n coprime to q.
Hasse’s theorem can be used to attack the problem of finding #E(Fq) by

observing that #E(Fq) lies in the interval of length 4√q. Therefore, if there
exists a point of order k > 4√q, then exactly one multiple of k lies in the interval
[#E(Fq)− 2√q,#E(Fq) + 2√q].

However, the existence of such a point is not guaranteed. Nevertheless, a re-
lated result [2] tells us that there is always such a point on E or on its so-called
(quadratic) twist whenever the finite field Fp is sufficiently large. Before stating
the theorem, it is necessary to become familiar with the definition of a twist of
an elliptic curve.

Definition 3.0.1. A (quadratic) twist Ed of an elliptic curve E given by y2 =
x3 + Ax+B over a field K is an elliptic curve of the form

Ed : y2 = x3 + d2Ax+ d3B,

where d ∈ K∗ is a quadratic non-residue in K∗.

While determining the order of an elliptic curve E over Fq might be challeng-
ing for some instances, it may happen that the opposite is true for Ed. When this
occurs, the proposition below can be used to determine #E(Fq) from the knowl-
edge of #Ed(Fq). The proof [2] requires basic knowledge of quadratic residues
[8].

Proposition 3.0.1. Let E be an elliptic curve over Fq and let Ed be its twist,
with d ∈ F∗

q not a square in F∗
q. Then

#E(Fq) + #Ed(Fq) = 2(q + 1).

Proof. The theorem can be proved simply by going through all elements in E(Fq)
and counting their contribution to the sum #E(Fq) + #Ed(Fq).

Let g(x) = x3 +Ax+B and gd(x) = g(x/d)/d3 correspond to the polynomials
of the right-hand-side of the Weierstrass equation for E and Ed, respectively.
Now the proof splits into three cases for an element x ∈ Fq.
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• If gd(x) = 0 for x ∈ Fq, then g(x/d) = 0, so (x, 0) ∈ Ed(Fq) and (x/d, 0) ∈
E(Fq).

• If gd(x) is a non-zero quadratic residue in Fq, then there exist two y′s
such that y2 = gd(x). On the other hand, there is no y ∈ Fq for which
y2 = g(x/d) = d3gd(x); assuming gd(x) = w2 for some w ∈ Fq, we would
have d = (d−2y2w−2), contrary to d being a quadratic non-residue.

• Finally, if gd(x) is a quadratic non-residue in Fq, then there exists no y ∈ Fq

satisfying the relation y2 = gd(x), but there exist two y′s for which y2 =
g(x/d), since g(x/d) is a residue; g(x/d) = d−3gd(x) is a product of two
non-residues, which always yields a quadratic residue.

In total, every x ∈ Fq contributes two counts to the sum #E(Fq) + #Ed(Fq), so
adding the neutral element∞ counted twice for each curve yields the theorem.

Theorem 3.0.4. There exists a point P on an elliptic curve E defined over the
finite field Fp or on its twist Ed with an order larger than 4√p whenever p ≥ 230.

Theorem 3.0.4 resolves the case when the order of the field is prime. However,
once we have determined #E(Fq), the order of E(Fqn) can be computed explicitly.

Proposition 3.0.2. If x2 − tx + q = (x − α)(x − β), where t is the trace of
Frobenius of an elliptic curve E over the finite field Fq, then

#E(Fqn) = qn + 1− (αn + βn)

for any integer n ≥ 1.

Proof. We will show that the polynomial

f(x) = (x− αn)(x− βn) = x2 − (αn + βn)x+ (αβ)n

= x2 − (αn + βn)x+ qn.

is the characteristic polynomial of ϕqn on E, thus proving that t̃ = αn +βn is the
trace of Frobenius for E over Fqn . Write

x2n − (αn + βn)xn + qn = f(xn) = (xn − αn)(xn − βn).

Notice that the polynomial f(xn) is divisible by (x−α)(x−β) since we can write

xn − αn = (x− α)(xn−1 + · · ·+ 1) and
xn − βn = (x− β)(xn−1 + · · ·+ 1).

Assume αn +βn is an integer (otherwise #E(Fq) would not be an integer). Under
this assumption, which will be proved as a lemma below, and from the observation
above, there exists a polynomial g(x) ∈ Z[x] satisfying the equality

x2n − (αn + βn) + qn = f(xn) = g(x)(x2 − tx+ q). (3.5)
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Now comes the part where we make use of Theorem 3.0.3. Plugging the Frobenius
endomorphism ϕq into (3.5) gives

ϕ2
qn ⊖ [αn ⊕ βn]ϕqn ⊕ [qn] = g(ϕq)(ϕ2

q ⊖ [t]ϕq ⊕ [q]) = [0].

Moreover, the same theorem claims that there exists a unique element t̃ satisfying
ϕ2

qn⊖ [t̃]ϕqn⊕ [qn], which is simultaneously equal to qn +1−#E(Fqn) and αn +βn,
so

#E(Fqn) = qn + 1− (αn + βn).

To complete the proof, it remains to show αn + βn ∈ Z. The following lemma
not only proves this claim but also suggests how to recursively compute αn + βn.

Lemma 1. If we define sn = αn + βn as a sequence, then s0 = 2, s1 = t and
sn+1 = tsn − qsn−1 for each n ≥ 2.

Proof. α is a root of the characteristic polynomial x2 − tx + q of the Frobenius
endomorphism on an elliptic curve E over Fq, hence α2 = tα − q; the same
relation holds for β. Consequently, by multiplying the relation by αn−1, the
relation becomes αn+1 = tαn− qαn−1 for α, and similarly, by replacing α with β,
we obtain βn+1 = tβn − qβn−1. Adding the expressions for α and β yields

αn+1 + βn+1 = t(αn + βn)− q(αn−1 + βn−1) = tsn − qsn−1.
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4. Schoof’s Algorithm
In cryptography settings based on elliptic curves, several restrictions are imposed
on the curves in use. This is because there exist quite effective attacks [1] on
particular families of curves, so these curves must be avoided in order to improve
the security of the setting of interest. To give an example, MOV attack [9] uses
the Weil pairing [6] to translate the elliptic curve discrete logarithm problem to
the discrete logarithm problem in a finite field Fqn , where Fq = Fpm is the field
over which the elliptic curve is defined and n is the smallest non-negative integer
such that p | qn−1. Hence, the MOV attack is a threat to those curves for which
small such n can be found. Anomalous curves are another example of curves for
which there is an attack [10] that renders them insecure.

Apart from these attacks, the number of rational points on an elliptic curve is
also an important aspect for deciding whether the given elliptic curve is a good
candidate for cryptographic applications, because it gives us an idea of possi-
ble orders in the group. The point counting problem will be the subject of this
chapter. We will describe Schoof’s algorithm [3][4] for counting the number of
rational points on an elliptic curve defined over a finite field, which forms a basis
for the most efficient versions of the algorithms solving the problem. After ex-
plaining the algorithm, we will inspect its time complexity in general, which will
in turn allow us to establish the time complexity for particular implementations
of multiplication in the ring of polynomials over Fq.

4.1 Schoof’s Algorithm
Suppose our task is to determine #E(Fq), where q = pn, p > 3 and E is an elliptic
curve given by the Weierstrass equation y2 = x3 + Ax + B over Fq. Schoof’s
algorithm tackles this problem by taking advantage of Hasse’s theorem, by which
#E(Fq) = q + 1 − t where |t| ≤ 2√q and so t lies within exactly one range of
length 4√q.

Let ℓ1 < ℓ2 < · · · < ℓk be primes distinct from the characteristic p such that

m =
k∏︂

i=1
ℓi > 4√q. (4.1)

By Hasse’s theorem, only one multiple of t̂ ≡ t (mod m) satisfies |t̂| ≤ 2√q, so
that multiple must be equal to the trace of Frobenius t. Hence, if t (mod ℓi) is
known for all 1 ≤ i ≤ k, the Chinese Remainder Theorem can be used to recover
t. We therefore need to find a way of establishing t modulo each ℓi.

Assume first ℓ = 2. To determine t (mod 2), notice that #E(Fq) ≡ 0 (mod 2)
if and only if the group E(Fq) contains a rational point of order 2. As we have
seen in Chapter 2, this occurs if and only if x3 +Ax+B has a root in Fq. Since q
is assumed to be odd, the condition on #E(Fq) being even is equivalent to saying
that t ≡ 0 (mod 2), which follows from Hasse’s theorem:

#E(Fq) = q + 1− t ≡ 0 (mod 2) ⇐⇒ t ≡ 0 (mod 2).

To decide if x3 + Ax + B has a root in Fq, the greatest common divisor of
x3 +Ax+B and the polynomial xq − x, whose roots match exactly the elements
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of Fq, is computed. If the gcd equals 1, then x3 + Ax + B has no roots in Fq,
which means it is irreducible over the finite field and t ≡ 1 (mod 2). Otherwise
t ≡ 0 (mod 2).

The core of Schoof’s algorithm is to find t (mod ℓ) for an odd prime ℓ. Recall
the Frobenius endomorphism ϕq on elliptic curves satisfies the following relation:

ϕ2
q ⊖ [t]ϕq ⊕ [q] = [0] ⇐⇒ [t]ϕq = ϕ2

q ⊕ [q]. (4.2)

The Frobenius endomorphism restricted to points in E[ℓ]∗ = E[ℓ] \ {∞} is
a linear bijection since it is a one-to-one linear map of dimension 2. Moreover,
since ℓ is prime, ϕq(P ) for P ∈ E[ℓ]∗ is again a point of order ℓ. As a consequence,
the relation (4.2) can be rewritten when restricted only to points in E[ℓ]∗ for some
prime ℓ ̸= p as

[tℓ]ϕq(P ) = ϕ2
q(P )⊕ [qℓ]P, (4.3)

for all P ∈ E[ℓ]∗, where tℓ = t (mod ℓ) and qℓ = q (mod ℓ) are the least non-
negative representatives of [t]ℓ and [q]ℓ. Because of the same reasons stated in
the paragraph above, if the relation (4.3) holds for one point, then it holds for all
P ∈ E[ℓ]∗. The value of tℓ can therefore be retrieved by successive testing of the
equality of expressions

[τ ]ϕq(P ) and ϕ2
q(P )⊕ [qℓ]P (4.4)

for all τ ∈ {0, 1, . . . , ℓ − 1} and some point P . Once the expressions are equal,
we have found tℓ = τ . In fact, since [τ ]P and [−τ ]P only differ by the sign of the
y-coordinate, we need only test values τ ∈ {0, 1, . . . , (ℓ− 1)/2}.

Knowing all points of E satisfying (4.3) would allow us to simply verify if at
least one of them is a point of order ℓ. Unfortunately, finding all points satisfying
(4.3) is not computationally efficient – we would need to consider points in E[ℓ]∗
and since these are the roots of the ℓth division polynomial f̄ ℓ, working with the
finite field of order qdeg f̄ℓ = qO(ℓ2) might be required. Instead, Schoof’s algorithm
works with a general point (x, y) ∈ E[ℓ]∗ and performs all necessary computations
as if x, y where variables in Fq[x, y]. Recall the point (x, y) ∈ E is in E[ℓ]∗ if and
only if f̄ ℓ(x) = 0.

Before we can proceed with the algorithm for an odd prime ℓ, we need to decide
which addition formula to use. To decide if ϕ2

q(P ) = [±qℓ]P for some P ∈ E[ℓ]∗,
it suffices to compare the x-coordinates of ϕ2

q(P ) and [±qℓ]P , the former being
equal to xq2 , and the latter can be expressed as a rational function r(x)/s(x)
for some r, s ∈ Fq[x]. By multiplying the equality of the x-coordinates by s and
subtracting r, we obtain a polynomial equation h̄X = 0 for some h̄X ∈ Fq[x].
The equality ϕ2

q(P ) = [±qℓ]P then holds for some point P ∈ E[ℓ]∗ if and only if
gcd(h̄X , f̄ ℓ) ̸= 1.

Let us now split the description of the algorithm into two branches, based on
what formulas for point addition will be used to compute the expression ϕ2

q(x, y)⊕
[qℓ](x, y) symbolically. The details of the construction of several polynomials
mentioned in the descprition will now be omitted and given after summarizing
the algorithm.
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1. ϕ2
q(P ) ̸= [qℓ]P and ϕ2

q(P ) ̸= ⊖[qℓ]P for every P ∈ E[ℓ]∗

The sum of ϕ2
q(x, y) and [qℓ](x, y) in this case is computed by the addition

formula for two distinct points and yields an affine point, denote it by (x′, y′).
Using notation (xi, yi) = [i](x, y), we now need to decide if there exists τ ∈
{1, . . . , ℓ − 1} such that (x′, y′) = (xq

τ , y
q
τ ) for some point (x, y) ∈ E[ℓ]∗. We

will show that the equality holds if and only if hX(x) ≡ 0 (mod f̄ ℓ) for some
polynomial hX ∈ Fq[x] described below.

To start with, x′ can be found by using the addition formula as

x′ =
(︄
yq2 − yqℓ

xq2 − xqℓ

)︄2

− xq2 − xqℓ
.

Secondly, xq
τ may be expressed by using the formulas for [n](x, y) for a point

(x, y) ∈ E∗[ℓ], mentioned in Chapter 2, and applying the Frobenius endomor-
phism on the result. The relation x′ = xq

τ can be further modified by substituting
y2 = x3 + Ax + B to yi for i ≥ 2. This is the case for the x-coordinate be-
cause the first coordinates of x′ and xq

τ may be expressed as rational functions
in x only. Finally, after multiplying the equation by a common multiple of the
denominators of the rational functions in the equation, an equation of the form
hX(x) = 0 results. It remains to prove that all the computations yielding hX may
be performed modulo f̄ ℓ.

To see this, recall that for all odd integers, which is especially the case of the
primes we consider now, the division polynomial ψℓ = f̄ ℓ is a polynomial in Fq[x].
Moreover, the only roots of the polynomial are exactly the points in E[ℓ]∗, and
the polynomial is separable, as we have seen in Chapter 2. A crucial corollary of
this observation is that testing hX(x) = 0 reduces to deciding whether

hX(x) ≡ 0 (mod f̄ ℓ) (4.5)

since, as has been remarked earlier, if the equality holds for a single point of order
ℓ, it holds for all points of E[ℓ].

Suppose τ ∈ {1, . . . , (ℓ−1)/2} satisfying (4.5) is known. However, the equality
of the x-coordinates of x′ and xq

τ is not sufficient for the points (x′, y′), (xq
τ , y

q
τ )

to be equal; we only know that (x′, y′) = (xq
τ , y

q
τ ) or (x′, y′) = ⊖(xq

τ , y
q
τ ). The

former case occurs if and only if y′/y = yq
τ/y for all P = (x, y) ∈ E[ℓ]∗ (y ̸= 0

since ℓ is assumed to be odd). The expressions y′/y, yq
τ/y can be modified in

the same manner as we saw before to yield rational functions in x only, and,
after multiplying this equation by a common multiple of the denominators of the
rational functions, equation hY (x) ≡ 0 (mod f̄ ℓ) for some hY ∈ Fq[x] results.
Hence, if

y′/y − yq
τ/y ≡ 0 (mod f̄ ℓ),

then tℓ ≡ τ (mod ℓ), otherwise tℓ ≡ −τ (mod ℓ). This finishes the part for
the case when the addition formula for distinct points has to be used. The part
to which we now draw our attention not only completes the description of the
algorithm, but also reveals what happens if τ ≡ 0 (mod ℓ).
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2. ϕ2
q(P ) = [qℓ]P or ϕ2

q(P ) = ⊖[qℓ]P for some P ∈ E[ℓ]∗

The existence of a point P ∈ E[ℓ]∗ satisfying ϕ2
q(P ) = ⊖[qℓ]P immediately

gives tℓ; [tℓ](xq, yq) = ϕ2
q(P ) ⊖ [qℓ]P = ∞, and since ℓ is prime, we have tℓ ≡

0 (mod ℓ). Deciding whether ϕ2
q(P ) = ⊖[qℓ]P for some P ∈ E[ℓ]∗ can be solved

similarly as before by computing −yqℓ
(the y-coordinate of ⊖[qℓ]P ), using the

division polynomials and transforming the equality to a polynomial one in the
form h̄Y = 0 for some h̄Y ∈ Fq[x]. The equality then holds for some point in E[ℓ]∗
if and only if gcd(h̄Y , f̄ ℓ) ̸= 1.

Consider now the case when ϕ2
q(P ) = [qℓ]P for some point P ∈ E[ℓ]∗. The

relation (4.3) for P changes to

[tℓ]ϕq(P ) = ϕ2
q(P )⊕ [qℓ]P = [2qℓ]P,

which implies ϕq(P ) = [2qℓ/tℓ]P . This in turn gives

[qℓ]P = ϕ2
q(P ) = ϕq([2qℓ/tℓ]P ) = [4q2

ℓ/t
2
ℓ ]P, (4.6)

so

qℓ ≡
4q2

ℓ

t2ℓ
(mod ℓ) ⇐⇒ t2ℓ ≡ 4qℓ (mod ℓ),

which means that qℓ must be a quadratic residue modulo ℓ, i.e. qℓ = τ 2 for some
τ ∈ Fq. Therefore, we either have tℓ ≡ 2τ (mod ℓ) or tℓ ≡ −2τ (mod ℓ), that is,
either ϕq(P ) = [τ ]P or ϕq(P ) = ⊖[τ ]P . To determine which of these two relations
holds, we decide if yq = yτ for some P = (x, y) ∈ E[ℓ]∗. If not, then yq = −yτ .
The equation yq = yτ can be transformed to a polynomial one of the form gY = 0
for some gY ∈ Fq[x] by multiplying it by the denominator of yτ . Then the equality
ϕq(P ) = [τ ]P holds for some P ∈ E[ℓ]∗ if and only if gcd(gY , f̄ ℓ) ̸= 1. Therefore,
if the greatest common divisor is non-trivial, we have tℓ ≡ 2τ (mod ℓ). Otherwise
gY and f̄ ℓ are coprime, so yq = −yτ and therefore tℓ ≡ −2τ (mod ℓ).

It remains to describe in detail the construction of the polynomials hX , hY , h̄X ,
h̄Y and gY . We start with h̄X , which determines whether there exists a point
P ∈ E[ℓ]∗ such that ϕ2

q(P ) = [±qℓ]P . Let ⊖[qℓ](x, y) = (r1,qℓ
/s1,qℓ

,−y · r2,qℓ
/s2,qℓ

),
where the polynomials ri,qℓ

, si,qℓ
, 1 ≤ i ≤ 2 are computed by using the formula

in Theorem 2.2.2. Since ϕ2
q(x, y) = (xq2

, yq2) = (xq2
, y(x3 + Ax + B)(q2−1)/2), we

have

h̄X ≡ xq2
s1,qℓ
− r1,qℓ

(mod f̄ ℓ)

and similarly we can obtain h̄Y :

h̄Y ≡ s2,qℓ
(x3 + Ax+B)(q2−1)/2 + r2,qℓ

(mod f̄ ℓ).

Next, we express (x′, y′) = ϕ2
q(x, y)⊕ [qℓ](x, y). Using the division polynomials

we may write [qℓ](x, y) = (r1,qℓ
/s1,qℓ

, y · r2,qℓ
/s2,qℓ

), where ri,qℓ
, si,qℓ

∈ Fq[x], 1 ≤
i ≤ 2 are given by the formula in Theorem 2.2.2. The x-coordinate of x′ can now
be expressed as
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x′ =
(︄
yq2 − yqℓ

xq2 − xqℓ

)︄2

− xq2 − xqℓ
= y2

(︄
yq2−1 − r2,qℓ

/s2,qℓ

xq2 − r1,qℓ
/s1,qℓ

)︄2

− xq2 − r1,qℓ

s1,qℓ

=
(x3 + Ax+B)(s2,qℓ

(x3 + Ax+B)(q2−1)/2 − r2,qℓ
)2s2

1,qℓ

s2
2,qℓ

(xq2s1,qℓ
− r1,qℓ

)2 − xq2 − r1,qℓ

s1,qℓ

=
(x3 + Ax+B)(s2,qℓ

(x3 + Ax+B)(q2−1)/2 − r2,qℓ
)2s3

1,qℓ

s1,qℓ
s2

2,qℓ
(xq2s1,qℓ

− r1,qℓ
)2

− (s2,qℓ
(xq2

s1,qℓ
− r1,qℓ

))2(xq2
s1,qℓ

+ r1,qℓ
)

s1,qℓ
(s2

2,qℓ
xq2s1,qℓ

− r1,qℓ
)2 = rx′(x)

sx′(x)

and

y′ =
(︄
yq2 − yqℓ

xq2 − xqℓ

)︄
(xqℓ
− x′)− yqℓ

= y

(︄
y(q2−1)/2 − r2,qℓ

/s2,qℓ

xq2 − r1,qℓ
/s1,qℓ

)︄(︄
r1,qℓ

s1,qℓ

− rx′

sx′

)︄

− r2,qℓ

s2,qℓ

= (s2,qℓ
(x3 + Ax+B)(q2−1)/2 − r2,qℓ

)(r1,qℓ
sx′ − s1,qℓ

rx′)
s1,qℓ

sx′(xq2s1,qℓ
− r1,qℓ

)

− (r2,qℓ
sx′(xq2

s1,qℓ
− r1,qℓ

))
s1,qℓ

sx′(xq2s1,qℓ
− r1,qℓ

) = ry′(x)
sy′(x) .

Let

[τ ]ϕq(x, y) = (xq
τ , y

q
τ ) =

(︄(︄
r1,τ (x)
s1,τ (x)

)︄q

, y

(︄
r2,τ (x)
s2,τ (x)

)︄q)︄

=
(︄
r1,τ (xq)
s1,τ (xq) , y ·

r2,τ (xq)
s2,τ (xq)(x3 + Ax+B)(q−1)/2

)︄

where ri,τ , si,τ ∈ Fq[x], 1 ≤ i ≤ 2 are polynomials computed by the formulas for
[τ ](x, y). The last equality holds because ϕq is a homomorphism on polynomials
over the finite field Fq.

The polynomial hX is obtained by modifying the equality x′ = xq
τ so that the

equality takes the form of a polynomial one. Thus

hX ≡ rx′sq
1,τ − r

q
1,τsx′ (mod f̄ ℓ)

and similarly

hY ≡ ry′sq
2,τ − sy′rq

2,τ (x3 + Ax+B)(q−1)/2 (mod f̄ ℓ).

Finally, we construct gY for checking if ϕq(P ) = [τ ]P or ϕq(P ) = [−τ ]P for
some point P ∈ E[ℓ]∗. At this stage of the algorithm we may suppose the x-
coordinates of ϕ2

q(P ) and [±τ ]P are equal, so the polynomial gY compares only
their y-coordinates. Since ϕq(x, y) = (xq, yq) = (xq, y(x3 + Ax + B)(q−1)/2), by
letting [τ ](x, y) = (r1,τ/s1,τ , y · r2,τ/s2,τ ) we can immediately see, after cancelling
y, that

gY ≡ (x3 + Ax+B)(q−1)/2s2,τ − r2,τ (mod f̄ ℓ).

Schoof’s algorithm is summarized in the pseudocode block below.
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Algorithm: Schoof’s algorithm
Input : Prime power q = pn, n ≥ 1, elliptic curve E given by the short

Weierstrass equation y2 = f(x), where f(x) = x3 + Ax+B,
over the finite field Fq.

Output: The order of E(Fq)
1 S ← {}; tℓ ← 0

// Determine t (mod 2)
2 if gcd(xq − x, f) = 1 then tℓ ← 1
3 S ← S ∪ {(tℓ, 2)}

// Determine tℓ ≡ t (mod ℓ) for odd prime ℓ
4 m← 2; ℓ← 3
5 while m ≤ 4√q do
6 qℓ ← q (mod ℓ) so that |qℓ| < ℓ/2
7 Precompute division polynomials modulo f̄ ℓ, xq, yq, xq2

, yq2 modulo f̄ ℓ

and division polynomials evaluated at (xq, yq) modulo f̄ ℓ

8 Construct h̄X(x)
9 if gcd(h̄X , f̄ ℓ) ̸= 1 then

10 Construct h̄Y (x)
11 if gcd(h̄Y , f̄ ℓ) ̸= 1 then
12 tℓ ≡ 0 (mod ℓ)
13 else

/* Here it is guaranteed that qℓ = τ 2 for some τ ∈ Fℓ

and ϕq(P ) = [±τ ]P for some P ∈ E[ℓ]∗ */
14 Find τ ∈ Fℓ such that qℓ ≡ τ 2 (mod ℓ)
15 Construct gY (x)
16 if gcd(gY , f̄ ℓ) ̸= 1 then tℓ ≡ 2τ (mod ℓ)
17 else tℓ ≡ −2τ (mod ℓ)
18 else

/* At this point we may suppose the points ϕ2
q(P ) and

[qℓ]P are distinct for all P ∈ E[ℓ]∗ */
19 for τ = 1 to (ℓ− 1)/2 do
20 Construct hX(x)
21 if hX ≡ 0 (mod f̄ ℓ) then
22 Construct hY (x)
23 if hY ≡ 0 (mod f̄ ℓ) then tℓ ≡ τ (mod ℓ)
24 else tℓ ≡ −τ (mod ℓ)
25 break
26 end
27 S ← S ∪ {(tℓ, ℓ)}
28 ℓ← nextprime(ℓ)
29 if ℓ = p then ℓ← nextprime(ℓ)
30 end
31 Obtain t̂ ≡ t (mod m) by applying CRT to the congruence system given

by S. Choose t̂ such that |t̂| ≤ 2√q.
32 return q + 1− t̂
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4.2 Time Complexity of Schoof’s Algorithm
From the description of Schoof’s algorithm, one may easily guess that most time
of the algorithm is spent on the arithmetics of polynomials over the finite field Fq.
We will first give a generalized time complexity of Schoof’s algorithm in terms
of the time complexity of relevant operations in Fq and Fq[x]. Once we have
a general formula for the time complexity of Schoof’s algorithm, we will prove
a basic upper bound on the complexity. Finally, we will briefly mention that
better upper-bounds of the complexity can be theoretically attained.

To start with, we need the following theorem [11] to give an estimate on the
number of loops of the main cycle in the pseudocode above.

Theorem 4.2.1. (The Prime Number Theorem) If π(x) denotes the number of
primes less than or equal to x ∈ R, then π(x) satisfies

π(x) ∼ x

ln x
in the sense that

lim
x→∞

π(x)
x

ln x

= 1.

It immediately follows from Theorem 4.2.1 that there are about O(log n/
log log n) ⊆ O(log n) primes of size at most log n among the first log n natural
numbers.

Before we begin with the analysis of the time complexity of Schoof’s algorithm,
let us for the purpose of the analysis denote by M(q) and m(q) the costs of
multiplication in Fq[x] and Fq, respectively. Throughout the proof, the notions
“steps“ and “bit operations“ will be freely interchanged, the latter being the more
precise of the two.

Theorem 4.2.2. Schoof’s algorithm finds the order of E(Fq) in O(M(q) log2 q).

Proof. The main loop (starting at line 5) of Schoof’s algorithm processes O(log q)
primes; O(log 4√q) = O(log q) primes are needed to make m large enough, and
their existence is expected by the previous observation, which says that there are
O(4 log√q) = O(log q) primes of size O(log q) among the first log 4√q natural
numbers. For the rest of the proof, we will assume ℓ is a prime of size O(log q).

What makes Schoof’s algorithm fast is the use of the small degree of division
polynomials. In particular, we know that deg f̄ ℓ ∈ O(ℓ2) = O(log2 q), which
is also true for all polynomials used in the formula for the multiplication-by-n
endomorphism. Moreover, even though xq, yq, xq2 and yq2 have degrees linear or
even quadratic in q, computing the powers by applying the binary exponentiation
mod f̄ ℓ (in case of y’s after the substitution of the equation of the elliptic curve)
requires only O(M(q) log q) steps. Hence, the number of steps performed in
a single run of the main loop is fully determined by the number of multiplications
carried out in Fq[x]/(f̄ ℓ). Therefore, we shall now look more closely at how many
products are needed in various parts of the algorithm:

• Precomputing necessary division polynomials by using the recursive formu-
las for further computations costs O(ℓ) = O(log q) multiplications in Fq[x].
Hence the total cost of this part is O(M(q) log q).

24



• Computing xq, xq2
, yq, yq2 mod f̄ ℓ requires O(log q) multiplications, giving

the total complexity of O(M(q) log q).

• After computing the Frobenius maps above, the construction of the poly-
nomials hX , hY , h̄X , h̄Y requires only a constant number of multiplications.
The construction can thus be accomplished by performing O(M(q)) steps.

• The Euclidean algorithm for computing the greatest common divisor of
polynomials of degree O(ℓ2) performs O(log ℓ2) = O(log log q) remainder
evaluations, the cost of which is negligible.

• Finding the square root mod ℓ can be achieved by simple trial-and-error,
yielding the time complexity of O(m(q) log q) ⊆ O(M(q) log q).

Finally, nextprime runs in almost constant time because of the size of primes
the algorithm considers, and recovering t by using the Chinese Remainder Theo-
rem can also be achieved fairly quickly (O(log q) multiplications and inverses in
Fq, which is negligible in comparison to the rest).

To summarize, precomputing division polynomials and the Frobenius maps
takes O(M(q) log q) steps, the part spanning lines 8-17 requires O(M(q)) steps,
and the body of the for loop (lines 20-25), being repeated exactly (ℓ − 1)/2 ∈
O(log q), runs in O(M(q)). We therefore reach the conclusion that the overall
time complexity of Schoof’s algorithm is O(log q · (M(q) log q)) = O(M(q) log2 q).

We can now discuss the running time of Schoof’s algorithm for specific types
of algorithms used for multiplication in Fq and Fq[x]. The most straightforward
implementation of multiplication for polynomials of degree at most d costs O(d2)
multiplications of elements in Fq, and the same operations in Fq require O(log2 q)
bit operations. Consequently, the overall time complexity of multiplication of
polynomials used in Schoof’s algorithms of degree d ∈ O(log2 q) is O(log6 q). We
have just showed the following:

Theorem 4.2.3. Schoof’s algorithm finds the order of E(Fq) in O(log8 q).

Of course, more advanced algorithms for multiplication in Fq[x] which are
asymptotically much faster than the trivial one can be considered. As an exam-
ple, the algorithm described in [12] multiplies two polynomials of degree log2 q
in O(log3 log log q) bit operations, under the assumption of a hypothesis regard-
ing the least prime in an arithmetic progression. Plugging this complexity into
Theorem 4.2.2 causes the overall running time of Schoof’s algorithm to drop to
O(log5 q log log q).
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5. Implementation of Schoof’s
Algorithm
Now that we have explained Schoof’s algorithm for counting rational points on
an elliptic curve, we can move forward to describe our implementation [13] of the
algorithm. Firstly, we will list technologies we decided to use for the implemen-
tation and argue why this choice was appropriate one. Next, the design of the
program, involving the structures, classes and organization of the code, will be
discussed. The discussion will be followed by investigation of the performance of
the implementation, which will be supported by measurements of its actual speed
on elliptic curves over finite fields of gradually larger sizes.

5.1 Dependencies
To start with, C++ has been chosen as the major and only programming language
for the purposes of the implementation. Since the standard of the language does
not offer an efficient multi-precision arithmetics on arbitrarily large numbers as
well as a support for finite fields and polynomials, an external library for these
operations and objects must have be provided. From the list of plausible libraries,
two most popular stand out: FLINT [14] (a C++ wrapper, to be precise) and
NTL [5].

Schoof’s algorithm depends heavily on the implementation of various poly-
nomial operations over finite fields, mainly multiplication, exponentiation, and
Euclidean algorithm for the greatest common divisor. We therefore need to com-
pare both libraries especially on these operations.

Fortunately, NTL’s main page [15] explicitly gives a comparison of NTL and
FLINT, which evaluates the performance of NTL and FLINT in these polynomial
operations. The tables in Figures 5.1 to 5.4 display their relative speed as the
ratios FLINT-time/NTL-time.

k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 2.76 2.48 2.84 2.57 2.54 2.46 2.61 2.48 2.59 2.53 2.55 2.30 2.52
1/2 1.45 1.57 1.56 1.79 1.74 2.07 2.08 2.33 2.44 2.21 2.54 2.32 3.26

1 1.07 1.12 1.11 1.24 1.22 1.42 1.40 1.86 1.85 1.99 2.94 2.26 2.83
2 0.83 0.85 0.84 0.90 0.88 0.98 0.97 1.20 1.17 1.63 1.60 1.75 2.17
4 0.98 1.00 0.96 1.00 1.00 1.00 0.99 1.07 1.06 1.23 1.14 1.43 1.41
8 1.05 1.04 1.03 1.02 1.00 0.98 0.97 0.95 0.94 1.02 0.98 0.95 0.94

16 0.96 0.97 0.97 0.97 0.96 0.96 0.94 0.93 0.91 0.87 0.85 0.91 0.89

Figure 5.1: Multiplication in Fp[x] : n = degree bound, k = #bits in p
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k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 4.31 3.73 4.25 3.74 4.00 3.57 3.94 3.61 4.04 3.66 3.88 3.36 3.88
1/2 2.22 2.27 2.36 2.61 2.68 3.12 3.21 3.49 3.84 3.27 3.94 3.44 5.09

1 1.62 1.64 1.68 1.81 1.85 2.13 2.15 2.79 2.83 3.00 4.58 3.20 4.31
2 1.28 1.24 1.27 1.34 1.34 1.49 1.51 1.82 1.83 2.39 2.54 2.48 3.22
4 1.50 1.47 1.49 1.47 1.50 1.47 1.50 1.60 1.63 1.77 1.84 2.08 2.07
8 0.76 0.78 0.78 0.79 0.79 0.76 0.78 0.81 0.84 0.87 0.88 1.01 0.99

16 0.58 0.57 0.58 0.58 0.58 0.58 0.58 0.60 0.59 0.61 0.59 0.66 0.65

Figure 5.2: Multiplication in Fp[x]/(f) : n = degree bound, k = #bits in p

k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 4.14 3.66 4.31 3.72 3.90 3.62 4.01 3.68 4.11 3.81 4.12 3.66 4.18
1/2 2.38 2.43 2.51 2.77 2.85 3.36 3.47 3.71 4.05 3.58 4.20 3.90 5.27

1 1.78 1.82 1.87 2.03 2.05 2.33 2.42 3.11 3.15 3.43 4.93 3.58 4.79
2 1.43 1.43 1.51 1.51 1.55 1.67 1.70 2.05 2.06 2.82 2.92 2.85 3.45
4 1.62 1.65 1.65 1.61 1.67 1.61 1.66 1.77 1.80 1.89 2.01 2.33 2.31
8 0.85 0.89 0.86 0.89 0.86 0.90 0.87 0.89 0.94 0.97 0.94 1.08 1.09

16 0.63 0.64 0.64 0.64 0.65 0.64 0.63 0.66 0.66 0.67 0.66 0.73 0.72

Figure 5.3: Squaring in Fp[x]/(f) : n = degree bound, k = #bits in p

k/1024 n/1024
1/4 1/2 1 2 4 8 16

1/4 1.51 1.60 1.84 1.86 2.18 2.10 2.52 2.31 2.75 2.46 2.96 2.59 3.11
1/2 1.40 1.47 1.58 1.64 1.75 1.77 1.88 1.89 2.06 2.07 2.28 2.25 2.45

1 1.22 1.30 1.31 1.38 1.41 1.45 1.49 1.53 1.60 1.63 1.69 1.73 1.83
2 1.13 1.24 1.17 1.28 1.22 1.29 1.25 1.33 1.30 1.37 1.36 1.42 1.42
4 1.16 1.30 1.27 1.37 1.33 1.40 1.37 1.45 1.42 1.45 1.47 1.48 1.52
8 1.00 1.14 1.01 1.13 1.02 1.10 1.02 1.08 1.00 1.06 1.00 1.03 0.98

16 0.95 1.08 0.92 1.04 0.89 0.99 0.87 0.97 0.86 0.94 0.85 0.91 0.84

Figure 5.4: Computing GCDs in Fp[x] : n = degree bound, k = #bits in p

The degree of polynomials considered in Schoof’s algorithm is O(log2 q), and
since the elliptic curves used nowadays [17] are mostly defined over finite fields of
order about 256 bits, the tables clearly suggest that NTL is considerably faster
than FLINT when considering operations of our interest. We have therefore
created an implementation of Schoof’s algorithm in C++ supported by NTL.

5.2 Source Code Organization
The source code of the implementation of Schoof’s algorithm is divided into two
files: ellc.cpp and formulas.cpp. The former file contains major part of the
implementation while the latter provides formulas for Schoof’s algorithm, namely
for computing

• division polynomials and division polynomials modulo f̄ ℓ,
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• xq, xq2
, yq, yq2 (mod f̄ ℓ)

• [n]P (mod f̄ ℓ) for n not divisible by ℓ,

• [n]P (mod f̄ ℓ) for n not divisible by ℓ, and

• ϕ2
q(P )⊕ [qℓ]P ,

where P = (x, y) ∈ E(Fq) and ℓ is an odd prime. These formulas mostly perform
some computations on an elliptic curve, so they are quite specific. For this reason,
they have been moved to this file to improve the code’s readability.

There are three other files located in src directory: demo.cpp, utils.cpp
and tests.cpp. demo.cpp demonstrates usage of counting points on a Weier-
strass curve; utils.cpp contains only two simple functions to set polynomials’
coefficients and serves as a file for implementing other helper functions. Finally,
tests.cpp contains customizable tests on which this implementation of Schoof’s
algorithm was executed.

5.3 Implementation Details
As already indicated, the core of the implementation is located in ellc.cpp.
Two classes appear in the corresponding header file ellc.h: WEllipticCurve
and WECComp. WEllipticCurve stands for the class used to store data about the
Weierstrass curve over the given finite field.

5.3.1 WEllipticCurve
The class WEllipticCurve is very simple: an object of WEllipticCurve keeps
the order of the finite field, the Weierstrass equation and its coefficients. As for
the interface, there is only one non-trivial method, and that is count points(),
which implements Schoof’s algorithm. The body of this method basically copies
the pseudocode of Schoof’s algorithm we saw in Chapter 4 and should be straight-
forward and easy to understand. Nevertheless, there are two things to note to
make the body completely clear to the user:

• Checking for q ≤ 2|√q| is equivalent to testing for q2 ≤ 4q, which avoids the
use of floating-point numbers and thus having to import a separate library
for their support.

• The number of division polynomials needed in one cycle of Schoof’s algo-
rithm is at most ℓ+2, which follows from the formulas used for computation
of multiples of a point (x, y) ∈ E[ℓ]∗ – the largest index appearing in these
formulas is ℓ+ 2.

5.3.2 WEEComp
WECComp’s interface consists of methods initializing division polynomials, division
polynomials modulo a fixed ℓ-th division polynomial, and also division polyno-
mials modulo ℓ-th division polynomial, evaluated at a point (xq, yq) for (x, y) ∈
E[ℓ]∗. The presence of the last two methods is necessary; otherwise we would
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need to work with polynomials of larger degrees than O(ℓ2) in the first case, and
the evaluation would cost more than generating the division polynomials in the
second case.

Apart from the methods for initializing the division polynomials, there are also
methods for computing addition of points in E[ℓ], the details are well described
in the code.

Finally, there are methods for computing the polynomials hX , hY , h̄X , h̄Y , and
gY . Their names do not match those we introduced in Chapter 4, see the com-
ments in the code that clarify which polynomial is which.

5.4 Testing
To ensure that the implementation always gives the correct answer for an arbi-
trary smooth Weierstrass curve over finite field with characteristic distinct from
2 and 3, it was tested against various types of Weierstrass curves. Input data for
these tests were created automatically by the Sage script simple ec gen.sage,
which makes calls to SageMath [16] functions for finding the order of the given
elliptic curve. It is thus required to have installed SageMath to generate random
Weierstrass curves using this script.

The script contains the following function for generating input data:

• fixed fq test(n, p, e, F ) – generates n non-equivalent smooth Weierstrass
curves (non-equivalent in terms of j-invariants, see below) given by the
Weierstrass equation over the finite field F = Fpe , where p ̸∈ {2, 3}. The
function was mainly used for detecting errors in the implementation.

• create test(n, nbits, outf) – produces n non-equivalent smooth Weierstrass
curves over the finite fields Fp, where p ∈ [2nbits−1, 2nbits) and appends them
to the file outf. This function was used to generate input data for perfor-
mance measurements, see below.

5.5 Performance Results
To begin with, all measurements were performed on HP Pavilion Laptop Model
15-eg2051nc, with Intel Core i7-1260P CPU and Arch Linux operating system.
The tests devised for performance measurements included only elliptic curves
over finite fields Fp for arbitrary primes p within the range from 4 bits to 128
bits. Not only creating such tests was simpler than generating elliptic curves
over extension fields of prime fields, but also elliptic curves found in practice are
essentially only considered over Fp, see [17]. For each size of the prime p, a fixed
number of mutually non-equivalent elliptic curves (over the algebraic closure of
Fp) were generated, say n, so that we could observe the influence of the value of
n on the average running time of the algorithm. The equivalence was checked by
comparing the j-invariants [1] of the curves. The plot in Figure 5.5 displays the
results of our measurement for n ∈ {10, 15}.
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Figure 5.5: Average running time of our implementation of Schoof’s algorithm
executed on elliptic curves over finite field Fp, where p ranges from 4 bits up to
128 bits.

Once we have these data, it is natural to inspect the actual trend of the
measured running time. For this reason, we extended input to involve primes
of size up to 156 bits to increase credibility of the estimation of the algorithm’s
expected running time. This test produced the following plot in Figure 5.6. We
also used scipy’s curve fit function [18] to find the best fitting curve for our
data, which we set to be in the form y = axb + c for some parameters a, b, c ∈ R
since the total time complexity is expected to be in the form of a power of log q.

It should not be surprising that the fitted curve in Figure 5.6, given by y =
6.18e−07x3.57 + 0.347, differs significantly from the theoretical result about the
time complexity of Schoof’s algorithm derived in Chapter 4. Leaving aside the
hardware’s influence on the running time such as retrieving data from caches,
accessing memory or optimizations on CPUs, the cost of polynomial operations
does not match those we assumed in proving the theoretical time complexity.

For example, the documentation of NTL says that the polynomial arithmetic
of univariate polynomials over a finite field Fp is implemented using the FFT,
combined with the Chinese Remainder Theorem. In this way, assuming the time
complexity of multiplication of field elements is still O(log2 q), the cost of multi-
plying polynomials of degree O(log2 q) drops from O(log4 q) to O(log2 log log q),
yielding the total time complexity of Schoof’s algorithm at O(log6 log log q). Sim-
ilarly, a different method for modular exponentiation, namely a sliding window
method [19], is used by NTL.
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Figure 5.6: Expected running time of the implementation of Schoof’s algorithm
as a power function of the size of a finite field.
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Conclusion
As demonstrated in this thesis, Schoof’s algorithm requires an understanding of
not only the group of elliptic curves and the addition applied to points on the
curve, but also more advanced mathematical concepts such as division polyno-
mials and rational maps on elliptic curves.

After absorbing these topics, we were able to implement the algorithm in its
basic version, without additional enhancements such as those proposed by Elkies
and Atkins or parallelization. Despite this, we have developed a useful tool for
determining the order of elliptic curves over finite fields, which produces results
in approximately 20 seconds for curves over finite fields of sizes about 128 bits.

In the future, we plan to extend our implementation by adding these proposed
optimizations, aiming to improve the performance of the implementation and
come closer to that of mathematical software systems such as SageMath.
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