
BACHELOR THESIS

Samuel Fanči

Social Networks: Analysis of Evolution
and Sentiment

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: doc. RNDr. Iveta Mrázová, CSc.
Study programme: Computer Science

Study branch: Artificial Intelligence

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I want to thank my supervisor doc. RNDr. Iveta Mrázová, Csc. for her endless
patience and invaluable insight during the work on this thesis. I would also like
to thank my family, for giving me the opportunity to study abroad and always
supporting me. Finally, I want to thank my girlfriend and my friends, for being
there when I needed them most.

ii

Title: Social Networks: Analysis of Evolution and Sentiment

Author: Samuel Fanči

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: doc. RNDr. Iveta Mrázová, CSc., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract: Nowadays, social networks form an essential part of our lives. Their
analysis helps us better understand various social phenomena, identify individ-
uals influencing society, and model future developments of communities. Often,
real-world social networks conform to power-law degree distribution. We oriented
our research toward investigating communities surrounding two well-known com-
panies: GameStop and Enron. Using the data obtained from Reddit and Twitter,
we have trained machine learning models like Support vector machines and Neu-
ral networks to assess the sentiment of the GameStop community. The results
confirm the expected positive sentiment following the GameStop price spike in
2021.

We constructed the respective social networks based on the available datasets and
identified their vital individuals according to selected centrality measures. Pub-
licly known figures like Ryan Cohen in the case of GameStop and Jeff Skilling in
the case of Enron are ranked high according to PageRank and Authority scores.
On the other hand, minor influencers from the GameStop community and the
upper management of Enron were assigned top ranks of the Hub score and Be-
tweenness centrality. A statistical analysis using the goodness-of-fit test for the
power-law degree distribution was performed for both networks. Results indicate
a plausible fit only for the in-degree distribution of the Twitter network and for
the in- and out-degree distributions of the Enron network (p = 0.8366, p = 0.496,
and p = 0.546, respectively).

Keywords: social networks, sentiment analysis, data mining, detection of influ-
ential individuals, machine learning

iii

Contents

1 Definitions and notation 6
1.1 Notation . 6
1.2 Definitions . 6

2 Social Networks 8
2.1 Definitions and Properties . 8

2.1.1 Properties . 8
2.2 Power-Law Degree distribution 9

2.2.1 Formal Definition of Power-Law Degree Distribution . . . 9
2.2.2 Effects of Power-law distribution 10
2.2.3 Large Hubs . 11

2.3 Fitting and generating power-laws 11
2.3.1 Goodness-of-fit . 12
2.3.2 Generating power-laws . 13

2.4 Important nodes . 13
2.4.1 Betweennes Centrality . 13
2.4.2 PageRank . 14
2.4.3 HITS . 16

3 Models 17
3.1 Naive Bayes classifier . 17

3.1.1 Gaussian Naive Bayes . 18
3.1.2 Multinomial Naive Bayes 19

3.2 Simple Neural Networks . 19
3.2.1 Multilayer Perceptron . 19

3.3 Recurrent Neural Networks . 23
3.3.1 LSTM . 24
3.3.2 GRU . 25

3.4 Decision Trees . 26
3.4.1 Creating a decision tree 27
3.4.2 Model ensembling and Bagging 28
3.4.3 Gradient Boosting Decision Trees 28
3.4.4 AdaBoost . 29

3.5 Support Vector Machines . 31
3.5.1 Multiclass classification . 32

3.6 Preprocessing techniques . 32
3.6.1 TF-IDF . 33
3.6.2 Principal Component Analysis 34

4 Analyzed Social Network Data 36
4.0.1 Dataset Descriptions . 36

4.1 Dataset analysis and visualization 39
4.1.1 Reddit . 39
4.1.2 Twitter . 42
4.1.3 Enron . 45

1

4.2 Hypotheses . 46
4.2.1 GameStop . 46
4.2.2 Enron . 47

5 Supporting experiments 48
5.1 Experiment Setup . 48

5.1.1 Sentiment model setup . 48
5.1.2 Network parameter calculation setup 49

5.2 Sentiment model results . 49
5.2.1 Naive Bayes . 50
5.2.2 Support Vector Machines 52
5.2.3 Neural Network Ensemble 53
5.2.4 RNNs . 55
5.2.5 Random Forests . 56
5.2.6 Result Summary . 58
5.2.7 Sentiment estimation . 59

5.3 Node importance estimation results 60
5.3.1 Twitter . 60
5.3.2 Enron . 62
5.3.3 Result summary . 64

5.4 Power-law fit investigation results 64
5.4.1 Twitter . 64
5.4.2 Enron . 65
5.4.3 Result summary . 66

5.5 Future work . 67

Conclusion 68

Bibliography 69

List of Figures 72

List of Tables 73

A Attachments 74
A.1 Short documentation . 75

A.1.1 Folder structure . 75
A.1.2 Model scripts . 75
A.1.3 utils.py . 76
A.1.4 annotator.py . 76
A.1.5 data visualization.ipynb 76
A.1.6 dataset processor.py . 76
A.1.7 gui.py . 76
A.1.8 enron network.py . 77
A.1.9 experiments.ipynb . 77
A.1.10 gamma estimate.r . 77
A.1.11 network metrics.py . 77
A.1.12 postprocessing.py . 77
A.1.13 scraper.py . 77

2

A.1.14 sentiment.py . 77
A.1.15 twitter network.py . 77
A.1.16 pw.txt . 77
A.1.17 twitter info.json . 77

3

Introduction
Social networks have become an inseparable part of our daily lives and repre-
sent the focus of this thesis. By studying them, we can better understand social
dynamics, explain events happening in our world, and possibly predict future
societal developments. We can model the spread of infectious diseases in a popu-
lation, the social impact of certain actors in the network, or estimate the results of
upcoming elections. Combining the knowledge from the fields like graph theory,
mathematical analysis, and artificial intelligence, we will analyze real-world social
networks formed around two well-known companies: GameStop and Enron.

GameStop is an American video game retailer that made waves in the news
throughout 2021. The company’s stock value was slowly decreasing in the previ-
ous years since its online competition overtook the business. However, at the end
of January 2021, the value of the ailing company skyrocketed, briefly reaching
$483, up from around $17 a few weeks prior. This spike in its value affected a
community of retail investors/gamblers on Reddit, called r/wallstreetbets, and
later on Twitter. Obviously, the value of GameStop rose due to hype, regardless
of its actual value.

Enron was an American energy company that diversified into many sectors,
including security trading. It is infamous for being one of history’s most promi-
nent corporate fraud cases. Much of the upper management was complicit in the
crime. The law enforcement agencies subpoenaed the internal company emails
and released them publicly.

In the case of GameStop, it would be interesting to see the evolution of sen-
timent of the communities toward GameStop following the price spike. Creating
a sentiment model will be our first goal. Its purpose will be to classify the pro-
vided input text into one of three categories: positive, negative, or neutral (w.r.t.
GameStop). To address this issue, we will use selected machine learning models
of varying complexity: Naive Bayes, Support Vector Machines, Random Forests,
Recurrent, and Perceptron-like Neural Networks.

Our second goal will be identifying the key players in the investigated com-
munities (both GameStop and Enron). We would like to see if the most talked
about people regarding these companies are also the structurally most important
ones. For this purpose, we will construct a social network from each dataset and,
for each node, calculate multiple importance scores based on different importance
measures. These measures will be PageRank - for general structural importance,
HITS Authority and Hub scores - measuring how well a node functions as a source
and a hub for information spread, respectively and, lastly, Betweenness centrality
- measuring the criticality of a node w.r.t. the flow of information throughout
the network.

Many real-world social networks follow the power-law degree distribution.
There are several exciting consequences to networks with this degree distribu-
tion, for example, extreme disparities between node degrees. Our third goal will
therefore be to fit a power law for both of these networks and determine the
statistical significance of this fit.

The thesis consists of five chapters. The first chapter contains the used no-
tations and definitions of mathematical notions we will use in the latter parts

4

of the work. In the second chapter, we will lay down the theoretical founda-
tions for studying social networks, discuss some of their properties, and describe
the previously mentioned node importance measures. We will also explain the
goodness-of-fit statistical test for the power-law fit. The third chapter provides
an overview of the machine learning models used for sentiment analysis and some
preprocessing techniques used for their training. The fourth chapter includes a
preliminary analysis of the gathered Twitter, Reddit, and Enron data, together
with hypotheses for the outcomes of experiments. Finally, the fifth chapter de-
scribes the experiments we have performed and the results we have obtained.

5

1. Definitions and notation
In this chapter are defined some basic notions used throughout the thesis, along
with definitions of basic mathematical concepts.

1.1 Notation
• c - a scalar number

• v ∈ Rn - a column vector of scalars v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1
v2
.
.
.

vn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

• A ∈ Rn×m =

⎛⎜⎜⎜⎜⎜⎜⎝
a1,1 a1,2 ... a1,m

. .

. .

. .
an,1 an,2 ... an,m

⎞⎟⎟⎟⎟⎟⎟⎠ - a matrix consisting of real numbers

containing n rows and m columns

• Ai,j - the value at the i-th row and j-th column in matrix A

1.2 Definitions
These definitions come from Chapter 1 and 2 of [1].

Definition 1 (Probability space). A triple (Ω,F , P), where Ω is a sample space
- set of all possible events, F is an event space - set of all subset of the sample
space and P is a probability measure on (Ω,F)

For example for a coin toss it can be Ω = {’heads’, ’tails’}

Definition 2 (Discrete Random variable). A random variable X is mapping from
the sample space to some measurable space E

X : Ω→ R (1.1)

If the image of the mapping is countable, it is a discrete random variable.

Definition 3 (Probability mass function). Probability mass function (or pmf) of
a discrete random variable X on (Ω,F , P) is the function pX : R→ [0, 1] s. t.

pX(x) = P (X = x)

Definition 4 (Distribution function). Distribution function of a discrete random
variable X on (Ω,F , P) is the function FX : R→ [0, 1] defined by

FX(x) = P (X ≤ x)

It is also called a cumulative distribution function, or CDF.

6

Definition 5 (Expectation of a discrete random variable). If X is a discrete
random variable, the expectation of X is defined by

E(X) =
∑︂

x∈Im(X)
xP (X = x)

whenever this sum converges absolutely, that is ∑︁x |xP (X = x)| <∞.

Definition 6 (Continuous Random variable). Random variable X is continuous,
if its distribution function FX may be written as

FX(x) = P (X ≤ x) =
∫︂ x

−∞
fX(u)du, x ∈ R

for some non-negative function fX . We say that this random variable has a
(probability) density function (pdf) fX .

Definition 7 (Expectation of a continuous random variable). If X is a continu-
ous random variable with a probability density function fX , then the expectation
of X is defined as

E(X) =
∫︂ ∞

−∞
xf(x)dx

Definition 8 (The chain rule (probability) [2]). Let X, Y be random variables.
Then

P (X = x, Y = y) = P (Y = y|X = x) · P (X = x)
For multiple random variables X1, ..., Xn taking possible values x1, ..., xn, the fol-
lowing holds

P (X = xn, ..., X1 = x1) =
n∏︂

i=1
P (Xi = xi|Xi−1 = xi−1, ..., X1 = x1)

Definition 9 (Bayes Theorem). Let {B1, B2, ...} be a partition of the sample
space Ω s.t. ∀i : P (Bi) > 0. For any event A with P (A) > 0,

P (Bj|A) = P (A|Bj)P (Bj)∑︁
i P (A|Bi)P (Bi)

7

2. Social Networks
Social networks are an important part of our lives, and study of them is a major
part of this thesis. In this chapter, we will introduce the theoretical framework
used to study them, and describe properties relevant for this work. Theory in-
cluded in this chapter is sourced mostly from Chapter 19 of [3] and Chapter 4 of
[4].

2.1 Definitions and Properties
We will represent social networks as a graph G = (N, E), where N is the set
of nodes and E the set of edges. Vertices represent individuals (most of the
time), and edges the relationships between them. They can be both directed
or undirected, depending on the semantics. For example on Twitter, if user u
follows user v, then we will have a directed edge (u, v) from u to v. If we had a
network of friends for example, the edges would be undirected, since friendship
is symmetrical (in most cases).

Social networks have some important properties that distinguish them from
other graphs, and we will talk about them here.

2.1.1 Properties
The first one is homophily. It is a principle that is important for estimation of
properties of nodes in social networks, and many others. It can be summed up in
the adage Birds of a feather flock together. In other words, connected nodes are
more likely to share similar properties.

Next we have something called triadic closure. It says that when we have
two nodes with a common friend, they will likely also be connected in the future.
This property is one of the reasons that social networks tend to densify over time.
The pace of addition of edges is faster than that of nodes. Indeed, if e(t) is the
number of edges at time t, similarly n(t) for nodes, then

e(t) ∝ n(t)β, 1 ≤ β ≤ 2 (2.1)

If we have β = 1, then the average degree of nodes in the network is not affected
by addition of new nodes. On the other hand, β = 2 corresponds to the network
being a constant fraction of a complete graph of n(t) nodes at all times.

This property is closely related to the fact that the average path distance
between nodes in the network is quite small. This is called the small world
property. The distance is thought to grow logarithmically with the number on
nodes.

Related to the small average distance are shrinking diameters, which means,
that, quite unexpectedly, the maximum length of the shortest paths between
nodes is shrinking over time. This is caused by the presence of hubs. Hubs are
highly interconnected nodes, often with degrees much higher than most other
nodes in the network.

These large hubs are created in part because popular individuals tend to get
more and more popular. We call this phenomenon preferential attachment, If the

8

probability of a new node in the network attaching itself to node i is p(i), and
the degree of node i is d(i), then

p(i) ∝ d(i)α (2.2)

Parameter α is domain-dependent. If α ≈ 1, we call this network scale-free. We
will talk about the scale-free property later.

As a network evolves, it tends to form a giant connected component, or GCC,
since most new nodes will attach themselves to major hubs. GCC has to be
taken into account when we are doing clustering, since it tends to make the
clusters unbalanced.

2.2 Power-Law Degree distribution
A very important consequence of preferential attachment is the node degree dis-
tribution in social networks. This is the main property that distinguishes social
networks from random graphs. It says that the probability pk of a node having a
degree k is proportional to

pk ∼ k−γ, γ ≥ 1 (2.3)
Where γ is a network-dependent parameter describing the degree distribution. If
we take a logarithm of the above, we realize that log pk is linearly dependent on
log k. For directed graphs, we have a pkin

and pkout for in-degrees and out-degrees.
For example, the degree distribution of the World Wide Web at end of the 20th
century, had a γin ≈ 2.1 and γout ≈ 2.45 [5].

2.2.1 Formal Definition of Power-Law Degree Distribu-
tion

A different way we can write 2.3 is

pk = Ck−γ

for some constant C. Since degrees can be any k ∈ N , k ≥ 1, and it should be a
distribution, we constrain it by

∞∑︂
k=1

pk = 1

Combining these two formulas we can derive the value for C

C
∞∑︂

k=1
pk = 1

C = 1∑︁∞
k=1 k−γ

= 1
ζ(γ) (2.4)

where ζ(γ) is the Riemann Zeta function. So the probability of a node having a
degree k is

pk = k−γ

ζ(γ) (2.5)

9

However, sometimes it is convenient to allow values of node degrees to be any
positive real number. We will treat the probability pk as a function of k. Assuming
kmin is the minimum degree of a node in the network, we write

p(k) = Ck−γ (2.6)

Once again, for this to be a distribution, the area under the curve has to sum up
to 1, so ∫︂ ∞

kmin

p(k)dk = 1

Similarly as before, we arrive at

C = 1∫︁∞
kmin

k−γdk
= (γ − 1)kγ−1

min (2.7)

p(k) = (γ − 1)kγ−1
mink−γ (2.8)

2.2.2 Effects of Power-law distribution
As we said before, networks following the power law distribution differ from ran-
dom networks mainly by the presence of hubs. In random networks, the degrees
of nodes follow the Poisson distribution, and therefore cluster around the mean,
denoted by ⟨k⟩. In scale free networks, there is a nontrivial amount of very high
degree nodes. This would be very improbable in random networks. Scale-free
networks also allow for very high maximum degrees, orders of magnitudes higher
than kmin.

For illustration, in a Poisson distribution, the probability of a node having a
degree of 100 hundred is

p100 ≈ 10−94

which is effectively zero. However, for a power-law, p100 ≈ 4 · 10−4. If we had
a random network with ⟨k⟩ = 4.6 and N = 1012 (Similar to WWW), then the
expected number of nodes with a degree higher than 100 would be

Nk≥100 = 1012
∞∑︂

k=100

(4.6)k

k! e−4.6 ≈ 10−82

Which is effectively zero. Naturally, there exist many web pages with more than
100 other documents linking to them, so the Poisson distribution is not a good
model for our network. However, if it followed a power-law with γin = 2.1 (as
estimated for WWW), we would expect to see

Nk≥100 = 4 · 109

nodes with a degree higher than 100. This is a very large number, but given the
interconnectedness of real networks, and the fact that our network has a trillion
nodes, it is not a bad estimate.

10

2.2.3 Large Hubs
Why does the power-law distribution allow for a high maximum degree kmax? It
is better to illustrate this using the exponential distribution.

p(k) = Ceλk (2.9)

where λ is the mean of the distribution. From the normalization condition we
get the value for C ∫︂ ∞

kmin

p(k)dk = 1

C = λeλkmin

To calculate kmax, we assume that we expect at most 1 node in the regime
(kmax,∞). This means that the probability of finding a node whose degree is
≥ kmax is 1

N
. ∫︂ ∞

kmax

p(k)dk = 1
n

kmax = kmin + lnN

λ
(2.10)

We see that for the exponential distribution, maximum degree scales logarithmi-
cally with the number of nodes in the network.

In case of the power-law distribution, using the same reasoning and the for-
mula 2.8, we get

kmax = kminN
1

γ−1 (2.11)
This scales much faster than log N , and implies that large networks can have
huge kmax, sometimes called natural cutoffs.

2.3 Fitting and generating power-laws
Part of this thesis is to estimate the degree exponent γ of the studied networks.
To find the exponent of a given degree distribution, we will use the method
introduced in [6].

For the discrete power-law, we can use the Maximum likelihood estimate
(MLE) for γ from [7][8]. Assuming our network contains N nodes, and kmin = 1,
the MLE estimate is

ζ ′(γ̂)
ζ(γ̂) = − 1

N

n∑︂
i=1

ln ki (2.12)

Otherwise, the estimate is [9] [10]:

ζ ′(γ̂, kmin)
ζ(γ̂, kmin) = − 1

N

n∑︂
i=1

ln ki (2.13)

Where ζ(γ̂, kmin) is the Hurwitz zeta function, which is a generalized Riemann
zeta defined as

ζ(s, a) =
∞∑︂

n=0

1
(n + a)s

(2.14)

11

Equivalent to this is a direct numerical maximization of the logarithm of the
likelihood function, which is

L(α) = −n ln ζ(α, xmin)− α
n∑︂

i=1
ln xi (2.15)

This is the method which we are going to use.
However, using the real kmin might not result in a good fit for a power-law.

The degree distribution of a real network often does not scale according to a
power law at the beginning. It only starts to follow it after some cutoff degree k.
To find such k, serving as a kmin, we will scan all k ∈ [kmin, kmax]. For each k,
we will calculate γ̂ using previously described MLE. Then, we will calculate the
Kolmogorov-Smirnov (KS) statistic for each one. This constitutes determining
the maximum distance D between the CDF of the empirical distribution of the
data S(k), and the power-law CDF parametrized by our estimate γ̂

D = max
k≥kmin

|S(k)−
[︄
1− ζ(γ,̂ k)

ζ(γ̂, kmin)

]︄

For a given kmin, we choose the γ̂ which minimizes D. At some point, the number
of nodes whose degree is higher than the kmin candidate we are trying right
now may be too low to get a statistically significant estimate of γ for the whole
network. Thus, we will stop the search when the number of nodes with a degree
d ≥ k is smaller than a number of our choosing.

To get standard errors for the estimates, we can sample N observations uni-
formly from the original data, calculate estimates of parameters for this sample,
and compute the averages and standard errors from multiple samplings. This is
the ”bootstrap” method described in [11].

2.3.1 Goodness-of-fit
We will use a goodness-of-fit test to determine how good does the power-law
with estimated parameters fit the observed data. Our hypothesis is that the
observed data comes from a power-law distribution with the previously estimated
parameters.

To express confidence in our hypothesis in a numerical way, we will use a
p-value. If this p-value is small, smaller than our chosen significance level, then
we rule out our power-law hypothesis. We will use the same significance level as
in [6], that is p ≤ 0.1.

To calculate this p-value, we will generate synthetic power-law distributed
datasets, with the same parameters as the ones we have estimated. Then, we fit
these datasets to their own power laws, and calculate their KS statistics relative
to their own best-fit power laws. The fraction of the datasets with a KS statistic
larger than the KS statistic of our own model for the empirical data will be the
p-value. We can interpret p as follows: With probability p or less we would only
by chance observe data that fits as poorly to the model as the data we have.

However, when generating these datasets, we want their distributions to follow
the power-law in the regime [kmin,∞), but to be similar to our observations below
it. Let n be the total number of nodes observed and ntail the number of observed

12

nodes with degrees greater than kmin. Then, with probability n/ntail we sample
from a power law with parameters γ̂ and kmin. Otherwise, we sample degree
values from nodes in our original data, whose degree is less than or equal to kmin,
uniformly randomly.

The accuracy of our p estimate depends on the number of synthetic datasets
we generate. In [6], Clauset et al. recommend generating at least 1

4ε−2 datasets,
if we want our p estimate to be accurate within ε of the true value.

2.3.2 Generating power-laws
To sample from a power-law distribution with given γ and kmin, we will use the
method from [6]. Usually, we have a random number generator, which can gener-
ate uniformly distributed real numbers r ∈ [0, 1]. The corresponding probability
density will be p(r). We want to transform this r into a number sampled from
a different, arbitrary distribution, whose density we will call p(x). The relation
between these densities is described by this formula

p(x) = p(r) dr

dx
= dr

dx

Integrating w.r.t x we get

P (x) =
∫︂ ∞

x
p(x′)dx′ =

∫︂ r

1
dr′ = 1− r (2.16)

therefore
x = P −1(1− r)

Where P −1 is the functional inverse of the CDF of the other distribution. We now
set P to be a power-law distribution from which we want to generate samples.
For a continuous power law we get

x = kmin(1− r)
−1

γ−1 (2.17)

An equivalent of 2.16 for a discrete power law is

P (x) =
∞∑︂

x′=x

p(x′) = 1− r

However, in the discrete case we cannot directly write an expression for P −1. We
have to solve the expression numerically.

2.4 Important nodes
There are many metrics by which we can measure the importance of nodes in a
social network, and here we will mention the ones used in this thesis.

2.4.1 Betweennes Centrality
This metric assigns importance to a node based on the flow of information through
it. It is based on the number of shortest paths that pass through this node. Let

13

r ← Uniformly randomly generated number, 0 ≤ r ≤ 1;
x2 ← xmin;
repeat

x1 ← x2;
x2 ← 2x1;

until P (x2) < 1− r;
Determine k s.t. k ≤ x < k + 1 using binary search, and discard the
non-integer part of k;

return Power-law distributed integer k
Algorithm 1: Generate power-law sample

qjk be the number of shortest paths between nodes j and k. Let qjk(i) be the
number of paths between these nodes passing through node i. Then the fraction
of shortest paths between j and k that pass through i is

fjk(i) = qjk(i)
qjk

Betweennes centrality is then defined as

CB(i) =
∑︁

j<k fjk(i)(︂
n
2

)︂ , CB ∈ [0, 1]

The denominator represents the number of all pairs of nodes.

2.4.2 PageRank
Contents of this and the following section are sourced in Chapter 18.4 of [3].

PageRank is a method that models the importance of nodes based on random
walks in the network. It was famously invented by the founders of Google, Larry
Page and Sergey Brin, and was used by Google to rank pages in their search
results. However, it can be used as an importance measure in social networks as
well.

We will consider a surfer model, that starts at a random node and moves
uniformly randomly between connected nodes. We want to know the long term
probability of the surfer finding himself at any one node, which is called the steady
state probability.

However, some nodes may not have any outgoing connections, we will call
them dead ends. For these nodes PageRank cannot be defined. Alternatively
there can even be groups of nodes, such that when the surfer arrives in one
of them, he cannot move out of the group. These are called absorbing compo-
nents. Another problem could be that the graph is disconnected. In this case,
we wouldn’t be able to compare nodes within different components properly.

The solution in the PageRank method for the first problem is to add links to
every other node in the network, and to itself, with a transition probability 1/n.
For the other two problems, we will use teleportation. The surfer may at each
step decide to visit any other node in the network with probability α, or follow
the links from this node with probability (1 − α). Typically, α = 0.1. This can

14

be thought as a kind of smoothing, since higher values of α will make the steady
state distribution more even.

Computing the steady state distribution proceeds as follows. Let In(i) be the
set of nodes incident to i, and similar Out(i) set of the other ends of outgoing
edges of i. We will treat the network as a Markov chain described by a transition
matrix P ∈ Rn×n, where n is the number of nodes. Probability of transitioning
from node i to j is

pij = 1
|Out(i)| (2.18)

Probability of teleportation from some node into node i is

pteleport(i) = α

n
(2.19)

since we can teleport into it from anywhere (and from itself too). If we denote
the steady-state probability of node j as π(j), the probability of transitioning
into i is

ptrans(i) = (1− α) ·
∑︂

j∈In(i)
π(j) · pji (2.20)

The steady-state probability of node i will be the sum of the former probabil-
ities

π(i) = α/n + (1− α) ·
∑︂

j∈In(i)
π(j)pji (2.21)

In matrix form, for all nodes

π = α
e
n

+ (1− α)PT π (2.22)

where e is a column vector of all ones. The steady state probabilities for all nodes
have to sum to one, because it is a distribution.

n∑︂
i=1

π(i) = 1 (2.23)

This system of linear equations is solvable using the following iterative method.
First, we initialize π(0)(i) = 1/n,∀i, and then we repeat

π(t+1) ← α
e
n

+ (1− α)PT π(t) (2.24)

We continue until the distribution change compared to the previous iteration is
less than a user-defined threshold ϵ.

Input: Transition matrix P, smoothing parameter α, threshold ϵ
π(0) ← e/n;
repeat

π(t+1) ← α e
n

+ (1− α)PT π(t);
Scale π so that ∑︁i π(i) = 1;

until π(t+1) − π(t) < ϵ;
return PageRank vector π

Algorithm 2: Power Iteration method

15

2.4.3 HITS
Hypertext Induced Topic Search, or HITS, is another algorithm used to rank the
importance of pages in search results. It scores the nodes as authorities and hubs.
Authorities are pages which contain many in-links, and hubs are pages containing
links to many authorities. The assumption is that good authorities are pointed to
by good hubs. In-turn, good hubs contain many links to good authorities. Each
page is assigned both an authority score a(i) and a hub score h(i). We want their
L2 norms of both vectors of scores to be 1, i.e.⌜⃓⃓⎷ n∑︂

i=1
a(i)2 =

⌜⃓⃓⎷ n∑︂
i=1

h(i)2 = 1 (2.25)

We can apply this algorithm to social networks too, since nodes with a high
authority or hub score might be very influential in the network.

Similar to PageRank, we iteratively update a(i) and h(i), until their values
converge. We define a(i) and h(i) as follows

h(i) =
∑︂

j∈Out(i)
a(j) (2.26)

a(i) =
∑︂

j∈In(i)
h(j) (2.27)

The algorithm first sets the h(0) = a(0) = 1/
√

n, and each iteration updates
the vectors of scores.

Input: Adjacency matrix A
h(0) = a(0) ← e/

√︂
(n);

repeat
a(t+1) = AT h(t);
h(t+1) = Aa(t);
Normalize a(t+1) and h(t+1) so that their L2-norms are both equal to 1;

until h(t) and a(t) converge;
return authority score vector a, hub score vector h

Algorithm 3: HITS algorithm

16

3. Models
This chapter includes the theoretical description of the models studied and used
for classification tasks solved in the thesis.

3.1 Naive Bayes classifier
This probabilistic model is the simplest one out of the models we have tested,
and yet it has shown promising results. It is based on the Bayes’ Theorem, which
is a basic result from probability theory. Theory in this section is adapted from
Chapter 8 of [12], unless stated otherwise.

Let us assume we want to know how likely is the result X that we have
observed, given prior data Y . If X can attain values X1, X2, .., Xk, then the
probability of observing some Xi given the data Y is

P (Xi|Y) = P (Y |Xi)P (Xi)∑︁k
j=1 P (Y |Xj)P (Xj)

(3.1)

In this case we call P (Xi|Y) the posterior, which represents the distribution
of the X given the data Y , and P (Xi) the prior, which represents the probability
of observing the value Xi independent of any other data. The term P (Y |Xi) is
called a likelihood, because it says how likely is the data given the result, and
it is a function of the data. The denominator is derived using the law of total
probability (or partition theorem) [13], which is for the discrete case as follows

P (Y) =
n∑︂

i=1
P (Y |Xi)P (Xi) (3.2)

Now let us assume that our data consists of number of observations, each being
a D-dimensional vector of features x = (x1, x2, ..., xD). Each observation belongs
to exactly one of k classes C1, ..., Ck. Assuming we already have a prior over all
classes, the probability of x belonging to class Ci is as follows:

P (Ci|x) = P (x|Ci)P (Ci)
P (x) (3.3)

The posterior might be hard to model outright.
This is because P (x|Ci)P (Ci) = P (x1, x2, ..., xD, Ci) via the chain rule. Then

P (x|Ci)P (Ci) = P (x1, x2, ..., xD, Ci)
= P (x1|x2, x3, ..., Ci)P (x2, x3, ..., xD, Ci)
= P (x1|x2, x3, ..., Ci)P (x2|x3, ..., xD, Ci)P (x3, ..., xD, Ci)
= P (x1|x2, x3, ..., Ci)P (x2|x3, ..., xD, Ci)...P (xD, Ci)P (Ci)

Instead of modelling all of these probabilities, we can use the naive assumption.
It says that, given the class Ci, all the features are independent. It is a very
strong assumption, which might not necessarily reflect the real data. However, it

17

makes the probabilities a lot easier to model. So now we can rewrite the above
probability to this form

P (x|Ci) = P (x1, x2, ..., xD, Ci) = P (x1|Ci)P (x2|Ci)...P (xD|Ci) =
D∏︂

j=1
P (xj|Ci)

(3.4)
Substituting to 3.3 we get

P (Ci|x) =
∏︁D

j=1 P (xj|Ci)P (Ci)
P (x) (3.5)

Now we use the following rule to predict the classes of each data point:

arg max
k

p(Ck|x) = arg max
k

∏︁D
j=1 P (xj|Ck)P (Ck)

P (x)

= arg max
k

D∏︂
j=1

P (xj|Ck)P (Ck)

Since P (x) does not depend on the choice of Ck, we can omit it from the formula.
This rule is called the Maximum a posteriori estimation, or MAP. In general, let
us say we have a model with parameters w(also called weights) that we want to
train, and we also have data X. Then the Maximum a posteriori estimate for the
parameters w is

w = arg max
w

P (X|w)P (w) (3.6)

There is a technique called Maximum likelihood estimation, which is similar to
MAP, but we try to find parameters such that we maximize the likelihood of the
data. In other words

w = arg max
w

P (X|w) (3.7)

We can see that MLE is similar to MAP, we just don’t use any prior in the former.
What we need to do now is to model the prior probabilities of classes P (Ci),

and the likelihoods P (xj|Ci). To calculate a prior, a reasonable thing is to just
look at our data and assign to each class its frequency. So if ki out of N obser-
vations belong to class Ci, its probability is

P (Ci) = ki

N
(3.8)

Now, based on how we model the probabilities P (xj|Ci), we have different
types of Naive Bayes classifiers.

3.1.1 Gaussian Naive Bayes
In this variant, we assume that the features are being drawn from a Normal
distribution. We model the individual probabilities as P (xj|Ci) ∼ N(µj,i, σ2

j,i),
that is, each feature is assumed to have been drawn from a Normal distribu-
tion with a mean of µj,i and a variance of σ2

j,i. Assuming we have observations

18

x1, x2, ..., xNk
for class k, and each of them consists of D features, using MLE we

obtain estimates for the means as

µd,k = 1
Nk

Nk∑︂
i=1

xi,d (3.9)

where Nk is the number of documents of class k, each xi = (xi,1, xi,2, ..., xi,D), and
we are looking for the mean of the d-th feature. The variations will then be

σd,k = 1
Nk

Nk∑︂
i=1

(xi,d − µd,k)2 (3.10)

We can also add some constant α to all of them, so that the distributions are a
bit wider.

3.1.2 Multinomial Naive Bayes
We can also model the feature probabilities using the Multinomial distribution.
Assuming we have a vector of non-negative integer values x = (x1, ..., xD), and
we have observed the outcome of n trials, the probability of seeing the values x
is

P (x) =
(︄

n

x1, ..., xD

)︄
px1

1 px2
2 ...pxD

D (3.11)

We can see that this distribution is parametrized by the distribution p of
probabilities pi, which sum to 1.

(︂
n

x1,...,xD

)︂
is the Multinomial coefficient, which is

equal to n!
x1!x2!...xD! . So our parameters will be probabilities pd,k. Using MLE we

get that
pd,k = nd,k∑︁

j nj,k

(3.12)

where nj,k is the sum of features xd for a given class Ck. As with the Bernoulli
Naive Bayes, we can use Laplace smoothing to add small factor α to all feature
sums:

pd,k = nd,k + α∑︁
j(nj,k + α) (3.13)

3.2 Simple Neural Networks
Neural networks are a broad family of machine learning models, which have be-
come quite popular in today’s machine learning research and practical application.
In this section, we are going to talk about how a simple neural network called
the Multi-layer Perceptron.

3.2.1 Multilayer Perceptron
This section includes information mostly from Chapter 5 of [12]. Multilayer
perceptron (MLP) consist of multiple layers of perceptrons, which are modeled
after real neurons. We can visualize the topology of a network as a directed
acyclic graph, where nodes are the perceptrons and edges represent incoming and

19

outgoing connections between them. The network consists of multiple layers.
There are no connections between nodes inside a layer.

First we will have an input layer, with nodes for each input dimension labeled
x1, ..., xD. These nodes have no inputs, and their output is just the value of the
input vector at a given index.

We will also have an output node for every output dimension that we want.
So if we want to classify data as one of K classes, we will have K output nodes
y1, ..., yK . This is called the output layer.

Finally, in-between these layers we will have an arbitrary number (> 0) of
so-called hidden layers, which will contain regular nodes. Every node has a link
to every node in the previous layer. It also has an edge leading to every node in
the next layer.

You can see an example MLP with one hidden layer in Figure 3.2.1.
Every neuron contains an activation function, which computes its output

based on the weighted sum of the outputs of incident neurons.

a(y(x; w)) = a

(︄
n∑︂

i=1
xiwi + b

)︄
(3.14)

Here xi is the output of i-th neuron in the previous layer, and wi is the
corresponding weight. We also add a bias to the whole sum, which is also a
trainable parameter, together with weights w.

x1

x2

x3

h1

h2

h3

h4

y1

y2

Figure 3.1: MLP Example

Since each hidden and output neuron has its own weights for all the different
inputs, we can store all the weights of one layer in a matrix W ∈ RN×M , where N
is the number of nodes in this layer, and M is the number of nodes in the previous
layer. Similarly, we can store all the biases of nodes in a single layer in one vector
b ∈ RN . Different hidden layers may have different activation functions. If we
denote h

(k)
i the output value of i-th node in the k-th layer, similarly for weights

w(k) and biases b(k), the output values of each hidden node in layer k can be
calculated as

h
(k)
i = a

(︄
N∑︂

i=1
h

(k−1)
i wk

i,j + b(k)
)︄

= a
(︂
h(k−1)W (k) + b(k)

)︂
(3.15)

20

Popular activation functions for the hidden layer include

• ReLU(x) = max(0, x)

• sigmoid - σ(x) = 1
1+e−x

• tanh(x) = 2σ(2x)− 1

– symmetrizes the sigmoid and makes the derivative in 0 equal to 1

Based on our task, we choose different output layer activations

• identity - we want to perform linear regression (output a numerical value)

• σ(x) - we perform binary classification

• softmax - K-class classification, outputs a probability distribution
- softmax(x)i = ex

i∑︁K

j
exj

Figure 3.2: Activation function graphs

It can be proven, that given a monotonically increasing, sigmoidal activation
function, MLP with just 1 hidden layer (with a finite number of neurons) can
approximate any continuous function, to an arbitrary precision [14].

Our goal during training is to find suitable weights and biases for all layers.
We do this by minimizing an error function. This function E(w) tells us the
difference between the target values and the predictions of our model, with the
current weights w. A notable error function is called mean square error, or MSE
for short. It is computed as follows:

MSE(w) = 1
2

N∑︂
i=1

(y(xi; w)− ti)2 (3.16)

where N is the total number of training examples, y(xi; w) the actual output
of our model for the i-th vector, and ti its target value. We will refer to any error
function we attempt to minimize as a loss. We can also add an L2 regularization
term with parameter λ, which penalizes large weights, since in practice it was
shown that smaller weights lead to better results. So the modified loss will be

MSE(w) = 1
2

N∑︂
i=1

(y(xi; w)− ti)2 + λ

2 ||w||
2 (3.17)

21

Parameter λ is preset by the user, so we call it a hyperparameter. We train
the MLP using an algorithm called Stochastic Gradient Descent (SGD). SGD
iteratively updates the weights at each step, minimizing the loss in the direction
of the steepest descent. It converges almost surely to a global minimum of the
loss function, provided it is convex, otherwise it converges to a local one. An
outline is given below

Input: Training Dataset (X ∈ RN×D, t ∈ {−1, 1}N

// all weight matrices are represented by w
initialize w randomly ;
set biases to 0 ;
repeat

// Process a minibatch of examples of size b
// Ei(w) is the loss w.r.t the i-th training sample
g← 1

|b|
∑︁

i∈b∇wEi(w);
w← w − αg;

until convergence or maximum number of iterations is reached;
return wt

Algorithm 4: Minibatch SGD

Once again we have a hyperparameter α, α ∈ [0, 1], which we call the learning
rate. It tells us how much the computed gradient shifts the weights in each step.
However, better performing ways of training MLPs exist, namely an algorithm
called Adam. We will be using Adam to train these and other types of networks
in the experimental part of the thesis.

Adam is an improvement over SGD, in the sense that instead of a single
unchanging learning rate, it maintains separate learning rates for each network
parameter, and updates them during training. Specifics can be found in this
paper [15]. Learning rates are changed based on the so-called first and second
order moments of the gradients. It uses exponential moving average (EMA) to
smooth the moments. We can control the decay of these EMAs with parameters
β1 and β2 for the first and second order moment respectively. The EMA for a
series X is defined recursively:

St =
⎧⎨⎩X0 t = 0

St−1 otherwise

Where St is the value of EMA at time t and Xt is the value at time t. Here is
the outline of the Adam algorithm paraphrased from [15]

The ε is a small constant ∼ 10−8 to avoid problems with division by zero.
Good hyperparameter choices for most ML applications are α = 0.001, β1 =
0.9, β2 = 0.999.

22

Input: Parameter vector w
Input: learning rate α
Input: Exponential decay rates β1, β2 ∈ [0, 1)
Input: Stochastic objective function f(w)
m0 ← 0 ; // Initialize 1st moment vector
v0 ← 0 ; // Initialize 2nd moment vector
t = 0 ; // Initialize time-step
while w not converged do

t← t + 1;
// Get Gradients w.r.t stochastic objective at time t
gt ← ∇wft(wt−1);
// Update biased first moment estimate
mt ← β1 ·mt−1 + (1− β1) · gt;
// Update biased second raw moment estimate
vt ← β2 · vt−1 + (1− β2) · g2

t ;
// Compute bias-corrected first moment estimate
m̂t ←mt/(1− βt

1);
// Compute bias-corrected second moment estimate
v̂t ← vt/(1− βt

2);
// Update parameters
wt ← wt−1 − α · m̂t/(

√
v̂t + ε);

end
return wt

Algorithm 5: Adam optimization algorithm [15]

3.3 Recurrent Neural Networks
Recurrent Neural Networks, or RNNs for short, are a type of neural network that
are made up of cells, which contain a connection back into themselves. They are
best suited for data made out of sequences. This connection into itself represents
the information flow during the processing of the input. In reality, there is a cell
that processes information from each step of the sequence. Information from a
cell for step t − 1 is routed to cell at step t and so on. The basic diagram is in
Figure 3.3

We assume that the input is a series of vectors x(t), and for a cell at step t,
we denote its hidden state by h(t) and output by y(t). The cells usually combine
their input with the state of the previous step, and output their new state for-
ward. In the past, simple cells have been proposed, but they had a problem of
vanishing(exploding) gradients.

The problem was that the state change boiled down to a repeated application
of the same function. This was akin to multiplication of the same matrix as many
times as there were time-steps, so for long sequences, the internal state vectors
reduced to zero or exploded in size.

A few approached have been successful at dealing with this problem, namely
LSTM and later GRU.

23

Figure 3.3: RNN cell diagram

Figure 3.4: LSTM Cell detail, from Kaushik Mani’s article [18]

3.3.1 LSTM
LSTM, first defined in [16], stands for Long Short-term Memory, and is a type
of RNN cell with an internal state and importantly an internal memory. In both
this subsection and subsection 3.3.2 we will use theory from [17]. An important
feature of the memory is that it stores information about the sequence, but it can
also forget it.

The LSTM cell outputs it hidden state. The internal memory can be thought
of as another state, here referred to as a cell state Ct.

As we can see in Figure 3.4, the cell is actually made up of several Neural
Network (NN) layers, called gates. Each of them have their own weight matrix
W, and a different activation function based on their purpose.

The calculation of a new cell state Ct and hidden state ht is done sequentially.

24

Figure 3.5: LSTM Cell legend, from C. Olah’s blog [19]

Every step corresponds to a calculation involving one of the gates:

ft = σ(Wf [ht−1, xt] + bf) (3.18)
it = σ(Wi[ht−1, xt] + bi) (3.19)

C̃t = tanh(WC [ht−1, xt] + bC) (3.20)
Ct = ft ∗Ct−1 + it ∗CT (3.21)
ot = σ(Wo[ht−1, xt] + bo) (3.22)
ht = ot ∗ tanh(Ct) (3.23)

Where ∗ is vector multiplication, and [x, y] is vector concatenation.
First we have the forget gate ft. This part of the network decides what

information to drop from the memory cell, based on the previous hidden state
ht−1 and current input value xt. This is done by multiplying the old cell state by
a vector of numbers between 0 and 1, which is the output of this gate because of
its sigmoid activation.

Then we want to update the memory cell with new information. This is done
by the input gate it, which consists of a sigmoid NN layer and tanh layer. The
sigmoid layer it decides which parts of the memory cell will be updated, and the
tanh layer C̃t gives us a vector of candidates for the update. We multiply the
candidate vector with the sigmoid vector, which has exactly the effect of choosing
the candidates. We add this result to the memory cell vector, which, by now, has
been modified by the forget gate.

Finally, we use the output gate to decide what we want as a new hidden state
ht, and therefore also the output. It will be the new cell state modified by a
sigmoid based on the previous hidden state and the output. Before we output it,
we apply tanh to it to push the values between −1 and 1.

3.3.2 GRU
GRU [20], Gated Recurrent Unit, is a modification of the LSTM cell, which has no
memory cell and couples the forgetting and updating of the hidden state together.
Diagram can be found in Figure 3.6. The main benefit of this cell is that it is
simpler in composition and has a similar performance [21] in many applications.
This coupling is equivalent to setting ft = 1− it.

Here we have a relevance gate rt, which has the combined functions of the
forget and input gates. Another change is the update gate zt which decides what
information do we retain from the previous hidden state.

25

Figure 3.6: GRU cell diagram with equations, from C. Olah’s blog [22]

Figure 3.7: Decision tree example

2

3 8

5 1

7 8

510
x3 ≤ 1

x2 > 8

x1 > 2

x4 ≤ 3

3.4 Decision Trees
Decision trees are simple ML models, which try to partition the input space into
cuboid regions in a way that maximizes homogeneity inside these regions. We
will be talking about Classification and regression trees[23] or CART, and the
theory will be from Chapter 14 of [12] unless stated otherwise.

Decision trees are modeled as binary trees, and during classification or regres-
sion, we traverse the tree starting from the root, and make decisions based on the
conditions inside inner nodes. When we reach a leaf, it will contain a number or
a label which will be our result. Inner nodes define the input space partitioning
by choosing an input feature and conditioning it based on some numerical value.
After we have the space partitioned, we can use a simpler model to solve the
problem inside each region.

In general, our trees will be made up of nodes T . Each inner node will contain
a feature index iT , and a threshold value θT . If the value of the iT -th feature of
the input vector is > θT , we move to the right, otherwise we move to the left.
Each leaf corresponds to some region in input space, bounded by the thresholds
in the inner nodes.

For example, let us say we have the tree in Figure 3.7, and we want to get an
output number for x = (−1, 7, 2, 3). We start at the root and check if x1 > 2. It
is not, so we continue to the left child. Now we check if x4 > 3, and so on. In the

26

end we reach a leaf containing number 8, so that’s our output.
Let us say we have a training dataset X = ({x1, ..., xN}, {t1, ..., tN)}). We will

denote the set of training data indices belonging to node T as IT . In regression,
our goal is to output some numerical value, so we can take

t̂T =
∑︂
i∈IT

ti (3.24)

as the prediction for this region. In classification, we can take the most frequent
label of training data belonging to this leaf.

3.4.1 Creating a decision tree
We start by creating the root node, and assigning every training example to it.
We want to split this node in a way that leaves us with a more homogeneous
space partition than the one we currently have. For this we use something called
a criterion. This is a function that tells us how homogeneous a collection of
vectors is. In regression, we can simply use the sum of squares error between the
prediction of a node, and the training examples belonging to it.

cSE =
∑︂
i∈IT

(ti − t̂T)2 (3.25)

In classification, there are two popular choices - Gini impurity, and Entropy.
Before looking at the formulas, note that the probability of class k in region T is
pT (k). Gini impurity is defined as follows

cGini(T) = |IT |
∑︂

k

pT (k)(1− pT (k)) (3.26)

It measures how often a randomly chosen element would be labeled incorrectly,
if it was chosen according to pT . The entropy criterion is defined as

cEntropy(T) = |IT | ·H(pT) = −|IT |
∑︂

k,pT (k)̸=0
pT (k) log pT (k) (3.27)

Where H(pT) is the entropy of the distribution pT . When creating the tree, we
usually have some constraints, which can be set as hyperparameters:

• maximum tree depth - don’t split nodes with this depth

• maximum number of leaves - split until we reach this number of trees

• minimum examples to split - we can only split nodes which have more than
this amount of training examples

• minimum criterion decrease - we only split the node if the sum of impurities
(or other criteria) is less than the parent’s impurity by at least this amount

If we don’t have a limit on the number of leaf nodes, we split the nodes depth-first
until we break some other constraint. If we do have a limit, we split the node
which will result in the largest criterion decrease.

27

3.4.2 Model ensembling and Bagging
Decision trees on their own are quite weak, in the sense that their accuracy is
not much better than random guessing. However, we can use them as base for
an ensemble to get a more robust model. Ensembling is a technique in which
we train multiple instances of a base model, usually each on slightly different
training datasets, and use all of them during prediction. We can, for example,
take the average result of all models in regression, or take the most frequent label
in classification.

It can be proven that if we have M models, the average error of the ensemble
is 1

M
times the average error of the individual models. We denote the individual

errors of the models as εi(x), and the prediction of a model on a training example
(x, t) as yi(x) = t + εi(x), then the mean square error of the model is

E[(yi(x)− t)2] = E[ε2
i (x)] (3.28)

Assuming the errors have zero mean and ∀i, j : cov(εi, εj) = 0, then

E[εi(x)εj(x)] = 0 (3.29)

and so

E

⎡⎣(︄ 1
M

∑︂
i

εi(x)
)︄2
⎤⎦ = E

⎡⎣ 1
M2

∑︂
i

∑︂
j

εi(x)εj(x))
⎤⎦ = 1

M
E
[︄

1
M

∑︂
i

ε2
i (x)

]︄
(3.30)

The uncorrelated condition is a strong one, and in practice it will not be
so, but ensembling still gives better results than singular models. As was said
before, we train the individual models on a bit different dataset precisely to
lessen the correlation, and we can think of this as the models having a bit of a
different perspective on the data. For this we used a technique called Bootstrap
Aggregation, or bagging for short. The bootstrap part means that, before training,
we sample the original dataset randomly using the empirical distribution, but
with replacement. We sample as many indices as the original dataset, or we can
use subsampling and only have a fraction. We can also choose random subsets of
features, this is then called Random Subspaces [24]. Models which use decision
trees in this way are called Random Forests.

3.4.3 Gradient Boosting Decision Trees
Random forests use a lot of decision trees trained independently to construct a
more robust model. Instead, we could use the already trained trees to improve
training of new ones. This approach is called boosting. In this case, we will be
talking about Gradient boosting, specifically the method described in this paper
[25].

Previously we talked about SGD, which used a learning rate set by us as a
constant, to find the global/local minimum. This is called a first-order method.
We could instead use second-order method, which computes the second derivative
of the objective function, and uses it as a kind of adaptive learning rate. The
resulting update in the SGD would look like this:

w← w− f ′(x)
f ′′(x)

28

This kind of update puts us a lot closer to the minimum in each step, however,
computing the second derivative of the objective function is very inefficient for
many applications. That’s because if we have a vector of weights w ∈ RD, then
the second order derivatives will consist of a matrix D×D. However, with decision
trees we can use an approximation. This results in a better splitting criterion,
which is used during tree creation. Specifics can be found in [25]. An algorithm
for finding the best split is also provided in that paper, which can be found in
Algorithm 6.

Input: example set of the current node IT
Input: Feature dimension D
score← 0;
G← ∑︁

i∈IT gi;
H ← ∑︁

i∈IT hi;
for k = 1 do

GL ← 0;
HL ← 0;
for j in sorted IT by xjk do

GL ← GL + gj, HL ← HL + hj;
GR ← G−GL, HR ← H −HL;
score← max(score,

G2
L

HL+λ
+ G2

R

HR+λ
− G2

H+λ
);

end
end
Output: Split with max score

Algorithm 6: Greedy algorithm for Split Finding [25]

Other than feature and data subsampling we can also use shrinkage, which
scales newly the predictions of newly added trees by a factor ∋, which gives the
model more room to improve by reducing the influence of individual trees.

This works well for regression. For K-class classification we have to model
the whole distribution, so for each class we have to train a separate ”chain” of
models, and use softmax on the combination of their results.

3.4.4 AdaBoost
Another thing we can do is to look at the samples which are most often mis-
classified during training. We could give them more weight in the next iteration,
hopefully improving the accuracy of our model. The final model will be a linear
combination of all the previous models, weighted by their error rates (probabili-
ties of misclassification).This is the idea behind AdaBoost, described in [26]. This
algorithm was designed for binary classification, and it works very well in that
setting. It relies on the assumption, that the weaker models’ error rate is ≤ 1

2 .
The pseudocode can be found in Algorithm 7.

I(yt(xi) ̸= ti) is an indicator (= 0/1) whether the prediction of model Mt when
given example xi matches its target. In a K-class setting however, the random
guess error rate is K−1

K
, so it is much harder to achieve the needed error rate

for weaker models. We are going to use a modification of this algorithm called

29

Input: Training dataset X = {(x1, ..., xN), (t1, ..., tN)}
Input: Distribution P over the examples
Input: Weak model M
Input: Number of iterations T
w1

i ← P (i), for i = 1, ..., N ; // Initialize the weight vector
for t = 1, 2, ..., T do

pT ← wt∑︁N

i=1 wt
i

// Normalize weights

Fit model Mt to training data with weight dist. pt;
// Calculate the error of this model
// Prediction of this model is denoted as yt

εt ←
∑︁N

i=1 pt
iI(yt(xi) ̸= ti)/

∑︁N
i=1 pt

i ;
αt ← log εt

1−εt
;

// Set new weights
wt+1

i ← wt
i · exp (αt · I(yt(xi ̸= ti))) , for all i = 1, ..N ;

end
Output: Model: y(x) = arg maxk

∑︁T
t=1 αt · I(yt(x) = k)

Algorithm 7: AdaBoost [26]

SAMME [27], which stands for Stagewise Additive Modelling using a Multiclass
Exponential loss function - quite the mouthful.

Input: Training dataset X = {(x1, ..., xN), (t1, ..., tN)}
Input: Distribution P over the examples
Input: Weak model M
Input: Number of iterations T
w1

i ← P (i), for i = 1, ..., N ; // Initialize the weight vector
for t = 1, 2, ..., T do

pT ← wt∑︁N

i=1 wt
i

// Normalize weights

Fit model Mt to training data with weight dist. pt;
// Calculate the error of this model
// Prediction of this model is denoted as yt

εt ←
∑︁N

i=1 pt
iI(yt(xi) ̸= ti)/

∑︁N
i=1 pt

i ;
αt ← log εt

1−εt
+ log(K − 1);

// Set new weights
wt+1

i ← wt
i · exp (αt · I(yt(xi ̸= ti))) , for all i = 1, ..N ;

end
Output: Model: y(x) = arg maxk

∑︁T
t=1 αt · I(yt(x) = k)

Algorithm 8: SAMME [27]

The only difference is in the computation of term αt, namely the addition of
log(K − 1). However, this makes all the difference. This term makes it so that
for αt > 0, we only need (1 − εt) > 1

K
, or in other words the accuracy of the

weak models to be better than random guessing, rather than 1
2 . Pseudocode is

in Algorithm 8.

30

Figure 3.8: Hyperplane and margin visualization, from [28]. w is a vector of
weights, ||w|| = 1, x is a training example, b is bias, ∗ is vector multiplication.
Data is classified into two classes based on the sign of the expression w∗x−b. We
can see that examples which lie on the margin have the value of that expression
equal to 1 or −1, and every other example has a higher absolute values. In a
soft margin SVM, some examples would be permitted to be inside the margin,
i.e. |w ∗ x− b| ≤ 1.

3.5 Support Vector Machines
The theory included in this section is from Chapter 7 of [12], unless stated oth-
erwise.

Support vector machines (SVMs) can be thought of as a kind of enhanced
linear model. Their objective is to find a hyperplane which separates data into
classes. A hyperplane is a subspace whose dimensionality is one lass than its
ambient space. So for a 2D space it is a line, for 3D space it is a 2D surface and
so on.

In contrast to, for example, a Perceptron, SVMs try to find a hyperplane
with the maximum margin, which is the smallest distance between any training
example and the hyperplane. This is done to achieve more robust results, since
such a hyperplane tends to be a better estimate of the real boundary.

This version is called a Hard-margin SVM. However, it requires the original
dataset to be linearly separable. In the Hard-margin version, the only way to
alleviate this, is to project the input data into a higher-dimensional space, which
might the hyperplane easier to find.

There is also a type of SVMs called Soft-margin SVM, which permits some
training examples to be misclassified, if they are not too far away from the margin.

SVMs utilize functions called kernels, which allow them to efficiently compute
polynomial combinations of features in vectors in our training data. These kernels
are the aforementioned projections of input data into high-dimensional spaces.

For example, let our training examples consist of D dimensional vectors x =
(x1, ..., xD). Let us say we have a transform function

φ(x) : RD → RD′

31

That maps the input vectors to a different dimensional space. For example, we
could have a transform that outputs a vector together with its quadratic and
linear features, i. e.

φ(x) = (1, x1, x2, ..., xD, x2
1, x1x2, ..., x2x1, ..., xDxD−1)

The polynomial features might be beneficial for model performance, since they
help the model make decisions based on combinations of features, as opposed to
singular feature values.

In general, we can have features consisting of any degree of polynomial com-
binations of feature. A kernel corresponding to a transform is a function

K(x, y) = φ(x)φ(y) (3.31)

Using a kernel is beneficial, since if we want to compute polynomial features of
degree d, we can use

K(x, y) = (γxT y)d (3.32)
Where γ is a free parameter. This is called a polynomial kernel of degree d
Similarly, if we want all the polynomial features of degree at most d, we can use

K(x, y) = (γxT y + 1)d (3.33)

which is called a non-homogeneous polynomial kernel. This is useful, because we
can compute these features in O(D) instead of O(Dd) for a pair of vectors. We
call this the kernel trick. Another popular kernel to use is called the Radial Basis
function kernel, or RBF, which is defined as

K(x, y) = e−γ||x−y||2 (3.34)

where γ is once again a free parameter. This corresponds to a combination of
polynomial kernels of all degrees d ≥ 0.

3.5.1 Multiclass classification
Since SVMs are binary classifiers, if we want to use them for K-class classification
problems, we have to get a bit creative. Typically, we use one of two schemes:
one-versus-rest or one-versus-one.

The former constructs K binary classifiers, where each one tries to separate its
class from all the other classes. For the output, we choose the with the highest
probability from its classifiers’ output. However here we need to modify the
models to output probabilities instead of class labels.

The latter one constructs binary classifiers for each pair of classes, and during
prediction we choose the class with most votes.

In both cases we sacrifice some accuracy however, since there always exists a
part of input space which will be ambiguous for all classifiers.

3.6 Preprocessing techniques
Input preprocessing is a key part of training ML models that greatly enhances
performance. Here, we will describe some preprocessing techniques used during
model training.

32

3.6.1 TF-IDF
Term frequency - Inverse Document Frequency (TF-IDF)[29] is an often used
statistic to create a numerical representation of a document using token frequen-
cies. Tokens are usually words n-grams, or word n-grams. n-grams are simply
windows of text of length n. For example, let us say that n = 6, and we want
character-level n-grams. Then, from the sentence ”Hello world!” we would extract
the following 6-grams:

"Hello ", "ello w", "llo wo", "lo wor", "o worl",
" world", "world!"

As the name suggests, TF-IDF consists of two parts:

Term frequency

This is simply the relative frequency of a token t w.r.t. a document d.

TF(t, d) = ft,d∑︁
t′∈d ft′,d

(3.35)

Here ft,d is the frequency of token t in document d, i.e. the number of occurrences
of this token in the document. Since it is a relative frequency, we simply divide
ft,d by the sum of all token frequencies in the document.

Inverse document frequency

IDF measures how often a token appears in the document corpus D. It is defined
as

IDF(t, D) = log N

|{d ∈ D; t ∈ d}|
(3.36)

We use a logarithm because this statistic is related to a concept called self infor-
mation, which we will not be covering in this thesis.

To calculate IDF, we have to know the total frequency N of the token in the
whole document corpus D, and also the number of documents that contain token
t. Thus, before the calculation, we need to construct a vocabulary of tokens over
the whole corpus. This vocabulary will contain total number of occurrences of
every token t. In addition, we also need a data structure which will hold the
frequency of each token t in a given document d.

Finally, we define TF-IDF as

TF-IDF(t, d, D) = TF(t, d) · IDF(t, D) (3.37)

So it is a statistic that, given a token t, document d and document corpus D,
produces one real number. We can derive TF-IDF using information theory as
well, since it is a form of mutual information between the token t and document
d, but we will omit it here. TF-IDF works well, because it represents the amount
of information learned by the presence of t in document d.

As stated previously, we can use TF-IDF to obtain a numerical representation
of a document. This is quite handy, since most models take vectors of real
numbers on the input. First, we order the tokens in the vocabulary. Then, for

33

corpus = ["ML is the best", "To the moon"]
ordering = { "best" : 0, "is" : 1, "ml" : 2,

"moon" : 3, "the" : 4, "to" : 5 }
tfidf vectors = [
[0.53404633, 0.53404633, 0.53404633, 0. , 0.37997836, 0.],
[0. , 0. , 0. , 0.6316672, 0.44943642, 0.6316672]]

Figure 3.9: TF-IDF input transformation example. The corpus of two documents,
in this case sentences ”ML is the best” and ”To the moon”, is transformed using
TF-IDF into numerical vectors. Note that the length of the output vector is the
same as the size of the vocabulary.

each token ti, we calculate its TF-IDF statistic relative to document d. The
numerical representation of document d will be a vector of the same length as the
vocabulary that contains the value TF-IDF(ti, d) at the i-th position. Lastly, we
normalize each vector v using the euclidean norm

v

||v||2
= v√︂

v2
1 + v2

2 + ... + v2
n

3.6.2 Principal Component Analysis
Principal Component Analysis, or PCA, is a technique used to reduce the di-
mensionality of data. There are many ways to derive PCA, and we will use the
covariance method, adapted from [30]. First, for given two real valued random
variables X, Y , the covariance is defined as

cov(X, Y) = E [(X − E[X])(Y − E(Y))] (3.38)

If we have measurement vectors x = (x1, ..., xn) for X and y = (y1, ..., yn) for
Y , the covariance is calculated as

cov(X, Y) = 1
n

∑︂
i

xiyi = 1
n

xyT (3.39)

If cov(X, Y) = 0, then the two variables are uncorrelated (but not necessarily
independent).

Suppose we have a feature matrix M with n rows and m columns. We can
look at the i-th column as a collection of measurements of a random variable,
which represents the i-th feature. Then, we can construct a covariance matrix
CM of size m×m as follows:

CM = 1
n

MMT (3.40)

A diagonal entry Ci,i represents the variance of the i-th feature. All other
entries Ci,j represent the covariance between i-th and j-th feature. We assume
that high variance of a variable means that there is potentially a lot of information
to be gained from it. On the other hand, a high covariance between two variables

34

corpus = ["ML is the best", "To the moon",
"I like the stock"]

result = [[7.67536453e-01, 1.39571107e-16],
[-3.83768227e-01, -6.52490885e-01],
[-3.83768227e-01, 6.52490885e-01]]

Figure 3.10: PCA transformation example. Vectors in the figure were obtained
by transforming the TF-IDF features obtained from the corpus using PCA with
two principal components.

means that there is some redundancy. Preferably, we would want to transform
the matrix such that the variance is maximized, and redundancy eliminated. We
can achieve this with diagonalization of the covariance matrix CM . By using such
transformation, we would obtain wholly uncorrelated features.

To calculate this transformation, we can compute the eigenvectors of CM .
This is thanks to the fact that CM is symmetric, and it can be diagonalized by
an orthogonal matrix P of its eigenvectors as columns. We can write it in an
equation as follows

CM = P T DP (3.41)
where D is a diagonal matrix containing eigenvalues of CM . We can sort the eigen-
vectors according to the sizes of their corresponding eigenvectors, in descending
order. Then we reorder all matrices to respect this ordering, and we have obtained
our transformation. The eigenvectors are now called principal components, and
represent the directions along which the variance is maximized in the original
feature space.

Finally, we can select only the first n principal components, and use only them
in the transformation, obtaining a projection of the data into a lower-dimensional
space. Naturally, we loose some information by doing, but since we ordered
them according to decreasing variance, we always retain as much information
as possible. This, of course, assumes that a large variance, and therefore large
eigenvalue, means a lot of useful information contained in a given feature.

In practice, instead of eigenvector decomposition, we can use other methods
such as Singular value decomposition (SVD) and even approximate methods such
as Randomized SVD. They all result in some representation of the data that
reduces dimensionality while maximizing variance. When we used PCA in the
experiments, we used a full SVD.

35

4. Analyzed Social Network Data
This chapter contains description of datasets used for the practical part of the
thesis.

4.0.1 Dataset Descriptions
We have scraped data from Reddit and Twitter using freely available libraries
snscrape[31] and PSAW [32]. This data contains posts and tweets which in-
cluded at least one instance of words ”GME” or ”GameStop” (both can be case-
insensitive).

Reddit

In case of Reddit, we only gathered data from subreddit
r/wallstreetbets, which was the subreddit where a lot of the community discussion
took place [33].

This data spans approximately one year. It begins at January 1st, 2021 and
ends at February 2nd, 2022. The beginning was chosen so that it included a few
weeks before the major spike of GameStop’s stock price, on January 28th, 2021.

There is a lot of information available about each post. For Reddit, we get

• id - Unique post ID

• selftext - Text content of the post

• title - Title of the post

• created utc - Timestamp of the post creation time

• score - Number of upvotes minus number of downvotes

• upvote ratio - Ratio of upvotes and downvotes

• num comments - Number of comments of the post

Figure 4.1: Reddit dataset in a DataFrame [34]

36

Title: Broke Bois
Text: For those of us who lack the nugs to pony up anymore on
the big rocket what can we do to stick it to the hedge funds even more?

I can’t drop anymore bread into GME at this point. Out of
my price range and I think so broke bois can agree. I’ve been dipping
into SNDL trying to see if this pint sized size stock can at least make
it into orbit. I’ve got enough to make small gains there. Not enough
to buy a telsa but maybe some bags of frozen tenders.

What do y’all think?

(Anonymous Reddit user)

Figure 4.2: Reddit post example. Many of the posts are much, much longer than
this

Title: GME First FALSE DIP. HOLD YOU SAVAGES.
Text: HOLD THE LINE! They’re creating a false dip!

(Anonymous Reddit user)

Figure 4.3: Another Reddit post example. Some of them are shorter, like this
one.

On Reddit, user can ”upvote” or ”downvote” a post, based on whether they
agree with it or not. The total difference between these is called the post ”score”.
If there are more upvotes than downvotes, the score is positive, and in the reverse
case it is negative. Naturally this can be used when we want to estimate the
sentiment of the community in relation to the content of the post. Here we can
see a few examples of posts in r/wallstreetbets:

There is a caveat however, and that is that a lot of the posts might have been
deleted by the user or by a moderator. In this case, the content of the post will
usually just be a string ”[deleted]”. Because of this, they are not useful for our
analysis. The data that we have scraped will provide only an estimation of the
community’s sentiment. We are also only looking at posts that had text in them.
Many times, people will post screenshots or memes, and our models do not focus
on analyzing visual data.

Twitter

A lot of discussion about GameStop has also been happening on Twitter, so
we also scraped any tweets containing ”GME” or ”GameStop” during the same
timeframe. For this, we have used the service snscrape [31], which scrapes and
archives posts from many social networks, including Twitter.

For every Tweet we have the following fields

• Date - Date of Tweet posting

• UserID - ID of the Tweet author

37

Figure 4.4: Twitter dataset in a DataFrame [34]. The RetweetedTweet column
also includes actual Tweet ID’s, the values are just written in a different way
by the visualization. NaN values are there, if there isn’t any QuotedTweet or
RetweetedTweet in this Tweet.

@andriusdaulys @CNNBusiness where did you source your
info re silver being the hottest thing now?
$gme #gme #gamestop - you’re manipulating the market
if you have nothing to back this up besides the fact
that citadels portfolio is heavy on SLV. Zero integrity

(Anonymous Twitter user)

Figure 4.5: Tweet example

• Content - Textual representation of the tweet content

• ID - unique Tweet ID

• LikeCount - Number of likes

• ReplyCount - Number of replies

• RetweetCount - Number of retweets

• QuotedTweet - ID of the Tweet quoted by this one (if it exists)

• RetweetedTweet - ID of the retweeted Tweet by this one (if it exists)

One benefit of Twitter data is, that the text is a lot shorter than Reddit. It
can be much more easily annotated. Also, we can use them to create a network
of Twitter users, as stated in the second objective. More on how to do this in a
later section.

Enron

Enron was a major corporation operating during the late 20th and the beginning
of 21st century. It went bankrupt because of a major corruption scandal involving
most of the upper management. During the court proceedings, a large amount

38

x̄ σ Q25 Q50 Q75 xmax

Score 746.4 4344.0 8.0 24.0 127.0 143619
Volume 29.3 231.8 1.0 3.0 7.0 3603
Length 1089.8 2231.8 86.0 338.0 1153.8 39925

Table 4.1: Reddit statistic table. x̄ = mean value, σ = standard deviation, Qx =
x-th quantile, xmax = maximum value. Volume is post volume daily, Length is
text length in characters.

of corporate emails have been publicized. Today, this email dataset is freely
available online [35].

Naturally, we can use emails to easily create a network. Since this network is
a lot larger than the Twitter one, we can test our structural analysis on this one,
and later use it for Twitter as well.

The emails themselves have some basic SMTP based headers, the body of
the email, and also some metadata written by people who compiled them. This
metadata mostly contains the real names of people, to which the email addresses
belong. However, this metadata is non-homogeneous, specifically the formatting
isn’t. So for our purposes, we used email addresses in the SMTP headers for
user identification. Some users have had multiple addresses, however this is a
compromise we have to make, because of the size of the dataset.

4.1 Dataset analysis and visualization
In this section we will see some interesting visualizations made from the data in
the previously mentioned datasets.

4.1.1 Reddit
First, we can look at some general information in table 4.1. At a first glance, the
deviations in every metric are quite large. For post volume and score, we can see
that because of difference between Q50 and Q75, most posts were very unpopular,
and there were a few extremely popular ones. Similarly, most days had almost
no posts, and a few had hundreds.

The mean post length is also quite long. This is because a lot of people make
lengthy posts about their trading strategies. These posts usually involve lengthy
company analyses and a heavy argumentation for their chosen stock. Sometimes
they are about GameStop, oftentimes not. But those that aren’t usually predict
that their stock ”will be the next GameStop”, and so they’re included in the
dataset.

Then, we can plot information about volume and average score of a post
during the time period (Figure 4.6).

We can see that the greatest volume of posts is from mid-January until late
March 2021. This makes sense, since the GME short-squeeze happened at the
end of January. Community hype picked up after this. Stock price started to fall
however, but other major spikes happened in the middle of march and beginning
of June, and we can see the corresponding increase in volume during those periods.

39

Figure 4.6: Reddit daily data. Data is colored so that everything below the 25th
quantile has the darkest color. The volume plot has a logarithmically scaled y-
axis, since the differences between post volumes are very large.

40

Interestingly, even when there were much fewer posts in the later months, the
mean score of them was quite high. We can more easily see this in a monthly
chart (Figure 4.7)

Figure 4.7: Reddit monthly data. Coloring has the same rules as previously.

Notice the large drop-off in later months. This might be explained by the fact
that the community has moved on, and partially because other GameStop-focused
subreddits have been created, and the most fanatical users moved there.

41

4.1.2 Twitter
Data Analysis

We can look at Twitter data similarly. The difference in respect to Reddit is,
that users cannot downvote Tweets, only like them. They can also retweet them,
which helps to spread their popularity. This 4.2 is the table containing general
information about Twitter data. We can see that while the Like and Retweet

x̄ σ Q25 Q50 Q75 xmax

Retweet count 1.4 15.2 0.0 0.0 1.0 1302
Like count 10.9 109.7 0.0 1.0 4.0 11424

Tweet volume 68.1 180.2 23.0 37.0 57 2713
Tweet length 149.2 86.1 81.0 129.0 208.25 965

Table 4.2: Twitter general information. Tweet length is the number of characters
in a Tweet.

counts are a lot lower than Reddit post score, the average volume is more than
two times higher. Also, since Twitter has a character limit on posts, the average
length of a Tweet is smaller than of a Reddit post, especially in Q75. This makes
Twitter a lot easier to annotate. Another interesting thing is that a great majority
of tweets have little to likes and retweets. This, combined with the high standard
deviation suggests that there exists a minority of very popular tweets.

Figures with daily and monthly Tweet data can be found here 4.8 and here
4.9. Unsurprisingly, the greatest volume of Tweets was around the same time
the spike in Reddit posts. What is surprising, is that as opposed to Reddit,
the Retweet and Like counts seem to be steadily going up as time passes. My
hypothesis is that over time, a few Twitter accounts related to GameStop have
gained a cult-like following from dedicated communities on Reddit and elsewhere,
and they began to engage with most of their new Tweets.

Since the volume of Tweets in the later months is much smaller than at the
beginning, these tweets from popular accounts account for a bigger part of the
total volume, and thus prop up the mean Like and Retweet counts.

Network Analysis

On Twitter, since users can follow or retweet each other the data can be used to
construct a network of these users. Each node will be a user, and directed edges
between them will represent their relationships. So if A followed or retweeted B,
there will be an edge (A, B) with weight 1, and if A retweeted B multiple times,
we add 1 to the edge weight for each retweet.

A sketch of the procedure can be found here 9. After computing this graph,
we find that the Twitter network consists of 27285 nodes and 40745 edges. As
discussed in 2.4, for every node, we are going to compute its PageRank, Hub and
Authority scores, and its Betweenness Centrality. Additionally, we are also going
to attempt to calculate a degree exponent γ for this network.

42

Figure 4.8: Twitter daily mean data.

43

Figure 4.9: Twitter monthly mean data.

44

Input: Set of Tweets T
G← empty directed graph;
foreach Tweet t ∈ T do

A← author of t;
if A ̸∈ V (G) then

foreach follower F of A do
insert edge (F, A) with weight wF A = 1 into G;

end
end
foreach retweeter R of t do

if edge (R, A) ∈ E(G) then
wRA = wRA + 1;

else
insert edge (R, A) with weight wra = 1 into G;

end
end

end
Output: Network G

Algorithm 9: Twitter network creation

4.1.3 Enron
Lastly, we have the Enron dataset. We will not be delving deep into this dataset,
even though it is also interesting, since the main focus of this thesis is the data
from Reddit and Twitter. However, we will also estimate the various metrics,
and calculate all the metrics and its degree exponent. This because we want
to compare the results with the Twitter network. The graph created from this
dataset is also much larger than the Twitter one, so we could potentially get more
accurate results as well.

The Enron graph contains 87482 nodes and 323032 edges. This is after pruning
509 nodes, which did not contain email addresses in their name, and removing
resulting nodes with degree of 0, of which there were 175. This was done to
simplify data parsing, and does not have a large impact on the network, because
we only removed small fraction (< 1%) of edges.

As mentioned before, the dataset contains emails of Enron employees together
with their SMTP headers. In some emails there are also notes of people who col-
lected and processed these emails, marking real names of senders and recipients
in some email addresses. However, formatting of these notes is not at all stan-
dardized, in some cases notes are missing, and in other cases the notes only have
email addresses instead of names. This is why a decision was made to only take
into account actual email addresses. It is known that some people had multiple
addresses, which will skew things, but they should still be a good approximation.

45

4.2 Hypotheses
Now, we will outline some hypotheses that we would want to investigate via
network and sentiment analysis.

4.2.1 GameStop
1. Community sentiment should be generally positive. As stated in the

Introduction, GameStop’s stock value was largely due to community hype.
The r/wallstreetbets subreddit is also generally biased toward optimistic
claims about discussed companies. This is done to sway potential investors
and drive stock price upwards. Of course, there may also be bearish (ex-
pecting negative movement) posts toward companies, but from anecdotal
experience this is not as frequent. Thus, we expect the community senti-
ment to be mostly positive.

2. Ryan Cohen, Keith Gill and GameStop’s Twitter account should
be among the most important nodes in the network. Ryan Cohen
became GameStop’s new chairman a few weeks between the spike in its
stock value, and has been viewed as having a positive impact on the com-
pany. He is also active on Twitter, and often talked about in communities
related to GameStop. His account should be one of the most important
according to most metrics, except perhaps Hub score. This exception is
because even when he is considered active, public figures such as himself do
not interact nearly as much with other users ordinary users do.
Keith Gill (Reddit username DeepFuckingValue, Twitter username Roar-
ing Kitty) is also a famous GameStop-related figure, being one of the first
people to make a strong positive case for the stocks value. He also made
regular updates of his positions value on r/wallstreetbets, which ballooned
from $53,000 to around $50,000,000 during the price peak. This, together
with his positive personality, has made him beloved by the r/wallstreetbets
community. His quote ”I like the stock”, when asked to testify in front of the
U.S. House Committee on Financial Services following the short-squeeze, is
still used today on r/wallstreetbets. His account should also be one of the
most important ones, even if it became inactive in mid-2021.
Finally, anecdotal experience from annotating data suggests that the
GameStop account will also be among the top accounts. This is because
many tweets, when talking about GameStop, also included a link to this
account. Since we only have posts which include the word ”GameStop”
or ”GME” in their textual content, this occurrence is often a mention.
And since we count mention as edge-creating relations, GameStop will be a
highly connected node in the network, and thus have a high score in most
metrics.

46

4.2.2 Enron
1. Enron’s executives such as Jeff Skilling and Kenneth Lay should

be ranked high in the importance scores. Kenneth Lay was the
founder and CEO of Enron, and was found guilty of securities fraud. Jeff
Skilling was also the CEO, and was also convicted and sentenced to 24
years of prison. Both of these men were active in the company, and com-
plicit in the fraud that was happening, and so they should be among the
most important nodes in the network.

2. Hierarchical corporate structure will lead to high betweenness
scores for the middle management. Middle management is, among
other things, responsible for communication between different levels of the
corporation. This means that they should often be on direct paths between
distant parts of the network and people under their management. Between-
ness centrality is based on the fraction of the shortest paths between other
nodes passing through this node, and so middle management should have
a naturally high betweenness.

47

5. Supporting experiments
In this chapter we will talk about the setup of the experiments, insights during
training and the results we have obtained. As outlined in the Introduction, our
three main goals are

1. Create a model for the sentiment of posts from Reddit and Twitter, and
use it for analysis of the community sentiment over time.

2. Build a network graph from the Tweets and Enron emails and identify
important nodes using methods from Section 2.4.

3. Investigate the plausibility of a power-law degree distribution for these net-
works using a goodness-of-fit test.

5.1 Experiment Setup

5.1.1 Sentiment model setup
We will be training various machine learning models described in Section 3. Mod-
els which are built upon neural networks(MLPs and RNNs) will be implemented
using an open-source Python library tensorflow [36]. All the other models will
be implemented using scikit-learn [37].

The models will be trained on a manually annotated dataset containing 1657
Reddit posts and Tweets. Each post is labeled either positive, negative or neutral,
based on sentiment of the textual content of the post w.r.t GameStop. Internally,
the labels are integers where positive = 1, negative = 0 and neutral = 2. Pie
charts information about the dataset can be found in Figure 5.1.

Data is roughly equally split between Reddit posts and Tweets, with Tweets
having a slight majority. This is because Tweets are generally easier to annotate.
The data is heavily skewed towards the positive and neutral labels. This makes
training accurate models more difficult, and if we don’t take special measures,
the models could learn to simply ignore the negative label.

Figure 5.1: Information about the annotated dataset makeup.

48

5.1.2 Network parameter calculation setup
Power law parameter fitting and estimation will be done using an R language
library called poweRlaw[38]. This library uses techniques described in [6] to esti-
mate the scaling parameter and also the kmin. It also includes hypothesis testing
using bootstrapping as described in the aforementioned paper.

5.2 Sentiment model results
In this section, we will discuss the performance of the models described in Section
3. During training, we have tried to optimize models to have as high macro-
averaged F1-score as possible, and will be ranking them accordingly. We have
also kept track of accuracy and other variations of the F-score. All models have
been trained with random seed set to 42 if applicable, and 5-fold cross-validation.

Except for RNNs and some other specific cases, the preprocessing of the data
was as follows:

1. Clean the text - Text is lowercased, punctuation and newline characters
are ignored. Optionally, URLs can be replaced with ”[link]”.

2. Convert the text of the post into TF-IDF features - n-grams are
extracted from the text, usually either using one n, or extracting all en-
grams in range [1, n]. These can be word-level n-grams, or character-level
n-grams. Using this vocabulary of n-grams, create the TF-IDF features.
Set a minimum or maximum IDF value, so that very rare n-grams are ex-
cluded from the vocabulary. This reduces the dimensionality of the feature
space and also acts as a denoising method.

3. Use Principal Component Analysis (PCA) on the TF-IDF vectors,
obtaining the final features - The number of principal components is
one of the hyperparameters as well.

Text cleaning is done to standardize the contents of the posts as much as possible.
TF-IDF looks at a document as a bag of words, and we want to make sure that
the data is not too noisy by having many variations of the same word. TF-
IDF would, by itself, consider words ”the” and ”The” as completely different
words. Capitalization of the first letter holds some information, for example
that this might be the beginning of a sentence. However, it tends to muddle
the text too much from a bag of words perspective, and tends to give worse
results. Same principle applies to punctuation and sometimes braces as well. We
have decided to remove the braces, but they could potentially improve the model
too. If character-level n-grams are used, punctuation and braces becomes less of
a problem, since the number of n-grams containing these characters is usually
dwarfed by the version without punctuation. URLs have been transformed into
”[link]” for the same reason, to not clutter the vocabulary with unique links. The
specifics of the URL are usually unique to the post, but the knowledge that there
was a URL in the document may be relevant, so that is why we have transformed
them into ”[link]”.

TF-IDF vectors are as long as the size of the vocabulary used to make them,
and so the dimensionality is extreme. Raw TF-IDF vectors created from the

49

annotated dataset using 1 to 3-grams have length of around 84000. By using
PCA, we can drastically reduce the dimensionality and still keep a good level of
accuracy.

Recurrent neural networks take a sequence of vectors as their input, so it does
not make sense to use TF-IDF or PCA. We will instead create a vocabulary,
transform the text into a vector of indices to this vocabulary, and pass it to the
network. Thanks to the use of an embedding layer, we do not have to transform
the indices into a one-hot representation, because it will internally represent them
as such. Output of the embedding layer is a sequence of k-dimensional vectors of
the same length as the input sequence (k is a hyperparameter). This gives each
word its own fixed size representation, which may include some information as
well. Weights for the embedding layer are trainable parameters, so the model will
learn to create embeddings that lead to the smallest loss on the output.

5.2.1 Naive Bayes
Starting off with the simplest models, they have been surprisingly effective. We
started by choosing the distribution we assume the features have come from. We
will consider either the Multinomial or Gaussian distribution. For the Multino-
mial Naive Bayes, we can choose the strength of the Laplace smoothing (denoted
α). In the Gaussian version, we can choose the portion of the largest variance of
features that is added to all variances.

To demonstrate the effect of minimum DF, n-grams and text cleanup, we have
made experiments without these techniques and with In Table 5.1, we can see
that setting the minimum document frequency even as low as 2 provides a great
improvement in performance. Lowercasing and cleaning the text also gives us
nice bumps in performance, as we would expect given the reasons we have talked
about before. Using both n-grams usually improves performance too, since the
presence of a specific pair of words gives the model more information than it would
have otherwise. However, it doesn’t always have to help as we can see in the last
two experiments. If overdone, it can also hamper the model by overloading it
with features.

We can try different types of Naive Bayes (NB) estimators and see how they
perform. Available options are either Multinomial NB, Gaussian NB or Comple-
ment NB [39]. We have chosen these three because of the nature of our data.
Since the TF-IDF vectors are non-negative, we can use the Multinomial version.
It interprets the data as word counts, not TF-IDF, but in practice it works well
too. Gaussian NB assumes that a given feature is normally distributed, and hence
it can handle negative numbers as well. This means we can also use PCA. Lastly,
Complement NB is a variant of the Multinomial NB, which “uses statistics from
the complement of each class to compute the model’s weights”. This means that
during training, the weights for class i are calculated from all the documents not
whose target is not i. Then, we choose the class whose sum of these complement
feature weights multiplied by the feature values is the smallest. The results of
fitting the various NB types are in Table 5.2.

Complement NB has proven to be way above others in F1-Score, even though
it lost some accuracy over Multinomial. We had to do some experimentation to
find the right configuration of hyperparameters, but generally (1, 3) n-grams were

50

Description Acc % (σ %) F1 (σ) F
(w)
1 (σ) F0.5 (σ)

raw text 52.1 (1.0) 0.294 (0.012) 0.41 (0.014) 0.312 (0.016)
min df = 2 54.8 (2.2) 0.339 (0.023) 0.467 (0.028) 0.359 (0.026)
min df = 5 55.5 (2.2) 0.353 (0.018) 0.483 (0.023) 0.366 (0.022)
min df = 10 57.0 (1.9) 0.378 (0.011) 0.514 (0.014) 0.387 (0.013)
lowercase 59.7 (2.0) 0.403 (0.016) 0.546 (0.018) 0.408 (0.016)
cleaned 60.5 (2.7) 0.412 (0.022) 0.557 (0.028) 0.416 (0.023)
cleaned* 60.3 (1.9) 0.411 (0.014) 0.556 (0.018) 0.414 (0.016)
cleaned** 59.6 (0.023) 0.406 (0.016) 0.549 (0.021) 0.408 (0.019)

Table 5.1: Preprocessing demonstration table. F
(w)
1 is the weighted F1-Score.

Results are for Multinomial Naive Bayes. All models have been trained with
α = 1 and word-level n-grams, starting with 1-grams. No PCA was applied.
Raw text means no text preprocessing. ”min df” means pruning words whose
document frequency (DF) is ≤ the given amount. “lowercase” is lowercasing the
text before training, and min df = 10. ”cleaned” is ignoring braces punctuation
and newline characters, lowercased text and min df = 10. “cleaned*” is the
same as “cleaned”, but using 1- and 2-grams. “cleaned**” is as before, but also
including 3-grams.

Type Acc% (σ%) F1 (σ) F
(w)
1 (σ) F0.5 (σ)

Multinomial 61.1 (2.5) 0.463 (0.029) 0.583 (0.024) 0.489 (0.047)
Complement 61.7 (1.7) 0.53 (0.015) 0.612 (0.017) 0.535 (0.15)

Gaussian 51.7 (3.2) 0.48 (0.033) 0.514 (0.03) 0.482 (0.033)
Gauss PCA 38.2 (1.3) 0.337 (0.019) 0.337 (0.021) 0.345 (0.031)

Table 5.2: Naive Bayes model results. Best configurations shows. Multinomial
NB had α = 0.1, cleaned text, min df = 10, ngrams = (1,2). Complement NB
had the same configuration. Gaussian NB had variation smoothing = 4.641·10−3,
cleaned text, min df = 5, ngrams = (1,2). Gaussian PCA had variation smoothing
= 10−4, min df = 5, ngrams = (1,2), and number of components for PCA = 200.

51

Type Acc% (σ%) F1 (σ) F
(w)
1 (σ) F0.5 (σ)

Non-PCA (1,4) 61.4 (1.4) 0.467 (0.032) 0.587 (0.16) 0.489 (0.05)
Non-PCA (1,3) 61.2 (1.2) 0.465 (0.032) 0.586 (0.15) 0.487 (0.05)

PCA (1,3) 62 (0.5) 0.547 (0.019) 0.617 (0.007) 0.552 (0.016)
PCA (1,4) 61.4 (1.1) 0.545 (0.009) 0.611 (0.007) 0.552 (0.01)
PCA (1,5) 61.3 (1.2) 0.544 (0.007) 0.61 (0.007) 0.552 (0.01)

Table 5.3: SVM best results for different n-gram ranges. The number in brackets
next to the type denotes the range of n-grams used. All entries have min df =
10. Non-PCA entries both have C = 2. PCA (1,3) has C = 3, min df = 10 and
n components = 250. Both PCA (1, 4) and (1,5) have C = 2 and n components
= 400.

too much, minimum DF of 5 and 10 had a similar performance and 0.1 ≤ α < 1
were generally increasing the F1-Score the closer to 0.1 they got. For the Gaussian
NB, the default variation smoothing was 10−9, which was too low. We performed
a search on linearly distributed numbers on a logartihmic scale starting with
10−9 and ending with 10. The best value was around 4 · 10−4. Surprisingly, even
though the accuracy was much lower than the other versions, the F1-score was
better than in the Multinomial case. PCA was also tried, however, it was really
hard to find a configuration that would get even close to the raw TF-IDF.

In most of the cases, replacing the URLs did not improve performance, which
is unexpected. One would expect that by using higher thresholds for DF, the
hyperlinks would not be included either way. Perhaps there were some URLs
that were repeated in multiple posts, and they could have been used as a feature.

The Complement NB is supposed to work well in cases of unbalanced classes,
which is definitely our case, and it has proven itself. Naive Bayes in general
achieves a good performance even from small amounts of data, which, as we are
going to see, hampers other models.

5.2.2 Support Vector Machines
With SVMs, the theory is complicated, but using them is simple. Most of the
time, we want to use the RBF kernel. We only have to choose one hyperparameter,
C, which is inverse of the regularization strength. Other than that, we will only
play with text preprocessing. The only other parameter we will be changing is
the tolerance for stopping the support vector optimization. We have changed
it from 10−3 to 10−4, but usually we converge either way. We have performed
experiments with and without PCA, and surprisingly, PCA actually helped in
this case. The best configuration results for each case can be found in Table 5.3.

From the results, we see that increasing the range of n-grams used actually
helped performance. Naturally, this way the model has more information to work
with. Sometimes, it can be too much information, as in the case of Naive Bayes,
but SVMs can use it to find better support vectors. The condensed representa-
tion extracted from PCA actually helped the performance a lot, surpassing the
previous models. PCA is similar to what SVMs do, in the way that it finds the
most important eigenvectors, and transform the data into the best approximation
in a space with the eigenvectors as a base. SVMs also find important vectors,

52

which they then use to transform data, project it into a different feature space,
and then classify them based on these new features.

Even though the version with n-gram range (1,3) has the best F1 score, all
the top SVM configurations with PCA are very close to each other in all metrics.
The best number of components seems to be somewhere between 200 and 500,
which, is around 15− 40% of training examples in our case.

5.2.3 Neural Network Ensemble
In contrast to SVMs, Neural Networks can have quite a lot of hyperparameters
to choose and optimize. The architecture of the network is an obvious one, and
generally one also thinks about learning rate, batch size and number of epochs to
train for. Of course, we can use different activation functions as well, but ReLU
is generally the best option, and theoretically optimal. However, we can use some
more optimizations to squeeze performance out of our models. Here are a few:

• Label smoothing - For classification, model outputs a distribution, where
each position gives a percentage, which says how likely the given class is
given the input features. We usually use a one-hot representation of the
training labels as the data the model should strive to predict. Because
of this, the model will always try to push one class to 1 and the rest to
zero, which is almost impossible and leads to overfitting. We could instead
smooth the labels, i.e. take some percentage from the actual target class,
and distribute it to the others. This gives the model some leeway with
which to adjust weights, if it becomes too confident in one class.

• Learning rate decay - During training, it is often beneficial to have a high
learning rate at the beginning, because we want to quickly descend the
gradient of the loss function. In the later stages, we want to make small
steps to fine-tune the weights, i.e. a small learning rate. We can achieve
this using learning rate (LR) decay. It is simply a function which, for a
given step outputs the learning rate that the model should use. It could be
linear, exponential or even cosine.

• Dropout - During training, we can ignore the output of some percentage
of neurons on the previous layer. This can help the network create better,
more independent features on every neuron, since they cannot rely on all
the information being there during the next forward pass. This has some
technical consequences for the gradient computation, but they are easily
solved. Since dropout effectively decreases the “strength” of the network,
by decreasing the average amount of neurons active in any given step, it
can also hamper the network.

During training, we can see the effect of PCA quite well. The time to compute
one training step without using PCA varies between 50 - 130ms, depending,
among other things, on the range of n-grams and size of the network. With PCA,
this time is cut down to around 10 - 20ms. However, we may some accuracy by
doing this.

Another observation is, that the small size of the dataset means models tend
to overfit very early, and achieve high accuracy on the training set (close to 1)

53

Type Acc% (σ%) F1 (σ) F
(w)
1 (σ) F0.5 (σ)

base 58.1 (1.5) 0.466 (0.023) 0.564 (0.016) 0.489 (0.029)
ls = 0.1 57.6 (1.5) 0.46 (0.021) 0.558 (0.016) 0.483 (0.027)

PCA 250 58.1 (1.4) 0.469 (0.029) 0.565 (0.012) 0.484 (0.039)
PCA + ls 58 (1.7) 0.47 (0.029) 0.564 (0.016) 0.484 (0.035)
PCA + ls* 57.5 (2) 0.468 (0.029) 0.561 (0.17) 0.482 (0.036)

patience = 10 58.7 (0.6) 0.417 (0.014) 0.553 (0.008) 0415 (0.029)

Table 5.4: Neural network optimizations. ls is the label smoothing strength. ls*
is label smoothing = 0.3. All models have learning rate = 0.001, Adam optimizer,
5 models in the ensemble, each having resampled training data, one hidden layer
with 256 neurons, minimum DF = 10, n-grams of range (1, 3) and cosine decay.

Type Acc% (σ%) F1 (σ) F
(w)
1 (σ) F0.5 (σ)

best overall 57.1 (3) 0.507 (0.026) 0.568 (0.028) 0.511 (0.028)
best char 57 (2.3) 0.497 (0.02) 0.569 (0.022) 0.498 (0.02)

Table 5.5: Nerual networks final results. “best overall” had a number of PCA
components = 300, learning rate: 0.001, number of models in the ensemble = 7,
hidden layers = [256, 256], resampled data without subsampling, epochs = 30,
batch size = 64, dropout = 0.2, label smoothing = 0.1, patience = 20. “best
char” had a number of PCA components = 400, character-level n-grams with a
range of (3,7). Other hyperparameter were the same.

after a few epochs. This is even with very small sizes, such as only 1 layer with
256 neurons. However, using PCA, at least on small network sizes, helps with
this problem.

Patience (stopping training after some metric on validation data is not in-
creasing anymore) is usually an important part of training, especially in cases
where models tend to overfit. However, sometimes, the results it gives are seem-
ingly worse than without it. For example, in our initial experiments in Table ,
the last row includes setting patience to a generous 10 epochs (when we train
for 20 epochs in total). An optional setting is that we restore the model to the
best weights it had during the “activation” of patience, i.e. when the metric we
are tracking starts increasing when we want it to decrease etc. In our case, the
tracked metric is the validation loss, which is usually the right choice. However,
for one reason or another, the validation F1-Score is increasing even when the
loss starts to increase. This may be because the model starts to misclassify some
examples in the more represented classes, but correctly classifies examples in the
less represented classes. Since the patience mechanism restores the weights when
the validation loss was at its lowest point, we get a worse F1-Score than without
it. This does not mean that the patience mechanism is bad, only that caution is
always advisable when adding optimizations to one’s models.

After some further experimentation with different layer sizes, dropout rates,
number of models in the ensemble and character-level n-grams, we have arrived
at the results in Table 5.5.

Overall, it was beneficial to use 2 hidden layers with a mild dropout, and to
expand the word n-gram range to (1,4). The model had more “memory” to work

54

with, which likely improved results. The best model with character level ngrams
used a range of (3, 6), whose upper bound is close to the length of one word.
During training, there were some models that had validation F1-Scores around
0.55, however, many of them had below average F1-Score too. This indicates that
there is potential improvement to be gained from using character n-grams, but
we were unable to achieve it.

Neural networks did not achieve as good performance as SVMs or Naive Bayes
models, likely because the amount of data was too small and too unbalanced.

5.2.4 RNNs
Recurrent Neural Networks are a very popular, and currently the state-of-the-art
choice for language processing. This makes them a great choice for sentiment
analysis. However, there is one problem: we do not have enough data. RNNs are
unexpectedly deep, in the sense that they have many hidden layers, all with their
own trainable parameters. There is one RNN cell for every token in the input
sequence, and this cell can include multiple weight matrices. This makes them
very prone to overfitting, when working with a small amount of data. And this
is exactly what happened in our case.

Another problem is that usually, we have to use fixed-length sequences on
the input. TensorFlow gives us access to something called Ragged tensors, which
are basically variable-length tensors. They are compatible with their implemen-
tation of RNNs, which solves this problem. However, during training, it seems
that TensorFlow finds the maximum length of the ragged tensors from training
data, and “pads” all other tensors to this length. It is unclear whether it just
creates placeholder RNN cells for every potential token, or takes up more VRAM
differently, but at some point, there is not enough VRAM on the graphics card
used for these experiments (when a token is a single character especially). So we
are slightly limited in the experiments we are able to perform.

One measure we tried to combat this is to “shorten” some posts. There are a
few posts in the training dataset that are much longer than 1000 characters, which
cause these issues. In these posts, GameStop is usually mentioned only once or
twice in passing, in the middle of a diatribe about something unrelated. That is
why we have tried picking out only some ”windows” around these occurrences in
a given post, and returning a union of them. A window of size k consists of k
tokens before the given token, and k tokens after. A token can be a whole word or
a single Unicode character. We can set a maximum posts length in tokens, above
which we apply this shortening procedure. These overlapping windows should
provide a good approximation of the post, and it makes training both possible
and much faster.

During experiments, an interesting problem has happened. If we set learning
rate too low, for example to 0.0001, we may become stuck in a local optimum
where it seems that nothing at all changes for around 10 or so iterations. The
network seems to assign one label to short posts or tweets, and only makes real
decisions on the longer posts. This is likely caused by the huge disparity between
the length of Reddit posts and Tweets. Experiment results can be found in Table
5.6

The results are very noisy. Some iterations were great, with F1-Scores in the

55

Type Acc% (σ%) F1 (σ) F
(w)
1 (σ) F0.5 (σ)

LSTM single 49.2 (6.0) 0.483 (0.062) 0.405 (0.064) 0.419 (0.068)
GRU single 45.7 (6.2) 0.456 (0.055) 0.374 (0.057) 0.385 (0.059)

LSTM double 48.1 (4.6) 0.473 (0.48) 0.384 (0.047) 0.4 (0.057)
LSTM double* 49.9 (6.2) 0.487 (0.058) 0.388 (0.049) 0.396 (0.054)

Table 5.6: RNN results. All models had a learning rate = 0.001, batch size =
32, label smoothing = 0.1, max vocabulary size = 7000, an embedding layer with
output size of 32, patience = 20 and were trained for 30 epochs. The single RNN
layer variants had their output (and hidden state) sizes of 128. Double layer
versions had the same output size. The “double*” variants first hidden layer had
an output size = 256.

Type Acc% (σ%) F1 (σ) F
(w)
1 (σ) F0.5 (σ)

min df = 2 60.9 (3.3) 0.421 (0.024) 0.567 (0.032) 0.418 (0.026)
min df = 3 61.4 (2.4) 0.425 (0.018) 0.573 (0.023) 0.422 (0.18)
min df = 5 60.7 (1.7) 0.421 (0.01) 0.567 (0.013) 0.416 (0.011)
min df = 10 59.6 (1.5) 0.414 (0.011) 0.557 (0.014) 0.407 (0.11)

ngrams = (1,2) 60.2 (2.2) 0.416 (0.017) 0.561 (0.022) 0.412 (0.018)
ngrams = (1,4) 60.6 (2.7) 0.419 (0.02) 0.565 (0.027) 0.417 (0.021)

Table 5.7: Random forest preprocessing results table. min df denotes the min-
imum document frequency of a token in the vocabulary. All models have been
training with Gini impurity, 100 trees, min df = 2 and (1,3) n-grams, if not stated
otherwise.

0.54, and others were abysmal. There is definitely potential for good performance,
but the network seems to overfit to the longer posts, or perhaps posts of one class,
as we can see in the small weighted F1-score. Overall, we were unable to make
RNNs match the performance of other models on this dataset.

5.2.5 Random Forests
Finally, we have our last type of model, the Random Forests. For hyperparam-
eters, we can mostly control how are the different trees built and how many of
them will be there in the ensemble. We also have AdaBoost and Gradient boost-
ing versions, which will (hopefully) improve performance. Results can be found
in Table 5.7.

First we set the hyperparameters to a general standard: (1,3) n-grams, 100
trees, Gini impurity as the criterion and to use at most

√
D features when deciding

to make a split. D is the length of a single feature vector. First experiments were
to determine the best preprocessing hyperparameters. It seems that unlike the
other models, random forest do better if they have even less common features to
choose from, i.e. they worked best with min df = 3. Then, we proceeded with
trying different options for model parameters.

Simply increasing models surprisingly did not improve performance, but when
combined with increasing the maximum amount of possible features to choose
from during node splitting, we have made some improvements. Entropy was
also tried as a possible splitting criterion, and it had similar performance to

56

Type Acc% (σ%) F1 (σ) F
(w)
1 (σ) F0.5 (σ)

n models=200 60.6 (0.02) 0.419 (0.015) 0.565 (0.02) 0.415 (0.016)
max feats=0.3 61.1 (2.7) 0.434 (0.021) 0.576 (0.025) 0.433 (0.027)
max feats=0.3 61.1 (2.7) 0.434 (0.021) 0.576 (0.025) 0.433 (0.027)
max feats=0.4 61.1 (2.1) 0.444 (0.028) 0.578 (0.024) 0.455 (0.045)
max feats=0.6 61.4 (2.3) 0.446 (0.023) 0.582 (0.023) 0.455 (0.034)

msl = 3 60.2 (3.0) 0.431 (0.025) 0.568 (0.029) 0.434 (0.033)
entropy 60.7 (2.4) 0.44 (0.023) 0.574 (0.024) 0.451 (0.03)

PCA 60.9 (0.02) 0.424 (0.015) 0.571 (0.019) 0.416 (0.014)
ccpa = 0.001 0.613 (2.3) 0.446 (0.023) 0.581 (0.022) 0.455 (0.034)

Table 5.8: Random Forest hyperparameter results. Unless stated otherwise, all
models have been trained with n models = 200, min df = 3, ngrams = (1,3),
minimum samples per leaf (msl) = 1. First row was also performed with maximum
features =

√
D. Experiment with msl = 3 was performed with maximum features

= 0.4. Experiment with entropy was performed with maximum features = 0.3
and msl = 3. The ccp row means cost-complexity-pruning alpha, and it had
max features = 0.6, and it’s F1-Score was strictly smaller than the highlighted
maximum. PCA had msl = 2, min df = 2, and used 300 components. Other
values for each hyperparameter were tried, here are only the best performing
ones, or ones used for demonstration purposes.

Gini impurity. Setting minimum examples for creating a leaf did not improve
performance (when a model already had a higher maximum number of features).
Cost-complexity pruning was also tried, but it did not achieve better performance
either. It did increase training time by a factor of 2. PCA was also tried, and
it had similar results to every other method, but did not improve upon any
configuration tried.

Finally, we have tried using AdaBoost and Gradient boosting to improve
performance. These methods are computationally difficult, since they are difficult
to parallelize, and, in the case of gradient boosting, have to be done sequentially.
Both can easily increase training time by a factor of 10 or more. PCA immensely
helps with reducing this training time, and is almost required, considering the
dimensionality of our data. For gradient boosting, we use a different node splitting
criterion, called Friedman MSE. We will not be going into detail on how it works,
but it is better suited for gradient boosting, according to [40].

After trying various learning rates, it seems that around 0.01 seems to be good
for AdaBoost and around 0.5 - 0.7 for gradient boosting. This high learning rate
is not surprising, since we want to make big steps creating new trees and fixing
errors.

Overall, AdaBoost was the best variant, with F1-Score nearing Neural Net-
works, and with a higher accuracy too. But it is still behind Naive Bayes and
SVMs.

57

Type Acc% (σ%) F1 (σ) F
(w)
1 (σ) F0.5 (σ)

AdaBoost 59.9 (0.02) 0.509 (0.02) 0.591 (0.019) 0.518 (0.018)
GradBoosting 59.4 (1.6) 0.435 (0.027) 0.565 (0.018) 0.4407 (0.046)

Table 5.9: Random forest optimizations table. AdaBoost had min df = 2, ngrams
= (1,3), number of PCA components = 300, learning rate = 0.01, number of
models = 200, minimum samples per leaf = 3, and maximum number of features
considered for splitting = 0.3. Gradient Boosting had a learning rate = 0.7,
criterion was Friedman MSE, and otherwise the same as AdaBoost

Type Acc% (σ%) F1 (σ) F
(w)
1 (σ) F0.5 (σ)

SVM 62 (0.5) 0.547 (1.9) 0.617 (0.006) 0.552 (0.016)
ComplementNB 61.7 (1.7) 0.53 (0.015) 0.612 (0.017) 0.535 (0.015)

AdaBoost 59.9 (2.0) 0.509 (0.02) 0.591 (0.019) 0.518 (0.018)
NN 57.1 (3.0) 0.507 (0.026) 0.568 (0.028) 0.511 (0.028)

LSTM 49.9 (6.2) 0.487 (0.058) 0.388 (0.049) 0.396 (0.054)

Table 5.10: Best model results. Table contains results of the best performing
(w.r.t. F1-Score) model from each model type. The best SVM configuration was
C = 3, minimum document frequency = 10, word-level n-grams with a range of
(1, 3) and PCA with 250 components. Results for other models can be found in
their respective sections, in the result table descriptions.

5.2.6 Result summary
In Table 5.10 we can find the best models from each category. SVMs are a clear
winner in all categories. Surprisingly, Naive Bayes is also of similar performance.
The results are not completely surprising given the small size and unbalanced
nature of the dataset. Neural networks struggle when not presented with enough
data, especially RNNs. In their case, another problem was the large disparity be-
tween the length of different posts in the training data. On the other hand, Naive
Bayes is well suited to small dataset, and the Complement version of Multinomial
Naive Bayes is also very well suited to unbalanced data. Random Forests could
potentially be used too, but they are simply middle of the pack with generally
average performance, with one exception being the AdaBoost variant. If not for
AdaBoost, they would be on average trailing behind other models. Finally, SVMs
are the overall best-performing thanks to their synergy with PCA.

However, even the best accuracy and F1-scores are relatively small. It is ques-
tionable whether the performance of models on this dataset could be improved
by much. As stated before, there is simply not enough data. The unbalanced
nature of data would not be such a hindrance if we had thousands or tens of
thousands of posts to train on. Because there was only one person annotating,
there was simply not enough time to create a large training set. Nonetheless,
these models are much better than simply guessing randomly, and so we can still
get meaningful results.

We have also rated the models according to their performance on our data in
Table 5.11. The ratings are in three categories: Training speed, performance on
small datasets, and performance on unbalanced data.

Naive Bayes models are in general very quick and easy to train, making them

58

Model Training speed Small dataset Unbalanced data
Naive Bayes + + + + + + + + +

SVM + + + + + + +
NN + - - +

RNN - - - - - - -
Random Forest - - - + + - -

Table 5.11: Model rating according to their performance on data used.

a good baseline. They achieve a good performance on small datasets, and can
also handle unbalanced data when the correct model variant is used.

Support vector machines are relatively quick to train (certainly compared to
the rest of models used), and have no problems with small datasets. From the
results, we can deduce that they can also handle unbalanced data. One caveat is,
that SVMs are best suited to binary classification. For multi-class classification,
either a one-versus-all or one-versus-one scheme has to be used, which can lead
to inaccuracies.

Simple neural networks can take a long time to train if we use large hidden
layer sizes or complex activation functions. They can also overfit easily, thus
needing large training datasets. If given a large training set, they can handle
unbalanced data.

Recurrent neural networks take a very long time to train, which is entirely de-
pendent on the length of individual input sequences. If we have large disparities
between the lengths of examples, they can very easily overfit on the longer se-
quences, and ignore the short ones. They are not a good option for small datasets.
For unbalanced data, they are similar to simple neural networks, but could have
problems if the length of examples in less represented classes is shorter than the
over-represented ones.

Finally, random forests are potentially very slow to train, especially if we have
very high-dimensional data. Especially the gradient boosting variant is hard to
parallelize. On the other hand, if given low-dimensional small datasets, their
performance is not bad. Unbalanced data can potentially be a problem because
of the simplicity of the base decision trees. Often, we may have a situation where
the limit on minimum examples per leaf might lead to misclassification of the less
represented class. If we do not set a minimum amount of examples per leaf, the
tree may heavily overfit to the training set.

5.2.7 Sentiment estimation
We will now use the best model from the previous section, the SVM, to calculate
the sentiment of the whole corpus of Tweets and Reddit posts that we have
gathered, and plot it in a graph. The sentiment was calculated to include the
“score” of a post in a given day. For Reddit posts, the score is number of upvotes ·
upvote ratio, and for Tweets it is simply the Like count. The sentiment score is
on a scale of -1 to 1, and is calculated as follows

sentiment score = sum of positive scores− sum of negative scores
sum of all scores

59

Figure 5.2: GameStop sentiment over the year.

From the graph we can see that the sentiment is overwhelmingly positive all
year, as expected, with onlt a few negative days. The most negative day was
the 4th of July. This day, together with 2nd and 6th of July that were negative,
seem to have been around a drop in GameStop’s share value and news about the
upcoming stock split. Another quite negative day was the 19th February 2021,
this seems to have been the day when GameStop’s price bottomed out after the
short squeeze a few weeks earlier. The other negative days seem to generally be
around the dips in the stocks price, like the one in February 2022.

Similarly, we have exceptionally strong positive sentiment around the peaks
of the stocks price, for example in April and by the end of August, both of which
were relatively big rallies.

Overall, we can conclude that the first hypothesis of 4.2.1 was correct. Pre-
dictions seem to follow the expected sentiment when looking at the stock price
during the year. Given the relatively unfavorable model performance, this is a
better result than expected.

5.3 Node importance estimation results
In this section we will discuss the results of node importance estimation according
to the metrics mentioned in Section 2.4. HITS scores have been calculated for up
to 100 iterations, with an error tolerance of 10−8 when checking for convergence.
PageRank was estimated with α = 0.85 and error tolerance of 10−6, also for up
to 100 iterations. In both cases, algorithms converged before the iteration limit
was reached.

5.3.1 Twitter
The results are split into two tables. In table 5.12 we can see top 10 users by
PageRank and HITS Authority score. As expected in the second hypothesis in
Section 4.2.1, GameStop’s Twitter account is the highest ranking account by both
of these metrics. Ryan Cohen is also quite high in terms of both PageRank and
Authority score. He is in the top 5 in both cases, but we would have expected

60

Pos by PageRank (score) by Authority Score (score)
1. GameStop (0.032093) GameStop (0.035445)
2. [User 2] (0.019764) [User 6] (0.028672)
3. [User 3] (0.017900) [Unk 331] (0.022234)
4. Will Meade (0.015784) Ryan Cohen (0.020616)
5. Ryan Cohen (0.011425) Keith Gill (0.019902)
6. Liz Claman (0.010991) [User 7] (0.018408)
7. [User 4] (0.010688) [User 8] (0.018379)
8. Dan Carney (0.010106) [User 9] (0.005415)
9. Frank Nez (0.008175) [User 10] (0.018185)
10. [User 5] (0.007819) [User 11] (0.018181)

Table 5.12: Twitter node metric table 1. Names surrounded by square brackets
are anonymized to protect the identity of those users. Only public figures are
named. User [Unk 331]’s Twitter profile was deleted, so their identity is unknown.

him to be in the top 3. Nonetheless, his influence on the GameStop discourse is
rightly confirmed by these results.

Keith Gill, being one of the most important people in the GameStop debacle,
is also in the top 5, for the Authority Score. Surprisingly, he is not in the Top 10
by PageRank. His position in the community lends itself well to having a high
authority score - people often refer to his initial Due Diligence posts explaining his
reasoning about GameStop’s hidden value. However, it seems that his accounts’
inactivity has led to a lower PageRank score.

Other named users in this table are Liz Claman - a business news anchor-
woman, Dan Carney - a comedian and Frank Nez - a finance blogger and influ-
encer. Except for Dan Carney, it is not surprising that these people are ranked as
one the most important according to PageRank, because of their reach and inter-
est in these topics. The anonymized users are mostly minor financial influencers
and speculative investors.

Pos by Hub Score (score) by Betweenness Centrality (score)
1. [User 12] (0.095917) [Unk 331] (0.002300)
2. [Unk 226] (0.014751) [Unk 226] (0.001424)
3. [User 13] (0.010923) [User 6] (0.001339)
4. [User 14] (0.010520) [Unk 270] (0.000926)
5. [User 6] (0.010447) [User 19] (0.000871)
6. [Unk 371] (0.009197) [User 20] (0.000742)
7. [User 15] (0.008772) [User 21] (0.000717)
8. [User 16] (0.008618) [User 22] (0.000702)
9. [User 17] (0.008384) [User 23] (0.000639)
10. [User 18] (0.008359) [User 24] (0.000580)

Table 5.13: Twitter node metric table 2. Anonymization same as in Table 5.12
.

In Table 5.13, we see the results for Hub score and Betweenness centrality
estimation. Because of anonymization, this table does not give us too much

61

Pos by PageRank (score) by Authority Score (score)
1. klay (0.007767) richard.shapiro (0.020522)
2. tana.jones (0.003896) james.steffes (0.018358)
3. sara.shackleton (0.003699) paul.kaufman (0.018340)
4. ebass (0.003650) susan.mara (0.017643)
5. jeff.skilling (0.003107) karen.denne (0.016001)
6. kenneth.lay (0.002910) skean (0.014101)
7. gerald.nemec (0.002745) sandra.mccubin (0.013765)
8. mark.taylor (0.002687) harry.kingerski (0.013269)
9. louise.kitchen (0.002562) james.wright (0.012421)
10 jeff.dasovich (0.002296) mpalmer (0.011701)

Table 5.14: Enron node metric table 2. Emails are displayed without the part
after “@”, since for all of them it is “@enron.com”. Betweenness centrality values
are normalized by 1/((n− 1)(n− 2))

information at the first glance. Surprisingly, none of the public accounts in the
top 10 ranks of PageRank and Authority scores are in this list.

After going through these profiles, they are mostly minor financial or crypto
influencers, or ordinary people. Their followers number in hundreds to small
thousands, and they themselves follow hundreds to small thousands of profiles.
Interestingly, a large part of the influencer profiles have been created at the
beginning of 2021, specifically around April.

We can conclude from this that Hubs, which were defined as nodes in the net-
work amassing links to good authorities, are in this case minor actors. Similarly,
in the case of Betweenness centrality, these people are the bridges connecting
small communities together.

The absence of major public accounts in top positions of Hub Score and Be-
tweenness centrality score lists has one likely explanation. The major public
accounts do not usually link to every other major account, they just post Tweets.
These people on the other hand likely retweet many posts by the major public
accounts, in addition to tweeting themselves, which increases their Hub score.

All in all, the second hypothesis is only half-correct. The mentioned accounts
were important, but only the PageRank and Authority scores.

5.3.2 Enron
For Enron, the Betweenness centrality calculation would be too time-consuming
because of the size of the network. Instead, we sample a fraction of nodes, called
“pivots”, and use them to estimate the total betweenness. This method, by U.
Brandes and C. Pich, is described in [41]. We have chosen k = ⌊n/2⌋, nodes
randomly for this purpose, n being the number of nodes in the graph.

From the results in Table 5.14 we see that one of Kenneth Lay’s emails dom-
inates the PageRank ranking, with other higher ups at Enron filling out most
of the ladder. People like Jeff Skilling (CEO of Enron) Sara Shackeleton (VP of
Enron), Louise Kitchen (COO of Enron Americas) are in the list, which is not at
all surprising.

However, we also have tana.jones, whose real identity seems to be unknown.

62

Pos by Hub Score (score) by Betweenness Centrality (score)
1. jeff.dasovich (0.334277) jeff.dasovich (0.007732)
2. susan.mara (0.130143) jeff.skilling (0.005936)
3. ginger.dernehl (0.038967) j.kaminski (0.005932)
4. mary.hain (0.026147) louise.kitchen (0.005303)
5. james.steffes (0.022168) m..presto (0.004833)
6. miyung.buster (0.020235) kenneth.lay (0.004140)
7. sgovenar (0.015922) sally.beck (0.003949)
8. alan.comnes (0.014196) gerald.nemec (0.003768)
9. christi.nicolay (0.012599) 40enron(0.003582)
10 rhonda.denton (0.011536) sara.shackleton (0.003358)

Table 5.15: Enron node metric table 2. Same formatting as in Table 5.14.

She seems to have been an important in the internal workings of Enron. By
looking at related emails, it seems that she may have been an accountant or
perhaps was managing some financial contracts with other companies.

Person with the highest Authority score was Richard Shapiro, a senior VP,
which is not surprising. In fact, the whole list is made up of similarly high
ranking people at Enron. This is very similar to the Twitter network, where high
PageRank and Authority score people were usually public figures, not ordinary
people.

In case of Hub score, the positions of people in the top 10 changes a bit. At
the top we have two big hubs: Jeff Dasovich, government relations executive at
Enron, and Susan Mara, director of California regulatory affairs at Enron. It
makes sense that these people would receive and send many emails to both their
subordinates and high ranking officers at Enron. However, the other people are
not necessarily that high in the corporate structure. For example, we have Mary
Hain, a government affairs lawyer at Enron. Interestingly, most of the people on
this list are somehow related to government or regulatory affairs.

For the Betweenness centrality score, we once again see many executives and
directors dominate the list. This is in contracts to the Twitter network, in
which both Hub scores and Betweenness centrality scores have been dominated
by mostly ordinary people and minor influencers. However, in both networks,
people on this list act as bridges between communities.

These results seem to generally support the second hypothesis in Section 4.2.2.
The corporate structure of Enron means that people in teams communicate with
their supervisors, they in turn communicate with their supervisors and so on,
until we reach the top level executives. Betweenness score is calculated based on
the fraction of the shortest paths between nodes going through a given node, and
this tree-like corporate structure leads to high betweenness scores for managerial
roles. In the aforementioned hypothesis, we theorized that middle-management
roles would have high betweenness, and we see upper-middle management and
some executives in the top ranks of betweenness. This does make sense, since the
upper echelons of the company act as relays for a potentially larger fraction of
nodes.

63

Degree type γ̂ σγ̂ k̂min σk̂min
p

in 1.8483 0.0274 3 0.6957 0.8366
out 2.3766 0.0829 2 1.2472 0.0022

total (all) 2.1476 0.0202814 2 0.4995 0.0294

Table 5.16: Twitter parameter estimation table. Rows are for different degree
distributions of the network, i.e. ”out” means we consider the degree distribution
of node out-degrees. Nodes which have degree values of 0 are pruned from the
data prior to estimation. γ̂ is the estimated scaling exponent of the fitted power
law, σγ̂ is the standard deviation. Similar notation for kmin. In the last column
we have the p-value.

5.3.3 Result summary
Twitter

For the Twitter network, we found out that public figures have the highest PageR-
ank and Authority scores as expected, with GameStop being the highest ranking
in both scores. Conversely, small influencers and ordinary users dominate regard-
ing Betweenness and Hub scores, because they likely retweet public figures, other
influencers, and also post themselves. This is what makes their Hub scores high.
They usually have a small following, and similarly follow many accounts, which
likely makes them act as bridges between communities in the network, and thus
they also have a high Betweenness centrality.

Enron

This network’s top PageRank and Authority scores are populated by top level
executives and officers, which is a similar result as in the case of Twitter. On
the other hand, Hub and Betweenness centrality scores are also populated by
senior staff, but for similar reasons as in the case of Twitter. This is because the
corporate tree-like structure naturally makes management both hubs and relays
of information between different parts of the company.

5.4 Power-law fit investigation results
Following the steps in Section 2.3.1, we have obtained the following results.

5.4.1 Twitter
For twitter, we have used n = 5000 bootstrap simulations for both standard
deviation estimates and p value calculation. The parameter estimation begins
with a rough MLE estimate given by The results can be found in Table 5.16. We
can rule out the power law for both the in- and out-degree distributions, as their
p value is less than the threshold of 0.1. The fact that the power law is not a
good fit for the out- and total degree distributions is surprising.

It can likely be explained by the relatively small amount of data available
compared to the actual activity on Twitter. This is because we did not have access

64

Figure 5.3: Twitter degree distributions. Logarithmic binning applied to the x-
axis, both axes are in log-scale. The red line represents the best fit power law
model for the given distribution, beginning at kmin.

Degree type γ̂ σγ̂ k̂min σk̂min
p

in 2.8643 0.3318 53 17.7980 0.496
out 2.9948 0.3307 196 62.9954 0.558

total (all) 1.7069 0.4538 3 70.0855 0

Table 5.17: Enron parameter estimation table. Same notation as in table 5.16

to data provided directly by Twitter, but only a third-party scraping service,
which does not guarantee coverage of all tweets posted.

On the other hand, we cannot rule out a power law for the in-degrees. Interest-
ingly, the estimated scaling parameter is outside the expected range of γ ∈ [2, 3],
and also with a small standard deviation. From Figure 5.3 we can see that for
the power law model consistently over-estimates the degree probabilities in the
empirical distribution. Conversely, in the total degree distribution, the model
under-estimates the degree probabilities.

5.4.2 Enron
Enron is a much larger graph in terms of the number of nodes and edges, so we
have only used n = 1000 simulations for bootstrapping. The results are in Table
5.17.

From the results we can see that the power law is a plausible fit for the distri-
bution of in- and out-degrees, with p values higher than our threshold. However,
we see large deviations in the estimated kmin in both cases. To see why, we refer
to the histogram of estimated kmin observed during bootstrapping in Figure 5.4.
In the case of out-degrees, there are peaks around degree 60 as well as a clustering
of values around 200, so it is possible that the real kmin could be around 60.

The distribution of kmin values is even more polarized for total degrees. Vast
majority of them are close to the estimated value of 3, but there are some experi-
ments with kmin values between 40 and 220, which heavily increases the standard
deviation.

In both cases however, the estimated kmin is quite large, which means we have
to discard a large part of data to get a good fit to the power-law, so it is likely

65

Figure 5.4: Histogram of estimated kmin parameters during bootstrapping for
the Enron network.

Figure 5.5: Enron degree distributions. Same scaling as in Figure 5.3.

that another distribution may be a better fit.
We can also see that the best-fit power completely misses the tail of the

distribution, so it is not surprising that the p-value is 0.

5.4.3 Result summary
For the Twitter network, we cannot rule-out the power-law only in the case of
the in-degree distribution. Both out- and total degree distributions have p-values
close to zero, and thus the power-law is a bad fit.

For the Enron network, we can rule out the power-law in the case of the total
degree distribution. While, in- and out- degree distributions fit relatively well
into a power-law, another distribution may be a better fit. This is because of
the high value of the estimated lower bounds on the power-law behavior, which
means we have to throw

66

Conclusion
In this thesis, we aimed to investigate the sentiment within the GameStop com-
munity on Twitter and the subreddit r/wallstreetbets, w.r.t. GameStop post
price spike. We also wanted to identify influential actors in this community using
data collected from Twitter. We have addressed this objective by constructing a
social network from the Tweets and the subsequent application of various node
importance measures discussed in the theoretical section. We also performed this
analysis on the Enron email dataset, from which we also created a social network.
Additionally, we wanted to see if the degrees of these two social networks follow a
power-law distribution. We fitted this distribution to the networks and evaluated
the plausibility of our fit via the goodness-of-fit test.

We trained various classifier models for sentiment analysis on manually an-
notated data gathered from r/wallstreetbets and Twitter. Based on the obtained
results, we concluded that the best-performing model was the Support Vector
Machine (SVM). The resulting average accuracy of 62% and macro averaged F1-
score of 0.547 was not very high because of the dataset’s small size and unbalanced
nature. The predicted sentiment was overwhelmingly positive, as expected. How-
ever, some negative days seemed to correlate with GameStop stock value drops
or negative news.

Our research on node importance estimation of the Twitter and Enron net-
works led to exciting insights into the structure of these networks. Public figures
and high-ranking officials predominantly occupied the top ranks in PageRank
and HITS Authority scores. However, the Hub and Betweenness scores exhib-
ited a different pattern. In the case of Enron, higher-ups in the organization still
dominated, but they included staff management officers and government relations
positions instead. In the case of Twitter, minor financial influencers and ordinary
people obtained higher scores. Their common characteristic was that they all
connected small communities of people in their networks, which naturally gave
them high betweenness centrality and HITS Hub Score.

When assessing the power-law fit, we found that this type of distribution is
a plausible fit for the in-degree distribution of the Twitter network and both in-
and out-degree distributions of the Enron network. However, another distribution
might be a better fit in the latter case, although we cannot statistically rule out
the power-law distribution.

5.5 Future work
Within the framework of our further research, we would like to expand the anno-
tated dataset to support far better use of more advanced state-of-the-art Machine
Learning models from Natural Language Processing. Their application would
hopefully improve performance during sentiment prediction. For example, an
often-used preprocessing step includes creating a word or document-level embed-
dings using BERT, a transformer model trained on a large corpus of textual data
from Google. We can obtain an embedding for the whole document or every
token in the input sequence. We could use such an embedding instead of TF-IDF
coefficients or for the replacement of newly created embeddings in the case of

67

recurrent neural networks (RNNs).
Another potential improvement could involve the modification of the senti-

ment score itself. Now, the criterion only scores the sentiment w.r.t. the total
score of posts in a given day. For example, if there were two posts, each with two
upvotes or likes and both classified as positive, the sentiment score for that day
would be one. However, it would make sense to let the sentiment score also con-
sider the total score observed in the previous days or weeks. A possible solution
could be to employ an exponential moving average (EMA) of all the scores for
the last n days and use it as the denominator in the sentiment score calculation.

68

Bibliography
[1] Geoffrey Grimmett and Dominic Welsh. Probability: an introduction. Oxford

University Press, 2014.

[2] David A Schum. The evidential foundations of probabilistic reasoning,
page 49. Northwestern University Press, 2001.

[3] Charu C. Aggarwal. Data Mining: The Textbook. Springer, 2015.

[4] Albert-László Barabási and Márton Pósfai. Network science. Cambridge
University Press, Cambridge, 2016.

[5] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Diameter of the
world-wide web. Nature, 401(6749):130–131, sep 1999.

[6] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law
distributions in empirical data. SIAM Review, 51(4):661–703, nov 2009.

[7] H. L. SEAL. The maximum likelihood fitting of the discrete pareto law.
Journal of the Institute of Actuaries (1886-1994), 78(1):115–121, 1952.

[8] Morris Goldstein, S. Morris, and G. Yen. Problems with fitting to the power-
law distribution. The European Physical Journal B: Condensed Matter and
Complex Systems, 41(2):255–258, 2004.

[9] Heiko Bauke. Parameter estimation for power-law distributions by maximum
likelihood methods. The European Physical Journal B, 58:167–173, 2007.

[10] Aaron Clauset, Maxwell Young, and Kristian Skrede Gleditsch. On the
frequency of severe terrorist events. The Journal of Conflict Resolution,
51(1):58–87, 2007.

[11] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap.
Number 57 in Monographs on Statistics and Applied Probability. Chapman
& Hall/CRC, Boca Raton, Florida, USA, 1993.

[12] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning, volume 4. Springer, 2006.

[13] Geoffrey Grimmett and Dominic Welsh. Probability: an introduction,
page 14. Oxford University Press, 2014.

[14] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997.

69

[17] Christopher Olah. https://colah.github.io/posts/
2015-08-Understanding-LSTMs/. Accessed: 2023-01-26.

[18] Kaushik Mani. GRU and LSTMs. https://towardsdatascience.com/
grus-and-lstm-s-741709a9b9b1, 2019.

[19] Christopher Olah. Understanding LSTMs. http://colah.github.io/
posts/2015-08-Understanding-LSTMs/img/LSTM2-notation.png.

[20] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder-decoder
approaches, 2014.

[21] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutńık, Bas R. Steune-
brink, and Jürgen Schmidhuber. LSTM: A search space odyssey. CoRR,
abs/1503.04069, 2015.

[22] Christopher Olah. Understanding LSTMs. http://colah.github.io/
posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png.

[23] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone.
Classification and regression trees. Routledge, 2017.

[24] Tin Kam Ho. The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(8):832–844, 1998.

[25] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
CoRR, abs/1603.02754, 2016.

[26] Yoav Freund and Robert E. Schapire. A desicion-theoretic generalization
of on-line learning and an application to boosting. In Paul Vitányi, edi-
tor, Computational Learning Theory, pages 23–37, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg.

[27] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost.
Statistics and its Interface, 2(3):349–360, 2009.

[28] Wikimedia Commons user Lahrman. https://en.wikipedia.org/wiki/
Support-vector_machine#/media/File:SVM_margin.png.

[29] Gerard Salton and Chris Buckley. Term weighting approaches in auto-
matic text retrieval. Information Processing and Management, 24(5):323–
328, 1988.

[30] Jonathon Shlens. A tutorial on principal component analysis. CoRR,
abs/1404.1100, 2014.

[31] snscrape main repository. https://github.com/JustAnotherArchivist/
snscrape. Accessed: 2023-01-26.

[32] Psaw (pushshift.io api) repository. https://github.com/pushshift/api.
Accessed: 2023-01-26.

70

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/grus-and-lstm-s-741709a9b9b1
https://towardsdatascience.com/grus-and-lstm-s-741709a9b9b1
http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM2-notation.png
http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM2-notation.png
http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png
http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png
https://en.wikipedia.org/wiki/Support-vector_machine#/media/File:SVM_margin.png
https://en.wikipedia.org/wiki/Support-vector_machine#/media/File:SVM_margin.png
https://github.com/JustAnotherArchivist/snscrape
https://github.com/JustAnotherArchivist/snscrape
https://github.com/pushshift/api

[33] The gamestop stock frenzy, explained. https://www.vox.com/the-goods/
22249458/gamestop-stock-wallstreetbets-reddit-citron/. Accessed:
2023-01-26.

[34] pandas dataframe documentation. https://pandas.pydata.org/docs/
reference/api/pandas.DataFrame.html. Accessed: 2023-01-26.

[35] Enron email dataset. https://www.cs.cmu.edu/˜enron/. Accessed: 2023-
01-26.

[36] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kud-
lur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org. Accessed: 2023-04-16.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[38] Colin S. Gillespie. Fitting heavy tailed distributions: The poweRlaw package.
Journal of Statistical Software, 64(2):1–16, 2015.

[39] Jason Rennie, Lawrence Shih, Jaime Teevan, and David Karger. Tackling the
poor assumptions of naive bayes text classifiers. Proceedings of the Twentieth
International Conference on Machine Learning, 41, 07 2003.

[40] Jerome H. Friedman. Greedy function approximation: A gradient boosting
machine. The Annals of Statistics, 29(5):1189 – 1232, 2001.

[41] Ulrik Brandes and Christian Pich. Centrality estimation in large networks.
International Journal of Bifurcation and Chaos, 17(07):2303–2318, 2007.

71

https://www.vox.com/the-goods/22249458/gamestop-stock-wallstreetbets-reddit-citron/
https://www.vox.com/the-goods/22249458/gamestop-stock-wallstreetbets-reddit-citron/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://www.cs.cmu.edu/~enron/

List of Figures

3.1 MLP Example . 20
3.2 Activation function graphs . 21
3.3 RNN cell diagram . 24
3.4 LSTM Cell detail . 24
3.5 LSTM Cell legend . 25
3.6 GRU cell diagram with equations, from C. Olah’s blog [22] 26
3.7 Decision tree example . 26
3.8 Hyperplane and margin visualization 31
3.9 TF-IDF input example . 34
3.10 PCA transformation example . 35

4.1 Reddit dataset in a DataFrame [34] 36
4.2 Reddit post example . 37
4.3 Another Reddit post example . 37
4.4 Twitter dataset in a DataFrame [34] 38
4.5 Tweet example . 38
4.6 Reddit daily data . 40
4.7 Reddit monthly data . 41
4.8 Twitter daily mean data. 43
4.9 Twitter monthly mean data. 44

5.1 Information about the annotated dataset makeup. 48
5.2 GameStop sentiment over the year. 60
5.3 Twitter degree distributions . 65
5.4 Histogram of estimated kmin parameters during bootstrapping for

the Enron network. 66
5.5 Enron degree distributions . 66

72

List of Tables

4.1 Reddit statistic table . 39
4.2 Twitter general information . 42

5.1 Preprocessing demonstration table 51
5.2 Naive Bayes model results . 51
5.3 SVM results . 52
5.4 Neural network optimizations . 54
5.5 Nerual networks final results . 54
5.6 RNN results . 56
5.7 Random forest preprocessing results table 56
5.8 Random Forest hyperparameter results 57
5.9 Random forest optimizations table 58
5.10 Best model results . 58
5.11 Model rating . 59
5.12 Twitter node metric table 1 . 61
5.13 Twitter node metric table 2 . 61
5.14 Enron node metric table 2 . 62
5.15 Enron node metric table 2 . 63
5.16 Twitter parameter estimation table 64
5.17 Enron parameter estimation table 65

73

A. Attachments

74

A.1 Short documentation
This section contains information about the scripts used in the thesis, from train-
ing models to data visualization.

A.1.1 Folder structure
Scripts that handle data gathering, data processing, and so on are placed in the
root folder, along with a README.md file, that also has a short description of every
script. There are 5 other folders, each containing the following:

• Data - Downloaded data from Reddit (reddit.json) and Twitter
(twitter.json). Also contains every dataset generated from the data,
whose description is in Subsection A.1.6, along with every annotated dataset
variation, described in Subsection A.1.4. Enron data is not included, since
it is publicly available at https://www.cs.cmu.edu/˜enron/.

• Models - Scripts used to train models. Their description are in Subsection
A.1.2.

• Graphs - Generated dataset visualizations and graphs used in the thesis

• Logs - Custom logs of experiments in results.json and tensorboard logs
of some RNN experiments.

• Networks - Various formats of network generated from Enron and Twit-
ter data. All networks are saved as edgelists, with edge weights included.
Twitter has two network versions: one with user IDs as nodes
(twitter_network.csv), and one with IDs resolved to usernames
(twitter_network_names.csv).

There are also JSON files with metrics calculated for both networks, indexed
by node labels (enron_network_metrics.json and
twitter_network_metrics.json). There are also compressed versions of
both networks, whose filenames end with .gz.

A.1.2 Model scripts
Scrips are located in the Models folder. Each one contains functions that handle
preprocessing, training and saving of their specific models. Every script also con-
tains a function called training_wrapper(), that represents a unified interface
for training. We can call this function from other files and pass it model and
preprocessing arguments as tuples. Every model training script is also callable
from the command line that trains a model with a default hyperparameter setup.
There is a small degree of interactivity as well, via command line arguments. To
see available options, run the script with the --help argument. After finishing
training, the results are logged in a file called results.json, in the Logs folder.

• neural_network.py - Trains simple neural networks

• rnn.py - Trains recurrent neural networks

75

https://www.cs.cmu.edu/~enron/

• other_models.py - Trains Naive Bayes, Support vector machines and ran-
dom forests.

A.1.3 utils.py
A utility script containing the definition of a Log class, that can be set up to
automatically log model performance during training.

A.1.4 annotator.py
Simple script used to annotate data from Twitter and Reddit. It saves the anno-
tations in two files ending with _annotated.json and
annotated_with_irrelevant.json. The first file contains only positive and
negative annotations, while the second one also contains neutral (or irrelevant)
annotations. This is because at the beginning of work on the thesis, it was not
decided whether to include the neutral annotations or not.

A.1.5 data visualization.ipynb
A Jupyter Notebook used to create some visualizations out of the data.

A.1.6 dataset processor.py
A script that combined the Twitter and Reddit datasets, while saving only some
relevant data fields. The output of this script are three files:

• train_dataset.json - Contains annotated posts whose target sentiment
is either positive or negative. There are four columns: ”id” - original ID
of the Reddit post/Tweet, ”type” - either ”reddit post” or ”tweet”, denotes
the origin of the post, ”text” - textual content of the post, and ”target” -
integer representing the sentiment. Can be 0 - negative, 1 - positive, and 2
- neutral.

• train_dataset_alt.json - Also includes neutral posts

• total_dataset.json - Combined dataset of all gathered posts. The ”id”
field refers to the index of the post in either reddit.json or twitter.json,
based on its type.

In the data folder, instead of train_dataset.json and
train_dataset_alt.json we have ”corrected” version of each file. This is be-
cause some annotations were incorrect, and were changed later (models have been
trained on the corrected version).

A.1.7 gui.py
This script creates a GUI for model training. User first selects one of the avail-
able models, then types in hyperparameters (their descriptions can be seen via
hovering over the input fields). Them the program proceeds to train the given
model and save it in the Models folder.

76

A.1.8 enron network.py
Creates a Networkx network out of the Enron email dataset. It iterates through
all the emails, and adds the sender and the recipients (including Cc and Bcc) of
the email to the network.

A.1.9 experiments.ipynb
Jupyter notebook used to run some model training experiments.

A.1.10 gamma estimate.r
An R language script that was used for the goodness-of-fit test for both Twitter
and Enron networks.

A.1.11 network metrics.py
Calculates HITS, PageRank and Betweenness centrality for a given network, and
saves in a JSON file. Also includes a function for plotting a distribution, and
generating power-law distributed data. This function was not used in the end,
since an implementation was already included in the poweRlaw package.

A.1.12 postprocessing.py
Resolves Twitter user IDs into names, exports networks into different file formats,
and other helper functions.

A.1.13 scraper.py
Handles the gathering of posts from Reddit and Twitter. Its output are the
twitter.json and reddit.json files.

A.1.14 sentiment.py
Uses a pre-trained model to estimate the sentiment of a given document corpus,
in our case total_dataset.json. It also has an interactive mode (accessed by
a command line argument --interactive=True). This gives the user a way to
get the model prediction for console input.

A.1.15 twitter network.py
Creates the Twitter network out of the Twitter data, and saves it.

A.1.16 pw.txt
Information for accessing Reddit API

A.1.17 twitter info.json
Information for accessing Twitter API

77

	Definitions and notation
	Notation
	Definitions

	Social Networks
	Definitions and Properties
	Properties

	Power-Law Degree distribution
	Formal Definition of Power-Law Degree Distribution
	Effects of Power-law distribution
	Large Hubs

	Fitting and generating power-laws
	Goodness-of-fit
	Generating power-laws

	Important nodes
	Betweennes Centrality
	PageRank
	HITS

	Models
	Naive Bayes classifier
	Gaussian Naive Bayes
	Multinomial Naive Bayes

	Simple Neural Networks
	Multilayer Perceptron

	Recurrent Neural Networks
	LSTM
	GRU

	Decision Trees
	Creating a decision tree
	Model ensembling and Bagging
	Gradient Boosting Decision Trees
	AdaBoost

	Support Vector Machines
	Multiclass classification

	Preprocessing techniques
	TF-IDF
	Principal Component Analysis

	Analyzed Social Network Data
	Dataset Descriptions
	Dataset analysis and visualization
	Reddit
	Twitter
	Enron

	Hypotheses
	GameStop
	Enron

	Supporting experiments
	Experiment Setup
	Sentiment model setup
	Network parameter calculation setup

	Sentiment model results
	Naive Bayes
	Support Vector Machines
	Neural Network Ensemble
	RNNs
	Random Forests
	Result Summary
	Sentiment estimation

	Node importance estimation results
	Twitter
	Enron
	Result summary

	Power-law fit investigation results
	Twitter
	Enron
	Result summary

	Future work

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Short documentation
	Folder structure
	Model scripts
	utils.py
	annotator.py
	data_visualization.ipynb
	dataset_processor.py
	gui.py
	enron_network.py
	experiments.ipynb
	gamma_estimate.r
	network_metrics.py
	postprocessing.py
	scraper.py
	sentiment.py
	twitter_network.py
	pw.txt
	twitter_info.json

