
BACHELOR THESIS

Edward Young

Serre’s Conjecture on Projective
Modules over Polynomial Rings

Department of Algebra

Supervisor of the bachelor thesis: Liran Shaul, Ph.D.
Study programme: General Mathematics

Study branch: Mathematical Structures

Prague 2023



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



Thank you, doctor Liran Shaul, for your patient help and for sharing with me
a small part of your vast knowledge.

ii



Title: Serre’s Conjecture on Projective Modules over Polynomial Rings

Author: Edward Young

Department: Department of Algebra

Supervisor: Liran Shaul, Ph.D., Department of Algebra

Abstract: This is an expository paper on the Quillen-Suslin Theorem, formerly
known as Serre’s Conjecture. A self-contained proof of this theorem is present-
ed, followed by a discussion of the related Bass-Quillen Conjecture. The first
chapter establishes the necessary theory, building on undergraduate algebra with
the essentials of free, projective, and flat modules. The second chapter presents
a complete proof of the theorem, dealing with regular rings, stably-free modules,
and the related calculus of unimodular rows. The third and final chapter lists par-
tial results surrounding the as yet unresolved Bass-Quillen Conjecture, offering
brief explanations and suggestions for further reading.

Keywords: projective, module, commutative algebra, polynomial ring

iii



Contents

Notation 2

Introduction 3

1 The Basics 4
1.1 Free and Projective Modules . . . . . . . . . . . . . . . . . . . . . 4
1.2 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 The Local-global Principle . . . . . . . . . . . . . . . . . . 20

2 The Proof of Serre’s Conjecture 24
2.1 Left Regular Rings . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Stably Free Modules . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Integral Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Hermite Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Nagata’s Lemma and the Finished Proof . . . . . . . . . . 39

3 The Bass-Quillen Conjecture 41
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Partial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Popescu’s Reduction . . . . . . . . . . . . . . . . . . . . . 45

Conclusion 46

Bibliography 47

1



Notation
A ring is always taken to be a ring with unity. A list of some of the shorthand
appearing in this paper follows:

Mod−R the category of right R-modules

R−Mod the category of left R-modules

Ab the category of abelian groups

HomR(M,N) the group of R-module homomorphisms M → N

M(R) finitely generated R-modules (left or right from context)

P(R) finitely generated projective R-modules

R(I) direct sum power of a ring R, i.e. R(I) = ⨁
i∈I R

spec R the set of prime ideals in a commutative ring R

maxR the set of maximal ideals in a commutative ring R

R
[
S−1

]
the localization of a ring R at the multiplicative set S

RP R
[
(R \ P )−1

]
; the localization of a ring R at P ∈ spec R

GLn(R) the group of n× n invertible matrices with entries in R

SLn(R) the subgroup of GLn(R) of matrices with determinant 1R
N,Z,Q the naturals, integers, and rationals respectively

Zn the ring Z/nZ
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Introduction
Serre’s Conjecture, also known as Serre’s Problem, or the Quillen-Suslin Theorem
since its resolution, comes from the 1955 paper Faisceaux algébriques cohérents [1]
of Jean-Pierre Serre, in which modern sheaf theory was introduced to the rapidly
developing field of Algebraic Geometry. Towards the end of this landmark paper,
the author remarks that “one does not know whether finitely generated projective
modules over k[t1, ..., tn] [where k is a field] are free”.

This statement was motivated by a theorem (nowadays known as the Serre-
Swan Theorem) given in that same paper, which says that vector bundles are like
projective modules over commutative rings and that trivial bundles correspond
to the free modules.

A standard result in topology says that any topological vector bundle on a
contractible space is trivial. The space spec k[t1, ..., tn] with the Zariski topol-
ogy (see Section 1.2.3) is just affine n-space An and thus it ought to act like a
contractible space. If algebraic vector bundles behaved similarly to topological
vector bundles, the conjecture would follow:

Serre’s Conjecture: Let k be a field. Any algebraic vector bundle over An is
trivial. Any finitely generated projective module over k[t1, ..., tn] is free.

This quickly became known as Serre’s Conjecture, despite his having never
speculated on its plausibility. Interest in projective modules in general and this
problem in particular was soon increased by the advent of Homological Algebra
and Algebraic K-theory. Serre’s Conjecture became one of the most sought-after
open problems in Algebra at that time.

Partial results by Serre (1957); Seshadri (1958); Bass (19631, 1964); Sharma,
Ojanguren, and Srindaran (1971), and Suslin and Vaserstein (1974) were slowly
appearing from the start.

The first complete proofs were given in 1976 by Andrey Aleksandrovich Suslin
[2] and Daniel Quillen [3] working independently. Thus, the statement was re-
named the Quillen-Suslin Theorem. Many clever, shorter proofs have since been
presented. One of these, also due to Suslin, is presented in Chapter 2.

However, the story of Serre’s Conjecture does not end in 1976. As with
many good problems, its resolution has sparked work on various generalisations
and analogues. The conjecture also breathed early life into the nascent field of
algebraic K-theory. (In fact, the Grothendieck K0-group is crucial even in this
paper, in Section 2.2.)

Chapter 3 is devoted to the best-known of the attempted generalisations—
The Bass-Quillen Conjecture—which replaces the field k with the more general
notion of a regular ring; and which remains unsolved at the time of writing.

1Here, Hyman Bass proved the fact for non-finitely generated projective modules. See Re-
mark 2.2.1 for an idea of why non-finitely-generated modules are easier to deal with.
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1. The Basics
We present the theory necessary to give a self-contained proof of Serre’s Conjec-
ture in Chapter 2. An acquaintance with localization of commutative rings and
basic module theory is assumed.

1.1 Free and Projective Modules
Definition 1.1.1: A subset X of a module F ∈ Mod−R is said to form a free
basis of F if for any map (of sets) z : X → M , M ∈ Mod−R, there exists a
unique R-homomorphism α : F →M such that α|X = z.

A module F is called free if there exists a free basis of F .

We say a free R-module F is of rank κ for some cardinal κ, if there exists a
free basis of F of cardinality κ. The rank of a free module is not well-defined in
general—a free module can have two bases of distinct (finite) cardinalities. See
Proposition 2.4.2 for more.

Lemma 1.1.1: Suppose F ∈ Mod−R is free with basis X, then

i) X is a generating set of F ; for any m ∈ F there exist rx ∈ R such that∑
x∈X

rx · x = m

(all but finitely many of the rx being non-zero, so that the sum is well-
defined)

ii) F has the factorisation property: If π : A ↠ B is onto then for every
ϕ : F → B there exists an R-homomorphism ψ : F → A such that ϕ = π◦ψ.

F

A Bπ

∃ψ
∀ϕ

Proof. i) Let F ′ = ⟨X⟩ be the submodule generated by X and π : F ↠ F/F ′

the canonical projection. Let z : X → F/F ′, x ↦→ 0, then both π and the zero
homomorphism extend z, from uniqueness in the definition of the free basis X,
this implies π = 0 and hence F/F ′ = 0⇒ F ′ = F . X generates F .

ii) Since π is onto, we have π−1(ϕ(x)) ̸= ∅ for each x ∈ X. By the ax-
iom of choice, we may choose a ψ(x) ∈ π−1(ϕ(x)) for each X and lift this to a
homomorphism ψ(x) : F → A.

We have π(ψ(x)) = ϕ(x) for all x ∈ X which, by uniqueness of the lift, yields
π ◦ ψ = ϕ as needed.

Lemma 1.1.2: F ∈ Mod−R is free if and only if F ≃ R(I) for a suitable index
set I.
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Proof. (⇐) We want to prove R(I) is free on the basis X = {ei | i ∈ I} where
ei = (δj,i)j∈I are the “canonical vectors”. For a map of sets z : X → M we may
define the homomorphism

f : R(I) →M

(ri)i∈I ↦→
∑
i∈I

ri · z(ei)

The sum is well-defined since all but finitely many of the ri are 0 (R(I) is a direct
sum). The elements of R(I) are determined uniquely by their coordinates and we
see f is defined to satisfy the minimal requirements for an R-homomorphism for
which f(ei) = z(ei), so f is well-defined and unique. X forms a free basis.

(⇒) If F is free then it has a free basis X. We claim F ≃ R(X). Take the
map

z : X → R(X)

x ↦→ ex

and let α : F → R(X) be its lift. We already know R(X) is free so we may extend
z−1 : ex ↦→ x to a homomorphism α′ : R(X) → F . Then α′ ◦ α|X = idX so, again,
α′ ◦ α = idF by uniqueness. Similarly α ◦ α′ = idR(X) . So α and α′ are mutually
inverse isomorphisms.

Corrolary 1.1.1: For each module M ∈ Mod−R there exist a free module F and
a homomorphism π : F ↠M . That is, any M is a factor of a free module F .

If M ∈M(R) (is finitely generated), then F can be chosen to have finite rank.

Proof. Take F = R(X) where X is a generating set for M (for instance, the set M
itself) and define π : F → M by lifting ex ↦→ x. The resulting π is onto, because
Im π ⊂M is a submodule containing the generating set X, hence Im π = M .

Definition 1.1.2: Let R be a ring. A sequence (αi)i∈I of R-module homomor-
phisms

· · · αi−1−−→Mi−1
αi−−→Mi

αi+1−−→Mi+1
αi+2−−→ · · ·

is exact at Mi if Im αi = kerαi+1; it is an exact sequence if it is exact at Mi

for each i.
A short exact sequence is an exact sequence of the form

0 −→ K
ν−−→M

π−−→ N −→ 0, (1.1)

the only morphism from or into 0 being the trivial zero morphism. This just
means ν is a monomorphism, π is an epimorphism, and Im ν = ker π.

A short exact sequence like the one in (1.1) is split if π is a split epimorphism
(a retraction), i.e. if there exists a ι : N →M such that π ◦ ι = idN .

Remark 1.1.1: Note that, in (1.1), π is a retraction if and only if ν is a section if
and only if M ≃ K ⊕N .

Indeed, if π ◦ ι = idN , then Im ι ≃ N is a submodule of M and by exactness
at M (and the homomorphism theorem) we have M/Im ι ≃ Im ν ≃ K (since ν
is injective). The projection ρ : M → K is a left inverse of ν, so ν is a section.
The opposite implication is similar.
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If this is the case then obviously Im ι and ker π = Im ν intersect only at 0.
The isomorphism M/Im ι ≃ Im ν implies that Im ι and Im ν span M , hence
M ≃ Im ν ⊕ Im ι ≃ K ⊕N .

Conversely, if M ≃ K ⊕N , then the projections and inclusions of each com-
ponent are the required retractions and sections respectively.

Definition 1.1.3: Let R, S be rings. A functor F : Mod−R → Mod−S is
called additive if for any A,B ∈ Mod−R, the induced map HomR(A,B) →
HomS(F (A), F (B)) is a group homomorphism, i.e. if F (f + g) = F (f) + F (g)
for any R-homomorphisms f, g : A→ B.

An exact functor is an additive functor which preserves exact sequences.

Definition 1.1.4: Let R be a ring and M ∈ Mod−R a module.
We define a map HomR(M,−) as

N ∈ Mod−R ↦→ HomR(M,N)
α ∈ HomR(A,B) ↦→ HomR(M,α)

where

HomR(M,α) : HomR(M,A)→ HomR(M,B)
ϕ ↦→ α ◦ ϕ

Noting (α1 + α2) ◦ ϕ = α1 ◦ ϕ + α2 ◦ ϕ, it is obvious that Hom(M,α) is
a morphism of abelian groups and Hom(M,−) is well-defined. Some important
properties follow:

Lemma 1.1.3: Let R be a ring and M,A,B,C ∈ Mod−R

i) HomR(M,−) is a covariant functor from Mod−R to Ab, meaning it satisfies

HomR(M, idA) = idHomR(M,A)

HomR(M,α ◦ β) = HomR(M,α) ◦ HomR(M,β)

ii) HomR(M,−) is left exact, for any short exact sequence

0 −→ A
α−−→ B

β−−→ C −→ 0

the sequence

0 −→ HomR(M,A) Hom(M,α)−−−−−−→ HomR(M,B) Hom(M,β)−−−−−−→ HomR(M,C)

is also exact.

Proof. i) Take α : A→ B, β : B → C, then by definition

HomR(M, idA)(ϕ) = idA ◦ ϕ = ϕ

HomR(M,α) ◦ HomR(M,β)(ϕ) = HomR(M,α)(β ◦ ϕ) = α ◦ (β ◦ ϕ) =
= (α ◦ β) ◦ ϕ = HomR(M,α ◦ β)(ϕ)
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ii) Injectivity of Hom(M,α): Suppose Hom(M,α)(ϕ) = α ◦ ϕ = 0, then
Im ϕ ⊆ kerα, but α is assumed to be injective, so kerα = {0} = Im ϕ⇒ ϕ = 0.
Hom(M,α) is injective, the sequence is exact at HomR(P,A).

Exactness at Hom(P,B): By i) we have

Hom(M,β) ◦ Hom(M,α) = Hom(M,β ◦ α) = Hom(M, 0) = 0,

so Im Hom(M,α) ⊆ ker Hom(M,β). For the opposite inclusion, suppose

ϕ ∈ ker Hom(M,β)⇒ β ◦ ϕ = 0.

Then Im ϕ ⊆ ker β = Im α. The map α is one-to-one, so it is an isomorphism onto
Im α and we have an inverse α−1 : Im α→ A. The inclusion Im ϕ ⊆ Im α means
we may compose ψ = α−1 ◦ ϕ, then ψ ∈ HomR(M,A) and Hom(M,α)(ψ) =
α ◦ ψ = ϕ, so Im Hom(M,α) ⊇ ker Hom(M,β).

Remark 1.1.2: HomR(M,−) is not exact in general: Take e.g. R = Z,M = Z5 =
Z/5Z and the short exact sequence

0 −→ 5 · Z −→ Z −→ Z5 −→ 0

then HomZ(Z5,Z) = 0 since any f : Z5 → Z satisfies 5 · f([k]) = f([5k]) = 0 ⇒
f([k]) = 0 (Z is an integral domain). But HomZ(Z5,Z5) contains at least the
zero morphism and the identity (in fact HomZ(Z5,Z5)) ≃ Z5) so there can be no
epimorphism from HomZ(Z5,Z) onto HomZ(Z5,Z5).

The contravariant Hom-functor, denoted HomR(−,M), is defined similarly.
These functors are compatible with taking direct sums:

Proposition 1.1.1: Let Mi (i ∈ I) and N be left R-modules, then

HomR

(⨁
i∈I

Mi, N

)
≃
∏
i∈I

HomR(Mi, N) (1.2)

HomR

(
N,
∏
i∈I
Mi

)
≃
∏
i∈I

HomR(N,Mi) (1.3)

Proof. We shall prove 1.2, the other proof is similar. Take the canonical inclusion
and projection homomorphisms

νi :Mi →
⨁
i∈I

Mi

m ↦→ (mj)j∈I , where mj = m if j = i and otherwise mj = 0
πi :

⨁
i∈I

Mi →Mi

(mj)j∈I ↦→ mi

Then we have

πi ◦ νj =

⎧⎨⎩idMj
for i = j

0 otherwise
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We may define a map

Φ : HomR

(⨁
i∈I

Mi, N

)
→
∏
i∈I

HomR(Mi, N)

ϕ ↦→ (ϕ ◦ νi)i∈I ,

this is obviously a group homomorphism. Suppose Φ(ϕ) = (ϕ ◦ νi)i∈I = 0, then
ϕ(νi(mi)) = 0 for every i ∈ I and mi ∈Mi, but these elements generate ⨁i∈IMi,
so ϕ is determined by its values at these points, hence ϕ = 0, Φ is injective.
Let (ϕi)i∈I ∈

∏
i∈I HomR(Mi, N) and define(∑
ϕi ◦ πi

)
((mj)j∈I) :=

∑
i∈I

ϕi(πi((mj)j∈I)) =
∑
i∈I

ϕi(mi)

the sum is well-defined since only finitely many summands are non-zero. From
the fact that πi and ϕi are homomorphisms, we see ∑ϕi◦πi ∈ HomR (⨁i∈IMi, N)
and of course

Φ
(∑

ϕi ◦ πi
)

=
(∑
i∈I

ϕi ◦ πi ◦ νj
)
j∈I

= (ϕj)j∈I

Φ is surjective.

Lemma 1.1.4: Suppose 0 → A → B
ϕ−→ C → 0 is a short exact sequence of

modules. Then this sequence is split if and only if the map

HomR(C, ϕ) : HomR(C,B)→ HomR(C,C)
ψ ↦→ ϕ ◦ ψ

is surjective.

Proof. Suppose the sequence splits and take ε ∈ HomR(C,C). There exists
ι ∈ HomR(C,B) such that ϕ ◦ ι = idC . Taking ι ◦ ε ∈ HomR(C,B) we get
HomR(C, ϕ)(ι ◦ ε) = ε.

Suppose the map HomR(C, ϕ) is surjective. Then there exists ι ∈ HomR(C,B)
such that HomR(C, ϕ)(ι) = ϕ ◦ ι = idC . The sequence is split.

There are a few ways to define a projective module, we present four common
definitions, each of which will be useful going forward.

Definition 1.1.5: A module P ∈ Mod−R is called projective if it has any of
the following equivalent properties:

i) P is a direct summand of a free module, i.e. there exist modules F,Q ∈
Mod−R such that F is free and F = P ⊕Q.

ii) P has the factorisation property: If π : A ↠ B is onto then for every
ϕ : P → B there exists a map ψ : P → A such that ϕ = π ◦ ψ.
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P

A Bπ

∃ψ
∀ϕ

iii) The covariant functor HomR(P,−) is exact, that is, for any exact sequence

0 −→ A
ν−−→ B

π−−→ C −→ 0

the image

0 −→ HomR(P,A) Hom(P,ν)−−−−−→ HomR(P,B) Hom(P,π)−−−−−→ HomR(P,C) −→ 0

is also exact.

iv) Any epimorphism α : A↠ P splits, i.e. there exists a map ι : P ↪→ B such
that α ◦ ι = idP .

Note that free modules are a special case of projective modules. We have
claimed that the four properties in Definition 1.1.5 are equivalent, the proof of
this fact follows:

Proof. i) ⇒ ii) We have F = P ⊕ Q with F free. Let ρ : F → P be the
natural projection onto P and note that ρ|P = ρ ◦ ι = idP , where ι : P ⊆ F .
Then ϕ ◦ ρ : F → B factorises through π because F is free, i.e. there is a map
ψ′ : F → A such that

π ◦ ψ′ = ϕ ◦ ρ =⇒ π ◦ ψ′ ◦ ι = ϕ ◦ ρ ◦ ι

The sought-after map is then ψ = ψ′ ◦ ι.
ii) ⇒ iii) HomR(P,−) is always left exact (Lemma 1.1.3), so it remains only

to check that HomR(P, π) is onto, but that is precisely what ii) states, since in
that setting we have Hom(P, π)(ψ) = ϕ for any ψ in the co-domain.

iii) ⇒ iv) Applying HomR(P,−) to the sequence

0 −→ kerα ⊆−−→ B
α−−→ P −→ 0

we get from iii) that Hom(P, α) : HomR(P,B) → HomR(P, P ) is onto so, spe-
cially, some ι ∈ HomR(P,B) is sent to the identity idP ∈ HomR(P, P ), hence
β ◦ ι = idP .

iv)⇒ i) By Corrolary 1.1.1 there exists a free module F and a map π : F ↠ P .
This yields a short exact sequence

0 −→ kerπ ⊆−−→ F
π−−→ P −→ 0

which splits by iv), so F = kerπ ⊕ P .
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1.2 Tensor Products
A more complete treatment of tensor products can be found e.g. in Dummit and
Foote [4]. In this paper, we present a slightly different approach and deal with
bimodules in more detail.

Definition 1.2.1: Let R be a ring, G ∈ Ab, M ∈ Mod−R and N ∈ R−Mod. A
map ϕ : M ×N → G is called R-balanced if

ϕ(m+m′, n) = ϕ(m,n) + ϕ(m′, n)
ϕ(m,n+ n′) = ϕ(m,n) + ϕ(m,n′)
ϕ(m · r, n) = ϕ(m, r · n)

for all m,m′ ∈M,n, n′ ∈ N, r ∈ R.
The tensor product of M by N is an abelian group M ⊗RN equipped with

an R-balanced map
⊗ : M ×N →M ⊗R N

satisfying the following so-called universal property of the tensor product:
Given any abelian group G and R-balanced map α : M×N → G, there exists

a unique
α′ : M ⊗R N → G

such that
α′ ◦ ⊗ = α

M ×N M ⊗R N

G

⊗

∃!α′
∀α

The following proposition gives an idea of what the group M ⊗RN looks like:

Proposition 1.2.1: The elements of M ⊗R N can be expressed (non-uniquely)
as finite sums ∑

mi ⊗ ni
where mi ∈M,ni ∈ N and we denote ⊗(m,n) = m⊗n (so-called simple tensors).

Proof. Let L = ⟨m ⊗ n | (m,n) ∈ M × N⟩ the subgroup of M ⊗R N generated
by the simple tensors (the image of ⊗). We want to prove that L = M ⊗R N , so
let O = M ⊗R N/L and π : M ⊗R N → O the projection map.

Taking α = 0 : M ⊗R N → O to be the zero morphism, we get π ◦ ⊗ = 0 and
0 ◦ ⊗ = 0, so π = 0 by the uniqueness required in the universal property. Hence,
O = {0} which means L = M ⊗R N as needed.

Remark 1.2.1: With this result in mind, we can construct the tensor product
M ⊗R N by taking the free abelian group (the free Z-module) F with a basis
consisting of the symbols

{m⊗ n | (m,n) ∈M ×N}
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F consist precisely of finite sums ∑mi ⊗ ni, it remains to force the relations
in Definition 1.2.1 on ⊗ to make it R-balanced. Take K to be the subgroup of F
generated by elements of the form

m⊗ n+m′ ⊗ n− (m+m′)⊗ n
m⊗ n+m⊗ n′ −m⊗ (n+ n′)

m · r ⊗ n−m⊗ r · n,

then ⊗ acts as an R-balanced map ⊗ : M ×N → F/K. Using Proposition 1.2.1,
it turns out that M ⊗R N ≃ F/K.

Importantly, this means that M ⊗RN is uniquely (up to isomorphism) deter-
mined by the universal property of the tensor product.

Definition 1.2.2: Let R, S be rings. An abelian group M is an (S,R)-bimodule
if M is a left S-module as well as a right R-module and it satisfies the additional
relation (sm)r = s(mr) for any s ∈ S,m ∈M, r ∈ R.

Remark 1.2.2: If R is a commutative ring, then any R-module (left or right) is
naturally an (R,R)-bimodule. Indeed, if e.g. M ∈ Mod−R is a right R-module,
then we can define a left action of R on M as r · m = mr. Commutativity
then gives s · (r · m) = (mr)s = m(rs) = m(sr) = (sr) · m, the other R-
module axioms carry over directly. So M is a left R-module under this action
and (s ·m)r = msr = (mr)s = s · (mr) makes it an (R,R)-bimodule.

Lemma 1.2.1: If M is an (S,R)-bimodule and N ∈ R−Mod is a left R-module,
then M⊗RN has a natural S-module structure. In this case the universal property
can be refined:

If G is a left S-module and α : M ×N → G is R-balanced with the additional
property s · α(m,n) = α(s · m,n),∀s ∈ S,m ∈ M,n ∈ N , then the lift α′ :
M ⊗R N → G is a homomorphism of left S-modules.

Proof. For each s ∈ S define

αs : M ×N →M ⊗R N
(m,n) ↦→ sm⊗ n

And extend uniquely to group homomorphisms s · − : M ⊗R N → M ⊗R N ,
noting that αs is R-balanced:

αs(m+m′, n) = s(m+m′)⊗ n = (sm+ sm′)⊗ n = sm⊗ n+ sm′ ⊗ n =
= αs(m,n) + αs(m′, n)

αs(m,n+ n′) = m⊗ (n+ n′) = m⊗ n+m⊗ n′ = αs(m,n) + αs(m,n′)
αs(mr, n) = s(mr)⊗ n = (sm)r ⊗ n = sm⊗ rn = αs(m, rn)

where we have used distributivity of s ∈ S over M , properties of ⊗, and also,
importantly, the extra relation required of an (S,R)-bimodule.

The properties required for s · − to make M ⊗R N into an S-module are
obvious on simple tensors. They hold on all of M ⊗R N by uniqueness.
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G is an abelian group, so any R-balanced α : M × N → G lifts to a unique
α′ : M ⊗R N → G, where α′ ◦ ⊗ = α. With the extra assumption, we get (on
simple tensors)

α′(s · (m⊗ n)) = α′(sm⊗ n) = α(sm, n) = sα(m,n) = s · α′(m⊗ n)

since α′ is already additive, this extends to all of M ⊗R N (Proposition 1.2.1).
So α′ is an S-module homomorphism.

Remark 1.2.3: This could have been done analogously for N an (R, S)-bimodule,
making M ⊗R N into a right S-module.

By the previous remark, if R is commutative, then the Lemma says that
M ⊗R N is a left and a right R-module (in fact an (R,R)-bimodule).

Lemma 1.2.2: Let M,M ′ ∈ Mod−R,N,N ′ ∈ R−Mod and ϕ : M → M ′, resp.
ψ : N → N ′ be homomorphisms of right and left R-modules respectively.

i) There exists a unique group homomorphism ϕ⊗ ψ : M ⊗R N → M ′ ⊗R N ′

such that for any m ∈M,n ∈ N

(ϕ⊗ ψ)(m⊗ n) = ϕ(m)⊗ ψ(n)

ii) If M,M ′ are (S,R)-bimodules and ϕ is a left S-homomorphism as well as
a right R-homomorphism, then ϕ⊗ ψ is also an S-homomorphism.

iii) If, additionally, ϕ′ : M ′ → M ′′ and ψ′ : N ′ → N ′′ are as above, then
(ϕ⊗ ψ) ◦ (ϕ′ ⊗ ψ′) = (ϕ ◦ ϕ′)⊗ (ψ ◦ ψ′).

Proof. i) Define a map

α : M ×N →M ′ ⊗R N ′

(m,n) ↦→ ϕ(m)⊗ ψ(n)

This is obviously R-balanced since ϕ, ψ are additive and ⊗ is R-balanced. By the
universal property, α lifts uniquely to a group homomorphism ϕ⊗ψ : M⊗RN →
M ′ ⊗R N ′, such that (ϕ⊗ ψ)(m⊗ n) = α(m,n) = ϕ(m)⊗ ψ(n).

ii) M⊗N and M ′⊗N ′ are left S-modules by Lemma 1.2.1. Take an arbitrary
s ∈ S, then

s · α(m,n) = s · (ϕ(m)⊗ ψ(n)) = ϕ(sm)⊗ ψ(n),
so Lemma 1.2.1 applies, making ϕ⊗ ψ into an S-homomorphism.

iii) Considering the R-balanced map

β : M ×N →M ′′ ⊗R N ′′

(m,n) ↦→ (ϕ ◦ ϕ′)(m)⊗ (ψ ◦ ψ′)(n)

we see that both (ϕ⊗ ψ) ◦ (ϕ′ ⊗ ψ′) and (ϕ ◦ ϕ′)⊗ (ψ ◦ ψ′) extend β to M ⊗R N ,
they are therefore equal by uniqueness in the universal property.

Definition 1.2.3: S is said to be a commutative associative R-algebra, if S is
a commutative ring, S is an R-module, and the module action of R on S is
compatible with ring multiplication in S, i.e. r · (ss′) = (r · s)s′ for any r ∈ R
and s, s′ ∈ S.

12



Remark 1.2.4: If R is a commutative ring and S is a commutative associative
R-algebra, then S is an (S,R)-bimodule and also an (S, S)-, (R, S)-, or (R,R)-
bimodule. If M ∈ R−Mod, then S ⊗RM ∈ S−Mod.

The tensor product is compatible with direct sums in the following sense:

Theorem 1.2.1: Let I be an arbitrary index set and M,Mi ∈ Mod−R and
N,Ni ∈ R−Mod for each i ∈ I, then⨁

i∈I
Mi ⊗R N ≃

⨁
i∈I

(Mi ⊗R N)

M ⊗R
⨁
i∈I

Ni ≃
⨁
i∈I

(M ⊗R Ni)

as abelian groups. If M,Mi (i ∈ I) are (S,R)-bimodules, then the above are
isomorphisms of left S-modules.

Proof. We will prove the first statement, the second is similar. Define

α :
⨁
i∈I

Mi ×N →
⨁
i∈I

(Mi ⊗R N)

((mi)i∈I , n) ↦→ (m⊗ n)i∈I

This map is well-defined since elements of ⊕Mi × N are expressed uniquely as
these tuples. The map α is also R-balanced:

α
(
(mi)i∈I + (m′

i)i∈I , n
)

= ((mi +m′
i)⊗ n)i∈I =

= (mi ⊗ n)i∈I + (m′
i ⊗ n)i∈I =

= α
(
(mi)i∈I , n

)
+ α

(
(m′

i)i∈I , n
)

α
(
(mi)i∈I , n+ n′

)
= (mi ⊗ (n+ n′))i∈I =
= (mi ⊗ n)i∈I + (mi ⊗ n′)i∈I =
= α

(
(mi)i∈I , n

)
+ α

(
(mi)i∈I , n′

)

α
(
(mi · r)i∈I , n

)
= (mi · r ⊗ n)i∈I = (mi ⊗ rn)i∈I =

= α
(
(mi)i∈I , r · n

)
So there exists a (unique)

α′ :
⨁
i∈I

Mi ⊗R N →
⨁
i∈I

(Mi ⊗R N)

such that α′ ◦ ⊗ = α.
In the other direction, take the embeddings νj : Mj →

⨁
i∈IMi, mapping Mj

to the jth component, and define βj = νj ⊗ idN .
Once more making use of the fact that ⊗ is R-balanced, we may define

β :
⨁
i∈I

(Mi ⊗R N)→
⨁
i∈I

Mi ⊗R N

(mi) ↦→
∑
i∈I

βi(mi)

13



This is well-defined because, firstly, only finitely many mi are non-zero meaning
the sum is actually finite and, secondly, the elements of ⊕(Mi⊗RN) are uniquely
determined as these sequences of tensors.

On simple tensors, we have by definition β(mi ⊗ n)i∈I = (∑i∈I νi(mi))⊗ n =
(mi)i∈I ⊗ n. So α′ ◦ β and β ◦ α′ are seen to act as the identity on simple tensors
and hence are the identity on the whole groups by uniqueness in the universal
property. Hence, α′ and β are mutually inverse isomorphisms.

If Mi are (S,R)-bimodules, then

s · α
(
((mi)i∈I , n)

)
= s · (m⊗ n)i∈I = (smi ⊗ n)i∈I = α

(
(s(mi)i∈I , n)

)
and Lemma 1.2.1 says that α′ is an isomorphism of S-modules.

Corrolary 1.2.1: Let S be a commutative associative R-algebra. If F is a free
R-module, then S ⊗R F is a free S-module. If P is a projective R-module, then
S⊗RP is a projective S-module. If, additionally, P ∈ P(R) then S⊗RP ∈ P(S).

Proof. We have S⊗RR ≃ S by the isomorphism lifted from the R-balanced map
(s, r) ↦→ sr. Suppose F ≃ R(I), then by Theorem 1.2.1 S⊗RF ≃ (S⊗R)(I) ≃ S(I)

and these are S-module isomorphisms by Lemma 1.2.1. If F ≃ P ⊕Q, then the
same theorem and lemma give S ⊗R F ≃ (S ⊗R P ) ⊕ (S ⊗ Q) and the second
statement follows from the first. For the third statement, the argument is repeated
with free modules of finite rank.

1.2.1 Flatness
Definition 1.2.4: Let M ∈ Mod−R, then the map M ⊗R − is defined as A ↦→
M⊗RA for A ∈ R−Mod and α ↦→ (idM⊗α : M⊗RA→M⊗RB) for α : A→ B.

Remark 1.2.5: We see M ⊗R − is well-defined by the uniqueness of the tensor
product as deduced from Proposition 1.2.1 and the uniqueness of idM ⊗R α in
item i) of Lemma 1.2.2.

Lemma 1.2.3: Let R be a ring and M ∈ Mod−R:

i) M ⊗R − is a covariant functor from R−Mod to Ab.

ii) M ⊗R − is right-exact.

iii) If M is an (S,R)-bimodule, then M ⊗R− is a right-exact covariant functor
from R−Mod to S−Mod.

Proof. i) We have
M ⊗ (ϕ ◦ ψ) = (M ⊗ ϕ) ◦ (M ⊗ ψ)

directly from item iii) in Lemma 1.2.2. And idM ⊗ idA acts like the identity on
simple tensors, so idM⊗RA = idM ⊗ idA by uniqueness.

ii) Take a short exact sequence

0 −→ A
α−−→ B

β−−→ C −→ 0

we want prove that

M ⊗R A
id⊗α−−−→M ⊗R B

id⊗β−−−→M ⊗R C −→ 0

14



is exact.
To prove exactness at M ⊗R C, we must show that id ⊗ β is onto. Take∑
mi ⊗ ci ∈M ⊗R C, since β is onto C, we may find bi such that β(bi) = ci, but

then
(id⊗ β)

(∑
mi ⊗ bi

)
=
∑

id(mi)⊗ β(bi) =
∑

mi ⊗ ci

To check exactness at M ⊗R B, let D = Im (id⊗α). We have D ⊆ ker id⊗ β
from the composition (id ⊗ β) ◦ id ⊗ α = id ⊗ (β ◦ α) = id ⊗ 0 = 0. For the
opposite inclusion, take

β′ : (M ⊗R B)/D →M ⊗R C
m +D ↦→ (id⊗ β)(m)

the homomorphism induced by id⊗ β in the homomorphism theorem. If it turns
out that β′ is an isomorphism, then ker(id⊗ β) = D and we are done.

Define γ : M ×C → (M ⊗B)/D by γ(m, c) = m⊗ b+D where b is such that
β(b) = c. This is well-defined, because m is unchanged and if we suppose that
both b and b′ are preimages of c, we get β(b− b′) = 0⇒ b− b′ ∈ ker β = Im α⇒
m⊗ (b− b′) ∈ Im (id⊗α) = D ⇒ m⊗ b−m⊗ b′ ∈ D ⇒ m⊗ b+D = m⊗ b′ +D.
The map γ also inherits the properties of an R-balanced map from ⊗, so it can
be lifted to a group homomorphism γ′ : M ⊗ C → (M ⊗B)/D.

The maps β′ and γ′ act as mutual inverses on simple tensors, by definition,
they are therefore mutually inverse homomorphisms by uniqueness, β′ is a iso-
morphism as needed.

iii) M ⊗ A is an S-module by Lemma 1.2.1 and the maps id ⊗ α are S-
homomorphisms by item iii) in Lemma 1.2.2. The rest is carried over from i) and
ii).

Definition 1.2.5: A right R-module M is called flat if M ⊗R − is exact.

Remark 1.2.6:

1. In view of Lemma 1.2.3, it is sufficient to prove id ⊗ α is injective for any
injective α : A ↪→ B in order to show that M is flat.

2. Not all modules are flat. Take e.g. R = Z, M = Z5 and the inclusion
ι : Z ↪→ Q. Then Z5 ⊗Z Q = 0 since for any q ∈ Q and [k] ∈ Z5 we have
k⊗ q = [k ·5]⊗ q

5 = 0. But Z5⊗ZZ ≃ Z5 since we can use Proposition 1.2.1
to rewrite an arbitrary element∑

[ki]⊗ li =
∑

[kili]⊗ 1 =
[∑

kili
]
⊗ 1←→

[∑
kili

]
So Z5 ⊗ ι = 0 is not injective.

Proposition 1.2.2:

i) Let Mi, i ∈ I be right R-modules. Then ⨁
i∈IMi is flat if and only if each

Mi is flat.

ii) Free modules are flat.

iii) Projective modules are flat.
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Proof. i) Let A,B be left R-modules and α : A ↪→ B an injective R-module
homomorphism. By Theorem 1.2.1, there is an isomorphism

β :
(⨁
i∈I

Mi

)
⊗R B →

⨁
i∈I

(Mi ⊗R B)

where for simple tensors β((mi)i∈I ⊗ n) = (mi ⊗ n)i∈I .
Denote M = ⨁

i∈IMi, α∗ = idM ⊗ α, and α∗
i = idMi

⊗ α for each i ∈ I. Then

β ◦ α∗
(
(mi)i∈I ⊗ n

)
= β

(
(mi)i∈I ⊗ α(n)

)
= (mi ⊗ α(n)) = (α∗

i (mi ⊗ n))i∈I

Extending this to general tensor, we see β ◦ α∗ = (α∗
i )i∈I and it is obvious that

α∗ is injective if and only if every α∗
i is injective.

ii) Take the map R × A → A, (r, a) ↦→ ra. This is easily seen to be R-
balanced by the axioms of modules for A and thus extends (uniquely) to a group
homomorphism

ιA : R⊗R A→ A

ιA is obviously onto A. To prove injectivity, take 0 = ιA (∑ rj ⊗ aj) = ∑
rjaj

which implies∑
rj ⊗ aj =

∑
1⊗ (rjaj) = 1⊗

(∑
rjaj

)
= 1⊗ 0 = 0

We have ιB ◦ (idR ⊗ α) = α so idR ⊗ α is injective if α is injective. Hence R is
flat and by i) so is any free module.

iii) Follows from i) and ii) since a projective module is a direct summand of a
free module.

Remark 1.2.7: The proofs of i) and ii) give us a bit more: The way that α∗

decomposes into components in i) taken along with the argument for ii) means
that R(I) ⊗R A→ R(I) ⊗R B → R(I) ⊗R C is exact if and only if A→ B → C is.
R(I) is said to be faithfully flat.

An important special case is that of R[t]. Forgetting the multiplicative struc-
ture, this is a free R module on the basis 1, t, t2, .... It can be regarded as an
(R[t], R)-bimodule and Remark 1.2.4 and Proposition 1.2.2.ii) together tell us
R[t] is faithfully flat, i.e. R[t] ⊗R − : Mod−R → Mod−R[t] is an exact functor,
with exactness also being preserved in the opposite direction as above.

1.2.2 Localization
For the rest of this chapter, let R be a commutative ring.

If U ⊂ R is a multiplicatively closed set, we denote the localization of R with
respect to U by R[U−1]. The localized ring R[U−1] consists of equivalence classes
of elements r

u
where r ∈ R, u ∈ U under the relation ∼ defined by

r

u
∼ r′

u′ ⇐⇒ ∃t ∈ U : t(ru′ − r′u) = 0.

A similar definition can be applied to modules: If M is an R-module, then M [U−1]
is obtained by canonically adding the elements m

u
where m ∈M , u ∈ U , the result

is an R[U−1]-module.
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For our purpose, the best way to define the localization of a module is using
the tensor product.

Note that R[U−1] is an associative R-algebra: R acts on R[U−1] naturally by
r · p

q
= rp

q
and associativity is checked easily

(
r · p

q

)
p′

q′ = rpp′

qq′ = r ·
(
p
q
p′

q′

)
.

We recall Remark 1.2.4 in order to define the localization of a module

Definition 1.2.6: Let R be a commutative ring, U ⊂ R a multiplicatively closed
set, and M ∈ R−Mod. Then the localization of M with respect to U is the
R[U−1]-module M [U−1] = R[U−1]⊗RM .

Remark 1.2.8: It is important to note that all elements of M [U−1] reduce to
simple tensors:

r

u
⊗m+ r′

u′ ⊗m
′ = 1

uu′ ⊗ u
′rm+ 1

uu′ ⊗ ur
′m′ = 1

uu′ ⊗ (ur′m+ ur′m′)

and apply Proposition 1.2.1 and induction.
With this in mind, we may denote 1

u
⊗ m by m

u
to get the localization in a

more intuitive form.
This definition also agrees with the definition of R[U−1] in the sense that

R[U−1] ≃ R[U−1]⊗RR since, in general, if M is an R-module, then M⊗RR ≃M
by the isomorphism m⊗ r ↦→ mr.

Lemma 1.2.4: Let F,G be left-exact (additive) contravariant functors from
Mod−R to Ab (= Mod−Z) and let α : F → G be a natural transformation.
Suppose M ∈ Mod−R is finitely presented, i.e. there exist n,m ∈ N such that
Rm ϕ−−→ Rn ψ−−→M −→ 0 is exact.

0 F (M) F (Rn) F (Rn)

0 G(M) G(Rn) G(Rn)

F (ψ) F (ϕ)

G(ψ) G(ϕ)

αM αRn αRm

If αRm is an isomorphism for free modules, then αM is also an isomorphism.

Proof. To prove αM is injective, suppose x ∈ kerαM . Since the diagram com-
mutes (by the definition of natural transformations),(

αRn ◦ F (ψ)
)
(x) =

(
G(ψ) ◦ αM

)
(x) = 0.

Since αRn is an isomorphism, F (ψ)(x) = 0. But F (ψ) is injective by exactness,
so that x = 0.

To prove surjectivity, take y ∈ G(M) and find y ∈ F (Rn) such that

αRn(y) = G(ψ)(y).

By exactness 0 = G(ϕ) ◦G(ψ)(y) = G(ϕ) ◦ αRn(y) and by commutativity also

αRm ◦ F (ϕ)(y) = G(ϕ) ◦ αRn(y) = 0.
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But αRm is an isomorphism, so F (ϕ)(y) = 0 and hence y ∈ kerF (ϕ) = Im F (ψ)
so that y = F (ψ)(x) for some x ∈ F (M). Again, by commutativity

αRn ◦ F (ψ)(x) = G(ψ) ◦ αM(x) = G(ψ)(y).

Finally, sinceG(ψ) is injective, this gives αM(x) = y, proving αM is surjective.

Remark 1.2.9: If M is only supposed to be finitely generated, αM is at least still
a monomorphism, by the same proof.

Localization is compatible with the Hom functor in the following sense:

Proposition 1.2.3: Let S be a commutative R-algebra, let M,N ∈ R−Mod,
then there exists a unique S-module homomorphism

αM : S ⊗R HomR(M,N)→ HomS(S ⊗RM,S ⊗R N)

such that αM(1⊗ ϕ) = idS ⊗ ϕ.
If S is a flat R-module and M is finitely presented, then αM is an isomor-

phism.

Proof. First, HomR(M,N) has an R-module structure by the action r · ϕ : m ↦→
r ·ϕ(m). Using this and Remark 1.2.4 we see S⊗RHomR(M,N) and HomS(S⊗R
M,S ⊗R N) are indeed S-modules.

We require αM to be an S-homomorphism so

αM(s⊗ ϕ) = s · αM(1⊗ ϕ) = idS ⊗ (s · ϕ),

if αM exists at all. The map α : S × HomR(M,N) → HomS(S ⊗R M,S ⊗R
N), (s, ϕ) ↦→ idS ⊗ s ·ϕ is easily seen to be R-balanced with r ·α(s, ϕ) = α(rs, ϕ),
so, by Lemma 1.2.1, α induces a unique αM as required.

For the second statement, suppose M is finitely presented and S is flat. The
proof that αM is an isomorphism is done in several steps:

• If M = R, we have HomR(R,N) ≃ N since a ϕ : R → N is uniquely
determined by ϕ(1) ∈ N , the isomorphism is given as f : ϕ ↦→ ϕ(1). As
seen above, S ⊗R R ≃ S. Therefore also HomS(S ⊗R R, S ⊗R N) ≃ S ⊗N
by the isomorphism g : ψ ↦→ ψ(1⊗ 1).
Since S ⊗R − is a functor, it preserves isomorphisms, so idS ⊗ f is also an
isomorphism. Then g−1◦(idS⊗f) is an isomorphism and αM = g−1◦(idS⊗f)
by the uniqueness proved above, since

g−1 ◦ (idS ⊗ f)(1⊗ ϕ) = g−1(1⊗ ϕ(1)) = idS ⊗ ϕ

• Now suppose M = Rn is a free module of finite rank. By Proposition 1.1.1
and Theorem 1.2.1, we have the isomorphisms

f : S ⊗R HomR(Rn, N) ≃
(
S ⊗R HomR(R,N)

)n
g : HomS(S ⊗R Rn, S ⊗R N) ≃

(
HomS(S ⊗R R, S ⊗R N)

)n
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The constructions of these as seen in the respective lemmas allow us to
check that

g−1 ◦
(

n⨁
i=1

αR

)
◦ f(1⊗ ϕ) = g−1

(
n⨁
i=1

αR(1⊗ (ϕ ◦ νi))
)

=

= g−1(id⊗ (ϕ ◦ νi))i∈I = id⊗ ϕ
and therefore αnR = g−1◦(⨁n

i=1 αR)◦f is also an isomorphism, because each
αR is.

Finally, we claim α = {αA : A ∈ Mod−R} is a natural transformation
S ⊗R HomR(−, N) −→ HomS(S ⊗R −, S ⊗R N)

Take A,B ∈ Mod−R and f : A→ B, we have for each ϕ ∈ HomR(B,N)
αA ◦ S ⊗R HomR(f,N)(1⊗ ϕ) = αA(1⊗ (ϕ ◦ f)) = idS ⊗ (ϕ ◦ f)

HomS(S ⊗R f, S ⊗R N) ◦ αB(1⊗ ϕ) = (idS ⊗ ϕ) ◦ (idS ⊗ f) = idS ⊗ (ϕ ◦ f)
this extends to general tensors by linearity.

By assumption, S⊗R− is an exact covariant and HomR(−, N),HomS(−, S⊗
N) are left-exact contravariant functors. Hence, both compositions

S ⊗R HomR(−, N) and HomS(S ⊗R −, S ⊗R N)
are left-exact contravariant functors.

We have also proved αRn is an isomorphism for free modules, so Lemma 1.2.4
applies, proving αM is an isomorphism for M finitely presented.
Proposition 1.2.4: If R is a commutative ring and U ⊂ R is a multiplicative
set, then R[U−1] is flat.
Proof. Let α : A ↪→ B be an injective R-module homomorphism. Then

id⊗ α : A[U−1]→ B[U−1]
a

u
↦→ α(a)

u
a series of calculations proves injectivity directly:

α(a)
u

= 0
(

= 0
u′

)
⇒ ∃u′ ∈ U : u′ · α(a) = 0⇒ u′a ∈ kerα

⇒ u′a = 0⇒ 0 = u

uu′ · 0 = uu′a

uu′ = a

u

The two previous results combine to give us a handy isomorphism:
Corrolary 1.2.2: If U is a multiplicative set in R, M,N ∈ Mod−R, and M is
finitely presented then,

HomR(M,N)[U−1] ≃ HomR[U−1](M [U−1], N [U−1])
as S-modules.

For a prime ideal P in R, R \P is a multiplicatively closed set and we denote
RP = R [(R \ P )−1] the localization of R at P . Similarly for MP where M is
an R-module. Lastly, we may write ϕP = idRP

⊗ ϕ.
We shall denote spec R the set of prime ideals and maxR the set of maximal

ideals of a commutative ring R.
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1.2.3 The Local-global Principle
The following is not needed for the proof in Chapter 2. It is included, firstly,
to lend some credence to the algebro-geometric motivation for Serre’s Conjecture
described in the introduction and, secondly, to aid in discussing the Bass-Quillen
Conjecture in Chapter 3.

Definition 1.2.7: We may define a topology on spec R, called the Zariski
topology, by the basis of open sets

B =
{
D(x) | x ∈ R

}
where D(x) =

{
P ∈ spec R | x /∈ P

}
.

The space spec R is quasi-compact (i.e. not necessarily Hausdorff but having
the finite subcovering property): Suppose for some index set I and xα ∈ R that⋃

α∈I
D(xα) = spec R,

then the set {xα} is not contained in any prime (nor maximal) ideal, therefore
it generates R as an ideal. A finite subset therefore already generates R (it is
enough for 1 to be a linear combination of xα).

Definition 1.2.8: A commutative ring R is called local if it has a unique max-
imal ideal.

Remark 1.2.10:

1. A local ring R can be denoted (R,P ) to emphasize that P is the unique
maximal ideal in R.

2. R is local if and only if the non-units of R form an ideal: Suppose (R,P ) is
local and r ∈ R \P is not a unit, then (using the Zorn Lemma) there exists
a maximal ideal M containing r, hence P ̸= M , a contradiction.
Conversely, if the non-units form an ideal P , then any proper ideal is con-
tained in P because a proper ideal cannot contain a unit, so P is the only
maximal ideal in R.

Proposition 1.2.5: If R is any commutative ring and P ∈ spec R, then (RP , PP )
is local.

Proof. Firstly, PP = RP ⊗R P is an ideal in RP , because it is obviously a subset
(it consist of those fractions, which have an element of P in the numerator) and
it is an RP -module by definition.

Suppose r
u
∈ RP \PP , then r /∈ P ⇒ r ∈ U ⇒ u

r
∈ RP , so r

u
is a unit. On the

other hand, PP is a proper ideal, because 1RP
∈ PP would mean

r

u
= 1⇔ ∃v ∈ U : v(r − u) = 0⇒ vr = vu ∈ P,

a contradiction, since P is a prime ideal and v, u /∈ P .
PP is an ideal of RP consisting precisely of the non-units in RP , so it is the

unique maximal ideal in RP .
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This somewhat justifies the name of localization. Next, we will see two ex-
amples of how information about localizations of a ring or module can yield
information about the original—the local-global principle.

Proposition 1.2.6: Let R be a ring, M,N ∈ Mod−R, and ϕ : M → N
an R-homomorphism, then

i) For a fixed m ∈M , m = 0 if and only if m
1 = 0 in Mm for every m ∈ maxR.

ii) M = 0 if and only if Mm = 0 for every m ∈ maxR.

iii) ϕ is a mono-, epi-, or isomorphism if and only if ϕm = idRI
⊗ϕ is a mono-,

epi-, or isomorphism (respectively) for every m ∈ maxR.

Proof. i) As in the proof of Proposition 1.2.4, we have m
1 = 0 ⇔ ∃u ∈ R \ m :

mu = 0 ⇔ ann(m) ⊈ m. Then m
1 = 0 in every Mm if and only if ann(m) ⊈ m is

not contained in any maximal ideal if and only if ann(m) = R (if ann(m) were a
proper ideal, there would exist a maximal ideal containing it, by Zorn’s lemma).
Of course, ann(m) = R⇐⇒ m = 0.

ii) M = 0 if and only if m = 0 for every m ∈ M . By i), this is if and only if
m
1 = 0 for every m ∈ maxR and every m ∈ M and this is equivalent to saying
Mm = 0 for every m ∈ maxR

iii) Localization, that is the functor Rm ⊗R − (exact by Proposition 1.2.4),
preserves exact sequences, therefore (kerϕ)m = kerϕm. Applying ii), we get the
statement for monomorphisms.

Similarly (Im ϕ)m = Im ϕm. Also, the short exact sequence

0→ Im ϕ→ N → N/Im ϕ→ 0

induces a short exact sequence

0→ (Im ϕ)m → Nm → (N/Im ϕ)m → 0

which then gives (N/Im ϕ)m ≃ Nm/(Im ϕ)m ≃ Nm/Im ϕm by the isomorphism
theorem. And we see ϕm is an epimorphism ∀m ∈ maxR if and only if ∀m ∈
maxR : Nm/Im ϕm ≃ (N/Im ϕ)m = 0, which, by ii), is equivalent to N/Im ϕ = 0.
This gives the statement for epimorphisms.

The statement for isomorphisms now follows immediately.

Next, we recall the definition of the Jacobson radical and Nakayama’s Lemma
(see e.g. Eisenbud [5] for details):

Definition 1.2.9: If M is a (left) R-module, then the Jacobson radical of M ,
denoted Rad(M) is the intersection of all maximal (left) R-submodules of M .

Lemma 1.2.5 (Nakayama): If M ̸= 0 is finitely generated, then

M · Rad(R) ⊆ Rad(M) ⊊M

Remark 1.2.11: For a local ring (R,P ), obviously Rad(R) = P .
Also note the contrapositive of this statement of Nakayama’s lemma: If

MRad(R) = M and M ∈M(R), then M = 0.
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Theorem 1.2.2: Let R be a commutative ring and M an R-module.

i) If (R,P ) is local and M ∈ P(R), then M is free.

ii) If M is finitely presented, then M is projective if and only if MP is free
over RP for every P ∈ maxR (and this is iff MP is free over RP for every
P ∈ spec R).

Proof. i) Let m1, ...,mn be a minimal set of generators for M . The images of
m1, ...,mn generate M/PM . Suppose

n∑
i=1

αi ·mi ∈ PM,

for some αi ∈ R. Then there exist pi ∈ P such that
n∑
i=1

αi ·mi =
n∑
i=1

pi ·mi =⇒
n∑
i=1

(αi−pi) ·mi = 0 =⇒ (pj−αj) ·mj =
∑
i ̸=j

(αi−pi) ·mi

If pj − αj were invertible, this would imply mj ∈ ⟨m1, ...,mj−1,mj+1, ...,mn⟩
contradicting the minimality condition. Since (R,P ) is local, this means pj − αj
and hence also αj are contained in P . So the images of m1, ...,mn form a basis
of the R/P vector space M/PM = R/P ⊗ M , hence dimM/PM = n. By
Theorem 1.2.1, Rn/PRn = R/P ⊗ Rn = (R/P )n is also an R/P -vector space of
dimension n and so M/PM ≃ Rn/PRn.

M is generated by n elements, so there exists an R-module homomorphism
ϕ : Rn ↠M . M is also projective, so

Rn ≃M ⊕K

where K = kerϕ. Taking R/P⊗− on both sides, using Theorem 1.2.1 and noting
that functors preserve isomorphism, we get the R/P -module isomorphism

Rn/PRn ≃M/PM ⊕K/PK ≃ Rn/PRn ⊕K/PK

this means K/PK = 0 and by Nakayama’s lemma K = kerϕ = 0. So ϕ is
an isomorphism and M ≃ Rn is free.

ii) (⇒) Let P be a prime ideal of R and Rn ≃ M ⊕K. The tensor product
preserves direct sums so taking RP ⊗− on both sides, we get

(RP )n ≃MP ⊕KP

This implies MP is a finitely generated (f.g.) projective RP -module. But RP is
local by Proposition 1.2.5, so MP is free by i).

(⇐) Now suppose MP is free over RP for any maximal ideal P of R and take
the short exact sequence 0→ K → F

ϕ−→M → 0 (this exists by Corrolary 1.1.1).
We wish to show that this sequence splits, we achieve this using Lemma 1.1.4, by
proving that the map ϕ∗ = HomR(M,ϕ) is an epimorphism. Because MP is free,
the localized sequence (using flatness of RP ⊗−)

0 −→ KP −→ FP
ϕP−−→MP −→ 0
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is split for any P . By Lemma 1.1.4, (ϕP )∗ = HomRP
(MP , ϕP ) is surjective.

M is finitely presented, so Corrolary 1.2.2 applies. Let α, β be the RP -module
isomorphisms given by this Corrolary, so that

α : HomR(M,F )P ≃ HomRP
(MP , FP )

β : HomR(M,M)P ≃ HomRP
(MP ,MP )

Where α(1⊗ τ) = τP and β(1⊗ ψ) = ψP . Then

β−1 ◦ (ϕP )∗ ◦ α : HomR(M,F )P ↠ HomR(M,M)P
1⊗ τ ↦→ β−1(ϕP ⊗ τP ) = 1⊗ ϕ ◦ τ

Hence β−1 ◦ (ϕP )∗ ◦ α = (ϕ∗)P is the localization of the map ϕ∗ at P .
We have shown that (ϕ∗)P : HomR(M,F )P ↠ HomR(M,M)P is an epimor-

phism for all maximal ideals P of R. By Proposition 1.2.6, Φ is an epimorphism.
M is projective by Lemma 1.1.4.

Remark 1.2.12: Note that any P ∈ P(R) is finitely presented. Indeed, if Rk =
P ⊕ Q, then Rk πQ−−→ Rk πP−−→ P → 0 is a free presentation, where πQ : Rk → Rk

is the projection of Rk onto Q ⊂ Rk.
Remark 1.2.13: The statement that projective modules over a local ring are free
is true even for modules that are not finitely generated. This theorem is due to
Kaplansky, the proof is omitted here. [8] (pp. 9-11)
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2. The Proof of Serre’s
Conjecture
Serre’s Conjecture: Let k be a field and R = k[t1, ..., tn]. Any finitely generated
projective R-module (any P ∈ P(R)) is free.

The proof will be done in three stages: First, we will show that k[x1, ..., xn] is
a regular ring (see Definition 2.1.1), which will be presented as a special case of
a more general result (Swan’s Theorem 2.1.1). A discussion of the Grothendieck
K0 group will then allow us to prove that any projective module over k[x1, ..., xn]
is stably free (see Definition 2.2.1). This will be followed by a proof of the fact
that k[x1, ..., xn] is Hermite, which just means that every stably free k[x1, ..., xn]-
module is actually free.

The proof follows Lam [6], expanding on it with e.g. Lemma 2.3.1, Lem-
ma 2.3.2, and Lemma 2.4.3. The following notation is taken from there.
Definition 2.0.1: Let R be a subring of S. An M ∈ Mod−S is extended from
R if there exists an M0 ∈ Mod−R such that M ≃ S ⊗RM0.

We have been using the symbol M(R) to denote finitely generated R-modules.
If R is a subring of a ring S, we write M ∈MR(S) to mean M is finitely generated
and extended from R. Similarly, we might write PR(S) in the projective case.

Our main interest lies in the case S = R[t], which has at least one convenient
property:
Lemma 2.0.1: If M ∈MR(R[t]), then the module M0 from which M is extended
(i.e. satisfying M ≃ R[t]⊗RM0) is determined uniquely by M up to isomorphism,
and is given by M0 ≃M/tM .

M ∈ P(R[t]) if and only if M0 ∈ P(R).
Proof. Suppose M ≃ R[t]⊗RM0. A simple tensor (rntn+ · · ·+r0)⊗m (m ∈M0)
can be rewritten as ∑n

i=0 t
i⊗ rnm. Therefore, in a general element of R[t]⊗RM0,

we may group together all the terms ti⊗m with the same i and add them together
using the distributivity of ⊗ as in

ti ⊗m+ ti ⊗m′ = ti ⊗ (m+m′).

The result is that elements of R[t]⊗RM0 can be thought of as polynomials over
M0. M0 is thus contained in M as the R-submodule of constant polynomials and
M0 ≃M/tM .

The latter statement follows from Proposition 1.2.2 and Remark 1.2.7.

2.1 Left Regular Rings
Definition 2.1.1: A ring R is called left regular if it is left noetherian and,
given any (left) M ∈M(R), there exists a finite projective resolution of M ,
i.e. an exact sequence

0→ Pn → Pn−1 → · · · → P0 →M → 0

where Pi ∈ P(R) and n depends on M .
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The aim of this section will be Swan’s theorem, which states that left regularity
of a ring R carries over to R[t]. To do this, we introduce two basic constructions
from Homological Algebra (see Rotman [7]) and a lemma of Swan.
Remark 2.1.1:

1. If R is left noetherian, then any M ∈M(R) admits an (infinite) projective
resolution: By Corrolary 1.1.1, there exists a free module Rk1 (obviously
f.g. projective) such that Rk1 π−−→M −−→ 0 is exact. Since R is noetherian,
so is Rk1 , hence ker π ⊂ Rk1 is finitely generated and, again, there exists a
map Rk2 → Rk1 which is onto ker π, making Rk2 → Rk1 → M → 0 exact.
This proceeds recursively.

2. The 0 module is free with finite basis ∅ (and hence f.g. projective). Since
· · · → 0→ 0 is always exact, we can think of a finite exact sequence as an
infinite one with all but finitely many terms equal to 0.

3. A commutative noetherian ring R is regular if and only if Rm is regular for
each m ∈ maxR (compare this with Definition 3.1.1) [6] (p. 81).
The “⇒” direction is obvious since localization at m preserves exact se-
quences and projectivity as we have seen. The opposite implication is more
complicated, involving the quasi-compactness property of spec R discussed
in Section 1.2.3.

Definition 2.1.2: If X• and Y• are the following exact sequences,

· · · X3 X2 X1 X0

· · · Y3 Y2 Y1 Y0

∂1
3 ∂1

2 ∂1
1

∂2
3 ∂2

2 ∂2
1

then a map of chain complexes g• is a sequence of R-module homomorphisms
gi, i = 0, 1, 2... making the following diagram commute

· · · X3 X2 X1 X0

· · · Y3 Y2 Y1 Y0

∂1
3 ∂1

2 ∂1
1

∂2
3 ∂2

2 ∂2
1

g3 g2 g1 g0

For such a map of chain complexes, we define the mapping cone Cone(g•) to
be the sequence defined by P0 = Y0, Pi = Xi−1 ⊕ Yi for i = 1, 2, 3... along with
maps

π1 : P1 → P0

(x, y) ↦→ g0(x) + ∂2
1(y)

πi : Pi → Pi−1

(x, y) ↦→
(
− ∂1

i−1(x), gi−1(x) + ∂2
i (y)

)
This is illustrated in the following diagram:
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· · · X2 X1 X0

⊕ ⊕ ⊕ Y0

· · · Y3 Y2 Y1

−∂1
2

g2

∂2
3

−∂1
1

g1

∂2
2

g0

∂2
1

Lemma 2.1.1: Let R be a left noetherian ring and X, Y ∈ M(R). Any R-
homomorphism g : X → Y can be lifted to a map of chain complexes g• between
any projective resolution of X and any projective resolution of Y .

Proof. Let · · · ∂1
2−−→ X1

∂1
1−−→ X0

∂1
−−→ X → 0 and · · · ∂2

2−−→ Y1
∂2

1−−→ Y0
∂2
−−→ Y → 0

be the resolutions in question.
Since X0 is projective, we may use Definition 1.1.5.ii) to find g0 such that

∂2 ◦ g0 = g ◦ ∂1. By exactness, we get ∂2 ◦ g0 ◦ ∂1
1 = g ◦ ∂1 ◦ ∂1

1 = 0 so that

Im g0 ◦ ∂1
1 ⊆ ker ∂2 = Im ∂2

1

This means g0 ◦∂1
1 makes sense as a map X1 → Im ∂2

1 which allows us to sidestep
the fact that ∂2

1 is not onto Y0 (of course, it is onto its image) and still use the
projectivity of X1 to find g1. This reasoning extends recursively, allowing us to
find all the gi.

Lemma 2.1.2: If X g−−→ Y
h−−→ M → 0 is exact, then the mapping cone of

g• : X• → Y• (supplied by the lemma above) where X• → X → 0 and Y• → Y → 0
are finite projective resolutions of X and Y yields the following finite projective
resolution of M

0 −→ Pk
πk−−→ Pk−1

πk−1−−−→ · · · π1−−→ P0
h◦∂2

1−−→M −→ 0 (2.1)

(Where k is large enough so that both Xk and Yk+1 are zero – and hence Pk+1 = 0.)

Proof. We use the same notation as in Definition 2.1.2 throughout. The maps πi
are obviously R-homomorphisms and Pi = Xi−1 ⊕ Yi ∈ P(R).

To see that the cone is exact at each Pi for i > 0, we use exactness of X• and
Y• and the definition of g• as a map of chain complexes:

πi ◦ πi+1(x, y) =
(
∂1
i ◦ ∂1

i+1(x),−gi ◦ ∂1
i+1(x) + ∂2

i+1

(
gi+1(x) + ∂2

i+2(y)
))

=

=
(
0,−gi ◦ ∂1

i+1(x) + ∂2
i+1 ◦ gi+1(x)

)
= (0, 0)

=⇒ Im πi+1 ⊆ kerπi
Now suppose (x, y) ∈ kerπi. In the first component, this means x ∈ ker ∂1

i =
Im ∂1

i+1. Let x′ be such that ∂1
i+1(x′) = x. In the second component, using the

definition of g• again,

0 = gi(x) + ∂2
i+1(y) = gi ◦ ∂1

i+1(x′) + ∂2
i+1(y) = ∂2

i+1(gi+1(x′) + y),

hence gi+1(x′) + y ∈ ker ∂2
i+1 = Im ∂2

i+2 and there exists y′ such that ∂2
i+2(y′) =

gi+1(x′) + y. Then πi+1(−x′, y′) = (x, gi+1(−x′) + gi+1(x′) + y) = (x, y), proving
Im πi+1 ⊇ kerπi. So (2.1) is exact at Pi for every i > 0.
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At P0, we need kerh ◦ ∂2
1 = Im π1.

(h ◦ ∂2
1) ◦ π1(x, y) = h ◦ ∂2

1(g1(x) + ∂2
2(y)) = h(g ◦ ∂1

1(x) + 0) = 0

=⇒ kerh ◦ ∂2
1 ⊇ Im π1

Suppose h ◦ ∂2
1(x) = 0, then ∂2

1(x) ∈ kerh = Im g and there is an x′ ∈ X such
that g(x′) = ∂2

1(x), since ∂1
1 is surjective ∂1

1(x′′) = x′ for some x′′ ∈ X1. But then

∂2
1(x) = g ◦ ∂1

1(x′′) = ∂2
1 ◦ g1(x′′) =⇒ x− g1(x′′) ∈ ker ∂2

1 = Im ∂2
2

so there exists an x′′′ ∈ Y 2 such that ∂2
2(x′′′) = x − g1(x′′). We now have

π(x′′, x′′′) = g1(x′′) + x − g1(x′′) = x, proving kerh ◦ ∂2
1 ⊆ Im π1 and the ex-

actness at P0.
Since h and ∂2

1 are surjective, so is h ◦ ∂2
1 , giving exactness at M .

Lemma 2.1.3 (Swan): Let R be a left noetherian ring. If N is an R[t]-submodule
of an M ∈ MR(R[t]) then there exist X, Y ∈ MR(R[t]) and an exact sequence
X → Y → N → 0.

Proof. Take M0 ∈ M(R) such that M ≃ R[t] ⊗R M0. As in the proof of Lem-
ma 2.0.1, elements of M can be viewed as formal polynomials over M0, of the
form ∑

i t
i ⊗mi.

If we define Mk = ∑k
i=0 R · ti ⊗M0, then ⋃

kMk = M . Put Nk = Mk ∩ N .
Now R[t] is noetherian by the Hilbert Basis theorem and since M is a finitely
generated R[t]-module, it is also noetherian. So N ⊂M is finitely generated and
there exists an n large enough so that Nn+1 contains an R[t]-generating set of N .

We claim X = R[t] ⊗R Nn and Y = R[t] ⊗R Nn+1 are the modules we want.
Obviously, these are extended from R[t] and finitely generated as submodules of
the noetherian M .

It remains to define homomorphisms ϕ and ψ to form an exact sequence

X
ϕ−−→ Y

ψ−−→ N −→ 0

So let ψ(ti ⊗ n) = ti · n for n ∈ Nn+1. This definition extends uniquely to all
of Y (using the fact that the tis generate R[t] as an R-module and the universal
property of the tensor product). This ψ is onto N by the choice of n.

To define ϕ, we note tMk ⊆ Mk+1 and hence also tNk ⊆ Nk+1. We may
therefore define ϕ(ti ⊗ n) = ti+1 ⊗ n − ti ⊗ tn. Again, the tis generate R[t] and
the map (ti, n) ↦→ ti+1 ⊗ n− ti ⊗ tn (extended linearly in the first component) is
easily seen to be R-balanced, so ϕ : X −→ Y is an R-homomorphism.

Finally, we check that X → Y → N → 0 is exact:

1. We have already seen that ψ is an epimorphism.

2. ψ(ϕ(ti⊗n)) = ψ(ti+1⊗n− ti⊗ tn) = ti+1 ·n− ti · t ·n = 0, hence ψ ◦ϕ = 0
by linearity, which then yields Im ϕ ⊆ kerψ.

3. Recalling the reasoning with which this proof began, we may view any
element of Y = R[t]⊗RNn+1 as a polynomial over Nn+1, i.e. as ∑k

i=0 t
i⊗ni.

Let us therefore suppose ψ
(∑k

i=0 t
i ⊗ ni

)
= 0. We shall prove that this

element lies in Im ϕ by induction on k.
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For the base case, we have 0 = ψ(1⊗ n) = n and obviously n = 0 ∈ Im ϕ.
Suppose n ∈ Y satisfies n ∈ kerψ ⇒ n ∈ Im ϕ whenever n is “of degree”
less than k. Take an element of Y of degree k, say

k∑
i=0

ti ⊗ ni, where ni =
n+1∑
j=0

tj ⊗ aij ∈ Nn+1, (aij ∈M0)

Suppose this lies in kerψ, then

0 = ψ

(
k∑
i=0

ti ⊗ ni
)

=
k∑
i=0

ti · ni =
k∑
i=0

n+1∑
j=0

ti+j ⊗ aij

this implies ak,n+1 = 0, since tk+n+1 ⊗ ak,n+1 is the only term containing
this power of t. So we conclude nk ∈ Nn!

k∑
i=0

ti ⊗ ni − ϕ(tk−1 ⊗ nk) =
k−1∑
i=0

ti ⊗ ni − tk−1 ⊗ tnk ∈ kerψ

and this is of degree less than k, so the induction hypothesis yields ∑k−1
i=0 t

i⊗
ni − tk−1 ⊗ tnk = ϕ(x) for some x ∈ X. This finally implies

k∑
i=0

ti ⊗ ni = ϕ(x + tk−1 ⊗ nk)

Since this was done for an arbitrary element of Y , we may write Im ϕ ⊇
kerψ.

The sequence is exact at both N (from 1.) and Y (2. and 3.).

Theorem 2.1.1 (Swan): If R is left regular then R[t] is left regular.
In fact, if R is regular then, given any M ∈M(R[t]), we can find a resolution

0→ Pn → Pn−1 → · · · → P0 →M → 0

where Pi ∈ PR(R[t]).

Proof. The noetherian condition carries from R to R[t] by the Hilbert Basis The-
orem.

So it is enough to prove the second statement. By Corrolary 1.1.1, there exists
a short exact sequence

0 −→M ′ ι−−→ R[t]k −−→M −→ 0,

where ι is just the inclusion homomorphism. Suppose we find a resolution of the
desired form for M ′:

0→ Pn → Pn−1 → · · · → P0
π−−→M ′ → 0

By Corrolary 1.2.1, we have R[t]k ≃ R[t] ⊗R Rk ∈ PR(R[t]). Since π is an epi-
and ι a monomorphism, then Im ι ◦ π = Im ι and ker ι ◦ π = ker π, so we know

0→ Pn → Pn−1 → · · · → P0
ι◦π−−→ R[t]k →M → 0
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is exact. So it will suffice to find the resolution for M ′.
M ′ is given as a submodule of R[t]k ∈MR(R[t]), by Lemma 2.1.3, there exists

an exact sequence
X

g−−→ Y
h−−→M ′ −→ 0,

where X, Y ∈MR(R[t]), that is X ≃ R[t]⊗R X ′ and Y ≃ R[t]⊗R Y ′.
R is regular by assumption, so the resolutions exist for X ′ and Y ′:

0→ X ′
k → · · · → X ′

0 → X ′ → 0

0→ Y ′
l → · · · → Y ′

0 → Y ′ → 0,

where X ′
i, Y

′
j are all P(R).

Since R[t] is flat (Proposition 1.2.2), we may apply R[t]⊗R− to both of these
sequences to get exact sequences:

0→ Xk → · · · → X0 → X → 0

0→ Yl → · · · → Y0 → Y → 0,

writing Xi = R[t]⊗RX ′
i and Yj = R[t]⊗RY ′

j . Then Xi, Yi are extended from R by
their definition, so Xi, Yj ∈ PR(R[t]) by Corrolary 1.2.1. Applying the mapping
cone construction of Lemma 2.1.2 to these, we get the desired resolution for M .
(Pi ≃ Xi−1 ⊕ Yi is extended from R by Theorem 1.2.1.)

Remark 2.1.2: Note that if the lengths of the R-resolutions of X ′ and Y ′ are
bounded by a fixed n0 ∈ N, then the length of the R[t] resolution which we found
for M is bounded by n0 + 1.

2.2 Stably Free Modules
Definition 2.2.1: A module P ∈ Mod−R is called stably free of type k,
if P ⊕Rk ≃ F is free.

Remark 2.2.1:

1. A stably free module is necessarily projective. To see when the converse
holds will be the object of this section.

2. P ⊕ Rk = F is equivalent to the existence of a split short exact sequence
0→ P → F → Rk → 0. Hence P is stably free if and only if P ≃ ker f for
some epimorphism f : F ↠ Rk, where F is free.

3. If P = ker(f : F ↠ Rk) is stably free and not finitely generated, then it is
free: Suppose F = P ⊕Rk is free on the basis {bi | i ∈ I}, then I is infinite
since P is not finitely generated. Rk is finitely generated, its generators
obtained as linear combinations of the images of only finitely many bis,
hence there exists a finite subset I0 ⊂ I such that, letting R(I0) ≃ F0 ⊂ F ,
f ↾ F0 is already onto Rk, giving us the (split) short exact sequence

0→ (P ∩ F0) ⊂ F0
f↾F0−−→ Rk → 0
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and hence F0 ≃ (P ∩ F0)⊕Rk. Furthermore, F ≃ P + F0 and

R(I\I0) ≃ F/F0 ≃ (P + F0)/F0 ≃ P/(P ∩ F0)⇔ P ≃ R(I\I0) ⊕ (P ∩ F0)

Since I \ I0 is infinite, R(I\I0) ≃ E ⊕ Rk for some free E, proving that
P ≃ E ⊕Rk ⊕ (P ∩ F0) ≃ E ⊕ F0 is free.
Henceforth, we will deal with finitely generated stably free modules.

Definition 2.2.2: Let R be a ring. For P ∈ P(R) let (P ) denote the isomorphism
type of P . Take G to be the free abelian group (a free Z-module) on the basis
{(P ) | P ∈ P(R)} and H the subgroup of G generated by elements of the form

(P ⊕Q)− (P )− (Q).

The Grothendieck group of R is defined as K0R = G/H. We write [P ] =
(P ) +H ∈ K0R.
Remark 2.2.2: It is worth noting that {(P ) | P ∈ P(R)} is actually a set: A
finitely generated R-module is isomorphic to a quotient of Rn by a submodule
of Rn (Corrolary 1.1.1). We may choose the representatives of the isomorphism
types to be these quotients. The class of submodules of Rn (denoted by L(Rn))
is a set (a subset of P(Rn)). The class of isomorphism types of finitely generated
R modules corresponds one-to-one with the set ⋃i∈N L(Rn).
Lemma 2.2.1: Let Pi ∈ P(R) for i = 1, 2, ..., n. If 0 → P3 → P2 → P1 → 0 is
exact, then [P2] = [P3] + [P1]. More generally, if

0→ Pn → Pn−1 → · · · → P1 → 0

is exact, then ∑n
i=0(−1)i[Pi] = 0.

Proof. Since P1 is projective, the short exact sequence in the first statement splits,
so that P2 ≃ P3 ⊕ P1, hence (P2) − (P3) − (P1) ∈ H and [P2] = [P3] + [P1] by
definition.

The second statement is proved by induction. We use n = 3 (above) as the
base case. For n > 3, the sequence can be divided into shorter exact sequences,
as follows

0 −→ Pn · · ·P5 −→ P4
∂4−−→ Im ∂4 −→ 0

0 −→ P3/ ker ∂3
∂∗

3−−→ P2
∂2−−→ P1 −→ 0

Where ∂∗
3 is the homomorphism induced by ∂3 in the homomorphism theorem.

The second sequence identifies P3/ ker ∂3 as a direct summand of a f.g. projective
module, making it also f.g. projective. The (split) short exact sequence 0 →
Im ∂4 = ker ∂3 → P3 → P3/ ker ∂3 → 0 then proves that Im ∂4 ∈ P(R) and

[P3] = [Im ∂4] + [P3/ ker ∂3].

The sequences above are exact, the inductive hypothesis gives

· · ·+ [P5]− [P4] + [Im ∂4] = 0 and [P3/ ker ∂3]− [P2] + [P1] = 0.

The three equations together prove the statement.
The missing cases (e.g. n = 0, n = 1) are covered by the fact that an exact

sequence can be extended with zero modules (which are f.g. projective) on either
end.
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Proposition 2.2.1: Let P, P ′ ∈ P(R), then the following statements are equiv-
alent:

i) [P ] = [P ′] in K0R.

ii) There exists T ∈ P(R) such that P ⊕ T ≃ P ′ ⊕ T .

iii) P and P ′ are stably isomorphic, i.e. there exists k ∈ N such that P ⊕
Rk ≃ P ′ ⊕Rk.

Proof. ii) ⇒ i) is obvious and ii) ⇔ iii) follows from the definition of T as a f.g.
projective module: there exist k ∈ N, Q ∈ Mod−R such that Rk ≃ T ⊕Q.

i) ⇒ ii) We have [P ]− [P ′] = 0⇒ (P )− (P ′) ∈ H so that

(P )− (P ′) =
∑
i

[
(Pi ⊕Qi)− (Pi)− (Qi)

]
−
[
(P ′

i ⊕Q′
i)− (P ′

i )− (Q′
i)
]

for suitable Pi, Qi, P
′
i , Q

′
i ∈ P(R). Rearranging:

(P ) +
∑
i

[
(P ′

i ⊕Q′
i) + (Pi) + (Qi)

]
= (P ′) +

∑
i

[
(Pi ⊕Qi) + (P ′

i ) + (Q′
i)
]

(2.2)

Now G is free on the symbols (P ), so that ∑(Mα) = ∑(Nβ) implies that the
symbols on either side are identical, they can differ only by their order. So
the terms on either side of (2.2) coincide, meaning the respective modules are
isomorphic (they are the same isomorphism type). Since ⊕ is commutative, this
means we may set

T ≃
⨁
i

[
(P ′

i ⊕Q′
i)⊕ (Pi)⊕ (Qi) ≃

⨁
i

[
(Pi ⊕Qi)⊕ (P ′

i )⊕ (Q′
i)

to get P ⊕ T ≃ P ′ ⊕ T .

Corrolary 2.2.1: P ∈ P(R), is stably free if and only if [P ] = n · [R] for some
n ∈ Z.

Every finitely generated projective R-module is stably free if and only if K0R =
Z · [R].

Proof. Suppose P is stably free, then P ⊕Rk ≃ Rn and so [P ] + k[R] = n[R] =⇒
[P ] = (n− k) · [R].

Suppose [P ] = n · [R], take an integer r such that n+ r ≥ 0, then

[P ⊕Rr] = [P ] + r · [R] = (n+ r) · [R] = [Rn+r]

and Proposition 2.2.1 gives P ⊕Rr+k ≃ Rn+r+k. P is stably free.
The second statement follows immediately.

Theorem 2.2.1 (Grothendieck): Let R be left regular ring, then the map

F : K0R→ K0R[t]
[P ] ↦→

[
R[t]⊗R P

]
is a group isomorphism. If any P ∈ P(R) is stably free, then any Q ∈ P(R[t]) is
stably-free.
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Proof. F is a group homomorphism, since by Theorem 1.2.1 we can write

F ([P ]+ [P ′]) = [R[t]⊗R (P ⊕P ′)] = [R[t]⊗RP ]+ [R[t]⊗RP ′] = F ([P ])+F ([P ′]).

Injectivity of F follows immediately from Lemma 2.0.1 and surjectivity is
proved using Swan’s Theorem 2.1.1 as follows: Take Q ∈ P(R[t]) and find a
resolution

0→ Zn → · · · → Z0 → Q→ 0
where Zi ∈ PR(R[t]) (which directly implies [Zi] ∈ Im F ), then by Lemma 2.2.1
we have [Q] = ∑

i(−1)i[Zi] ∈ Im F .
The second statement follows from Corrolary 2.2.1. Assuming K0R = Z · [R],

we have F (k · [R]) = k ·
[
R[t]

]
and hence K0R[t] = Z ·

[
R[t]

]
.

Inductively applying Swan’s Theorem 2.1.1 and Grothendieck’s Theorem 2.2.1
proves:

Corrolary 2.2.2: Suppose R is a left regular ring and any f.g. projective R-
module is stably free. Then any f.g. projective R[t1, ..., tn]-module is stably free.

Suppose R = k is a field. Then k is noetherian and any k-module is free,
since every vector space has a basis. So any k-module V is stably free and the
trivial exact sequence 0→ V → V → 0 gives regularity of k. The corrolary then
yields:

Corrolary 2.2.3: If k is a field then any f.g. projective k[t1, ..., tn]-module is
stably free.

2.3 Integral Extensions
In this section we restrict ourselves to commutative rings, recall the definition
and basic properties of integral extensions, and use them to prove the clever
Lemma 2.3.2.

The result in Lemma 2.3.1 is closely related to the important Going-up The-
orem of commutative algebra; the Lemma is a direct corrolary and can also be
used to prove the Theorem. [8]

Definition 2.3.1: An f ∈ R[t] is called monic if its leading coefficient is 1. A
g ∈ R[t] is called unitary if its leading coefficient is invertible, i.e. there exists
an invertible c ∈ R such that f = c−1 · g is monic.

Definition 2.3.2: If R is a subring of a commutative ring S, we say S is an
extension of R. An s ∈ S is integral over R if s is a root of some monic
polynomial in R[t]. S is said to be an integral extension of R, if every element
of S is integral.

We record the basic properties of integral extensions. The proofs can be found
in Matsumura [8].

Proposition 2.3.1: Let S be an extension of R.

1. The elements of S which are integral over R form a ring.
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2. R[s1, ..., sn] ⊂ S is an integral extension of R if and only if it is finitely
generated as an R-module.

Lemma 2.3.1: Let S be an integral extension of a ring R and let I be an ideal
in R. Then IS = S =⇒ I = R.

Proof. IS = S is equivalent to the existence of ik ∈ I and sk ∈ S such that∑
k iksk = 1. Put T = R[s1, ..., sn], then it still holds that IT = T . By Proposi-

tion 2.3.1, T ∈M(R) so that T = R · b1 + · · ·+R · bm for some set of generators
{bi ∈ T | i = 1, ...,m}. Then T = IT = I ·b1 + · · ·+I ·bn, since IR = I by the def-
inition of an ideal. This implies that there exist ikl ∈ I such that bk = ∑n

l=1 ikl · bl
for each k. In matrix form:⎛⎜⎜⎜⎜⎜⎝

i11 · · · in1
... . . . ...

i1n · · · inn

⎞⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎝
b1
...

bn

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
b1
...

bn

⎞⎟⎟⎟⎟⎟⎠
Let A = (ikl), b =

(
b1 · · · bn

)T
, idn be the identity matrix, and C the matrix of

cofactors for idn −A. Then (idn −A) · b = 0 =⇒ C(idn −A) · b = det(idn −A) ·
idn · b = 0 which means det(idn−A)bk = 0 for each k. But the bks generate S, so
det(idn−A) = 0. The determinant is calculated using just the ring operations on
the entries, so we see that det(idn−A) + I = det(idn) + I = 1 + I since r ↦→ r+ I
is a ring homomorphism and the entries of A lie in I. Then 0 + I = 1 + I =⇒
1 ∈ I =⇒ I = R.

Lemma 2.3.2: Let I be an ideal in R[t] containing a monic polynomial and J
an ideal in R. If I + J [t] = R[t] then (I ∩R) + J = R.

Proof. Take α′ : R→ R[t]/I, r ↦→ r + I, where r + I is the coset of the constant
polynomial. Then kerα′ = R ∩ I and the homomorphism theorem gives α :
R/(I ∩ R) ↪→ R[t]/I so we may regard R/(I ∩ R) as a subring of R[t]/I by
identifying it with its image in α.

R[t]/I is an integral extension of R/(I ∩ R): By Proposition 2.3.1.i), it is
enough to check that t+ I ∈ R[t]/I is integral over R/(I ∩R). Let tn+∑ ait

i ∈ I
denote the monic polynomial given in the hypothesis. Then ai + I ∈ R/(I ∩ R)
and, since f ↦→ f + I is a ring homomorphism, we have

(t+ I)n +
n−1∑
i=0

(ai + I)(t+ I)i = tn +
n−1∑
i=0

ait
i + I = 0 + I

so that t+ I is a root of xn +∑(ai + I)xi ∈
(
R/(I ∩R)

)
[x].

Furthermore, expanding out the equality in the hypothesis

I+J [t] = R[t]⇔
∑

jkt
k+I = 1+I for some jk ∈ J ⇔

∑
(jk+I)(tk+I) = 1+I

and since tk + I ∈ R[t]/I, we have
(
J/(I ∩R)

)
·
(
R[t]/I

)
= R[t]/I. Lemma 2.3.1

applied to the ring extension R[t]/I ⊇ R/(I ∩ R) and the ideal J/(I ∩ R) of
R/(I ∩ R) yields J/(I ∩ R) = R/(I ∩ R) which just means that there exists a
j ∈ J such that j + (I ∩R) = 1 + (I ∩R), or equivalently J + (I ∩R) = R.
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2.4 Hermite Rings
Proposition 2.4.1: Let P = ker(f : Rn ↠ Rk) ∈ M(R) be a finitely generated
stably free R-module. Then P is free if and only if there exists an r and an
isomorphism f ′ : Rn → Rk ⊕Rr such that f ′ ◦ π = f where π : Rk ⊕Rr ↠ Rk is
the canonical projection.

Rn

≃

Rk

Rk ⊕Rr

f

π
∃f ′

Proof. (⇐) Suppose such an f ′ exists, then P = ker f = ker f ′ ◦ π = kerπ = Rr.
(⇒) Suppose P is free and g : P → Rr is an isomorphism for some r. P

is a direct summand in Rn by assumption, write Rn = Rn/P ⊕ P . By the
homomorphism theorem, f factors into an isomorphism Rn/P → Rk, r + P ↦→
f(r). The map

f ′ : (Rn/P )⊕ P → Rk ⊕Rr

(r + P, p) ↦→
(
f(r), g(p)

)
is the desired isomorphism.

We say R has the invariant basis number (IBN) property, if Rn ≃ Rm ⇒
n = m for any n,m. IBN does not hold in general. We know it holds for vector
spaces and this allows us to prove the same for commutative rings.

Proposition 2.4.2: If R is a non-trivial commutative ring then R has the IBN
property.

Proof. Let m be a maximal ideal of R, and suppose Rn ≃ Rm, then taking
R/m⊗R− on both sides gives R/m⊗RRn ≃ (R/m)n ≃ (R/m)m by Theorem 1.2.1.
R/m is a field, so this isomorphism implies n = m.

Since free bases have the same convenient property as vector space bases,
that a map defined on the basis extends uniquely to a homomorphism, we see
that any homomorphism Rn → Rk can be represented by an n× k matrix. The
epimorphism f : Rn ↠ Rk, which defines a stably free module P , is necessarily
split (there exists a homomorphism g such that f ◦ g = idRk), hence the matrix
A representing such a homomorphism is always right invertible.

Assuming R to be commutative in Proposition 2.4.1 just gives n = k + r. So
a stably free P ∈ P(R) of type k for R commutative can be equivalently defined as
the kernel (or solution space) of a right invertible n×k matrix. Proposition 2.4.1
now has an equivalent statement in terms of matrices.

Proposition 2.4.3: Let R be a commutative ring and A a right invertible n× k
matrix with entries in R. The stably free module kerA is free if and only if A can
be completed to a square invertible matrix.
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Definition 2.4.1: A 1 × n matrix
(
r1 r2 · · · rn

)
over a ring R is called a

unimodular row if it is right invertible, i.e. if there exist si ∈ R such that
r1s1 + r2s2 + · · · rnsn = 1. We denote Unn(R) the set of unimodular rows of
length n with entries in R.

Putting all this together (and using induction) we arrive at three equivalent
properties:

Definition 2.4.2: A commutative ring R is called Hermite if it satisfies any of
the following equivalent conditions:

i) Any stably free P ∈M(R) is free.

ii) Any stably free P ∈M(R) of type 1 is free.

iii) Any unimodular row over R can be completed to a square invertible matrix.

Let G be a subgroup of GLn(R) and let G act on Unn(R) by matrix multi-
plication on the right. We write (· · · ) ∼G (· · · ) to indicate that two rows are in
the same orbit.

Lemma 2.4.1: A row
(
r1 r2 · · · rn

)
∈ Unn(R) is completable to a square

invertible matrix if and only if
(
r1 r2 · · · rn

)
∼GLn(R)

(
1 0 · · · 0

)
.

Proof.
(
r1 r2 · · · rn

)
∼GLn(R)

(
1 0 · · · 0

)
if and only if

(
1 0 · · · 0

)
· A =

(
r1 r2 · · · rn

)

for some A ∈ GLn(R). Multiplying a matrix on the left by
(

1 0 · · · 0
)

amounts to picking out the first row of that matrix, so A is the completion
of
(
r1 r2 · · · rn

)
to a square invertible matrix.

2.4.1 Elementary Matrices
We denote En(R) the subgroup of GLn(R) generated by matrices of the form
idn + r · eij (i, j ∈ {1, ..., n}, i ̸= j), where eij has 1 in the (i, j) entry and 0 in
all other entries. These matrices are invertible (the inverse being idn − reij), so
En(R) is well-defined.

If a = (a1, ..., an) ∈ Unn(R), then a · (idn + r · eij) = (a1, ..., aj + rai, ..., an).
So we have the basic relation

(a1, ..., an) ∼En(R) (a1, ..., aj + rai, ..., an) (2.3)

Lemma 2.4.2: If a = (a1, ..., an) ∈ Unn(R) contains a unimodular row of shorter
length, then a ∼En(R) (1, 0, ..., 0).
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Proof. The hypothesis just means that ∑k
j=0 rjaij = 1 for some k < n. We

can find an ak such that k ̸= ij for any j = 1, ..., k. Successively applying
idn + (1− ak)rjeij ,k to a, we get

a ∼EN (R)

⎛⎝a1, ..., ak + (1− ak) ·
k∑
j=0

rjaij , ...an

⎞⎠ = (a1, ..., ak−1, 1, ak+1, ..., an)

Another series of elementary matrices brings the rest of the entries to 0. Finally,
applying idn + ek,1 puts 1 in the first entry and idn − e1,k then changes the 1 in
the kth entry to 0 yielding a ∼En(R) (1, 0, ..., 0).

Lemma 2.4.3: Suppose R is a commutative, finite-dimensional algebra over a
field k, then a ∼En(R) (1, ..., 0) for any a = (a1, ..., an) ∈ Unn(R).

Proof. Any ideal in R is also a k-vector subspace of R. Hence R is artinian,
because an infinite chain of strictly decreasing ideals would mean an infinite
chain of subspaces, which cannot happen for a finite-dimensional R.

Since R is artinian, any set of ideals in R has a minimal element with respect
to inclusion. Take the set of finite products of maximal ideals in R and denote the
minimal element of this set by m1 · · ·mk (for mi ⊂ R maximal, pairwise distinct
ideals). Then m1, ...,mk are the only maximal ideals in R. For suppose m is a
maximal ideal, then m ·m1 · · ·mk ⊆ m1 · · ·mk implies m ·m1 · · ·mk = m1 · · ·mk by
minimality and it follows that m = mi for some i.

So R has finitely many maximal ideals1 and hence

R/Rad(R) = R

/(
k⋂
i=1

Mi

)
≃

k⨁
i=1

R/mi =
k⨁
i=1

ki (2.4)

where ki are fields. This is trivial for k = 1 and for k > 1 it follows from the
Chinese Remainder Theorem since mi are pairwise coprime by maximality.

Now, (a1, ..., an) ∈ Unn(R) amounts to Ra1+· · ·+Ran = R. Denote I = a2R+
· · · anR and J = Rad(R). The above obviously implies (a1+J)·R/J+I/J = R/J
so there exist r ∈ R, b ∈ I such that

(a1 + J) · (r + J) + (b+ J) = 1 + J (2.5)

Since R/J is a finite direct product of fields, it will help to look at (2.5) compo-
nentwise. Suppose a1 +J ↦→ (a1,1, ..., a1,k), r+J ↦→ (r1, ..., rk), b+J ↦→ (b1, ..., bk)
in the isomorphism of (2.4). Then (2.5) is equivalent to ∀i = 1, .., k : a1,iri+bi = 1
which forces

∀i = 1, .., k : a1,i = 0⇒ bi = 1.

Define r′ ∈ R componentwise: There exists r′ ∈ R such that r′ + J ↦→ (r′
1, ..., r

′
k)

where r′
i = 1 if a1,i = 0 and r′

i = 0 if a1,i ̸= 0 (reduction modulo J is onto). Then
r′b ∈ I and a+ r′b+ J is non-zero in each component.

It follows that a + r′b is a unit in R: If it were not a unit, there would exist
a maximal ideal m of R containing a + r′b and a + r′b + J would be zero in the
component corresponding to m.

1R is said to be semilocal. [8]
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We have proved that a1 +I contains a unit, i.e. there exists a unit u ∈ R× and
r2, ..., rk ∈ R such that u = a1 +∑k

i=2 riai. Then a ∼En(R) (u, a2, ..., an) and this
contains the unimodular row (u) of length 1, so (u, a2, ..., an) ∼En(R) (1, 0..., 0) by
Lemma 2.4.2.

Lemma 2.4.4: Let R be a commutative ring, S a commutative R-algebra, and
f1, f2 ∈ R[t]. Suppose c ∈ R ∩ (f1 · R[t] + f2 · R[t]) is not a zero divisor. Then
for any b, b′ ∈ S we have b ≡ b′ mod cS =⇒ ∃A ∈ SL2(S) : (f1(b), f2(b)) · A =
(f1(b′), f2(b′))

Proof. Write c = f1g1 + f2g2 for g1, g2 ∈ R[t]. Since c is not a zero divisor, the
localization A[c−1] is defined and we can write

A = 1
c
·

⎛⎜⎝g1(b) −f2(b)

g2(b) f1(b)

⎞⎟⎠ ·
⎛⎜⎝ f1(b′) f2(b′)

−g2(b′) g1(b′)

⎞⎟⎠
Now in S/cS we have b = b′ so that⎛⎜⎝g1(b) −f2(b)

g2(b) f1(b)

⎞⎟⎠ ·
⎛⎜⎝ f1(b′) f2(b′)

−g2(b′) g1(b′)

⎞⎟⎠ =

⎛⎜⎝c 0

0 c

⎞⎟⎠ = 0

So the entries of this product are all multiples of c and hence the the entries of A
belong to S. Furthermore, detA = 1/c2 · c · c = 1. So A ∈ SL2(A) as needed and

(
f1(b) f2(b)

)
· A = (1, 0) ·

⎛⎜⎝ f1(b′) f2(b′)

−g2(b′) g1(b′)

⎞⎟⎠ =
(
f1(b′) f2(b′)

)

(The calculation is done in A[c−1] but the result holds in A as a subring of
A[c−1].)

Lemma 2.4.5: Let R be a commutative ring, S a commutative R-algebra, and
f ∈ Unn(R[t]). Denote f(b) =

(
f1(b) · · · fn(b)

)
∈ Unn(S) for b ∈ S. Then

the set If,S,G = {c ∈ R | b = b′ mod cS =⇒ f(b) ∼G f(b′)} is an ideal in R for
any subgroup G of GLn(S).

Proof. Suppose c, c′ ∈ If,S,G, we need to prove rc+ r′c′ ∈ If,S,G. Suppose b− b′ =
(rc+ r′c′)s for b, b′, s ∈ S, then b− rcs = b′ + r′c′s and we have by assumption

f(b) ∼G f(b− rcs) = f(b′ + r′c′s) ∼G f(b′)

Hence, f(b) ∼G f(b′).

To make use of Lemma 2.4.4, we will view SL2(S) as a subgroup of SLn(S)
for n ≥ 2 by the embedding

A ↦→

⎛⎜⎝A 0

0 idn−2

⎞⎟⎠
The following theorem is due to Suslin. [6] It provides a different proof of

Serre’s conjecture from the one that Suslin published in 1976, this one being less
involved.

37



Theorem 2.4.1: Let R be an integral domain, f = (f1, ..., fn) ∈ Unn(R[t]) (for
n ≥ 2) with f1 unitary, and let S be a commutative R-algebra and b, b′ ∈ S.

Then f(b) ∼G f(b′), where G is the subgroup of GLn(S) generated by SL2(S)
and the subgroup En of elementary row transformations.

Proof. For n = 2, this follows directly from Lemma 2.4.4, so suppose n ≥ 3. We
will prove that I = If,S,G from the Lemma 2.4.5 contains 1, the condition b = b′

mod 1 · S is then vacuous, hence f(b) ∼G f(b′) will hold for all b, b′ ∈ S.
It will be enough to find c ∈ I \ m for an arbitrary m ∈ maxR. By the

isomorphism theorems:

R′ = R[t]
/

(m[t] +R[t] · f1) ≃
(
R[t]/m[t]

)/
(m[t] +R[t] · f1/m[t])

Consider the isomorphism

α : R[t]/m[t]→ (R/m)[t]∑
ait

i + m[t] ↦→
∑

(ai + m)ti

(defined using the first isomorphism theorem). Since f1 is unitary, f1 = α(f1 +
m[t]) is non-zero and we can write

β : R[t]/m[t]→ (R/m)[t]/f1

g + m[t] ↦→ g mod f1

The kernel contains those g(t)+m[t] for which g is a multiple of f . Using the fact
that α is an isomorphism, we have g = f1 ·h⇔ g+m[t] = f1h+m[t] for some h ∈
R[t]⇔ g+m[t] ∈ (m[t]+R[t]·f1)/m[t]. Which means ker β = (m[t]+R[t]·f1)/m[t]
yielding an isomorphism

R′ ≃ (R/m)[t]
/
f1

This is a finite-dimensional commutative algebra over the field R/m (the cosets
modulo f1 are represented by polynomials of degree < deg f1). We apply Lem-
ma 2.4.3 as follows: Reducing f modulo m[t] + R[t]f1, we get (f2 + m[t] +
R[t]f1, ..., fn + m[t] + R[t]f1) ∈ Unn−1(R′) and the lemma allows us to find a
matrix E ′ ∈ En(R′) such that

(f2 + m[t] +R[t]f1, ..., fn + m[t] +R[t]f1) · E ′ = (1 + m[t] +R[t]f1, 0, ..., 0)

We can find a matrix E ∈ En−1(R[t]) such that reducing each entry of E yields
back E ′, this is obvious for an elementary matrix I+reij and extends to En(R[t])
by homomorphism. Define

(g2, ..., gn) = (f2, ..., fn) · E (2.6)

Then g2 = 1 mod m[t] +R[t]f1 =⇒ (R[t]g2 +R[t]f1) + m[t] = R[t] and applying
Lemma 2.3.2, (R[t]g2 + R[t]f1) ∩ R + m = R which in turns gives c ∈ (R[t]g2 +
R[t]f1) ∩R such that c /∈ m. We can now finish the proof by showing c ∈ I.

Take b, b′ ∈ S such that b = b′ mod cS, by the choice of c ∈ R[t]g2 + R[t]f1,
this means

gi(b)− gi(b′) ∈ cS ⊆ f1(b)S + g2(b)S (2.7)
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for each i ≥ 2. We note c is not a zero-divisor (allowing Lemma 2.4.4) because
R is a domain and we embed En−1(S) ⊆ En(S) by A ↦→

(
1 0
0 A

)
.

f(b) ∼En(S) (f1(b), g2(b), ..., gn(b)) by (2.6) using the matrix E(b)
∼En(S) (f1(b), g2(b), g3(b′)..., gn(b′)) by (2.7)
∼SLn(S) (f1(b′), g2(b′), g3(b′)..., gn(b′)) Lemma 2.4.4
∼En(S) f(b′)

The final step just reverses the first. We have c ∈ I by definition.

Applying this theorem for S = R[t], b′ = t, and b = 0 yields

Corrolary 2.4.1: Let R be an integral domain and f = (f1, ..., fn) ∈ Unn(R[t])
for n ≥ 2 and f1 unitary, then f ∼G f(0), where G is generated by En(R[t]) and
SL2(R[t]).

Remark 2.4.1: Lemma 2.4.4 holds even if c is a zero divisor. The assumption
that R is an integral domain is not actually needed in Theorem 2.4.1 and Corro-
lary 2.4.1.

2.4.2 Nagata’s Lemma and the Finished Proof
The following Lemma comes from Nagata [9], proven here in more detail. We
define deg f for a polynomial in many variables as the maximum sum of the
exponents of variables appearing in any term of f .

Lemma 2.4.6 (Nagata): Let k be a field, n ∈ N. Then for any non-zero f ∈
k[t1, ..., tn], there exist natural numbers m2, ...,mn and c ∈ k \ {0} such that

f(t1, t2 + tm2
1 , t3 + tm3

1 , ..., tn + tmn
1 ) = c · h(t1, ..., tn)

where h is monic as a polynomial in
(
k[t2, ..., tn]

)
[t1], i.e. h(t1, .., tn) = tm1

1 +
terms with lower powers of t1.

In this setting f(t1, t2 + tm2
1 , t3 + tm3

1 , ..., tn+ tmn
1 ) is unitary in

(
k[t2, ..., tn]

)
[t1]

and the map g(t1, ..., tn) ↦→ g(t1, t2 + tm2
1 , t3 + tm3

1 , ..., tn+ tmn
1 ) is an automorphism

of k[t1, ..., tn].

Proof. Take m > deg f and set mj = mj−1, j = 1, ..., n. For any tuple of non-
negative integers i = (i1, ..., in) we have the monomial Mi = ti11 t

i2
2 · · · tinn , and

define w(Mi) = ∑n
j=1 mj · ij, the weight of Mi.

By the choice of m, weight orders the monomials of degree at most deg f
“reverse” lexicographically, i.e. w(Mi) ≤ w(Mi′)⇔ i ≤Lex′ i′. (by Lex′ we mean
the entries in the tuples are read back to front.) this is because m is so large that
the ijs appearing in w(M) = ∑n

j=1 m
j−1 · ij cannot interfere with each other (i

coincides with the “m-ary” expansion of w(Mi) written backwards). The weights
of two monomials are equal if and only if the corresponding tuples are equal.

We write f out as

f(t1, ..., tn) =
∑

i=(ij)n
j=1

ai t
i1 · · · ttn =

∑
Mmonomial

aM ·M
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The discussion above means that there is a monomial M0 of strictly largest
weight among those appearing in f , i.e. among those M for which aM ̸= 0. Hence

f(t1, t2 + tm2
1 , t3 + tm3

1 , ..., tn + tmn
1 ) = aM0t

w(M0)
1 + terms with lower powers of t1

and setting c = aM0 ̸= 0 completes the first statement.
Since c ̸= 0 and k is a field, c is a unit and c · h is unitary. Finally, taking

g(t1, ..., tn) to g(t1, t2−tm2
1 , t3−tm3

1 , ..., tn−tmn
1 ) is inverse to the map in the second

statement. Both maps are obviously ring homomorphisms, so they are mutually
inverse isomorphisms.

Theorem 2.4.2: If k is a field, then k[t1, ..., tn] is Hermite.

Proof. We prove S = k[t1, ..., tn] is Hermite by induction on n, the number of
variables. For n = 0, we have S = k a field, any k-module (vector space) is free,
so k is Hermite.

For n > 0 we take a unimodular row f = (f1, ..., fm) ∈ Unm(S). We wish
to prove that f ∼GLm(S) (1, 0, . . . , 0) and apply Lemma 2.4.1. If f1 = 0, then
(f2, ..., fm) is a shorter unimodular row and we are done by Lemma 2.4.2.

Suppose f1 ̸= 0. We interpret f as a unimodular row over (k[t2, .., tn])[t1]
and apply Lemma 2.4.6 to bring f1 to a unitary polynomial. Since the change
of variables given by the lemma is an automorphism on S, and since the target
(1, 0, ..., 0) is unchanged by it, we can just as well assume f1 is already unitary.

Since k[t2, .., tn] is an integral domain, Corrolary 2.4.1 applies, yielding

f(t1, t2, ..., tn) ∼GLm(S) f(0, t2, ..., tn)

which is a unimodular row of polynomials in n− 1 variables.
By induction, f ∼GLm(S) (1, 0, ..., 0) and so f can be completed to a square

invertible matrix by Lemma 2.4.1. Since f ∈ Unm(S) was arbitrary, this proves
that S is Hermite.

The proof of Serre’s Conjecture is thus obtained:

Theorem 2.4.3 (Quillen-Suslin): Let k be a field and S = k[t1, ..., tn], then any
P ∈ P(S) is free.

Proof. Any P ∈ P(S) is stably free by Corrolary 2.2.3. Since S is Hermite, any
stably free module is free.
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3. The Bass-Quillen Conjecture
This chapter recounts some of the progress made on the Bass-Quillen Conjecture
since 1976—when it replaced the newly settled Serre’s Conjecture.

The period 1976 – 2006 is covered in Lam [6]. This chapter contains a summa-
ry of that account, supplemented with some missing definitions and extended by
the results of Dorin Popescu from 2020. It contains only some sketches of proofs,
serving as a suggestion for further reading rather than a self-contained text.

The Bass-Quillen Conjecture is the following supposed generalisation of The-
orem 2.4.3:

Bass-Quillen Conjecture (BQ): LetR be a regular ring. Any finitely generated
projective module over R[t1, ..., tn] is extended from R.

Note that Lemma 2.0.1 extends easily to the case of multiple variables, yielding
for any R[t1, ..., tn]-module M :

M is extended from R⇐⇒M ≃ R[t1, ..., tn]⊗RM
/
⟨t1, ..., tn⟩M

3.1 Preliminaries
This section will introduce the usual definition of regular rings, explain in what
sense BQ is a generalisation of Serre’s Conjecture, and list some fundamental
theorems which have been used to chip away at BQ.

R is taken to be a commutative ring throughout.

Definition 3.1.1: Let R be a commutative ring. We say a chain of strict inclu-
sions of prime ideals p0 ⊊ p1 ⊊ · · · ⊊ pn has length n. The Krull dimension
of R is defined as the supremum of the lengths of such chains in spec R.

A noetherian local ring (R,m) is called a regular local ring if its Krull
dimension is equal to the minimal number of generators of m.

A noetherian ring R is called regular if Rp is a regular local ring for every
p ∈ spec R.

Remark 3.1.1: A theorem of Serre (Theorem 19.2 in Matsumura [8]) states that a
noetherian R is regular in this sense if and only if R has finite global dimension,
i.e. iff there exists a fixed n0 ∈ N such that every M ∈ M(R) has a projective
resolution by at most n0 terms.

So the “usual” definition of regularity given here implies left regularity in the
sense of Definition 2.1.1. In the case of a local ring, the opposite implication
holds as well.

Assuming Serre’s Characterization of regular rings, the proof given in this
paper of Swan’s Theorem 2.1.1 actually proves that “R regular ⇒ R[t] regular”
holds for this stronger form of regularity as well.

The notion of an R[t1, ..., tn]-module being extended from R was instrumental
in proving Theorem 2.4.3. It is no accident that it is used to formulate BQ:

Lemma 3.1.1: Suppose R has the property that any f.g. projective module is
free. Then any P ∈ P(R[t1, ..., tn]) is extended from R if and only if any P ∈
P(R[t1, ..., tn]) is free.
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Proof. Follows from the fact that M is R-projective if and only if R[t1, ..., tn]⊗RM
is R[t1, ..., tn]-projective.

By Theorem 1.2.2, a local ring has this extra property, so BQ can be stated
locally as:

(BQ’): Let R be a regular local ring. Any P ∈ P(R[t1, ..., tn]) is free.

We actually have BQ ⇐⇒ BQ’ by the following local-global theorem
of Quillen: [6] (p.160)

Theorem 3.1.1 (Quillen’s Patching Theorem): Let R be a commutative ring,
A a (possibly non-commutative) R-algebra, and let M be a finitely presented
A[t1, ..., tn]-module.

If Mm ∈MAm

(
Am[t1, ..., tn]

)
for every m ∈ maxR, then M ∈MA

(
A[t1, ..., tn]

)
.

Recall that any finitely generated projective module is finitely presented. The
case A = R and M ∈ P(R[t1, ..., tn]) is what we are after. This reductive argu-
ment is used repeatedly.

Definition 3.1.2: We say R satisfies the extension property (Ek) for some
k ≥ 1 if any P ∈ P(R[t1, ..., tk]) is extended from R. If R satisfies (Ek) for each
k ∈ N, then we say R has the property (E).

Quillen’s Patching Theorem just says that (E) (as well as any (Ek)) is a
property which can be checked locally.

Denote R⟨t⟩ the localization of R[t] at the multiplicative set of monic poly-
nomials. This ring is the subject of a technical theorem of Horrocks: [6] (p.171)

Theorem 3.1.2 (Affine Horrocks’ Theorem): Let R be a commutative ring and
P ∈ P(R[t]). If R⟨t⟩ ⊗R[t] P is extended from a f.g. projective R-module, then
P ∈ PR

(
R[t]

)
.

Finally, another important method developed by Quillen is so-called Quillen
induction, which allows one to check the property (E) for some family F of com-
mutative rings.

Theorem 3.1.3: Suppose a class F of commutative rings satisfies the properties:

Q1 : If R ∈ F, then R⟨t⟩ ∈ F,

Q2 : If R ∈ F and m ∈ maxR, then Rm ∈ F,

Q3 : Any local ring R ∈ F has the property (E1).

Then any R ∈ F satisfies (E).

Proof. Sketch: Each (Ek) is proved by induction on k. (E1) follows from Q2 and
Q3 by Quillen Patching. For n > 1, write A = R[t2, ..., tn] and take P ∈ P

(
A[t1]

)
.

If P is shown to be extended from A, i.e. P ≃ A[t1] ⊗A P0 where P0 ∈
PR[t2, ..., tn] then the inductive hypothesis says P0 (and hence also P ) is extended
from R.
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By Theorem 3.1.2, it is enough to prove:

A⟨t1⟩ ⊗t1 P is extended from an f.g. projective R-module. (3.1)

Consider the subring S = R⟨t1⟩[t1, ..., tn] of A⟨t1⟩. Q1 and the inductive
hypothesis imply that any module in P(S) is extended from R⟨t1⟩. A technical
argument now yields (3.1). [6] (p. 178)

We end this section with definitions needed to cite Popescu’s later work, the
first is taken from Popescu [10]:

Definition 3.1.3: Let A be a commutative associative R-algebra. A is of finite
type if their exists a finite set of elements a1, ..., an ∈ A such that any a ∈ A can
be expressed as a polynomial in the ais with coefficients from R. A is essentially
of finite type if it is the localization of a finite-type algebra.

A has geometrically regular fibres if K ⊗R/p A
/
pA is regular for any

p ∈ maxR and any field extension K of R/p.
A is (essentially) smooth if it is R-flat, has geometrically regular fibres,

and is (essentially) of finite type.

Another term used by Popescu is a “filtered inductive limit”, perhaps more
commonly referred to as a filtered colimit.

Definition 3.1.4: A non-empty category K is filtered if every finite diagram in
K has a cocone.

A filtered colimit is the colimit of some diagram F : K → L where K is a
filtered category.

3.2 Partial Results
Remark 3.2.1: Using Theorem 1.2.2.i), we know that Theorem 2.2.1 applies to
the local case BQ’, proving stably-freeness.

Of course, the simplest special case of BQ’ is Serre’s Conjecture itself, since a
field is a local ring (k, 0) of Krull dimension zero.

The case of Krull dimension ≤ 2 came soon after.

Theorem 3.2.1 (Quillen-Suslin): If a regular ring R has Krull dimension ≤ 2,
then it has the property (E).

Proof. Sketch: By Quillen Induction on

F = {commutative rings of Krull dimension ≤ 2}.

One shows that the Krull dimension of R is equal to that of R⟨t⟩ and no
smaller than that of R[S−1] (for any multiplicative set S), implying Q1 and Q2.
The property Q3 takes some doing: The case for R of Krull dimension = 2 is
proved using Theorem 3.1.2, Krull dimension = 1 is due to Shesadri, and Krull
dimension = 0, i.e. where R is a field, has been covered.

Another special case, keeping the theme of small Krull dimension:
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Theorem 3.2.2 (Big Rank Theorem): Let R be a regular ring of finite Krull
dimension d and P ∈ P(R[t1, ..., tn]). If Pm is of rank > d for every m ∈ maxR,
then P is extended from R.

Proof. Sketch: Quillen patching is used to reduce to the case where R is local.
In this case Theorem 2.2.1 applies, proving P is stably-free. Theorem 2.4.1 was
used in Chapter 2 to prove that k[t1, ..., tn] is Hermite, and can similarly be used
to prove that a noetherian ring of Krull dimension d is d-Hermite, i.e. that any
stably free module of rank ≥ d is free.

The statements and full proofs of the previous two results can be found in
Lam [6]. The next big result, known as the Geometric Case of BQ, was obtained
in 1981 by Hartmut Lindel. This was later improved upon by Richard Swan; the
following statement of the theorem appears in Popescu [10].

Theorem 3.2.3 (Lindel, Swan): Let (R,m) be a regular local ring essentially of
finite type over Z and write p = char R

/
m.

i) If p = 0 (in R, i.e. p · 1R = 0), then R is essentially smooth over its prime
field

ii) If p /∈ m2, then R is essentially smooth over Z

iii) If either i) or ii) holds for R, then R has the property (E).

Dorin Popescu later [12] proved that any regular local ring is a filtered colimit
of rings satisfying the assumption of Theorem 3.2.3, which implies the following
by an argument due to Swan:

Theorem 3.2.4 (Popescu): Let (R,m) be a regular local ring. If char R/m = 0
or char R/m /∈ m2, then R has the property (E).

Proof. Sketch: One shows that if R is a filtered colimit of Rα and each Rα satisfies
(E), then so does R.

This is the most general special case proven to date. An exposition of Popes-
cu’s work on Néron Desingularization, which lead him to this result, can be found
e.g. in [13]. The following proposition justifies talking about the prime field of R
in Theorem 3.2.4.i):

Proposition 3.2.1: Let (R,m) be a local ring. Then char R/m = 0 (in R) if
and only if R contains a field.

Proof. We make use of the characterization of the units in a local ring (R,m) as
the elements of R \m (see Remark 1.2.10).

(⇒) Suppose char R/m is actually 0, that is n = 1 + · · ·+ 1 ̸= 0 for any finite
sum. Then any n ∈ N lies outside of m, hence is invertible in R. So any non-zero
integer (±n) is invertible. R contains Q as a subring.

If char R/m = p. Then p = 0 in R implies char R ≤ p and the opposite
inequality holds trivially. So the characteristic of R is the prime number p and
hence R contains the prime field Zp.

(⇒) If a local ring R contains a field k, then the non-zero elements of k lie in
R \m. So R/m contains a field isomorphic to k and hence char R/m = char k =
char R. Then of course 1R · char R/m = 0 in R.
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This proposition with Lemma 3.1.1 also allows us to state Theorem 3.2.4.i) in
a way which more clearly generalises Serre’s Conjecture:

Corrolary 3.2.1: If a regular local ring R contains a field, then any P ∈ P(R)
is free.

3.2.1 Popescu’s Reduction
We turn our attention to a new (2020) result of Popescu [10], which builds on all
of the previous work and reduces the Bass-Quillen Conjecture to the following
question:

(P): Let (R,m) be a regular local ring essentially smooth over Z(p), where
p = char R/m, and take b ∈ m2 arbitrary. Does the ring R

/
(p− b)R have

the property (E)?

Popescu’s main result is that checking (E) for this special kind of ring already
proves (E) for any regular ring. The key ingredient in Popescu’s result is that he
completes the analysis of Theorem 3.2.3.i),ii) for the other cases of p.

Theorem 3.2.5: If (R,m) is a regular local ring and 0 ̸= p ∈ m2, then R is
a filtered colimit of rings Rα essentially smooth over the rings Aα

/
(p − bα)Aα,

where each Aα satisfies the requirements of (P).

Corrolary 3.2.2 (Popescu): If P is answered affirmatively, then BQ is true.

Proof. Sketch: Quillen Patching reduces BQ to the local case BQ’. By The-
orem 3.2.4, one can assume 0 ̸= p ∈ m2 and apply Theorem 3.2.5. Each
Aα
/

(p − bα)Aα satisfies (E), since (P) is assumed true. Popescu then proves,
that 1) (E) carries over from a ring to any essentially smooth algebra over that
ring and 2) (as before) if R is a filtered colimit of Rα and each Rα satisfies (E),
then so does R.
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Conclusion
While building up the proof of Serre’s Conjecture in the first two chapters, we
came upon many of the essential facts of Commutative Algebra and Algebraic
Geometry, as well as the origins of Homological Algebra (Section 2.1) and Alge-
braic K-theory (Section 2.2). Moreover, even the calculus of unimodular rows,
sampled in Section 2.4, has become a subject in its own right.

Regarding the Bass-Quillen Conjecture, Hartmut Lindel wrote “Since there
does not seem to be much hope for a general solution...” and went on to introduce
his breakthrough 1981 result. [11]

Despite this early pessimism, already present since the first attempts at the
Bass-Quillen conjecture, a steady flow of new developments has continued to the
present day, in the form of solutions in special cases, as discussed in Chapter 3,
and analogues such as that of Asok et al. [14] from 2018.

All this to say that, though long since proven and resolved, Serre’s Conjec-
ture, with its various offshoots and its historical value, still remains a vital and
fascinating subject.
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[13] Richard G Swan. Néron-Popescu desingularization. Algebra and geometry
(Taipei, 1995), 2:135–192, 1998.

[14] Aravind Asok, Marc Hoyois, and Matthias Wendt. Affine representability re-
sults in A1–homotopy theory, II: Principal bundles and homogeneous spaces.
Geometry & Topology, 22(2):1181–1225, 2018.

47

http://www.jstor.org/stable/1969915
http://www.jstor.org/stable/1969915

	Notation
	Introduction
	The Basics
	Free and Projective Modules
	Tensor Products
	Flatness
	Localization
	The Local-global Principle


	The Proof of Serre's Conjecture
	Left Regular Rings
	Stably Free Modules
	Integral Extensions
	Hermite Rings
	Elementary Matrices
	Nagata's Lemma and the Finished Proof


	The Bass-Quillen Conjecture
	Preliminaries
	Partial Results
	Popescu's Reduction


	Conclusion
	Bibliography

