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PREFACE 

 

The relevance of conection of two extensive research subjects such as Trematodes and 

Peptidases is documented by following excerptions from the original texts published by 

some of  the "gurus" in this field.  

 

"Peptidases are enzymes that hydrolyze peptide bonds. They are necessary for the 

survival of all living creatures, and they are encoded by about 2% of genes in all kinds of 

organisms. It has been estimated that 14% of the five hundred human peptidases are 

under investigation as drug targets. Peptidases are thus an exceptionally important group 

of enzymes in biology, medical research and biotechnology. Since the regulation of the 

activities of peptidases is obviously crucial." Rawlings et al. (2006) 

                                                                                                      

"It is estimated that without proteases as biological catalysts it would take hundreds 

of years to hydrolyse a peptide bond; in comparison a protease can degrade as many as 

one million peptide bonds per second. Proteases range from monomers of 10 kDa to 

multimeric complexes of several hundred kDa." Sajid and McKerrow (2002) 

 

"Parasitic diseases represent major global health problems of immense proportion. 

schistosomiasis, malaria, leishmaniasis, Chagas disease, and African sleeping sickness 

affect hundreds of millions of people worldwide, cause millions of deaths annually, and 

present an immense social and economic burden. Recent advances in genomic analysis of 

several of the major global parasites have revealed key factors involved in the 

pathogenesis of parasite diseases. Among the major virulence factors identified are 

parasite-derived proteases. Well-characterized examples of the roles proteases play in 

pathogenesis include their involvement in invasion of the host by parasite migration 

through tissue barriers, degradation of hemoglobin and other blood proteins, immune 

evasion, and activation of inflammation." McKerrow et al. (2006) 

 

"At least two billion people are infected with parasitic helminths and infections of 

domestic animals and agricultural plants are even greater. Attention has focused on the 

promise of peptidases as molecular targets in the diagnosis, treatment and vaccination of 

helminth infection." Caffrey et al. (2004) 
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"Undoubtedly, cysteine endopeptidases play housekeeping and general cellular 

metabolic functions in the cells of trematodes. However, it is thought that the major 

proteolytic activities in these parasites function in facilitating parasitism-associated roles 

including host tissue penetration, metabolism of host macromolecules for parasite 

nutrition, and evasion of host immunological responses. In certain situations, such as in 

acute infections (especially with zoonotic helminths), proteases may sensitise individuals 

to allergens. The activation of inflammatory responses dominated by elevated IgE, 

eosinophilia and Th2 cells, much like allergenic responses." Dalton et al. 2004, Donnelly 

et al. (2006) 
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1. INTRODUCTION 

 
Trematodes are helminths of the phylum Platyhelminthes. Species of veterinary and 

medical importance are members of the subclass Digenea.1 Digenetic trematodes 

represent a rich group of cca 6000 species parasitizing in all classes of vertebrates. The 

habitat of adult or juvenile digenetic trematodes comprises almost all parts of vertebrate 

body (Mehlhorn 2001). At least 18 trematode species are known as the dominant 

causative agents of human infections affecting millions of people in many countries 

(Mehlhorn 2001, WHO report 2004). Schistosomes representing the family 

Schistosomatidae are important in terms of human/veterinary medicine as causative 

agents of human schistosomiasis which annually causes 11000 deaths; they affect about 

200 million people and another 600 million are at risk of infection (Muller 2002, WHO 

Expert Committee 2002, WHO report 2001).2 The number of domestic animals infected 

by zoonotic schistosome species is even higher (Caffrey and McKerrow 2004). The 

number of animals infected worldwide by liver flukes of the family Fasciolidae has been 

estimated at 600 millions with the annual economic loss in cattle and sheep stocks around 

2 billions USD. Also human fasciolosis seems to be an emerging problem in several 

countries (McManus and Dalton 2006). 

Digenetic trematodes adopted complicated life strategies including changes of 

sexually or asexually-reproducing developmental stages being found in intermediate hosts 

(at least one - mostly snails) and the definitive ones (many vertebrate species). During the 

whole life cycle of each trematode species peptidases play a number of pivotal roles.3 

Particular trematode peptidases were identified as essential enzymes for eggs, larval 

stages as well as adults (Dalton and Brindley 1997, Cesari et al. 2000, Sajid et al. 2003, 

Dvořák et al 2005). They are integrated in many biological processes such as 

pathogenesis, host invasion, migration through tissues, degradation of nutritional proteins 

                                         
1 Trematodology was established by Steenstrup (1813-1897), the Danish scientist who started new wave of 

viewing reproduction and life cycle aspects of trematodes. He discovered the principle of the alternation of 

generations in some parasitic worms described in his classical work in 1842. 
2 The major schistosome parasites of humans - Schistosoma mansoni, S. japonicum and S. haematobium 

are prevalent in many parts of Africa, the Middle East, South America, China, Southeast Asia, and the 

Philippines (King 2007). 
3 Although the terms - proteolytic enzymes, proteases, peptide hydrolases or proteinases are still 

frequently used and generally understood, in 1992 the Nomenclature Committee of the International Union 

of Biochemistry and Molecular Biology (NC-IUBMB) published the Enzyme Nomenclature  in which the 

term peptidase was recommended as a general term for all enzymes hydrolyzing peptide bonds (Academic 

press NC-IUBMB, www.chem.qmul.ac.uk/iupac/jcbn/, Rawlings et al. 2006). The term peptidase will 

therefore be universally used in the thesis. 
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(e.g. hemoglobin), immune evasion, activation and modulation of inflammation (Trap and 

Boireau 2000, Caffrey et al. 2004, He et al. 2005, Horák and Kolářová 2005, McKerrow 

et al. 2006, Delacroix  et al. 2007, Koehler et al. 2007).  

This need of peptidases for trematode survival implies their possible usage as drug 

targeting elements (e.g. cysteine peptidase inhibitor K11777, Abdulla et al. 2007) or 

efficient components of vaccines (e.g. cathepsin L1 and cathepsin L2 of Fasciola 

hepatica; McMannus and Dalton 2006). 

For trematodologists dealing with peptidases there exist at least two main powerful 

sources accumulating and systematizing information on a high number of organisms, 

MEROPS - the peptidase database (http://merops.sanger.ac.uk/) and the Handbook of 

Proteolytic Enzymes, Vol. 2. (Barrett, A. J., Rawlings, N. D. and Woessner, J. F., 2004). 

Although the MEROPS database (version 7.9, December 2007) comprises more than 

3000 individual peptidase records, broader views and links to parasites in general and 

trematodes in particular are rather missing. On the other hand, the second edition of the 

Handbook of Proteolytic Enzymes contains some comprehensive descriptions of 

peptidases of parasitic organisms, but this brilliant book is already four years old. Rapid 

application/introduction of new techniques in life sciences (e.g. genome database data 

mining, microarray analysis or biotransformation) yields more and more fresh and robust 

data requiring also a review of current knowledge of trematode peptidases. 

For this reason, in the first part of my thesis, I want to summarize past and recent 

discoveries related to peptidases of digenetic trematodes and to discuss our results 

obtained mainly from two model organisms – the bird schistosomes Trichobilharzia 

regenti and T. szidati. 

The second part of my thesis is represented by an appendix, containing four already 

published papers. Three of them deal with the biochemical characterization of T. regenti 

and T. szidati cercarial protein extracts and excretory/secretory products in terms of 

peptidase composition: mainly serine and cysteine peptidases, their purification and 

biochemical properties such as pH optimum, cleavage of oligo- or macromolecular 

peptide substrates, inhibition of peptidolytic activity by a spectrum of specific inhibitors, 

immunohistochemical analysis and de novo sequencing of selected peptidases by use of 

mass spectrometry methods were in focus. The selected peptidase genes were cloned, 

recombinant enzymes expressed and immunolocalized on histological sections. Our 

results have been continually compared with data on the best characterized trematode 

species - Schistosoma mansoni. The fourth paper concerns primary characterization of 
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excretory/secretory antigens from the liver flukes Fascioloides magna and Fasciola 

hepatica, important parasites of several ruminant species. 
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2. TREMATODES AND PEPTIDASES 

 

In this chapter our experimental models are introduced, the classification system of 

peptidases is described and historical and recent knowledge of trematode peptidases, 

together with results obtained on our trematode experimental models, are referred.  

 

2.1 Experimental models  

 

We used larval stages, juveniles and adults of five trematode species – 

Trichobilharzia regenti, T. szidati, Schistosoma mansoni (Schistosomatidae), 

Fascioloides magna and Fasciola hepatica (Fasciolidae) to investigate their peptidases 

and antigenic properties of excretory/secretory products.  

 

2.1.1 T. regenti and T. szidati 

 

In our laboratory we keep the life cycle of two bird schistosomes – the nasal species 

Trichobilharzia regenti (Horák et al. 1998) and the visceral T. szidati (Neuhaus 1952). 

We use these organisms as experimental models to study not only the biochemical 

properties of their peptidolytic enzymes, but also to define host-parasite interactions and  

complicated life strategies of these flukes. The life cycle of both Trichobilharzia species 

is briefly described below and schematically shown in Fig. 1. 

T. regenti is unique among schistosomatids in respect of schistosomula migratory 

route and final location of adults. It uses snails of the genus Radix as intermediate and 

anatid birds (waterfowl) as definitive hosts in its life cycle. The definitive host becomes 

infected by cercariae emerging from the snail, swimming in water and penetrating the 

host skin. Then the cercariae transform to schistosomula, enter the peripheral nerves and 

start to migrate via nervous tissue to the CNS (Central Nervous System). The target 

location where the mature T. regenti worms produce eggs is the nasal cavity (Chanová 

and Horák 2007). 

T. szidati (= T. ocellata, for details see Rudolfová et al. 2005) life strategy is 

different. Cercariae released from the intermediate host (aquatic snail Lymnaea stagnalis) 

invade similar spectrum of definitive hosts as T. regenti and transform in their skin. 

Subsequently, schistosomula of this visceral species enter blood vessels of the host, using 

circulatory system as the migratory route. The larvae are firstly accumulated in the lungs 
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where they spend several days, re-enter blood vessels and continue to intestinal wall 

tissue (final location), where maturation, mating and egg production take place (Chanová 

et al. 2007).  

The cercariae of both species can penetrate, transform and migrate as schistosomula 

also in non-specific hosts (e.g. mouse, man). The penetration can be accompanied, 

similarly to specific hosts, by an allergic reaction known as cercarial dermatitis 

("swimmers´ itch", Kouřilová et al. 2004a).4 Although the development in non-specific 

hosts does not lead to fully mature and reproducing worms, the migratory larvae can 

cause significant pathogenesis. In ducks and mice experimentally infected by T. regenti 

cercariae neuromotor disorders, leg paralysis or even death were recorded; these disorders 

are dose-dependent (e.g. Horák et al. 2002, Kouřilová et al. 2004b, Blažová and Horák 

2005, Horák and Kolářová 2005).   

 

Fig. 1. The life cycle of T. regenti and T. szidati.  

 

 

                                         
4 This disease is becoming an emerging public health problem in Europe (e.g. Bayssade-Dufour et al. 

2002). 

* 
Penetration glands of cercaria are coloured - circumacetabular in orange and postacetabular 

in red. Radix sp. is intermediate host of T. regenti and Lymnaea stagnalis of T. szidati.
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2.1.2   Schistosoma mansoni as a comparative model to T. regenti and T. 

szidati 

 

Schistosoma mansoni is a zoonotic schistosomatid species related to T. regenti and 

T. szidati as to similar life strategies. Schistosoma  mansoni life cycle is principally much 

alike that of T. szidati, but S. mansoni occupies mesenteral blood vessels of its definitive 

hosts (mostly man but also some other mammals); planorbid snails of the genus 

Biomphalaria serve as intermediate hosts. For details of S. mansoni life cycle, see e.g. 

Mehlhorn (2001). 

We adopted S. mansoni cercariae as a comparative model to the bird schistosomes 

T. regenti and T. szidati because of taxonomic relations of the flukes; penetration 

enzymes of S. mansoni have been biochemically well characterized and molecular 

descriptions of major S. mansoni peptidases from all developmental stages have already 

been published.  

 

2.1.3 Fasciola hepatica and Fascioloides magna – the  liver flukes 

 

Fasciola hepatica is nowadays a cosmopolitan fluke infecting ruminants and many 

other mammalian hosts including man. It causes serious problems in cattle and sheep 

stocks due to relatively high pathogenicity. Its distribution depends on the presence of 

appropriate snail intermediate hosts of the family Lymnaeidae (Galba truncatula in 

Europe). Cercariae emerged from the snails encyst on vegetation and developed 

metacercariae which are than swallowed by a definitive host. Young excysted 

metacercariae enter the liver and damage its tissue during migration. Finally they settle in 

bile ducts and produce numerous eggs. The inflamation accompanying the infection can 

lead to obstruction of bile ducts and even to death of sensitive hosts (Dalton 1999). 

Fascioloides magna was firstly introduced from North America to Europe with 

game animals released in the Royal Park near Turin, Italy, at the end of the 19th century 

(Swales 1935). 

The giant liver fluke F. magna (relative to Fasciola hepatica) is an important 

parasite of a variety of wild and domestic ruminants in North America and Europe. The 

life cycle is principally the same as in the case of Fasciola; it includes intramolluscan 

phase in lymnaeid snails (mostly Galba truncatula) and cervids represent common 
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definitive hosts (e.g. Cervus elaphus in the Czech Republic) in which F. magna adults 

cause a chronic disease - fascioloidasis (e.g. Swales 1935). Mature flukes localized in 

fibrous capsules in the liver parenchyma represent often a lethal event for a number of 

aberrant hosts e.g. sheep, goat or roebuck (Capreolus capreolus). 

For some ruminants, F. magna is the most pathogenic trematode which is currently 

spreading through the Central Europe including the Czech Republic (prevalence 4% to 

95%). For details see e.g. the Ph.D. thesis of Novobilský (2007) or Novobilský et al. 

(2007 - Paper 4). 
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2.2 General classification of peptidases 

 

Peptidases annotated in MEROPS database and described in Handbook of 

Proteolytic Enzymes, Vol. 2. (http://merops.sanger.ac.uk/, Barrett, A. J., Rawlings, N. D. 

and Woessner, J. F., 2004) are summarized according to three main criteria – "place of 

action", mechanism of catalysis and molecular structure.5  

 

2.2.1 Classification of peptidases by "place of action"  

 

In general peptidases catalyze hydrolysis of peptide bonds, but the place "where 

they act", is different - "inside/outside" or in particular position of the polypeptide chain. 

They can be grouped on this basis (Tab. 1). 

 

Tab. 1. Basic classification of peptidases by the "place of action". 

Endopeptidases 

Cleave internal peptide alpha-bonds of polypeptide chain away from  
N-terminus or C-terminus.6a 

Oligopeptidases Cleave the shorter peptides and no 
proteins. 

Exopeptidases 

 

Cleave the peptide alpha-bonds adjacent to N-terminus or C-
terminus of polypeptide chain. 

Aminopeptidases Cleave a single amino acid residue from 
the N-terminus. 

Carboxypeptidases Cleave a single amino acid residue from 
the C-terminus. 

Dipeptidyl-peptidases Cleave a dipeptide from N-terminus. 

Tripeptidyl-peptidases Cleave a tripeptide from N-terminus. 

Peptidyl-dipeptidases Cleave a dipeptide from C-terminus. 

Dipeptidases Cleave dipeptides. Typically require both 
termini to be free. 

Omega-peptidases 
Cleave peptide alpha-bonds with no preference for N-terminus or C-
terminus. They can cleave also isopeptide bonds.6b 

 

 

 

 

 

                                         
5 The MEROPS system for classification of peptidases was started in 1993 and gave rise to an Internet 

database in 1996.  
6a Peptide alpha-bonds are bonds where NH2- or COOH- are directly attached to the alpha-carbon of the 

amino acid. 

6b Isopeptide bonds are bonds where one or both of the NH2- or COOH- groups are not directly attached to 

the alpha-carbon of the amino acid. 

http://merops.sanger.ac.uk/
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2.2.2 Classification of peptidases by mechanism of catalysis  

 

The mechanisms of catalysis are determined by chemical groups of the peptidase 

active site responsible for cleavage of peptide bonds. They can be grouped on this basis 

(Tab. 2).  

 

Tab. 2. Basic classification of peptidases according to catalytic type.7a 

 

 

 

 

                                         
7a Catalytic type of peptidase is determined according to chemical mechanisms of catalysis related to 

reactive group in the active site of peptidase. 
7b Tetrahedral intermediate of aspartic peptidase catalysis is a formation which provides proton transfer 

from water molecule to aspartic acid dyad and another proton transfer from dyad to carbonyl oxygen of 

cleaved peptide bond (Polgár 1987). Tetrahedral intermediate of metallopeptidases is formed after attack of 

a zinc-bound water molecule towards carbonyl group of the cleaved peptide bond. This intermediate is 

further decomposed by transfer of glutamic acid proton to leaving group (Rawlings and Barrett 1993). 

Serine S The nucleophile attack during catalysis is facilitated by reactive group at amino 
acid side chain, a hydroxyl group (OH-) of serine and threonine peptidases or a 
sulfhydryl group (SH-) of cysteine peptidases. 

Catalytic triad of serine peptidases: Ser195, Asp102, His57 (numbered for chymotrypsin, e.g. 
Hedstrom 2002) 
Catalytic triad of cysteine peptidases: Cys25, His159, Asn175 (nubered for papain, e.g. Lecaille et 
al. 2002) 
Catalytic triad of threonine peptidases: Thr is conserved in active sites of all proteasomes (Guerra-
Sáb et al. 2005). All known threonine-type peptidases are N-terminal nucleophile peptidases 
(Rawlings et al. 2006) 
 

Cysteine C 

Threonine T 

Aspartic A The nucleophile attack during catalysis is usually facilitated by activated water 
molecule and followed by formation of tetrahedral intermediate.7b The water 
molecule is bound by the side chains of aspartic residues of aspartic 
peptidases or by metal ions (e.g. one or two zinc ions, Zn2+) of metallo 
peptidases.  

Catalytic diad of aspartic peptidases: Asp32 and Asp 215 (nubered for pepsin, e.g. (Dunn 2002). 
Catalytic zinc site of metallopeptidases is usually formel by His, Glu, Asp or Cys which supply 
ligands for zinc (e.g. Auld 2004). 
 

Metallo M 

Glutamic G 

The mechanisms of catalysis are similar to aspartic peptidases including 
activated water molecule and tetrahedral intermediate. The water molecule is 
bound by the side chains of glutamic acid and glutamine residues. 

Catalytic diad of aspartic peptidases: Gln24 and Glu110 (nubered for aspergilloglutamic peptidase, 
e.g.  Rawlings et al., 2006). 
 

Uknown U 
The peptidases of unknown catalytic type is term temporarily used for proteins 
where the sequence is known to belong to peptidases, but mechanisms of 
catalysis are not determined.  



 18 

2.2.3 Classification of peptidases by molecular structure, homology and 

functions 

 

This classification of peptidases formulated by Rawlings and Barrett (1993) 

involves probably the most relevant approach to distinguish and group peptidases. This 

system is based mainly on primary (amino acid sequences) and three-dimensional 

structures of peptidases. Peptidases are hierarchized on this basis in Tab. 3.8 

 

Tab. 3. Basic classification of peptidases according to molecular structure, homology 

and functions. 

 

 

 

 

 

                                         
8 The idea of using the terms "family" and "clan" for the groups of peptidases came from ecological 

strategy of bee-eaters (Merops apiaster, Linnaeus 1758), because bee-eaters group their nests to families 

and clans. The inhabitants of each nest occupy a different part of the colony and have their own discrete 

area where the members hunt flying insects. (Rawlings et al. 2006).   
9a Tertiary structure recognized by modeling is crucial for activity of many peptidases. For example, the 

polypeptide chain of papain forms two domains with a large cleft of the active site which blocks the pro-

region part. (Musil et al. 1991, Illy et al. 1997, Fig. 7, footnote 41). 
9b Primary structure of peptidase determines statistically significant relationship in amino acid sequence 

with respect to a representative member, especially to its unit (peptidase unit is a part of the enzyme 

responsible for peptidase activity, Rawlings et al. 2006). 
9c E.g. cathepsin B-like peptidase, clan CA, family C1A, peptidase C01.062 (according to MEROPS 

classification). Over 2000 unique peptidases are contained in MEROPS database 7.1 2005 (Rawlings et al. 

2006). 

Clan 

Clan comprises a group of families for which there are indications of 
sharing evolutionary ancestry, despite lack of statistically significant 
similarities in amino acid sequence. Such indications of distant relationship 
come primarily from linear order of catalytic-site residues in polypeptide 
chains, and tertiary structure.9a The name of each clan is formed from the 
letter for the catalytic type of peptidases (S, C, T, A, G, M or U, as for 
families) followed by second capital letter (e.g. CA).  

Family 

The family comprises peptidase members with evolutionary relationship 
based on primary structure similar to at least one other member of the 
family. Each family is named by a letter denoting the catalytic type (S, C, T, 
A, G, M or U) followed by number (e.g. C1).9b 

Unique 
peptidase 

Unique peptidase is in general a single peptidase or a set of proteins all of 
which display a particular kind of peptidase activity, and are closely related 
by sequence (e.g. C01.062).9c 
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2.3 Peptidases of trematodes - historical overview (until 1996 – 

foundation of the MEROPS database)  

 

Proteins (enzymes) with respect to their functions and potential usage were always 

interesting objects of many branches of science, especially human and veterinary 

medicine. Of course, peptidases became attractive molecules also in the fields of 

parasitology and trematodology.10 Parasite-derived peptidases are major agents of global 

parasitic diseases e.g. schistosomiasis, malaria, leishmaniasis, Chagas disease and African 

sleeping sickness (Mehlhorn 2001, WHO report 2004).  

Although there is a number of publications or "classical works" released till 1950s 

and referring about details of life cycles of various species of trematodes (e.g., Steenstrup 

1842,  Rue et al. 1926, Cort 1944), only few pioneer works touched the area of lytic 

enzymes at the end of this period, describing generally the paths and tools how the larvae 

(cercariae) of particular trematode species enter the host body (e.g., Schistosoma mansoni, 

Gordon and Griffiths 1951; the "virgulate cercariae"11, Kruidenier 1951; Paragonimus 

westermani, Yokogawa 1952; Allassogonoporus vespertilionis and Acanthatrium 

oregonense, Burns 1961). The essential role of lytic enzymes was revealed and the 

authors speculated about the proteolytic activity of cercarial excretory/secretory  products 

(ESP), especially in the mostly studied trematode species Schistosoma mansoni (e.g. Lee 

and Lewert 1956, Timms and Bueding 1959, Stirewalt and Kruidenier 1960). This stream 

was followed in 1960s and 1970s when attempts to characterize composition and activity 

of peptidase mixtures started. The activity of several enzymes was monitored; primarily 

from ESP of penetration glands of trematode larvae (mostly cercariae) or from adults 

(Timms and Bueding  1959). The main focus was kept on the most important human and 

animal pathogens like Schistosoma mansoni or Fasciola hepatica: e.g. elastase-like 

activity in S. mansoni cercariae (Gazzineli and Pellgrino 1964), collagenase-like activity 

in immature F. hepatica, (Howell 1966), collagenase-like activity in eggs of S. mansoni 

(Kloetzel 1968), hemoglobinase-like activity in schistosomes (Zussman and Bauman 

1971, Dresden and Deelder 1979, Foster and Hall 1978), chymotrypsin-like activity in S. 

                                         
10 In PubMed database (www.pubmed.gov) 588 citations for key words "proteolytic enzymes trematodes" 

are found (to date 30.12.2007). The majority of them directly touched the trematode peptidases.   
11 The virgula organ was firstly described by Filippi (1857) as bilateral, glandular, flask-like organ in the 

anterior sucker, inferior to the mouth cavity. It is typical organ of xiphidiocercariae e.g. Cercaria polypyreta 

(Babu and Hall 1975). 

http://www.pubmed.gov/
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mansoni adults (Asch and Dresden 1977), gelatinase-like activity in S. mansoni cercariae 

(Stirewalt and Austin 1973), hemoglobinase-like activity in F. hepatica adults (Rupova 

and Keilova 1979). The activity of a number of peptidases at that time (in 1960s and 

1970s) was monitored employing basic methods as chromatography and 

spectrophotometry using various kinds of basic dye-impregnated protein substrates, e.g. 

azocoll (Campbell et al. 1976).  

The growing requirements to solve the problem of parasitic diseases in developing 

countries became topical after the Second World War (Sandbach 1976) and the fast 

development of biochemical and molecular methods since 1980s influenced also the 

research of (proteolytic) enzymes of trematodes.12  

The first particular peptidases were characterized in trematode worm extracts or 

ESP according to the type of specific peptidase activity (based on specific substrates and 

inhibitors), as well as to pH optimum, pI and molecular weight. Peptidases of several 

trematode species were purified including, e.g., serine peptidase from S. mansoni 

cercariae - cercarial elastase 25 – 30 kDa (Landsperger et al. 1982, McKerrow et al. 

1985), serine peptidase of Schistosomatium douthitti - cercarial elastase 50 kDa (Amiri et 

al. 1988), aminopeptidase of adult S. mansoni (Cesari et al. 1983), cysteine peptidases of 

adult S. mansoni – extracts and ESP 28 kDa and 32 kDa (Chappell and Dresden 1987), 

cysteine peptidase of S. mansoni eggs – cathepsins B-like 25.4 and 30.5 kDa (Sung and 

Dresden 1986), cysteine peptidase of immature and mature F. hepatica – possibly 

cathepsin B-like 40 kDa (Dalton and Haffernan 1989), cysteine peptidase of Paragonimus 

westermani metacercariae (Yamakami and Hamajima 1990). Many enzymes were 

biochemically characterized in detail (e.g. Sung and Dresden 1986, Bogitsh and Kirschner 

1987, Chappell and Dresden 1988), the first trematode peptidases were sequenced, e.g., S. 

mansoni hemoglobinase - asparaginyl endopeptidase (Davies et al. 1987), cercarial 

elastase (Newport et al. 1988), and some of them (e.g. asparaginyl endopeptidase) were 

used and tested as components of possible anti-parasite vaccines, mostly against S. 

mansoni (e.g. S. mansoni hemoglobinase - Zerda et al. 1987, Felleisen and Klinkert 

1990).  

These enzymes were also examined in diagnostic and inhibitor studies (during 

1990s) as potential targets of newly isolated inhibitors or synthetic chemotherapeutic 

                                         
12 In many low-income countries it is more common to be infected than not (Awasthi et al. 2003). 
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drugs against the most dangerous trematode infections like schistosomiasis, fascioliasis, 

paragonimiasis or opisthorchiasis etc. (e.g. Ruppel et al. 1985, Truden and Boros 1988, 

Yamakami and Hamjima 1990, Ring et al. 1993, Wasilewski et al. 1996).13 

Recent progress during 1990s covering peptidases of trematodes initiated 

systematization leading to foundation of the on-line peptidase database MEROPS 

(version 1.101) in October 1996.14 Numerous parasitological teams followed this 

headway in characterization of individual peptidases and submitted their data to 

MEROPS to complete the mosaic of trematode enzyme functions.  

In the following part of this section, the knowledge of peptidases of the most 

important trematode parasites is reviewed until the year 1996. These include enzymes 

involved in hemoglobin and tissue digestion, penetration enzymes and the enzymes 

manifesting as factors of pathogenesis.  

The first reviews comprising schistosome peptidase sequence informations, their 

localization within the worm body and possible functions were published by McKerrow 

and Doenhoff (1988), McKerrow (1989), McKerrow et al. (1991) and Dalton et al. 

(1995). Mainly peptidases of S. mansoni adults were studied to prove their role in the 

lysis of erythrocytes followed by hemoglobin digestion.15 Valuable sequence data of 

31/32 kDa (cathepsin B - S. mansoni hemoglobinase) and 31 kDa (asparaginyl 

endopeptidase - S. mansoni hemoglobinase) proteins were subsequently obtained by 

Klinkert et al. (1989) and Davies et al. (1987) who reported these hemoglobinolytic 

                                         
13 Till present time praziquantel has been used as the main drug in schistosomiasis 

treatment. Praziquantel is an isoquinoline-pyrazine derivative (2-cyclohexylcarbonyl- 

1,3,4,6,7,1 1 b-hexahydro-2H-pyrazino (2,1-a)isoquinoline-4-one) (see praziquantel 

chemical stucture). It is an anthelmintic primary used in treatment of human 

schistosomiasis, but due to a broad effect agains platyhelminths  it is used to treat e.g. 

echinococcosis, cysticercosis, human and animal intestinal tapeworms infections (e.g. 

Gönnert and Andrews 1977, McMahon and Kolstrup 1979). Another schistosomicidal 

(against intestinal schistosomiasis caused by S. mansoni) anthelmintics as hycanthone 

and oxamniquine have been generally used, but they showed lower effect than 

praziquantel (Kilpatrick et al. 1981, Davis 1975). 
14 Although MEROPS database started on-line in the year 1996, the need for systematic classification of 

the enzymes was highlighted already during the 2nd International Symposium on Intracellular Protein 

Catabolism in Ljubljana, Slovenia, 1975. This symposium was stimulated by Turk and Marks (1977) to 

publish the first review about intracellular proteins introducing also the proteolytic enzymes (23 proteolytic 

enzymes were presented). This work was followed by later books of Barrett and McDonald - Mammalian 

Proteases: a Glossary and Bibliography, Vol. 1: Endopeptidases (1980) and Vol. 2: Exopeptidases (1986; it 

contains 173 proteolytic enzymes). The full systematic overview, “Evolutionary families of peptidases“ 

organizing the proteolytic enzymes (peptidases) has been published by Rawling and Barett (1993). The 

authors allocated enzymes to evolutionary families. Recently (December 2007) MEROPS contains 

information about more than 2000 peptidases (Rawlings et al. 2006).  
15 S. mansoni adults ingest approximately 330 000 (female) and 39 000 (male) red blood cells per hour 

(Lawrence 1973). 

 

Fig. 2. praziquantel 

chemical structure 
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enzymes to be expressed during the whole S. mansoni life cycle. In 1993 Götz and 

Klinkert cloned the 31 kDa recombinant enzyme (noticed above) and described it 

subsequently as S. mansoni cathepsin B peptidase (hemoglobinase, cysteine peptidase, 

papain-like). The 32 kDa peptidase was disclosed as an asparaginyl endopeptidase 

(hemoglobinase, cysteine peptidase, legumain-like peptidase) by Takeda et al. (1994) one 

year later. Smith et. al (1994) characterized a novel S. mansoni cathepsin L (cysteine 

peptidase, papain-like) and estimated its activity to be many times greater than the 

activity of  cathepsin B of S. mansoni adult worms. Bogitsch et al. (1992) suggested the 

possible role of other peptidases (e.g. S. mansoni cathepsin D) in hemoglobin degradation 

machinery. Several researchers adopted the former findings and continued in 

characterization of S. mansoni cathepsins (B, L and D). In 1995 the  cysteine 

exopeptidase cathepsin C (dipeptidyl peptidase I) from the adults of S. mansoni was 

sequenced by Butler et al. (1995). It was speculated that this trematode enzyme probably 

participates in activation of other proenzymes.  

Lipps et al. (1996) expressed in yeast cells the recombinant pro-cathepsin B of S. 

mansoni adults and discovered that the purified zymogen (40 kDa) requires assistance of 

an aspartic peptidase for its full activation. Michel et al. (1995) immunolocalized 

cathepsin L in structures associated with the reproductive system of S. mansoni females 

and the subtegumental region of the gynecophoric canal of males. Northern blot 

hybridization demonstrated that higher transcription level of cathepsin L is presented in 

female parasites than in males. According to amino acid (AA) sequence analysis two 

distinct clones of cathepsin L (L1 and L2) showing 44 % similarity were distinguished by 

Dalton et al. (1996a).  

Andresen et al. (1991) published their work on a novel S. mansoni calcium-binding 

peptidase 86 kDa (calpain) which is orthologous to the enzymes from mammals. 

According to the deduced AA sequence the enzyme is composed of four domains 

including two structural domains, thiol(cysteine)-peptidase domain and calcium-binding 

domain which provides activation of the peptidase by Ca2+ ions. Nothern blot analysis 

proved the presence of calpain in adults and sporocysts of S. mansoni. Although the 

authors suggested calpain to play certain roles in worm metabolism, Siddiqui et al. (1993) 

argued that schistosome calpain could participate in schistosome surface membrane 

biogenesis. 

Besides molecular approaches, the physiological functions and biochemical 

characteristics of newly purified peptidases of S. mansoni were investigated. While 
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Ghoneim and Klinkert (1995) biochemically confirmed the role of S. mansoni cathepsin B 

in schistosome nutrition, Monroy and Dresden (1996) revealed the activity of cathepsin B 

and L in S. mansoni adult worms, eggs, miracidia, cercariae and newly transformed 

schistosomula. 

 In parallel to adult worms the sequence information of peptidases of particular 

development stages of S. mansoni were studied. Newport et al. (1988) isolated four 

cDNA clones encoding the 31 kDa peptidase which facilitates skin invasion by 

schistosome cercariae. According to AA sequence, the enzyme is a serine peptidase - 

cercarial elastase - and it is still an object of intensive research (Pierrot et al. 1995, Pierrot 

et al. 1996, Price et al. 1996, Salter et al. 2002).16 S. mansoni 28 kDa soluble peptidase 

(from circumacetabular glands) and 28 kDa surface-anchored peptidase (produced by 

tegumental membrane) of schistosomula were reported by Ghendler et al. (1996). These 

peptidases were supposed to participate in schistosomula penetration and immune 

evasion. The same 28 kDa peptidase was formerly localized in circumacetabular and 

postacetabular glands of S. mansoni schistosomula or on the surface of schistosomula and 

cercariae (Marikovsky et al. 1990, Fishelson et al. 1992). McKerrow et al. (1991) 

revealed that, on the basis of structural analysis, all these enzymes (noticed above) are 

postranslational derivatives of the same gene for cercarial elastase. They also confirmed 

that elastase activity originates from cercarial circumacetabular glands.  

Two peptidases 19 and 36 kDa were studied by Yoshino et al. (1993). Their 

presence was observed in S. mansoni miracidia and sporocysts and they probably 

participate in the establishment of infection in the intermediate (snail) host. The thiol-

dependence, inhibition profile and pH optima of these enzymes implied that they belong 

to the cysteine peptidase class. 

During 1990s the knowledge about peptidases of other significant species of the 

genus Schistosoma was also progressively accumulated. Schistosoma japonicum is a 

member of the "japonicum" (Asian) group of schistosomes and represents the other very 

important schistosome species for human and veterinary medicine (Tab. 4).17 Peptidases 

of this wide-host range parasite were intensively investigated in parallel to S. mansoni.  

                                         
16 Up to the year 2007 the active form of recombinant cercarial elastase was not expressed. Recently the 

non-active recombinant cercarial elastase was sufficiently refolded to an active form (Sojka 2007, personal 

communication) 
17 The whole family Schistosomatidae includes 14 genera and about 100 species. Many of schistosomatids 

are species of medical and veterinary importance and the majority of these important pathogens belong to 
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Five years after Klinkert et al. (1989), who reported the first sequence data of S. 

mansoni 31 kDa cathepsin B and 32 kDa hemoglobinase (S. mansoni hemoglobinase), 

Merckelbach et al. (1994) confirmed the sequences coding the same enzymes in S. 

japonicum. Two functionally distinct cathepsins of S. japonicum (L1 and L2) 

corresponding to the S. mansoni ones were isolated by Day et all. (1995). The AA 

sequences of SjCL1 and SjCL2 showed significant similarity to S. mansoni cathepsins L1 

and L2 (92 % and 78 %) and a mutual similarity (41 %) between SjCL1 and SjCL2 was 

also revealed. The latter result is also comparable with the 44 % similarity between 

SmCL1 and SmCL2 reported by Dalton et al. (1996a). On the other hand, these facts 

imply that the L1/L2 enzymes are products of different genes (see under chapter 

"cathepsin L1/L2" or cathepsin "F").  

Besides the peptidolytic activity, Becker et al. (1995) described the cDNA sequence 

of cathepsin D present in S. japonicum adults. Southern blot analysis showed that a single 

copy of the aspartic peptidase (cathepsin D) gene is encoded in DNA of S. japonicum 

adults. SjCD displayed the closest similarity with mammalian cathepsins D (around 54%, 

Becker et al. 1995). All the above noted S. japonicum cathepsins (B, L and D) are thought 

to participate mainly in hemoglobin digestion like in S. mansoni. According to several 

biochemical studies on S. japonicum adult worm extracts, cathepsins B, L, D were 

localized in the gut of the parasite (Merckelbach et al. 1994, Day et all. 1995, Becker et 

al. 1995).   

                                                                                                                          
the genus Schistosoma. Several species of this genus are able to infect man: mainly S. mansoni, S. 

japonicum, S. haematobium, S. mekongi, S. intercalatum (Lockyer et al. 2003). 

 

Tab 4. Example of five major schistosome species infecting man (according Lockyer et al. 2003, Loker 

and Mkoji 2005). 

 

Parasite Disease Geographical distribution                               * 
 

S. mansoni 
 

hepatic/intestinal schistosomiasis 
 

West and Central Africa, Middle East, South 
America, Caribbean 

 

● 

S. japonicum hepatic/intestinal schistosomiasis Eastern Asia, Southwestern Pacific region ■ 

S. haematobium urinary schistosomiasis Central and North Africa, Near East, 
Mediterranean basin 

□ 

S. mekongi intestinal schistosomiasis Mekong basin ■ 

S. intercalatum intestinal schistosomiasis Subsaharian Africa □ 

 

* Symbol (●) means "mansoni" African group of schistosomes to which S. mansoni belongs. 

   Symbol (■) means "japonicum" Asian  group of schistosomes to which S. japonicum and S.    

   mekongi belong. 

   Symbol (□) means "haematobium" African group of schistosomes to which S. haematobium and S.   

   intercalatum belong. 
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The situation with peptidases from penetration glands of S. japonicum larvae is 

more complicated than for S. mansoni. Although proteolytic activity in cercarial circum- 

and postacetabular glands was reported, an enzyme ortholog of the major penetration 

peptidase from S. mansoni cercariae (cercarial elastase) has not yet been reliably 

identified in S. japonicum (e.g. He et al. 1990, Peng et al. 2003). Therefore, it has been 

speculated about possible pivotal role of cysteine peptidases in S. japonicum cercarial 

penetration, thus representing an alternative enzymatic tool. 

During 1990s the third investigated schistosome was S. haematobium (Tab. 4). Rege 

et al. (1992) recorded reaction of serum from S. mansoni infected mice with a 35 kDa 

protein band from extracts of S. haematobium adults. Its N-terminal AA sequencing 

showed 77% sequence similarity with S. mansoni cathepsin B. The purified S. 

haematobium cathepsin B exhibited significant biochemical resemblance to S. mansoni 

cathepsin B in cleavage of oligopeptide fluorescent substrates (Z-Phe-Arg-AMC) and 

sensitivity to inhibitors (>98 % by E-64 and 100 % by leupeptin, Rege et al. 1992).  

The same approaches and techniques as for schistosomes were continuously adopted 

in the research of non-schistosomatid trematode peptidases. The discoveries of novel 

peptidases followed. Many of them were referred to members of the family Fasciolidae 

(especially Fasciola hepatica) between the years 1990 – 1996.18  

A 27 kDa peptidase was purified from ESP of F. hepatica adults and the sequence 

of 20 N-terminal AA was deduced (Smith et al. 1993). The sequence is 50 % identical to 

S. mansoni cathepsin L cysteine peptidase. Fasciola hepatica cathepsins L (FhCL) were 

the first cathepsins L described from trematodes (Smith et al. 1993). One Fasciola 

hepatica cathepsin L was localized in secretory granules of parasite intestinal epithelial 

cells (Smith et al. 1993). In the same laboratory, a 29.5 kDa cysteine peptidase from F. 

hepatica adults maintained in vitro was purified. It was partially sequenced (14 AA 

residues) and characterized again as a cathepsin L (Dowd et al. 1994). Similarly the 

subsequent analysis of ES products of F. hepatica realized by Carmona et al. (1993) 

revealed the presence (similarly to Dalton and Haffernan 1989) of 11 distinct peptidases 

active in the pH range from 3–8. It was confirmed that some of them are also secreted by 

F. hepatica juveniles. One of the 11 peptidases was purified and characterized as 

cathepsin L (as in the work of Smith et al. 1993), which cleaved host immunoglobulins 

                                         
18 Fasciola hepatica (adults 30 mm) is a liver fluke of sheep and other mammals which accidentally infects 

humans. It is a worldwide distributed parasite, the causative agent of fascioliasis (Muller 2002). 
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and, therefore, could prevent juveniles from antibody-mediated adherence of eosinophils 

(Carmona et al. 1993). Yamasaki and Aoki (1993) reached comparable results. After 

cloning and sequence analysis they deduced 220 AA residues of mature F. hepatica 

cathepsins L with 50% identity to mammalian homologs. Wijffels et al. (1994) purified 

prepro- and pro-enzymes (36 kDa and 39 kDa) of F. hepatica, but suggested that only 

fully processed cysteine peptidases (~ 26 kDa cathepsin L) are secreted into the gut of F. 

hepatica adults and subsequently released as ESP. Moreover, Wijffels et al. (1994) firstly 

(for trematodes) reported a heterogeneity in F. hepatica cathepsin L variants caused by 

hydroxylation of conserved proline to 3-hydroxyproline.  

The attempts to amplify novel F. hepatica peptidases continued e.g. by Heussler and 

Dobbelaere (1994). Employing RT-PCR technique with the use of degenerate 

oligonucleotide primers they amplified five F. hepatica cathepsins L and two cathepsin B 

cDNA clones (nomenclatured as Fcp1-7).  

Some functions of F. hepatica peptidases were consequently elucidated. The first 

report of fibrinogen cleavage (including human fibrinogen) by F. hepatica cathepsin L2 

was published (Dowd et al. 1995). By analyzing physical characteristics of fibrin clot the 

authors revealed that the clots stimulated by cathepsin L2 and thrombin differ.  

In 1996 Dalton et al. performed first vaccine trials with F. hepatica cathepsins L1, 

L2 and fluke hemoglobin to protect cows against F. hepatica infection (Dalton et al. 

1996b). The most effective combination of vaccine components (protection >72 %) was 

the mixture of F. hepatica cathepsin L2 and F. hepatica hemoglobin formerly 

characterized by McGonigle and Dalton (1995). These results suggest a tangible 

possibility to use peptidases as immunoprophylactic agents, eliciting significant levels of 

protection e.g. in cattle. 

Creaney et al. (1996) tested the effect of irradiation on alterations of carbohydrates 

and peptidase expression (cathepsin B) of newly excysted F. hepatica juveniles (NEJ). 

They recorded significantly lower cathepsin B tissue expression after irradiation of 

metacercariae with 3 kRad of γ-rays. The expression of concanavalin A-specific 

saccharides (on the surface of NEJ) and wheat germ agglutinin-specific saccharides (in 

the gut) was reduced, too. This study partly elucidated the effectiveness of irradiation-

attenuated F. hepatica metacercariae as a vaccine for cattle and sheep protection, and 

importance of cathepsin B for all developmental stages.  

The activity of a dipeptidylpeptidase (DPP, >200 kDa) and its pH optimum 6.8 were 

recorded with a panel of fluorogenic peptide substrates in secretions of F. hepatica 
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mature flukes (Carmona et al. 1994). The fluke DPP has biochemical characteristics of 

common mammalian serine DPPII and DPPIV. The authors hypothesized that the parasite 

peptidase might have a function in the later phases of proteolysis, during tissue 

penetration and blood digestion. 

Several publications are devoted to peptidases of related fasciolid species such as 

Fasciola gigantica.19 Monoclonal antibodies were prepared for isolation of purified and 

biochemically characterized F. gigantica 28 kDa cysteine peptidase by immunoaffinity 

chromatography (Fagbemi and Hillyer 1991, Fagbemi and Hillyer 1992). Fagbemi and 

Guobadia (1995) used the 28 kDa cysteine peptidase for immunodiagnostic trials in F. 

gigantica infections. ELISA tests revealed that the 28 kDa cysteine peptidase is a suitable 

immunodiagnostic marker for F. gigantica infections, although the authors declared 

certain degree of cross-reactions with other trematode infections.   

Paragonimus westermani belongs to the trematodes of medical and veterinary 

importance. The life cycle of this Asian fluke is linked with commonly eaten freshwater 

crabs and crayfish serving as second intermediate hosts.20 Several peptidases of the 

members of Paragonimidae were described between 1990 -1996.  

The activities of a cysteine peptidase (20 kDa) were monitored in extracts of 

various developmental stages, including P. westermani metacercariae (Song and Dresden 

1990). The primary metacercarial cysteine peptidase of P. westermani (22 kDa, 215 AA) 

was cloned and characterized (Yamamoto et al. 1994). The enzyme showed 59% identity 

with a cysteine peptidase of Clonorchis sinensis (see below), 84% with a cysteine 

peptidase of Pagumogonimus skrjabini, 52 % with a cysteine peptidase of Opisthorchis 

viverrini (see below) and 48% with cathepsin F pro-enzyme of Homo sapiens. The 

alignment analysis placed this peptidase among cathepsin L1–like. Because of low 

hemoglobin and no elastin or bovine serum albumin cleavage, this cysteine peptidase was 

thought to help during the metacercarial excystation process (Yamakami and Hamajima 

1990). The involvement of other P. westermani cysteine peptidases (27 kDa and 28 kDa) 

in modulation of metacercarial excystment was suggested (Chung et al. 1995). More 

detailed biochemical characteristics of purified P. westermani 27 kDa metacercarial 

                                         
19 Fasciola gigantica liver fluke is larger (adults 75 mm) than F. hepatica. It is the causative agent of 

tropical  fascioliasis (Asia, Africa, some Pacific Ilands) affecting mostly cattle, camels, buffalo and sheep 

for which the infection is frequently fatal (Muller 2002). 
20 Paragonimus westermani (adults 16 mm) lung fluke adults are localized in pulmonary cysts or 

occasionally extrapulmonary, e.g., in the brain. Paragonimiasis is an Asian disease and can be found in a 

number of omnivore and carnivore mammals (e.g. cats, dogs, pigs) including man (Muller 2002). 
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peptidase revealed  its preference for fluorogenic peptide substrate Z-Phe-Arg-AMC (pH 

optimum 4.0), inhibition profile close to cathepsin B and L (from bovine spleen and 

human liver) and ability to cleave a number of native substrates (e.g. human serum 

albumin or immunoglobulins, Yamakami et al. 1995).  

Immunological studies were performed with P. westermani cysteine peptidases of 

metacercarie by e.g. Hamajima et al. (1994). The intraperitoneal injection of purified 

cysteine peptidase significantly reduced the amount of macrophages and granulocytes in 

the exudate of guinea pigs compared to animals natively infected by P. westermani.  

Besides metacercariae of P. westermani, cysteine peptidases of other developmental 

stages were purified and characterized. A 35 kDa peptidase (probably cysteine cathepsin-

like peptidase, pH optimum 6) was isolated by Kang et al. (1995) from eggs. This 35 kDa 

peptidase was previously recognized neither in metacercariae nor in P. westermani adults. 

It was considered to play a possible role in miracidial development or egg hatching (Kang 

et al. 1995). 

As the cysteine peptidase of P. westermani adults (268 AA) has not been isolated 

and sequenced before 1997 (Park et al. 1997), several biochemical works referred to 

cysteine peptidase–like activities in the extracts of mature flukes (e.g. Song and Kim 

1994). The 17.5 kDa P. westermani adult peptidase was able to cleave host hemoglobin, 

which implies its function in digestion (Song and Kim 1994). The authors also speculate 

about its usage as an immunodiagnostic marker, because the antisera obtained from 

patients with paragonimiasis specifically reacted in the area of 17.5 kDa. 

Because of the medical importance of trematodes of the family Opisthorchiidae 

transmitted by fish as second intermediate hosts, peptidases of these flukes were also 

intensively studied. 

Using two-step chromatography a cysteine peptidase of 18.5 kDa from Clonorchis 

sinensis adults was purified. It was characterized according to pH optimum, substrate 

specificity and inhibitor sensitivity as cathepsin B-like peptidase (Song et al. 1990).21 The 

authors considered this peptidase as a useful serodiagnostic marker of clonorchiasis. In 

subsequent work Song and Rege (1991) extended biochemical characteristics of 

peptidases to extracts of metacercariae and 1, 2 or 3 month-old worms. Comparable 

pattern of cysteine peptidase activity was recorded.   

                                         
21 Clonorchis sinensis (adults 15 – 20 mm) is a zoonotic liver fluke infecting humans ("Chinese liver 

fluke") geographically distributed mainly in eastern Asia and south Pacific Asia.  
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Park et al. 1995 described four distinct peptidase bands with proteolytic activity in 

ESP and extract of C. sinensis adults. They monitored the cytotoxic effect of C. sinensis 

ESP (containing 24 kDa peptidase) towards mammalian cells, suggesting possible role of 

ESP peptidase in pathophysiological and morphological changes of host tissues during 

clonorchiasis. After 1996 several peptidase sequences from other medically important 

members of Opisthorchiidae including e.g. Opisthorchis viverrini were obtained (see Tab. 

9. CP or Tab. 10. AP).  

Among other "non-human" trematodes studied in relation to peptidases, two species 

belonging to the families Diplostomatidae and Plagiorchiidae will be mentioned.  

Diplostomum pseudospathaceum is a parasite of larid birds.22 Cercarial cysteine 

peptidases of D. pseudospathaceum were biochemically characterized by Moczon 

(1994a,b). A 40 kDa lytic band was recorded after substrate electrophoresis with gelatin. 

The proteolytic activity was registered in a wide range of pH (3.5-10.2). On the basis of 

activation and inhibition reactions this 40 kDa peptidase belongs to cysteine class and it is 

localized in penetration glands of cercariae (Moczon 1994a,b).  

Four cysteine peptidase-like activities in ESP of the blood feeding adult flukes of 

Haplometra cylindracea (Plagiorchiidae) (three cathepsin B-like - 14, 22.5, 48 kDa and 

one cathepsin L-like 55 kDa) and two serine peptidase-like activities (trypsin-like 20 kDa 

and 24 kDa) were identified (Hawthorne et al. 1993).23 The digestion of hemoglobin by 

H. cylindracea ESP was evident at pH 6.8 and 7 (Hawthorne et al. 1993).  

The above presented review covers the most of biochemical or immunological studies 

referring to trematodes peptidases until the year 1996.24 Extensive progress of molecular 

biology and other life sciences during 1990s influenced also the field of peptidase 

research (including peptidases of trematodes). A high number of newly identified and 

characterized peptidases of many organisms initiated the rise of powerful sources 

accumulating and systematizing the peptidases information. Therefore, e.g. MEROPS - 

the Peptidase Database was established on October 1996 

                                         
22 Diplostomum pseudospathaceum (adults 2 – 4 mm) is a cosmopolitan intestinal parasite of gulls and 

terns. Cercariae entering the intermediate fish host form metacercariae in the eye lens ("eye fluke"). It is 

speculated that the cercariae might also enter humans (e.g. Mehlhorn 2001).  
23 Haplometra cylindracea (adults 20 mm) is a lung parasite of frogs. There is no report of H. cylindracea 

human infection, but members of the relative species, Plagiorchis philippinesis, were found in humans 

(Muller 2002).   
24 Until the year 1996 there are 442 citations in PubMed database for the key words "proteolytic enzymes 

trematodes". The list of publications begins by the first citation in the year 1956. The average output is 8.3 

publications per year since that time).  
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2.4 Peptidases of trematodes - current status (since 1996 till today) 

 

The boom of life sciences during the last decade significantly influenced the 

research of peptidases employing them in a number of modern applications, especially in 

human medicine.25 Peptidases are often considered as potential therapeutic targets not 

only of parasitic diseases, but of the bacterial or viral infectious diseases, too (Tab. 5).26  

The rapid progress in annotating peptidase sequences in MEROPS database is 

documented in Tab. 6.27 The peptidase sequences of 12 trematode species annotated in 

MEROPS database 7.9 are shown in Tab. 7.28  

                                         
25 Since the year 1996 till today there are ~ 246 citations in PubMed database for the key words 

"proteolytic enzymes trematodes". It is in average 22.4 publications per year. The general importance of 

peptidases is documented also by the fact that ~ 18 % of sequences in the SwissProt database 

(http://www.expasy.org/sprot/) belongs to peptidases. 
26 E.g. HIV-1 aspartic peptidase is responsible for cleavage of viral polyprotein precursors into mature, 

functional viral enzymes and structural proteins. This process, called viral maturation, is required for the 

progeny virion to become replication competent and infectious. Therefore, HIV peptidase represents a 

prime target for new drug design (Cígler et al. 2005). 
27 Tab. 6. Counts of identifiers, families and clans for peptidase and protein inhibitor homologs in the 

MEROPS databases (from Rawlings et al. 2006). Peptidases from different organisms are assigned to a 

single identifier (ID), when the available data indicate that they are equivalent (Rawlings et al. 2006). On 

30th of December 2007 the actual version of MEROPS was 7.9. 
 

 
 

 

28 Tab. 7. Peptidase sequences of trematodes annotated in MEROPS database 7.9.  
 

 
 

Species 
 

Peptidase 
sequences 

Peptidases with 
MEROPS ID 

Unassigned 
peptidases* 

Non-peptidase 
homologs** 

Total              12 86 38 12 13 

 Schistosoma mansoni 23 11 3 1 

 Schistosoma japonicum 22 6 4 7 

 Schistosoma haematobium 2 1 0 1 

 Schistosoma bovis 0 0 0 1 

 Trichobilharzia regenti 7 1 0 0 

 Fasciola hepatica 8 5 1 0 

 Fasciola gigantica 3 2 0 0 

 Paragonimus westermani 6 3 2 1 

 Pagumogonimus skrjabini 3 1 0 1 

 Clonorchis sinensis 7 5 1 0 

 Opisthorchis viverrini 2 1 0 1 

 Metagonimus yokogawai 3 2 1 0 
 

* Unassigned peptidase is a protein of known sequence that can be placed in a peptidase family, and can 

be seen to contain all the catalytic residues that are expected in the family. It is not close in sequence to any 

holotype - single representative form of peptidase encoded in the genomes of many organisms.  

** Non-peptidase homolog is a protein of known sequence that can be placed in a peptidase family, but 

due to lack of one or more of the expected catalytic residues it is described as a non-peptidase homolog. 

http://www.expasy.org/sprot/
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Because it is difficult to summarize all the findings of all described trematode 

peptidases till this time, the following text will be focused on the most frequent and 

important enzymes. Some peptidases not yet annotated in MEROPS, but sufficiently 

characterized are also involved in the following text.   

The below described trematode peptidases are reviewed with respect to their 

biochemical and molecular properties and their possible use as effective vaccine 

components or immunodiagnostic markers of diseases caused by trematodes.  

For a clear presentation the peptidases are sorted in chapters according to the 

mechanism of catalysis defining peptidase classes (Tab. 2). 

The results of M. Kašný´s papers are included noticed and discussed; they are 

indicated as Paper 1, 2, 3 or 4.  
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Tab. 8. SERINE PEPTIDASES (SP) 

 
Peptidase 

 
(catalytic triad) 

 

  
Species (stage) 

 
Accession number 

 
(MEROPS accession n.(AN)// 

UniProtKB/TrEMBL) 
 

 
MW (kDa) 

 
practical/ 

theoretical 

 
MEROPS 

(ID) 
 

 
Clan, 
family 

 
Other properties 

 
(pH optimum of activity, 

preferred substrates, 
biological function) 

 

 
CHYMOTRYPSIN-LIKE PEPTIDASES 
(His/Asp/ Ser) 
 
cercarial elastase 
 
(Newport et al. 1988) 
(Pierrot et al. 1995) 
(Salter et al. 2002) 
 
 
 
 
 
 
 
 
 
(Bahgat et al. 2001)* 
(Bahgat and Ruppel  2002) * 
(Dolečková et al. 2007) ●P3 
 

 
 
 
 
SmCE 
 
SmCE1a 
SmCE1b 
SmCE1c 
SmCE2a 
SmCE2b 
 
ShCE1a 
ShCE1b 
 
SdCE1a 
SdCE1b 
 
TsCo*(C?) 

 
 
 
 
Schistosoma mansoni (C,Sp,A) 
 
Schistosoma mansoni (C,Sp,A) 
 
 
 
 
 
Schistosoma haematobium (C) 
 
 
Schistosoma douthitti (C) 
 
 
Trichibilharzia ocellata (C) 
(=Trichobilharzia szidati 
details on taxonomy see 
Rudolfová et al. 2005) 
 

 
 
 
 
MER03620, MER16426// P12546,Q26553 
 
-//Q8MUW0  
-//Q26552 
-//Q26553 
MER31529 //Q8MUV8 
MER31528//Q8MUV7 
 
MER35518//Q8MUV6 
-//Q8MUV5 
 
-//Q8MUV4  
-//Q8MUV3 

 
 
 
 
25/29,28  
 
25/29 
25/29 
-/28 
25/29 
25/29 
 
25/29 
25/15p 
 
25/15p 
25/5p 
 
30/- 

 
 
 
 
S01.144 
 
 
 
 
 
 
 
S01.144 
 
 
S01.144 
 
 
- 

 
PA(S),S1 
 
 
PA(S),S1A 
 
 
 
 
 
 
 
PA(S),S1A 
 
 
PA(S),S1A 
 
 
- 

 
 
 
 
pH optimum 4-10,5 
preferred substrates: 
Z-Ala-Ala-Pro-Phe-AMC 
 
the trematode CE facilitates 
the invasion of schistosome 
larvae (cercariae) by 
cleavage of  macromolecular 
substrates of the host skin 
named due to CE ability to 
cleave insoluble elastin,  
the major component of the 
skin dermis. 
 
endopeptidase 
 
proteolysis 
  

 
kallikrein-like 
 
(Cocude et al. 1997-sub) 
(Cocude 1998-sub) 
(Carvalho et al. 1998) 

 
SmSP1 

 
Schistosoma mansoni (C, A)  

 
MER04387// O16007,Q9TYH3,Q9TYH4 

 
21/17p 

 
- 

 
PA(S),S1A 

 
pH optimum ~ 9 
preferred substrates:  
Abz-Ala-Phe-Arg-Phe-Ser-
Gln-EDDnp, BACHEM, c.n. 
M2665 
 
variety of physiological 
functions, processing of 
bioactive peptides, blood 
coagulation and the 
enhancement of 
glycosylation of IgE binding 
factors 
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function of S. mansoni SP1 
and its location are unknown 
 

 
enterokinase-like 
(El-Bassiouni et al. 1999-sub) 
 
(Liu et al. 2006) 
 

 
- 
 
- 
 
 

 
Schistosoma mansoni (?) 
 
Schistosoma japonicum (?) 
 

 
MER13674//Q9XYW2 
 
-//Q5D9V2 

 
-/24 
 
-/26 

 
- 
 
- 

 
PA(S),S1A 

 
PA(S),S1A 

 
pH optimum 6-9 
preferred substrates: 
 
activation of proenyzmes  
 

 
non-peptidase homologs 
 
(Goldlust et al. 1986) 
 
 (Jones et al. 2002) 
 
(Bentley et al. 2003) 
 
(Hu et al. 2003) 
 

 
 
 
 

 
 
 
Schistosoma mansoni (A,Sc,C) 
 
Schistosoma haematobium (A) 
 
Schistosoma bovis (A) 
 
Schistosoma japonicum  (A, E) 
 
Schistosoma japonicum  (A, E) 
 

 
 
 
MER43841// Q71SU7 
 
MER43842//Q86GL8 
 
MER43843//Q71SU5 
 
MER35523//Q86EA4 
 
MER3552//Q86FC4 
 

 
 
 
-/79 
 
-/79 
 
-/79 
 
-/32 
 
-/32 

 
 
 
- 
 
- 
 
- 
 
- 
 
- 

 
 
 
SC/S9 
 
SC,S9 
 
SC,S9 
 
SC,S9C 
 
SC,S10 

 

 

 

 
- 

 
*  The serine peptidase referred by Bahgat et al.  and Bahgat and Ruppel (2001, 2002) is not probably CE, but snail contamination (see footnote 31) 
 
A – adults M - miracidium Sc – schistosomula 21/17p – "p" here means the theoretical MW of partial sequence  

E – egg C – cercariae Sp – sporocyst e.g. Cocude et al. 1997-sub – "sub" here indicates, that sequence is submited to database 
(UniProtKB/TrEMBL) without the link to relevant publication 

 
Database links: MEROPS - http://merops.sanger.ac.uk/; UniProtKB/TrEMBL - http://www.expasy.org/sprot/; S. mansoni ESTs databases – http://compbio.dfci.harvard.edu/tgi/cgi-
bin/tgi/gireport.pl?gudb=s_mansoni (CompBio-S.mansoni) or www.schistodb.org (both Schistosoma mansoni genome databases are based on TIGR project).29 

 
MW (kDa) practical – two numbers showed e.g. 33,38/24p – mean MW of pro-peptidase and mature peptidase 
● – indicate our results and P 1-4 - indicate attached relevant paper 
 

 

 
 

                                         
29 The new John Craig Venter Institute (JCVI) was founded in October 2006 through the merger of several affiliated and legacy organizations - The Institute for 

Genomic Research (TIGR), The Center for the Advancement of Genomics (TCAG), The J. Craig Venter Science Foundation, The Joint Technology Center and the 

Institute for Biological Energy Alternatives (IBEA). Today all these organizations have become one large multidisciplinary genomicaly-focused organization with more 

than 500 scientists, located in Rockville, Maryland and La Jolla, California. The new JCVI is a world leader in genomic research (http://www.tigr.org/). 

http://merops.sanger.ac.uk/
http://www.expasy.org/sprot/
http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gireport.pl?gudb=s_mansoni
http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gireport.pl?gudb=s_mansoni
http://www.schistodb.org/
http://www.tigr.org/
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2.4.1 Serine peptidases of trematodes 

 

Up to date there are 13 clans and 28 families of serine peptidases in MEROPS 

database 7.9 and there are other 3 subclans of peptidases of mixed mechanisms of 

catalysis which comprise another 14 serine peptidase families. In total, there are 1058 

different serine peptidase sequences in MEROPS database 7.9, but only a minority is 

applies to trematodes (6 ≈ 0.6 %, Rawlings et al. 2006). 

Almost one third of all peptidases can be classified as serine peptidases, possesses 

catalytic triad residues His/Asp/Ser (e.g. His57/Asp102/Ser195, numbered for 

chymotrypsin A - Bos taurus, Hedstrom 2002, Fig. 3). The structure of all serine 

peptidases is universally presented by three domains: catalytic, substrate binding and 

zymogen activation domain. To reach the proper folding of an active enzyme it is 

necessary to cleave off the typical zymogen domains (N-terminal extension). 

Three main activity types of S1 family of peptidases have been described: 1. 

chymotrypsin-like, peptidases which express this activity prefer one of the hydrophobic 

AA at P1 position, Phe over Ala by ~ 50000 times, 2. trypsin-like, they prefer the Arg or 

Lys at P1 position of cleaved substrates and 3. elastase-like they generally prefer small 

aliphatic residues such as Ala at P1 position (Hedstorm 2002, Rawlings et al. 2006) (for 

nomenclature of "P" positions of substrates and "S" positions of peptidases see Fig. 6 

footnote 39).30 Serine peptidases are effective catalysts which accelerate the reaction 

                                         
30 The chymotrypsin-trypsin-elastase paradigm considers that specificity of these peptidases is 

determined by a few structural elements only. Hedstrom (2002) refers that common peptidase mutations 

preclude transfer of the specificity rules of one serine peptidase into another.  

 

Fig. 3. The 3D model of chymotrypsin (PA(S), S1A). Catalytic triad is marked, His57 in purple, Asn102 

pink and Ser195 orange. From MEROPS database 7.9 with amendments by Kašný (Rawlings et al. 2006).  
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speed of protein (peptide) hydrolysis ~ 1010-times (Hedstorm 2002).  

Whereas among the vertebrate organisms the number of well described serine 

peptidases is responsible for many critical physiological processes (e.g. digestion, blood 

coagulation, immune response - complement cascade), for non-vertebrates including 

trematodes the picture of detail information is reduced mainly to the chymotrypsin-like 

peptidases and their biological functions.  

Remarkably, no serine peptidase was localized in the trematode intestine as a 

digestion peptidase, in contrast to digestive enzymes of insects or vertebrates (Dvořák et 

al. 2007). 

 

2.4.1.1 Chymotrypsin-like peptidases (clan - PA(S), family - S1) 

 

Peptidases of chymotrypsin-like family (S1) are the most abundant in living 

organisms with a total number of 447 peptidases recognized in MEROPS database 7.9. 

Majority of them are endopeptidases, which differ substantially in specificity (e.g.  

Rawlings and Barrett 1993, Hedstorm 2002, Rawlings et al. 2006). 

  

Cercarial elastase (CE): Probably the most studied trematode peptidase belonging to 

S1(A) family is the schistosome cercarial elastase. The CE gene was identified in four 

species of trematodes, S. mansoni, S. haematobium, S. douthitti and disputably in 

Trichobilharzia ocellata (= T. szidati, see Rudolfová et a. 2005, Bahgat and Ruppel 

2002). The elastases from cercarial penetration glands probably play pivotal role during 

penetration of these cercariae into their hosts (McKerrow and Salter 2002, Curwen and 

Wilson 2003, McKerrow 2003, He et al. 2005).31  

Schistosome CE possess typical serine peptidase residues in active site  (catalytic 

triad His68/Asp126/Ser218), showing the ability to degrade a variety of skin components 

including collagen, gelatin, keratin, fibronectin, laminin and peptide backbone of 

proteoglycans or cell-cell contacts in the epidermis (McKerrow et al. 1985, Salter et al. 

2002, McKerrow and Salter 2002). The main interest to CE is expressed because of its 

                                         
31 The CE has been recently proved to play a significant role in host immune evasion by depletion of host 

immunoglobulins. In parallel, SmCE-like schistosomulum peptidase was demonstrated to degrade rather 

host (mouse) Fc of IgE than IgG (Aslam et al. 2008, Pleass et al. 2000). These results do not correspond to 

the premise, that only increased level of host IgE is associated with worm infection. There is a possibility of 

varying IgE/IgG level during a primary and later phase responses to S. mansoni infection (Pleass et al. 

2000, McKerow et al. 2006). 
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ability to cleave other fundamental skin component - dermal elastin (Salter et al. 2000, 

Fig. 4).32 

                                         
32 Elastin is an insoluble structural protein of connective tissues found e.g. in the skin, blood vessels, heart, 

lungs, intestines, tendons and ligaments. 

 

Fig. 4. The structure of human skin, the structure of elastin and three cleavage sites of elastin. Panel 

A: Human skin; white square shows location of elastin and collagen in dermis. Panel B: Elastin and 

collagen fibers and their arrangements under confocal microscope (photo). Panel C: Elastin and collagen, 

detail view of particular fiber structures. Panel D: Elastin sequence (Bos taurus, GeneBank, NP786966), red 

arrows mark position of elastase cleaving sites (Phe206↓Gly207, Tyr228↓Gly229, and Tyr232↓Lys233, 

Salter et al. 2000). Pictures from web sites http://medinfo.ufl.edu/pa/chuck/summer/handouts/connect.htm, 

http://www.people.vcu.edu/~glbowlin/elastin.htm with amendments by Kašný. 

 

 

http://medinfo.ufl.edu/pa/chuck/summer/handouts/connect.htm
http://www.people.vcu.edu/~glbowlin/elastin.htm
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Schistosoma mansoni CE (SmCE 25 - 31 kDa) was isolated and biochemical, 

functional and molecular properties (such as pH optimum, cleavage of macromolecular or 

oligopeptide substrates, localization, gene organization) have been studied by many 

authors: (e.g.  McKerrow et al. 1985, Newport et al. 1988, Pierrot et al. 1995, Salter et al. 

2000, Salter et al. 2002, Baghat et al. 2002, Dvořák et al. 2007). Several 

misinterpretations have been published, too (see footnote 33).33 

Chymotrypsin-like activity is typical for SmCE (Salter et al. 2002). The large 

hydrophobic side chain of AA at P1 position is crucial for the SmCE activity (Salter et al. 

2000, Salter et al. 2002). The positional combinatorial scanning revealed that AA residues 

in other positions (P2-3) play a secondary role for SmCE selectivity (Phe at P2, and 

combination of Trp and Ser at P3 or P4 positions, Salter et al. 2002).  

The Suc-Ala-Ala-Pro-Phe-pNA fluorogenic substrate is standardly used as a marker 

of SmCE activity at pH optimum >9.0 (Salter et al. 2002, Dvořák et al. 2007). By this 

substrate, the activity in cercarial ESPs of S. mansoni and S. douthitti, but not in S. 

japonicum, T. regenti and T. szidati was recorded (Dvořák et al. 2007, Kašný et al. 2007 -  

Paper 2, Kašný et al. unpublished). The CE activity in S. mansoni and S. douthitti 

cercarial ESPs was completely inhibited by 10 µM inhibitor Z-Ala-Ala-Pro-Phe-CMK 

(Dvořák et al. 2007). 

The inhibition of S. mansoni cercarial penetration was experimentally tested, too. 

Cercariae were incubated with a combination of serine peptidase inhibitors in medium 

placed on human skin samples. Significant inhibition of penetration (>75 %) was reached 

by using the same Suc-Ala-Ala-Pro-Phe-CMK (CE-specific diazomethylketone inhibitor). 

                                         
33  Missinterpretations in schistosome  "elastase story".  

1. Localization – circumacetabular vs. postacetabular glands. In former studies the activity of  SmCE 

was localized usually in both penetration glands and on the surface of cercariae and schistosomula, 

respectively (Marikovsky et al. 1990, Fishelson et al. 1992). Later it was proved and accepted that SmCE 

activity originates from cercarial circumacetabular glands only (McKerrow et al. 1991, Salter et al. 2000, 

Dvořák et al. 2007).  

2. Contamination – cercarial vs. snail peptidases.  The activity of assumed SmCE and T. ocellata CE (= 

T. szidati, Rudolfová et al. 2005) from ESP was measured by Bahgat and Ruppel (2002) with Boc-Val-Leu-

Gly-Arg-pNA substrate. But this "trypsin substrate" (with Arg at P1 position) was recognized as not 

preferred by SmCE (Salter et al. 2002). Salter et al. (2000) recorded the trypsin-like activity from 

chymotrypsin-like SmCE activity by Suc-Ala-Ala-Pro-Phe-pNA substrate (with Phe at P1 position). 

Although the trypsin-like activity measured by Salter et al. (2000) was 30-fold higher than chymotrypsin-

like (SmCE), this active fraction did not cleave elastin. It means that trypsin-like activity originated as a 

contamination probably from the intermediate snail host. This fact is supported by fluorometric 

measurement and by peptidase molecular data analysis with other trematode species – the bird schistosomes 

T. regenti and T. szidati (Dolečková et al. 2007 - Paper 3, Kašný et al. 2007 - Paper 2, Kašný et al. 

unpublished).  
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This clearly demonstrated the presence of CE in ESP and the necessity of CE for S. 

mansoni cercarial penetration (Lim et al. 1999, Salter et al. 2000).  

In parallel, the presence of  25-30 kDa CE was confirmed by labelled substrate 

bnLeu-Val-Pro-Leup(OPh)2 in S. mansoni and S. douthitti ESP (Dvořák et al. 2007). The 

incubation of S. mansoni cercarial ESP with radioactive serine peptidase probe [3H]di-

isopropyl-phosphofluoridate (H-DFP), showed reaction with a 27-29 kDa band, probably 

CE (Verwaerde et al. 1986, Darani et al. 1997). An unknown 70 kDa serine peptidase was 

revealed in S. japonicum cercarial ESP, but no CE or other serine peptidase was detected 

by these methods in extracts of T. regenti and T.szidati (Dvořák et al. 2007, Sajid and 

Kašný unpublished). The immunoblot of protein extracts of S. mansoni or T. szidati and 

T. regenti cercariae with rabbit antiserum raised against SmCE revealed positive reaction 

of ~ 25-28 kDa bands in S. mansoni samples only (Darani et al. 1997, Salter et al. 2002, 

Mikeš et al. 2005 - Paper 1, Dvořák et al. 2007). The incubation of S. mansoni 

histological sections with anti-SmCE-1a antibody localized the SmCE in 

circumacetabular penetration glands of S. mansoni, but not in S. japonicum cercariae 

(Dvořák et al. 2007). Similarly, no reaction with anti-SmCE antibodies was observed on 

sections of T. regenti and T. szidati cercariae (Mikeš et al. 2005 - Paper 1). 

Several genomic isoforms of prominent cercarial elastases (CEs) were cloned using 

the cDNA templates of three schistosome species: S. mansoni (SmCE), S. haematobium 

(ShCE) and S. douthitti (SdCE) (Salter et al. 2002, Newport et al. 1988, Pierrot et al. 

1995, Bahgat et al. 2002).34 The proteomic approach - mass spectrometry (MS) analysis - 

likewise revealed multiple cercarial elastase isoforms in secretions of S. mansoni (Curwen 

et al. 2006, Knudsen et al. 2005). 

The isoforms of CE such as SmCE-1a (GeneBank AAM43939), SmCE-1b and 

SmCE-1c (GeneBank U31768) identified by Salter et al. (2002) are identical to cercarial 

elastase genes (GeneBank J03946, AAC46967, AAC46968) reported by Newport et al. 

(1988) and Pierrot et al. (1995). SmCE is ~ 90 % and ~ 65 % identical to ShCE and 

SdCE, respectively (Dvořák 2005, Ph.D. Thesis). This corresponds to the former finding 

that ShCE and SdCE are orthologous enzymes to SmCE (Salter et al. 2002).  

SmCE was also identified as one of the major transcripts of S. mansoni sporocyst 

stage by microarray analysis and subsequently the mRNA encoding CE was found in eggs 

                                         
34 Two most highly expressed SmCE peptidase isoforms SmCE-1a and SmCE-1b comprise 90% of the 

released peptidolytic activity (Salter et al. 2000). 
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and adults (females) of S. mansoni (Pierrot et al. 1996, Jolly et al. 2007).35 The SAGE 

(Serial Analysis of Gene Expression) performed by Williams at al. (2007) revealed 

expression of 3 novel types of trypsin-like gene transcripts in S. mansoni miracidia and 6-

day cultured mother sporocysts. 

For the principal member of the "Asian" schistosome group – S. japonicum - no 

orthologous CE was identified by PCR, although an ortholog was found by Northern 

blotting using the SmCE cDNA as a probe or applying MS analysis (Salter, Sakanari and 

McKerrow in Dvořák et al. 2007). No CE gene ortholog was identified in the S. 

japonicum ESTs or genomic databases, although >70% identity of available S. mansoni 

and S. japonicum genome data was showed (e.g. Peng et al. 2003, Dvořák et al. 2007, 

Verjovski et al. 2007, CompBio-S.mansoni or www.schistodb.org). On the other hand, 

penetration of S. japonicum cercariae through the skin to host blood vessels is faster 

(hours) than that for species with CE, like S. mansoni or S. haematobium (~ 1 day) 

(Ruppel et al. 2004, Wang et al. 2005, He et al. 2005). 

Our results from MS analysis with T. regenti and T. szidati cercarial protein extracts 

(data not shown) revealed no CE and, similarly, no trematode CE gene was cloned by use 

of PCR and T. regenti and T. szidati cDNA template based on mRNA isolated from 

cercarial germ balls (Dolečková et al. 2007 - Paper 3, Kašný et al. unpublished). We 

cloned two peptidase sequences blasting with non-trematode serine peptidase sequences 

which suggests contamination of T. regenti and T. szidati cDNA (see footnote 31) by 

snail intermediate host cDNA (Radix sp. and Lymnaea stagnalis). The two contaminating 

intermediate host serine peptidases are already annotated in GeneBank (RpS1, ABL67950 

and RpS2, ABL67951; Dolečková et al. 2007 - Paper 3).  

We hypothesize that T. regenti and T. szidati, in terms of the enzymes employed for 

penetration, are more similar to S. japonicum than to S. mansoni. Instead of CE, T. 

regenti, T. szidati and S. japonicum use for penetration enzymes of cysteine peptidase 

class – most probably papain-like e.g. cathepsins B as has been suggested by Ruppel et al. 

(2004), Dvořák et al. (2007) and Kašný et al. (2007) - Paper 2.  

A recent study of schistosome CE phylogeny in context with other known serine 

proteases disclosed the relationship among S. mansoni CE isoforms and their most similar 

homologs (clustering together), but not with other helminth peptidase members of S1 

                                         
35 The 7335-oligonucleotide microarray chip was based on previously available ESTs from databases (Jolly 

et al. 2007).  
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serine peptidase family (Dvořák et al. 2007). On this it basis it has been concluded that 

schistosome CEs diverged uniquely from other serine peptidases (Dvořák et al. 2007, Fig. 

5).36 

Despite of the endeavor of several research teams, an active form of the 

recombinant CE has not been expressed for a long time. It could be caused by need of 

specific conditions for a proper folding of the expressed recombinant enzyme. These 

conditions have been intensively tested, but not appropriately described yet (Dvořák 

2007, personal communication). In December 2007, the first successful attempts to refold 

the non-active recombinant SmCE into an active form have been realized in the 

McKerrow´s laboratory, Sandler Institute, San Francisco, CA, USA (Sojka 2007, 

personal communication). 

 

Kallikrein-like peptidase: In general, three forms of kallikrein are recognized – plasma-, 

tissue- and prostate-specific. 

Mammalian kallikreins are common serine endopeptidases (22 – 66 kDa, pH optima 

± 4), which participate in a variety of physiological functions such as processing of 

bioactive peptides or blood coagulation (Iwata et al. 1983).  

                                         
36 Fig. 5. Analysis of serine peptidases phylogeny. Ilustration that CE genes (green spots) are diverged 

from other serine peptidases (red spots) (from Dvořák et al. 2007).  
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In MEROPS database, there are 99 hits for kallikrein-like peptidases mostly 

annotated for man, mouse or rat, but there is only one kallikrein-like peptidase of 

trematode class - S. mansoni (SmSP1; Rawlings et al. 2006, Tab. 8. SP).  

Using RT-PCR, Cocude et al. (1997) identified the SmSP1 mRNA in adults and 

cercariae/schistosomula of S. mansoni, although the detection of SmSP1 by Northern blot 

analysis failed. Sequence data showed that SmSP1 is more related to mammalian 

kallikreins (e.g. 42% similarity to vampire bat tissue plasminogen activator) than to 

SmCE (26%; Cocude et al. 1997). Immunolocalization of the native protein (SmSP1) 

with antisera raised in rat showed reaction in the dorsal tubercles covering the surface of 

male worms and in parenchyma of both sexes. The localization and homology of SmSP1 

to human factor I (participating on complement pathway regulation) suggest the role of 

SmSP1 in modulation/evasion of the host immune response (Cocude et al. 1999).  

The activity of purified kallikrein-like peptidase of S. mansoni adults (66 kDa) was 

recorded with d-Pro-Phe-Arg-p-nitroanilide substrate and inhibited by common serine 

peptidase inhibitors such as phenylmethylsulfonyl fluoride (PMSF), aprotinin or soybean 

trypsin inhibitor (Carvalho et al. 1998). The same S. mansoni kalikrein-like peptidase of 

adults was proved to cleave bradykinin and induce (after intraperitoneal injection) a 

drastic reduction in the arterial blood pressure of experimental animals (rats), probably 

due to a peripheral vasodilatation effect (Carvalho et al. 1998). The parasite might have a 

similar influence on visceral vasculature and capillary permeability of natural hosts 

(Carvalho et al. 1998). 

 

Enterokinase-like peptidase: There is only one hit in MEROPS for 

enterokinase/enteropeptidase of Homo sapiens (MEROPS ID: S01.156; UniProtKB: 

P98072; Rawlings et al. 2006). The blast analysis revealed that S. mansoni peptidase of 

214 AA presented in MEROPS database (MER13674, classified as unassigned peptidase 

of the subfamily S1A) is identical with S. mansoni enterokinase-like peptidase annotated 

in UniProtKB database (Q9XYW2). The S. japonicum enterokinase-like peptidase is 

annotated in UniProtKB database, too (Q5D9V2), but not in MEROPS (Liu et a. 2006, 

Rawlings et al. 2006; see Tab. 8. SP) 

The physiological function of human enterokinase (UniProtKB: P98073; 

GeneBank:  U09860) is to initiate activation of pancreatic proteolytic pro-enzymes such 

as trypsin, chymotrypsin and carboxypeptidase A (e.g. Kitamoto et al. 1995). It catalyzes  

conversion of trypsinogen to trypsin which in turn activates other proenzymes, including 
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chymotrypsinogen, pro-carboxypeptidases and pro-elastases. The biological function of S. 

mansoni and S. japonicum enterokinase-like peptidases could reciprocally be related with 

activation of digestive proenzymes in worm gut.  

 

2.4.1.2 Prolyl-like peptidases (clan - SC, family – S9) 

 

Peptidases of SC clan possess also the typical serine peptidase catalytic triad 

(His/Asp/Ser), which is responsible for endopeptidase (oligopeptidase) or exopeptidase 

activity (amino-, carboxypeptidase, Rawlings et al. 2006).  

79 sequences of the family S9 are annotated in MEROPS database 7.9. The family 

S9 comprises four trematode non-peptidase sequences. One of them is of S. japonicum 

origin and three other non-peptidase sequences were identified as acetylcholinesterases of 

S. mansoni, S. haematobium and S. bovis (Goldlust et al. 1986, Jones et al. 2002, Bentley 

et al. 2003, Rawlings et al. 2006).37   

Only one potential schistosome peptidase of the family S9, clan SC (dipeptidyl 

peptidase IV), was identified by mass spectrometry analysis, but it has not been yet 

sequenced and it is not annotated in MEROPS database (Curwen et al. 2006).  

 

Dipeptidyl peptidase IV (DPP IV): Curwen et al. (2006) identified dipeptidyl peptidase 

IV in S. mansoni cercarial extract using mass spectrometry analysis. It was blasted as Mus 

musculus DPP IV (clan SC, family S9, Curwen et al. 2006). Although no relevant 

publication referred to S. mansoni DPP IV in detail, there are two hits in S. mansoni ESTs 

database and, therefore, it was named SmDPP IV (Curwen et al. 2006; 

www.schistodb.org).  

 

 

 

 

                                         
37 Acetylcholinesterase is an enzyme that catalyzes hydrolysis of the neurotransmitter acetylcholine into 

choline and acetic acid, in synapses between the nerve cells and muscle cells, after acetylcholine mediated 

signal transduction. Acetylcholine is an ester of acetic acid and choline (CH3COOCH2CH2N+[CH3]3). 

Although schistosome acetylcholinesterase (SAchE)  is a subject of investigation due to its essential role 

in schistosomes, this enzyme is an esterase with no peptidolytic activity (Bentley et al. 2003, Casida and 

Quistad 2005). Therefore, acetylcholinesterases are not discussed in this text.  
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2.4.1.3 Carboxypeptidase Y-like peptidases (clan - SC, family – S10) 

 

This small family comprises 16 peptidase sequences (MEROPS) but only one of 

them is of trematode origin – reported from S. japonicum (in MEROPS annotated as non-

peptidase homolog; UniProtKB: Q86FC4, Rawlings et al. 2006, Tab. 8. SP). Although 

sequence similarity of the S. japonicum carboxypeptidase indicates its potential 

membership in carboxypeptidase Y-like family S10, it was formerly described as an 

unknown aminopeptidase according to the S. japonicum adult and egg ESTs (Hu et al. 

2003).  
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Tab. 9. CYSTEINE PEPTIDASES (CP) 

 
Peptidase 

 
(catalytic triad) 

 

  
Species (stage) 

 
Accession number 

 
(MEROPS accession// 
UniProtKB/TrEMBL) 

 

 
MW (kDa) 

 
practical/ 

theoretical 

 
MEROPS 

(ID) 
 

 
Clan, 
family 

 
Other properties 

 
(pH optimum of activity, 

preferred substrates, 
biological function) 

 

 
PAPAIN-LIKE 
(Cys/His/Asn) 
 
cathepsin B – CB1 
(Klinkert et al. 1989) 
(Skelly and Shoemaker 2001)  
(Jolly et al. 2007) 
 
(Merckelbach et al. 1994) 
(Hu et al. 2003) 
(Liu et al. 2006) 
 
 
(Rege et al. 1992) 
 
 
(Dvořák et al. 2005) 
(Dolečková et al. 2007) 
(Kašný et al. 2007) ●P2  
 
 
 
 
(Kašný et al. unpublished) ● 
 
(Heussler and Dobbelaere, 1994)  
(Willson et al. 1996-sub) 
(Cancela et al. 2006-sub) 
(Ljunggren et al 2007-sub) 
 
(Grams et al. 1998-sub) 
(Meemon et al. 2003-sub) 
 
(Hong et al. 1997-sub) 
(Park et al. 1999-sub) 
(Na and Sohn 2006-sub) 

 
 
 
 
SmCB(Sm
31) 
SmCB1.1 
SmCB1.2 
 
SjCB(Sj31) 
 
 
 
 
ShCB(ShC
p1,2) 
 
TrCB1.1 
TrCB1.2 
TrCB1.3 
TrCB1.4 
TrCB1.5 
TrCB1.6 
 
TsCB1 
 
FhCB(Fcp5 
Fcp7) 
 
 
 
FgCB 
 
 
CsCB1(Cs
CP2, 
 

 
 
 
 
Schistosoma mansoni (A,C,Sc) 
 
Schistosoma mansoni (A) 
Schistosoma mansoni (A) 
 
Schistosoma japonicum (A,C,E) 
 
 
 
 
Schistosoma haematobium (A) 
 
 
Trichobilharzia regenti (C,Sp,Sc) 
 
 
 
 
 
 
Trichobilharzia szidati (Sp) 
 
Fasciola hepatica (A,J) 
 
 
 
 
Fasciola gigantica (A,E,J) 
 
 
Clonorchis sinensis (A) 
 
 

 
 
 
 
MER00691//P25792 
 
-//Q8MNY2 
-//Q8MNY1 
 
MER00692,MER17929,MER00693// 
P43157,Q86FJ2,Q5D9K8 
 
 
 
- 
 
 
MER49448//Q4VRW9 
-//Q4VRW8 
-//Q4VRW7 
-//Q4VRW6 
MER49449//Q4VRW5  
MER49450//Q4VRW4 
 
-//- 
 
MER00699,MER05036// 
Q24949,O96866,A5X492,A7UNB2 
 
 
 
MER28760//Q86MW8,Q9UAS2 
 
 
MER16129, MER81231,MER81230, 
MER05031//Q9BKM4,A1YLF2, 
A1YLF1,O96912 

 
 
 
 
31/39-47  
 
31/39  
31/39  
 
31/36-39  
 
 
 
 
31-32/-  
 
 
33-35/39  
-/39 
-/39 
 33-35/39  
-/39 
-/39 
 
-/- 
 
30,38/38 
 
 
 
 
-/38 
 
 
-/39 
 
 

 
 
 
 
C01.062 
 
 
 
 
C01.062 
 
 
 
 
- 
 
 
C01.062 
 
 
 
 
 
 
- 
 
C01.115 
 
 
 
 
C01.115 
 
 
C01.062 
 
 

 
CA,C1 
 
 
CA,C1A 
 
 
 
 
CA,C1A 
 
 
 
 
CA,C1A 
 
 
CA,C1A 
 
 
 
 
 
 
CA,C1A 
 
CA,C1A 
 
 
 
 
CA,C1A 
 
 
CA,C1A 
 
 

 
 
 
 
pH optimum 4.5-6 
specific substrate: 
Z-Arg-Arg-AMC, BACHEM: 
c.n. I1160 
 
specific inhibitor: 
CA-074 
 
cathepsins B1 are associated 
with the digestion of adults 
and trematodae larvae 
(schistosomula) 
they are speculated to 
facilitate penetration of 
cercariae through the host 
skin and migration of 
schistosomula through host 
tissue 
 
proteolysis 
 
endopeptidase 
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(Park et al. 1999-sub) 
(Yon et al. 1999-sub) 

 
 
 
 
cathepsin B – CB2 
(Caffrey et al. 2002) 
 
 
(Wan et al. 2003-sub) 
(Liu et al. 2006) 
 
(Dolečková et al. 2007) ● 
 
(Kašný et al. unpublished) ● 
 
(Khaznadji et al. 2002-sub) 
(Cancela et al. 2006-sub) 
 
(Meemon et al. 2003-sub) 
 
(Na and Sohn 2006-sub) 

 
 
MyCB(Cp6 
MyCp3) 
 
 
 
 
SmCB2 
 
 
 
SjCB2 
 
 
TrCB2 
 
TsCB2 
 
FhCB2 
 
 
FgCB2 
 
CsCB2 

 
 
Metagonimus yokogawai 
 
 
 
 
 
Schistosoma mansoni (A) 
 
 
 
Schistosoma japonicum (A,E) 
 
 
Trichobilharzia regenti (C,Sp) 
 
Trichobilharzia szidati (Sp) 
 
Fasciola hepatica (A,J) 
 
 
Fasciola gigantica (A,J) 
 
Clonorchis sinensis (A?) 

 
 
MER16125,MER16121//Q9BPL4, 
Q9BPM0 
 
 
 
 
MER19717//Q95PM1 
 
 
 
MER29272/ Q7Z1I6 
 
 
//A7L844 
 
-//- 
 
MER27265//Q8I7B2,A5X493 
 
 
MER28759//Q86MW7 
 
-//A1YLF2 

 
 
-/20p 
 
 
 
 
 
33/39 
 
 
 
-/40 
 
 
33/39 
 
-/- 
 
-/38 
 
 
-/39 
 
-/36 

 
 
C01.062 
 
 
 
 
 
C01.062 
 
 
 
C01.062 
 
 
C01.062 
 
- 
 
C01.115 
 
 
C01.115 
 
C01.115 
 
 

 
 
CA,C1A 
 
 
 
 
 
CA,C1A 
 
 
 
CA,C1A 
 
 
CA,C1A 
 
CA,C1A 
 
CA,C1A 
 
 
CA,C1A 
 
CA,C1A 

 
 
 
 
 
 
 
 
pH optimum 4.5-6 
specific substrate: 
Z-Arg-Arg-AMC (BACHEM: 
c.n. I1135) 
specific inhibitor: 
CA-074 
 
localization of SmCB2 in 
tubercules of the tegument 
cohere with probably host-
parasite interactions (e.g.    
immunoevasion) or turnover 
of tegumental proteins or 
protein degradation 
proteolysis, immunoevasion, 
tegumental proteins turnover 
 
endopeptidase 

 
cathepsin L 
(Michel et al. 1995) 
(Brady et al. 2000a) 
 (Jolly et al. 2007) 
 
(Day et al. 1995) 
(Liu et al. 2006) 
 
(Smith et al. 1993) 
(Wijffels et al. 1994) 
(Tkalcevic et al. 1995) 
 
(Heussler and Dobbelaere, 1994)  
(Panaccio et al. 1994-sub) 
 
(Harmsen et al. 2004) 
 
 

 
SmCL* 
 
 
 
 
SjCL* 
 
 
FhCL1 
 
 
 
FhCL2 
 
 
FhCL3 
 
 

 
Schistosoma mansoni (A,E, Sp, 
C) 
 
 
 
Schistosoma japonicum (A,C,E) 
 
 
Fasciola hepatica (A,J) 
 
 
 
Fasciola hepatica (A,J) 
 
 
Fasciola hepatica (J) 
 
 

 
MER02333//Q26564 
 
 
 
 
MER02359//Q5DI53 
 
 
MER00635,MER02154//Q24940,Q09093 
 
 
 
MER02304,MER02302//Q24944,Q24941 
 
 
MER14555//Q9GRW6 
 
 

 
33,38/24p 
 
 
 
 
-/30 
 
 
38/39 
 
 
 
38/37 
 
 
32/35 
 
 

 
C01.044 
 
 
 
 
C01.044 
 
 
C01.033 
 
 
 
C01.033 
 
 
C01.033 
 
 

 
CA,C1A 
 
 
 
 
CA,C1A 
 
 
CA,C1A 
 
 
 
CA,C1A 
 
 
CA,C1A 
 
 

 
pH optimum 3.5-8 
Z-Phe-Arg-AMC 
specific inhibitor: 
Z-Phe-Tyr(tBu)-
diazomethylketone 
 
cathepsins L are associated 
with the digestion of adults 
and trematodae 
larvae/juveniles 
they are speculated to 
facilitate penetration of 
cercariae through the host 
skin and migration of 
schistosomula/juveniles 
through host tissue 
 
proteolysis 
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(Hong et al. 1997-sub) 
(Park et al. 2001) 
 
 
(Lee et al. 2005) 
(Na et al 2005-sub) 
 
 
(Park et al. 1999-sub) 
 
 
(Dolečková et al. unpublished) ● 
 
 

 
CsCL 
(CsCp4) 
 
 
PwCL 
(PwNTP) 
 
 
MyCL 
(MyCp1) 
 
DpCL 

 
Clonorchis sinensis (?) 
 
 
 
Paragonimus westermani (A) 
 
 
 
Metagonimus yokogawai (?) 
 
 
Diplostomum 
pseudospathaceum 

 
MER05032//O96913 
 
 
 
MER16114//Q9BPM2 
  
 
 
-/O46177 
 
 
-//- 

 
24/17p 
 
 
 
27-28/37 
 
 
 
-/16p 
 
 
22-24/24,39 

 
C01.032 
 
 
 
C01.130 
 
 
 
C01.032 
 
 
- 

 
CA,C1A 
 
 
 
CA,C1 
 
 
 
CA,C1A 
 
 
CA,C1 
 

 
endopeptidase 

 
cathepsin F 
(Smith et al. 1994) 
(Caffrey et al. 2004) 
 
(Lei et al. 2002-sub) 
(Liu et al. 2006) 
 
(Park et a. 2001) 
 
 
(Park et a. 1997-sub) 
(Kang et al. 1998-sub) 
(Na et al. 2007) 
 
(Park,1999-sub) 
 
 

 
SmCF* 
 
 
 
SjCF 
 
 
PwCF 
(PwCp1) 
 
CsCF 
(CsCP1,3,5
,6) 
 
MyCL(MyC
p9) 
 
 

 
Schistosoma mansoni (A)  
 
 
 
Schistosoma japonicum (A) 
 
 
Paragonimus westermani(A) 
 
 
Clonorchis sinensis (A) 
 
 
 
Metagonimus yokogawai (A?) 
 
 

 
MER02332//Q26534 
 
 
 
MER02260//Q8MUU1 
 
 
MER12043//Q9U0C8 
 
 
MER06247//Q0ZM47 
 
 
 
MER16108/Q9BPL9 
 
 

 
33/36 
 
 
 
-/36 
 
 
30/49 
 
 
24/37 
 
 
 
-/16p 
 
 

 
C01.018 
 
 
 
C01.018 
 
 
C01.018 
 
 
C01.130 
 
 
 
C01.018 
 

 
CA,C1A 
 
 
 
CA,C1A 
 
 
CA,C1A 
 
 
CA,C1A 
 
 
 
CA,C1A 
 
 
 

 
pH optimum 4.5-8 
specific substrate: 
Z-Phe-Arg-AMC 
specific inhibitor: 
 
cathepsins F are associated 
with the digestion of adults 
and trematodae larvae 
(schistosomula), they are 
speculated to facilitate 
penetration of cercariae 
through the host skin and 
migration of 
schistosomula/juveniles 
through host tissue. 
 
proteolysis 
 
endopeptidase 

 
CsCp3 peptidase-like (Clonorchis-
type), according multiple alignment 
(see Fig. XY) probably cathepsins 
CL or CF   
 
(Na et all. 2005-sub) 
(Na et all. 2006) 
(Lee et al. 2006) 
 

 
PwCp3 
 
 
 
 
 
 
 
 

 
Paragonimus westermani (A) 
 
 
 
 
 
 
 
 

 
MER62349//Q2QKE0 
 
 
 
 
 
 
 
 

 
27-28/36 
 
 
 
 
 
 
 
 

 
C01.130 
 
 
 
 
 
 
 
 

 
CA,C1A 
 
 
 
 
 
 
 
 

 
 
 
 

- 
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(Wang et al. 2001-sub) 
(Wang et al. 2003-sub) 
 
(Na et all. 2005-sub) 
(Park et al. 1997-sub) 
(Kang et al. 1998-sub) 
 
(Kaewpitoon et al. 2004-sub) 
 

 
PsCp3 
 
 
CsCp3 
 
 
 
OsCp3 
 

 
Pagumogonimus skrjabini (A) 
 
 
Clonorchis sinensis (A) 
 
 
 
Opisthorchis viverrini (?) 

 
MER16153,MER19089,MER19088//Q95V
29,Q8T4J4,Q8T4J2 
 
MER06247,MER12052,MER05412/Q0ZM
47,Q9U0C5,Q9XYC9 
 
 
MER48391/Q5PXS3 

 
-/19p 
 
 
-/37 
 
 
 
-/37 

 
C01.130 
 
 
C01.130 
 
 
 
C01.130 

 
CA,C1 
 
 
CA,C1 
 
 
 
CA,C1 

 
cathepsin C (dipeptidil peptidase I) 
(Butler et al. 1995-sub) 
(Brindley et al. 1997) 
(www.compbio.dfci.harvard.edu) 
(www.schistodb.org) 
 (Hola-Jamriska et al. 1998) 
(Hola-Jamriska et al. 2000) 
(Liu et al. 2006) 
 
 

 
SmCC 
 
 
 
SjCC 

 
Schistosoma mansoni (A) 
 
 
 
Schistosoma japonicum  (A) 
 
 
 
 
 
 

 
MER02360//Q26563 
 
 
 
MER12060//O18533 
 
 
 

 
38,25/51 
 
 
 
38,25/53 
 
 
 

 
C01.070  
  
 
 
C01.070 
 
 

 
CA,C1A 
 
 
 
CA,C1A 
 
 

 
pH optimum ~ 7 
specific substrate: 
-Phe-Arg-βNap 
(SIGMA: c.n. P4157) 
  
final processing of cathepsin 
B1 in blood digestion 
cascade 
 
proteolysis 
 
exopeptidase 
 

 
CALPAIN-LIKE 
(Gln/Cys/His/Asn) 
 
calpain 
(Karcz et al. 1991) 
(Andresen et al 1991) 
(Jolly et al. 2007) 
 
(Zhang et al. 2000) 
(Liu et al. 2006) 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
SmCaNp 
 
 
 
 
SjCaNp 

 
 
 
 
Schistosoma mansoni (A, E,Sc 
C,Sp) 
 
 
 
Schistosoma japonicum  (A, E) 
 

 
 
 
 
MER03200//P27730 
 
 
 
 
MER13513//O96071 

 
 
 
 
86/87 
 
 
 
 
86/87 

 
 
 
 
C02.023 
 
 
 
 
C02.023 
 

 
CA,C2 
 
 
CA,C2 
 
 
 
 
CA,C2 
 
 

 
 
 
 
pH optimum ~ 7 
specific substrate: 
casein, H-Glu(EDANS)-Pro-
Leu-Phe-Ala-Glu-Arg-
Lys(DABCYL)-OH (BACHEM: 
c.n. M2655) 
 
specific inhibitor: 
calpain inh.I and II 
 
calcium ion-dependent(Ca2+) 
papain-like cysteine 
peptidase  
 
unknown function 
 
proteolysis? 
 

http://www.compbio.dfci.harvard.edu/
http://www.schistodb.org/
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LEGUMAIN-LIKE 
(His/Cys) 
 
legumain (asparaginyl 
endopeptidase, hemoglobinase) 
(Davies et al. 1987) 
(Klinkert et al. 1989) 
(Meanawy et al. 1990) 
(Caffrey et al. 2000) 
 
(Merckelbach et al. 1994) 
(Liu et al. 2006) 
 
 
(Tkalcevic et al. 1995) 
 
 
(Adisakwattana et al. 2007) 
 
 
(Choi et al.  2006) 

 
 
 
 
SmAE 
(Sm32) 
 
 
 
 
 
SjAE 
(Sj32) 
 
 
FhAE 
(FhHE) 
 
FgAE 
(FgLgmn) 
 
PwAE 

 
 
 
 
Schistosoma mansoni (A,C,Sc) 
 
 
 
 
 
 
Schistosoma japonicum  (A) 
 
 
 
Fasciola hepatica (J) 
 
 
Fasciola gigantica (A,J) 
 
 
Paragonimus westermani (A) 
 

 
 
 
 
MER60472,MER00843//P09841,Q9NFY9 
 
 
 
 
 
 
MER00843//P42665 
 
 
 
MER64563,MER02188,MER02189//-
,P80527,P80530 
 
MER89978, MER79655/ 
/A6Y9U8,A6Y9U9 
 
-//- 

 
 
 
 
32/49 
 
 
 
 
 
 
32/49 
 
 
 
-/2p 
 
 
-/48 
 
 
-/47 

 
 
 
 
C13.004 
 
 
 
 
 
 
C13.004 
 
 
 
C13.004 
 
 
C13.004 
 
 
- 

 
CD,C13 
 
 
CD,C13 
 
 
 
 
 
 
CD,C13 
 
 
 
CD,C13 
 
 
CD,C13 
 
 
CD,C13 
 

 
 
 
 
pH optimum 5.5 - 6.8 
specific substrate: 
Z-Ala-Ala-Asn-AMC 
(BACHEM: c.n. I1865) 
 
specific inhibitor: 
N-ethylmaleimide, 
iodoacetamide  
 
converting pro-proteins and 
zymogens to their mature 
biologically active forms 
e.g.trans-activation of 
SmCB1 and SmCF to their 
mature form in blood 
digestion cascade 
 
processing, proteolysis 
 
endopeptidase 

 
unassigned peptidases ■ 
(Liu et al. 2006) 
 
(Park et al. 2002-sub) 
(Ling et al. 2001-sub) 
 
(Park et al. 1999-sub) 
 
 

 
SjCp 
 
 
PwCp 
 
 
MyCp(MyC
p4,5,12,2) 

 
Schistosoma japonicum (?) 
 
 
Paragonimus westermani (A) 
 
 
Metagonimus yokogawai (?) 
 

 
MER53964//Q5DCH3 
 
 
MER05028,MER14572, 
MER12054//O96857,Q9BII7,Q9U0D0 
 
MER16146,MER16145,MER16144,MER1
6156//Q9BPL5,Q9BPL6,Q9BPL8,Q9BPM
1 

 
-/24 
 
 
-/16p 
 
 
-/16-20p 

 
- 
 
 
- 
 
 
- 

 
CD,C12 
 
 
CA,C1 
 
 
CA,C1 
 

 
ubiquitin-dependent protein  

non-peptidase homologs 

(Hu et al. 2003) 
 
(Park et al. 2002-sub) 
 
(Wang et al. 2001-sub) 
 

 
 
 

 
Schistosoma japonicum 
 
 
Paragonimus westermani (A) 
 
 
Pagumogonimus skrjabini (A) 

 
MER17930//Q86FI9 
 
 
MER05580//Q9U0C9 
 
 
MER16153//Q95V29 
 

 
-/40 
 
 
-/30p 
 
 
-/18p 
 

 
- 
 
 
- 
 
 
- 

 
CA,C1 
 
 
CA,C1 
 
 
CA,C1 
 

 

 

 
- 

 
 
 



 

 49 

*SmCL1/SmCF  and SmL2/SmCL 
According to sequence homology search and due to the differences in special sequence motif (see footnote 51) is the SmCL1 more similar to cathepsin F (e.g. Paragonimus westermani or 
human ones). Therefore, the identified SmCL1 has been recently renamed as cathepsin F in the MEROPS database (Rawlings et al. 2006).  In this context was the SmCL2 redefined as 
cathepsin L (Caffrey et al. 2004, see subchapters "Cathepsin L1/L2" and "Cathepsin F"). 
 
 

 
 
Database links: MEROPS - http://merops.sanger.ac.uk/; UniProtKB/TrEMBL - http://www.expasy.org/sprot/; S. mansoni ESTs d. - www.compbio.dfci.harvard.edu or www.schistodb.org 
MW (kDa) practical – two numbers showed e.g. 33,38/24p – mean MW of pro-peptidase and mature peptidase 
● – indicate our results and P 1-4 - indicate attached relevant paper 
■ – according to multiple alignments (Fig. 9 footnote 55) this indicate the sequences of probable cathepsins L or F (except the Q5DCH3, O96857,Q9BII7, Q9BPM1, the Sj Q5DCH3  was 
determined as ubiquitin-dependent protein) 
 
 

 

A – adults M - miracidium Sc – schistosomula J - juvenile 21/17p – "p" here means the theoretical MW of partial sequence  

E – egg C – cercariae Sp – sporocyst  e.g. Cocude et al. 1997-sub – "sub" here indicates, that sequence is submitted to database 
(UniProtKB/TrEMBL) without the link to relevant publication  

http://merops.sanger.ac.uk/
http://www.expasy.org/sprot/
http://www.compbio.dfci.harvard.edu/
http://www.schistodb.org/
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2.4.2 Cysteine peptidases of trematodes  

 

There are ~ 520 cysteine peptidase sequences registered in MEROPS database 7.9; 

these are divided into 9 clans plus 3 mixed and comprise 65 families together (Rawlings 

et al. 2006).38 According to MEROPS ID cysteine peptidases are the most abundant group 

of trematode peptidases, with 7 various sequences having MEROPS ID. Isoforms being 

found in 13 trematode species (Tab. 10 CP) increasing this number. The members of 

cysteine peptidases such as cathepsin B or L (clan CA family C1(A)) together with serine 

CE (noticed above) are the best described trematode peptidases at all.  

Many cysteine peptidases (alike other peptidases) are expressed as zymogens (pro-

peptidases) that contain a pro-domain and a mature sequence part with catalytic domain, 

determining specific peptidase activity (Sajid and McKerrow 2002). Cysteine peptidases 

possess Cys as the main catalytic residue of the usual catalytic triad (Cys/His/Asn, 

Rawlings and Barrett 2004a, Fig. 6).39 

                                         
38 Mixed clans (PA, PB, PC) contain peptidase families of more than one of the catalytic types (e.g. serine, 

threonine and cysteine). Briefly, PA, peptidase families are assigned to this clan on the basis of similar 

protein folds or similarly-arranged catalytic residues. PB, peptidase families are assigned to this clan on the 

basis of similar protein folds or an N-terminally-placed catalytic nucleophile. PC, peptidase families are 

assigned to this clan on the basis of catalytic dyad occurs in the order Cys(or Ser)/His in the sequence. For 

more details see MEROPS database (http://merops.sanger.ac.uk/). 
39 Fig. 6. The scheme of cysteine (papain-like) peptidase interaction with the oligopetide substrate. 

Catalytic triad is marked, Cys25 in yellow, His159 in purple and Asn175 in pink. The Gln19 (forming the 

oxidation hole) in green circle. P4 – P4´; nomenclature of substrate labelling. S4 – S4´; nomenclature of 

peptidase labelling. Arrows (red and white) show scissile bond. From Dalton and Brindley (1997) with 

amendments by Kašný. Nomenclature according to Schechter and Berger (1967).  
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The specificity of the majority of cysteine peptidases is significantly conserved at 

P1 position for Arg of oligopeptide substrate (Choe et al. 2006). Among generally used 

cysteine peptidase-selective inhibitors, E-64 (N-trans-[epoxysuccinyl]-L-leucine 4-

guanidinobutylamide) specifically and covalently binds into the active site of cysteine 

peptidases (Towatari et al. 1991, Turk et al. 1995).40 The cysteine peptidase specificity 

and aminoacid preference such as the preferred AA in P1-Pn position, as well as the other 

selective inhibitors are discussed further in the context of particular enzymes. 

Cysteine peptidase functions are generally intracellular - housekeeping and 

metabolic functions or extracellular - host tissue penetration, food digestion by parasites 

or evasion of host immune responses (Dalton et al. 2004). Due to their indispensableness 

for the parasite, trematode peptidases can be exploited as serodiagnostic markers and 

vaccine targets, e.g. for schistosomiasis, fascioliasis, paragonimiasis (Sajid and 

McKerrow 2002). 

The recent progress in genomics, transcriptomics and proteomics has a remarkable 

impact on the research of trematode cysteine peptidase gene transformation (gene knock-

out/knock-in), followed by functional characterization.  

 

2.4.2.1 Papain-like peptidases (clan - CA, family – C1(A)) 

 

Papain-like peptidases named according to papain and known also as thiol-

dependent peptidases or cathepsins form the largest family among the cysteine peptidases 

(Rawlings et al., 2006). There are 134 peptidase hits in MEROPS database 7.9 (Rawlings 

et al., 2006). The majority - 5 out of 7 different trematode cysteine peptidases (according 

to MEROPS ID) are papain-like family members (cathepsins B, L, F, C and calpain) 

(Rawlings et al., 2006). Their sequences are annotated for various life stages of 11 

trematode species (Tab. 9. CP).   

Alike their mammalian orthologs, the papain-like peptidases of trematodes are 

expressed as pre-pro-enzymes containing a signal peptide, a pro-peptide and a mature 

enzyme sequence part (Dalton et al. 2004, Fig. 7).41 The catalytic triad of papain-like 

                                         
40 The E-64 has unique ability to bind also to His residues of cathepsin B occluding loop  and thus inhibit 

cathepsin B exopeptidase activity (Mort et al. 2004, noticed below). 
41 Fig. 7. 3D model of cathepsin B, cathepsin L and cathepsin F (CA, C1(A). Catalytic triad is marked, 

Cys in yellow, His purple and Asn pink. The Gln (forming the oxidation hole) in pink. From MEROPS 

database 7.9 with amendments by Kašný (Lecaille et al. 2002, Rawlings et al. 2006).  



 

 52 

peptidases is typically composed of three residues (Cys/His/Asn), for papain of Carica 

papaya these are Cys158/His292/Asn308 (Rawlings and Barrett 2004a, Rawlings et al. 

2006). The catalytic mechanism of papain-like peptidases is based on these three residues. 

The His residue with its imidazole ring is the nucleophile and proton donor; this general 

feature was confirmed for all cysteine peptidases (Lecaille et al. 2002). The imidazole 

ring of His residue and the sulfhydryl group of Cys residue side chain form the reactive 

thiolate–imidazolium charge couple attacking the peptide bond (Lecaille et al. 2002, Sajid 

and McKerrow 2002). The Cys catalytic residue (underlined) is a component of the 

highly conserved sequence motif CGSCWAFS typical for the majority of cysteine 

peptidases (Lecaille et al. 2002).42 The other highly conserved AA residue is glutamine 

(Gln19, residue of the S1 subsite), crucial in forming of oxidation hole and stabilization 

of tetrahedral intermediate during hydrolysis (Sajid and McKerrow 2002). On the other 

hand, the Asn residue of the catalytic triad is not essential for the activity of all cysteine 

peptidases; e.g. legumain-like peptidases possess only the catalytic doublet Cys-His. 

When the Asn is included in catalysis, it is responsible for proper orientation of the His 

imidazolium ring (via a hydrogen bond) during the cleavage reaction (Rawlings and 

Barrett 2004a, Lecaille et al. 2002, Fig. 6, footnote 39). 

Not only the short ologopeptide of papain-like peptidase sequence (CGSCWAFS) or 

the catalyticaly active residues (Cys/His) are highly conserved, but also the 3D folding of 

papain-like peptidases is quite rigid. They are usually 3D formed into a double domain 

structure – left (L) and right (R) (Fig. 7, footnote 41, cathepsin B). The active site of the 

peptidase is present as a part of both of these domains, hidden in the "active site cleft" and 

                                                                                                                          

 
 
42 Similar mechanism (based on His as proton donor) is typical for the most part of serine peptidase 

(Rawlings and Barrett 2004a). 
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protected by peptidase pro-region in case of cathepsin B, when unprocessed (Fig 7, 

footnote 41, cathepsin L and F, Lecille at al. 2002, Illy et al. 1997). The pro-region alone 

provides several independent functions like assistance in proper peptidase folding, 

regulation of peptidase activity as an endogenous inhibitor (Ki of 0.4 nM for human 

cathepsin B) or trafficking the peptidase into an appropriate intracellular destination due 

to a glycosylation mark (Sajid and McKerrow 2002).  

Chemical composition of the active site and peptidase 3D structure are the main 

determination factors for peptidase specificity. Screening of the positional specificity of 

several papain-like peptidases (cathepsins L, V, K, S, F, B) with synthetic combinatorial 

peptide substrate library highlighted that the distinguishing preferences of these 

peptidases are mainly at the P2 and P3 positions (Choe et al. 2006). The substrate binding 

pocket of examined papain-like peptidases was divided up to 7 important peptidase 

subsites (S4 to S3') which interact with residues at P4 to P3' of cleaved substrates (the 

cleavage of the scissile bond is realized between P1 and P1', Fig. 6, footnote 39). The S3 

and S2' subsites interact with substrate side chains, and the S2, S1, S1' subsites involve 

both the main chain and the side chains. The similar principle is typical for the complete 

papain-like family (Turk et al. 1998, Choe et al. 2006). 

As noticed above, E-64 inhibitor can effectively inhibit activity of a broad spectrum 

of cysteine peptidases, including the papain-like ones. Its labelled analogs are routinely 

applied for purification or detection of cysteine peptidases in protein mixtures (e.g. 

Delcroix et al. 2006). The following analogs can be mentioned: DCG-04 - biotinylated 

analog of E-64 and its fluorescent BODIPY 530/550-DCG-04 (Greenbaum et al. 2002) or 

radiolabelled 125I-DCG-04 (Choe et al. 2006, Delcroix et al. 2006) modifications.43 

Chemically different from DCG-04, but equally potent cysteine peptidase inhibitor is 

K11777 (N-methyl-piperazine-phenylalanyl-homophenylalanyl-vinylsulfone phenyl), 

which was already satisfactorily tested as a therapeutic drug against S. mansoni in 

rodents, dogs, mice and primates. K11777 dramatically decreased (>92 %) the total 

number of eggs recovered from the liver of treated mice (Abdulla et al. 2007). 

The physiological role of trematode papain-like peptidases is discussed mainly in 

connection with intestinal erythrocyte (hemoglobine) digestion by "bloodfeeders", e.g., S. 

                                         
43 By use of DCG-04, 31-35 kDa cathepsins B1/B2 in cercarial protein extracts of T. regenti and T. szidati 

were detected and recombinant enzymes confirmed on ligand blots (Mikeš et al. 2005 - Paper 1, Delcroix 

et al. 2006, Kašný et al. 2007 – Paper 2, Dolečková et al. unpublished). These results correspond to DCG-

04 reaction with S. mansoni 31-34 kDa cercarial protein bands protein bands (Kašný et al. 2007 - Paper 2). 
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mansoni and F. hepatica (Fig. 8, footnote 48, Lawrence et al. 1973, Brindley et al. 1997, 

Caffrey et al. 2004). There is an apparent evolutionary switch in the use of digestive 

enzymes  from cysteine (e.g. cathepsin B, L, C, legumain) and aspartic (e.g. cathepsin D) 

peptidases of lower invertebrates to serine peptidases (trypsin, chymotrypsin) of insects 

and vertebrates (Delcroix et al. 2006). The pH optima for activity of invertebrate 

extracellular cathepsins B and L are higher (pH 4 - 7) than those of vertebrate lysosomal 

orthologs (pH ~ 4) (Sajid and McKerrow 2002).   

The dominant position of papain-like peptidases (cathepsin B, L, C) as major 

digestive enzymes of S. mansoni has been discussed repeatedly. Their inherent role for all 

life cycle stages of other trematodes is undoubted. Several modern methods like gene 

transfer by electroporation or particle bombardment and RNA interference (RNAi) have 

assisted to reveal other important (novel) functions of trematode papain-like peptidases 

(Beckmann et al. 2007, Brindley et al. 2007, Geldhof et al. 2007, Ndegwa et al. 2007).44  

Up to date transgenic life stages of S. mansoni including miracidia and cercariae have 

been raised by these techniques (e.g. Beckmann et al. 2007).  

  

Cathepsin B (B1/B2): The first trematode CB gene (Sm31, SmCB1) was cloned 18 years 

ago by Klinkert et al. (1989). In contrast to SmCB1, there is no reference for trematode 

CB2 older than 5 years, when Caffrey et all. (2002) published the work on S. mansoni 

CB2. Up to date, there is ~ 15 CB1 and 7 CB2 identified genes of 9 trematodes (Tab. 9. 

CP). The papain-like peptidases characterized only biochemically and without available 

sequence data are not referred in detail in the text below (e.g. Tylodelphis excavata, 

Moczon 2007).   

Although these two peptidases (CB1/CB2) vary in physiological functions (e.g. in 

adult S. mansoni: SmCB1 – digestion, SmCB2 – host/parasite interface) and localization 

(SmCB1 – gut, SmCB2 – tegument), their biochemical properties are similar (Caffrey et 

al. 2002, Sajid et al. 2003, Caffrey et al. 2004, Delcroix et al. 2007). The hypothesis that 

schistosome cathepsins B1 (or B2) can operate, beside digestion within adults, as potent 

penetration peptidases of trematode larvae is now more accepted, e.g., for S. japonicum, 

T. regenti or S. mansoni (Dalton et al 1996a, Dalton et al. 1997, Kašný et al. 2007 - Paper 

2, Dvořák et al. 2007, Dolečková et al. unpublished). Whereas cathepsin B was reliably 

                                         
44 Skelly et al. (2003) succeeded to silence S. mansoni cathepsin B1 gene. After RNA-interference, lower 

expression of this peptidase in the gut of schistosomula was evident; this was proved by, e.g., specific 

SmCB1 immunostaining. 
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identified in circumacetabular gland content of S. japonicum cercariae, the antibodies 

against SmCB1 and SmCB2 reacted sporadically with this region on cercarial histological 

sections. Subsequently, the antibodies raised against recombinant TrCB1 did not show 

any reaction with cercarial histological sections, while anti-TrCB2 antibodies clearly 

bound to postacetabular glands (Dvořák et al. 2007, Dolečková et al. unpublished). 

According to EST databases followed by transcriptome analysis, cathepsins B are highly 

expressed mainly by the adult worms and migratory larvae – schistosomula in both S. 

mansoni and S. japonicum (e.g. Caffrey et al. 2004, Liu et al. 2006, Jolly et al. 2007).    

Cathepsins B1 and B2 of Fasciola hepatica or F. gigantica were reported as the 

most important peptidases for both the newly excysted juvenile (NEJ) flukes (migration) 

and the adults (feeding); in both stages peptidases play a role in immune evasion 

(Beckham et al. 2006). Although FgCB1 transcripts were subsequently proved (by RT-

PCR) in all development stages including eggs, FgCB2 (and FgCB3) were expressed in 

metacercariae and NEJ only (Meemon et al. 2004). Significant role of CB1 was 

confirmed also for juveniles of other two trematode species, P. westermani and C. 

sinensis (Na et al. 2002, Shin et al. 2000). 

Cathepsins B (including mammalian ones) are unique peptidases, also because of 

possessing an extra peptide segment - occluding loop. This is located externally to the 

active site cleft and its 20-30 AA sequence motif (varying according to species, e.g.,    

TrCB1: Cys99-Cys128) comprises own catalytic dyad (His110-His111) responsible for 

CB exopeptidase activity (peptidyl dipeptidase, see above Fig. 7, footnote 41, cathepsin 

B). The "occluding loop exopeptidase" specifically cleaves dipeptides from the C-

terminus of peptide substrates, e.g., release of His-Leu pair from Bz-Gly-His-Leu 

oligopeptide substrate (Illy et al. 1997, Sajid et al. 2003, Krupa et al. 2002). The 

occluding loop motif with His-His residues was identified for all sequentially known 

trematode cathepsin B1/B2 genes (Caffrey et al. 2002, Law et al. 2003, Sajid et al. 2003, 

Meemon et al. 2004, Beckham et al. 2006).45 

The cathepsins B are expressed (as many other cysteine peptidases) as pro-enzymes 

(noticed above). They are in vivo/in vitro activated (processed) from pro-enzyme to 

mature-enzyme (Fig. 10, footnote 63). This two-step process is realized by two other 

cysteine peptidases, asparaginyl endopeptidase (AE – clan CD, synonyms - 

                                         
45 In human cathepsin B, His110 has been shown to mediate binding (via salt bridge) to Asp22, stabilizing 

the position of the occluding loop, and it is responsible for cathepsin B exopeptidase activity (Krupa et al. 

2002). 
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hemoglobinase, legumain) and cathepsin C (CC, dipeptidyl peptidase I). Sajid et al. 

(2003) for the first time documented in vitro trans-activation of SmCB1. In this case CB1 

was trans-activated in the first step by AE attacking carboxyl side of Asn86 of the pro-

peptide and subsequently a part of CB pro-region except 2 AA (Val87-Glu88) was 

cleaved. This AA pair was definitely cleaved during the second step by SmCC, resulting 

in fully processed (mature) enzyme CB1 (Sajid et al. 2003, Caffrey et al. 2004). 

Interestingly the SmCB1 was in vitro "cross-trans-activated" by Ixodes ricinus 

recombinant AE and finally "cross-"processed by rat CC (Sajid et al. 2003, Sojka et al. 

2007). The "cross-processing" phenomenon could universally occur for all cathepsin B 

peptidases. In contrast, pro-CB is only partially autoprocessed by incubation at low pH 

alone, e.g., pro-TrCB1 and pro-FhCB1 at pH 4.5 (Dvořák et al. 2005, Beckham et al. 

2006, Dolečková et al. unpublished).46  

The specificity of fully processed mature CB1/CB2 to oligopeptide substrate is (as 

for the rest of papain family) given mainly by S2 pocket (Fig. 6, footnote 39). The 

coupling of active site residue of S2 pocket with the most preferred AA - Arg in P2 

position of substrate can distinguish the cathepsins B and L (Sajid and McKerrow 2002, 

Lecaille et al. 2002). The S3 subsite of CBs prefers hydrophobic AA, too, but it was 

recently proved that CB has a lower specificity at this subsite than previously supposed 

(Choe et al. 2006). The positively charged amino acids are bound preferentially by S1 

subsite (Caffrey et al. 2004, Choe et al. 2006). Choe et al. (2006) showed that SmCB1 

expresses lower specificity than SmCB2 in S1 or S2 subsites in comparison to human CB, 

although SmCB1 and human CB are more sequentially similar compared to SmCB2 vs. 

human CB. It is deduced that sequential homology must not be decisive for peptidase 

catalytic specificity (Choe et al. 2006). 

 The Z-Arg-Arg-AMC is accepted as selective CB oligopeptide substrate. The 

another commonly used substrate Z–Phe-Arg–AMC is cleaved by both CB and CL, but 

preferably by the second one (e.g. the Km(s) for S. mansoni CB1: Z–Phe-Arg–AMC, Km 

= 364 μM; Z-Arg-Arg–AMC, Km = 160 μM and cathepsin L with Z–Phe-Arg–AMC only 

Km = 2 μM, Sajid and McKerrow 2002). In trial with the Z-Arg-Arg-AMC the measured 

                                         
46 During autoprocessing mechanisms occluding loop is the in a closed conformation due to acidic pH and 

disarranged pro-peptide region, leading to more susceptible enzyme conformation for further 

autoprocessing (Beckham et al. 2006). 
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specificity constant was 12-fold higher for S. mansoni cathepsin CB2 than for SmCB1 or 

bovine spleen cathepsin B (Caffrey et al. 2002).47  

CB selective inhibitor CA-074 (N-[L-3-trans-propylcarbamoyloxirane- 2-carbonyl]-

Ile-Pro-OH), inhibits more than 95 % the CB activity of e.g. cercarial ESP from S. 

mansoni, S. japonicum, S. douthitti, T. regenti, T. szidati (Sajid and McKerrow 2002, 

Mikeš et al. 2005 - Paper 1, Dvořák et al. 2007, Kašný et al 2007 - Paper 2, Dolečková 

et al unpublished). The other potent papain-like inhibitors are not exclusively selective for 

CB. The pH optima for referred activities of recombinant/native SmCB1 and SmB2 are in 

the presence of Z-Arg-Arg–AMC substrate between 6-6.5 and 5-5.5, respectively. For 

other trematodes the pH optima are as follows: F. hepatica CB1 pH ~ 7.5, TrCB1 pH ~ 6, 

TrCB2 pH ~ 6.5 (Dalton et al. 2004, Dvořák et al. 2005, Kašný et al. 2007 - Paper 2 

Dolečková et al. unpublished).  

The data above supported by biochemical measurements with native enzymes 

allowed possible extrapolation of SmCB1/SmCB2 substrate preferences to all trematode 

CB1/CB2 peptidases, e.g., for larvae of T. regenti, T. szidati, S. haematobium, S. 

intercalatum, S. douthitti, S. rodhaini, D. pseudospathaceum. Concerning the adult 

worms, at least the extracts of Fascioloides magna and C. sinensis showed similar 

biochemical properties (Park et al. 1995, Caffrey et al. 1997, Mikeš and Man 2003, 

Dvořák et al. 2005, Mikeš et al. - Paper 1, Kašný et al. 2007 - Paper 2, Novobilský et al. 

2007 - Paper 3, Dolečková et al. unpublished, Kašný et al. unpublished). 

The pivotal role of CB is linked to digestion of blood. It was formerly proved that 

CB1 is one of the principal peptidases of the gut involved in hemoglobin degradation by 

S. mansoni, S. japonicum, F. hepatica and F. gigantica adults (Sajid et al. 2003, Caffrey 

et al. 2004, Meemon et al. 2004, Beckham et al. 2006, Fig. 8).48 CB1 is also involved in 

                                         
47 The mode, how the Z–Phe-Arg–AMC substrate enters the active site of CB1 is documented by the 

published 3D model of T. regenti schistosomula CB1 (Dvořák et al. 2005).   
48 Fig. 8. Digestion of blood by S. mansoni. Almost 50 years ago Timms and Bueding (1959) suggested 

that alimentary system of adult schistosomes with peptidases could guarantee the blood and/or hemoglobin 

degradation. The process starts at the level of erythrocytes and finishes by amino acids that could be 

metabolized in the worm protein synthesis. The optimal pH for blood digestion was determined as 3.9 -4.5 

(Williamson et al. 2003, Brady et al. 1999, McCarthy et al. 2004). From Brindley et al. (1997), Caffrey et 

al. (2004) and Delcroix et al. (2006) with amendments by Kašný.  
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digestion of host serum albumin or IgG. Their fragments were identified in S. mansoni 

adult gut content by mass spectrometry (Delcroix et al. 2007). Moreover, these SmCB1 

functions were confirmed by RNAi assays and a panel of cysteine peptidase inhibitors 

(K11777, E-64, Z-Phe-Ala-DMK, CA-074, Z-Phe-Phe-DMK) but the effect on digestion 

of host hemoglobin or albumin was disputable (Delcroix et al. 2006). 49  

The IgG digestion by cysteine peptidases (probably cathepsin B1) was also recorded 

in larvae of two additional trematode species, P. westermani and T. regenti (Shin et al. 

2000, Lichtenbergová et al. unpublished). 

Interestingly, it was estimated that S. mansoni gut content is of pH 6 - 6.4, but the 

optimal pH for hemoglobin or serum albumin fragmentation by cysteine peptidases is 

significantly lower (pH ~ 4) (Sajid et al. 2003, Delcroix et al. 2006). It is suggested that 

                                                                                                                          

 
49 The dominancy of S. mansoni and S. japonicum CB as major digestion peptidase does not 100 % fit with  

abundance of this peptidase monitored by mass spectrometry methods. Up to date the SmCB/SjCB (of 

adults) were not reliably identified by MS in the gut content or in the whole worm protein extracts. This 

could imply that the cysteine peptidase activity is produced as a minute amount of a highly active CB 

peptidase This is also consistent with the proteomic surveys of T. regenti/T. szidati cercariae recorded in our 

MS analysis or with proteomic surveys of S.mansoni cercariae performed by Knudsen et al. (2005) and 

Curwen et al. (2006), who did not find any cysteine peptidase among cercarial ESP, too (Kašný et al. 2007 - 

Paper 2, Kašný et al. unpublished). On the other hand, Dvořák et al. (2007) identified the cathepsin B2 in 

ESP of S. japonicum cercariae. It corresponds with the fact that no cercarial elastase gene was satisfactorily 

determined for S. japonicum and CE function (as the main penetration peptidase of S. mansoni) was 

replaced by cysteine peptidases, e.g., cathepsin B. Therefore, S. japonicum cathepsin B could be more 

abundant in cercarial ESP. This correspond with fluorometric assay showing the 40-fold higher activity 

(with Z–Phe-Arg–AMC) in S. japonicum than S. mansoni cercarial ESPs (Delcroix et al. 2006, Dvořák et al. 

2007).   
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luminal or cellular acidic microenvironments may exists, similarly as referred for S. 

mansoni aspartic peptidase cathepsin D (Brindley et al. 2001, Sajid et al. 2003). 

 Results of cleavage of hemoglobin and other native proteins have been recorded for 

T. regenti CB1 of schistosomula. Recombinant TrCB1 degrades myelin basic protein, but 

hemoglobin was a poorly cleaved substrate (Dvořák et al. 2005).50 On the other hand the 

cleavage of three types of hemoglobin was satisfactorily realized by recombinant TrCB2 

(Dolečková et al unpublished). Moreover, in our experiments, the recombinant T. regenti 

CB2 and some T. regenti cercarial cysteine peptidase active fractions are probably able to 

degrade native elastin, the substrate exclusively cleaved by elastases  (Kašný et al. 2007 - 

Paper 2, Dolečková et al. unpublished). These results corresponded with a relatively high 

inhibitory effect of elastatinal on TrCB2 cysteine peptidase activity (measured with Z–

Phe-Arg–AMC and Z-Arg-Arg–AMC, Dolečková et al. unpublished).51 The discovery of 

elastin cleavage by cysteine peptidases supports the theory of their potential participation 

in schistosome cercarial penetration, too (Dvořák et al 2007, Kašný et al. 2007- Paper 2).  

As repeatedly noticed cathepsins B could be used not only as immunodiagnostic 

markers of human trematodosis, but also for immunization in vaccine trials (e.g. El-Sayed 

et al. 1998, Noya et al. 2002, Law et al. 2003, Planchard et al. 2007).  

It is suggested by Lichtenbergová et al. (unpublished) that TrCB2 could be highly 

immunogenic for experimental animals (mice). Sera of naturally infected humans (with 

anamnesis of cercarial dematitis), sera of experimentally infected mice (by cercariae) and 

sera of mice immunized by TrCB2 reacted comparably at the same region of 32-36 kDa 

on PVDF membrane with transbloted recombinant TrCB2 or with T. regenti cercarial 

ESP. Likewise Planchard et al. (2007) recorded positive reaction with 31/32 kDa S. 

mansoni antigen using human or mice sera previously infected by S. mansoni. The 

authors supposed that the 31 kDa antigen could be SmCB. 

Besides protein-formulated vaccines, new DNA vaccines against trematodes are 

curently tested, efficiency of which is usually based on combination of several dominant 

antigens covering CB, too. The combined DNA vaccine with FhCB was tested by 

                                         
50 Myelin basic protein is the major protein component of nervous tissue and its degradation by TrCB1 

probably express the adaptation of T. regenti schistosomula to nervous tissue. The schistosomula follow the 

nerves during the migration to nasal cavity of definitive host and probably use myelin substrate as main 

nutriet. Only 5% of all migrating schistosomula contained hematin in gut (Dvořák et al. 2005). 
51 The elastatinal is usually regarded as a specific inhibitor of pancreatic and neutrophil elastases (serine 

peptidases), but considering its structure ([N-(Na-carbonyl-Cpd-Gln-Ala-al]-Leu) it is likely that the 

aldehyde on Ala2 of elastatinal inhibits the cysteine peptidase activity when situated in P1 position (Kašný 

et al. 2007 - Paper 2, Dolečková et al. unpublished). 
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Kennedy et al. (2006) in sheep and it was proved that it can operatively stimulate both  

humoral and cell mediated immune responses.52 Induction of immune responses was 

recorded for intramuscularly vaccinated animals, although the protection was poor for 

practical use (Kennedy et al. 2006). Better results were reached with FhCLs vaccines (see 

subchapter "Cathepsin L1/L2"). Chen et al. (2005) immunized mice with DNA of 

recombinant SjCB combined with mIL-4 plasmid, which yielded 42 % reduction of worm 

burden and 77 % reduction of eggs; the use of SjCB DNA alone was less potent.  

All cathepsins B are quite homologous enzymes; phylogenetic analysis of parasite 

and human cathepsins B performed by Sajid and McKerrow (2002) revealed single clade 

of digenean trematode peptidases. The other clustering analysis showed, that trematode 

papain-like peptidases are found just in three main groups: cathepsin B-like, cathepsin L-

like and cathepsin F-like, all of papain-like family C1 (Lecaille et al. 2002).  

 

 

Cathepsin L (L1/L2): First, it is necessary to preface some recent nomenclature changes 

in classification of this peptidase group. According to sequence similarity, S. mansoni 

CL1 is more homologous to cathepsin F (referred below) enzymes like Paragonimus 

westermani CF (61 %) or human CF (54 %). SmCL1 and SmCL2 are only 44 % similar 

and also SjCL1 and SjCL2 sequences showed 41% similarity (Brindley et al. 1997, Brady 

et al. 2000a). In contrast, the FhCL1 and FhCL2 are 77 % identical to each other (Collins 

et al. 2004). According to this, SmCL1/SjCL1 were recently renamed as cathepsins F, 

annotated under this designation in the MEROPS 7.9 database too (Caffrey et al. 2004, 

Rawlings et al. 2006). In this context, SmCL2/SjCL2 were redefined as cathepsins L 

(Caffrey et al. 2004).53  

This subchapter is focused on S. mansoni and S. japonicum cathepsins L (former 

L2) only. The peptidases SmCL1/SjCL1 (correctly SmCF/SjCF) are noticed in a separate 

chapter "Cathepsin F".  

Following the accepted nomenclature (SmCL2→SmCL, SjCL2→SjCL and 

equivalently SmCL1→SmCF, SjCL1→SjCF) there are multiple annotations of cathepsins 

L in MEROPS 7.9 for 7 trematode species. There is at least one additional trematode CL 

                                         
52 DNA vaccine composition trialed by Kennedy et al. (2006). 1. the ovine cytotoxic CTLA-4 lymphocyte 

antigen 4, 2. the CpG motif. Both antigens bind on surface of antigen presenting cells. 3. cathepsin FhCB. 

All incorporated in plasmids. 
53 The pro-regions of mammalian CLs usually contain typical sequence motif "ERFNIN", in contrast to 

CFs, which rather possess "ERFNAQ (Caffrey et al. 2004).  
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sequence which is not yet annotated in MEROPS - Diplostomum pseudospathaceum CL 

(DpCL) (Rawlings et al., 2006, Dolečková et al. unpublished, Tab. 9. CP).  

Although S. mansoni CL is a precisely described enzyme, F. hepatica cathepsins L 

(L1/L2) are more intensively studied peptidases due to their use as potential vaccine 

target against fascioliasis of ruminants (Spithill et al. 1999).54 Sequence data for papain-

like cysteine peptidases were recently published also for P. westermani and C. sinensis, 

but only a minority of these sequences was convincingly identified as cathepsin L-like 

(Fig. 9).55  

                                         
54 In agricultural sector fascioliasis of ruminants causes world-wide economic losses of approximately 2000 

million US$/year (Spithill et al. 1999). 
55 On the base of homology of partially deduced AA sequences it is probably impossible to distinguish if 

the peptidase belongs to cathepsin L or cathepsin F group (Fig. 9). In MEROPS database 7.9 there is 

annotated separate group of papain-like peptidases named CsCp3 peptidases (Clonorchis-type, MEROPS 

ID - C01.130, clan CA, family C1). This contains mainly peptidases of four species P.westermani, C. 

sinensis, P. skrjabini and O. viverrini (Tab. 9. CP). Our multiple alignment analysis revealed that majority 

of sequences of CsCP3 group could probably be assigned to cathepsins L or F peptidase group. Moreover 

some unassigned peptidase members of, e.g., P. westermani or M. yokogawai from Tab. 9. show high 

sequence similarity to the already described CL or CF, too (ExPASy Proteomics Server, CLUSTALW 

alignment). 

 

Fig. 9. The multiple alignment analysis of  CLs, CFs, CsCP3 and unassigned peptidases (partial 

highly conserved sequences) from Tab. 9. CP (plus westerpain-1 and westerpain-10). Highly conserved 

sequence of papain-like family is in green. The symbol (●) indicates, Cys residue of active site, (*) indicates 

identical AA residues, (:) strongly similar and (.) weakly similar AA residues. All the aligned sequences are 

annotated in UniProtKB database (www.expasy.org/uniprot/). 

 

 

http://www.expasy.org/uniprot/
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The chemical structure together with biochemical properties of CLs are slightly 

distinct form cathepsins B and F. The 3D model of SmCL constructed  by Brady et al. 

(2000b) enabled to verify the structure of CL peptidase active site with typical papain-like 

catalytic triad (for SmCL - Cys25/His161/Asn185). Also, the preference for hydrophobic 

AA residues at P2 position of the cleaved substrates was revealed, e.g., Z-Leu-Arg-

NHMec > Boc-Val-Leu-Lys-NHMec > Z-Phe-Arg-NHMec (Kim et al. 2000, Dalton et al 

2004, Brady et al. 2000b, Lee et al. 2006). As noticed above, Z-Arg-Arg-AMC 

oligopeptide substrate is practically not cleaved by CL, but it is preferred by CB; this fact 

generally enables recognition of CB and CL peptidase activities (Sajid and McKerrow 

2002, Brady et al. 2000b).  

SmCL, FhCL1/FhCL2 disability to cleave the noticed substrate is caused by the 

restrictions in the active site cleft, namely at peptidase S2 pocket which is not able to 

accommodate polar guanidino-group of arginine (Sajid and McKerrow 2002, Brady et al. 

2000a,b, Dalton et al. 2003a). The CLs in general prefer the aromatic AA residues (Arg, 

Phe, Tyr) at P1 position and aliphatic AA (Val, Leu) at P2 position (Choe et al. 2006). 

The S3 pocket has a crucial effect on peptidase specificity; e.g., in SmCL it is narrowed 

by insertion of two AA around the position of 60 AA (Tyr and Gly), in contrast to the S3 

pocket of SmCF (Brady et al. 2000b).  

The pH optimum of SmCL activity monitored with Z-Phe-Arg-NHMec/(AMC) is in 

acidic area between 3.0 – 6.5 with the peak at pH 5.35; SmCLs are nearly non-active at 

pH over 7.0 (Dalton and Brindley 1997, Brady et al.2000a). On the other hand, the pH 

optima of the other CLs were published around neutral and slightly alkaline values: 

FheCL1 pH 8.0, FheCL2 pH 6.5 and PwCL pH 7.5 (Dalton et al. 2004, Na et al. 2006). 

No activity of SmCL at neutral and alkaline pH is in accord with mammalian CL 

homologs, where the cells are protected by the phenomenon of pH-dependent activity 

against lysosomal (pH ~ 4) peptidases during accidental influx to cytosol (pH ~ 7) 

(Mason et al. 1985, Brady et al 2000a).  

The CL activity could be boosted by DTT (dithiothreitol), a reducing agent acting 

analogically with CBs, and inhibited by universal cysteine peptidase inhibitor E-64, 

papain-like peptidase specific inhibitor Z-Phe-Ala-CHN2 or mammalian CL potent 

inhibitor Z-Phe-Phe-CHN2 (Brindley et al. 1997, Brady et al. 2000a, Sajid and 

McKeroow 2002). The specific inhibitor for mammalian cathepsins L - Z-Phe-TyrO(But)-

CHN2, is effective inhibitor for trematode CLs, e.g., FhCLs (McGinty et al. 1993). Smith 
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et al. (1994) observed that the inhibition of CLs activity could also be raised by antibodies 

produced against this cysteine peptidase, as was documented for anti-FhCL.  

 Purified SmCL migrates in SDS-PAGE as a 33 kDa protein, FhCL1/FhCL2 as 

27.5/29.0 kDa, CsCL as 27 kDa or PwCL as 27 kDa, respectively. Their theoretical 

molecular weights (according to AA sequences) are for SmCL 24.3 kDa, 

FheCL1/FheCL2 24.17/24.45 kDa, CsCL 24 kDa and pro-PwCL 37 kDa. (Park et al. 

2001, Brady et al. 2000a, Collins et al. 2004, Dalton et al. 2004, Lee et al. 2006, Tab. 9. 

CP).56 This could suggest that, the recombinant mature enzymes are glycosylated but the 

sequence analyses did not reveal any potential N-glycosylation site (Dalton et al. 2003a).  

 Several studies with the aim to localize SmCL in particular developmental stages 

were done. Immunoblot and RT-PCR performed by Brady et al. (2000a) provided no 

positive reaction or CL transcript for eggs, miracidia or cercariae of S. mansoni. Absence 

of SmCL enzyme in these stages could be caused by the use of cDNA libraries based on 

adult schistosome mRNA instead of those originated from eggs, miracidia and cercariae 

(Brady et al. 2000a). On the other hand, the analysis of S. mansoni transcriptome 

confirmed SmCL among the enzymes expressed by cercariae (Jolly et al. 2007). The 

SmCL was further localized by immuno-reaction and RT-PCR in structures associated 

with the reproductive system of females or with subtegumental region of the 

gynecophoric canal of males (Michel et al. 1995, Dillon et al. 2007). This confirms that 

SmCL (former SmCL2) is probably not involved in blood digestion cascade but has a 

special function in the reproductive apparatus (Dalton and Brindley 1997, Brady et all. 

2000a). Bogitsh et al. (2001) sporadically localized SmCL peptidase in gastrointestinal 

tissue, similarly to SmCF (formerly SmCL1). Although this reaction was probably non-

specific, the phylogenetic studies show that CLs (i.e. L1 and L2) are quite frequently 

localized in the gut of other invertebrates, e.g. shrimps, Drosophila melanogaster larvae 

or F. hepatica, F. gigantica or P. westermani (Tort et al. 1999, Grams et al. 2001, Collins 

et al. 2004).  

In the case of P. westermani adults, several isoforms of PwCLs were directly 

confirmed in ESP of adult worms by mass spectrometry (Brady et al. 2000a, Lee et al. 

                                         
56 The prokaryotic systems of expression based on Escherichia coli, are not suitable for the production of 

functionally active cathepsin peptidase, more suitable are the yeast Pichia pastoris or Saccharomyces 

cerevisce systems, which produce identical peptidase properties (such molecular weight). It was recorded 

for many native and recombinant trematode enzymes, such F. hepatica cathepsin Ls (Dalton et al. 2003a, 

McManus and Dalton 2006). 
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2006). In fasciolids FhCL1/FhCL2 are liable for the predominant peptidase activity 

secreted by the migrating juveniles and adults (Dalton et al. 2003a, Dalton et al. 2004). 

Moreover, they represent major blood digestive peptidases of F. hepatica and F. 

gigantica, localized in vesicles of epithelial cells in the parasite gut (Dalton et al. 2003a, 

Grams et al. 2001).  

FhCL1/FhCL2 or PwCL (PwNTP), similarly to SmCB1, successfully cleave the 

macromolecular substrates such as collagen III, IV, laminin, fibronectin, hemoglobin and 

IgG (Yamakami et al. 1995, Berasain et al. 1997, Collins et al. 2004).  

Cysteine peptidases are thought to maintain trematode-host interface. In mice and 

cattle, FhCL1/FhCL2 modulate the host immune responses by cleavage of 

immunoglobulins, detachment of eosinophils or suppression of Th1 cell response and 

IFNγ  production (Berasain et al. 1997, O'Neill et al. 2000, Dalton et al. 2003a). Similar 

function is documented for FgCL1/FgCL2 or PwCL, where the delay of host immune 

response is apparent after treatment with this peptidase (Hamajima et al. 1994, Grams et 

al. 2001).  

Plenty of studies are devoted to trematode CLs as antigens in vaccination trials. 

Vaccines based on mixtures of peptidases belonging to various clans are the most potent 

ones (noticed above); indeed, CLs alone are very effective stimuli (Dalton et al. 2003b, 

McManus and Dalton 2006). Schistosome cathepsins L were examined for this purpose 

only several years ago (Wu et al. 2005, McManus 2005).  

In a recent vaccine trial against cattle and sheep fascioliasis FhCL1/FhCL2 were 

employed and a high protection level (up to 72 % - cattle and 79 % - sheep) was reached 

(Mulcahy et al., 1998, Piacenza et al. 1999, Dalton et al. 2003a). Some other types of 

FhCLs were recently found for F. hepatica and e.g. recombinant FhCL3 was already 

tested in immunization experiments. Protection of 76 % was reached with FhCL3 in rats 

immunized by L3 DNA vaccine constructs (Harmsen et al. 2004).57  

SmCL was reported as usefull immunodiagnostic marker for schistosomiasis. Sera 

of infected patients reacted with both SmCL and SmCB (Grogan et al. 1997). PwCL as an 

immunodominant antigen was tested for the development of serodiagnostic set of human 

paragonimiasis, too (Lee et al. 2006).  

                                         
57 The reached values of protection are fluctuating at the level of significance (80 %), required by 

pharmaceutic industry to ensure the economic benefit (Dalton personal communication).   
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In our biochemical studies, the activity of probable CL from D. pseudospathaceum 

cercarial extracts was recorded. A dominant double band appeared in the 22-24 kDa 

region in polyacrylamide gels with D. pseudospathaceum cercarial extracts; the protein of 

the band was later cloned and identified as DpCL (Mikeš and Man 2003, Dolečková et al. 

unpublished). Theoretical MW of DpCL pro-peptidase is of 38 kDa and mature peptidase 

24 kDa (similarly to, e.g. SmCL data above, Dolečková et al. unpublished). Although 

identity of the purified and the cloned enzymes was not sufficiently proved, it remains 

highly probable. The recombinant DpCL could show similarity to the native enzyme 

thanks to equally expressed activity and the previously determined unique lectin-like 

activity (Mikeš and Man 2003).  

Although attempts to identify CL genes of Trichobilharzia regenti and T. szidati 

failed, the potential CL activity was found in T. regenti and T. szidati cercarial extracts, 

where the cysteine peptidase activity was not completely inhibited by CB selective CA-

074 inhibitor (Mikeš et al. 2005 - Paper 1, Dolečková et al. 2007 - Paper 3, Kašný et al. 

2007 - Paper 2). It has not been revealed in our immunoblot and mass spectrometry 

analysis, whether the dominant 34 kDa antigen determined in T. regenti or T. szidati 

cercarial ESPs (MW similar to SmCL 33 kDa) is the CL-like or CB-like peptidase (Kašný 

et al. unpublished). It is, however, supposed according to comparative 1D and 2D 

immunoblot analysis, that the monitored reactions are of papain-like peptidase origin, 

probably of TrCL/TsCL or TrCB/TsCB (Lichtenbergová et al. unpublished). Comparably, 

the cysteine peptidase activity (possibly CB or CL) was recorded in ESP of Fascioloides 

magna, therefore we can hypothesize that some of 2D immunolocalized major proteins-

antigens (e.g. Fm 40 kDa) could be papain-like peptidases, too (e.g. cathepsin L) 

(Novobilský et al. 2007 - Paper 4, Kašný unpublished).58 

The phylogenetic analysis of C1 family of cysteine peptidases revealed that SmCL2, 

FhCL1/FhCL2 and consequently FgCL1/FhCL2 or PwCL belong probably to separate 

clades of the evolutionary tree of the papain family, and are related to vertebrate 

cathepsins L, S, and K (Tort et al. 1999). The alignment performed by Sajid and 

McKerrow (2002) verified that parasite/trematode CLs are less similar to each other in 

their conserved sequence motifs than CBs (Sajid and McKerrow 2002).  

                                         
58 The genome projects (S. mansoni, S. japonicum, F. hepatica) enriching the ESTs databases are robust 

tools which can faster solve problems of peptidase origin and can also be potent in estimation of vaccine 

candidates or serodiagnostic markers, based on sequentionall determinated gene function (Dalton et al 

2006). 
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Cathepsin F (CF): In this subchapter, CFs peptidases are described with regard to 

nomenclature changes of cathepsin SmCL1/SjCL1 to SmCF/SjCF (see above in the 

chapter "Cathepsin L"). CF sequence data were obtained for 5 trematode species (Tab. 9. 

CP), but only 4 recombinant enzymes were biochemically characterized. The 

Metagonimus yokogawai CF is submitted to MEROPS database 7.9 as a sequence with 

only, no other data available (Rawlings et al. 2006).  

The alignments of all CFs (~ 309 AA) showed the highest sequence similarity 

between SmCF and SjCF (84 %), PwCF and SjCF (57 %), PwCF and SmCF (54 %) and 

the rest of compared sequences remains at the level ~ 50%. The sequences of CFs 

commonly show low similarity to CLs and CBs (<42% for human cathepsins, Brömme 

2004, ExPASy Proteomics Server, CLUSTALW alignment). For trematode CFs and 

trematode CLs the sequence similarities were even lower, e.g., SmCF and SmCL 36 %, 

SjCF and SjCL 32 % (ExPASy Proteomics Server, CLUSTALW alignment). Moreover, 

the phylogenetic analysis of the C1 family cysteine peptidases revealed that SmCF 

(former SmCL1) and SmCL (former SmCL2) belong to separate clades of the 

evolutionary tree of the papain family (Rawlings and Barrett 1993).59 

CF 3D structure, together with the chemical structure of its active site, shows a  fold 

and composition of  assigning S1, S2 pockets similar to other members of papain-like 

family which suggests similar biochemical properties of these peptidases (noticed above 

for CL, Brady 2000b, Fengler and Brandt, 2000; Na et al. 2007). Controversially, pH 

optima and substrate preferences of recombinant SmCF were monitored and they are 

slightly distinct from those recorded for SmCL.  

SmCF exhibits a high affinity for substrates with a hydrophobic residue at P2 

position (Phe, Trp, Tyr), which resembles SmCL; SmCF is, however, able to cleave 

dipeptide substrates, e.g., Suc-Leu-Tyr-NHMec with no Arg at P1 position (Dalton et al. 

2004, Brady et. al. 2000b). This is not generally typical for papain-like peptidases, but 

common for CFs. Analogical activity was measured, e.g., for CsCF with Z-Arg-Arg-

AMC or Z-Leu-Arg-AMC substrates where Z-Arg-Arg-AMC was slightly cleaved by 

                                         
59 The pro-regions of mammalian CFs usually contain, besides the typical sequence motif "ERFNAQ" 

(noticed above, footnote 53), the other N-terminal cystatin-like domain.  The function of cystatin fold in 

mammalian cathepsins F is unknown and its absence in trematode CFs could suggest different physiological 

functions of the orthologous enzyme. Trematode CF might, therefore, represent a suitable drug target in 

trematodosis (Caffrey et al. 2004).   
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CsCF, whereas SmCL did not cleave this substrate at all (Na et al. 2007, Brady et al. 

2003b). CF specificity (e.g. SmCF) is determined by deletion of two AA of the S3 pocket 

(compare to CL - SmCL), which influences the CFs S2 and S3 pocket conformation and 

provides additional cleavage of tripeptide substrates with larger hydrophobic residues 

(Phe, Leu) at P3 position (e.g. H-Leu-Val-Tyr-NHMec or Boc-Phe-Val-Arg-NHMec; 

Brady et al. 2003b). 

The pH optimum for SmCF activity is 6.5. The pH range for SmCF activity is 

broader than for SmCL and shows 50 % of acivity at pH 4.5 or pH 8.0. CF of Clonorchis 

sinensis was less active under neutral and alkaline conditions with peak activity at pH 4.5 

(Brady et al. 1999, Brady et al. 2000a, Sajid and McKerrow 2002, Kang et al. 2004, Na et 

al. 2007). Stability of SmCF in a broad range of pH is probably connected with its role in 

hemoglobin digestion in the gut, where fluctuations in pH occur.  

In parallel we monitored potential CF activities in T. regenti, T. szidati and D. 

pseudospathaceum cercarial extracts (similarly as mentioned above for CL). Our results 

of inhibition experiments revealed that the residual activity measured after inhibition by 

CA-074 (specific CB inhibitor) and in the presence of Z-Phe-Arg-AMC could be caused 

by CF or CL as noticed above (Mikeš et al. 2005 - Paper 1, Kašný et al. 2007 - Paper 2, 

Kašný et al. unpublished).  

On immunoblots, both the native and the fully processed adult SmCFs were 

detected in the areas of 45 and 33 kDa, respectively, and SmCF of 43 kDa in cercarial 

extracts (Brady et al. 2000a). The absence of an active mature peptidase (33 kDa) in 

cercarial extracts could be related to penetration of cercariae, implying the presence of 

SmCF non-active form until it is released from the penetration glands (Dalton et al. 

1997b). By the same techniques, CsCF and PwCF were detected as mature enzymes of 24 

kDa and 30 kDa, and 31 kDa and 50 kDa proenzymes, respectively (Park et al. 2001, Na 

et al. 2007). 

The CsCF gene was recently identified employing RT-PCR with template based on 

RNA of all developmental stages (metacercariae, juvenile and adult worms). The 

transcription level increased gradually with the maturation of the parasite (Na et al. 2007). 

The transcripts of SmCF and SjCF homologous genes are significantly expressed mainly 

in adult worms (more in females, less in males) and slightly in cercariae, but not in 

miracidia or eggs (Liu et. 2006, Jolly et al. 2007). Nevertheless, both schistosome and 

clonorchid peptidases shared the same localization in the intestine and intestinal content; 

they are supposed to be secreted from gut epithelium into the lumen (Na et al. 2007, 



 

 68 

Brady et al. 2000a). Moreover, Bogitsh et al. (2001) referred to SmCF peptidase to be 

localized subtegumentally, where it participates in immune evasion by cleavage of host 

immunoglobulins.  

The major role of SmCF and SjCF is to provide a tool for nutrient degradation by 

adults, with links to blood digestion cascade (Fig. 8. footnote 48, S. mansoni gut cross-

section). Higher expression of SmCF and SjCF in females over males possibly 

corresponds with ~ 10 times higher number of red blood cells taken by female worms 

(Lawrence 1973, Brady et al. 2000a, Liu et al. 2006, Jolly et al. 2007). The function of 

PwCF is probably distinct because it was localized entirely in the vitelline glands of adult 

worms (Park et al. 2001). Notwithstanding that the role of PwCF is unclear, the 

extraintestinal localization suggested similar function of this enzyme as in the case of 

SmCL or SjCL, i.e., participation in reproduction rather than nutrition (Michel et al. 1995, 

Bogitsh et al. 2001, Park et al. 2001).  

On the other hand, CsCF is probably functionally cognate to enzymes SmCF and 

SjCF, and because of the same localization in the gut lumen it is considered as essential 

for nutrition, too (Brady et al. 1999, Delcroix et al. 2007, Na et al. 2007). The CsCF, alike 

SmCF and SjCF, degrades the macromolecular substrates such as collagen, fibronectin, 

hemoglobin, host serum albumin and IgG (Delcroix et al. 2006, Delcroix et al. 2007, Na 

et al. 2007). 

The phylogenetic analysis revealed that SmCF and SmCL are members of two 

separate evolutionary clades of the papain family, whereas SmCF, CsCF and PwCF are 

grouped in the same cluster, supporting close relation of CF enzymes (Rawlings and 

Barrett, 1993, Tort et al. 1999, Kank et al. 2004, Na et al. 2007). 

 

Cathepsin C (CC): Synonymum for cathepsin C is dipeptidyl peptidase I (DPP I, 

exopeptidase). The sequence of cathepsin C is in MEROPS database 7.9 annotated for 

two human schistosomes S. mansoni and S. japonicum (Tab. 9. CP, Rawlings et al., 

2006). SmCC/SjCC are 43 % and 50 % identical to rat CC, respectively, but the sequence 

similarity of SmCC and SjCC is more than 60 % (Brindley et al. 1997, Hola-Jamriska et 

al. 1998, ExPASy Proteomics Server, CLUSTALW alignment). 

CCs, similarly to CFs, have a long pro-region up to 200 AA with a second sequence 

part of mature enzyme of the approximately same length (Butler et al. 1995, Hola-

Jamriska et al. 1998, Caffrey et al. 2004). The long part of the pro-region is probably 

necessary for correct folding of the peptidase and, therewithal, it could stabilize and 
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inactivate CC peptidase while it is trafficked/secreted to the destination of its action 

(Hola-Jamriska et al. 1998, Hola-Jamriska et al. 2000). It was reported that human CC 

active site is blocked by pro-petide body via the interaction of pro-peptide Asn5 and S2 

pocket (Turk et al. 2001). 

CCs possess typical papain-like catalytic triad of the active site 

(Cys247/His398/Asn420, Cys251/His402/Asn423, numbering for full length sequence of 

SmCC or SjCC, Butler et al. 1995, Hola-Jamriska et al. 1998). The substrate specificity is 

driven by prime peptidase-substrate interaction across Asp71 peptidase residue, which 

reacts especially with unblocked NH2-terminus of substrate. The other important 

interaction is realized via residue Ile229 peptidase residue, which interacts with the side 

group of the P2 positioned AA residue of dipeptide substrates (Hola-Jamriska et al. 1998). 

Replacement of Asp71 by Asn71 and Ile229 by Leu229 in S2 pockets of processed 

SmCC/SjCC was determined by Hola-Jamriska et al. (1998). The S2 pocket of CCs (non-

activated/activated CC in this case) is, with Ile429/310, Pro279/160, Tyr 323/204 and 

Phe278/159 residues, one of the most "deepest" pockets at all (Turk et al. 2001). Both 

SmCC and SjCC possess deletion of Cys331 (not evident in mammalian CC orthologs), 

which influences proper tetrameric folding and leads to monomer formation, in contrast to 

tetrameric pattern in mammals (Turk et al. 2004, Molgaard et al. 2007). 

The CC is an exopeptidase removing N-terminal dipeptides from oligo- or 

macromolecular substrates. SmCC and SjCC exopeptidase activities cannot be detected in 

the presence of substrates Z-Phe-Arg-AMC or Z-Arg-Arg-AMC, routinely used for CBs 

or CLs endopeptidase monitoring (Hola-Jamriska et al. 1998). Recombinant SjCC 

exhibits low activity against the non-blocked H-Gly-Arg-NHMec and H-Gly-Phe-

NHMec, the CC specific substrates at pH optimum 7.0 (Hola-Jamriska et al. 2000). This 

activity was >99 % inhibited by E-64 and only >38 % by Z-Phe-Phe-CHN2 – the CBs and 

CLs inhibitors, respectively (Hola-Jamriska et al. 2000). On the other hand, CC is referred 

to as a peptidase with a broad specificity for non-blocked substrates, although the 

substrates with Arg or Lys at P1 position are not cleaved (Turk et al. 2004). Exact 

description of binding the -Gly-Phe-CHN2 inhibitor into the active site of human CC (via 

Cys234) was demonstrated, the CC peptidase-inhibitor complex co-crystalized and the 3D 

structure was determined (Molgaard et al. 2007).  

SmCC and SjCC recombinant pro-enzymes are of ~ 50 kDa MW and fully 

processed enzymes ~ 27 kDa MW, demonstrating presence of a long pro-region part (~ 

23 kDa, Butler et al. 1995, Brindley et al. 1997, Caffrey et al. 2004, Hola-Jamriska et al. 
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1998). SmCC and SjCC activities in gastrodermis of adults, in testes of males and 

vitelline cells of females were recorded by fluorescence microscopy and -Pro-Arg-MNa 

substrate (Bogitsh and Dresden 1983). This finding corresponds with the recently mined 

genome data of S. mansoni or S. japonicum EST databases. For both schistosomes, CC is 

similarly present in adult males and females and in schistosomula (Liu et al. 2006, 

CompBio-S.mansoni or www.schistodb.org).   

CC localized in schistosome gut plays an important role during the second step 

(after AE-CB1 trans-activation) of processing of cathepsin SmB1 pro-enzyme to mature 

enzyme involved in blood digestion cascade (Fig. 10. footnote 63, Sajid et al. 2003, 

Caffrey et al. 2004). SmCC removes the remaining Val87-Glu88 dipetide doublet from 

AE-trans-activated-SmCB1 pro-region, whereby the N-terminal sequence (Ile89-Pro90-

Ser91) of the native protein is uncovered (see under Fig. 10. footnote 63 and the chapter 

"Asparaginyl endopeptidase", Sajid et al. 2003, Caffrey et al. 2004). Moreover, in the 

mammalian system, CC is able to fully process serine peptidases, e.g., members of the 

chymotrypsin-like family (Turk et al. 2004). 

The phylogeny of all known papain-like peptidases (including CC) revealed that 

cathepsin C genes cluster with cathepsins B, but not with cathepsins L (Hola-Jamriska et 

al. 1998). 

 

2.4.2.2 Calpain-like peptidases (clan - CA, family – C2) 

 

Calpain (CaNp): The calcium ion-dependent papain-like cysteine peptidases – calpains 

or calcium-activated neutral peptidases (active at ~ pH 7) are widely distributed non-

lysosomal peptidase bio-modulators in the animal kingdom, especially in mammalian 

tissues, where they are fundamental in, e.g., activation of protein kinase C, degradation of 

cytoskeletal and muscle proteins, and modification of neurofilaments (Andersen et al. 

1991, Rawlings et al. 2006).60 The activity of CaNp is strictly up-regulated by Ca2+ ions 

and down-regulated by its cytosolic inhibitors – calpastatins (e.g. Suzuki et al. 2004). 

There are 25 sequence hits of particular types of calpain in MEROPS database 7.9. 

Two of them are of trematode origin, S. mansoni and S. japonicum CaNps (Rawlings et 

al. 2006). The trematode recombinant CaNps (SmCaNp, SjCaNp) were firstly 

                                         
60  The first references of calpain occured in 1960s when Guroff (1964) recorded the calapain-like 

peptidase activity in rat brain. 

http://www.schistodb.org/
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characterized by several authors in 1990s (SmCaNp) and 2000s (SjCaNp), respectively 

(Andersen et al. 1991, Karcz et al. 1991, Zhang et al. 2000, Scott and McManus 2000). 

The deduced AA sequences of SmCaNp and SjCaNp share high similarity with μCaNp of 

human, rat or chicken and their AA sequences are highly similar to each other  (>79 %, 

Andersen et al. 1991, Scott and McMannus 2000).  

Two main isoforms of CaNp with different ion sensitivities are recognized; the 

μCaNp requires micromolar and mCaNp millimolar concentrations of Ca2+ (Sorimachi et 

al. 2004). CaNps are heterodimers composed of a large ~ 80 kDa catalytic domain and ~ 

30 kDa regulatory subunit. Both CaNp "80" and "30" domains possess together 6 

subdomains/subunits (I – VI), where subdomain II (of CaNp "80" domain) is responsible 

for cysteine peptidase activity similar to papain-like peptidases such as CBs or CLs. The 

subdomain II is defined (like CBs and CLs) by two other subdomains IIa and IIb, with the 

active site cleft and the catalytic triad residues of active site which are distributed between 

both domains IIa and IIb (IIa - Cys105, IIb - His262 and Asn286, numbering for rat 

CaNp, Hosfield et al. 1999, Sorimachi et al. 2004). These facts indicate that the CaNp 

"30" subunit is not essential for peptidase activity.  

For SmCaNp (86.86 kDa) and SjCaNp (86.61 kDa) typical papain-like peptidase 

active site residues were defined in positions Cys154 and His313 (SjCaNp numbering) 

and the isoelectric point of 5.34 estimated (Andersen et al. 1991, Scott and McMannus 

2000). Alhough the biological role of CaNp is more regulatory than peptidolytic, both 

properties were described in detail for S. mansoni and S. japonicum.  (Andersen et al. 

1991, Ohta et al. 2004, Suzuki et al. 2004).  

CaNp(s) as a peptidases have in general pH optimum at ~ 7.5  recorded by CaNp 

resolving substrates Suc-Leu-Tyr-AMC or H-Glu(EDANS)-Pro-Leu-Phe-Ala-Glu-Arg-

Lys(DABCYL)-OH. This cleavage could be inhibited by a panel of calpain-specific 

inhibitors such as calpastatin, calpain inhibitor I (N-acetyl-Leu-Leu-nonleucinal) or 

calpain inhibitor II (N-acetyl-Leu-Leu-methional) (e.g. Mkwetshana et al., 2002 or 

Sigma-Aldrich, www.sigmaaldrich.com)  

Northern blot and recent transcriptomic analysis (based on S. mansoni or S. 

japonicum ESTs) revealed that both enzymes are expressed in adult worms (Andersen et 

al. 1991, Scott and McMannus 2000, Liu et al. 2006, Jolly et al. 2007, CompBio-

S.mansoni or www.schistodb.org). Moreover, the transcripts of SmCaNp were identified 

in sporocysts, schistosomula or cercariae, and minutely in eggs (Andersen et al. 1991, 

Caffrey et al. 2004, Liu et al. 2006, Jolly et al. 2007, CompBio-S.mansoni or 

http://www.schistodb.org/
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www.schistodb.org). Reaction of SjCaNp with specific monoclonal antibodies was 

proved also in cercarial penetration glands (probably the head gland) and in cercarial 

ESPs in the form of "kissing marks" or "foot prints" (Kumagai et al. 2005; for "kissing 

marks" or "foot prints" see e.g. Mikeš et al. 2005 - Paper 1). Moreover, Dvořák et al. 

(2007) identified three SjCaNp(III) protein fragments and Knudsen et al. (2005) 

SmCaNp(-large chain) in cercarial ESPs by mass spectrometry analysis, although these 

SmCaNp fragments could originate from cercarial tegument.  

Consequently Rao et al. (2002) proved that SmCaNp of ESP and tegumental origin 

could induce eosinophilia and release of histamine from mast cells (basophils). According 

to this, they speculated that SmCaNp can play an important role in the development of 

allergic inflammation - cercarial dermatitis. Matsumura et al. (1991) considered the 

possible involvement of protein kinase C and Ca2+ ions in peptidase expulsion from the 

penetration glands of S. mansoni cercariae enabled by muscle contractions. Although we 

did not detect CaNp in T. regenti or T. szidati ESPs, we recorded similar results to 

Matsumura et al. (1991) in terms of cercarial motoric behavior after addition of Ca2+ 

ionofor into cercarial suspension. This behavior could be caused by increased Ca2+ ion 

levels followed by protein kinase C effect via CaNp, too (Orwig et al. 1994, Rao et al. 

2002, Mikeš et al. 2005 - Paper 1). 

SmCaNp or SjCaNp as abundant schistosome antigens are tested in experimental 

immunization trials. Immunization of mice with recombinant SmCaNp and SjCsNp 

provided >39 % and >41 % (decrease of worm burden) (Hota-Mitchell et all. 1999, Ohta 

et al. 2004). Comparable effect was recorded in mice immunized with recombinant 

SmCaNp (80 kDa domain) plasmid construct (Siddiqui et al. 2003). 

The phylogenetic analysis showed that schistosome CaNps cluster together and are 

separated from NaCp of, e.g, mouse, human or filariae (Rao et al. 2002).  

 

2.4.2.3 Legumain-like peptidases (clan - CD, family – C13) 

 

The CD clan of peptidases contains, besides the family C13 (legumain-like), 

peptidases of four other families: C11 - clostripain-like, C14 - caspase-1-like, C25 - 

gingipain R-like and C50 – separase-like (Rawlings et al. 2006). They have been 

classified to the CD clan on the base of AA sequence similarities and possession of the 

same AA residues in the catalytic dyad. The peptidases of legumain family (as the other 4 

CD families) contain the catalytic residues organized reversely (His156/Cys197) within 

http://www.schistodb.org/
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the active site in comparison to clan CA peptidases (Cys/His) (numbering for S. mansoni 

legumain). The combination of the residues His-Gly-//-Ala-Cys placed the legumain-like 

peptidase to the proximity with caspases, sharing the same motif (Chen et al. 1998). 

 

Asparaginyl endopeptidase (AE): The legumain-like endopeptidase, ≈ asparaginyl 

endopeptidase (AE, in the text below used as a synonym), or ≈ hemoglobinase 

(previously used synonym for the enzyme from "blood feeders") was firstly described for 

leguminous plants (Canavalia ensiformis, jack bean legumain) (Abe et al. 1993).61 Its 

homologs were subsequently identified in mammals (Chen et al. 1998a) and among 

invertebrates, including trematodes (Tab. 9. CP, Dalton et al. 1995, Caffrey et al. 2000).62 

The AEs are known as enzymes localized in vacuoles of plants (processing or degradation 

of proteins), in mammalian lysosomes (processing of antigens in MHC-II presenting 

cells), they are also known from fungi and invertebrates such as helminths including 

trematodes (Chen et al. 1998b, Caffrey et al. 2000, Mathieu et al. 2002, Sajid and 

McKerrow 2002, Oliveira et al. 2007).   

The MEROPS database 7.9 contains annotation of AE of four trematodes (S. 

mansoni, S. japonicum, F. hepatica and F. gigantica, Tab. 9. CP, Rawlings et al. 2006). 

Recently, AE of P. westermani was characterized but it is not annotated yet (Choi et al. 

2006). All the trematode AEs show significant AA sequence similarity between 50 - 70 % 

(Meanawy et al. 1990, Merckelbach et al. 1994, Tkalcevic et al. 1995, Choi et al. 2006, 

Adisakwattana et al. 2007). 

AE is known mainly for its processing properties towards other peptidases. On the 

other hand, AE could also autocatalytically process itself, via the Asn  residue (SmAE 

Asn329), removing the C-terminal pro-peptide body under acidic conditions (e.g. for 

SmAE at pH 4.5, Menawy et al. 1990, Caffrey et al. 2000). The catalytic activities of the 

majority of legumain-like family members have restricted affinity for Asn in P1 position.  

The AE subsite positional screening was realized by the use of synthetic substrate 

combinatorial library with Asn fixed at P1 position; it revealed the preferred AA residues 

for P2 and P3 positions, too (P2: Ala>Thr>Val>Asn and P3: Thr>Ala>Val>/Ile, designed 

for SmAE, Mathieu et al. 2002). It was also shown that SmAE has a broader specificity 

                                         
61  SmAE was previously mentioned as Sm32, because the first purifications and immunoblots of SmAE 

revealed a protein antigen of MW 32 kDa. 
62 SmAE monitored with Z-Arg-Arg-Asn-AMC substrate was the first record of AE activity in animal 

tissues (Dalton et al. 1995). 
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for AA at P3 than P2 position (Mathieu et al. 2002). Additionally, Mathieu et al. (2002) 

recorded significant difference between SmAE and HumanAE in AA residues at P3 

positions. This fact could be exploited for designing potent and selective SmAE inhibitor.  

According to the information above, Z-Ala-Ala-Asn-AMC is widely used as an 

excellent AE determining substrate. SmAE cleaves this substrate preferably at pH 

optimum ~ 6.8 and reducing agents (e.g. DTT) do not increase AE activity (known for 

SmAE, Dalton et al. 1995, Caffrey et al. 2000, Brindley and Dalton 2004). The pH 

optimum for PwAE is slightly different, between 3.0 – 5.5 (Choi et al. 2006).  

The peptidase activity against Z-Ala-Ala-Asn-AMC is effectivelly inhibited by 

several "Cys" inhibitors, such as N-ethylmaleimide (it inhibits binding via Cys), 

iodoacetamide (it binds covalently to Cys) or cystatin-C (native macromolecular inhibitor 

of cysteine peptidases), but the common cysteine peptidase inhibitors such as E-64 and 

CB-specific Z-Phe-Ala-CHN2 are less effective (Sajid et al. 2003, Brindley and Dalton 

2004). 

Recombinant PwAE and SmAE failed to degrade native proteins, including 

collagen, fibrinogen, fibronectin, but degradation of hemoglobin was confirmed (Choi et 

al. 2006, Delcroix et al. 2006). 

SmAE was formerly immunodetected as a 32 kDa band in crude worm extract and 

immunolocalized in the gut epithelium of adult worms and schistosomula, or in 

rudimental cecum and protonephridia of cercariae (Meanawy et al. 1990, Skelly and 

Shoemaker 2001). Although the presence of AE in cercarial protonephridia is disputable, 

the AE localization in the gut was proved also for adult worms of F. gigantica and P. 

westermani (Choi et al. 2006, Adisakwattana et al. 2007). AE synthesis in the gut is 

predicted also for the rest of trematode species listed here, in which AE was identified 

exclusively by molecular techniques (Meanawy et al. 1990, Merckelbach et al. 1994, 

Tkalcevic et al. 1995).  

In S. mansoni and S. japonicum ESTs databases, responsible sequences are listed. 

AEs transcripts are expressed at a comparable level in male and female worms, but not in 

eggs or miracidia (Caffrey et al. 2004, Liu et al. 2006, Jolly et al. 2007, CompBio-

S.mansoni or www.schistodb.org). Further, the 32 kDa AE peptidase was identified 

directly in the gastrointestinal content of S. mansoni adult worms analyzed by SDS-PAGE 

and subsequently detected with the specific radiolabelled inhibitor 125I-KMB-09 (Delcroix 

et al. 2006). Schistosome worms were also biolistically treated by SmAE dsRNA. After 

biolistic treatment, S. mansoni worms expressed 98 % loss of AE activity monitored in 

http://www.schistodb.org/


 

 75 

worm protein extract by AE specific substrate (Z-Ala-Ala-Asn-AMC, Delcroix et al. 

2006). In the same worms the activity of SmCB1 (monitored by Z-Arg-Arg-AMC 

substrate) was also decreased (20 %), which  networked SmAE-SmCB1 activation system 

and corresponds to the biological function of SmAE as an important CB1 trans-activator 

during blood digestion in S. mansoni worms (Fig. 10).63 

As noticed above ("Cathepsin B" subchapter), cysteine peptidases are expressed as 

pro-enzymes. AE was suggested as an essential factor for in vivo/in vitro trans-processing 

of fundamental blood digestive peptidases, covering not only SmCB1, but the peptidases 

of other "blood feaders" as well (possibly for S. japonicum, F. hepatica, F. gigantica, P. 

westermani, Sajid et al. 2003, Caffrey et al. 2004). There exists also the evidence for a 

                                         
63 Fig. 10. Processing of S. mansoni pro-cathepsin B1. Schistosoma. mansoni pro-CB1 (a) is processed in 

the intestine of adults by asparaginyl endopeptidase (AE, yellow) cleaving the main part of the pro-region 

which leads to almost fully processed pro-CB1(b) containing a doublet of residual AA (Val87-Glu88). This 

doublet is subsequently cleaved off by cathepsin C (CC, green) to fully processed active form of peptidase 

(active-CB1). The pro-region of CB1 is in grey; the mature CB1, in blue; the active site in red; occluding 

loop, in green. The active site residues of AE and CC are coloured; Cys, in yellow; His, in purple; Asn, in 

pink. The predicted 3D models: model of human pro-cathepsin B1 was taken from web site 

(www.delphi.phys.univ-tours.fr/Prolysis/Images/procatbrib.jpeg) and adjusted (human and SmCB1 show ~ 

50 % similarity, ExPASy Proteomics Server, CLUSTALW aligment). The 3D model examples of AE 

(Human caspase 1*) and CC (S. japonicum CC) were constructed online at 

www.cbs.dtu.dk/services/CPHmodels-2.0 web site. * The caspase 1 belongs to clan CD, family C14, which 

show significant sequence similarity and 3D protein folding to family C13, the legumaine-like peptidases 

(AE, Chen et. al. 1998b). Because the construction of SmAE 3D model failed (3D template of AE does not 

exists), the 3D model of Human caspase 1 was adopted. The scheme is based on the information published 

by Sajid et al. (2003) and Caffrey et al. (2004) with amendments by Kašný. 

 

http://www.delphi.phys.univ-tours.fr/Prolysis/Images/procatbrib.jpeg
http://www.cbs.dtu.dk/services/CPHmodels-2.0
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unique SmCB1 in vitro "cross-"trans-activativation by Ixodes ricinus recombinant AE 

and final "cross-"processing by rat CC (Sajid et al. 2003, Sojka et al. 2007).  

The necessity of AE for nutrition might be exploited in vaccination of mammalian 

models by recombinant AE (inactive form) or AE cDNA constructs. Chlichlia et al. 

(2001) vaccinated mice with 50 μl of the SmAE cDNA constructs which led to significant 

37 % decrease of egg production.   

SmAE of adult worms was formerly tested as a potential diagnostic marker of 

schistosmiasis (e.g. Chappell and Dresden 1986, Ruppel et al. 1991). This antigen 

utilization was supported by Planchard et al. (2007) who detected a major 31/32 kDa 

protein double band in "vomitus" of S. mansoni adults using immunoblot analysis with 

sera of infected mice or humans. Our results showed reactions of T. regenti and T. szidati 

protein extracts with sera from experimentally infected mice in the region of 32-34 kDa 

and with F. magna ESP and sera from infected goats in the range of 26 – 30 kDa 

(Novobilský et al. 2007 - Paper 4, Lichtenbergová et al. unpublished), but beside the AE, 

trematode cathepsins are also of this MW (e.g. TrCB1 33-35 kDa or TrCB2 33 kDa).  

The legumain family and the other families of clan CD are evolutionary widely 

distributed peptidases which probably derived from a common ancestor, but the 

possibility of genetic transfer of  mammalian CD clan peptidase members to trematode 

genomes is still unclear (Chen et al. 1998b). 
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Tab. 10. ASPARTIC PEPTIDASES (AP) 

 
Peptidase 

 
(catalytic triad) 

 

  
Species (stage) 

 
Accession number 

 
(MEROPS accession// 
UniProtKB/TrEMBL) 

 

 
MW (kDa) 

 
practical/ 

theoretical 

 
MEROPS 

(ID) 
 

 
Clan, 
family 

 
Other properties 

 
(pH optimum of activity, 

preferred substrates, 
biological function) 

 

 
PEPSIN-LIKE 
(Asp,/Asp) 
 
cathepsin D 
(Wong et al. 1997) 
(Silva et al. 2005-sub) 
(Verity et al. 1999) 
(wwww.compbio.dfci.harvard.edu) 
(www.schistodb.org) 
(Becker et al. 1995) 
 
(Jarzabowski et al. 2006-sub) 
 
(Lee et al. 2001-sub) 
 
(Huong et al. 2005-sub) 
 
 

 
 
 
 
SmCD 
 
SmCD1 
SmCD2 
 
 
SjCD 
 
FhCD 
 
CsCD 
 
OvCD 
 
 
 
 

 
 
 
 
Schistosoma mansoni (A) 
 
Schistosoma mansoni (A) 
Schistosoma mansoni (A) 
 
 
Schistosoma japonicum (A) 
 
Fasciola hepatica (A?) 
 
Clonorchis sinensis (A?) 
 
Opistorchis viverini(A?) 
 
 
 
 

 
 
 
 
MER03498//P91802 
 
MER62900// Q2Q0I8 
MER01959// Q26515 
 
 
MER80861//A0FIJ5 
 
MER16092//Q95VA2 
 
MER52779//Q45HJ6 
 
-//- 
 
 

 
 
 
 
46/47 
 
46/45 
41,46/47 
 
 
-/47 
 
-/46 
 
-/46 
 
- 
 
 

 
 
 
 
A01.009 
 
A01.009 
A01.009 
 
 
A01.009 
 
A01.009 
 
A01.009 
 
- 
 
 

 
AA,A1(A) 
 
 
AA,A1(A) 
 
AA,A1(A) 
AA,A1(A) 
 
 
AA,A1(A) 
 
AA,A1(A) 
 
AA,A1(A) 
 
AA,A1(A) 
 
 
 

 
pH optimum̃ ~ 3.5 
specific substrate: 
H-Phe-Ala-Ala-4-nitro-Phe-
Phe-Val-Leu-pyridin-4-
ylmethyl ester, BACHEM: 
c.n. M1690 
 
specific inhibitor: 
pepstatin 
 
cathepsins D play pivotal 
role in hemoglobin digestion 
of trematode adults  
they are speculated to 
participate on host immune 
evasion 
 
proteolysis 
 
endopeptidase 

 
unassigned peptidases 
(Copeland et al. 2003) 
 
(Bae et al. 2001-sub)  
 
(Hu et al. 2003-sub) 

 
- 
 
 
- 
 
- 

 
Schistosoma mansoni (A?) 
 
 
Clonorchis sinensis (A) 
 
Schistosoma japonicum (A?) 

 
MER30858//Q68NI0 
 
 
MER16568//Q9BM81 
 
MER31166//Q86FB6 

 
-/98 
 
 
-/146 
 
-/42 

 
- 
 
 
- 
 
- 

 
AA,A2 
 
 
AA,A2  
 
AA,A22(B) 

 
 
 

- 

 

 

Database links: MEROPS - http://merops.sanger.ac.uk/; UniProtKB/TrEMBL - http://www.expasy.org/sprot/; S. mansoni ESTs d. - www.compbio.dfci.harvard.edu or www.schistodb.org 
MW (kDa) practical – two numbers showed e.g. 33,38/24p – mean MW of pro-peptidase and mature peptidase 

A – adults M - miracidium Sc – schistosomula J - juvenile 21/17p – "p" here means the theoretical MW of partial sequence  

E – egg C – cercariae Sp – sporocyst  e.g. Cocude et al. 1997-sub – "sub" here indicates, that sequence is submitted to database 
(UniProtKB/TrEMBL)  without the link to relevant publication 

http://www.schistodb.org/
http://merops.sanger.ac.uk/
http://www.expasy.org/sprot/
http://www.compbio.dfci.harvard.edu/
http://www.schistodb.org/
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2.4.3 Aspartic peptidases of trematodes 

   

MEROPS database 7.9. includes ~ 162 different sequences of aspartic peptidases 

(AP). They are divided into 6 clans (AA, AB, AC, AD, AF, A-) and 14 families with 

nearly half of the peptidase members (70) placed into the clan AA, family A1 – pepsin A-

like peptidases (according to pepsin A of Homo sapiens). The sequences of five 

trematodes are classified in the A1 family, too (Tab. 10. AP, MEROPS database 7.9, 

Rawlings et al. 2006). 

The mechanisms of catalysis by aspartic peptidases are not the same as for the 

above noticed serine and cysteine peptidases, where the nucleophile attack is facilitated 

by the reactive group of amino acid side chain. In the case of aspartic peptidases the 

nucleophile attack is initiated by activated water molecule via the side chain of Asp 

residues (Dunn 2002).  

 

2.4.3.1 Pepsin A-like peptidases (clan - AA, family – A1(A)) 

 

Peptidases of the family A1 have been identified only in eukaryotes, where they 

play a pivotal role in digestion, comprising the digestive enzymes pepsin and chymosin 

and their lysosomal homologs, cathepsins D (Dunn 2002). An interesting phenomenon 

was described for peptidases of the A1 family. They show duplication of the main 

peptidase domain, which is typical for many other peptidases, but here (AA, A1) the two 

domains arise due to gene duplication. Each peptidase duplicated domain possesses its 

own catalytic residue Asp32 and Asp215 driving the cleavage of peptide substrate 

(numbered for human pepsin, e.g. Dunn 2002, Rawlings et al. 2006). The other important 

residue linked with the peptidase-substrate interaction is Tyr137, interacting with β-

hairpin sequence part termed "flap", covering the active site and managing the peptidase 

specificity, too (Dunn 2002). The active site cleft between the domains implies that all of 

AP and A1 peptidase members are endopeptidases which are active at strictly acidic pH ~ 

3.5 (Conner et al. 2004, Rawlings et al. 2006).  

 

Cathepsin D (CD): The sequence identity of the known trematode CD orthologs is >39 

%, different mainly in the pro-region of peptidases. Slightly lower identity is found when 
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homologous vertebrate enzymes are included to alignment analysis (e.g. human CD ~ 33 

% similarity, ExPASy Proteomics Server, CLUSTALW alignment). 

The Asp33/Asp231 responsible for specificity of SmCD and SjCD are highly 

conserved active site residues for both peptidases. Significant sequence differences of 

SmCD/SjCD were recorded in glycosylation part and COOH-terminal extension (Wong 

et al. 1997). The conserved residue Lys203 of SjCD (similarly to CDs of human, chicken, 

mosquito) is substituted by Gln203 in the case of SmCD (similarly to bovine CD) and 

COOH-terminal extension is not present in SmCD at all (Becker et al. 1995, Wong et al. 

1997). It is suggested that schistosome CDs can be expressed as several isoforms with 

various physiological functions. 

The relatively "wide" active site cleft of CDs preferably interacts with hydrophobic 

AA of larger CD-specific oligopeptide substrates (e.g. Boc-Phe-Ala-Ala-p-nitro-Phe-Phe-

Val-Leu-4-hydroxymethyl pyridine, Cesari et al. 1998). The recombinant SmCD and 

SjCD have the pH optimum for cleavage of the above substrate of 3.8 and 3.5, 

respectively (Becker et al. 1995, Cesari et al. 1998).  

The most potent CD inhibitor is pepstatin with >80 % inhibition effect (Becker et 

al. 1995, Cesari et al. 1998, Verity et al. 1999). Pepstatin affinity chromatography is 

widely used for purification of CDs from protein extracts or expression system media. 

Employing this technique, the autoactivated 40 kDa SmCD/SjCD peptidases were 

isolated (Verity et al. 1999, Brindley et al. 2001). Using 3D model based on SjCD-

pepstatin complex, Caffrey et al. (2005) designed a novel potent SjCD inhibitor. It could 

differentiate between SjCD and human/bovine CD and may be therefore considered as a 

potentially effective chemotherapeutics (Caffrey et al. 2005).   

Both SmCD and SjCD have been localized in the epithelium lining the gut of adult 

worms using the immuno-histochemical or molecular techniques (Bogitsh and Kirschner 

1987, Verity et. al. 1999, Brindley et al. 2001). In addition to this, Verity et al. (1999) 

detected CD activity (by a specific substrate) and CD transcripts (by RT-PCR) also in 

eggs and miracidia of S. japonicum. On the contrary, significant level of SmCD 

transcription was revealed only in adult worms (Hu et al. 2003, Caffrey et al. 2004, Liu et 

al. 2006, Jolly et al. 2007, CompBio-S.mansoni or www.schistodb.org).  

We have cloned CD genes from T. regenti and T. szidati cDNA using mRNA 

isolated from cercarial germ balls and PCR with degenerate primers according to Dalton 

and Brindley (1997). The deduced TrCD/TsCD AA sequences were >95 % identical and 

they did not blast with known trematode CD sequences with significant score. 

http://www.schistodb.org/
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Subsequently, the blast analysis revealed that the most similar CD sequence is from the 

frog Xenopus tropicalis, implying probable contamination of T. regenti and T. szidati 

cDNA by heterogeneous DNA (possibly by snail Radix sp. or Lymnaea stagnalis DNA, 

Kašný et al. upublished).  

Trematode CDs function has been investigated mainly with regard to worm 

nutrition. The CD was formerly proved as one of the most crucial peptidases involved in 

host hemoglobin degradation (Verity et. al. 1999, Brindley et al. 2001, Koehler et al. 

2007, Delcroix et al. 2007, Fig. 8 footnote 48). Delcroix et al. (2006) determined 70 % 

and 90 % inhibition of activity for SmCD and SmCB, respectively, after dsRNA 

treatment of the worms. For SmCD dsRNA-targeted worms, a significant inhibition effect 

of 27 % and 50 % in hemoglobin and serum albumin degradation was recorded, whereas 

the SmCB1 dsRNA-treated worms expressed only 13% and 46% decrease of activity 

towards these substrates. Therefore, it has been speculated that SmCD/SjCD could be 

more important than SmCB1/SjCB1 in the process of hemoglobin and albumin 

degradation (Brindley et al. 2001, Delcroix et al. 2006).  

It was reported recently that the active sites of SmCD and SjCD specifically cleave 

the human hemoglobin α-chain between the Phe36-Pro37 residues. Therefore, the 

substrates with Pro residue at P1 position are highly attractive for SmCD/SjCD or other 

aspartic peptidases (Brinkworth et al. 2001, Silva et al. 2002, Koehler et al. 2007). The 

cleavage of hemoglobin tetramer by SmCD/SjCD produces peptide dimers of 16 kDa and 

subsequently monomers of ~ 6 kDa which are then cleaved by other peptidases of the 

hemoglobin digestion network (Fig. 8 footnote 48, Delcroix et al. 2006, Koehler et al. 

2007).  

SmCD/SjCD are able to cleave hemoglobin and albumin optimally at low pH ~ 3.5, 

which differs from the estimated pH between 6.0 – 6.4 in schistosome gut lumen. This 

supports the hypothesis on existence of acidic gut microenvironments (noticed above in 

"Cathepsin B1/B2 subchapter" for SmCB, Brindley aet al. 2001, Sajid et al. 2003). The in 

vitro hemoglobin digestion by S. mansoni gastrointestinal content was partially inhibited 

(56 – 61 %) by combination of aspartic and cysteine peptidase inhibitors, such as 

pepstatin, iodoacetamide and K11777 (Delcroix et al. 2006). Also this discovery supports 

previous findings that peptidases of both classes (CP and AP) are obligatory participants 

in hemoglobin digestion cascade.  
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Besides digestion, schistosome CD can effectively cleave human IgG removing Fc 

fragments, or degrade C3 factor of the complement; all this suggests the role of 

schistosome CD in evasion hosts immune responses (Verity et al. 2001a).  

The importance of trematode CDs for worm biology was tested in vaccination trials. 

Verity et al. (2001b) recorded significant (21 – 38 %) worm burden reduction in mice 

treated by recombinant SjCD. Subsequently, SmCD/SjCD antigens were tested as 

immunodiagnostic markers of schistosomiasis. Interestingly, rabbit sera raised against  

SmCD/SjCD did not recognize recombinant bovine CD and vice versa. This indicates a 

specific antibody reaction, differences in sequences or epitopes and possible use of a 

selective SmCD/SjCD specific inhibitor (Dalton et al. 2003b, Valdivieso et al. 2003). 
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Tab. 11. METALLO PEPTIDASES (MP) 

 
Peptidase 

 
(catalytic triad) 

 

  
Species (stage) 

 
Accession number 

 
(MEROPS accession//UniProtKB/TrEMBL) 

 

 
MW (kDa) 

 
practical/ 

theoretical 

 
MEROPS 

(ID) 
 

 
Clan, family 

 
Other properties 

 
(pH optimum of activity, 

preferred substrates, 
biological function) 

 

 
DIPEPTIDYL-PEPTIDASE III-LIKE 
(His/Glu/His/Glu)   
 
dipeptidyl-peptidase III 

 
 
 
 
SmDPIII 

 
 
 
 
Schistosoma mansoni (A?) 
 

 
 
 
 
MER04253//-  
 

 
 
 
 
-/- 

 
 
 
 
M49.001 

 
M-,M49 
 
 
M-,M49 
 

 
 
 
- 

 
FtsH-LIKE PEPTIDASES  
(His/Glu/His/Asp)   
 
 Afg3-like protein 2 
(He et al. 2001-sub) 

 
 
 
 
- 

 
 
 
 
Schistosoma japonicum (A?) 

 
 
 
 
MER35521/Q86DM6 

 
 
 
 
-/51 

 
 
 
 
M41.007 
 

 
MA,M41 
 
 
MA,M41 
 

 
 
 

- 

 
STE24-LIKE PEPTIDASE 
(His/Glu/His/Glu)   
 
farnesylated-protein converting 
enzyme 1 

 
 
 
 
- 

 
 
 
 
Schistosoma mansoni (A?) 
 

 
 
 
 
MER02645,MER04253//-,- 

 
 
 
 
-/- 

 
 
 
 
M48.003 

 
MA,M48 
 
 
MA,M48 
 
 

 
 
 
 

- 

 
METHIONYL AMINOPEPTIDASE 1-
LIKE 
(His/Asp/Asp/His/Glu/Glu) 
 
methionyl aminopeptidase 2 
(Hu et al. 2003) 
 

 
 
 
 
 
- 

 
 
 
 
 
Schistosoma japonicum (A?) 
 

 
 
 
 
 
MER35520//Q86ES3 
 

 
 
 
 
 
-/39 
 

 
 
 
 
 
M24.002 

 
MG,M24 
 
 
 
MG,M24 
 

 
 
 
 

- 

 
O-SIALOGLYCOPROTEIN-LIKE 
PEPTIDASE 
(His/His) 
 
mername-AA018 peptidase 
(Liu et al. 2006) 
 

 
 
 
 
 
- 
 
 

 
 
 
 
 
Schistosoma japonicum (A?) 
 

 
 
 
 
 
MER80432//Q3KZ70 
 
 

 
 
 
 
 
-/12p 
 

 
 
 
 
 
M22.004 

 
MK,M22 
 
 
 
MK,M22 
 

 
 
 
 

- 
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POH1-LIKE PEPTIDASE 
(Glu/His/His/Asp) 
 
poh1 peptidase 
(Nabhan et al. 2001) 
 
26S proteasome non-ATPase 
regulatory subunit 7 
(Hu et al. 2003) 
 

 
 
 
 
- 
 
 
- 

 
 
 
 
Schistosoma mansoni (A?) 
 
 
Schistosoma japonicum (A?) 

 
 
 
 
MER21971//O16154 
 
 
MER35522/Q86F68 
 

 
 
 
 
-/35 
 
 
-/40 
 

 
 
 
 
M67.001 
 
 
M67.973 

 
MP,M67 
 
 
MP,M67 
 
 
MP,M67 
 

 
 
 
 
 

- 

 
unassigned peptidases 
(Mernath 1994-sub) 
(Hancoc et al. 1997-sub) 
 
(Hu et al. 2003-sub) 
 
(Wang et al. 2000-sub) 
 
(Acosta et al. 2004-sub) 
 
(Song et al. 2007-sub) 
 

 
- 
 
SmLAP 
 
- 
 
SjLAP 
 
FhLAP 
 
PwLAP 

 
Schistosoma mansoni(A?) 
 
Schistosoma mansoni(A?) 
 
Schistosoma japonicum(A?) 
 
Schistosoma japonicum(A?) 
 
Fasciola hepatica (A?) 
 
Paragonimus westermani (A?) 

 
MER02198//P46508 
 
MER03499//P91803 
 
MER35519//Q86FI7 
 
-//Q9GQ37 
 
MER79520//Q17TZ3 
 
MER81108//A1Z0K2 

 
-/73 
 
-/56 
 
-/51 
 
-/54 
 
-/56 
 
-/60 

 
- 
 
- 
 
- 
 
- 
 
- 
 
- 

 
MA,M41 
 
MF,M17 
 
MC,M14 
 
MF,M17 
 
MF,M17 
 
MF,M17 
 

 
SmLAP and SjLAP 
 
pH optimum̃ ~ 8.25 
specific substrate: 
H-Leu-AMC, BACHEM: c.n. 
I1245 
 
specific inhibitor: 
bestatin 
 
possible role in hemoglobin 
digestion by trematode 
adults  
membrane re-modelling  
 
proteolysis 
 
exo-/endopeptidase 
 

 
non-peptidase homologs 
(Wang et al. 2000-sub) 
(Mernath 1994-sub) 
(Hu et al. 2003-sub) 
 

 
 
- 
 
- 

 
 
Schistosoma japonicum(A?) 
 
Schistosoma japonicum(A?) 
 

 
 
MER15278//Q9GQ37 
 
MER38806//Q86EA2 
 

 
 
-/54 
 
-/54 
 

  
 
MF,M17 
 
MG,M24 
 

 

 

 

Database links: MEROPS - http://merops.sanger.ac.uk/; UniProtKB/TrEMBL - http://www.expasy.org/sprot/; S. mansoni ESTs d. - www.compbio.dfci.harvard.edu or www.schistodb.org 
MW (kDa) practical – two numbers showed e.g. 33,38/24p – mean MW of pro-peptidase and mature peptidase 

A – adults M - miracidium Sc – schistosomula J - juvenile 21/17p – "p" here means the theoretical MW of partial sequence  

E – egg C – cercariae Sp – sporocyst  e.g. Cocude et al. 1997-sub – "sub" here indicates, that sequence is submitted to database 
(UniProtKB/TrEMBL) without the link to relevant publication 

http://merops.sanger.ac.uk/
http://www.expasy.org/sprot/
http://www.compbio.dfci.harvard.edu/
http://www.schistodb.org/
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2.4.4 Metallopeptidases of trematodes 

  

Up to date, there are 564 different metallopeptidase sequences of 15 clans and 53 

families annotated in MEROPS database 7.9. The referred high family number 

demonstrates extreme diversification of this peptidase class. There are 15 various 

sequences of 4 trematode species classified in 7 clans and 8 families (14 ≈ 2.5 %, Tab. 11. 

MP, Rawlings et al. 2006).  

In contrast to serine and cysteine peptidases, but equally to aspartic peptidases, the 

nucleophilic attack of peptide bond is mediated by water molecule (James et al. 2004, 

Rawlings and Barrett 2004c).  The water molecule is activated via divalent metal cation 

(mostly Zn2+ and others - Co2+, Mn2+, Ni2+, Cu2+). The metal cations are kept in their 

positions by ligands of a conserved extra-folded AA structure (usually by His, Glu, Asp 

and Lys residues, Lowther and Matthews 2002, James et al. 2004).  

The active site center is formed by one or two metal cations, but the AA active site 

residue (mostly Glu) is required for successful catalysis, too. Metallopeptidases act as 

exopeptidases when they possess only one metal cation, or they can act as exo- or 

endopeptidases when two metal cations are adopted (James et al. 2004). In some cases, 

the cooperation of two metal cations is essential for full peptidase activity which co-

catalyticaly leads to metallo peptidase activity.  

Metallopeptidases exhibit a quite broad range of specificity to peptide substrates, 

which is usually defined by P1 and P1´ AA substrate residues (e.g. Lowther and 

Matthews 2002).  

There are two important trematode enzymes among metallopeptidases – LAP 

(Leucyl aminopeptidase) and DPPIII (Dipeptidyl peptidase III). The rest of annotated 

trematode metallopeptidases were not fully sequenced and are identified mostly just in 

EST databases.  

 

2.4.4.1 Leucyl aminopeptidase-like peptidases (clan - MF, family – M17) 

 

Leucyl aminopeptidase (LAP): It was the first identified two-metal-cations 

metallopeptidase (Burley et al. 1990). The sequence identity of S. mansoni, S. japonicum, 

F. hepatica and P. westermani LAPs was >34 % in multiple alignment (Tab. 11. MP, 

ExPASy Proteomics Server, CLUSTALW alignment). All LAP sequences of the above 
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trematode species are classified in MEROPS database 7.9. as unassigned peptidases of 

clan MF, family M17. On the contrary, SjLAP is not yet annotated in MEROPS. 

The aminopeptidase conserved active site motif "NTDAEGR" of highly conserved 

C-terminal domain was identified in all four AA sequences of SmLAP, SjLAP, FhLAP 

and PwLAP (Kim and Lipscomb 1993).64 

LAPs are widely distributed cytosolic hexameric exopeptidases and possess six 

subunits with twelve Zn2+ cations, this means two Zn2+ for one subunit of ~ 56 kDa - 

SmLAP/SjLAP, ~ 60 kDa for PwLAP and ~ 56 kDa for FhLAP. The purified 

SmLAP/SjLAP proteins were of 57.5 kDa and 52 kDa (McCarthy et al. 2004, Rawlings et 

al. 2006, Acosta et al. 2004 and Song et al. 2007 - UniProtKB/TrEMBL database 

sequence submission). 

As its name predicts, the LAP peptidase prefers the Leu AA residues for catalysis at 

P1 position of the substrate and the substrates with Asp and Gly at P1 position are not 

cleaved by LAP. The selectivity for AA residues at P1´ is determined for large 

hydrophobic residues such as Tyr and Phe (Lowther and Matthews 2002). L-Leu-AMC is 

generally used as a selective substrate for LAP activity monitoring. For SmLAP/SjLAP 

the substrate preferences were recorded; these are L-Leu-AMC >> L-Tyr-AMC > L-Ala-

AMC at pH optimum 8.25 and in the presence of  Mn2+. The most potent SmLAP/SjLAP 

inhibitor was bestatin (99.9 %) >> 1,10-phenanthroline > metal chelators (EDTA) 

(McCarthy et al. 2004).  

SmLAP/SjLAP were immunolocalized predominatly in the alimentary tract and 

subtegument of adults (McCarthy et al. 2004). Abouel-Nour et al. (2005) localized LAP 

activity in S. mansoni eggs. 

According to previously mentioned localization, SmLAP/SjLAP could be 

considered as participants in hemoglobin digestion (probably as intracellular peptidases) 

and surface membrane re-modeling (Fig. 8. footnote 48, McCarthy et al. 2004).65  

LAP activities were also recorded in the S. mansoni cercarial or schistosomular 

protein extracts and transcription analyses revealed that these peptidases are significantly 

                                         
64 The highly conserved (for all LAPs) are as well the AA residues binding Zn2+. For one subunit of 

SmLAP/SjLAP these residues were identified for 1.Zn2+ - Asp289/Asp367/Glu369 and for 2.Zn2+ - Asp289/ 

Lys284/Asp307/Glu369 (McCarthy et al. 2004). 
65 The pro-peptide sequence was previously identified for all peptidases of hemoglobin digestion cascade, 

such as CB, CL, CC, CD, AE.  
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expressed by all developmental stages (Auriault et al. 1982, Damonneville et al. 1982, 

McCarthy et al. 2004, Liu et al. 2006, Jolly et al. 2007).  

Metallopeptidases were identified by MS analysis of S. mansoni and S. japonicum 

cercarial ESPs, and at least one of the characterized fragments was determined as clan MF 

family M17 peptidase, potentially LAP (Curwen et al. 2006, Dvořák et al. 2007).  

The immunization effect (especially after FhLAP administration) was tested in 

vaccine trials in sheep. Sheep immunized by recombinant FhLAP alone showed 

significant >89% protection against the infection by metacercariae (Piacenza et. al. 1999). 

Recently, FhLAP was recognized as a potential immunodominant diagnostic marker, 

reacting with sera from fascioliasis patients (Marcilla et al. 2007).   

 

2.4.4.2 Dipeptidyl peptidase III-like peptidases (clan – M-, family – M49) 

 

Dipeptidyl peptidase III (DPPIII): Although there is one annotation in MEROPS 7.9 for 

SmDPPIII 86-AA sequence fragment, relevant expression of this enzyme by trematodes 

is disputable. Few nucleotide sequences of DPPIII gene of S. japonicum adults were 

found in EST databases. However, relevant DPPIII sequences were found by the search in 

S. mansoni genome database and the SmDPPIII transcription is noticed by Dvořák (2005, 

Ph.D.  Thesis) who refers to Verjovski-Almeida et al. (2003). 

In spite of this, potential DPPIII activity was measured in the adult S. mansoni and 

S. japonicum soluble extracts at acidic pH using H-Arg-Arg-NHMec substrate. The 

existence of trematode DPPIII was not directly and reliably confirmed, and the suggested 

hemoglobin digestion by this enzyme is therefore questionable, too. 

The other metallopeptidase members (Tab. 11. MP) are not discussed here, because 

of unknown localization and lack of relevant data. They were usually yielded from ESTs 

databases and are not properly described yet. 
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Tab. 12. THREONINE PEPTIDASES (TP) 

 
Peptidase 

 
(catalytic triad) 

 

  
Species (stage) 

 
Accession number 

 
(MEROPS accession// 
UniProtKB/TrEMBL) 

 

 
MW (kDa) 

 
practical/ 

theoretical 

 
MEROPS 

(ID) 
 

 
Clan, 
family 

 
Other properties 

 
(pH optimum of activity, 

preferred substrates, 
biological function) 

 

 
PROTEASOME-LIKE 
 
 
Proteasome subunit α 
 
Proteasome subunit 1  
(Hu et al. 2003)  
Proteasome subunit 2  
(Hu et al. 2003)  
Proteasome subunit 3 
(Hu et al. 2003)  

 
 
 
 
 
 
SjProt1 
 
SjProt2 
 
SjProt3 
 
 
 
 
 

 
 
 
 
Schistosoma mansoni(A?) 
 
Schistosoma japonicum(A?) 
 
Schistosoma japonicum(A?) 
 
Schistosoma japonicum(A?) 
 
 

 
 
 
 
MER00504//- 
 
MER35524//Q86DZ2 
 
MER35526//Q86F39 
 
MER35525//Q86E06 
 
 
 

 
 
 
 
-/- 
 
-/24 
 
-/24 
 
-/24 
 

 
 
 
 
T01.975 
 
T01.010 
 
T01.984 
 
T01.983 
 
 
 

 
PB,T1 
 
 
PB,T1 
 
PB,T1 
 
PB,T1 
 
PB,T1 

 
pH optimum  
at neutral or slightly basic  
 
specific substrate: 
broad spectrum 

 
specific inhibitor:? 
 
proteasome is a 
multicatalytic  cytosolic 
peptidase complex which is 
characterized by its ability to 
cleave peptides with Arg, 
Phe, Tyr, Leu, and Glu  

 
non-peptidase homologs 
(Hu et al. 2003) 
(Laha et al. 2006-sub)  
 

 
 

 
Schistosoma japonicum (A?) 
 
Opistorchis viverini(A?) 
 

 

MER35527//Q86F62 
 
MER80129//Q208S5 
 

 
-/27 
 
-/27 
 

 
- 
 
- 

 
PB,T1(A) 

 
PB,T1(A) 

 
 

- 

 

 

Database links: MEROPS - http://merops.sanger.ac.uk/; UniProtKB/TrEMBL - http://www.expasy.org/sprot/; S. mansoni ESTs d. - www.compbio.dfci.harvard.edu or www.schistodb.org 
MW (kDa) practical – two numbers showed e.g. 33,38/24p – mean MW of pro-peptidase and mature peptidase 

A – adults M - miracidium Sc – schistosomula J - juvenile 21/17p – "p" here means the theoretical MW of partial sequence  

E – egg C – cercariae Sp – sporocyst  e.g. Cocude et al. 1997-sub – "sub" here indicates, that sequence is submitted to database 
(UniProtKB/TrEMBL) without the link to relevant publication 

http://merops.sanger.ac.uk/
http://www.expasy.org/sprot/
http://www.compbio.dfci.harvard.edu/
http://www.schistodb.org/
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2.4.5 Threonine peptidases of trematodes 

  

All the referred S. japonicum threonine peptidases in MEROPS 7.9 databases are 

catalytical components of the β subunit of the 20S core particle of proteasome (Hu et al. 

2003, Tab. 12. TP).66  

The proteasome is an intracellular multicatalytic peptidase complex composed of at 

least 15 non-identical subunits (e.g. α, β) which form a highly ordered ring-shaped 

structure (Fig.11).67 The proteasome complex containing peptidases is generally able to 

cleave peptide substrates with Arg, Phe, Tyr, Leu and Glu AA residues at neutral or 

slightly basic pH. The proteasome proteolytic activity is ATP-dependent 

(UniProtKB/TrEMBL database). For recognition of proteins assigned for degradation in 

proteasome, the polyubiquitin chain tag is required.68   

Proteins modified by proteasome proteolysis are thought to influence important cell 

processes, such as cell cycle progression or transcription control regulated mainly via 

unneeded protein degradation. 

The RT PCR analysis revealed significant proteasome subunit expression levels in 

S. mansoni cercariae, schistosomula and adult worms (e.g. Nabhan et al. 2007).  

Although the proteasome research, including the trematode proteasome machinery 

of, e.g., S. mansoni, is extremely progressive today, it is not advisable to discuss this 

immense topic for the purpose of this work. For more information the recent works 

dealing with the S. mansoni proteasome functional properties (Guerra-Sáb et al. 2005), 

proteomic (Castro-Borges et al. 2007) or bioinformatic analysis (e.g. RNAi, Nabhan et al. 

2007) are recommended. 

                                         
66 The threonine-dependent peptidolytical mechanism (nucleophile attack) is facilitated by deprotonation 

of reactive hydroxyl group (OH  ֿ ) via water molecule (Kisselev et al. 2000).  
67 Fig. 11 Scheme of eukaryote proteasome structure (20S and 26S). From www.benbest.com with 

amendments by Kašný. 

 
68  Before proteasome degradation the proteins are tagged by ubiquitin in reaction catalyzed by ubiquitin 

ligases.  

http://www.benbest.com/
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2.4.6 Related aspects 

  

Trematodosis belong to parasitic diseases representing one of the major global 

health problems. The actual need of novel ani-trematode drugs/vaccines set the headway 

of life sciences at this field. The advances in genomisc and proteomics revealed that 

parasite-derived peptidases are the key factors for trematode existence, considering them 

as promissing chemotherapeutic targets.  

At this time, the running genomic projects (e.g. S. mansoni, S. japonicum, F. 

hepatica) followed by completation of ESTs databases are the main sources for the future 

of in silico post-genomic functional characterization of peptidase genes. 

Some novel (genomic, transcriptomic, proteomic, glycomic and immunomic) 

trematode peptidase characteristics have been already revealed on this basis (see, e.g., 

Fig. 12). The obtained information might be exploited for designing of effective anti-

trematode peptidase inhibitors or vaccines, too. 

 

Fig. 12. Gene ontology analysis of the most abundant protein classes in adult worms 

of S. mansoni. Functional classification of S. mansoni protein groups containing more 

than 500 tags/functional classes. From Ojopi et al. (2007). 
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3. SUMMARY 

 

The text above refers about the majority of characterized trematode peptidases; the 

fundamental enzymes for trematode existence, which are integrated in many 

physiological processes like pathogenesis, tissue invasion/migration, nutrition, immune 

evasion and host-parasite interactions.  

In the history (until 1996), the peptidase catalytic activities in trematode extracts 

have been monitored. During 1980s and 1990s, the information of first cloned trematode 

peptidase genes were published and during last three decades cca 90 trematode peptidase 

sequences belonging to 19 peptidase families of 5 clans have been identified. 

The most studied trematode peptidases have been of Schistosoma mansoni origin: 

the serine peptidase - cercarial elastase (of cercariae), cysteine peptidases - cathepsins B, 

L, F, C plus the asparaginyl endopeptidase SmAE and the aspartic peptidase - cathepsin D 

(of adult worms and some other life stages).  

The recent computational cluster analysis revealed that the sequence S. mansoni 

elastase (the main cercarial penetration enzyme) is quite divergent from other serine 

peptidases of the S1 family. Cercarial elastase gene was proved in S. mansoni, S. 

haematobium and Schistosomatium douthitti, but not in the related S. japonicum. Mass 

spectrometry analysis confirmed cercarial elastase as an abundant enzyme in S. mansoni, 

whereas no cercarial elastase was found in S. japonicum or in the bird schistosomes 

Trichobilharzia regenti and T. szidati. Cercariae of these last three species probably use 

other peptidases for penetration; based on our results we suggest that at least in bird 

schistosomes these may be cysteine peptidases of the papain-like family (cathepsins B).  

Papain-like peptidases (cathepsins) were found in 11 trematode species. The 

majority of papain-like peptidases was described as essential enzymes for nutrition (blood 

digestion) in adult worms. Schistosoma mansoni blood digesting peptidase cathepsin B1 

was the first trematode peptidase cloned, whereas a related S. mansoni cathepsin B2 was 

identified quite recently (5 years ago). Successively, cathepsins B1/B2 of other trematode 

species have been characterized and localized (e.g. S. japonicum, Fasciola hepatica, 

Clonorchis sinensis, Paragonimus westermani and T. regenti/T. szidati). The necessity of 

cathepsins B for proper development of the flukes was proved by, e.g., in vivo biolistic 

analysis and knocking-down cathepsin B expression in S. mansoni adults. Therefore, 

cathepsins B might be targeted for design of novel schistosomiasis or general anti-
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trematode inhibitor chemotherapeutics (e.g. K11777). Schistosoma mansoni cathepsin L 

was localized in the reproductive system and it is probably not involved in blood 

digestion. On the other hand, F. hepatica/F. gigantica cathepsins L1/L2 and cathepsin L 

of P. westermani probably represent major blood digestive peptidases localized in the gut 

of these worm species. F. hepatica cathepsins L1/L2 have already been employed in 

vaccine trials against cattle and sheep fascioliasis and a high protection level (72 - 79 % 

decrease in worm burden) was reached. Potential cathepsin L activity was detected also in 

cercarial extracts or in juvenile fluke extracts of our trematode models T. regenti, T. 

szidati and Fascioloides magna. The attempts to obtain sequences and to clone cathepsin 

L genes of these species are in progress. However, it is not possible reliably differentiate 

the activity of cathepsin F from the activity of cathepsin L with fluorogenic peptide 

substrates. Therefore, the noticed activity in T. regenti, T. szidati and F. magna protein 

extracts might originate from both cathepsins L and F.  

Schistosome and clonorchid cathepsins F (S. mansoni, S. japonicum and Clonorchis 

sinensis) share the same localization in the intestine. Their major role is to provide a tool 

for nutrient processing by adult worms.  

Remaining trematode papain-like peptidases, cathepsins C and asparaginyl 

endopeptidases, were confirmed as essential factors for trans-processing of fundamental 

blood digestive peptidases in blood-feeding flukes – cathepsins B of S. mansoni, S. 

japonicum, F. hepatica, F. gigantica and P. westermani. During the first step the 

asparaginyl endopeptidase cleaves the main part of cathepsin B pro-region (except Val87-

Glu88 doublet). The processing is subsequently finished by cathepsin C, cleaving the 

remaining amino acid doublet to fully processed active form of cathepsin B. In vitro 

"cross-" trans-activation of S. mansoni cathepsin B by Ixodes ricinus recombinant 

asparaginyl endopeptidases and final "cross-" processing by rat cathepsin C was recorded. 

It suggests evolutionary fixed universal peptidase-activating system. 

The last prominent peptidase participating in blood digestion cascade is the aspartic 

peptidase cathepsin D. Cathepsins D of S. mansoni/S. japonicum are speculated to be the 

more important ones in the process of hemoglobin degradation than cathepsins B. In vitro 

cleavage of hemoglobin by recombinant schistosome cathepsins D and B results in 

hemoglobin fragments of different length. Putative cathepsins D of T. regenti and T. 

szidati were also obtained, but deduced amino acid sequences did not blast significantly 

with known trematode cathepsin D sequences. 



 

 92 

Four novel peptidase sequences of our two model organisms (Trichobilharzia 

regenti and T. szidati) were obtained and multiple biochemical characteristics of these 

peptidases were described. Our results were continualy compared with data on the best 

described trematode species - Schistosoma mansoni. It was shown that T. regenti/T. 

szidati cathepsins B1 and B2 sequences are similar to S. mansoni cathepsins B1/B2 by 77 

% and 88 %, respectively. It evidences that bird schistosomes are appropriate comparative 

models for human S. mansoni. However, significant differences in the proteolytic 

equipment between S. mansoni and bird schistosomes have been revealed during our 

studies, showing that the flukes within one family may use different enzymatic tools 

during penetration of the host skin. 

I believe that this work summarizing data on trematode peptidases can help to better 

understand multiple peptidase functions in trematode biology, as well as elucidate some 

novel aspects of parasite-host interactions based on proteolysis. 
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5. MAIN AIMS OF THE EXPERIMENTAL PART OF THE THESIS 

 

Cercarial dermatitis caused by bird schistosomes and fascioloidosis caused by F. 

magna seem to be an emerging problem in some parts of Europe. In the experimental 

work covered by the papers included in this Ph.D. thesis we focused on peptidase 

repertoire of these trematodes with the aims to investigate their biochemical, molecular 

and immunochemical characteristics followed by estimation of function of particular 

peptidases in the flukes. 

Peptidase repertoire generally represents one of the key factors in the life cycle of 

trematodes. Particular trematode peptidases have been characterized as essential enzymes 

for a number of trematodes, mainly the species of human medicine (schistosomes) or 

veterinary importance (fasciolids). Several peptidases of trematodes have been tested in 

immunological and pharmacological studies as potential diagnostic markers, vaccination 

antigens or targets of newly synthesized chemotherapeutic drugs. 

Althoug bird schistosomes do not substantially affect human health beside the 

species of the genus Schistosoma, they cause an unpleasant trouble represented by 

cercarial dermatitis ("swimmer’s itch") to bathers or people working in water containing 

cercariae. This problem can be seen in some recreational areas around the world (e.g. 

Lake Annecy in France) and may negatively influence local economies. Besides, various 

species of bird schistosomes can be pathogenic to their specific hosts (birds) and local 

outbreaks of bird schistosomiasis with fatal consequences have been already recorded; 

particularly the neurotropic species Trichobilharzia regenti (included in this study) has 

been shown to cause neuromotoric disorders and paralyses in ducks with occasional lethal 

sequels. The knowledge on how the early post-penetration stages of this neuropathogenic 

bird schistosome (and other species as well) might be dangerous to man (besides causing 

dermatitis) is lacking. The basic knowledge "why and how" the cercariae penetrate the 

skin of either specific or non-specific hosts including man, what is their destiny within the 

host and what are the merits and mechanisms of pathogenicity is essential for 

understanding biology of these parasites and parasite-host interactions. The comparison of 

such phenomena among various schistosome species and genera is interesting from the 

point of evolutionary processes and divergence of parasite life strategies in the context of 

colonization of different host species. 

In our experiments included as a part of this thesis, peptidases employed in skin 

disruption and nutrient digestion by cercariae and schistosomula of the bird schistosomes 
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T. regenti and T. szidati have been in focus. A general screen for cysteine and serine 

peptidase activities was performed in the larvae and their excretory/secretory products. 

Selected enzymes were characterized, their sequence data were obtained and some of 

them were produced as recombinant proteins for further studies concerning e.g. their 

engagement as factors of developing skin inflammatory reaction - cercarial dermatitis.  

In the case of the liver flukes Fasciola hepatica and Fascioloides magna, 

excretory/secretory products were analyzed for antigenicity in experimentally infected 

hosts. Both species express severe pathogenicity to various ruminants. F. magna is one of 

the most pathogenic trematodes in aberrant hosts. Sudden deaths of cervids, namely 

fallow deer and roe deer, caused by F. magna infection have been often recorded and 

infections of domestic animals have been referred, too. In some areas of Europe and 

Northern America, the two fasciolid species occur sympatrically. Although there are 

many commercial immunodiagnostic tests available for F. hepatica infection, a diagnostic 

test to specifically differentiate F. magna infection has not been developed yet. The 

proofs of infection are usually based on immunodetection of species-specific protein 

antigens from worm extract. Excreted/secreted peptidases of F. hepatica (cathepsins L in 

particular) possess strong antigenic properties. Therefore, our attempts were focused on 

comparison of (cross-)reactivity of F. hepatica and F. magna excretory/secretory antigens 

with sera of experimentally infected goats in order to find species-specific antigens and 

evaluate the possibility to use peptidases of these flukes as immunodiagnostic markers. 

 

Particular aims: 

 

 To develop methods for isolation of excretory/secretory products from penetration 

glands of T. regenti/T. szidati cercariae by using different stimulants. 

 

 To biochemically characterize the peptidolytical properties of excretory/secretory 

products of T. regenti and T. szidati.  

 

 To clone selected peptidases and interpret obtained molecular data.  

 

 To identify the biological and immunological properties of Trichobilharzia peptidases. 

 

 To make comparisons of recorded data with those of S. mansoni. 
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 To characterize the antibodies response of experimentally infected goats to F. magna 

and F. hepatica major protein antigens. 

 

 To compare 1D and 2D excretory/secretory products protein pattern of F. magna and 

F. hepatica. 

 

 To select species-specific protein antigen usable for F. magna and F. hepatica 

immunodiagnostic. 
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6. ORIGINAL PAPERS AND SUMMARY 
 

Paper 1  

Mikeš, L., Zídková, L., Kašný, M., Dvořák, J. and Horák, P. (2005).  In vitro stimulation 

of penetration gland emptying by Trichobilharzia szidati and T. regenti 

(Schistosomatidae) cercariae. Quantitative collection and partial characterization of the 

products. Parasitology Research 96, 230-241. DOI: 10.1017/S0031182003003305 

 

Paper summary 

 

 T. szidati and T. regenti cercariae released the content of their circumacetabular and 

postacetabular penetration glands (ESP) after the stimulation by linoleic acid, linolenic 

acid, calcium ionophore and praziquantel. Analyzed ESP resulted in identical protein 

spectra of soluble and insoluble compounds, although T. szidati and T. regenti 

cercarial sensitivity slightly differ to used inducers. 

  Lithium carmine stained the postacetabular glands, alizarin stained the 

circumacetabular glands and apomorphine stained differentially both types of glands. 

 Cysteine peptidase activity was recorded in cercarial ESP of both T. regenti and T. 

szidati with fluorogenic peptide substrate Z-Phe-Arg-AMC and was effectively 

inhibited by cysteine peptidase inhibitors 10 µM E-64 >96 % and 10 µM CA074 ~90 

%. 

 Rabbit antibodies raised against S. mansoni cercarial elastase exhibited a strong 

reaction with the ~ 28 kDa S. mansoni elastase but did not react with corresponding  

protein of T. szidati and T. regenti cercariae. 

 Antibodies raised against T. szidati ESP reacted with both types of T. szidati cercarial 

penetration glands and cross-reacted conformably with T. regenti cercariae. 

 Incubation of transbloted T. szidati and T. regenti cercarial extract with DCG-04 

(biotinylated analog of cysteine peptidase inhibitor E-64) revealed the reaction at 31 

kDa and 33 kDa. 

 The lectin-like activity was detected in T. szidati by incubation of labelled saccharides 

with cercarial ESP. 
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Paper 2  

Kašný, M., Mikeš, L., Dalton, J.P., Mountford, A.P., Horák, P. (2007). Comparison of 

cysteine peptidase activities in Trichobilharzia regenti and Schistosoma mansoni 

cercariae. Parasitology 134, 1599-1609. DOI:10.1017/S0031182007002910 

 

Paper summary 

 

 A similar pattern of cysteine peptidase activities was detected by zymography of 

cercarial extracts and the chromatographic fractions from T. regenti and S. mansoni. 

 The highes peptidase activity was recorded in T. regenti and S. mansoni cercarial 

extracts with the fluorogenic peptide substrate Z-Phe-Arg-AMC at pH 4.5 optimum 

and it was inhibited by irreversible specific inhibitor for cathepsin B and L - Z-Phe-

Ala-CHN2 (>96%).  

 Using the same substrate (Z-Phe-Arg-AMC) the peptidase activity was as well 

detected in T. regenti and S. mansoni praziquantel-stimulated ESP.  

 Potential cercarial elastase activity was demonstrated by slight cleavage of Suc-Ala-

Ala-Pro-Phe-AMC substrate in S. mansoni cercarial extracts only. 

 The T. regenti and S. mansoni cercarial chromatographic fractions with cysteine 

peptidase activity degradated the skin components such as keratin and collagen. 

 The incubation of transbloted cercarial extracts and chromatographic fractions with 

DCG-04 showed the reaction at 33 kDa for T. regenti and 33–34 kDa for S. mansoni. 

This reaction was blocked by preincubation of samples with E-64 and CA074. 

 The ability of T. regenti cercarial cysteine peptidases (probably cathepsin B-like 

peptidase) to cleave skin components together with no cercarial elastase activity 

supports the role of cysteine peptidases in host invasion. 
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Paper 3 

Dolečková, K., Kašný, M., Mikeš, L., Mutapi, F., Stack, C., Horák, P. (2007). Peptidases 

of Trichobilharzia regenti (Schistosomatidae) and its molluscan host Radix peregra s. lat. 

(Lymnaeidae): construction and screening of cDNA library from intramolluscan stages of 

the parasite. Folia Parasitologica 54, 94-98. 

 

Paper summary 

 

 Four full-length cDNA sequences were identified. 

 The full-length sequence of T. regenti cysteine peptidase - cathepsin B1 has been 

identified by use of cDNA based on mRNA from cercarial germ balls. Its sequence is 

identical to recently described schistosomular TrCB1.1.  

 The other three sequenced peptidases were of intermediate host tissue origin (snail 

Radix sp.) which demonstrated the contamination of T. regenti samples during mRNA 

isolation.  

 The Radix sp. cathepsin L-like peptidase (GeneBank EF066525) showed 60% 

similarity to cathepsin L-like cysteine peptidase of darkling beetle (Tenebrio monitor) 

and two Radix s. lat. serine peptidases, RpSP1 (GeneBank EF123198) and RpSP2 

(GeneBank EF123199) were from ~ 60 % similar to serine peptidase β and α 

fragments of the S. mansoni intermediate host (snail Biomphalaria glabrata) 
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Paper 4  

Novobilský, A., Kašný, M., Mikeš, L., Kovařčík, K., Koudela, B. (2007). Humoral 

immune responses during experimental infection with Fascioloides magna and Fasciola 

hepatica in goats. Parasitology Research 101, 357-364. DOI: 10.1007/S00436-007-0463-

5 

 

Paper summary 

 

 In experimental animals (goats) infected by F. magna and F. hepatica metacercariae 

the antibody level was significantly increased (against negative control) since 2 weeks 

post infection, measured by ELISA method.  

 Due to strong cross-reaction of antibodies with F. magna and F. hepatica ESP antigens 

is impossible to differentiate these two trematodiases by ELISA method.  

 The species specific proteins - 40, 120 kDa from F. magna ESP and 80, 160 kDa from 

F. hepatica ESP were detected (with no cross-reaction) by two 2D electrophoresis 

followed by immunoblot. It suggested the exploitation of the noticed proteins as 

potential immunodiagnostic markers.  
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