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Abstract: Naive set theory can be formalised in first-order logic as a theory with
one axiom (of extensionality) and one axiom schema (of unrestricted comprehen-
sion). It is widely known that this theory is inconsistent. What is less known is
that a mere reinterpretation of the quantifiers in the schema of unrestricted com-
prehension blocks all the well-known paradoxes of naive set theory. This is the
case when the quantifiers are interpreted exclusively, which is an idea that orig-
inates in Wittgenstein’s Tractatus in the context of elimination of identity from
logic. In the context of set theory, the idea was first used by Jaakko Hintikka
thirty five years later. This thesis introduces and investigates the possibility of
using exclusive interpretation of quantifiers to avoid paradoxes of naive set the-
ory. The main criterion of success is consistency of the resulting theory. The
main result of this thesis is the proof that the set theories, which use the idea of
exclusive interpretation and which Hintikka left as possibly consistent, are incon-
sistent. The inconsistency is discussed in the context of Russell’s vicious circle
principle, which is found to be inadequate.

Abstrakt: Naivńı teorii množin je možné formalizovat v logice prvńıho řádu jako
teorii s jedńım axiomem (extenzionality) a jedńım axiomatickým schématem (ne-
omezené komprehenze). Dobře známým faktem je, že taková teorie je sporná.
Avšak méně známým faktem je to, že pouhá reinterpretace kvantifikátor̊u ve
schématu neomezené komprehenze zablokuje všechny dobře známé paradoxy na-
ivńı teorie množin. Jde o exkluzivńı interpretaci a tento nápad pocháźı z Witt-
gensteinova Traktátu, kde se objevuje v kontextu možnosti eliminace identity z
logiky. V kontextu teorie množin jej poprvé použil až Jaakko Hintikka o třicet pět
let později. Tato práce představuje a zkoumá možnost použit́ı exkluzivńı interpre-
tace kvantifikátor̊u k zablokováńı paradox̊u naivńı teorie množin. Hledaná teorie
by měla být předevš́ım bezesporná. Hlavńım výsledkem práce je d̊ukaz toho, že
teorie množin, které využ́ıvaj́ı tuto reinterpretaci kvantifikátor̊u a u kterých Hin-
tikka nechal otázku bezespornosti otevřenou, jsou sporné. Spornost těchto teoríı
je diskutována v kontextu Russellova principu bludného kruhu, který je zhledán
nedostatečným.

Keywords: Naive set theory, Exclusive interpretation, Quantifier, Inconsistency,
Vicious circle

Kĺıčová slova: Naivńı teorie množin, Exkluzivńı interpretace, Kvantifikátor, Spor-
nost, Bludný kruh
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Introduction
Ludwig Wittgenstein in Tractatus famously asserted: “Identity of object I express
by identity of sign, and not by using a sign for identity. Difference of objects I
express by difference of signs.” [1, 5.53].

This idea, applied to quantifiers in first-order logic, leads to exclusive interpre-
tation of quantifiers, where distinct bound variables must have distinct values. In
classical logic, identity is needed to e.g. assert that there are exactly two objects
satisfying some unary predicate P . To this end, one says that there is some a
and there is some b such that a and b are distinct and P (a) and P (b) and that for
every object c, if P (c), then c is a or b. Formally, one can do so by the formula
φ ≡ ∃a(P (a) ∧ ∃b(a ̸= b ∧ P (b) ∧ ¬∃c(c ̸= a ∧ c ̸= b ∧ P (c))))1.

However, given exclusive interpretation, one does not need identity for this.
One simply says that there is some a and there is some b such that P (a) and P (b)
and there is no c such that P (c). Formally: ψ ≡ ∃a(P (a) ∧ ∃b(P (b) ∧ ¬∃cP (c))).
Assuming the quantifiers in φ are inclusive (i.e. standard) and quantifiers in ψ
exclusive, the two formulae are equivalent in the sense that they are satisfied in
the same structures of signatures with the unary predicate symbol ’P ’. Exclusive
interpretation is explained in detail in Section 2.1.

Jaakko Hintikka [2] added exclusive quantifiers to the standard first-logic with
inclusive quantifiers and showed that there is a translation between formulae using
inclusive quantifiers to formulae using exclusive quantifiers, and vice versa (the
latter direction is exemplified by the formulae φ and ψ above). Furthermore,
the formulae with exclusive quantifiers translated from formulae with inclusive
quantifiers do not contain the sign for identity, which can therefore be eliminated
by using exclusive quantifiers.

More recently, Kai Wehmeier [3] has addressed the topic and argued for the
possibility and desirability of eliminating the identity sign from first-order logic.
Consequently, Wittgenstein’s claim that “The identity-sign is [...] not an essential
constituent of conceptual notation.” [1, 5.533] has a much stronger support than
many would believe.

This thesis, however, is focused mostly not on philosophical questions about
identity but on the idea of using exclusive interpretation of quantifiers to “fix”
naive set theory (henceforth just “Hintikka’s idea” as it was introduced by Hin-
tikka [2]).

Naive set theory can be formalised as a first-order theory in the standard set-
theoretical language with only one axiom and one axiom schema. The axiom is
the standard extenstionality axiom and the schema is unrestricted comprehension
having the general form: ∃S∀x(x ∈ S ↔ φ)2. Naive set theory is inconsistent,
but as realised by Hintikka [2, pp. 239–241], the known paradoxes are avoided
when the quantifiers in the comprehension are exclusive. In that case, Russell’s
property is not a member of itself gives rise (by comprehension) to a set S of all
sets that are not members of themselves except for S itself, which may or may

1In this thesis I use ’≡’ as a symbol for identity at the meta level, in contrast to ’=’ – identity
at the object level.

2The fact that S is capital has no special relevance, I just denote sets that are being defined
by the comprehension by capitals.
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not be a member of itself regardless of whether the property holds for it. This is
because, due to exclusive interpretation, the quantifier ∀x in the comprehension
axiom excludes S from the range of its possible values. This axiom given by
comprehension of φ ≡ x /∈ x with exclusive quantifiers is translated to standard
logic as ∃S∀x(x ̸= S → (x ∈ S ↔ x /∈ x)).

From now on, I will use the term “exclusive set theory” for any set theory with
extensionality and unrestricted comprehension in which exclusive interpretation
is somehow used to try to avoid the paradoxes. There is a number of exclusive set
theories and they differ in which parts of comprehension are exclusive and which
are inclusive. In particular they can differ in the way they treat parameters in
their comprehension schemas: which bound quantifiers (if any) exclude from their
range of possible values the values of the parameters.

Although Hintikka [4] realised that one of these exclusive set theories is in-
consistent, he left open the question of consistency of other exclusive set theories.
Consistency of at least one of these theories would mean that a simple (and ar-
guably quite natural) reinterpretation of quantifiers can fix naive set theory. In
a sense, such a theory would be similar to Quine’s New Foundations (introduced
in Section 1.3) in that it would be based on the axiom of extensionality and the
axiom schema of unrestricted comprehension of naive set theory and would thus
not require additional axioms for power sets, unions, etc., as these would be en-
tailed by the comprehension schema. It would also be a set theory with e.g. the
universal set and Frege’s numbers, which are “too big” to be sets in the most
standard set theory – Zermelo-Fraenkel set theory (henceforth ZF).

The main result of this thesis is the negative resolution of Hintikka’s open
problem: the theories considered by him are all inconsistent. There are still some
options not considered by Hintikka left as possibly consistent: in particular, the
exclusive set theory without parameters and without identity introduced in Chap-
ter 2. Overall it seems that allowing the use of parameters in the comprehension
of an exclusive set theory leads to inconsistency, while not allowing them leads
to a plausibly consistent but also plausibly unworkable theory.

Hintikka’s idea was partly motivated by the vicious circle principle formulated
by Russell first in a discussion with Poincaré (introduced in detail in Section
1.1.3). The existence of the paradoxes of naive set theory (and also some other
related paradoxes) was blamed on the existence of vicious circles and the principle
was supposed to prevent the vicious circles from appearing. However, among
other problems with this principle, many exclusive set theories seem to implement
the principle yet they are inconsistent. The exclusive set theories can, along with
various paradoxes and other set theories, serve as a testing ground for alternative
versions of the vicious circles principle. A valid vicious circle principle should
be violated by the inconsistent set theories but not by the consistent ones. For
an investigation about whether a theory violates a vicious circle principle and
whether it contains paradoxes and whether these two things match, usefulness of
the theory in mathematical practice can be ignored. This is why even set theories
which are unworkable can be of some interest.

The thesis consists of four chapters. The first one motivates Hintikka’s idea
by introducing Russell’s Vicious circle principle, Wittgenstein’s problems with
identity, and Quine’s set theory New Foundations.

The second chapter introduces exclusive interpretation of quantifiers, Hin-
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tikka’s idea, and various exclusive set theories in detail. It sets the stage for the
next chapter.

The third chapter contains the new results. It shows that a particular exclusive
set theory which seems rather weak is inconsistent. A consequence is drawn from
this result to inconsistency of the family of set theories considered by Hintikka.

The fourth chapter discusses Russell’s Vicious circle principle in light of in-
consistency of exclusive set theories. It suggests there are two distinct problems
with it, one of which explains why it does not guard the exclusive set theories
from inconsistency.

The thesis also includes Appendix which contains succinct exposition of all
the theories with some kind of unrestricted comprehension mentioned throughout
this thesis.
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1. Motivation of exclusive set
theories
Hintikka’s idea has in some sense two roots: one of them is Vicious circle principle
formulated and defended by Bertrand Russell as the way to avoid paradoxes; the
other is Ludwig Wittgenstein’s idea of using exclusive interpretation to eliminate
identity from logic. Hintikka’s idea can be seen as using Wittgenstein’s exclusive
interpretation to implement Russell’s Vicious circle principle in set theory. These
are the topics of the first two sections of this chapter. The last section introduces
W. V. Quine’s set theory New Foundations which is in some ways similar to
exclusive set theories.

1.1 History of the paradoxes and the vicious cir-
cle principle

The discovery of paradoxes in naive set theory was ensued by discussion of what
exactly is to be blamed for their appearance. The debate has not exactly been
settled; rather, several ideas have been developed into systems avoiding the para-
doxes, but none of them with universal support. Some of the major solutions are:
Russell’s theory of types, Zermelo-Fraenkel set theory, and Quine’s New Founda-
tions. But before these alternative theories have been established, a discussion
had taken place. Why does naive set theory contain paradoxes? What should be
avoided in a better, non-naive set theory?

This section provides a brief overview of the history of Russell’s paradox, Rus-
sell’s first reactions to it, and the subsequent discussion of Russell and Poincaré in
the first decade of the twentieth century. In this discussion, among other things
Vicious circle principle (henceforth VCP) was formulated, which is relevant for
Hintikka’s idea.

1.1.1 Finding Russell’s paradox
Russell discovered the paradox roughly in the following way (see [5]). He intu-
itively thought that there should be the universal set U (i.e. set of all sets) as
it is the extension of the concept anything. If that is so, how does the power set
of U – P(U) – look like? Clearly P(U) ⊆ U because U contains1 all sets. Also
U ⊆ P(U) because every set is also a subset of U . Thus U = P(U)2.

Now, U = P(U) cannot be reconciled with Cantor’s theorem which says that
|S| < |P(S)| for every set, thus also |U | < |P(U)|. By Cantor’s theorem there is
no bijection from U to P(U), yet if U = P(U), there are bijections – the simplest
one being identity (henceforth denoted as i). Thus if it is the case that U = P(U),

1I use “a contains b” as synonymous with “b is a member of a”.
2These remarks can be understood either informally without a specific theory in mind, or

in some set theory with the universal set, like New Foundations where indeed U = P(U). For
now, it is best to follow Russell in thinking without any axiomatic theory, relying not on axioms
but on intuition.
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Cantor’s theorem must not hold either in general, or at least for this particular
case.

Let’s now follow, as Russell did, the proof of Cantor’s theorem that P(S) > S
for the particular case of U , P(U), and i. The proof starts by assuming (for a
contradiction) that there is a surjection f from S to P(S) (in our case i from U to
P(U) = U). The proof continues by considering the set A = {x ∈ S|x /∈ f(x)} (in
our case R = {x|x /∈ x}). The proof ends by deriving a contradiction: A ∈ f(A)
iff A /∈ f(A) (in our case R ∈ R iff R /∈ R).

Cantor’s theorem is proved by invoking a diagonal set, which in case of U is
Russell’s set R. This is good news for someone who wants to have a set theory
with the universal set because it leaves open the option of “fixing” naive set theory
by somehow not allowing problematic formulae like “x /∈ x” into comprehension
and thereby losing Cantor’s theorem (at least its general applicability to all the
sets, including U). Indeed, there are such set theories with universal set, most
prominently Quine’s New Foundations.

As a sidenote, there is a dual of Russell’s paradox – Russell’s hypodox: H =
{x|x ∈ x}, which is also problematic for naive set theory. Is H ∈ H, or H /∈ H?
Both can be true because if H ∈ H, then H does satisfy the membership criterion
of H, and if H /∈ H, it does not. This by itself does not make the theory
inconsistent but it refutes the idea that every property has a corresponding set
as its extension just as well as Russell’s paradox does. A discussion of hypodoxes
in general can be found in [6].

1.1.2 Russell’s reaction to the paradox
Russell found the paradox in 1901 and before settling on the theory of types in
around 1908 he explored various solutions to this paradox, to other set-theoretical
paradoxes, and also to some related non-set-theoretical paradoxes.

The main directions of his thinking are outlined in [7] where he identifies three
categories of a solution:

• The zigzag theory

• The theory of limitation of size

• The no class theory

Regarding the zigzag theory, the idea is that:

[W]e start from the suggestion that propositional functions determine
classes when they are fairly simple, and only fail to do so when they
are complicated and recondite. [7, p. 38]

In my view, the terms “simple” and “complicated” are slightly misleading, as
e.g. x ∈ x seems rather simple. Simplicity is not what matters for a “propositional
function”3 to determine a class, at least not in any obvious sense of the term.

3Russell’s conception of propositional functions is not very obvious and is addressed e.g.
in [8, pp. 16–17]. In my commentary I follow a modern terminology, using instead the term
“property” and often expressing properties in the standard notation of first-order logic.
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In any case, the challenge for the zig-zag theory is to explain which propo-
sitional functions are valid (simple) and which are not. One solution to this
challenge came only some thirty years later from Quine [9].

The second category of a solution that Russell identifies is limiting the size of
sets.

This theory is naturally suggested by the consideration of Burali-
Forti’s contradiction, as well as by certain general arguments tending
to show that there is not (as in the zigzag theory) such a thing as
the class of all entities. This theory naturally becomes particularized
into the theory that a proper class must always be capable of being
arranged in a well-ordered series ordinally similar to a segment of
the series of ordinals in order of magnitude; this particular limitation
being chosen so as to avoid Burali-Forti’s contradiction. [7, p. 43]

Gödel [10, p. 453] observes that the zig-zag theory might be called “inten-
sional” and the theory of limitation of size “extensional” since the former theory
considers some properties invalid based on their intension (or meaning) while the
latter on (the size of) their extension.

The last Russell’s category is the no class theory where “...classes and relations
are banished altogether.” [7, p. 45]

Out of the three categories, the no class theory was Russell’s favorite and was
later developed by him in more detail. While in 1905 this is not yet clear as he
sees major problems with it:

The objections to the theory are (1) that it seems obvious to common
sense that there are classes; (2) that a great part of Cantor’s theory of
the transfinite, including much that it is hard to doubt, is, so far as can
be seen, invalid if there are no classes or relations; (3) that the working
out of the theory is very complicated, and is on this account likely
to contain errors, the removal of which would, for aught we know,
render the theory inadequate to yield the results even of elementary
arithmetic. [7, p. 45],

later his preference for this solution becomes clear:

I have [...] discovered that it is possible to give an interpretation to
all propositions which verbally employ classes, without assuming that
there really are such things as classes at all [...] That it is meaningless
[...] to regard a class as being or not being a member of itself, must be
assumed for the avoidance of a more mathematical contradiction; but
I cannot see that this could be meaningless if there were such things
as classes. [11, p. 376]

A succinct explanation of the idea is in [12, p. 636, my translation]:

The thesis of the no-class theory is that all significant propositions
concerning classes can be regarded as propositions concerning all or
some of their members, i.e., as terms which satisfy some propositional
function φ(x). I have found that the only propositions concerning
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classes that cannot be regarded in this way are propositions of the kind
that give rise to contradictions. It is therefore natural to assume that
classes are simply linguistic or symbolic abbreviations. For example,
when we say, “Men are included in mortals,” we seem to be making a
judgment about the class of men collectively; but when we say, “All
men are mortals,” we are not necessarily assuming that there is a new
entity, the class of men, in addition to all men individually.

Interestingly, as early as in 1905, Russell described three categories that are
very much like what we have today: New Foundations is a theory in the vein of
the zigzag theory, Zermelo-Fraenkel set theory limits the size of sets, and Russell’s
type theory and its descendants have the no class theory as their ancestor.

1.1.3 Vicious circle principle
This section presents the origins of VCP and also some later reactions to it – by
Hintikka and Gödel.

Discussion of Russell and Poincaré

In the years 1905–1909, Poincaré and Russell discussed the problem in a series of
papers [13, 7, 12, 14, 15]. In this section I introduce this discussion. Much more
comprehensive introduction to this topic of early discussions of vicious circles can
be found in [8]. A modern treatment of the topic of predicativity4 in general can
be found in Feferman’s work, e.g. in [16], [17].

Poincaré [13] analysed the paradox of Jules Richard, which can be introduced
as follows.

Richard’s paradox: Let S be the set of all real numbers that can
be defined (by a finite number of words). S is countable because there
is countably many finite definitions. Because S is countable, it can be
ordered as a countable sequence. Then one can define a real number
a with 0 as its integral part and its n-th decimal being 1 iff the n-th
decimal of the n-th number in S is 8 or 9, and p+1 if the n-th decimal
of the n-th number in S is p < 8.5 a is different from every number in
S, yet it was defined by a finite number of words, hence the paradox.

Then, in the paragraph named “La Vraie Solution”, Poincaré [13, p. 307] gives
his “true solution”: we can only define S as the set of all numbers that can be
defined without introducing the notion of the set S itself. Otherwise the definition
of S is seen to contain a vicious circle.

He believed that many paradoxes, including the ones in set theory, exist be-
cause a vicious circle is somehow involved. The solution, then, is to avoid vicious
circles in our definitions, i.e., to reject impredicative definitions. In fact, Poincaré
identifies impredicative definitions with those that contain a vicious circle (see
[13, p. 307]).

4There is clearly a strong connection between predicativity and vicious circles. As mentioned
below, Poincaré identifies predicative definitions with those that do not contain a vicious circle.

58 is coupled with 9 just to avoid problems with a = 0.9999... = 1, 0.23999... = 0.24, and
the like.
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While Poincaré is the first one to mention vicious circles in the context of the
paradoxes, Russell [12] introduces VCP as a principle that is supposed to guard
us against vicious circles. He writes:

[T]he key to the paradoxes must lie in the idea of the vicious circle;
I further recognise this to be true of Mr. Poincaré’s objection to the
idea of totality, that whatever in any way concerns all or some or any
of the members of a class must not be a member of the class. In the
language of Mr. Peano, the principle I hold may be stated as follows:
‘Anything that contains an apparent variable must not be one of the
possible values of that variable’. [12, p. 634, my translation]

Note that “apparent variable” is what we nowadays call “bound variable”.
Russell was not very consistent with his formulations of VCP (see e.g. [8,

pp. 3–4]). In this quotation alone, there seem to be two distinct principles,
the former being stronger than the latter. Essentially, the latter narrows down
“concerning members of a class in any way” of the former to “concerning members
of a class by containing an apparent variable, the possible values of which are
the members of the class”. And as argued in Chapter 4, a broader sense of
“concerning” is needed even in the context of set theories formalised in first-order
logic.

A few pages later, Russell says:

To avoid the fallacy of the vicious circle, we must admit [...] the
principle: ‘Everything that contains an apparent variable must be
excluded from the possible values of this variable’. We will call this
the principle of the vicious circle. [12, p. 640, my translation]

Thus it seems appropriate to use the term “Russell’s VCP” for the following,
even though there are other formulations by Russell himself.

Russell’s VCP: Everything that contains an apparent variable must
be excluded from the possible values of this variable.

This formulation of Russell’s VCP is uses the notion of “apparent variable”
(i.e. bound variable). Such a formulation is inappropriate in the context of
non-set-theoretical paradoxes like Richard’s paradox or Liar’s paradox which are
usually introduced in a natural language, not in a formal one using variables and
quantifiers. In such cases, some other Russell’s formulations of the principle seem
more appropriate, such as:

Russell’s VCP (informal): “Whatever involves all of a collection
must not be one of the collection.” [14, p. 225]

From now on I will use “Russell’s VCP” and “Russell’s VCP (infor-
mal)” for these two formulations, and “Russell’s VCP” more generally, without
a specific formulation in mind.

Although Poincaré and Russell agreed on the need to avoid vicious circles,
they disagreed on why these vicious circles appear and thus how they should be
avoided. This is because Poincaré blamed their appearance on misguided belief
in actual infinity while Russell held that such a belief is innocuous.

Poincare’s perspective was that:
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It is the belief in the existence of the actual infinity that has given
rise to these non-predicative definitions. Let me explain: these defini-
tions include the word all, as can be seen from the examples [e.g. of
Richard’s paradox]. The word all has a clear meaning when it con-
cerns a finite number of objects; in order for it to still have a meaning
when the objects are infinite in number, there would have to be an
actual infinity. Otherwise, not all these objects can be conceived as
posited prior to their definition, and then if the definition of a notion
N depends on all the objects A, it may be tainted by a vicious circle,
if among the objects A there are some that cannot be defined without
involving the notion N itself. There is no actual infinity; the Can-
torians have forgotten this, and have fallen into contradiction. [13,
p. 316, my translation]

Poincaré’s view of how the belief in actual infinity can introduce vicious circles
is further elaborated by him on the first pages of [15]. Hintikka distinguishes
VCP in Russell’s sense from VCP in Poincaré’s sense, the latter being stronger
[2, pp. 244–245].

Russell explicitly denies that the belief in actual infinity would play such a
role regarding the appearance of vicious circles:

“[C]ontradictions have no essential relation to infinity. Of the insol-
ubilia considered by the ancients, none introduces infinity; and it is
singular that Mr. Poincaré cites Epimenides [i.e. Liar’s paradox] as
analogous to those which occur in the theory of the transfinite. A
simplification of this paradox is constituted by the man who says: ‘I
lie’; if he lies, he tells the truth; but if he tells the truth, he lies. Has
this man forgotten that there is no actual infinity?” [12, p. 633, my
translation]

Another paradox that does not involve infinity mentioned by Russell (e.g. in
[14]) is Berry’s paradox. A version of it is:

Berry’s paradox: Define a as the smallest natural number which
does not have a definition of less than fifty syllables in English lan-
guage. The number a exists because there are only finitely many defi-
nitions with less than fifty syllables, so the class of all natural numbers
without such a definition is non-empty and thus has the smallest num-
ber. However, this number has just been given a definition in less than
fifty syllables – hence the paradox.

Before moving on to the next chapter, I briefly mention two reactions to this
discussion of VCP – one by Gödel [10], the other by Hintkka [2]. The latter as a
motivation of Chapter 2, the former as in some ways relevant for Chapter 4.

Gödel’s analysis of VCP

Gödel claims that VCP, as formulated on several occasions by Russell, are in fact
three different principles. Following Russell, Gödel formulates VCP as: “[N]o
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totality can contain members definable only in terms of this totality, or members
involving or presupposing this totality.” [10, p. 454]

Then he notes that “corresponding to the phrases ‘definable only in terms
of,’ ‘involving,’ and ‘presupposing,’ we have really three different principles, the
second and third being much more plausible than the first.” [10, p. 455]

The main point of Gödel is that while VCP seems plausible for a constructivist,
it does not seem plausible for a realist. Focusing mainly on the first form of VCP,
which is the strongest, Gödel writes:

[I]t seems that the vicious circle principle in its first form applies
only if the entities involved are constructed by ourselves. In this case
there must clearly exist a definition (namely the description of the
construction) which does not refer to a totality to which the object
defined belongs, because the construction of a thing can certainly not
be based on a totality of things to which the thing to be constructed
itself belongs. If, however, it is a question of objects that exist inde-
pendently of our constructions, there is nothing in the least absurd in
the existence of totalities containing members, which can be described
(i.e., uniquely characterized) only by reference to this totality. [10,
p. 456]

Regarding the other two forms of VCP, Gödel says that these do not seem
to be valid, in general, for a realist either, because “one cannot say that an
object described by reference to a totality ‘involves’ this totality, although the
description itself does” and “nor would it contradict the third form, if ‘presuppose’
means ‘presuppose for the existence’ not ‘for the knowability.’” [10, p. 456] In the
particular case of set theory where the objects are sets (or classes), Gödel is even
willing to concede VCP in the second and third form but rejects it in the first
form.

As to classes in the sense of pluralities or totalities it would seem that
they are [like concepts] not created but merely described by their
definitions and that therefore the vicious circle principle in the first
form does not apply. I even think there exist interpretations of the
term ‘class’ (namely as a certain kind of structures), where it does
not apply in the second form either. But for the development of all
contemporary mathematics one may even assume that it does apply
in the second form, which for classes as mere pluralities is, indeed, a
very plausible assumption. [10, p. 459]

Hintikka on VCP

Hintikka’s idea (of interpreting quantifiers exclusively to avoid the paradoxes) is,
in retrospect, almost forcibly suggested by some formulations of VCP by Russell,
e.g. by Russell’s VCP and Russell’s VCP (informal) above.

As mentioned in Introduction, Hintikka first formulated the core of his idea in
[2], noting that there are several possible implementations of this idea (i.e., several
possible exclusive set theories) but focusing mainly on the most straightforward
one. One year later he realised that that particular implementation of the idea
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was inconsistent and left open the question of consistency of the others, again
with a particular emphasis on one of these. These two theories are introduced
both in Chapter 2 and in Appendix and I call the first theory THF and the second
theory THS.

Russell’s aforementioned formulations of VCP prompted Hintikka to say:

It may also be pointed out that the inconsistency of [THF ] would have
highly interesting consequences concerning certain principles used to
guide the building up of various systems of mathematical logic. It
may be argued that if [THF ] gives rise to contradictions, then the
celebrated vicious-circle principle is false in the sense that it does not,
under an extremely natural interpretation of the principle, rule out
all the paradoxes. This presupposes, obviously, that [THF ] may be
interpreted as a way of carrying out the vicious-circle principle. [2,
p. 242]

It turns out that the system is inconsistent, hence Hintikka’s view one year
later is that “[The inconsistency of THF ] means, in effect, that the vicious circle
principle is false under a very natural interpretation of the principle.” [4, p. 246].

Hintikka wrote this around fifty years after the time period in which Russell
was dealing with these problems. Consequently, one can only speculate what Rus-
sell would think about this claim that the inconsistency of THF shows invalidity
of Russell’s VCP. I only have two remarks about Russell’s position.

Firstly, it is not clear that what Hintikka calls “Russellian version of the
vicious circle principle” or what I call “Russell’s VCP” really is a good approxi-
mation of Russell’s position (although calling it so is justified because it is based
on Russell’s own formulations of the principle). Recall that Russell formulated
the principle on many occasions. While Russell’s VCP forbids “containing
an apparent value...”, the more general formulations forbid “concerning in any
way...” Arguably, THF (and other inconsistent exclusive set theories) violate some
versions of Russell’s principle but do not violate some other versions. Extending
Hintikka’s claim that Russell’s VCP is invalid to the claim that Russell was wrong
about what gives rise to vicious circles would at the very least require work. In
short, perhaps he just was not very careful in some of the formulations.

Secondly, recall Poincaré’s proposed solution to Richard’s paradox. According
to Poincaré, instead of a class S of those numbers which can be defined, we can
only have a class S of those numbers which can be defined without introducing S
itself. However, Russell did not agree that this approach avoids vicious circles:

The method by which Mr. Poincaré tries to avoid the vicious circle
consists in saying that when we assert ‘All propositions are true or
false’, which is the law of excluded middle, we tacitly exclude the
law of excluded middle itself. The difficulty is to legitimise this tacit
exclusion without falling back into the vicious circle. [12, p. 644, my
translation]

He says that we cannot define the law of excluded middle as “All propositions
except the law of excluded middle are true or false.” because the vicious circle in
such a formulation is “flagrant”.
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We must therefore find a way of formulating the law of excluded mid-
dle in such a way that it does not apply to itself, without saying,
in formulating it, that it does not apply to itself. [12, p. 645, my
translation]

Similarly, it is possible to see exclusive interpretation used in the exclusive
set theories (including THF ) as containing a vicious circle. When quantifiers in
comprehension are exclusive, a definition of a set looks like: “Set S such that all
sets, except S itself, are its members if and only if ...” Such a formulation might
be said to contain a vicious circle, because S itself is mentioned in the definition
of S.

However, this is not necessarily so. If one follows Wittgenstein in using logic
with exclusive quantifiers, the object being defined or the proposition being as-
serted is excluded automatically, so to speak, without the need of mentioning it.
“All propositions” in “All propositions are true or false” automatically excludes
this very proposition. And as Hintikka [2, pp. 1–2] argues, we are used to such
exclusive interpretations from natural language, e.g. when one says “Mazzini did
more for the emancipation of his country than any living man of his time” –
clearly this does not mean that Mazzini did more than Mazzini, but only that he
did more than any other living man of his time.

Russell says that we must find a way to formulate the law of excluded mid-
dle without saying that it does not apply to itself and the logic with exclusive
interpretation of quantifiers is arguably one such way.

In conclusion, I see Hintikka’s idea as a natural implementation of Russell’s
VCP in set theory, although Russell’s position on the matter is not entirely clear
and may not be captured faithfully by Russell’s VCP. Chapter 2 introduces Hin-
tikka’s idea of using exclusive interpretation to implement Russell’s VCP and
avoid paradoxes of naive set theory. There is more to be said about VCP in
general but it is left to Chapter 4.

1.2 The problem with identity
Exclusive interpretation of quantifiers is used in this thesis to try to avoid para-
doxes of naive set theory. However, it is more often discussed in the context of a
different aim: eliminating identity from logic. It was also in this context that the
idea of exclusive interpretation of quantifiers originated in Tractatus. Therefore,
it seems appropriate to dedicate a section to the topic of identity, even though the
rest of the thesis is concerned with avoiding set-theoretical paradoxes and by and
large ignores the philosophical problems of identity (in fact, Hintikka’s exclusive
set theories use identity). This section introduces the origins of this idea in its
first part and and its more recent development in the other part.

1.2.1 Wittgenstein and identity
Wittgenstein’s problem with identity traces back at least to Frege:

Now if we were to regard identity as a relation between that which the
names ‘a’ and ‘b’ designate, it would seem that a = b could not differ
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from a = a (i.e., provided a = b is true). A relation would thereby
be expressed of a thing to itself, and indeed one in which each thing
stands to itself but to no other thing. What is intended to be said by
a = b seems to be that the signs or names ‘a’ and ‘b’ designate the
same thing[...] [18, p. 209]

The problem with identity is then raised by Russell eighteen years before
Tractatus:

The question whether identity is or is not a relation, and even whether
there is such a concept at all, is not easy to answer. For, it may be
said, identity cannot be a relation, since, where it is truly asserted,
we have only one term, whereas two terms are required for a relation.
And indeed identity, an objector may urge, cannot be anything at all:
two terms plainly are not identical, and one term cannot be, for what
is it identical with? [19, p. 65]

He nevertheless does not see how identity could be eliminated and concludes:

Thus identity must be admitted, and the difficulty as to the two terms
of a relation must be met by a sheer denial that two different terms
are necessary. There must always be a referent and a relatum, but
these need not be distinct; and where identity is affirmed, they are
not so. [19, p. 65]

Wittgenstein discusses this problem in Tractatus in similar terms as Russell:

Roughly speaking, to say of two things that they are identical is non-
sense, and to say of one thing that it is identical with itself is to say
nothing at all. [1, 5.5303]

It is important to differentiate the question of identity of objects (or “things”
in Wittgenstein’s terminology or “terms” in Russell’s) from the question of co-
reference of names. Consider the proposition: “The city called ‘Prague’ is the
capital of the Czech Republic”. Although the question of how we should prop-
erly understand such statements has a rich history with diverse opinions, most
philosophers would presumably understand such statements as asserting a rela-
tion between names and not objects, as Frege did in the quotation above. Thus
one can say that “the city called ‘Prague’” and “the capital of the Czech Repub-
lic” are names and as names they are not identical. They are, however, related by
the equivalence relation which could be called “co-reference”. This relation holds
between two names iff they stand for the same object. Understanding identity as
a relation between names was the view, among many others, of Carnap, Zermelo,
Dedekind, and Frege in Begriffsschrift (although he later changed his position
and saw identity as a relation between senses, see [20, p. 154]).

It is not in contention whether there is such an equivalence relation between
names. What is in contention is whether there is an equivalence relation identity
between objects which holds for two objects iff they are not two (distinct) objects
but only one object.

Besides the problem with identity just described, Wittgenstein in Tractatus
seems to have another problem with identity:
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[Wittgenstein] held that every proposition is a truth function of el-
ementary propositions, where each elementary proposition indicates
that objects are disposed to one another in a determinate way. [21,
p. 141]

Consequently, he believed it is nonsensical to say, e.g., that “‘There are ob-
jects’, as one might say, ‘There are books’. And it is just as impossible to say,
‘There are 100 objects’[...]” [1, 4.1272] This is because propositions like “There
are 100 objects” are not concerned with how objects are disposed to one another
at all. However, in the standard logic with identity it is possible to say this.

For these reasons, Wittgenstein decides to eliminate identity from logic, and
for this purpose he comes up with the idea of using exclusive interpretation:

Identity of object I express by identity of sign, and not by using a sign
for identity. Difference of objects I express by difference of signs. [1,
5.53]

This is meant to eradicate the need for identity in logical language. Wittgen-
stein in Tractatus gives some examples like:

[...]‘Only one x satisfies f()’, will read ‘(∃x).fx:∼(∃x, y).fx.fy’. [1,
5.5321]

Note that ‘.’ signifies conjunction and ‘∼’ negation.
Wittgenstein did not work out systematically translation between exclusive

and inclusive quantifiers. This was done by Hintikka [2] and Wehmeier [3] who
extends Hintikka’s result also for languages with individual constants.

Importantly, note that exclusivity does not lead to the inability to assert that
something is true for any other b or for a itself in a context where a is already
in use. What is classically expressed by “There is some a such that for every b
it is the case that Q(a, b)” can be expressed, given exclusive interpretation, by
“There is some a such that for every b distinct from a it is the case that Q(a, b),
and also it is the case that Q(a, a)”. When one’s quantification excludes a, it is
because a is already “in use” and thus things about a can be asserted separately.

1.2.2 A modern discussion of identity
A recent discussion of the possibility and desirability of eliminating identity from
first-order logic is to be found in [3]. Regarding the desirability, Wehmeier es-
sentially argues in the same vein as Wittgenstein does. Regarding the possibility
of eliminating identity from first-order logic, Wehmeier distinguishes four cate-
gories of using identity and argues for the possibility separately for each of the
categories. Note that such an elimination is considered successful only if the new
logic without identity is not less expressive than the standard one.

Firstly, regarding atomic formulae with functional terms like f(x, y) = t,
instead of asserting identity between the functional term f(x, y) and the term
t we can assert eval(f, x, y, t) – i.e., that the function f with arguments x, y
evaluates to t. Identity is not involved in this. Secondly and thirdly, there are
atomic formulas like x = y and x = c where x, y are variables and c a constant.
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Both cases are eliminated by exclusive interpretation. Lastly, identity between
referents of two distinct constants can be understood as co-reference of these
constants without the need for identity relation between objects. At the end of
this argument, Wehmeier writes:

This concludes the Tractatus-inspired argument for the dispensabil-
ity of objectual identity with respect to first-order logic. Given the
general translatability of [standard first-order logic with identity] into
[first-order logic with exclusive interpretation, without identity and
with co-reference relation for constants], it also follows that mathe-
matics, at least to the extent that it’s formalizable in [standard first-
order logic with identity], can be carried out without invoking an
objectual identity relation. [3, p. 765]

Wehmeier’s paper has sparked a subsequent discussion about whether iden-
tity really is completely eliminated by Wehmeier’s approach (see e.g. [22, 23]).
However, focusing on it would be too much of a digression, the main focus of the
thesis are exclusive set theories.

1.3 New Foundations
New Foundations (henceforth NF) is a set theory conceived by W. V. Quine [9]. I
now briefly introduce this theory because some references to this theory are made
throughout the thesis due to some features it shares with exclusive set theories.
Among these features is the existence of “big” sets like the universal set.

However, no serious attempt at any comprehensive introduction to the topic
is made6. The formal aspects of the theory are also included in Appendix.

1.3.1 Introduction of NF
NF is formalised in first-order logic in the standard set-theoretical language and is
akin to naive set theory and exclusive set theories in that its only axioms are the
axiom of extensionality and the instances of unrestricted comprehension schema.
However, not all first-order formulae that are allowed in the comprehension of
naive set theory are allowed in the comprehension of NF, but only stratified
formulae are. We say that a formula φ is stratified iff there is an initial segment
S = {0, 1, ..., k} of natural numbers and a function σ from the set of all variables
in φ to S such that:

(i) for every atomic formula x = y, we have σ(x) = σ(y), and

(ii) for every atomic formula x ∈ y, we have σ(y) = σ(x) + 1.

Besides that, φ must also meet the standard criterion of having as free vari-
ables only p1, ..., pn, x and not S if the comprehension schema is given as:

∀p1∀p2...∀pn∃S∀x(x ∈ S ↔ φ(x, p1, p2, ..., pn)).
6For the original paper see [9]. For a simple introduction see [24]. For a comprehensive and

detailed exposition see [25].
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Note that New Foundations is essentially a solution to the paradoxes in the
vein of Russell’s zig-zag theory. In particular, which comprehension axioms of
naive set theory remain has nothing to do with how big the resulting set is. For
example, the comprehension axiom:

∃S∀x(x ∈ S ↔ ⊤)7

entails the existence of the universal set U .
Note that numbers are formalised in NF in the classical way: the number n is

the set of all sets with n members. In many ways, NF is faithful to the original
conceptions of set theory.

Note also that Russell’s formula x ∈ x is not stratified and therefore cannot
be used in the comprehension.

1.3.2 Consistency of NF
The big question about NF is its consistency (e.g. relative to ZF). Jensen [26]
proved that a modification of NF called NFU, different essentially in that exten-
sionality does not apply to the empty set, is consistent. Regarding NF, Randall
Holmes [27] has a claimed proof of consistency, but it has not yet been confirmed
by the community.

It is natural to ask whether it is necessary to require in the definition of
stratified formula that for every subformula x ∈ y it is the case that σ(y) =
σ(x) + 1 instead of just σ(y) > σ(x). If the former option is more in accordance
with the theory of types, the latter is more in accordance with ZF, where a set
from a hierarchical level Vα+1 may contain sets from Vβ for all levels β ≤ α.
Because this question seems to be ignored by the literature introducing NF, let
me mention why stratification cannot be defined in this way to potentially save
the reader some time (but this is not very important and the rest of this section
can be skipped without consequences).

I will say that a formula is “semi-stratified” if it satisfies the definition of strati-
fied formula altered by requiring that σ(y) > σ(x) instead of σ(y) = σ(x)+1. The
current question is whether allowing semi-stratified instead of stratified formulae
in the comprehension leads to inconsistency. And it does, for the following rea-
son. Consider the semi-stratified formula ψ(x) ≡ ∃y(y ∈ x∧ ∀z(z ∈ x ↔ z ∈ y)).
This formula essentially says that there is some y ∈ x such that y = x, because
of extensionality. Not surprisingly, this leads to a paradox, as it should not be
possible to say that a set is identical to its member.

For ¬ψ, the comprehension gives the set P :

∃P∀x(x ∈ S ↔ ¬ψ).

Now, does P satisfy ¬ψ? If so, then it should be a member of itself, but then
P does not satisfy ¬ψ. On the other hand, if P does not satisfy ¬ψ, then there
must be some y ∈ P with the same members as P . In that case, also y ∈ y and
thus y does not satisfy ψ – contradiction with y ∈ P .

7Strictly speaking, I do not consider the symbol ⊤ to be a part of the language. Thus it can
be viewed as an abbreviation for any stratified tautological formula, the simplest being x = x
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1.3.3 Cantor’s theorem
The existence of the universal set U raises the question of the validity of Cantor’s
theorem. As explained in Section 1.1.1, these two are irreconcilable. The answer
to this question is that the set that must be used in the proof of Cantor’s theorem
in general does not exist – it cannot be defined by a stratified formula. Recall that
for the particular case of U and identity, this set is Russell’s set. Consequently,
NF-theorists distinguish cantorian sets from non-cantorian sets where Cantor’s
theorem holds true only for the cantorian sets. Big sets like U are not cantorian.
Not surprisingly, the question of the status of Cantor’s theorem in NF is addressed
already by Quine [28].

There has been considerable research done in New Foundations, and this
theory can therefore serve in some sense as a model for exclusive set theories
– as a set theory to which exclusive set theories might be compared.

Regarding Cantor’s theorem, one should expect it to have a similar status in
exclusive set theories. However, a difference is that while Russell’s formula ψ ≡
x /∈ x is not allowed in the comprehension schema of NF, in exclusive set theories
it is allowed. In exclusive set theories, the paradoxes of naive set theory are not
solved by banning some formulae from the comprehension, but by reinterpreting
them. Thus a natural place to look for a paradox in exclusive theories would be
to look at Cantor’s theorem. If it could be proved in general, this would lead to
inconsistency with the fact that a universal set exists8. However, Cantor’s proof
does not go through in exclusive theories. In the case of U , Cantor’s proof in
naive set theory invokes Russell’s set and derives a contradiction. Although in
exclusive theories there is a Russell’s set given by the Russell’s formula ψ, it may
or may not contain itself, thus no contradiction can be derived.

8Using any tautological formula in the comprehension of an exclusive set theory gives a set
of all sets possibly except itself. Such a set may or may not contain itself, and there could
even be a universal set which does and a universal set which does not, which is why I write ”a
universal set” instead of ”the universal set”. The discussion of Cantor’s theorem in exclusive
set theories in this section, before introducing exclusive set theories in detail, relies on the fact
that the basic idea has already been explained in Introduction and that the reader can refer
to the Appendix. Alternatively, this discussion can be skipped and revisited later, after having
read Chapter 2.
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2. Exclusive set theories
This chapter presents Hintikka’s idea of using exclusive quantifiers to “fix” naive
set theory. It introduces several exclusive set theories and explains how the well-
known paradoxes of naive set theory are avoided by these theories.

2.1 Exclusive interpretation of quantifiers
It is time to introduce exclusive interpretation of quantifiers in more detail. The
reader who still finds this level of detail insufficient is advised to look at HIntikka’s
original paper [2]1.

Hintikka distinguishes two kinds of exclusive quantifier – strongly exclusive
and weakly exclusive. He adds both to classical first-order logic with identity
alongside inclusive (i.e. standard) quantifiers. Syntactically, both types of exclu-
sive quantifier obey the same rules as inclusive quantifiers, but their semantics is
different.

The semantics of a strongly exclusive quantifier is different from inclusive
quantifier in that its value range excludes, from all individuals in the universe,
the values of all bound variables in whose scope this quantifier lies, and also the
values of all free variables (one can consider their scope to be the whole formula
in question). The semantics of a weakly exclusive quantifier is such that its value
range excludes, from all individuals in the universe, the values of all variables
which occur freely in the scope of this quantifier.

Before continuing, three notes seem to be in order.
Note that the question of whether a bound variable can share its value with

an individual constant can be ignored because there are no constants in the set-
theoretical language. I will also ignore the question of whether the values of two
free variables in the formula can coincide, as Hintikka does2.

Note that I (following Hintikka) introduced the quantifiers as added to the
classical logic, thus leading to a logic with three different kinds of quantifier. One
could, however, opt to have logic with only one of these. This is the approach
of Wehmeier [3] – he considers logic with (weakly) exclusive quantifiers, without
other kinds of quantifier and without identity.

Note that the possibility of eliminating identity by using exclusive interpre-
tation of quantifiers mentioned in Section 1.2 apply equally to both kinds of
exclusive quantifier.

[E]verything expressible in terms of the inclusive quantifiers and iden-
tity may also be expressed by means of the weakly exclusive quanti-
fiers without using a special symbol for identity. The same statement

1Interestingly, in this paper Hintikka cites Otakar Zich (the founder of Charles University’s
Logic Department) as the author of “[t]he most resolute attempt to carry out an exclusive
interpretation of bound variables[...]” [2, p. 229]

2“There remains an ambiguity concerning the interpretation of free variables. Are we to
allow the values of two different free variables to coincide? Different answers to this question
give rise to a further distinction between different kinds of calculi. We shall not discuss the
resulting complications, however; they do not give anything new in principle. One can build a
predicate calculus by means of bound variables only.” [2, p. 230 (footnote)]
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is easily seen to hold also for the strongly exclusive quantifiers. [2,
p. 235]

From now on I will, by default, assume strongly exclusive interpretation of
quantifiers (strongly exclusive quantifiers seem to be better suited for set theory
than weakly exclusive ones, as should become apparent in Section 2.3.2.) Also, the
term “exclusive quantifier” will sometimes be used synonymously with “strongly
exclusive quantifier”. A reader used to inclusive quantifiers can translate all the
formulae with strongly exclusive quantifiers to formulae with standard quantifiers
according to the following rule3:

One should go through the formula from left to right and every time one meets
an existential quantifier, one transforms the current formula of the form A∃x(Z)
to A∃x(x ̸= y1 ∧ ... ∧ x ̸= yn ∧ Z), and for a universal quantifier, one transforms
A∀x(Z) into A∀x((x ̸= y1 ∧ ... ∧ x ̸= yn) → Z), where y1, ..., yn are all variables
in whose scope x is.

For example, given strongly exclusive interpretation, the formula

∃aP (a) ∧ ¬∃a∃b(P (a) ∧ P (b))

says that there is exactly one individual which has the property P (this is the
example quoted from Tractatus in Section 1.2.1, only in modern notation). The
formula

∀x∀yQ(x, y)

says that every two distinct individuals have the relation Q to each other but
says nothing of whether Q(x, x) for some x4.

These formulae would be translated to

∃aP (a) ∧ ¬∃a∃b(a ̸= b ∧ P (a) ∧ P (b))

and

∀x∀y(x ̸= y → Q(x, y)).

One more example: the formula

∃a∀b(P (a, b) ∨ ∃c(P (b, a) ∨ P (c, b)))

would be translated to:

∃a∀b(b ̸= a → (P (a, b) ∨ ∃c(c ̸= a ∧ c ̸= b ∧ (P (b, a) ∨ P (c, b))))).

Note that in the case of weakly exclusive quantifiers, the translations in the
three examples above (from strongly exclusive quantifiers) would be the same. A
simple example of a formula with exclusive quantifiers which would be translated
differently based on whether the quantifiers are weakly or strongly exclusive can
be given as follows. Take the subformula from the example in Tractatus:

3It is the other direction – translating a formula with inclusive quantifiers to a formula with
exclusive quantifiers – that requires more work.

4This can be said separately: ∀x∀yQ(x, y) ∧ Q(x, x).
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∃a∃b(P (a) ∧ P (b))
and alter it to:

∃aP (a) ∧ ∃bP (b).
While in the case of both inclusive and strongly exclusive quantifiers the two

formulae are equivalent, it is not so in the case of weakly exclusive quantifiers,
where a can share its value with b only in the latter formula.

2.2 Introduction of exclusive set theories
In this section I present two exclusive set theories. One comes from Hintikka and
the other is the most natural one in the current setting – all quantifiers in it are
strongly exclusive. The thesis includes Appendix clearly describing the various
set theories from this thesis for a quick reference, although the thesis without this
appendix should be self-contained.

2.2.1 Features common to all exclusive set theories
There are several features that are common to all exclusive theories considered
in this thesis:

• It is a theory with one binary predicate symbol ’∈’ in first-order logic. (It
may or may not include identity. )

• The theory has the axiom of extensionality5:

¬∃x∃y((y ∈ x ↔ y ∈ y) ∧ (x ∈ x ↔ x ∈ y) ∧ (∀zz ∈ x ↔ z ∈ y)).

• The theory has some kind of unrestricted comprehension of the form:

∃S∀x(x ∈ S ↔ φ)

as an axiom schema, using exclusivity to some extent: at the very least,
the value of S is excluded from the ranges of values of ∀x and of all bound
variables in φ.

The theories in this thesis differ in the concrete form of the comprehension
schema: which parts of it are exclusive, which inclusive, how parameters work,
and whether identity is allowed.

Note that a consequence of the fact that the value of S is excluded from ∀x
is that no such axiom entails self-membership of S nor its negation.

Consider the following simple comprehension axiom:

∃S∀x(x ∈ S ↔ ⊥)6.
5In words, there are no two distinct sets with the same members. Recall that strongly

exclusive interpretation is assumed unless stated otherwise.
6⊥ can be understood as an abbreviation for any contradictory formula in the language

without identity, e.g. x ∈ x ∧ x /∈ x. Similarly for ⊥: e.g. x ∈ x ∨ x /∈ x
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This axiom entails that there is a (at least one) set which has no members ex-
cept possibly itself. One cannot expect (at least without some additional axiom)
that for every comprehension axiom there is exactly one set satisfying it. In the
case of this axiom, there might be S0 which has no member (not even itself), S1
which has one member – itself, and even some other sets like S2 which also has
one member – itself, but is distinct from S1

7. Consequently, I will say “a set given
by the comprehension axiom” and not “the set...” meaning any set satisfying this
axiom.

2.2.2 Hintikka’s first exclusive theory THF

Hintikka proposed the general idea in [2] where he focused mainly on the theory
that is introduced in this section. I call this theory THF (as Hintikka’s First).
One year later Hintikka published a follow-up paper where he shows that THF is
inconsistent. This proof is sketched in Section 2.4.1.

THF is very similar to naive set theory, as its comprehension allows identity
and parameters, and exclusivity is only minimal; its comprehension schema is:

∀p1∀p2...∀pn∃S∀x(x ∈ S ↔ φ(x, p1, p2, ..., pn)), where φ does not con-
tain S and all quantifiers are inclusive except that the value of S is
excluded from ∀x and also from all bound variables in φ.

This schema cannot be written using the three kinds of quantifier (inclusive,
weakly exclusive, strongly exclusive) without identity. The value of S is excluded
from the quantifier ∀x and also from quantifiers in φ, thus these cannot be in-
clusive. But if they are exclusive, they in general exclude more than S, whether
they be strongly or weakly exclusive.

This is not a problem for Hintikka and he formalises the theory in the standard
first-order logic only with inclusive quantifiers by adding inequalities to the ap-
propriate places in the comprehension schema. This is also the approach taken in
Appendix. It would be a problem if there was no identity in the language: in this
case, the description of the comprehension schema would be complicated. While,
as mentioned in Section 1.2, there are reasons to try and eliminate identity, this
is ignored in the context of set theory. In this context, the focus of both Hintikka
and of this thesis is to try to use the idea of exclusivity to avoid set-theoretical
paradoxes. Philosophical problems of identity are mostly put aside.

2.2.3 A very exclusive set theory without parameters TWP

The theory introduced in this section will be called TW P (as a theory Without
Parameters). In contrast to THF , TW P can be introduced very simply without
identity. Its comprehension schema is:

7Such a situation is not unfamiliar to someone who has encountered a theory of non-well-
founded sets, as e.g. in [29]. In such theories, the axiom of extensionality is usually replaced by
an alternative axiom which identifies S1 with S2 based on the fact that they are structurally the
same. However, in this thesis I use the standard axiom of extensionality, as Hintikka does. The
main focus is the question of consistency and the existence of distinct but structurally same
sets does not threaten consistency in any way.
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∃S∀x(x ∈ S ↔ φ(x)), where the only free variable in φ is x, and ’=’
does not appear in φ, and all quantifiers are strongly exclusive.

Later, in Section 3.1, I will introduce the theory T0 which is similar to TW P

but with parameters added to the comprehension schema. As shown in Theorem
1, T0 has trivial models unless an additional axiom is added. For the same reason,
TW P also has the additional axiom:

Additional axiom: ∃a∃b∃c⊤ (i.e., there are at least three sets).

In contrast to THF , TW P has a very natural and simple description: only
exclusive quantifiers are used and identity is not needed. There are also two
things that make TW P (arguably) quite safe: exclusivity is used in the full extent,
and parameters are not allowed. I suspect TW P is consistent but this is just
a guess. For an introduction of TW P (or other theories) in classical logic with
inclusive quantifiers, see Appendix.

2.3 Avoiding paradoxes
With the two exclusive theories properly introduced, it is now time to address
the question of how they avoid paradoxes.

2.3.1 Russell’s paradox
It is easy to see how the theories avoid Russell’s paradox. Russell’s formula gives
us a set R from the following comprehension axiom:

∃R∀x(x ∈ R ↔ x /∈ x).

But as long as the value of R is excluded from ∀x, which is the case in both
THF and TW P (in fact, in all exclusive set theories), there is no paradox here. R
may or may not contain itself and the comprehension axiom above is indifferent
to it. Regarding all the other sets, however, R contains them iff they are not
members of themselves.

Interestingly, this possibility of avoiding Russell’s paradox was realised by
Frege and the attempt for having a consistent theory by only excluding the value
of S from ∀x (and not from bound variables in φ) in the comprehension schema
is nicknamed “Frege’s way out” by Quine [30]. However, this does not avoid the
paradox introduced in the next section.

For a brief discussion of how exclusive set theories avoid well-known paradoxes
including Burali-Forti’s, see [2, pp. 239–241].

2.3.2 Paradox of non-loopy sets
Consider another paradox that appears in naive set theory. Let L be the set given
by:

∃L∀x(x ∈ L ↔ ¬∃z(z ∈ x ∧ x ∈ z))
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I shall call the property being a member of one of my members “loopiness”.
Looking at sets as graphs, a set is loopy iff there is a cycle of length 2 starting
and ending in this set. L is supposed to be the set of all non-loopy sets.

But the existence of this set leads to a simple contradiction in naive set theory
where we also have the set {L}. Does {L} ∈ L? If so, {L} must (from the
definition of L) not be loopy, but it is loopy via L. If {L} /∈ L, {L} must be
(from the definition of L) loopy, but it only has one member, so it must be loopy
via this member, so it must be that {L} ∈ L.

Exclusive interpretation, however, saves the theory from this paradox in the
following way. The property that the members of L must satisfy is now not being
absolutely non-loopy but rather being non-loopy with the possible exception of a
loop via L. Therefore, even if {L} exists (which is in general not guaranteed in
exclusive set theories), L contains it as it simply satisfies the criterion. There is
no paradox here.

There is a difference between L in THF and TW P in whether the value of x is
excluded from ∀z in the comprehension axiom above: in THF it is not, in TW P it
is. Consequently, in THF such L also contains self-membered sets which are not
loopy in the sense of containing a loop of length 2, while in TW P these sets are
not in L because the loop of length 1 “does not count”. This, however, bears no
relevance with respect to the paradox.

Note that a Russell’s set can be understood as a set of non-1-loopy sets, L as
a set of non-2-loopy sets, and it is natural to also consider sets of all non-n-loopy
sets for n > 2. In the present context, however, this brings nothing new. Such
sets are involved in paradoxes in naive set theory but not in exclusive set theories
for the same reason as in the case of L.

While Russell’s paradox is avoided because the value of the set S being defined
is excluded from ∀x, the paradox of non-loopy sets is avoided because the value
of the set S being defined is excluded from the quantifiers in φ. Recall that this
is not the case in Frege’s way out, which is why it does not avoid the paradox of
non-loopy sets.

Now it can be seen why I took strongly exclusive interpretation of quantifiers
as default, and not weakly exclusive interpretation. Given the former, TW P is the
most natural exclusive set theory and it avoids this paradox. If weakly exclusive
interpretation was taken as default, the most natural exclusive set theory would
be analogous to TW P but with weakly exclusive interpretation of quantifiers.
However, because L does not appear in the subformula ¬∃z(z ∈ x ∧ x ∈ z) in
the comprehension axiom, L would not be excluded from ∃z. In general, the
set S being defined must be excluded from all the subsequent quantifiers in the
comprehension schema to avoid the well-known paradoxes, which is not the case
when the exclusivity is “weak”. In the context of set theory, strongly exclusive
interpretation seems more appropriate.

2.4 Problems of THF and TWP

2.4.1 THF is inconsistent
Hintikka’s theory THF manages to avoid the well-known paradoxes of naive set
theory, but it is inconsistent. I now briefly sketch the contradiction found by
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Hintikka [4].
Use comprehension (without parameters) to get L – a set of non-loopy sets,

and M – a set of loopy sets. Note that L may contain loopy members if they
are loopy only via L, as explained above. Then use L and M as parameters to
define S = {L,M} (or possibly S = {L,M, S} but self-membership plays no role
in the paradox). Now, if S ∈ M , S is loopy via something else than M – so
L ∈ S and S ∈ L. But the latter is true only if S is not loopy via something
else than L, so S /∈ M – contradiction. If on the other hand S /∈ M , then (from
the definition of M) S is not loopy via L, thus S /∈ L. But from the definition
of L this implies that S is loopy via M , so S ∈ M – again a contradiction. The
situation is depicted in Figure 2.1.

Figure 2.1: Three sets L, S, M involved in the paradox. S defined as {L,M}
must contain both L and M . All possibilities regarding whether M contains S
and whether L contains S lead to a contradiction.

M L

S

?
?

This paradox is interesting in that the circularity in it is somewhat less im-
mediate compared to Russell’s paradox and the paradox of non-loopy sets. In
those two paradoxes, there is one problematic set A (R in the case of Russell’s
paradox, L in the other paradox) and if A contains a certain set B (in Russell’s
paradox R itself, in the other paradox the singleton set {L}), B does not sat-
isfy the defining property of A, and if A does not contain B, B does satisfy the
property. The connection between B ∈ A and B satisfying the defining property
of A is immediate. In contrast, in this paradox, S ∈ M does not immediately
lead to S not satisfying the defining property of M . Instead, it immediately leads
to S not satisfying the defining property of L. This is more properly addressed
in Chapter 4 where it is argued that exclusive set theories in general avoid the
“more immediate” circularity, but are still circular.

2.4.2 TWP seems unworkable
While the problem of THF is inconsistency, the problem of the safer theory TW P

is that it is very non-classical in some ways. The problems become apparent
already in very simple cases. Consider the following two comprehension axioms:

C0: ∃0∀x(x ∈ 0 ↔ ⊥),
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C1: ∃1∀x(x ∈ 1 ↔ ¬∃zz ∈ x).

In a classical set theory, C0 would entail the existence of the empty set and C1
would entail the existence of {∅} – von Neumann ordinal 1. However, this is not
necessarily so in TW P . Regarding C0, a set 0 satisfying it might have a member
– itself. This ambiguity regarding self-membership is present in all exclusive set
theories and arguably does not lead to problems. What is problematic is that
the definition of C1 does not necessarily entail the existence of a new set – i.e., a
set distinct from 0. Suppose there is only one 0 satisfying C0 – e.g. the classical
empty set. Then 0 also satisfies C1. This is because, after substituting the empty
set 0 for 1 in C1, the axiom is satisfied. It says that every other set is a member
of 0 iff it is empty and it might be that there is no such set. In other words, it
might be that the only set satisfying the property is 0 itself, but 0 is excluded
from the possible values of ∀x in C1 if it is picked as the value of ∃1.

Another problem is that a Frege’s number Fn (i.e. the set of sets with n
members) defined as

∃Fn∀x(x ∈ Fn ↔ (∃a0∃a1...∃an−1(a0 ∈ x ∧ a1 ∈ x ∧ ... ∧ an−1 ∈
x) ∧ ¬∃a0∃a1...∃an(a0 ∈ x ∧ a1 ∈ x ∧ ... ∧ an ∈ x))

may in fact have members with different amount of members than n. For
example, there might be a member m of Fn with n + 2 members: m and Fn

as extra members which “do not count” due to exclusivity. This might lead to
problems if Frege’s numbers are used to formalise numbers as was done historically
by Frege and Russell, and as is usual in some set theories with big sets like New
Foundations.

Regarding the classical operations union and intersection, they are also prob-
lematic. Given sets a and b by comprehensions on formulae φa and φb, the
comprehension axiom given by φa ∧ φb gives a set which is not necessarily the
intersection of a and b.

Consequently, it is not clear how mathematics could be done in TW P . One
idea to solve some of these problems would be leaving comprehension the way it
is and adding another axiom to the theory. In particular, adding axiom of pairing
would seem to help because it would give us pairs and singletons. Then ordered
pairs could be defined in a standard way. However, adding the axiom of pairing
would lead to the very same contradiction that is present in THF and presented in
the previous section. Another idea to solve some of the problems would be adding
parameters. Note however that the values of the parameters must be excluded
at least from ∀x to avoid the paradox of THF . Consequently, parameters will not
give us singletons and pairs. However, adding them might help with some other
problems – like that of union and intersection. Adding parameters to TW P leads
to the theory T0 introduced in Chapter 3.

2.5 Hintikka’s open problem
THF is inconsistent and an obvious way to improve it is to exclude the values
of parameters from the range of at least some quantifiers in the comprehension
schema. Hintikka, after realising that THF was inconsistent, considered one such
a theory which I call THS:
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The ordinary ‘Russellian’ version of the vicious circle principle pro-
hibits the definition of an object or set x by means of totalities to
which x itself belongs, i.e., by means of bound variables one of the
possible values of which is x itself. In [THS], the range of the bound
variables that may occur in the definition of x must not contain x nor
one of the values of the free variables occurring therein. This means
that the stronger principle formalized by [THS] prohibits the defini-
tion of x by means of totalities that contain x or one of the constant
individuals with the reference to which x is defined. [4, p. 249]

Note that x in the quotation corresponds to S in the general form of the
comprehension schema used in this thesis. The theory THS is just like THF with
only one difference: the values of parameters are also excluded from ∀x.

It seems surprising that only ∀x excludes the values of the parameters. Hin-
tikka defines THS this way even though the quotation above suggests that also the
quantifiers used in φ should exclude them. Presumably, he leaves the quantifiers
in φ as they are in THF because he realises that it does not matter whether they
exclude the parameters or not – recall that exclusive quantifiers can be translated
to inclusive ones, and vice versa, as long as identity is in the language (which it
is in theories considered by Hintikka). Consequently, THS is equivalent to the
theory T ′ which is like THS except also excluding the values of the parameters
from quantifiers in φ in the comprehension.

To illustrate this with an example, suppose that

φ(x, p) ≡ ∃z(z ∈ x ∧ p ∈ z)

is used in the comprehension of T ′. If φ was used in the comprehension of THS,
the resulting axiom would have a different meaning because ∃z includes the value
of p among its possible values in THS but not in T ′. But one can translate this
formula φ to

ψ ≡ ∃z(z ̸= p ∧ z ∈ x ∧ p ∈ z).
The comprehension axiom given by ψ in THS is equivalent to the comprehension
axiom given by φ in T ′.

In the other direction, if one starts with this formula φ(x, p) ≡ ∃z(z ∈ x∧p ∈
z) in THS, one can translate it to

ψ′ ≡ ∃z(z ∈ x ∧ p ∈ z) ∨ (p ∈ x ∧ p ∈ p).
The possibility of such translations in general shows that THS is equivalent to

T ′. A similar argument cannot be made, of course, regarding exclusivity between
∃S and ∀x, or between ∃S and quantifiers in φ, because S cannot even appear
in φ. Nor can such an argument show that THF is equivalent to THS because ∀x
does not appear in φ thus exclusivity between a parameter p and ∀x cannot be
“addressed” in φ.

Note that excluding the value of parameters from ∀x has as a consequence
that e.g. singletons do not necessarily exist. Hintikka comments:

Among other things, [THS] does not afford the usual definitions of a
unit set, a couple, a triple, etc. [...] This, it seems, is part of the price
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we have to pay for the absence of the usual restrictions in terms of
stratification or limitation in size. [4, p. 249]

Hintikka left open the question of whether THS is consistent. And as far as
I know, no one has addressed this question. As proved in the next chapter, it is
inconsistent.

32



3. New results
In this chapter I introduce the theory T0 which seems rather safe. Compared to
TW P , parameters are added in the safest possible way. Compared to THF , the
values of parameters are not included in the ranges of possible values of ∀x and
of quantifiers in φ.

After introducing T0 at the beginning, its inconsistency is proved. Then it is
argued that this inconsistency entails inconsistency of all exclusive set theories
considered by Hintikka and left by him as possibly consistent.

3.1 A very exclusive set theory with parameters
T0

The theory T0 is formulated to be, in some sense, as weak as possible: its compre-
hension schema does not allow identity and it is very exclusive. This complicates
the proof of its inconsistency. However, it is so on purpose: once it is proved that
even T0 is inconsistent, inconsistency of many other exclusive set theories follows.

T0 can be viewed as TW P to which parameters are added in the safest possible
way. The values of the parameters are excluded from all subsequent quantifiers
in the comprehension schema except for ∃S. This exception is also made to
make the theory as weak as possible. Note that if the values of the parameters
were excluded from ∃S, there would have to be S distinct from all the values of
the parameters for any number and choice of parameters. One consequence of
this would be that there must be infinitely many sets, similarly to a claim from
Tractatus:

[...] What the axiom of infinity is intended to say would express
itself in language through the existence of infinitely many names with
different meanings. [1, 5.535]

3.1.1 Introduction of T0

In the theory T0 everything is exclusive except that the set S defined by the
comprehension may be identical to the value of a parameter. The comprehension
schema of T0 is:

∀p1...∀pn∃iS∀x(x ∈ S ↔ φ(x, p1, ..., pn)), where φ does not contain
’S’, nor ’=’, and all quantifiers are exclusive except for ∃iS which is
inclusive.

Thus the only exception to exclusivity is that S can share a value with a
parameter.

The theory T0 has one extra axiom (added to extensionality and comprehen-
sion schema):

Additional axiom: There are at least 3 sets.
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This is because the theory T ′
0, which is just like T0 except without this addi-

tional axiom, actually has models with 1 or 2 sets in the universe.
T ′

0 has a model with one set in the universe as there is nothing to force
the existence of several distinct sets and all comprehension axioms are trivially
satisfied if there is only one set in the universe.

Also, T ′
0 has a model with two sets.

Figure 3.1: A model of T ′
0 with two sets in the universe. The arrows depict the

relation contains – the inverse of membership.

U ∅

It can be proved that this is a model of T ′
0

1.

Theorem 1. The structure from Figure 3.1 is a model of T ′
0.

Proof. Extensionality is satisfied because the two sets do not have the same mem-
bers: U ∈ U but U /∈ ∅.

Regarding all the instances of the comprehension schema, consider first the
instances without parameters. All of them are of the form ∃S∀x(x ∈ S ↔ φ(x)).
Due to the exclusivity of the quantifier ∀x in the axioms and the fact that there
are only two sets, there are only two possible evaluations: either S := U and
x := ∅, or vice versa. I shall prove by induction on φ(x) that for every φ(x) either
φ(x) is true in both cases, or φ(x) is false in both cases.

With this proved, it follows that all the instances of the comprehension with-
out parameters are satisfied. If φ is true in both cases, S := U will do, and if φ
is false in both cases, S := ∅ will do.

If φ has no quantifiers, the only atomic formula that φ can be is x ∈ x (as S
cannot be mentioned in φ and we do not have idenity in our language2). In both
cases this φ is true (because both U and ∅ are members of themselves).

If φ ≡ ∀z(...) then it is trivially true in both cases due to the exclusivity
because there is no z other than S and x.

If φ ≡ ∃z(...) then it is trivially false in both cases because there is no z other
than S and x.

If φ ≡ ¬ψ then it is false in both cases if ψ is true in both cases and vice
versa.

If φ ≡ ψ1 ∨ ψ2 then it is false in both cases iff ψ1 and ψ2 are false in both
cases, otherwise it is true in both cases.

1It can be proved analogously that a similar structure with two objects – identical to the
one depicted except without the two loops – is also a model.

2If we did, the proof would work just in the same way. The atomic formula x = x is a
tautology and equivalent to e.g. x ∈ x ∨ x /∈ x.
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To finish the proof we need to address the parameters. Firstly note that if
we use two parameters then the axiom is trivially true because whichever value
we pick for S (U or ∅, recall that the quantifier ∃S is inclusive with regard to
the parameters), ∀x(...) is trivially true because there is no other x distinct from
both values of the parameters. If there are three or more parameters, then already
∀p1∀p2∀p3(...) is trivially true because there is no third value for p3.

But similarly, if there is only one parameter, we can pick the other value for
S and the formula is again trivially true because there is no third value for x.

I shall now turn to the proof of inconsistency of T0. To appreciate some of the
complications in trying to prove this, consider a set of non-loopy sets L defined
by:

∃L∀x(x ∈ L ↔ ¬∃z(z ∈ x ∧ x ∈ z)).

Could it be identical to ∅? Could it be identical to U (i.e. to the universal set
given by a tautology in comprehension)? Neither of the two questions is trivial.
If L = ∅, then it is no problem that ∅ /∈ L even though ∅ is non-loopy, because
this criterion is only used for sets other than L. So to show that this cannot be
the case we would need another set that we know is non-loopy. But is there any
such set? Parameters do not seem to help (even if we could use identity, which
we cannot in T0). E.g. a set S given by

∃S∀x(x ∈ S ↔ x = ∅)

could still be just ∅ because it is trivially true for ∅ that every other set belongs
to it iff it is identical to ∅.

To show that L ̸= U it does not suffice to find some set S that contains U
because if L = U then it may still contain S as long as S does not contain another
loop than the one via U . We would need to find two loopy sets distinct from U .

3.1.2 T0 is inconsistent
The core idea of the inconsistency proof is the following. Start with a set of non-
loopy sets L and use it as a parameter to define the sets A and B that are distinct
from L and from each other but contain almost the same members (except for
a few “irrelevant” ones, which makes them all distinct by extensionality). Then
show that A ∈ L, B ∈ L: because if e.g. A /∈ L, A would have to be loopy via
some set C, in which case C would be loopy via A. But as long as C is not one
of the “irrelevant” sets, C ∈ A implies C ∈ L which is a contradiction – L would
contain a loopy set.

Then, as long as both A and B are not among the few “irrelevant” sets, A ∈ L
implies A ∈ B, and B ∈ L implies B ∈ A. But then A is loopy via B and B
is loopy via A and they are members of L, which is a contradiction – L only
contains non-loopy sets.

Recall that we have a first-order theory with one binary symbol ’∈’ with-
out identity and with exclusive interpretation of quantifiers. We have three ax-
ioms/schemas:
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• ¬∃x∃y((y ∈ x ↔ y ∈ y) ∧ (x ∈ x ↔ x ∈ y) ∧ (∀z(z ∈ x ↔ z ∈ y)))
(extensionality)

• Comprehension schema introduced in the previous section

• ∃a∃b∃c⊤ (i.e. there are at least three sets)

Let’s start with the proof of inconsistency. Suppose for a contradiction that
T0 is consistent, thus has a model. By investigating how such a model must look
like (which sets necessarily exist in it by comprehension and what the relations
among them are), a contradiction is derived in the end.

To begin with, I list the sets that will be needed for the proof. L, A and B
are needed for the core of the proof as sketched above, others can be thought of
as auxiliary.

∃∅∀x(x ∈ ∅ ↔ ⊥)
∃U∀x(x ∈ U ↔ ⊤)
∃L∀x(x ∈ L ↔ ¬∃z(z ∈ x ∧ x ∈ z ∧ ∃yy /∈ z))3

∃M∀x(x ∈ M ↔ ∃z(z ∈ x ∧ x ∈ z))
∃V ∀x(x ∈ V ↔ ∀yy ∈ x)
∃W∀x(x ∈ W ↔ (∀yy ∈ x ∨ ∀yy /∈ x))
∃D1∀x(x ∈ D1 ↔ ∃zz ∈ x)
∃E∀x(x ∈ E ↔ (∀yy ∈ x ∨ ∀y(y ∈ x → ∃zz ∈ y)))
∃A∀x(x ∈ A ↔ (x ∈ L ∨ ∀yy ∈ x)) (L is a parameter)
∃B∀x(x ∈ B ↔ (x ∈ L ∧ ∃yy ∈ x)) (L is a parameter)

Note that the distinctness of the definitions does not imply distinctness of
the sets – this will have to be proved when needed. And this is often needed:
when one wants to prove that A ∈ B, one must first prove that A ̸= B, because
otherwise A ∈ B is equivalent to A ∈ A and no comprehension axiom entails
self-membership nor its negation.

Also note that for every comprehension axiom above, there might be several
distinct sets satisfying it. For instance, there might be U1 – the set of all sets
and U2 – the set of all sets except itself. The comprehension axioms entail the
existence of at least one such set. In such a case, the set U in the proof is any
such set.

The first part of the proof (before parameters are used, to introduce A and B)
can be understood as investigating how a model of TW P must look like (it seems
plausible to me TW P is consistent). The other part, then, introduces A and B by
using parameters in comprehension and derives a contradiction.

The sets and the membership relations among them that are proved in the
following lemmas are depicted in Figure 3.2 for a better orientation in the proof.

Lemma 2. ∅ ≠ U , ∅ ∈ U , U /∈ ∅.
3Note that this definition of L is different from the definition of L earlier in this paper, due

to the third conjunct.
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Proof. The inequality follows from the fact that there are at least two sets as
follows. Suppose that U = ∅ and let e be some other set. We have the contra-
diction: e ∈ ∅ (from the definition of U and the fact that U = ∅ (and the fact
that e ̸= U)) but also e /∈ ∅ (from the definition of ∅ (and the fact that e ̸= ∅)).
∅ ∈ U , U /∈ ∅ then simply follow from the definitions of the two sets.

Lemma 3. The sets ∅, U , V , and W are pairwise distinct and ∅ /∈ V , ∅ ∈ W ,
U ∈ V , U ∈ W , and V /∈ W .

Proof. Suppose V = U and let e be any set other than U and ∅. We have ∅ ∈ V
(because V = U and U contains every other set) but also ∅ /∈ V (from the
definition of V because e /∈ ∅). Thus V ̸= U . Then clearly V ∈ U and U ∈ V
from their definitions (note that V might contain some other sets too – e.g. the
set of all sets except V if such a set exists). V ̸= ∅ because U ∈ V . V /∈ ∅ is
clear, and ∅ /∈ V is from the fact that U /∈ ∅ together with the definition of V .

Now consider W . W = V would be a contradiction: ∅ /∈ V but clearly ∅ ∈ W .
W = ∅ would be a contradiction: U ∈ W but U /∈ ∅.4

W = U would also be a contradiction, although somewhat non-trivially. Sup-
pose W = U . In that case, because V ∈ W and ∅ /∈ V , V must contain no set,
except possibly W and V itself, to satisfy the criterion of W (the second disjunct
in the definition of W ). Now consider M . M ̸= ∅ (otherwise there would be a
contradiction: U ∈ M (because U ∈ V and V ∈ U) but U /∈ ∅), and ∅ /∈ M .
M ̸= U because ∅ /∈ M . M = V would be a contradiction: in that case M
should be empty with the only possible exceptions being U and M itself, but
if M contains U , it must do so because of some e distinct from both M and U
such that U ∈ e and e ∈ U , and then M would also contain this e. So we have
M ̸= V . But this also leads to a contradiction: M ∈ W (from the assumption
that W = U) but also M /∈ W : because ∅ /∈ M and V ∈ M (this is because
M ̸= V and M ̸= U , and U ∈ V and V ∈ U) so M does not satisfy the criterion
in the definition of W .

So W is a new set (i.e. distinct from U , ∅, and V )! Now we can see that
∅ ∈ W , U ∈ W , W ∈ U , W /∈ ∅, and V /∈ W because ∅ /∈ V and U ∈ V so
V does not satisfy the disjunctive criterion used in the definition of W . (We do
not need to decide whether W ∈ V for the rest of the proof, so this lemma is
indifferent to it.)

Lemma 4. L ̸= ∅ and ∅ ∈ L5.

Proof. Proving this lemma comes down to proving the inequality (then ∅ ∈ L
follows from the definitions) and for this we use Lemma 3. If L = ∅, then L ̸= V
and thus V /∈ L. From the definition of L there must be some z distinct from L
and V such that z ∈ V and V ∈ z and there is some y such that y ̸= z, y ̸= V ,
y ̸= L, and y /∈ z. But from the definition of V , every z ∈ V is such that it
contains everything but possibly z and V , so there can be no such y. This is a
contradiction.

4Note that in this case, similarly to many other cases, U ∈ W is not yet established, only
that this must be the case if W were identical to ∅. There is still the possibility that U = W
and U /∈ W . One needs to be careful at every step!

5Indeed also L /∈ ∅. I shall no longer emphasize that everything distinct from U is in U and
nothing distinct from ∅ is in ∅.
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To prove L ̸= U I will use two sets D,E, both distinct from U , that do not
satisfy the criterion of L – they are loopy via each other and none of them is
such that it contains all sets except possibly L and itself. We already have the
definition of E whereas D1 is just a candidate for D. I shall prove that if D1 does
not satisfy the requirements for D, there is some D2 that does. Note that we will
later need E ̸= L which is why there is the disjunct “∀yy ∈ x” in the definition
of E – to make sure that it contains U while (as will be shown later) L does not.

Lemma 5. E ̸= U , U ∈ E, E ̸= ∅, ∅ ∈ E, V ̸= E and V ∈ E, and W ̸= E and
W /∈ E, and there is some set D such that W ̸= D, D ̸= U , D ̸= E, D ∈ E,
E ∈ D, D ̸= ∅, and ∅ /∈ D.

Proof. Consider the sets E and D1 defined above. D1 ̸= U (otherwise there would
be a contradiction: ∅ ∈ D1 (because D1 = U) and ∅ /∈ D1 (from the definition
of D1)). Then clearly U ∈ D1. Also E ̸= U for the following reason. Suppose
E = U . Then W ∈ E. But we know (from Lemma 3) that ∅ ∈ W and V /∈ W , so
W does not satisfy neither of the disjuncts in the criterion of E. Because E ̸= U ,
clearly U ∈ E. Thus also ∅ ≠ E and ∅ ∈ E.

Also D1 ̸= ∅ (otherwise a contradiction: U ∈ D1 but U /∈ ∅) and ∅ /∈ D1 from
their definitions.

It must be that E ̸= D1 because ∅ ∈ E and ∅ /∈ D1. Further we have E ∈ D1
because ∅ ∈ E. Now, if D1 ∈ E, take this D1 for D and the lemma will hold.

Suppose, on the other hand, that D1 /∈ E. From this and from the definition
of E (note that the first disjunct in the definition of E is not true here because
∅ /∈ D1) there must be some D2 such that D2 ̸= E, D2 ̸= D1, D2 ∈ D1, and D2
does not contain anything else than possibly D2, D1, and E. Because D2 ∈ D1,
then from the definition of D1 it must be that E ∈ D2. Also, D2 ∈ E because
if D2 has any member other than E and D2, it is D1, and the criterion of E is
satisfied when D2 substituted for x and D1 for y – e.g. because U ∈ D1. D2 ̸= ∅
(because E ∈ D2) and ∅ /∈ D2. Then also D2 ̸= U . So in case D1 /∈ E, take D2
for D and the lemma will hold.

The last fact about D in this lemma to be proved is that W ̸= D which follows
from ∅ /∈ D and is thus true in both cases.

V ̸= E because ∅ ∈ E but ∅ /∈ V . V ∈ E because every member of V (distinct
from V itself) contains e.g. ∅.

Finally, W ̸= E because V /∈ W (from Lemma 3) while V ∈ E. W /∈ E
because ∅ ∈ W and V /∈ W so W satisfies neither of the two disjuncts in the
definition of E.

Now that we have D and E we can prove L ̸= U .

Lemma 6. L ̸= U , U /∈ L, L ̸= W , L ̸= E and E /∈ L, L ̸= D, and D /∈ L.

Proof. Suppose L = U . This together with Lemma 5 gives us a contradiction:
E ∈ L (because L = U) but also E /∈ L from the definition of L because E is
loopy via D, both E and D are distinct from U and thus from L, they are also
distinct from each other, and ∅ /∈ D, so E does not satisfy the criterion in the
definition of L.
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V ̸= L because ∅ ∈ L and ∅ /∈ V . Therefore U /∈ L because U is loopy via V
and e.g. ∅ /∈ V so U does not satisfy the criterion of L.

L ̸= W because U ∈ W but U /∈ L.
L ̸= E because U ∈ E but U /∈ L. L ̸= D because ∅ ∈ L and ∅ /∈ D.
E /∈ L because L, E, D are pairwise distinct, E is loopy via D, and D satisfies

the last conjunct in the definition of L because ∅ /∈ D (note that for this we also
need ∅ ≠ L from Lemma 4, and ∅ ≠ D and ∅ ≠ E from Lemma 5). Similarly,
D /∈ L because D is loopy via E and E satisfies the last conjunct in the definition
of L because W /∈ E (note that here we need W ̸= L, and W ̸= E and W ̸= D
from Lemma 5).

Now it is finally time to turn to A and B, show that they are distinct from
L, distinct from each other, and that a contradiction follows.

Lemma 7. A ̸= U , U ∈ A, A ̸= ∅, ∅ ∈ A, A ̸= L, D ̸= A, D /∈ A.

Proof. Suppose A = U . Then there is a contradiction: D ∈ U but D /∈ A
because D /∈ L and ∅ /∈ D so D does not satisfy neither of the two disjuncts in
the definition of A. Thus A ̸= U . Then clearly U ∈ A. Also A ̸= ∅ because
U ∈ A. Thus ∅ ∈ A because ∅ ∈ L. A ̸= L because U ∈ A but U /∈ L. D ̸= A
because ∅ ∈ A but ∅ /∈ D. Then D /∈ A because D ̸= L and D /∈ L (from
Lemma 6) and ∅ /∈ D so D satisfies neither of the two disjuncts in the definition
of A.

Lemma 8. B ̸= U , U /∈ B, B ̸= L, and B ̸= A.

Proof. B ̸= U because there would be a contradiction: ∅ ∈ U but ∅ /∈ B (from
the definition of B). U /∈ B because U /∈ L. B ̸= L because there would be a
contradiction: ∅ /∈ B but ∅ ∈ L. B ̸= A because U ∈ A but U /∈ B.

Lemma 9. B ∈ L, A ∈ L.

Proof. Suppose B /∈ L. That means from the definition of L that there is some z
such that z ̸= B, z ̸= L, z ∈ B, B ∈ z. Then we have z ∈ L from the definition
of B. But that is a contradiction with the definition of L because z is loopy via
B and B satisfies the last conjunct in the definition of L (e.g. because U /∈ B).
Thus B ∈ L.

Suppose A /∈ L. That means from the definition of L that there is some z
such that z ̸= A, z ̸= L, z ∈ A, A ∈ z, and z does not contain some y distinct
from A, L, and z. Then from the definition of A we have (i) z ∈ L or (ii) z
contains everything possibly except A, z, and L. (ii) is not possible because of
the y. So it must be that z ∈ L. But z is loopy via A so z ∈ L implies that
A contains everything except possibly L, A and z, which is a contradiction with
D /∈ A from Lemma 7 and the fact that D is distinct from L (Lemma 6), distinct
from A (Lemma 7), and also distinct from z because z ∈ A but D /∈ A.

Theorem 10. The theory T0 is inconsistent.

Proof. From the previous lemmas we know that A, B, and L are pairwise distinct
and we also have A ∈ L and B ∈ L. Then we have (from the definition of B and
the fact that e.g. U ∈ A) A ∈ B. We also have B ∈ A because B ∈ L. But this
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is a contradiction: A /∈ L because A is loopy via B and e.g. ∅ /∈ B, so A does
not meet the criterion in the definition of L.

Figure 3.2: Results of the lemmas 2–6 are depicted. Full arrows depict the relation
’contains’ (inverse of ∈), dashed arrows its complement. Only the results of the
lemmas, not all the relations are depicted. In particular the full arrows from U
to all other nodes and dashed arrows from ∅ are omitted.

U ∅

V W

L M

D E

Note that the sets A and B are missing in Figure 3.2. All the depicted sets are
defined without parameters. Therefore, if TW P is consistent, the picture depicts
the relations among these sets in every model. Adding parameters to comprehen-
sion adds the possibility of defining A and B and leads to a contradiction and it
is therefore meaningless to talk about membership relations in this inconsistent
theory (i.e. without any model).

Regarding the proof, note that the use of parameters is crucial. For example,
we might define without parameters L as a set of non-loopy sets, A as a set of
non-loopy sets and sets containing all the sets, and B as a set of non-loopy but
also non-empty sets. Such a situation is crucially different from the situation
where A and B are defined by L as a parameter. In the former, the property of
being loopy used in L is ignoring loops via L, but the property of being loopy
used in A is ignoring loops via A, and analogously for B. Therefore, as long as
there is a set loopy only via A, like {A}, A will not be a member of L. And there
is no paradox in that A ∈ {A} and {A} ∈ A because A is defined in such a way
that loops via A are ignored. In contrast, if A is defined as in the proof by the
parameter L, A cannot contain {A} because L cannot not contain it.
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3.2 Consequences of the inconsistency

3.2.1 Inconsistency of other exclusive set theories
In this section I show how the inconsistency of T0 implies inconsistency of other
exclusive set theories.

To analyse the alternatives, it is useful to look at the general form of compre-
hension:

∀p∃S∀x(x ∈ S ↔ φ(x, p))

and divide the quantifiers in it into four groups:

1. parameters p

2. ∃S

3. ∀x

4. quantifiers in φ

Note, however, that having the three kinds of quantifier – strongly exclusive
denoted by the superscript ’s’, weakly exclusive by ’w’, and inclusive by ’i’ – is not
sufficient to express all the options. Therefore, I will instead say e.g. “exclusivity
1-3”, meaning that the bound variable in group 3 (i.e. ∀x) cannot have the value
that is already taken by some variable quantified in group 1 (i.e. the value of a
parameter). Note that this exclusivity 1-3, among others, cannot be signified by
a formula using the three kinds of quantifier. For instance, if one writes:

∀ip∃iS∀sx(x ∈ S ↔ φi(x, p)),

one signifies that the only exclusive quantifier is ∀x (which is correct) but it
is exclusive both with respect to the parameters and with respect to ∃S. So this
would be exclusivity 1-3 together with 2-36.

While some combinations of choices of exclusivity would seem arbitrary, this
section aims at a general result. Exclusivities which cannot be siginified by quan-
tifiers are still meaningful and recall that the standard logic with only inclusive
quantifiers is sufficient for formalising these exclusivities by simply putting in-
equalities to the appropriate places in the comprehension schema.

Recall that the inconsistent theory T0 has an additional axiom saying that
there are at least three sets in the universe. It is tacitly assumed below that the
considered alternatives to T0 entail this axiom. Clearly, set theories with only
one or two sets are not of much interest.

Note that Frege’s attempted way out of the paradoxes corresponds to having
only exclusivity 2-3 (cf. [30]). This avoids Russell’s paradox but almost nothing

6A sidenote: a similar problem, due to the strict linear order of quantifiers in formulae,
exists even in classical logic with all quantifiers being inclusive. There is e.g. no way to have a
formula like ∀x∃y∀a∃bF (x, y, a, b) except that the choice of y is only dependent on x and the
choice of b is only dependent on a (the choice of b in the formula just given is also dependent
on x). This is why Hintikka co-originated Independence friendly logic, see e.g. [31].
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else: e.g. the paradox of non-loopy sets stays untouched. Then, Hintikka’s first
theory THF corresponds to exclusivity 2-3 and 2-4. As mentioned, this has been
proved inconsistent already by Hintikka. THS, the inconsistency of which had
been left open but follows from the result above, corresponds to exclusivities 2-3,
2-4, and 1-3. (Note that the exclusivity 1-3 means e.g. that we do not have
standard singletons and pairs which prevents the paradox of THF .) Recall also
that both THF and THS allow the use of identity in their comprehension schemas
as well as all other theories considered by Hintikka.

The inconsistency of the whole family of exclusive set theories consid-
ered by Hintikka

T0 corresponds to exclusivity between everything but 1-2 and does not allow iden-
tity in φ. I shall now argue that the inconsistency of T0 implies inconsistency of
every other alternative comprehension schema where identity is allowed. Firstly,
it we cannot have inclusivity 2-3 or 2-4 because S must be excluded from all the
subsequent quantifiers, otherwise Russell’s VCP is violated. Accordingly, this is
the case in both Hintikka’s theories THF and THS. This is a minimal amount of
exclusivity which Hintikka considered. Indeed, exclusivity 2-3 is needed for avoid-
ing Russell’s paradox, and exclusivity 2-4 needs to be added to avoid paradoxes
like the one of non-loopy sets.

Suppose now that we have any theory T like T0 except with an alternative
choice of exclusivity vs inclusivity of quantifiers in its comprehension schema, and
suppose T has at least exclusivity 2-3 and 2-4 and that identity is allowed in its
comprehension. Such a theory entails T0 for the following reason.

Let φ be any formula used in a comprehension in T0. If any of the choices 1-4,
3-4, or 4-4 in T are inclusive, we can translate φ into a new formula ψ that will
be exclusive in 1-4, 3-4, or 4-4 by using identity as described earlier in the thesis.
This way we get ψ which is equivalent to φ, or more precisely, φ with exclusivity
determined by T0 is equivalent to ψ with exclusivity determined by T 7.

As the groups 2 and 3 only contain one quantifier (and thus exclusivities 2-2
and 3-3 are meaningless), all the remaining cases of a possible difference between
T and T0 are inclusivity vs exclusivity in 1-1, 1-2, and 1-3. Recall that T0 has
exclusivity 1-1, inclusivity 1-2, and exclusivity 1-3. It is clear that other options
for 1-1, 1-2, and 1-3 are stronger than that of T0: if something is true for all
parameters p1, ..., pn, it is also true for all pairwise distinct p1, ..., pn. If, for a
given choice of parameters, there is S distinct from all the parameters such that
..., then there is some S such that... And if something is true for all x, it is also
true for all x distinct from the parameters and from S.

In short, given any comprehension axiom of T0 with φ, one can translate this
φ into ψ by adding any 1-4, 3-4, or 4-4 exclusivity which is not present in T
“manually” using identity, and the comprehension axiom of T given by this ψ
entails the axiom of T0. Because any such theory T entails T0, a consequence
of the inconsistency of T0 is inconsistency of all such theories – i.e., all theories

7Both this equivalence and the claim that T entails T0 can be understood either semantically
or syntactically. Semantically, the equivalence means that they are true in the same structures
of the set-theoretical language. In that case, the whole argument shows that if T ′ had a model,
T0 would also have a model. But T0 does not have a model, thus T does not either (i.e., it is
inconsistent).
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like T0 except with a possibly different choices of exclusivity vs inclusivity in its
comprehension schema and with identity allowed in the comprehension schema.

Hintikka’s open problem answered

Hintikka [2] does not seem to consider theories without identity in the compre-
hension. Thus when he says:

It may be pointed out that our resources are by no means exhausted by
[THF ]. In fact, [THF ] was the outcome of one particular reinterpreta-
tion of the variables of [the comprehension schema with all quantifiers
inclusive]. Other interpretations will lead to other systems, some of
which are still safer than [THF ]. For instance, there is a system based
upon [THS][...] [2, p. 242]

and leaves open the question of consistency of other systems, this question
has just been answered: all of these are also inconsistent.

One might want to consider theories without identity in their comprehension
schemas and different from T0 in at least one of the choices among 1-4, 3-4,
and 4-4, because inconsistency of these does not straightforwardly follow from
the inconsistency of T0. If a theory T does not allow identity and has, unlike
T0, inclusivity 1-4, 3-4, or 4-4, it does not entail T0 for the reasons sketched
above because the translated formulae ψ’s use identity. Note also that identity
of sets a = b cannot be paraphrased without identity by imitating the axiom of
extensionality8 because S cannot be mentioned in φ, thus two distinct sets might
pass such a test if they only differ in that one contains S and the other does
not. It would be surprising to me if one of these theories were consistent and it
seems more likely that also in these theories parameters could be used to derive
contradictions, but I have no proof of that as I have not considered this question
in any detail.

3.2.2 What options are left?
If parameters in comprehension lead to inconsistency, one might give them up
altogether. In that case, TW P is the most natural choice. If TW P is consistent,
it is in some ways richer than the standard theories (e.g. it has a set of all sets
(possibly except itself, of course), it also has Frege’s numbers and other big sets)
and even in some ways richer than New Foundations (e.g. it has a set L of all
non-loopy sets, although this non-loopiness is relative to the set L itself). It is,
however, very non-classical in the sense that e.g. singletons and pairs do not
necessarily exist (as explained earlier in the thesis, it does not follow from the
axioms that, e.g., for any set x there is the set {x} with just one member – x).
And if one does not have pairs, one does not (presumably) have ordered pairs
and functions either. Consequently, is is not clear how a mathematician could
work with such a theory. Perhaps it might be worth considering further, but I
have no solution to the problems.

8By a formula like: ∀z(z ∈ a ↔ z ∈ b) ∧ (a ∈ a ↔ a ∈ b) ∧ (b ∈ a ↔ b ∈ b) ∧ (x ∈ a ↔ x ∈
b) ∧ ... ∧ (p1 ∈ a ↔ p1 ∈ b) ∧ ... ∧ (pn ∈ a ↔ pn ∈ b).
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Alternatively, one might consider adding other axioms, but recall that adding
the axiom of pairing leads to inconsistency.

One might also change the axiom of extensionality to something more akin to
its alternatives used in non-well-founded set theories (see [29]) and hope that this
would avoid inconsistency of some exclusive set theory with parameters. However,
this seems unlikely to work. The whole idea of using exclusive interpretation was
to avoid circularity, but it seems that the circularity remains and it will remain
regardless of the version of axiom of extensionality. Circularity seems to arise
from the unrestricted comprehension schema. This is partly addressed in the
next chapter.
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4. Philosophical interpretation
Russell’s VCP is often considered as too strong because it bans many impredica-
tive definitions that are commonly used in mathematics and seem unproblematic,
like the definition of the least upper bound. However, it seems that it is also in
some cases too weak: the exclusive theories considered in Chapter 2 and Chapter
3 are in accordance with the principle, yet they are inconsistent. This chap-
ter discusses why and how Russell’s VCP fails and how it could potentially be
improved.

4.1 Russell’s VCP misses the mark
Russell’s VCP, as formulated in 1.1.3, seems to miss the mark. In this section I
mention three reasons for this.

The first reason is that the inconsistent exclusive theories seem to be in ac-
cordance with the principle. As mentioned in 1.1.3, Hintikka argued against
Russell’s VCP based on the fact that one natural interpretation of this principle
leads to an inconsistent set theory – THF . This argument is made even stronger
by the results in Chapter 3. Now we can say that several natural interpretations
of Russell’s VCP lead to an inconsistent theory.

The second reason is similar to the first but is concerned with paradoxes out-
side of set theory. Attempts to solve non-set-theoretical paradoxes by exclusivity
also seem to be in accordance with Russell’s VCP but also fail. Recall from Sec-
tion 1.1.3 that Poincaré suggested such a solution to Richard’s paradox. It could
be similarly suggested to solve Berry’s paradox by defining a as “the smallest
natural number that is not definable in fifty syllables” and with exclusive inter-
pretation of such a definition – in such a case the class of natural numbers not
definable in fifty syllables excludes a (regardless of whether a has this property)
and also excludes all numbers such that their definitions in fifty or less syllables
in some way reference a. Although such a “solution” avoids Berry’s paradox of a
being both definable and not definable in fifty syllables, it is not sufficient. Con-
sider for example the definitions (again with exclusive interpretations of these
definitions) of b (c) as the smallest even (odd) natural number greater than all
natural numbers definable in fifty syllables. Such numbers b and c must nec-
essarily exist because there are only finitely many numbers with a definition of
fifty or less syllables, thus the classes of all even (odd) numbers that do not have
such a definition are non-empty, thus they have smallest elements – b (c). Now,
because of their different parity, b must be distinct from c. The paradox is in
that b is supposed to be greater than c because c is defined in fifty syllables, is
distinct from b and its definition in no way references b nor its definition, but by
analogous reasoning also c is supposed to be greater than b.

While the first two reasons for invalidity of Russell’s VCP show that it is
not sufficient to guard us from paradoxes, the third reason shows that it is not
necessary to subscribe to Russell’s VCP either. There are definitions which violate
Russell’s VCP but seem unproblematic. An often cited example is that of “the
tallest man in the room” which seems to be unproblematic even though it violates
Russell’s VCP. Ramsey says:
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[W]e may refer to a man as the tallest in a group, thus identifying
him by means of a totality of which he is himself a member without
there being any vicious circle. [32, p. 368]

The example of “the tallest man” is just one among many and many others
are used in mathematics. An often quoted mathematical example is that of the
least upper bound of a set. Every non-empty set of real numbers which has an
upper bound in real numbers also has the least upper bound in real numbers. The
definition of the least upper bound violates Russell’s VCP because it invokes the
class of all upper bounds to which the least upper bound itself belongs. Although
the most radical predicativists would see this definition as illegitimate, they are
in a clear minority.

Consequently, it has been argued that in cases in which the defined objects
exist independently of us, Russell’s VCP is not valid (Gödel [10], Ramsey [32],
Chihara [8]). For example, Chihara writes:

From the point of view of those who think that there really are sets
that exist independently of human thoughts and practices the vicious
circle principle is false. [8, p. 42]

Recall also the quotations from Gödel in Section 1.1.3.

4.2 Russell’s VCP is too strong
There seem to be two problems with Russell’s VCP which are in turn addressed
in this and the following section. One problem makes Russell’s VCP too strong
in some cases in that presumably unproblematic definitions violate it. The other
makes Russell’s VCP too weak in some cases in that it is insufficient to avoid
circular paradoxes.

The reason why Russell’s VCP is too strong in some cases can be explained
on the following two examples. Consider the following two definitions of a real
number which have already been mentioned. The first one is arguably legitimate
while the other is illegitimate.

Least upper bound: Given a set S of real numbers with at least
one upper bound in real numbers, define a as the least upper bound
of S.

Richard’s number: Given a countable ordered set S of definable
real numbers, define b by diagonalisation as described in Section 1.1.3.

Both definitions violate Russell’s VCP: the former defines a real number a
by invoking the class of all upper bounds, to which a itself belongs; the latter
purports to define a real number b by invoking the class of all definable real
numbers, to which b itself should belong.

However, there is a crucial difference between these two definitions. In the
latter case, and not in the former, also the definition itself is involved, not only
the defined object.
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To determine which real number is defined by the first definition, one should
in principle go through all upper bounds of S, compare them and pick the least
one. Or, presumably, one should go through all real numbers, determine which
of them are upper bounds of S, and then determine which one is the least of
these. In any case, one only goes through real numbers (i.e. objects) and not
through definitions. Consequently, only the object in question is involved, not the
definition in question. This is the case in so far as the definition in question is not
somehow involved in “going through all real numbers”, which it is not because
real numbers (as well as upper bounds of S) can be defined independently of the
definition in question.

However, consider now the latter definition – the definition of Richard’s num-
ber. To determine which real number is defined by this definition, one should in
principle go through all definable real numbers and use them in the construction.
But going through all definable numbers means going through all the definitions
of real numbers and looking at which objects are defined by them. Thus the def-
initions are involved, including the one in question – the definition of Richard’s
number.

Hopefully, comparing these two cases gives the reader some idea (albeit vague)
what is crucial for the existence of vicious circles. It seems to be the involvement
of something in the definition in question but this something is not the object
which is being defined. What exactly is it, then?

It seems to me that a promising way to develop the idea more precisely would
be to use Frege’s distinction of sense and reference1 [18]. Consider any case of
a definition d which is supposed to define an object. For example, in the case
of Richard’s (Berry’s) paradox we have a definition “The smallest real (natural)
number such that...” which is supposed to define a real (natural) number. In
the case of set theories, the definition is “the set of those sets which...” and it is
supposed to define a set2. First of all, one can distinguish the syntactical and the
semantical aspect of the definition – the former being the string of symbols used
to represent the definition, the latter being the meaning. But a further question
is: what is the meaning of a definition? Frege distinguishes between two “kinds
of meaning” – sense and reference. The reference of a definition in question is
the object defined by it, while the sense is described by Frege as follows:

It is natural, now, to think of there being connected with a sign (name,
combination of words, letter), besides that to which the sign refers,
which may be called the referent of the sign, also what I would like
to call the sense of the sign, wherein the mode of presentation is
contained. [18, p. 210]

For example, consider the definition:

The third least prime number.
1The reader unfamiliar with this distinction is advised to familiarise themselves with it,

although it might be possible to follow without doing so.
2One might perhaps use the term “singular term” instead of “definition”. Clearly, I am

concerned not with all kinds of definition in general but with the narrow case when the definition
defined an object – be it a man, number, or set.
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The syntax of this definition is the string “The third least prime number.”
Regarding its meaning, the reference of this definition is the natural number 5,
and the sense of this definition could be approximated as the mode of presentation
of the number 5 expressed by the definition.

The definition “the number which is the result of adding 2 to 3” would have
the same reference as the definition above but a different sense.

Now it is possible to clarify what is meant by the claim that a definition d may
involve the object which is defined by it, but it must not involve the definition d
itself. Firstly, the syntax of the definition may be involved, consider for example
the definition:

This string of letters except with every ’s’ changed to ’z’.

This definition involves “its own syntax” but it seems unproblematic and does
not give rise to a vicious circle. Its reference is clearly the string “Thiz ztring of
letterz except with every ’z’ changed to ’z’.”

As argued above e.g. on an example of “the tallest man in the room”, the
reference may also be involved. Thus the following principle suggests itself:

Sensical VCP (SVCP): A definition must not involve its own sense.

This is to be contrasted with:

RVCP: The definition must not involve its own reference.

Return now to the the definition of Richard’s number above. To determine
which real numbers are definable, one must look at the definitions (including
the definition of Richard’s number) and determine which numbers are defined by
them – i.e., what are their references.

Frege says the following about the connection of sense and reference in general:

The regular connection between a sign, its sense, and its referent is of
such a kind that to the sign there corresponds a definite sense and to
that in turn a definite referent. [18, p. 211]

In the question of which number is defined by a definition, one starts with the
sign of the definition, to this sign there corresponds a sense, and to this sense
corresponds a reference – a definable number. In this way, senses of the definitions
are involved, not only references.

Russell, in the context of VCP, does not seem to differentiate between a def-
inition and the object defined by it. Without this distinction, SVCP and RVCP
are indistinguishable. That Russell did not distinguish between the two can be
seen e.g. in his formulation of VCP:

“Whatever involves all of a collection must not be one of the collec-
tion.” [14, p. 225]
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What does this “Whatever” stand for, for the definition, or for the defined
object? If for object, then it does not make sense because an object cannot be said
to involve some object (as Gödel points out, recall the quotation in Section 1.1.3).
If it stands for the definition, then this principle does not ban involving a collection
including the denoted object, e.g. by means of quantifiers, but Russell did mean to
ban involving the object. Thus it seems that Russell did not distinguish between
a definition and the object it defines and “whatever” stands for both of them.
Insisting on this distinction, the best approximation of this formulation of Russell
seems to be:

“Any definition that involves all of a collection must not be such that
the object it defines is one of the collection.”

Recall also the formulation of VCP called “Russell’s VCP” in Section 1.1.3:

“Everything that contains an apparent variable must be excluded from
the possible values of this variable.”

Russell’s VCP seems to be a principle in the vein of RVCP. It says that the
reference of the definition in question must be excluded from the possible values of
the apparent variable – because objects (i.e. references of definitions) are values
of variables, not their senses.

Consider again the definition of “The tallest man in the room.” This violates
RVCP as the class of all men in the room is involved and the tallest man – the
reference of this definition – is a member of this class. However, the sense of the
definition is not involved in any way. The matter of who the tallest man is is
settled completely by which men are in the room and how tall they are and the
sense of the definition is in no way involved.

In summary, SVCP seems to improve RVCP in that it does not ban (in con-
trast to RVCP) the legitimate definitions like “the tallest man in the room” while
it bans (just as RVCP does) those definitions that really do give rise to vicious
circles like the ones in Berry’s and Richard’s paradox. Admittedly, the meaning
of “involve” in SVCP is left quite vague. Whether a definition involves its own
sense cannot be decided by a simple criterion.

4.3 Russell’s VCP is too weak
As argued in the previous section, RVCP is in general invalid because it blames
the paradoxes on the involvement of the reference not of the sense of the definition.
However, consider RVCP in the context of set theories discussed in this thesis. All
these set theories (naive set theory, New Foundations, and the various exclusive
set theories) have only the axiom of extensionality and the instances of the axiom
schema of unrestricted comprehension as their axioms. Consequently, which sets
exist is determined by the comprehension axioms. These comprehension axioms
thus play a double role: on one hand they are used as definitions to single out
a set from the totality of all sets; on the other hand they are used to determine
which sets exist. Regarding the instances of the comprehension schema, every
axiom saying that a set exists is at the same time a definition of this set, and vice
versa.
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Consider any definition like S = {x|∀z(...)}. This definition, because of the
quantifier, involves all sets z, including the set S itself, thus it violates RVCP.
However, it also violates SVCP: what are all sets? That depends on which sets
exist. And which sets exist? This depends on what sets are defined by compre-
hension axioms, i.e. by the definitions including this very definition of S. And as
explained in the previous section in the example of Berry’s paradox, the sense of
a definition is involved in the quesiton of what object is defined by this definition.
In this way, the sense of this definition of S is involved. For this reason, as long
as the existence of sets is not determined independently of the definitions, SVCP
is equivalent to RVCP. To separate them, one would need to describe what sets
exist independently of the comprehension axioms. Then the definition of the set
would depend on all sets which would depend on which sets exist which would de-
pend on whatever way we used to describe which sets exist and not on definitions
of the sets. This is perhaps the case of Zermelo-Fraenkel set theory.

Note that the paradoxes discussed in this thesis are often divided into two
groups: logical paradoxes and semantical paradoxes. The former group includes
set-theoretical paradoxes, the latter Berry’s and Richard’s. These two categories
are thought to be different and deserving a different kind of a solution. On the
other hand, Vicious circle principles (Russell’s VCP, but also SVCP) can be seen
as giving a solution to all the paradoxes, not recognising the categorisation. The
categorisation, although being accepted by many, has its critics:

Russell himself was unable to say what held the family of paradoxes
together beyond some rather unsatisfactory remarks concerning vi-
cious circles[...] It is therefore unsurprising that the modern view of
the paradoxes is to the effect that there are two distinct families here,
which arise from different sources, and which are to be treated quite
differently. [...] [T]he founder of the orthodoxy was Ramsey (1925).
[...] Russell was right and Ramsey was wrong. The paradoxes of self-
reference do have a common underlying structure, which generates
the contradiction involved[...] [33, p. 24]

Now, if SVCP is equivalent to RVCP in the context of set theories discussed
in this thesis and if SVCP is valid, implementing RVCP in naive set theory
should lead to a consistent theory. Exclusive set theories (for instance T0) seem
to implement RVCP (and thus SVCP) but are inconsistent. Why is this so?

This is because the inconsistent exclusive set theories only implement Rus-
sell’s VCP in the narrow sense, where “involving” is narrowed to “involve by an
apparent variable” in accordance with Russell’s formulation mentioned in Section
1.1.3. However, “involving” must be understood in a broader sense.

We may consider several types of self-involvement, each one less direct than the
previous one. Firstly, there is the most direct self-involvement by an immediate
self-reference. Outside of set theory, this is the case of e.g. Liar’s paradox (“This
proposition is false.”), where the proposition references itself3. In set theory
this would be the case if S itself could be used in φ as a free variable. This
is however forbidden in all the set theories including naive set theory, thus this

3And its sense is involved in determining the truth value, which is why SVCP is violated an
there is a vicious circularity.
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most direct involvement can be ignored in the context of set theories. A less direct
involvement is via quantifiers – when a set S is defined by reference to all sets by
a quantifier, one of the possible values of which it itself is. This involvement is
recognised by Russell’s VCP and is banned by requiring that the set being defined
is excluded from the possible values of apparent variables. This involvement is
also implemented by exclusive set theories. However, there are other, even less
direct self-involvements.

In exclusive set theories, when a set S is defined using quantifiers, the possible
values of these quantifiers exclude S itself. However, they include other sets
and these other sets are defined by exclusive quantifiers excluding the values of
themselves but not of S. Thus it so happens that S involves some set T (because
T is a possible value of quantifiers used in the definition of S) and this T involves
S (because S is a possible value of quantifiers used in the definition of T ).

The most immediate self-involvement by using S itself in φ could be named
0-self-involvement, the one banned by Russell’s VCP 1-self-involvement, and the
one described in the paragraph above 2-self-involvement. This indeed generalises
for even greater natural numbers than 2.

If one looks at the problem only in light of RVCP, it is impossible to see
2-self-involvement and higher self-involvements. This is because the reference is
an object and an object cannot be said to involve something – only definitions
or their senses do. But if one recognises both SVCP and RVCP and sees their
equivalence, the matter becomes clear. In the case of 2-self-involvement, the
definition of a set S involves some T . Because of the equivalence of SVCP and
RVCP in set theories, S also involves the sense of the definition of T . The sense
of T involves (by use of quantifiers) other sets, including S. Thus S eventually
(via T ) involves itself.

Note that this situation in set theories is analogous to the exclusive Berry’s
paradox described in the beginning of this chapter. There, too, the defined num-
ber b does not 0-involve nor 1-involve itself, but it 2-involves itself via c.

The last problem to be clarified is this. The analysis above would suggest
that NF or TW P also allow definitions which involve themselves, and thus these
theories would also violate SVCP and RVCP. No use of parameters is needed
for a definition of a set to 2-involve itself in the way described above, and the
stratification requirement in NF does not prevent it either. So why are they not
circular? The only possible answer is: they are circular, but maybe the circles
are not vicious.

The self-involvement described above leads to circularity. A vicious circularity
is different from circularity in that it leads to paradoxes.

The fact that circularity does not necessarily entail vicious circularity can
perhaps be best show on a non-set-theoretical example. Consider Liar’s paradox
– the sentence “This proposition is false.” This sentence 0-involves itself and is
paradoxical. Suppose, however, that 0-self-involvement is banned and consider
the following example.

Suppose Pinocchio utters the sentence s: “All sentences uttered by me during
my whole life are false”. Although s involves itself (its sense), it does not lead to
a paradox if Pinocchio utters at least one true sentence during his lifetime – in
that case, s is simply false. However, if he does not utter a true sentence, s is
true if and only if it is false. Indeed, exclusivity does not help in this case either:
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even when the sentences are interpreted exclusively, there is a circularity (in the
form of 2-self-involvement) which can be vicious in some context. For example,
suppose that Pinocchio only utters two sentences during his life: “All (other)
sentences uttered by me during my life are false”, and “All (other) sentences
uttered by me during my life are true”. This is a paradoxical situation.

The first example – with the sentence s – is analogous to a situation in New
Foundations. Consider the Frege’s number two in NF: F2 is the set of all sets
with exactly two members.

∃F2∀x(x ∈ F2 ↔ ∃a∃b(a ̸= b ∧ ∀c(c ∈ x ↔ (c = a ∨ c = b)))).

F2 involves itself but it clearly has more than two members. Suppose you
should answer the question of whether F2 ∈ F2. You first determine e.g. that
{∅, {∅}}, {∅, {{∅}}}, and {{∅}, {{∅}}} are all members of F2 and then answer
the question: F2 is not a member of F2. This is analogous to the Pinocchio’s
sentence s in the case he utters some true sentences during his life. Analogous to
the case in which he does not utter a true sentence in his life would be a situation
in which there were only two other sets than F2 with two members. Then if F2 /∈
F2, it has these two members, and thus it should be a member of itself. On the
other hand, if F2 ∈ F2, it has three members and thus should not be a member
of itself.

Indeed, there are infinitely many members of Fn for every positive natural
number n in NF, so there is no such paradox in NF. But we can see that there is
a circularity in NF which is not present in e.g. ZF.

In the consistent cases, it might be said that the definition of a set (or the
statement by Pinocchio) involves itself yet it does not depend on itself.

The case with exclusive interpretation of Pinocchio’s sentences is analogous
to the exclusive set theory TW P . This theory is circular just like NF, naive set
theory or other exclusive set theories (except there are no 1-self-involvements,
only n-self-involvements for n > 1). Consequently, If TW P is consistent, this is
not because it is less circular than the inconsistent exclusive set theories like T0.
It is because this circularity is not vicious. The use of parameters in exclusive set
theories does not add circularity but it turns circularity into vicious circularity.
Because the set S being defined in TW P is excluded from everything that can be
said in the defining property, S arguably only involves itself but does not depend
on itself – the property ignores it: if {∅, S} satisfies the property, then also {∅}
does, etc. Parameters break this and turn circularity into vicious circularity (as
mentioned below Theorem 10). The parameters change “involves” to “depends
on”.

If NF or TW P is consistent, it would seem more appropriate to rename “vicious
circle principles” to “circularity principles”, at least as long as the existence of
a vicious circle implies inconsistency. A valid circularity principle (SVCP is a
candidate for such a principle) would guard us against circularity. Arguably,
circularity is problematic and it is reasonable to avoid it regardless of whether it
is vicious. However, in that case, if a theory violates the circularity principle, it
is because it is circular and it might possibly be consistent.

There are indeed interesting question regarding circularity that have not been
properly addressed, for example: Is there a way to distinguish viciously circular
theories from non-viciously circular?, Should circularity in itself be avoided or
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is it only problematic when it is vicious?, and Can the notion of “involving the
sense” in SVCP be made more precise?
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Conclusion
In this thesis, I have followed up on Jaakko Hintikka’s work on using exclusive
interpretation of quantifiers to avoid paradoxes of naive set theory. Exclusive
interpretation allows avoiding the well-know paradoxes of naive set theory while
keeping its axiom of extensionality and axiom schema of unrestricted compre-
hension. Several such exclusive set theories, formalised in first-order logic, have
been considered in this thesis. The primary criterion for success of an exclusive
set theory is its consistency, the secondary criterion might be its usefulness. In
this sense, the endeavour seems to be doomed to fail: allowing parameters in the
comprehension schema leads to inconsistency while not allowing them seems to
lead to an unworkable theory.

Hintikka left open the question of consistency of a family of exclusive set the-
ories. The main contribution of this thesis is the proof that all these exclusive set
theories are inconsistent. I have proved this by showing that a particular exclu-
sive set theory which seems rather weak is inconsistent. From this, inconsistency
of other exclusive set theories follows.

I have also discussed Russell’s vicious circle principle, partly in light of in-
consistency of exclusive set theories. I have argued that while Russell’s vicious
principle blocks a certain kind of circularity, it does not block other less direct
kinds of circularity. This is why the exclusive set theories are inconsistent even
though they do not violate the principle.

The problems with Russell’s vicious circle principle and their connection to
various paradoxes and to inconsistency of exclusive set theories offer directions for
a further research. In particular, a way to improve Russell’s principle is indicated
in the last chapter. It seems worthwile to try and develop some ideas from the
last chapter in more detail.
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[10] Kurt Gödel. Russell’s mathematical logic. In Paul Benacerraf and Hilary
Putnam, editors, Philosophy of Mathematics Selected Readings (2nd ed.),
pages 447–469. Cambridge University Press, 1983.

[11] Bertrand Russell. Some Explanations in Reply to Mr. Bradley. Mind,
19(75):373–378, 1910.

[12] Bertrand Russell. Les Paradoxes de la Logique. Revue de Métaphysique et
de Morale, 14(5):627–650, 1906.
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Appendix

Overview of various set theories mentioned in the
thesis
All the theories mentioned in this thesis can be formalised in the standard first
order logic with standard inclusive quantifiers. This is the approach taken here
to make the theories as clearly comprehensible as possible for the reader.

Common features
All the theories have the following three feature in common:

Standard logic: The theory is formalised in the standard first-
order logic with identity. This includes quantifiers: there are only
standard inclusive quantifiers.

Set-theoretical language: The only non-logical symbol in the
language of the theory is the binary predicate symbol ’∈’.

Extensionality: The following is an axiom of the theory:

∀x∀y(x = y ↔ ∀z(z ∈ x ↔ z ∈ y))

.

Because these three features are common to all the considered theories, I put
them together as a single composite feature:

Standard set-theoretical language with extensionality:
The theory has the features: standard logic, Set-theoretical
language, and Extensionality.

Various comprehensions
All the theories have some kind of unrestricted comprehension schema.

Naive comprehension

Naive comprehension: ∀p1...∀pn∃s∀x(x ∈ s ↔ φ(x, p1, ..., pn)) is
an axiom of the theory for every n ∈ N and for every formula φ with
free variables x, p1, ..., pn.

Note that x, p1, ..., pn are the only variables occuring freely in φ. Thus,
importantly, s does not appear as a free variable in φ.
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NF comprehension

NF comprehension: ∀p1...∀pn∃s∀x(x ∈ s ↔ φ(x, p1, ..., pn)) is an
axiom of the theory for every n ∈ N and for every stratified formula
φ with free variables x, p1, ..., pn.

Where a formula φ is stratified iff there is an initial segment S = {0, 1, ..., k}
of natural numbers and a function σ from the set of all variables in φ to S such
that:

(i) For every atomic formula x = y, we have σ(x) = σ(y).

(ii) For every atomic formula x ∈ y, we have σ(y) = σ(x) + 1.

Note that there is the set {a, {a}} for any set a because a can be the value of
two distinct parameters in the comprehension schema. However, it is not possible
to say that x = {y, {y}} for some y by a stratified formula φ(x).

THF comprehension

THF comprehension:

∀p1...∀pn∃s∀x(x ̸= s → (x ∈ s ↔ φ−s(x, p1, ..., pn)))

is an axiom of the theory for every n ∈ N and for every formula φ
with free variables x, p1, ..., pn.

Where φ−s is obtained from φ by replacing every quantifier ∃y(...) by ∃y(y ̸=
s ∧ ...) and every quantifier ∀y(...) by ∀y(y ̸= s → ...).

THS comprehension

THS comprehension: ∀p1...∀pn∃s∀x((x ̸= s ∧ x ̸= p1 ∧ ... ∧ x ̸=
pn) → (x ∈ s ↔ φ−s(x, p1, ..., pn))) is an axiom of the theory for every
n ∈ N and for every formula φ with free variables x, p1, ..., pn.

Where φ−s is obtained from φ by replacing every quantifier ∃y(...) by ∃y(y ̸=
s ∧ ...) and every quantifier ∀y(...) by ∀y(y ̸= s → ...).

T0 comprehension

T0 comprehension: Comprehension axioms of the theory are given
by transforming every instance of the axiom schema Naive compre-
hension without identity in φ in the following way. Given an instance
of Naive comprehension, rewrite sequentially (from left to write) ev-
ery quantifier except ∃s of the form ...∃z(...) to ...∃z(z ̸= y1 ∧ z ̸=
y2 ∧ ...z ̸= yk ∧ ...) and every quantifier ...∀z(...) to ...∀z((z ̸= y1 ∧ z ̸=
y2 ∧ ...z ̸= yk) → ...) where y1, ..., yk are all the quantifiers in whose
scope ∀z appears.

For instance, consider the following instance of Naive comprehension:
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∀p∃s∀x(x ∈ s ↔ (x ∈ p ∨ ¬∃zz ∈ x))

Going from left to right, one first comes across ∀p. Because this is the first
quantifier, it is not in the scope of any quantifier, thus it stays the same. Then
one comes across ∃s which is the only exception to the rewriting rule and is thus
left the same. Then one comes across ∀x and rewrites it by the rule given above
to get the intermediate formula ψ1 ≡ ∀p∃s∀x((x ̸= p ∧ x ̸= s) → (x ∈ s ↔ (x ∈
p ∨ ¬∃zz ∈ x))). The next and the last quantifier is ∃z and rewriting it leads to
the final formula ψ2 ≡ ∀p∃s∀x((x ̸= p ∧ x ̸= s) → (x ∈ s ↔ (x ∈ p ∨ ¬∃z(z ̸=
p ∧ z ̸= s ∧ z ̸= x ∧ z ∈ x)))). So this psi2 is an axiom of T0.

TW P comprehension

TW P comprehension: Comprehension axioms of this theory are
given in the same way as in the case of T0 comprehension, except
that only formulae φ(x) without parameters are allowed.

Various set theories
Naive theory is given by the following features:

• Standard set-theoretical language with extensionality

• Naive comprehension

New Foundations is given by the following features:

• Standard set-theoretical language with extensionality

• NF comprehension

Hintikka’s first theory THF is given by the following features:

• Standard set-theoretical language with extensionality

• THF comprehension

Hintikka’s second theory THS is given by the following features:

• Standard set-theoretical language with extensionality

• THS comprehension

T0 is the theory given by the following features:

• Standard set-theoretical language with extensionality

• T0 comprehension

• Additional axiom: ∃x∃y∃z(x ̸= y ∧ x ̸= z ∧ y ̸= z)

TW P is the theory given by the following features:

• Standard set-theoretical language with extensionality

• TW P comprehension

• Additional axiom: ∃x∃y∃z(x ̸= y ∧ x ̸= z ∧ y ̸= z)
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