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Introduction
Quantum mechanics has been considered a cornerstone of modern physics for
almost a century, and as much as it is fundamental, it is not very user-friendly.
It is a widely known fact that only a handful of problems can be solved ana-
lytically. One of the simplest systems that have to be calculated approximately
are helium-like atoms, which are at the focal point of this thesis and which con-
stitute the first non-trivial examination of the validity of quantum mechanics:
”As is well known, wave mechanics at once reproduced all correct results ob-
tainable from Bohr’s theory, and the use of its much more convenient perturba-
tion theory added considerably more, however, not always in the strict numerical
sense. Now, particularly by Max Born, it was argued that the simplest crucial test
of the correctness of wave mechanics in general was to be found in its application
to the helium atom—in particular to the ground state.” [1]

The field of atomic physics indeed was the backbone in the early development
of quantum physics, and its essential role prevails to this day as well. Systems
with a small number of particles, such as two body systems (H, He+, µH, e+e−,
µ+e−) or He-like ions represent a convenient way of testing the Standard Model.
A major inconsistency between theoretical predictions and experimental results
might be an indication of new physics or a hint that the values of fundamental
constants are incorrect. In comparison with large particle collider experiments
that require a lot of energy, empirical research in high-precision atomic physics
offers an enormous reduction in financial costs. [2]

Some of the greatest achievements of atomic physics include the determina-
tion of the magnetic moment of the electron bound in the hydrogenlike carbon
ion. The theoretical value calculated with methods of quantum electrodynamics
is confirmed by experiment with a relative precision of 3 × 10−11. Another im-
portant contribution is a problem called the proton radius puzzle. In a nutshell,
the proton root-mean-square charge radius can be derived from what is called
a Lamb shift. The discrepancy, however, lies in the fact that using this method,
different values are obtained when measuring muonic µH and electronic H hy-
drogen, even though a single figure should be recovered. There is also the riddle
of measuring the isotope shift between 3He and 4He where different experiments
yield values of the nuclear charge radii difference with 4σ disagreement. [2]
All of these results testify to the invaluableness of both theoretical as well as
experimental atomic physics.

In this thesis, however, we will not try to resolve these contradictions,
nor will we investigate the impact of some exotic effects. Rather, as mentioned
above, the focus of our work will be the examination of a new method for the cal-
culation of energies of helium-like atoms, where the only interaction we consider
is the Coulomb interaction. In order to do that, the time-independent Schrödinger
equation

Ĥ |Ψ⟩ = E |Ψ⟩ (1)

needs to be solved. Not taking into account any relativistic or any other effects
of secondary importance, the Hamiltonian provided by canonical quantization
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postulate takes the form 1

Ĥ = p̂2
N

2mN

+ p̂2
e1

2me

+ p̂2
e2

2me

− Zα

r̂e1
− Zα

r̂e2
+ α

r̂e12
.

Using the approximation of infinite nuclear mass and by a transition to atomic
units 2, the Hamiltonian can be rewritten as3 [3]

Ĥ
Z2 = ĥ1 + ĥ2 + 1

Z r̂12
= p̂2

1
2 − 1

r̂1
+ p̂2

2
2 − 1

r̂2
+ 1

Z r̂12
, (2)

where r̂12 denotes the distance between electrons.
When computing the energies of helium-like atoms, major difficulty arises

with the calculation of matrix elements of the electron-electron Coulomb in-
teraction ⟨k|r̂−1

12 |j⟩. As a consequence, no analytical solution can be found.
Instead, variational method is exploited. Since the basis vectors can be ex-
pressed as products of a radial and an angular part, the computation can be
split in this manner as well. This will be discussed in more detail in the first
chapter. Now, the integration of the angular terms is basically trivial because
the spherical functions are derived from commutation relations transforming
the integral into an exact algebraic expression. In contrast, the radial func-
tions are found as solutions of differential equation [4]. If we were to evaluate
the radial integrals using methods of numerical integration, we would encounter
serious numerical instabilities on account of radial functions having a large num-
ber of nodes.4 In finite precision arithmetic, this corresponds to the subtrac-
tion of two infinities. If we used a nonorthogonal basis, we would just post-
pone the problem with instabilities to the diagonalization of Hamiltonian [4].
This issue might be addressed with the derivation of algebraic formulas for radial
integrals obtained from commutation relations similar to the approach with which
the angular terms are handled. For one such procedure, see [4]. We will employ
this strategy as well. Unlike the article mentioned above with its rather intricate
derivation of formulas, in this thesis, we will recover the 1/r̂12 operator in a purely
algebraic manner using one simple trick.

As was suggested at the very end of [4], the Coulomb interaction matrix ele-
ments ⟨k|r̂−1

12 |j⟩ will not be calculated directly. Instead, we will determine the ma-
trix elements of the operator r̂2

12 first, as simple and exact formulas for their in-
tegrals can be derived. Subsequently, we will shift our focus to numerical meth-
ods that will enable us to compute the square root of r̂2

12, which, after inver-
sion, will yield our desired 1/r̂12 operator. This process will be the concern
of the second chapter. In the third chapter, the matrix elements of the one-
electron Hamiltonian will be calculated, and by solving the Schrödinger equation,
the energy of the ground state will finally be acquired.

1Subscript e at the given operator is used to distinguish the operators with the corresponding
dimension and dimensionless operators in all following expressions.
Z is the proton number, α is the fine structure constant.

2Atomic units will be used in this entire thesis. In this system, the values of some key
constants are set to one e = ℏ = me = 1.

3Throughout this thesis, if not specified otherwise, subscripts 1 or 2 at an operator imply
that the operator applies to the electron 1 resp. 2, ie. ô1 = ô ⊗ 1̂ and ô2 = 1̂ ⊗ ô.

4Especially for a large basis that is needed for convergence of the solution of Eq. (1).
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1. Configuration interaction
and Sturmian basis
Before we start with our own calculations, let us discuss some core ideas our work
is based upon.

In this thesis, the method of configuration interaction (CI) is utilized.
It is the most accurate method for the calculation of the Schrödinger equation
of many-electron atoms [4]. In CI, the basis consists of antisymmetrized products
of one-electron spin orbitals. When we increase the basis (i.e., when we make use
of more basis states), the results converge to the accurate values.

As noted above, the basis states of the two electrons are antisymmetric. How-
ever, since the objective of this thesis is to calculate the energies of the first 1S
states, the antisymmetrization is secured by the spin part of the basis vectors
leaving the coordinate part symmetric. Thus, the expression for the coordinate
part of the basis functions |j⟩ reads1 [3]

|j⟩ = 1√
2

(︄
|n1j, n2j, l1j = lj, l2j = lj, Lj = 0, Mj = 0⟩ +

+ |n2j, n1j, l2j = lj, l1j = lj, Lj = 0, Mj = 0⟩
)︄

(1.1)

= 1√
2

⎛⎝ |n1j, lj⟩ |n2j, lj⟩
lj∑︂

i=−lj

(lj, i, lj, −i|0, 0) |lj, i⟩ |lj, −i⟩ +

+ |n2j, lj⟩ |n1j, lj⟩
lj∑︂

i=−lj

(lj, −i, lj, i|0, 0) |lj, −i⟩ |lj, i⟩

⎞⎠ (1.2)

where
(lj, i, lj, −i|0, 0) = (−1)lj+i√︂

2lj + 1

are the Clebsch-Gordan coefficients, |lj, i⟩ are the spherical harmonics

Ylm(n) = ⟨n|l, m⟩ ,

and |n1j, lj⟩ , |n2j, lj⟩ represent the radial part of the one-electron function.
However, these functions are not the hydrogenic radial functions, as one might
assume, since the system of eigenstates of hydrogen Hamiltonian is split into
a discrete and a continuous part. Therefore, the discrete radial functions do not
form a complete basis.

Instead, the so-called Sturmian functions will be used. These functions can be
obtained from the hydrogenic functions via energy-dependent scaling r → rn [4]
and are the eigenstates of the operator T̂3, which is defined as [3]

T̂3 ≡ r̂
2(p̂2 + 1) .

1If symmetrization is needed, i.e., if n1 ̸= n2.
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These functions satisfy

T̂3 |n, l⟩ = n |n, l⟩ (1.3)

and are denoted as
RM

n,l(r) = ⟨r|n, l⟩ .

The reason why we use the Sturmian basis is that the eigenstates of T̂3 form
a complete discrete basis, which is a crucial property when utilizing the CI
method.

Unlike hydrogen eigenfunctions, Sturmian functions are orthonormal with re-
spect to the inner product with the weight function r [3],

⟨n′, l|n, l⟩ =
∫︂ ∞

0
dr rRM

n′,l(r)RM
n,l(r) = δn′,n . (1.4)

Substituting the operator T̂3 in Eq. (2), the equation Eq. (1) takes the form(︃ 1
r̂1

(T̂3 − 1̂)1 + 1
r̂2

(T̂3 − 1̂)2 + 1
Z r̂12

)︃
|Ψ⟩ = ∆E |Ψ⟩ , (1.5)

where ∆E satisfies
E = Z2(∆E − 1) . (1.6)

At this point, a variational parameter is often introduced [3]. We will not do so,
however, as it would be of no benefit. The explanation will become apparent
at the very end of this thesis.

The solution of Eq. (1.5) is the ultimate objective of our efforts.
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2. Computation of the
electron-electron interaction
In this chapter, the reader will find the evaluation of the operator 1/r̂12 using
a novel method making this chapter the essence of this entire thesis. As was
mentioned in the introduction, at the core of this thesis lies the computation
of the operator r̂2

12 from which the elements of the 1/r̂12 operator are then deter-
mined.

The elegance of this approach and the reason why we chose it boils down
to the fact that firstly, r̂2

12 takes a simple form

r̂2
12 = (r̂1 − r̂2) · (r̂1 − r̂2)

= r̂2
1 − 2 r̂1r̂2 n̂1 · n̂2 + r̂2

2

= r̂2
1 − 2 r̂1r̂2

(︃1
2(n̂+

1 n̂−
2 + n̂−

1 n̂+
2 ) + n̂3

1n̂3
2

)︃
+ r̂2

2 ,

where all the operators are well-defined and act on the basis states Eq. (1.2)
in a straightforward manner making their matrix elements easy to derive.
Secondly, the Schur method offers a fast and numerically stable procedure
to reconstruct 1/r̂12 from the operator r̂2

12. Thus, we will obtain 1/r̂12 without
the need to evaluate a single integral.

Considering the symmetry of the 1S states, the matrix elements of r̂2
12 require

even fewer calculations as the following equalities hold,

r̂2
1 = r̂2

2 , (2.1)
n̂+

1 n̂−
2 = n̂−

1 n̂+
2 . (2.2)

Furthermore, taking into account that r̂2
12 is hermitian with respect to the scalar

product Eq. (1.4), the number of computations necessary drops to one third.
The non-hermitian operators n̂+ and n̂− are defined as usual,

n̂+ ≡ n̂x + in̂y ,

n̂− ≡ n̂x − in̂y .

It also holds that

n̂3 ≡ n̂z ,

n̂ ≡ r̂
r̂ .

With everything clarified, we can now proceed to the actual calculations.
In the first subchapter, we will derive the form of r̂2

1. Subsequently, the elements
of r̂1r̂2n̂+

1 n̂−
2 and r̂1r̂2n̂3

1n̂3
2 will be calculated. Finally, at the end of this chapter,

we will discuss the computation of the square root inverse of the r̂2
12 matrix.
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2.1 Calculation of one-electron radial operator
In this subsection, the matrix elements ⟨k|r̂2

1|j⟩ are derived.
Taking into consideration that r̂2

1 acts only on the radial part of states,
the concise form of the basis vectors Eq. (1.1) with factorized one-electron ra-
dial terms

|j⟩ = 1√
2

(︄
|n1j, lj⟩ |n2j, lj⟩ + |n2j, lj⟩ |n1j, lj⟩

)︄
|lj, lj, 0, 0⟩ (2.3)

will suffice and will, in fact, significantly reduce the number of computations.
To evaluate ⟨k|r̂2

1|j⟩, three integrals need to be determined: the radial or-
thonormal relation Eq. (1.4), the angular orthonormal relation

⟨l′, l′, 0, 0|l, l, 0, 0⟩ = δl′,l , (2.4)

and above all
⟨n′, l|r̂2|n, l⟩ =

∫︂ ∞

0
drrRM

n′,l(r)r2RM
n,l(r) . (2.5)

To calculate this integral the action of r̂ on Sturmian functions [4]

rRM
n,l(r) = nRM

n,l(r) − 1
2
√︂

(n + l + 1)(n − l)RM
n+1,l(r)

− 1
2
√︂

(n − l − 1)(n + l)RM
n−1,l(r) (2.6)

is utilized. This recurrence relation, which we will apply only as a simple formula
for now, is derived from the commutations of the radial so(2,1) algebra. For more
details, see [4]. Substituting twice Eq. (2.6) and exploiting Eq. (1.4), the integral
Eq. (2.5) yields

⟨n′, l|r̂2|n, l⟩ =
∫︂ ∞

0
drrRM

n′,l(r)r2RM
n,l(r)

=
(︃3

2n2 − 1
2 l(l + 1)

)︃
δn′,n

− 1
2
√︂

(n + l + 1)(n − l)(2n + 1)δn′,n+1

− 1
2
√︂

(n − l − 1)(n + l)(2n − 1)δn′,n−1

+ 1
4
√︂

(n + l + 1)(n − l)(n + l + 2)(n − l + 1)δn′,n+2

+ 1
4
√︂

(n − l − 1)(n + l)(n − l − 2)(n + l − 1)δn′,n−2 . (2.7)

Thus, with use of Eqs. (1.4), (2.4) and (2.7), an exact algebraic formula
for matrix elements ⟨k|r̂2

1|j⟩ is derived. Keeping in mind Eq. (2.1), the elements
⟨k|r̂2

2|j⟩ are identical.

2.2 Calculation of the cross term
Having just acquired the expression for the one-electron part of the operator r̂2

12,
we can continue by examining the ⟨k|r̂1r̂2n̂+

1 n̂−
2 |j⟩ and ⟨k|r̂1r̂2n̂3

1n̂3
2|j⟩ matrix ele-

ments.
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To calculate these elements, the expanded form of the basis states Eq. (1.2)
has to be used since the operators act on the radial as well as the angular part
of the wave function. In the case of the cross term, four integrals need to be
evaluated:

⟨n′, l′|r̂|n, l⟩ =
∫︂ ∞

0
drrRM

n′,l′(r)rRM
n,l(r) , (2.8)

⟨l′, m′|n̂+|l, m⟩ =
∫︂

S2
dnYl′,m′(n)n+Yl,m(n) , (2.9)

⟨l′, m′|n̂−|l, m⟩ =
∫︂

S2
dnYl′,m′(n)n−Yl,m(n) . (2.10)

⟨l′, m′|n̂3|l, m⟩ =
∫︂

S2
dnYl′,m′(n)n3Yl,m(n) . (2.11)

Let us begin with the computation of the angular terms first.
For their integration, we will make use of formulas [3]

n+Yl,m(n) =

⌜⃓⃓⎷(l − m − 1)(l − m)
(2l − 1)(2l + 1) Yl−1,m+1(n)

−

⌜⃓⃓⎷(l + m + 2)(l + m + 1)
(2l + 1)(2l + 3) Yl+1,m+1(n) ,

n−Yl,m(n) =−

⌜⃓⃓⎷(l + m − 1)(l + m)
(2l − 1)(2l + 1) Yl−1,m−1(n)

+

⌜⃓⃓⎷(l − m + 2)(l − m + 1)
(2l + 1)(2l + 3) Yl+1,m−1(n) .

n3Yl,m(n) =

⌜⃓⃓⎷ (l − m)(l + m)
(2l − 1)(2l + 1)Yl−1,m(n)

+

⌜⃓⃓⎷(l + m + 1)(l − m + 1)
(2l + 1)(2l + 3) Yl+1,m(n)

With the help of these relations as well as by utilizing the angular orthonormality
relation [3]

⟨l′, m′|l, m⟩ = δl′,lδm′,m ,

the integrals Eqs. (2.9), (2.10) and (2.11) take the form

⟨l′, m′|n̂+|l, m⟩ =
⎛⎝

⌜⃓⃓⎷(l − m − 1)(l − m)
(2l − 1)(2l + 1) δl′,l−1

−

⌜⃓⃓⎷(l + m + 2)(l + m + 1)
(2l + 1)(2l + 3) δl′,l+1

⎞⎠δm′,m+1 (2.12)

⟨l′, m′|n̂−|l, m⟩ =
⎛⎝−

⌜⃓⃓⎷(l + m − 1)(l + m)
(2l − 1)(2l + 1) δl′,l−1

+

⌜⃓⃓⎷(l + m + 2)(l + m + 1)
(2l + 1)(2l + 3) δl′,l+1

⎞⎠δm′,m−1 (2.13)
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⟨l′, m′|n̂3|l, m⟩ =
⎛⎝

⌜⃓⃓⎷ (l − m)(l + m)
(2l − 1)(2l + 1)δl′,l−1

+

⌜⃓⃓⎷(l + m + 1)(l − m + 1)
(2l + 1)(2l + 3) δl′,l+1

⎞⎠δm′,m (2.14)

Now, let us shift our focus to the radial part.
Thanks to the Kronecker deltas in the expressions above, the equality

|l′ − l| = 1 is ensured. As a consequence, Eq. (2.6) cannot be applied since
the orthonormality Eq. (1.4) holds only for l′ = l. Instead, another set of rela-
tions

rRM
n,l(r) = 1

2
√︂

(n + l + 1)(n + l + 2)RM
n+1,l+1(r)

+1
2
√︂

(n − l − 1)(n − l − 2)RM
n−1,l+1(r)

−
√︂

n2 − (l + 1)2RM
n,l+1(r)

rRM
n,l(r) = 1

2
√︂

(n − l)(n − l + 1)RM
n+1,l−1(r)

+1
2
√︂

(n + l)(n + l − 1)RM
n−1,l−1(r)

−
√

n2 − l2RM
n,l−1(r)

will be used to raise or lower l so that the application of Eq. (1.4) is justified.
The algebraic expression for the integral Eq. (2.8) then reads

⟨n′, l + 1|r̂|n, l⟩ =
∫︂ ∞

0
drrRM

n′,l+1(r)rRM
n,l(r)

= 1
2
√︂

(n + l + 1)(n + l + 2)δn′,n+1

+1
2
√︂

(n − l − 1)(n − l − 2)δn′,n−1

−
√︂

n2 − (l + 1)2δn′,n (2.15)

⟨n′, l − 1|r̂|n, l⟩ =
∫︂ ∞

0
drrRM

n′,l−1(r)rRM
n,l(r)

= 1
2
√︂

(n − l)(n − l + 1)δn′,n+1

+1
2
√︂

(n + l)(n + l − 1)δn′,n−1

−
√

n2 − l2δn′,n .

Since Eq. (2.8) is symmetric and since we could always make the substitu-
tion l − 1 → l, a single formula would suffice. Nevertheless, both expressions
are included for the sake of completeness.

With integrals Eqs. (2.12), (2.13), (2.14) and (2.15), the matrix elements
⟨k|r̂1r̂2n̂+

1 n̂−
2 |j⟩ and ⟨k|r̂1r̂2n̂3

1n̂3
2|j⟩ can be evaluated. And because of the equal-

ity Eq. (2.2), we will kill two birds with one stone by obtaining the elements
⟨k|r̂1r̂2n̂−

1 n̂+
2 |j⟩ as well. Thus, a formula for the whole cross term was recovered.
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2.3 The Schur method for the square root of a
matrix

With formulas derived in the previous two sections, we acquired exact alge-
braic expressions for the calculation of the matrix elements of the r̂2

12 operator.
The interaction potential between two electrons in a Helium atom is however not
proportional to the square of their distance. Instead, it is proportional to the in-
verse of their distance. Thus, if we recovered the matrix of the operator 1/r̂12
from the matrix r̂2

12, we would obtain an operator that corresponds to the physical
Coloumb interaction.

Luckily for us, thorough research regarding the matrix square roots has been
conducted, allowing us to reap the benefits and apply the algorithm that suits
our needs the best.

The problem we want to solve is to find a matrix X for a given matrix A
such that A = X2. A solution exists for any nonsingular A ∈ Cn×n. Moreover,
a sufficient condition for X to be real is if A is real and has a real non-negative
spectrum. [5] In view of the fact that r̂2

12 satisfies this condition, it is ensured
that we will not burden the computer with the use of complex numbers.
This implies another reduction in the number of operations. Furthermore,
because r̂2

12 is a symmetric positive definite matrix, it has a unique symmetric
positive definite square root [5].

Since we now know what properties our A and X have, let us examine some
specific algorithms for finding the solution of A = X2. In the field of numerical
linear algebra, several methods for the computation of the square root of a matrix
have been developed. We will take a look at some of them and select the one
that fits our purposes the best. All of the following methods are in extensive
detail analyzed in [5].

The first method is the well-known Newton algorithm given by the iteration
relation

Xk+1 = 1
2(Xk + X−1

k A) , X0 = A .

Although it has good theoretical properties, especially for symmetric positive
definite matrices, it suffers from such poor numerical instabilities that it is useless
for practical application.

Another iterative algorithm derived by Denman and Beavers 1

Yk+1 = 1
2(Yk + Z−1

k ) , Y0 = A , Yk → A1/2 ,

Zk+1 = 1
2(Zk + Y −1

k ) , Z0 = I , Zk → A−1/2

is recommended in general as it is numerically stable and converges quadrat-
ically. For our purposes, it would offer the added benefit that it calculates
the inverse of the matrix square root right away, saving us the need for the in-
version. Nevertheless, let us examine some other algorithms.

1The convergence holds for A positive definite.
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Especially for a symmetric positive definite A ∈ Rn×n, the algorithm

1. A = RT R (Cholesky factorization)

2. Yk+1 = 1
2(Yk + Y −1

k ), Y0 = R

3. X = Y T
∞R

is a very good alternative.
The ideal choice, however, is the Schur method [5]. It is actually not a single

method. Rather, it is a family of algorithms for the matrix roots. Some of them
are described in great detail in [6] or [7]. All of the algorithms have in com-
mon that the first step is the calculation of the Schur decomposition A = Q∗RQ.
Then, the square root of the upper triangular matrix R is determined,
often with the use of procedures based on the algorithms discussed above.
After that, the square root of A is given by A1/2 = Q∗R1/2Q.

The main point of the Schur method is that it is much easier to compute
the root of an upper triangular matrix than that of a general square matrix.
For us, it is, in fact, trivial. Considering that r̂2

12 is symmetric, R has to be
a diagonal matrix allowing us to compute R−1/2 right away with
(R−1/2)ii = 1/

√
Rii. The Coloumb potential between electrons is then given

by 1/r̂12 = Q∗R−1/2Q.
Thus, we have achieved the goal of this chapter as we calculated 1/r̂12 in a nu-

merically stable way.
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3. Computation of the
ground-state energy
In the previous chapter, the primary object of our enterprise was achieved when
the matrix form of the 1/r̂12 operator was recovered. A significant portion
of our endeavor still lies ahead, however, as our final goal is the computation
of the energies of the first singlet S states.

For that, the solution to the eigenvalue problem Eq. (1.5) needs to be found.
The evaluation of the most problematic part of the Hamiltonian, the 1/r̂12 op-
erator, was already discussed in the previous chapter. Nonetheless, the form
of the one-electron Hamiltonian 1

r̂ (T̂3 − 1̂) is still to be determined. Thanks to
the symmetry of singlet states, the equality of operators

1
r̂1

(T̂3 − 1̂)1 = 1
r̂2

(T̂3 − 1̂)2

allows us to cut the number of operations by one half. The calculation of the one-
electron Hamiltonian will be the concern of the first subsection.

In the second subsection, we will exploit all derived formulas for the Hamilto-
nian, and by solving the time-independent Schrödinger equation, we will obtain
the sought-after energy spectrum.

3.1 Calculation of one-electron Hamiltonian
Let us calculate the matrix elements ⟨k|1r̂ (T̂3 − 1̂)|j⟩. Taking into consideration
that all the operators of the one-electron Hamiltonian act only on the radial part
of the wave function, the compact form of the basis vectors Eq. (2.3) will be used.
To determine ⟨k|1r̂ (T̂3 − 1̂)|j⟩, a single remaining integral

⟨n′, l′|1r̂ (T̂3 − 1̂)|n, l⟩ =
∫︂ ∞

0
drrRM

n′,l′(r)1
r

(T3 − 1)RM
n,l(r)

= (n − 1)
∫︂ ∞

0
drRM

n′,l′(r)RM
n,l(r)

needs to be evaluated. In the second equality, Eq. (1.3) is utilized.
In contrast to our approach in the previous chapter, where closed formulas

for the atomic integrals were found, only a recurrence relation for the radial
integral

⟨n′, l′|1r̂ |n, l⟩ =
∫︂ ∞

0
drRM

n′,l′(r)RM
n,l(r) (3.1)

will be derived. Since the one-electron Hamiltonian contains no angular operators,
the orthonormality relation Eq. (2.4) ensures the equality l′ = l.

Our starting point is the formula Eq. (2.6)

r̂ |n, l⟩ = n |n, l⟩−1
2
√︂

(n + l + 1)(n − l) |n + 1, l⟩

−1
2
√︂

(n − l − 1)(n + l) |n − 1, l⟩ .
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When we apply ⟨n′, l| 1
r̂ from the left, it takes the form

δn′,n = n ⟨n′, l|1r̂ |n, l⟩−1
2
√︂

(n + l + 1)(n − l) ⟨n′, l|1r̂ |n + 1, l⟩

−1
2
√︂

(n − l − 1)(n + l) ⟨n′, l|1r̂ |n − 1, l⟩ .

With the transformation n → n − 1 and some algebraic manipulation

⟨n′, l|1r̂ |n, l⟩ =
⎛⎝− 1

2
√︂

(n − l − 2)(n + l − 1) ⟨n′, l|1r̂ |n − 2, l⟩ −

− (n − 1) ⟨n′, l|1r̂ |n − 1, l⟩ − δn′,n−1

⎞⎠ 2√︂
(n + l)(n − l − 1)

,

(3.2)

we obtain the recurrence relation for the integral Eq. (3.1).
With the use of Mathematica software, formulas for the master integrals

⟨n, l|1r̂ |n, l⟩ =
∫︂ ∞

0
drRM

n,l(r)RM
n,l(r) = 2

2l + 1 (3.3)

⟨l + 1, l|1r̂ |l + 2, l⟩ =
∫︂ ∞

0
drRM

l+1,l(r)RM
l+2,l(r) = 2

2l + 1

√︄
1

2l + 2 (3.4)

were found.
Utilizing Eqs. (3.2), (3.3), (3.4) as well as the symmetry of the integral

Eq. (3.1), we are able to evaluate all the matrix elements ⟨k|1r̂ (T̂3 − 1̂)|j⟩.

3.2 Numerical results
In the second chapter, together with the first section of this chapter, we examined
the procedures employed to determine the values of the atomic integrals using
only algebraic methods. Thus, having completed the derivation of the Hamilto-
nian matrix elements, we can finally advance to the solution of the Schrödinger
equation Eq. (1.5).

There still remains one detail left to be clarified, though. In all the formulas
above, the integrals depend on the quantum numbers n and l of a given state |j⟩.
The quantum numbers are yet to be assigned to the basis states, however, as there
exists no canonical specification of their values. Let us resolve this ambiguity.

For the first 14 states denoted by j, numbers n1, n2, and l are displayed
in table 3.1. Hopefully, the reader will recognize the pattern and will be able
to extrapolate to more basis states if needed. This sequence was adopted from [3]
and was chosen for more rapid convergence. We introduce a new number
n12 = n1 + n2, according to which the states are ordered. With this approach,
radial functions with higher values of n2 are included from the beginning making
the convergence of the energies faster.

Given that we have discussed everything needed, we can finally present the cal-
culated energies of the Helium spectral lines. The energies were obtained as a so-
lution to the eigenvalue problem Eq. (1.5) and with the use of Eq. (1.6).
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The numerical results for the first two energy levels are displayed in table 3.21.

j n1 n2 l n12

1 1 1 0 2
2 1 2 0 3
3 1 3 0 4
4 2 2 0 4
5 2 2 1 4
6 1 4 0 5
7 2 3 0 5
8 2 3 1 5
9 1 5 0 6
10 2 4 0 6
11 2 4 1 6
12 3 3 0 6
13 3 3 1 6
14 3 3 2 6

Table 3.1: Quantum numbers

n12 N E(1 1S) E(2 1S)
2 1 -2.845 299
3 2 -2.974 065 5.273 725
4 5 -2.984 372 -1.078 245
5 8 -2.957 090 -1.856 181
6 14 -2.951 889 -1.992 264
7 20 -2.943 705 -2.087 557
8 30 -2.938 345 -2.113 734
9 40 -2.934 122 -2.132 869
10 55 -2.930 806 -2.139 475
11 70 -2.928 126 -2.143 976
12 91 -2.925 917 -2.145 583
13 112 -2.924 068 -2.146 600
14 140 -2.922 497 -2.146 901
15 168 -2.921 147 -2.147 068
16 204 -2.919 975 -2.147 068
17 240 -2.918 948 -2.147 050

...
40 2870 -2.909 859 -2.146 420
∞ ∞ -2.903 686 -2.145 971
Ref. [8] -2.903 724 -2.145 974

Table 3.2: Energies of the first two states

The energies were calculated for the values of n12 in the range 2-40 and then
were extrapolated to infinity. The number of all basis states taken into expansion
of the reference state is denoted by N .

Having obtained the final results for energies we may keep the promise given
to the reader in the first chapter and finally justify why we do not make use
of any variational parameter. In the third column, we can see that the first energy
level is lower than the accurate value and converges to it from the bottom up.
Usually in the variational method the obtained energies lie above the ground state
and by optimizing the variational parameter we obtain the lowest lying result.
However, since in our case the results are converging from bellow it is unclear
what the procedure of optimizing the parameter should lead to and thus we will
not use it.

For the 2 1S state, the situation is not that simple. We can see
that for n12 ≤ 12, the energy is greater than the correct value and is slowly
decreasing and continues to decrease until n12 = 15, where it reaches its mini-
mum and then it begins to converge to the proper value from the bottom up,
just like 1 1S. However, if we take a closer look, this is the case for the ground
state as well because, for n12 = 2, the energy is E2

.= −2.85 > −2.90 .= E∞,
and only after that the energy drops below E∞ and starts rising to the right value.

1The energies are in Hartrees. 1 Ha .= 27.211 eV.
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Thus, for the calculation of the first excited state, the use of a variational param-
eter would be a hindrance too.

For the 3 1S state, similar behavior is observed. In this case, the energy
reaches its minimum for n12 = 34.

Let us now have a look at the precision our method offers in the prob-
lem of Helium-like ions. In comparison with the exact theoretical values [8],
which are shown in the ultimate row of table 3.2, we can see that for 1 1S, the rel-
ative precision is 1×10−5. For the 2 1S state, we observe a finer performance with
the relative precision 1 × 10−6. For other states, the accuracy of the obtained
values is not significant as the use of a larger basis is required.

To conclude, we have demonstrated that our method indeed produces results
with considerable precision, although the evaluation is hindered by the impossi-
bility of the optimization of the variational parameter.
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Conclusion
The objective of this thesis was to utilize a novel method for the calculation
of helium spectra. We explored the advantages as well as the disadvantages
it has to offer. To summarize the results of our work, the major achievement was
accomplished when the operator of the electron-electron interaction 1/r̂12 was
determined with the use of a unique method that had not been employed before.

This new method was the subject of the second chapter and consists
of two steps. Firstly, we derived exact algebraic formulas for the atomic in-
tegrals of the operator r̂2

12: Eqs. (2.7), (2.12), (2.13), (2.14), (2.15). Then, we
computed the inverse square root of r̂2

12 utilizing the Schur method. Thus, the
operator 1/r̂12 was recovered.

In the third chapter, the recurrence relation for the integrals of the one-
electron Hamiltonian Eqs. (3.2), (3.3), (3.4) was derived. We then concluded
with an analysis of the numerical results.

The primary benefit of the method presented in this thesis is the fact
that all integrals are evaluated strictly algebraically without any potential
for the emergence of numerical instabilities. The only numerical calculation
is the Schur decomposition in the computation of the square root of r̂2

12.
This mathematical operation is well understood and poses no threat to the final
results since it is numerically stable and is, from the numerical point of view,
analogous to the eigenvalue problem Eq. (1).

In comparison with another method that also utilizes a purely algebraic ap-
proach [4], our procedure offers the advantage that the expressions for the atomic
integrals take a much simpler form. On the other hand, considering that
in our method, the energy converges to the accurate value from below,
it is not possible to optimize a variational parameter. This is a major drawback
since, as a result, calculations with more basis states are needed.
That further translates into manipulations with larger matrices, significantly
increasing the number of operations. For comparison, in [4], with N = 862,
the relative precision achieved is at the order of 10−5. In our case, for N = 910,
the relative precision is only at the order of 10−3.

Although in this thesis, we examined only singlet S states, our method can
be easily extended to other states as well. The use of this method for atoms
with multiple electrons is theoretically possible, even though it is rather imprac-
tical because of the rapid growth of the Slater determinant. Instead, our method
can be applied without difficulty when dealing with relativistic corrections.

Further research involving this inverse square root method thus seems promis-
ing. Considering the possibility that the problematic direction of the convergence
might not be an inherent feature of this approach and would disappear in some
cases, the variational parameter could then be optimized, allowing our method
to reach its full potential.
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