
BACHELOR THESIS

Dalibor Procházka

Decoding of Reed-Solomon Codes

Department of Algebra

Supervisor of the bachelor thesis: doc. Mgr. et Mgr. Jan Žemlička,
Ph.D.

Study programme: Mathematics for IT
Study branch: Mathematics

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor doc. Jan Žemlička for his time, patience and
guidance in writing this thesis.

ii

Title: Decoding of Reed-Solomon Codes

Author: Dalibor Procházka

Department: Department of Algebra

Supervisor: doc. Mgr. et Mgr. Jan Žemlička, Ph.D., Department of Algebra

Abstract: Reed-Solomon codes are a typical example of MDS codes, that are
frequently used in practise. In this thesis, we go over three different algorithms of
decoding these codes, including the initial view from the original article, as well as
the modern approach of currently used algorithm and of another possible efficient
algorithm. We compile various sources and unite them under the same notation.
We describe in detail the theory behind each algorithm, show its correctness,
discuss every algorithm’s time complexity and demonstrate its steps on simple
examples.

Keywords: Reed-Solomon codes, decoding, algorithms

iii

Contents

Introduction 2

1 Terms and Notations 3
1.1 Codes and Linear Codes . 3
1.2 Reed-Solomon Codes . 3
1.3 Coding Process . 4
1.4 Encoding . 5
1.5 Extended Euclidean Algorithm 6
1.6 Partial Euclidean Algorithm . 8

2 RS 1960 9
2.1 Decoding . 9
2.2 Comment about the Time Complexity of Algorithm 2 11
2.3 Example . 11
2.4 Translation of F2N into Binary Representation 12

2.4.1 Period of the Sequence . 13
2.4.2 Example . 14

3 Current Algorithm 15
3.1 Syndrome Computation . 15
3.2 Key Equation . 16
3.3 Solving the Key Equation . 17
3.4 Uniqueness of the Solution . 19
3.5 Computing of the Error Values 20
3.6 Overview of the Algorithm . 21
3.7 Time Complexity of Algorithm 4 21
3.8 Example . 21

4 GAO Algorithm 23
4.1 Decoding . 23
4.2 Correctness of Algorithm 5 . 24
4.3 Time Complexity of Algorithm 5 27
4.4 Example . 27

Conclusion 29

Bibliography 30

1

Introduction
Reed-Solomon (RS) codes are a group of linear cyclic self-correcting codes. They
were first introduced in 1960 as what we now call the traditional RS codes. The
definition has been generalised, so when we talk about these codes nowadays,
we usually refer to Generalised Reed-Solomon (GRS) codes, which are a broader
family of codes, but with practically same properties as the original codes.
GRS are commonly used to this day. The most important practical uses are in
encoding two dimensional bar codes, such as QR codes and PDF-417. Other
important, though currently already a bit outdated usage is in data storage,
specifically in encoding of CDs. Therefore it has great value and impact to study
these codes properly and to find and describe as effective decoding algorithm as
possible.
In this thesis, we take an in-depth look at a couple of these algorithms, starting
with the original algorithm proposed by the first article, continuing with the effi-
cient algorithm, which is nowadays most frequently used in practice, and ending
with a new algorithm, which shows another efficient method of decoding these
codes. We will describe the theory which is behind each of these algorithms, show
the correctness of them and demonstrate their step by step process on simple ex-
amples.

2

1. Terms and Notations
In this chapter we will define terms and algorithms that we will be using through-
out the whole text.

1.1 Codes and Linear Codes
We will first start by defining a reminding basic definitions from the self-correcting
codes theory. Let Fq be a finite field o q elements where q is a prime power. We
consider a vector (v0, v1, . . . , vn−1) ∈ Fn

q of length n, and we will call this vector
a word. A code C is a set of these words, and the integer n is called the length
of a code. If these words form a subspace of a linear vector space, then the code
is a linear code. The dimension of a linear code is the dimension of the vector
subspace, and we will denote it as k.
For two words u, v ∈ C, we define their distance d(u, v) as d(u, v) = |{i |ui ̸= vi}|.
We define the distance d of a code C as

d = d(C) = min({d(u, v) | u, v ∈ C, u ̸= v}).

Therefore we get three parameters characterizing a linear code. These parameters
generally satisfy bounds 1 ≤ k < n ≤ q and d ≤ n − k + 1. Using these
parameters, we denote [n, k, d] a linear code C of corresponding length, dimension
and distance.
A matrix G ∈ Fk×n

q is said to be the generator matrix of a linear code C, if its
rows form a basis of C. A matrix H ∈ F(n−k)×n

q is the parity-check matrix, if
C = ker H.

1.2 Reed-Solomon Codes
Now its finally time to define the codes that we will be focusing on in this the-
sis. General Reed-Solomon (GRS) code [n, k, d] over the field Fq is defined as
ker HGRS, where

HGRS =

⎛⎜⎜⎜⎜⎝
1 1 . . . 1
α0 α1 . . . αn−1
...

αn−k−1
0 αn−k−1

1 . . . αn−k−1
n−1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

v0 0 . . . 0
0 v1 . . . 0
...
0 0 . . . vn−1

⎞⎟⎟⎟⎟⎠ ,

α0, . . . , αn−1 ∈ F∗
q being distinct elements and v0, . . . , vn−1 ∈ F∗

q.
Reed-Solomon code (RS) code [n, k, d] over the field Fq is a special version of GRS
code, for which ∃α ∈ F∗

q of order n and ∃b ∈ N, 1 ≤ b ≤ n − 1 such that αi = αi

and vi = αbi for i = 0, . . . , n − 1. The parity-check matrix HRS can be then
expressed in a simpler way as

HRS =

⎛⎜⎜⎜⎜⎝
1 αb . . . α(n−1)b

1 αb+1 . . . α(n−1)(b+1)

...
1 αb+n−k+1 . . . α(n−1)(b+n−k+1)

⎞⎟⎟⎟⎟⎠ .

3

This is the current definition of GRS codes, but these codes were originally de-
fined through evaluating polynomials in given elements of a field. We will describe
this procedure later in this chapter and see that there is a correspondence with
the generator matrix.
GRS codes have many important properties. They are linear (as they are de-
fined by the parity-check matrix) and they are also maximum distance separable
(MDS). This means the distance of the code d satisfies the equation d = n−k +1
and is therefore the biggest distance possible for the given code parameters (as
all codes satisfy the bound d ≤ n − k + 1).
All these properties of codes can be found in Roth [2006].

1.3 Coding Process
Our main focus will be on decoding algorithms, but we first describe the structure
of the whole coding process. We fix the following notation for words. A message
m = (m0, m1, . . . , mk−1) ∈ Fk

q is the message word before encoding. A codeword
c = (c0, c1, . . . , cn−1) ∈ Fn

q , is the word we get by encoding the message (as will be
described below). These words are the elements which are forming the given code.
A received word b = (b0, b1, . . . , bn−1), ∈ Fn

q is the word received by transmitting
the codeword. The received word is the codeword changed by adding an error
word e = (e0, e1, . . . , en−1), ∈ Fn

q to it. We say a transmission error occurred at
position i = 0, 1, . . . , n − 1 if the i-th position of the received word b is different
from i-th position of the sent codeword c: bi ̸= ci, or equivalently the i-th position
of the error word e is nonzero: ei ̸= 0. We denote T the set of error locations,
meaning T = {i | ei ̸= 0, i = 0, . . . , n − 1}.
The whole idea of coding is adding some redundancy to our message, so we can
retrieve the original message even if some number of errors occurred during the
transmission. The process consists of encoding a message into a corresponding
codeword, then transmitting it through the channel. From mathematical point of
view, the channel gives us probabilities of errors happening in certain positions,
it does not deal with the actual transmission. As we said, the codeword can be
changed by the error word, and our goal is to correctly tell the original codeword
from the received word. The process can be demonstrated using this simple
scheme:

m encoding−−−−−→ c transmission:+e−−−−−−−−−→ b.

Note that it is not necessary to retrieve the message right away, it is sufficient
just to get the codeword or the error word, as we require the coding to be injec-
tive, therefore for each codeword, there is only one unambiguous corresponding
message, and the codeword can be easily obtained from knowing the received and
the error word.
Important result of the coding theory is that we are able to correct t errors (mean-
ing t nonzero positions of the error word), where t < d/2. So, in the case of MDS
codes such are GRS codes, we can correct t < n−k+1

2 errors. Therefore all algo-
rithms, which we will describe, have the maximum number of errors, given by
this bound, as an assumption in order to work correctly.

4

1.4 Encoding
We now describe the process of encoding a message into a codeword by evaluation
of polynomial. For this process we fix n different elements a0, a1, . . . , an−1 of Fq.
When we want to encode a message of k elements m = (m0, m1, . . . , mk−1) ∈ Fk

q ,
we first consider the message polynomial

f = m0 + m1x + . . . + mk−1x
k−1,

then we define the corresponding codeword c = (c0, c1, . . . , cn−1) by computing ci

as
ci = f(ai) ∈ Fq, i = 0, 1, . . . , n − 1.

The coding can be interpreted as a mapping

E : Fk
q −→ Fn

q

(m0, m1, . . . , mk−1) ↦−→ (f(a0), f(a1), . . . , f(an−1)

where m0, m1, . . . , mk−1 are coefficients of the message polynomial f of degree
≤ k − 1

f = m0 + m1x
1 + . . . + mk−1x

k−1, mi ∈ Fq, k < q.

Note that described encoding is non-systematic, which means that the original
message m is not a part of the codeword c.
The evaluation of the message polynomial in the element a ∈ Fq can be interpreted
as the dot product of vectors (1, a, a2, . . . , ak−1) and (m0, m1, . . . , mk−1). When
we represent it in a matrix form, we get an expression for the mapping E

E(m) =

⎛⎜⎜⎜⎜⎜⎝
1 a0 . . . ak−1

0

1 a1 . . . a
(k−1)
1

...
1 an−1 . . . a

(k−1)
n−1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

m0
m1
...

mn−1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
c0
c1
...

cn−1

⎞⎟⎟⎟⎟⎠ .

This is the general idea of linear encoding, when we associate a message with
its codeword by multiplying said message with a given matrix. This idea of
evaluating polynomials is a typical construction of MDS codes, and the resulting
code has the same properties as the one defined by the parity-check matrix. The
only important difference is that when evaluating polynomials we allow zero to
be one of the elements, whereas the elements of the parity-check matrix must
be nonzero. This has a good reason, as the algorithm most frequently used in
practise nowadays needs inverses of these elements.
Furthermore, if we look at the submatrix given by k fixed different elements
ai ∈ Fq, i = 0, 1, . . . , k − 1, we get a matrix whose coefficient determinant for
variables (m0, m1, . . . , mk−1) is⃓⃓⃓⃓

⃓⃓⃓⃓
⃓⃓⃓
1 a0 . . . ak−1

0

1 a1 . . . a
(k−1)
1

...
1 ak−1 . . . a

(k−1)
k−1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓

5

This is Vandermonde determinant, as all elements ai are different. Its value is∏︁
i>j

(ai − aj) ̸= 0 (as can be found in Barto and Tůma [2023]), therefore the
matrix is regular and the system of linear equations with these coefficients has
one solution. This will be important in the chapter about the RS 1960 algorithm.

1.5 Extended Euclidean Algorithm
We will now define notations and show couple useful properties of the well-known
Extended Euclidean Algorithm (EEA) for polynomials. This algorithm will be
needed many times for proofs of correctness of decoding algorithms in later chap-
ters. EEA ends after m + 1 steps with rm+1 = 0 and GCD(r0, r1) = rm. The
degrees of ri decrease strictly, as the division remainder’s degree is always lower
than the divisor’s degree, and each steps satisfies relation ri = uir0 + vir1.
Lemma 1.1 shows a few more useful properties of EEA.

Algorithm 1: Extended Euclidean Algorithm for Polynomials
Input : nonzero polynomials r0, r1 ∈ Fq[x], deg r0 ≥ deg r1
Output: polynomials rm, um, vm satisfying rm = umr0 + vmr1

1 (u0, u1) = (1, 0), (v0, v1) = (0, 1), i = 1
2 while ri ̸= 0 do
3 qi = ri−1 div ri

4 ri+1 = ri−1 mod ri

5 (ui+1, vi+1) = (ui−1 − qiui, vi−1 − qivi)
6 i = i + 1;
7 end
8 return (ri, ui, vi);

Lemma 1.1. Using the notation of the EEA the following conditions hold:

1. deg vi+1 + deg ri = deg r0 for i = 0, . . . , m,

2. deg ui+1 + deg ri = deg r1 for i = 1, . . . , m,

3. deg vi ≤ deg r0 for i = 0, . . . , m,

4. deg ui ≤ deg r1 for i = 0, . . . , m.

Proof. 1. By induction on i. For i = 0 we have

deg v1 + deg r0 = deg 1 + deg r0 = deg r0,

and for i = 1 we get, using the relation qi = ri−1 div ri,

deg v2 + deg r1 = deg(v0 − q1v1) + deg r1 = deg q1 + deg r1

= deg r0 − deg r1 + deg r1 = deg r0.

Now suppose that the equality holds for i ≥ 1. Then for i + 1 we get

deg vi+2 + deg ri+1 = deg(vi − qi+1vi+1) + deg ri+1.

6

We now use the induction step on deg vi and deg(qi+1vi+1). Firstly

deg vi = deg r0 − deg ri−1,

and secondly, using again the relation qi = ri−1 div ri,

deg(qi+1vi+1) = deg qi+1 + deg vi+1 = deg ri − deg ri+1 + deg r0 − deg ri

= deg r0 − deg ri+1

As the degrees of ri decrease strictly, we have

deg vi = deg r0 − deg ri−1 < deg r0 − deg ri+1 = deg(qi+1vi+1).

Therefore

deg(vi − qi+1vi+1) = deg(qi+1vi+1) = deg r0 − deg ri+1,

which implies

deg vi+2 + deg ri+1 = deg r0 − deg ri+1 + deg ri+1 = deg r0.

2. By induction on i, similarly to 1. For i = 1 we have

deg u2 + deg r1 = deg(u0 − q1u1) + deg r1 = deg(1 − q1 · 0) + deg r1 = deg r1.

For i + 1, i ≥ 1, we get

deg ui+2 + deg ri+1 = deg(ui − qi+1ui+1) + deg ri+1 = deg(qi+1ui+1)
= deg ri+1 = deg r1 − deg ri+1 + deg ri+1 = deg r1,

using the induction hypothesis and argumentation exactly as in 1. Note that this
also holds for the edge case of i = 1, because

deg u1 = deg 0 < deg(q2u2) = deg(q2(u0 − q1u1)) = deg q2,

as (u0, u1) = (1, 0).
3. Is implied by equality 1., as for i = 0 holds

deg v0 = deg 0 ≤ deg r0,

and for i ≥ 1, we obtain

deg vi = deg r0 − deg ri−1 ≤ deg r0.

4. Is implied by equality 2., as for i = 0 and i = 1 respectively holds

deg u0 = deg 1 ≤ deg r1, deg u1 = deg 0 ≤ deg r1,

and for i ≥ 2 we get

deg ui = deg r1 − deg ri−1 ≤ deg r1.

7

1.6 Partial Euclidean Algorithm
In two of the decoding algorithms, we will need a modified version of the Euclidean
Algorithm for polynomials. It differs from the classical one in the condition which
stops the algorithm: in this version, the algorithm stops the first time the degree
of the remainder is lower than a given threshold. We will denote this algorithm
as the Partial Euclidean Algorithm (PEA) for polynomials.

Algorithm 2: Partial Euclidean Algorithm for Polynomials
Input : nonzero polynomials r0, r1 ∈ Fq[x], deg r0 ≥ deg r1, threshold t
Output: polynomials rm, um, vm satisfying rm = umr0 + vmr1,

deg rm < t
1 (u0, u1) = (1, 0), (v0, v1) = (0, 1), i = 1
2 while deg ri ≥ t do
3 qi = ri−1 div ri

4 ri+1 = ri−1 mod ri

5 (ui+1, vi+1) = (ui−1 − qiui, vi−1 − qivi)
6 i = i + 1;
7 end
8 return (ri, ui, vi);

8

2. RS 1960
In this chapter we will work with the finite field F2N , so for our initial notation
holds q = 2N , where N is an integer. To represent this field we choose a generator
α of its cyclic group F∗

2N = ⟨α⟩. The field is then represented as F2(α) ∼= F2[x]/(p),
where p is a suitable irreducible polynomial of degree N over F2[x] and α is its
root. We will be using all the elements of the field to evaluate the message
polynomial when encoding a message, meaning n = 2N .
In this chapter, we draw from Reed and Solomon [1960].

2.1 Decoding
After receiving a received word b, we can decode the original message m by
solving any system of k linear equations out of 2N received (supposing no errors
occurred during the transmission):

f(0) = m0

f(α) = m0 + m1α
1 + . . . + mk−1α

k−1

f(α2) = m0 + m1α
2 + . . . + mk−1α

2(k−1)

...
f(1) = m0 + m1 + . . . + mk−1

Every k of these equations are linearly independent as the coefficient determinant
for, for instance, equations f(α), . . . , f(αk) is⃓⃓⃓⃓

⃓⃓⃓⃓
⃓⃓
1 α . . . αk−1

1 α2 . . . α2(k−1)

...
1 αk . . . αk(k−1)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

which is Vandermonde determinant whose value is ∏︁
i>j

(αi − αj) ̸= 0 in the

case of αi being all different. This is true here as we consider the powers
αi, i = 1, . . . , k < 2N and α is the generator of F∗

2N . Therefore we get
(︂

2N

k

)︂
up to ordering different systems of k different linear equations to calculate the
original message (m0, m1, . . . , mk−1).

Our goal however is to decode received words that also include some errors. For
that we define the following notation. By the term determination of a k-tuple
(r0, r1, . . . , rk−1) we will understand a system of k independent linear equations in
the form f(αi) = x0 + x1α

i + . . . + xk−1α
i(k−1) whose solution is (r0, r1, . . . , rk−1).

A determination is wrong when its solution does not equal the sent message,
otherwise the determination is correct.

Lemma 2.1. For t transmission errors we can get a maximum of
(︂

t+k−1
k

)︂
wrong

determinations for a k-tuple (considering a different k-tuple from the original
message).

9

Proof. Every k different linear equations define a determination for some k-tuple
r = (r0, r1, . . . , rk−1). If no errors occurred in the positions determined by the
chosen equations, the determination is correct, as the only solution to the system
of k unchanged linear equations is the original message. If at least one of the
equations was changed by a transmission error, we do get different solution from
the original message, so this system of equations would be a wrong determination.
So in order to obtain a wrong determination, we have to choose at least one out of t
equations changed by the errors and supplement the system of equations by up to
k−1 correct equations. Therefore every wrong determination consists of i changed
equations and k − i unchanged equations, i = 1, . . . , min(t, k). Furthermore, we
can choose from only k − 1 unchanged equations as having the option to choose
k unchanged equations would give us the correct solution and not the k-tuple
which we are counting the wrong determinations for. Therefore the total number
of wrong determinations of a single k-tuple is at most

(︂
t+k−1

k

)︂
.

This lemma implies a voting algorithm to determine the correct solution, which
we will describe shortly. By a vote for a word r = (r0, r1, . . . , rk−1) ∈ Fk

2N we
mean a unique system of k linear equations whose solution is r. We will denote
Vr the number of votes received by the word r.

Algorithm 3: Voting Decoding Algorithm
Input : received word b = (b0, b1, . . . , b2N −1), maximum number of

errors occurred t
Output: sent message m = (m0, m1, . . . , mk−1)

1 Max = 0
2 while ∃ unused combination of k equations and Max ≤

(︂
t+k−1

k

)︂
do

3 compute solution r of an unused combination of k equations (as
described above)

4 Vr = Vr + 1
5 Max = max(Max, Vr);
6 end
7 if Max >

(︂
t+k−1

k

)︂
then

8 output r
9 else

10 output ”Decoding failure” as more than t errors occurred during the
transmission

11 end

Note that we have total of
(︂

2N −t
k

)︂
correct determinations, which gives us total of(︂

2N

k

)︂
−
(︂

2N −t
k

)︂
wrong determinations. Therefore the algorithm works only in the

case of the number of correct determinations being higher than the number of
wrong determinations, that is(︄

2N − t

k

)︄
>

(︄
t + k − 1

k

)︄
,

which is equivalent to
2N − t > t + k − 1,

10

which implies

t <
2N − k + 1

2 .

Therefore the algorithm is not able to correct more than 2N −k+1
2 errors. We can

correct up to t = 2N −k−1
2 errors for k odd and up to t = 2N −k

2 errors for k even,
which corresponds to the expectation given by the distance d = 2N − k + 1.

2.2 Comment about the Time Complexity of
Algorithm 2

The algorithm computes solutions of k linear equations with k variables, each
solution with the time complexity O(k3). However, in case of coding large amount
of words using the same code, we can precompute inverses of the matrices used
in the equation solving, making the process of finding the solution much quicker.
As for the while cycle, it would need to be repeated up to

(︂
2N

k

)︂
times in the worst

case scenario, which we can limit by(︄
2N

k

)︄
≤
(︄

e2N

k

)︄k

≤ 2Nk

for k ≥ 3.
It is also interesting to look at the case of no errors occurring during the trans-
mission. The while cycle will run

(︂
t+k−1

k

)︂
+ 1 times, as every determination is

correct and will give us correct solution. We can limit this by(︄
t + k − 1

k

)︄
+ 1 <

(︄2N −k+1
2 + k − 1

k

)︄
+ 1 =

(︄2N +k−1
2
k

)︄
+ 1.

These limitations do not give us very good idea on how many times will the while
cycle run, we will demonstrate it better on the following example.

2.3 Example
Let N = 3 and k = 3 therefore the distance of this code is d = 23 − 3 + 1 = 6 and
the code is able to correct up to 23−3−1

2 = 2 errors. The field F8 is represented
as F2(α) where α is a root of the irreducible polynomial p = x3 + x + 1 ∈ F2[x],
therefore

F8 = F2(α) = {0, α, α2, α + 1, α2 + α, α2 + α + 1, α2 + 1, 1}
= {0, α, α2, . . . , α7} ∼= F2[x]/(x3 + x + 1).

The message polynomial for general message m = (m0, m1, m2) ∈ F3
8 is

f = m0 + m1x + m2x
2 ∈ F2[x].

Let us consider the message m = (α, α2, α2 + α + 1), which defines the message
polynomial

f = α + α2x + (α2 + α + 1)x2.

11

To encode this message, we evaluate the polynomial f in all field’s elements
0, α, . . . , 1, getting the codeword c = (α, 0, 0, α + 1, α, 1, α + 1, 1).
Suppose that an error e = (α, 1, 0, 0, 0, 0, 0, 0) occurred during the transmission,
changing 2 symbols and causing the received word to be

b = c + e = (0, 1, 0, α + 1, α, 1, α + 1, 1).

To decode the message we keep computing solution for each of
(︂

8
3

)︂
= 56 systems

of 3 linear equations bi = f(αi) = m0 + m1α
i + m2α

2i, i = 0, 1, . . . , 7, until one of
the solution receives more votes than the limit given by the maximum number of
errors or we run out of equations. In our case, the algorithm is bale to correct up
to 2 errors, so the limit of votes is

(︂
2+3−1

3

)︂
= 4. Therefore the algorithm stops once

any of the solutions receives 5 votes. This solution will also be the one returned.
In this case, the solution which reached the threshold is (α, α2, α2 + α + 1). If
we let the algorithm compute all out of

(︂
8
3

)︂
= 56 systems of equations, we would

see that this solution received 20 votes total. We see that the decoded word is
indeed the sent message m so the algorithm successfully corrected 2 errors.
If we suppose that no error happens during the transmission and every combi-
nation of equations give us the correct solution, we would need to run the while
cycle less than

(︂ 8+3−1
2
3

)︂
+ 1 = 11 times as given by the general limitation earlier in

this chapter. But we are able to calculate the exact number of while cycle rounds
given by the number of votes needed to consider a word to be the correct one,
which is only 5 in our case. So the algorithm runs only a small fraction of time
compared to the total number of combinations, which is 56, if no errors occur.

2.4 Translation of F2N into Binary Representa-
tion

Consider an irreducible polynomial p(x) ∈ F2[x] of degree N whose root generates
F2N as described in the beginning of this section,

p = p0 + p1x + . . . + xN , pi ∈ F2

Every field element a can be naturally represented as a binary sequence of N
bits, as F2N is represented as division remainders of p, so i-th bit of the binary
representation of a corresponds to the coefficient ai−1 at xi−1:

a = a0 + a1x + . . . + aN−1x
N−1 ↦−→ (a0, a1, . . . , aN−1), ai ∈ F2.

Therefore we can understand E as a mapping of sequences of kN bits into se-
quences of 2NN bits.
Other way of representing the elements of F2N , which is also used in the original
article and in the example, is with the use of recurrent linear sequences. We
compute the sequence of elements of F2 u0, u1, . . . , uN , uN+1, uN+2, . . . using the
equation given by the polynomial p:

uN+j = p0u0+j + p1u1+j + . . . + pN−1uN−1+j.

12

We get a sequence which depends on the initial choice of (u0, u1, . . . , uN−1). We
then represent the elements of F2N as N -tuples and define multiplication by the
generator of the field α as translation in the sequence, meaning

α = (u0, . . . , uN−1), α2 = (u1, . . . , uN),

In the following section we show that this sequence has a period long enough to
cover all elements of the cyclic group of the field for suitable polynomial p.

2.4.1 Period of the Sequence
First, let us consider a general element of the field F2N , which has the form
of β = aN−1α

N−1 + . . . + a1α + a0, where α is a generator of the field and
ai ∈ F2, i = 0, . . . , N − 1. The multiplication by α can be expressed as

αβ =α(aN−1α
N−1 + . . . + a1α + a0) mod p(α)

=aN−1α
N + aN−2α

N−1 . . . + a1α
2 + a0α mod p(α).

Continuous multiplying by α gives us a sequence of elements of F2N . Lets denote
the elements of the sequence as β0 = β, β1 = αβ, . . ., given by the relation
βi = αβi−1 = αiβ0 = ∑︁N−1

j=0 ai,jα
j. This sequence has a period of length 2N − 1

as α is the generator and has the multiplicative order of 2N − 1.
We now define a new sequence {vi}∞

i=0 of coefficients at αN−1 of the sequence
{βi}∞

i=0, meaning vi = ai,N−1. All elements of {vi} are determined by {βi},
therefore {vi} also has the length of 2N − 1. We now show that the sequence {vi}
is up to a shift the same as the sequence {ui} defined earlier by the polynomial
p as uN+j = p0u0+j + p1u1+j + . . . + pN−1uN−1+j.
The operation of multiplying by the element α can be written as

αβ =α(aN−1α
N−1 + . . . + a1α + a0) mod p(α)

=αβ + aN−1p(α) = α

(︄
N−1∑︂
i=0

aiα
i

)︄
+ aN−1

(︄
N∑︂

i=0
piα

i

)︄

=aN−1p0 +
N−1∑︂
i=1

(ai−1 + aN−1pi)αi.

This corresponds to counting mod p(α), which in practice means that every
member αN can be substituted for αN = ∑︁N−1

i=0 piα
i. We see that the absolute

coefficient of the new element is p0 times the coefficient at αN−1 of the previous
element. All other coefficients are computed by increasing the exponent of their
monomial by 1 and then adding the product of αN−1 and coefficient pi corre-
sponding to the new exponent.
Now suppose that we produced l ≥ N corresponding elements of both sequences
{βi} and {vi}, the last elements being βl = ∑︁N−1

j=0 al,jα
j and vl, where vl = al,N−1.

The next step produces βl+1 = ∑︁N−1
j=0 al+1,jα

j and vl+1, where vl+1 = al+1,N−1
and also al+1,0 = al,N−1p0 = vlp0. Let us observe the evolution of this coeffi-
cient vlp0 through next steps. In the next step it will move up to monomial α
as al+2,1 = vlp0 + vl+1p1. Continuing this process up to element βl+N and its
monomial αN−1 we get

al+N,N−1 =
N−1∑︂
i=0

vi+lpl = vN+l.

13

This corresponds exactly to the relation of the sequence {ui}, which means that
both sequences {ui} and {vi} produce the same output up to ordering and both
have the period length of 2N − 1. Therefore, we can associate elements of F2N

with N -tuples of elements of the sequence ui and multiplication by α is defined
as translation in the sequence, meaning

α ∼ (u0, . . . , uN−1)
α2 ∼ (u1, . . . , uN)

...
α2N −1 ∼ (u2N −2, u0, . . . , uN−2).

Depending on the initial choice of α ∼ (u0, . . . , uN−1) we get one of 2N −1 possible
representations.

2.4.2 Example
Consider the same situation as in Example 2.3. To use binary representation of
the encoding, we get the recurrent formula defined by the polynomial p = x3+x+1

uj = uj−2 + uj−3.

Choosing the initial state (u0, u1, u2) = (1, 1, 0) we get the sequence

{uj} = (1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, . . .).

The sequence {uj} has period 7, meaning u7 = u0, u8 = u1, We therefore
represent the field’s elements as follows:

0 ∼ (0, 0, 0)
α ∼ (1, 1, 0)

α2 ∼ (1, 0, 0)
α3 = α + 1 ∼ (0, 0, 1)
α4 = α2 + α ∼ (0, 1, 0)
α5 = α2 + α + 1 ∼ (1, 0, 1)
α6 = α2 + 1 ∼ (0, 1, 1)
α7 = 1 ∼ (1, 1, 1)

Using this representation on our message and codeword, we get

m = (110, 100, 101) ↦−→ c = (110, 000, 000, 001, 110, 111, 001, 111).

14

3. Current Algorithm
In this chapter we will discuss an algorithm which is nowadays most commonly
used in practice. We will be using Roth [2006] as our source for this chapter. Let
us consider a code over a finite field Fq, the code being defined by its parity-check
matrix as Ker HGRS, where

HGRS =

⎛⎜⎜⎜⎜⎝
1 1 . . . 1
α0 α1 . . . αn−1
...

αn−k−1
0 αn−k−1

1 . . . αn−k−1
n−1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

v0 0 . . . 0
0 v1 . . . 0
...
0 0 . . . vn−1

⎞⎟⎟⎟⎟⎠ ,

α0, . . . , αn−1 ∈ F∗
q being distinct elements and v0, . . . , vn−1 ∈ F∗

q.
We supppose that t ≤ (d − 1)/2 transmission errors happened (d = n − k + 1
being the distance of the code). We denote the error word e = (e0, e1, . . . , en−1)
satisfying the relation b = c+e, c being a codeword and b being the received word.
We denote T the set of error locations, meaning T = {i | ei ̸= 0, i = 0, . . . , n − 1},
therefore |T | = t ≤ (d − 1)/2.
We will now describe and analyze the steps of the algorithm.

3.1 Syndrome Computation
First step of the algorithm is the computation of the syndrome, which is for b
and with respect to HGRS defined as⎛⎜⎜⎜⎜⎝

S0
S1
...

Sd−2

⎞⎟⎟⎟⎟⎠ = HGRSb⊤.

Individual syndrome entries can be therefore expressed as

Si =
n−1∑︂
j=0

bjvjα
i
j, i = 0, . . . , d − 2.

We then define the syndrome polynomial S ∈ Fq[x] as

S =
d−2∑︂
i=0

Six
i.

The syndrome of the received word b equals the syndrome of the error word e,
because

S = HGRSb⊤ = HGRS(c + e)⊤ = HGRSc⊤ + HGRSe⊤ = HGRSe⊤,

as HGRSc⊤ = 0. We can therefore write the syndrome entries using the error
word as

Si =
n−1∑︂
j=0

ejvjα
i
j, i = 0, . . . , d − 2,

15

or equivalently as

Si =
∑︂
j∈T

ejvjα
i
j, i = 0, . . . , d − 2.

The syndrome polynomial can be then expressed as

S =
d−2∑︂
i=0

xi
∑︂
j∈T

ejvjα
i
j =

∑︂
j∈T

ejvj

d−2∑︂
i=0

(αjx)i.

Consider now the ring Fq[x]/xd−1, which is the ring of polynomials over F of
degree less than d − 1. It is also the ring of remainders after dividing by xd−1,
therefore we can omit any monomials having x to the power of d−1 or higher The
multiplicative inverse of the polynomial ∑︁d−2

i=0 (αjx)i in this ring is the polynomial
1 − αjx, as

(1 − αjx)
d−2∑︂
i=0

(αjx)i = 1 − (αjx)d−1 ≡ 1 (mod xd−1).

We can therefore express a relation for the syndrome polynomial

S ≡
∑︂
j∈T

ejvj(1 − αjx)−1 (mod xd−1).

3.2 Key Equation
We will now form relations, which are together denoted as the key equation
of GRS decoding. We start by defining two polynomials. The error locator
polynomial Λ (ELP) is defined as

Λ =
∏︂
i∈T

(1 − αix),

and the error evaluator polynomial Γ (EEP) is defined as

Γ =
∑︂
i∈T

eivi

∏︂
j∈T \{i}

(1 − αjx)

(a product over an empty set is considered to be 1).
The degrees of the polynomials are deg Λ = |T | = t ≤ 1

2(d − 1) and deg Γ < t.
This gives us the first relation

deg Γ < deg Λ ≤ 1
2(d − 1).

Next we observe that Λ(α−1
i) = 0 ⇐⇒ i ∈ T . It is legal to substitute the

multiplicative inverse of αi as all αi are nonzero. Therefore the roots of ELP tell
us where the error positions are. The EEP evaluated at α−1

i for i ∈ T gives us

Γ(α−1
i) = eivi

∏︂
j∈T \{i}

(1 − αjα
−1
i).

We see that Γ does not share any of t roots of Λ, therefore we obtain our second
relation, which is that GCD(Λ, Γ) = 1. In the special case of no errors occurring,

16

we get Γ = 0, Λ = 1 and S = 0.
The third relation is given by the mutual relation of ELP and EEP by

Γ =
∑︂
i∈T

eivi

∏︂
j∈T \{i}

(1 − αjx)

≡
∑︂
i∈T

eivi(1 − αix)−1 ∏︂
j∈T

(1 − αjx)

≡Λ
∑︂
i∈T

eivi(1 − αjx)−1 (mod xd−1).

Using the congruence with the syndrome polynomial we get the last relation

ΛS ≡ Γ (mod xd−1).

To summarize, the key equation of GRS decoding is given by three relations:

GCD(Λ, Γ) = 1,

deg Γ < deg Λ ≤ 1
2(d − 1),

ΛS ≡ Γ (mod xd−1).

The next step for in the decoding algorithm is solving the key equation for Λ.
Once we know it, we can check which elements α−1

0 , . . . , α−1
n−1 are roots of Λ, which

will give us the set of errors T . After that, the equations

Si =
∑︂
j∈T

ejvjα
i
j, i = 0, . . . , d − 2

become linear in ej. We can then solve this system of equations to obtain the
error values. There is more effective method of finding the error values than
through Gaussian elimination, which will be described later in this chapter. But
now, we continue with a method for solving the key equation.

3.3 Solving the Key Equation
In this section we will show that we can compute the polynomials Λ and Γ by
applying the Partial Euclidean Algorithm to certain polynomials.

Lemma 3.1. Using the notation of EEA, suppose that v and r are two nonzero
polynomials over Fq satisfying the following conditions:

1. GCD(v, r) = 1,

2. deg v + deg r < deg r0,

3. vr1 ≡ r(mod r0).

Then there is an index h ∈ {0, 1, . . . , m + 1} and a constant c ∈ Fq such that

v = c · vh and r = c · rh.

17

Proof. The degrees of ri decrease strictly and from the second condition we have
deg r < deg r0. Therefore there exists a unique value h ≥ 1 of the index i for
which deg rh ≤ deg r < deg rh−1. Step h of the EEA, as all the other steps,
satisfies

uhr0 + vhr1 = rh.

By the third condition there exists a polynomial u such that

ur0 + vr1 = r.

Multiplying the latter two equations by v or vh respectively and subtracting the
resulting equations, we obtain

(vuh − vhu)r0 = vrh − vhr.

Now from the second condition and the degree constrains from the beginning of
the proof, we get

deg v + deg rh ≤ deg v + deg r < deg r0.

We already saw that deg r < deg rh−1, and from 1.1(1) for i = h − 1 we get
deg vh + deg rh−1 = deg r0. Using these relations, we obtain

deg vh + deg r = deg r0 − deg rh−1 + deg r < deg r0 − deg r + deg r = deg r0.

This means, that the right-hand side of the expression

(vuh − vhu)r0 = vrh − vhr

has degree less than deg r0. But as the left-hand side is a multiple of r0, the right-
hand side must be equal to zero, meaning vrh = vhr. Lemma 1.1(1) implies that
deg vh ≥ 0 (as degrees of ri decrease strictly), therefore both sides of vrh = vhr
are nonzero. From this equation and the first condition of this lemma we see that
r divides rh. And as deg rh ≤ deg r, there is a constant c such that r = c · rh.
This also implies that v = c · vh, which proves the lemma.

Based on Lemma 3.1 we can solve the key equation using the EEA. The relations
that form the key equation imply the conditions of the lemma. We can therefore
apply the EEA to polynomials r0 = xd−1 and r1 = S to produce Λ = c · vh and
Γ = c ·rh, where the constant c is set so that Λ(0) = 1. We still need to determine
the value of h though, as in Lemma 3.1 we are setting it as if we already knew the
output polynomials. Next lemma will tell us how to set the index h for unknown
polynomials.

Lemma 3.2. Let v and r be as in Lemma 3.1. Furthermore assume that

deg v ≤ 1
2 deg r0 and deg r <

1
2 deg r0.

Then the value h in Lemma 3.1 is the unique index for which the remainders of
the EEA satisfy

deg rh <
1
2 deg r0 ≤ deg rh−1.

18

Proof. A smaller index i would result in a polynomial c · ri whose degree is too
large. On the other hand, by Lemma 1.1(1) we have for every i > h

deg vi ≥ deg vh+1 = deg r0 − deg rh >
1
2 deg r0.

So for every i > h we would get a polynomial c · vi whose degree is too large.

The restrictions in Lemma 3.2 are satisfied by the degree restrictions of the key
equation. These restrictions also give us the stopping threshold for the index h.
We can therefore solve the key equation by applying the PEA to polynomials
r0 = xd−1 and r1 = S and the stopping threshold 1

2(d − 1).

3.4 Uniqueness of the Solution
In this section, we show that the polynomials Λ and Γ obtained by the PEA are
unique, given the relations from the key equation.

Lemma 3.3. Polynomials Λ and Γ returned by the PEA as described above are
up to scaling by a constant c ∈ F∗

q the unique solution to the key equation.

Proof. We will show that if polynomials λ, γ ∈ Fq[x] satisfy the key equation,
then

λ = Λ · c and γ = Γ · c.

The key equation is given by three relations

GCD(Λ, Γ) = 1,

deg Γ < deg Λ ≤ 1
2(d − 1),

ΛS ≡ Γ (mod xd−1).

As Λ(0) = 1, Λ has a multiplicative inverse in the ring Fq[x]/xd−1. From the third
relation we obtain

S ≡ ΓΛ−1 (mod xd−1).
Therefore λ and γ can satisfy the key equation only if it holds that

λΓΛ−1 ≡ γ (mod xd−1),

or equivalently
λΓ ≡ Λγ (mod xd−1).

As we suppose the degrees constraints for all polynomials in the latter congruence,
the degrees of both side of the congruence are lower than d − 1. We can therefore
rewrite it as an equality λΓ = Λγ, from which we get that Λ | λ, therefore
λ = c · Λ for some nonzero polynomial c ∈ F[x]. We know from Lemma 3.2
that the index of the EEA algorithm is unique, and therefore the degrees of the
received polynomials are also, therefore c ∈ F∗

q, which gives us the desired result

λ = Λ · c and γ = Γ · c.

19

3.5 Computing of the Error Values
After we found Λ and Γ and the error locations by checking whether α−1

i is a root
of Λ, we can now compute the error values using this efficient way, which we will
now describe. We recall the formal derivative of the polynomial a = ∑︁m

i=0 amxm

being
a′ =

m∑︂
i=1

iaix
i−1.

The formal derivative of the product of two polynomials a and b obeys the rule
(as in Lang [2005])

(ab)′ = a′b + ab′.

By repeated application of this rule to the polynomial Λ, we get its formal deriva-
tive

Λ′ =
∑︂
i∈T

(−αi)
∏︂

j∈T \{i}
(1 − αjx).

So for every ℓ ∈ T we have

Λ′(α−1
ℓ) =

∑︂
i∈T

(−αi)
∏︂

j∈T \{i}
(1 − αjα

−1
ℓ)

= − αℓ

∏︂
j∈T \{ℓ}

(1 − αjα
−1
ℓ) +

∑︂
i∈T \{ℓ}

(−αi)(1 − αℓα
−1
ℓ)

∏︂
j∈T \{i,ℓ}

(1 − αjα
−1
ℓ)

= − αℓ

∏︂
j∈T \{ℓ}

(1 − αjα
−1
ℓ).

Furthermore, for every ℓ ∈ T we get

Γ(α−1
ℓ) =

∑︂
i∈T

eivi

∏︂
j∈T \{i}

(1 − αjα
−1
ℓ) = eℓvℓ

∏︂
j∈T \{ℓ}

(1 − αjα
−1
ℓ),

using the same steps as for substituting to Λ′. This gives us a way to express the
error values.

Lemma 3.4. The error values eℓ are computed as

eℓ =

⎧⎨⎩−αℓ

vℓ
· Γ(α−1

ℓ
)

Λ′ (α−1
ℓ

) , if Λ(α−1
ℓ) = 0

0 otherwise
, ℓ = 0, . . . , n − 1.

This formula is known as the Forney’s algorithm.

The correctness of the formula is given by the argumentation above.
Note that we gave the formula only for Λ and Γ, which is sufficient, as by Lemma
3.3 the polynomials returned by the PEA are unique up to scaling by a constant
c ∈ F∗

q. And as the formal derivation of polynomial a satisfies the rule (c·a)′ = c·a′

(Lang [2005]), so the constants in the formula cancel each other out. So even
though the original Λ is defined so that Λ(0) = 1, we can work with its multiple
by any constant c ∈ F∗

q.

20

3.6 Overview of the Algorithm
The algorithm can be summarized as follows.

Algorithm 4: Current Algorithm
Input : received word b = (b0, b1, . . . , bn−1) ∈ Fn

q

Output: error word e = (e0, e1, . . . , en−1) ∈ Fn
q

1 Syndrome computation: Compute the polynomial S = ∑︁d−2
i=0 Six

i,
where

Si =
n−1∑︂
j=0

bjvjα
i
j, i = 0, . . . , d − 2.

2 Solving the key equation: Apply the Partial Euclidean Algorithm to
polynomials xd−1, S and stopping threshold 1

2(d − 1), receiving

uxd−1 + ΛS = Γ.

3 Forney’s algorithm: Compute the error locations and their values by

ei =

⎧⎨⎩−αi

vi
· Γ(α−1

i)
Λ′ (α−1

i) , if Λ(α−1
i) = 0

0 otherwise
, i = 0, . . . , n − 1.

output e

3.7 Time Complexity of Algorithm 4
The complexity of these steps can be found in Stanovský and Barto [2011].
The algorithm consists of three steps, all of which are of complexity O(n2). During
the syndrome computation, we only multiply 3n elements d − 1 times, so the
complexity is of the O(n2) class. The computational time of the PEA is also
O(n2), as can be found in any scripts of computer algebra. In the Forney’s
algorithm, we again perform steps that are linear in n (both substituting to a
polynomial and multiplying in the formula), and the number of steps is n, which
gives us again the complexity of O(n2). Therefore, the overall complexity of
Algorithm 4 is O(n2).

3.8 Example
Let us consider the field F8 as described in Example 2.3. This time we consider
a code defined by the kernel of the matrix H, where

H =

⎛⎜⎝1 1 1 1 1 1 1
1 α α2 α + 1 α2 + α α2 + α + 1 α2 + 1
1 α2 α2 + α α2 + 1 α α + 1 α2 + α + 1

⎞⎟⎠ .

This is as code with parameters n = 7, k = 4 and the distance d = n − k + 1 = 4.
Therefore this code is able to correct up to 1 error.

21

Consider now the codeword c = (α + 1, α2 + 1, α2 + α, 1, 1, 1, 1). Suppose that
the error e = (0, 0, 0, α, 0, 0, 0) occurred during the transmission, resulting in the
received word being b = c + e = (α + 1, α2 + 1, α2 + α, α + 1, 1, 1, 1). To decode
this received word, we proceed as described above.
First, we compute the syndrome polynomial S = ∑︁2

i=0 Six
i, where Si are given

as ⎛⎜⎝S0
S1
S2

⎞⎟⎠ = Hb⊤.

The resulting syndrome polynomial is S = x2 + (α2 + α)x + α.
Next step is to solve the key equation by applying the PEA to polynomials
x(d−1) = x3 and S and the stopping threshold 1

2(d − 1) = 3/2, receiving the
relation

ux3 + ΛS = Γ.

We obtain the polynomials Λ = x + (α2 + α) and Γ = (α2 + α + 1). By extensive
search of which (αi)−1, i = 0, . . . , 6 is a root of Λ, we get that the only root is at
α−3, which corresponds to error position e3 to be nonzero.
Last step is to compute the value of the error in this position by applying the
relation

e3 = α3 Γ(α−3)
Λ′(α−3) = α.

The algorithm found the error values (0, 0, 0, α, 0, 0, 0), which is exactly the error
e. Therefore, the decoded word corresponds to the original codeword c, so the
decoding was successful.

22

4. GAO Algorithm
In this chapter we will describe another algorithm described by Shuhong Gao in
Gao [2003]. We will use the notation as described in the first chapter, working
with the finite field Fq. We will encode messages of length k to codewords of
length n, for which we fix any n different field elements ai ∈ Fq, i = 0, . . . , n − 1,
which will be used during the evaluation of the message polynomial.

4.1 Decoding
We consider received word b = (b0, b1, . . . , bn−1) ∈ Fn

q , which we get by trans-
mission through a channel from the codeword c. We suppose that t errors oc-
curred during the transmission, where t ≤ (d − 1)/2 (d = n − k + 1 being the
distance of the code). We again denote T the set of error locations, meaning
T = {i | bi ̸= ci, i = 0, . . . , n − 1}, therefore |T | = t ≤ (d − 1)/2. We precompute
the polynomial

g0 =
n−1∏︂
i=0

(x − ai) ∈ Fq[x].

Note that g0 is known and does not have to be computed for many cases. If,
for instance, n | (q − 1) and a0, . . . , an−1 form a multiplicative group in Fq, then
g0 = xn − 1, or if q = n, then g0 = xq − x.
To decode b we proceed as described in the following algorithm.

Algorithm 5: GAO Algorithm
Input : received vector b = (b0, b1, . . . , bn−1) ∈ Fn

q

Output: message polynomial f = m0 + m1x + . . . + mk−1x
k or

”Decoding failure”
1 Interpolation: Find the unique polynomial g1 ∈ Fq[x] of degree ≤ n − 1

which satisfies
g1(ai) = bi, i = 0, 1, . . . , n − 1.

2 Partial GCD: Apply the Partial Euclidean Algorithm to polynomials
g0, g1 and stopping threshold 1

2(n + k), receiving

ug0 + vg1 = g.

3 Long division: Divide g by v getting

g = f1v + r,

where deg r < deg v.
4 if r = 0 and deg f1 < k then
5 output f1
6 else
7 output ”Decoding failure”
8 end

23

”Decoding failure” means, that the algorithm was not able to decode the received
word as there is no codeword with distance < d/2 from the received word. Also
the algorithm might output wrong message polynomial in the case of so many
errors happening that the received word is closer to another codeword than the
original. So we can take the output word of the algorithm as the correct one only
if we suppose that no more than (d−1)/2 errors occured during the transmission.

4.2 Correctness of Algorithm 5
In this section we will show why Algorithm 5 works correctly. We will be using
the notation for the EEA as described in the beginning of the work.

Lemma 4.1. Suppose two nonzero polynomials r0, r1 ∈ Fq[x] and the notation of
the EEA. Then

um+1 = (−1)m+1 r1

rm

, vm+1 = (−1)m r0

rm

.

Proof. The relation for calculating ui, vi written in the matrix form is[︄
ui vi

ui+1 vi+1

]︄
=
[︄
0 1
1 −qi

]︄ [︄
ui−1 vi−1
ui vi

]︄
.

By iterating this matrix equation i times we get[︄
ui vi

ui+1 vi+1

]︄
=
[︄
0 1
1 −qi

]︄ [︄
0 1
1 −qi−1

]︄
. . .

[︄
0 1
1 −q1

]︄ [︄
u0 v0
u1 v1

]︄
.

From the initial choice of (u0, u1) = (1, 0), (v0, v1) = (0, 1) we get[︄
u0 v0
u1 v1

]︄
=
[︄
1 0
0 1

]︄
.

Using this we see the determinants are

uivi+1 − ui+1vi = det
[︄

ui vi

ui+1 vi+1

]︄
=

i∏︂
j=1

det
[︄
0 1
1 −qj

]︄
= (−1)i.

We can now use this determinant and formula from linear algebra for computing
inverse matrix A−1 = 1

det A
adjA, where adjA is the adjugate matrix of A, to get

the inverse matrix [︄
ui vi

ui+1 vi+1

]︄−1

= (−1)i

[︄
vi+1 −vi

−ui+1 ui

]︄
.

We can write the relations for ri and ri+1 in the matrix form as[︄
ri

ri+1

]︄
=
[︄

ui vi

ui+1 vi+1

]︄ [︄
r0
r1

]︄
, i = 0, . . . , m.

We can then express r0, r1, using the earlier computed inverse matrix, to get[︄
r0
r1

]︄
=
[︄

ui vi

ui+1 vi+1

]︄−1 [︄
ri

ri+1

]︄
= (−1)i

[︄
vi+1 −vi

−ui+1 ui

]︄ [︄
ri

ri+1

]︄
, i = 0, . . . , m.

24

By choosing i = m we get the expressions

r0 =(−1)mvm+1rm

r1 =(−1)m+1um+1rm

as rm+1 = 0. By adjusting these expressions by isolating um+1 or vm+1 respec-
tively, we get the relations formulated in the Lemma.

Lemma 4.2. Let g0 = w0r0 + ϵ0 and g1 = w0r1 + ϵ1, where GCD(r0, r1) = 1 and

deg ri ≤ t, deg ϵi ≤ l, i = 0, 1.

Suppose that d0 satisfies deg w0 ≥ d0 > l + t. After applying PEA to g0 and g1
and stopping threshold d0, we get the expression

ug0 + vg1 = g.

Then ∃α ∈ F∗
q that satisfies

u = −αr1, v = αr0.

Proof. We will show that EEA computes the same sequence of quotients for both
pairs r0, r1 and g0, g1. We suppose that

ri−1 = qiri + ri+1, deg ri+1 < deg ri, i = 1, . . . , m,

where rm+1 = 0 and rm ∈ F∗
q as GCD(r0, r1) = 1.

Using the notation for the EEA from the beginning of the work and by Lemma
1.1(3) and (4) we have

deg ui ≤ deg r1 ≤ t, deg vi ≤ deg r0 ≤ t

and from Lemma 4.1 we get

um+1 = (−1)m+1 r1

rm

, vm+1 = (−1)m r0

rm

.

We now define
gi = uig0 + vig1, 2 ≤ i ≤ m + 1.

It holds
gi−1 = qigi + gi+1, 1 ≤ i ≤ m

because by substituting the definition of gi and gi+1 we get

gi−1 =qigi + gi+1 = qi(uig0 + vig1) + ui+1g0 + vi+1g1

=(uiq + ui+1)g0 + (viq + vi+1)g1

=ui−1g0 + vi−1g1,

which is the definition of gi−1.
We want to show that the degrees of g1, . . . , gm+1 decrease strictly. It holds for
i = 0, . . . , m + 1 that

gi =ui(w0r0 + ϵ0) + vi(w0r1 + ϵ1)
=w0(uir0 + vir1) + (uiϵ0 + viϵ1)
=w0ri + (uiϵ0 + viϵ1).

25

By our assumptions we have for i = 0, . . . , m + 1

deg ϵ0 ≤ l, deg ui ≤ deg r1 ≤ t, deg ϵ1 ≤ l, deg ui ≤ deg r0 ≤ t.

Therefore it holds that

deg(uiϵ0 + viϵ1) ≤ l + t < d0 ≤ deg w0 i = 0, . . . , m + 1,

and we have

deg gi = deg w0 + deg ri ≥ deg w0 ≥ d0 > l + t, i = 0, . . . , m,

and
deg gm+1 = deg(um+1ϵ0 + vm+1ϵ1) ≤ l + t.

Because we assumed that degrees of r1, . . . , rm decrease strictly, also the degrees
of g1, . . . , gm decrease strictly. This means that the quotient sequence q1, . . . , qm

is the same for both pairs r0, r1 and q0, g1, up to step m. This then implies that
the sequence of ui and vi is also the same. Step m is also the first time that the
remainder satisfies deg gm+1 < d0, and at this step we receive

um+1g0 + vm+1g1 = gm+1 = −αr1g0 + αr0g1,

where α = (−1)m+1/rm, which is the desired result.

Theorem 4.3. If the received vector b = (b0, b1, . . . , bn−1) has distance at most
(d − 1)/2 from the codeword c = (c0, c1, . . . , cn−1) defined by the message polyno-
mial f , then the Algorithm 5 returns f .

Proof. Suppose that the received vector b = (b0, b1, . . . , bn−1) has the distance
t ≤ (d − 1)/2 from the unique codeword c = (c0, c1, . . . , cn−1) defined by f . We
define the error locator polynomial as

w(x) =
∏︂
i∈T

(x − ai),

T denoting the set of error locations, so deg w = t. We name w0 the cofactor of
w in g0, so g0 = w0w.
We define the unique polynomial w̃ ∈ Fq[x] with degree < t that satisfies

w̃(ai) = (bi − ci)/w0(ai), fori ∈ T.

Then GCD(w, w̃) = 1, and g1 = w0 · w̃ + f , as both sides have degree less than
n and have same value bi when evaluated in ai for i = 0, 1, . . . , n − 1, because

w0(ai)w̃(ai) + f(ai) = 0 + f(ai) = bi = g1(ai).

Let d0 = (n + k)/2. Note that

deg w0 = deg g0 − deg w = n − t ≥ n − n − k

2 = d0 > k − 1 + t ≥ deg f + deg w.

Then by Lemma 4.2 we have u = −αw̃ and v = αw for some α ∈ F∗
q. We can

write g as

g =ug0 + vg1 = −αw̃g0 + αwg1

= − αw̃g0 + αw(w0w̃ + f) = αwf = vf.

26

This means that in the long division step of Algorithm 3 the remainder is zero
and the quotient f1 = f as both have degree < k.
On the other hand, suppose that in step 3 the algorithm returns a polynomial f1,
which defines a codeword as it has degree < k. The identity in the partial GCD
step implies

ug0 = g − vg1 = vf1 − vg1 = v(f1 − g1),

which means that

v(ai)(f1(ai) − g1(ai)) = 0, i = 0, 1, . . . , n − 1.

But deg v = t ≤ (d − 1)/2, so f1(ai) = g1(ai) for at least n − t ≥ n − (d − 1)/2
values of i. Therefore b has distance ≤ (d − 1)/2 from the codeword defined by
f1, which means that the codeword defined by f1 is the unique codeword with
distance ≤ (d − 1)/2 from the received word.

4.3 Time Complexity of Algorithm 5
The algorithm consists of three steps: Interpolation, Partial GCD and Long
division. The complexity of these algorithms can be found in Stanovský and
Barto [2011].
The complexity of interpolation of a polynomial of deg ≤ n − 1 using Garner or
Lagrange algorithm is O(n2).
The second step is the Partial Euclidean Algorithm used on 2 polynomials of deg
≤ n, which has the complexity of O(n2).
The last step is division of the polynomial g(x). deg g(x) ≤ 1

2(n + k) ≤ n, as the
codeword cannot be shorter than the message to be able to correct any errors.
Therefore using algorithm for fast division using formal power series and fast
Fourier transformation, we get the complexity of O(n log n).
Total time complexity of the algorithm is

O(n2) + O(n2) + O(n log n) = O(n2).

4.4 Example
Let us assume the same situation as in Example 2.3, which means the message
m = (α, α2, α2 +α+1), to which we associate corresponding message polynomial
f = α + α2x + (α2 + α + 1)x2, the codeword c = (α, 0, 0, α + 1, α, 1, α + 1, 1) and
the transmission error e = (α, 1, 0, 0, 0, 0, 0, 0), which results in the received word
b = (0, 1, 0, α + 1, α, 1, α + 1, 1).
To decode the message, this time using the GAO algorithm, we first consider the
polynomial

g0 =
∏︂

a∈F8

(x − a) = x8 + x ∈ F8[x].

Note that in this case we actually do not need to compute the polynomial as we
are using all elements of the field F8 to compute it and 8 = 23 is a prime power,
therefore the polynomial has the form of x23 − x = x8 + x.

27

We now perform the steps of the algorithm:
1. Interpolation: We compute the polynomial

g1 = x + (α2 + α)x3 + (α + 1)x4 + α2x5 + αx6 + (α + 1)x7.

2. Partial GCD: Perform the PEA on polynomials g0, g1 and stopping threshold
1/2(8 + 3) = 11/2, receiving

g =(α2 + α + 1)x + (α + 1)x2 + (α + 1)x3 + αx4

u =(α2 + α + 1) + (α2 + 1)x
v =(α2 + α)x + (α + 1)x2

satisfying
ug0 + vg1 = g.

3. Long division: Divide g by v getting

f1 = α + α2x + (α2 + α + 1)x2, r = 0

satisfying
g = f1v + r.

As the remainder r = 0 and deg f1 < 3, the algorithm returns the polynomial
f1, which corresponds to the message polynomial f of the sent message, so the
decoding was successful.

28

Conclusion
At the end of this thesis, I would like to summarize the results of this work,
as well as comment on my personal contribution. The thesis provides an in-
depth description of three different decoding algorithms for Reed-Solomon codes,
including the original view, as well as the modern approach and a another possible
efficient way of decoding. I compiled the algorithms from various resources and
united them under the same notation. I also described in detail every step of all
algorithms, explaining sections of proofs, that were mostly skipped by original
authors. Furthermore, I expanded on some ideas and propositions, that were not
fully described, such are the Voting Algorithm or proof of the length of the period
for binary representation of the field F2N . I also made a comment about the time
complexity of each algorithm, so their efficiency is easily comparable. And lastly,
I made a working implementation of each of these algorithms and used them to
provide basic examples, which show the process and the structure of decoding of
each algorithm.

29

Bibliography
L. Barto and J. Tůma. Lineárńı Algebra. Scripts in development. 2023.

S. Gao. A new algorithm for decoding Reed-Solomon codes. Communications,
Information and Network Security, 712:55–68, 2003.

S. Lang. Undergraduate Algebra. Springer, 2005. ISBN 9780387220253.

I.S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields. Journal
of the Society for Industrial and Applied Mathematics, 8, 1960.

R. M. Roth. Introduction to Coding Theory. Cambridge University Press, Cam-
bridge, 2006. ISBN 978-0-521-84504-5.

D. Stanovský and L. Barto. Poč́ıtačová Algebra. MatfyzPress, 2011. ISBN
9788073783402.

30

	Introduction
	Terms and Notations
	Codes and Linear Codes
	Reed-Solomon Codes
	Coding Process
	Encoding
	Extended Euclidean Algorithm
	Partial Euclidean Algorithm

	RS 1960
	Decoding
	Comment about the Time Complexity of Algorithm 2
	Example
	Translation of F2N into Binary Representation
	Period of the Sequence
	Example

	Current Algorithm
	Syndrome Computation
	Key Equation
	Solving the Key Equation
	Uniqueness of the Solution
	Computing of the Error Values
	Overview of the Algorithm
	Time Complexity of Algorithm 4
	Example

	GAO Algorithm
	Decoding
	Correctness of Algorithm 5
	Time Complexity of Algorithm 5
	Example

	Conclusion
	Bibliography

