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Abstract: The Jupiter Trojans are a group of at least 12, 000 asteroids located in
the vicinity of the Lagrange points L4 and L5. There are several theories for the
origin of Trojans, such as the chaotic capture during the 1:2 resonance of Jupiter
and Saturn, the Jumping Jupiter scenario, or the capture in a gaseous disk. New
models, however, show important hydrodynamic phenomena in a gaseous disk
during planetary migration, which could also affect Trojan capture, such as the
growth of eccentricity or inclination of protoplanets (Chrenko et al. 2017, Eklund
& Masset 2017).

We performed two-fluid hydrodynamic simulations of a protoplanetary disk con-
sisting of gas and pebbles, with one 20 ME Jupiter-like protoplanet rapidly grow-
ing via gas accretion, and computed trajectories and the capture efficiency of
small asteroids, from 10 m up to 10 km in diameter. In our simulations, we found
that 29 out of 100 hundred-meter planetesimals placed on circular orbits near
the growing circular proto-Jupiter were captured in L4/L5. In the case of proto-
Jupiter having non-zero initial eccentricity and inclination, the captured orbits
of 100 m and 10 km planetesimals were unstable and eventually left the Trojan
region. On the contrary, 10 m planetesimals stayed on stable orbits due to aero-
dynamic drag. The inclinations of captured planetesimals are very dependent on
their initial inclinations. The eccentric and inclined proto-Jupiter did not excite
their orbits above 3◦, which is in stark contrast to the observed high inclinations
of Trojans up to 30◦. Therefore, our models require planetesimals to be already
on high inclinations prior to capture, or an external dynamical excitation during
the future evolution of the Solar System.
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Abstrakt: Trojané Jupiteru jsou skupinou v́ıce než 12 000 planetek nacházej́ıćıch
se v bĺızkosti Lagrangeových bod̊u L4 a L5. O p̊uvodu Trojan̊u existuje v́ıcero
teoríı, např́ıklad zachyceńı při rezonanci 1:2 Jupiteru a Saturnu, teorie skákaj́ıćıho
Jupiteru nebo zachyceńı v plynném disku. Nové modely však ukazuj́ı d̊uležité
hydrodynamické jevy, které by mohly ovlivnit zachycováńı Trojan̊u, jako je r̊ust
excentricity a sklonu protoplanet (Chrenko et al. 2017, Eklund & Masset 2017).

Provedli jsme dvoutekutinové hydrodynamické simulace protoplanetárńıho disku
složeného z plynu a z balvan̊u, s jednou protoplanetou o hmotnosti 20 ME, odpov́ı-
daj́ıćı zárodku Jupiteru, která rychle roste d́ıky akreci plynu. Spočetli jsme trajek-
torie a účinnosti zachycováńı planetesimál, s pr̊uměry od 10 m do 10 km. Ze 100
stometrových planetesimál umı́stěných na kruhových drahách pobĺıž rostoućıho
kruhového proto-Jupiteru se jich 29 zachytilo v okoĺı L4/L5. V př́ıpadě, že proto-
Jupiter měl nenulovou počátečńı excentricitu a sklon, byly orbity zachycených
100m a 10km planetesimál nestabilńı a časem opustily Trojanskou oblast. Naopak
10m planetesimály z̊ustaly na stabilńıch orbitách kv̊uli aerodynamickému třeńı.
Sklony zachycených planetesimál jsou závislé na počátečńıch sklonech. Excen-
trický skloněný proto-Jupiter nedokázal sklony planetesimál vybudit nad 3◦, což
je v př́ımém rozporu s pozorovanými skony Trojan̊u až 30◦. Naše modely tedy
vyžaduj́ı, aby buď planetesimály měly vysoké sklony, nebo aby je následný vývoj
Slunečńı soustavy vybudil.

Kĺıčová slova: Slunečńı soustava, planetky, Jupiter, Trojané, Protoplanetárńı
disk
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Trojans, what are they?
In December 1891, the German astronomer Max Wolf photographed an asteroid,
which had the same orbital period as Jupiter, the asteroid is called (588) Achilles
(Wolf 1892). A few years later another two similar asteroids were discovered by
his colleague August Kopff, namely (617) Patroclus (Wolf 1906) and (624) Hektor
(Wolf 1907). All these asteroids share orbital periods with Jupiter and are located
about 60◦ ahead, or in the case of Patroclus 60◦ behind, Jupiter. We came to call
these asteroids Jupiter Trojans (Nicholson 1961).

As of 2023, we have observed more than 12,000 Trojans. The population
is split into two swarms orbiting two equilibrium points of the 3-body problem,
known as L4 and L5. Observations show that the L4 swarm is substantially larger
than the L5 swarm, with the populations being over 8,200 for the L4 and over
4,200 in the L5 swarm (Minor Planet Center 2023).

The Trojans orbit in the 1:1 mean-motion resonance with Jupiter, have ec-
centricities up to 0.15 and high inclinations up to 30◦. The current distribution
of eccentricities and inclinations of Trojans is shown in Figure 1. They orbit
on tadpole orbits with the libration period of about 150 yrs and the full libra-
tion semi-amplitude is up to ±30◦. The population mostly consists of D-types
(∼ 80%) and C/P-types (∼ 20%) asteroids (Nesvorný 2018). There is a small
number of collisional families among Trojans (∼ 10), some are visible in Figure 1,
the largest one is associated with the asteroid (3548) Eurybates (Brož & Rozehnal
2011, Rozehnal et al. 2016, Vinogradova 2020).
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Figure 1: Observed distributions of Trojans, the proper semi-major axis versus the proper
eccentricity (top) and the proper inclination (bottom), for the L4 (left) and L5 (right) swarms.
There are visible asteroid families, esp. in the inclinations plot of the L4 swarm. The data were
taken from Rozehnal et al. (2016).
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1. Theories of Trojans origin
Jupiter Trojans are thought to have been captured from a much larger population
of planetesimals that existed in the Solar System between 5 to 30 au during the
formation of giant planets (Jupiter, Saturn, Uranus, Neptune).

First theories suggested that Trojans were captured during the early stages
of Jupiter’s growth, such as Marzari & Scholl (1998), who capture planetesi-
mals using the changing gravity field of growing proto-planet. However, in those
theories, Trojans ended up on very flat orbits with inclinations well under 10◦.
However this stands in sharp contrast to current observations, which show a wide
distribution of inclinations up to 30◦, shown in Figure 1.

In the following sections, we review new theories of Trojan capture that can
explain the observed distribution of inclinations (Nesvorný 2018).

1.1 Capture during 2:1 resonance
The next theory is based on the Nice model (Tsiganis et al. 2005). In the model,
the Solar System became unstable when Jupiter and Saturn crossed their mutual
2:1 mean-motion resonance. That is when Saturn’s period was twice Jupiter’s,
PSat/PJup = 2. For comparison, the ratio today is 2.49, which is close to the 5:2
ratio, i.e. The great inequality (Lovett 1895). (Morbidelli et al. 2005) propose
that Jupiter Trojans were trapped in orbits at the L4 and L5 points by chaotic
capture during this particular 2:1 resonance.

This resonance creates chaos around Jupiter’s L4 and L5 points, as the li-
bration period in resonance 1:1 is close to 2:1. If a small body is scattered by
somewhere near Jupiter’s orbit, it can make its way to the vicinity of the L4
and L5 points. When the giant planets then leave the resonance, small bodies
remain trapped by Jupiter. The random nature of the capture process results in
asteroids being captured into all the possible stable orbits, which include small
libration amplitudes and large inclinations.

A weakness of this model is, that the slow migration of Jupiter and Saturn
past the 2:1 resonance, which is the defining feature of the Nice model, proves
difficult to reconcile with the orbital structure of the asteroid belt (Morbidelli
et al. 2010).

1.2 Jumping Jupiter scenario
The orbital structure of the asteroid belt, which can not be explained by the Nice
model, could imply that the period ratio of Jupiter and Saturn must have had
a discontinuity when they scattered one of the ice giants. This model is described
in Morbidelli et al. (2010), and with a new model of the evolution of the Solar
System, a new model of the Trojan capture must be constructed.

(Nesvorný et al. 2013) found that most of the Trojans were captured just after
the closest encounter of Jupiter with the ice giant. The encounter drastically
changed the semi-major axis of Jupiter by as much as 0.2 au in a single jump.
The jump radially displaced Jupiter’s already existing Trojans and led to capture
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of new population of bodies, which happened to be where Jupiter was located
after the jump.

The orbital distribution of stable Trojans obtained in their simulations closely
matches the observed distributions, including orbits with small libration ampli-
tudes, small eccentricities, and both small and large inclinations, which tend to
be the most difficult to capture. Their model is also potentially capable of ex-
plaining the observed asymmetry of Jupiter Trojans (Szabó et al. 2007), which
they attribute to late passages of the ice giant near L5, that presumably depleted
the L5 population.

1.3 Capture in a gaseous disk
Up until now, the models we reviewed were based only on planetesimal disks.
However, now we introduce models, which consider a gaseous disk. While in
previous models only gravitational interactions were taken into account, these
models also consider hydrodynamical effects like aerodynamic drag or pressure
gradients in gas. As a result, they tend to focus on smaller objects (up to hundreds
of meters), as hydrodynamical effects are more significant at this scale.

Lyra et al. (2009) focusses on centimeter- to meter-sized particles, which get
within high-pressure regions, such as the L4 and L5 points of giant planets. There
small particles have an opportunity to collapse and form larger planetesimals and
even planetary embryos. In their models, the collapse occurs among particles
smaller than 40 cm, and the formed proto-planets tend to have from 2 ME to
17 ME, which is in the range of super-Earths to mini-Neptunes.

Although a Jupiter-sized planets could induce such formation of planetesimals
and planetary embryos in the Trojan regions, they do not exist in the Solar System
but could be common in exoplanets. The instabilities such as the Nice model or
the migrating ice giant mentioned previously, could be the reason why this type
of formation did not occurring in our Solar System.

A different model was proposed by Pirani et al. (2019), in which a rapid,
large-scale planetary migration occurs in the Solar System. The migration man-
ages to produce the observed asymmetry between the L4 and L5 populations.
However, once again, the inclinations of captured Trojans are close to zero, thus
the need for some other dynamical effects to excite the inclinations to observed
high inclinations.

1.4 Growth of Jupiter’s eccentricity and incli-
nation

The main motivation for this work on Trojan’s origin, is Chrenko et al. (2017),
Eklund & Masset (2017) and Brož et al. (2021). They simulate planetary em-
bryos growing by pebble accretion and study their migration and interactions.
They find that orbital eccentricities of these embryos are considerably excited by
the presence of the so-called ”hot trail”, an asymmetric overheated lobe of gas
produced by accretion heating in the embryo’s vicinity. Our study aims to inves-
tigate if this excitation of Jupiter’s orbit by the aforementioned hot-trail effect
affects also the Trojan capture.
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2. Hydrodynamics of
protoplanetary disks
In this thesis, we compute hydrodynamic simulations to study the evolution of
protoplanetary disk, the migration of a planetary embryo, and their interaction
with smaller planetesimals. The necessary physical laws and equations, that is
the Eulerian hydrodynamics, are briefly reviewed in this Chapter.

We first describe the respective set of equations in 3-dimensional continuous
vector form and then, in Section 2.2, we state the equations used in our simula-
tions in 2-dimensional discretized component form and describe the Fargo-Thorin
code itself (Chrenko et al. 2017).

2.1 3-dimensional, continuous, vector form
We use hte Eulerian formalism, where the flow of fluid, i.e., the temporal evolu-
tion of volumetric density ρ and velocity v, is described with respect to a static
observer. Let us first state the equations in a general form.

Continuity equation

The first equation, the continuity equation, generally describes a transport of
some quantity. Its vector form is (Brož 2022)

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v, (2.1)

where ρ denotes the volumetric density, and v the velocity. Every term in this
equation can be expressed in units kg m−3 s−1. Such an equation is a local form of
a conservation law. It says that mass can be neither created nor destroyed and it
can not vanish from one place to appear at another, there must be a continuous
flow between the two places.

Navier-Stokes equation

The second equation expresses the momentum conservation for fluids. The vector
form of the equation is commonly called the Navier-Stokes (Brož 2022)

∂v

∂t
+ v · ∇v = −1

ρ
∇P − ∇Φ + 1

ρµvac
(∇ × B) × B

+ 1
ρ

[︃
∇ · µ1∇v + ∇

(︃
µ2 + 1

3µ1

)︃
∇ · v

]︃
, (2.2)

where the right-hand side describes the different accelerations acting on the fluid,
therefore all of the terms are in units m s−2.

The most common acceleration on the right-hand side is the pressure gradient
∇P . This acceleration arises from the pressure force, which is present between two
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places with different pressures. The second term is the gravitational acceleration,
with Φ being the gravitational potential.

The third term, the Lorentz’s term, corresponds to the well-known formula
F = q(E + v × B), where the macroscopic electric field E in plasma is zero,
the current density j = ρQv can be expressed form the Ampere’s law µvacj =
∇ × B. Here, q denotes the electric charge, ρQ the charge density, µvac the
vacuum permeability, B the magnetic induction.

The last two terms are called the viscous terms, namely the friction between
two neighbouring layers of the fluid, flowing at different velocities. The force
acting on a unit surface is called stress (unit Pa) The friction for Newtonian
fluids is proportional to the gradient of velocity, µ1∇v, where µ1 denotes the
dynamical viscosity. An acceleration arises only if the stress values from the
top layer and the bottom layer change. The last one describes the volumetric
viscosity, with µ2 as the dynamical volumetric viscosity.

Energy equation

The third equation is similar to the first one, but instead of the mass density ∼ ρ,
we use the energy density U . The energy equation in the vector form is (Brož
2022)

∂U

∂t
+v ·∇U = −U∇·v−P∇·v−κPρcaT 4 +κPρcErad −∇·F⋆r̂+∇·K∇T. (2.3)

The equation can be derived from the 1st law of thermodynamics, and all terms
are in units J m−3 s−1. The first term on the right-hand side describes the internal
energy taken from gas by expansion (−U∇ · v). The second term is the energy
used for mechanical work (−P∇ · v).

All the remaining terms are the heat sources. Two terms are describing ra-
diation emission and absorption, −κPρcaT 4 + κPρcErad, where κP stands for the
Planck mean absorption coefficient, ρ the volumetric density, a the radiative con-
stant, c the speed of light, and T the thermodynamic temperature. The next
term is the irradiance, −∇ · F⋆r̂, F⋆ stands for the radiant flux received from the
Sun and r̂ the unit position vector. The last term describes the thermal diffusion,
∇ · K∇T , where T denotes again the thermodynamical temperature and K the
thermal conductivity.

Ideal gas law

The last necessary equation is the ideal gas law, or the equation of state. Its form
is

P = ρ

µmu
kT, (2.4)

with k standing for the Boltzmann constant, µ the mean molecular weight and
mu the atomic weight.

This equation is a good approximation of the behavior of gas, however, since
it only accounts for the volume V = m/ρ, the temperature T , and the pressure
P , it neglects molecular size and intermolecular attractions, which become less
important for lower densities such as the gas in our disk.
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2.2 Implementation in the Fargo-Thorin code
In this study, we use the 2-dimensional hydrodynamic code Fargo-Thorin by
Chrenko et al. (2017), which itself is a heavily modified version of the FARGO
(Masset 2000). The code is an Eulerian solver on a polar staggered mesh, modi-
fied to account for interactions between planetary embryos, a gas disk, and also
a pebble disk. In this section, we describe how the hydrodynamic equations from
Section 2.1 are actually implemented in the code.

The first thing we need to mention is that the code is 2D, thus solving 2D
equations and using the surface density Σ. Nevertheless the description accounts
for vertical stratification to approximate effects that are dependent on the 3D disk.
This is done by using the Gaussian profile, therefore, the volumetric density ρ is

ρ(r, θ, z) = Σ(r, θ)√
2πH(r, θ)

exp
(︄

− z2

2H2(r, θ)

)︄
, (2.5)

where H = cs/(√γΩK denotes the local pressure scale height, cs =
√︂

γP/Σ the
isothermal sound speed, γ = 1.4 the adiabatic index, ΩK the Keplerian angular
frequency, and z the vertical coordinate.

2.2.1 Continuity equation
As the Fargo-Thorin code is 2-dimensional, the equations from Section 2.1 have
to be integrated in the vertical dimension. The new continuity equation is

∂Σ
∂t

+ ∇ · (Σv) = 0, (2.6)

where Σ is the gas surface density and v is the vertically averaged gas flow velocity.

2.2.2 Navier-Stokes equation
The 2D vector form of the Navier-Stokes equation is

∂v

∂t
+ v · ∇v = − 1

Σ∇P + 1
Σ∇ · Tν −

∫︁
ρ∇Φdz

Σ + Σp

Σ
ΩK

τ
(V − v), (2.7)

where P is the vertically integrated pressure, Tν the viscous stress tensor, ρ the
volumetric density, Φ the gravitational potential. The last term describes the
interaction between the gas and pebble disks, Σ and Σp denote surface densities,
v and V their velocities, τ the Stokes number.

Now we will state the equations in a discretized form as implemented in the
code. They are written in the polar coordinates with i representing the radial
component and j the azimuthal component. Notice, we have to average the scalar
quantities from two neighboring cells. This is because, in the staggered mesh, the
scalar quantities are cell-centered as opposed to vector quantities, which are face-
centered. Namely, one time step is ∆t and the explicit solution is
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(vrad)i,j = (vrad)i,j + ∆t
{︃

−∇(Prad)i,j + 0.5(Φi,j + Φi−1,j)+

+
[︃1
4

(︃
(vθ)i,j + (vθ)i, j − 1 + (vθ)i−1,j + (vθ)i−1,j−1

)︃
+ RiΩK

]︃2 1
Ri

−

− 2((qrad)i,j − (qrad)i−1,j

ρi,j + ρi−1,j

1
(Rmed)i − (Rmed)i−1

}︃
, (2.8)

(vθ)i,j = (vθ)i,j + ∆t((−∇(Prad)i,j) + 0.5[Φi,j + Φi,j−1]−

−
[︃2[(qθ)i,j − (qθ)i,j−1]

ρi,j + ρi,j−1

2πRmed

n

]︃
, (2.9)

∇(Prad)i,j = 2(Pi,j − Pi−1,j)
ρi,j + ρi−1,j

1
(Rmed)i − (Rmed)i

, (2.10)

∇(Pθ)i,j = 2(Pi,j − Pi,j−1)
ρi,j + ρi,j−1

2πRmed

ns
, (2.11)

(Rmed)i = 2
3

R3
i+1 − R3

i

R2
i+1 − R2

i

, (2.12)

(qrad)i,j = (1.41)2ρi,j((vrad)i+1,j − (vrad)i,j)2, (2.13)

(qθ)i,j = (1.41)2ρi,j((vθ)i,j+1 − (vθ)i,j)2, (2.14)
where vrad denotes the perturbation of velocity in radial direction after the time
step, vθ the azimuthal velocity after the time step, n the number of azimuthal
cells in the mesh, R the radius from the center of the Solar System.

2.2.3 Energy sources terms
The energy equation implemented in Fargo-Thorin is

∂U

∂t
+ ∇ · (Uv) = −P∇ · v + Qvisc + Qirr + Qacc − Qrad. (2.15)

In order to avoid unnecessary time restriction, Chrenko et al. (2017) solve this
equation implicitly.

Let us state the energy source terms in detail (Chrenko et al. 2017).
The term Qvisc stands for the viscous dissipation heating and is calculated as

Qvisc = 1
2νΣ(τ 2

rr + 2τ 2
rθ + τ 2

θθ) + 2νΣ
9 (∇ · v)2, (2.16)

where ν is the kinematic viscosity and τij components of the viscous stress ten-
sor Tν .

The stellar irradiation represented by the term Qirr describes the energy gained
from solar radiation

Qirr = 2σRT 4
irr

τeff
, (2.17)

9



where σR is the Stefan-Boltzmann constant, τeff the effective optical depth. The
irradiation temperature Tirr is obtained as the projection of the stellar radiation
flux onto the disk surface,

T 4
irr = (1 − A)

(︃
R⋆

r

)︃2
T 4

⋆ sin α, (2.18)

where A stands for the disk albedo, T⋆ the effective temperature of the protostar,
R⋆, its radius, and α the angle at which the starlight strikes the disk.

The planetary embryos that accrete gas also radiate heat, depending on their
accretion rate. The embryo heats the grid cell it is embedded in and the power
of such heating is

Qacc = 1
S

GMemb

Remb

dMemb

dt
, (2.19)

where S stands for the cell area, G the gravitational constant, and Memb and
Remb, respectively, are the mass and radius of the embryo.

The last term describes the energy from radiative transfer.

Qrad = 2σRT 4

τeff
+ 2H∇ · F . (2.20)

This first term is complementary to Qirr and it is assumed that most of the energy
is transported by radiation in the vertical direction, T is the temperature in the
midplane. The last term describes radiative diffusion as the divergence of radiant
flux.

2.2.4 Pebble disk
The pebbles are treated as a fluid, described solely by hydrodynamical quantities,
the surface density Σp and the velocities Vr, Vθ, together with several parameters,
like the Stokes number τ . It describes aerodynamic properties of pebbles which
are partly coupled to gas Chrenko et al. (2017),

τ = ρbRp

ρ0cs
ΩK, (2.21)

where ρb stands for the pebble bulk density, Rp the pebble size, ρ0 the midplane
volume density, cs the sound speed and ΩK the Keplarian angular frequency.

Pebble flow and accretion onto protoplanets is described by the equation

∂Σp

∂t
+ ∇ · (ΣpV ) =

(︄
∂Σp

∂t

)︄
acc

. (2.22)

The accretion acts as a mass sink and the removed mass is accreted by the growing
embryos.

After the accretion is resolved, the Stokes number gets recalculated, then the
velocity fields are updated using the pebble fluid motion equation

∂V

∂t
+ V · ∇V =

∫︁
ρp∇Φdz

Σp
− ΩK

τ
(V − v), (2.23)

where ρp is the volumetric density of pebbles, Φ the gravitational potential and
v the velocity of gas. Finally, all the quantities are advected using the Fargo
transport algorithm (Masset 2000) as for the gas.
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3. Models of planetesimal
capture by growing Jupiter
In order to study how Jupiter captures Trojans in a gaseous disk and how the
capture efficiency changes with different eccentricities and inclinations, we per-
form multiple simulations using the dynamical model from Chapter 2. We start
with zero eccentricities and inclinations of Jupiter and 100 m planetesimals and
little by little changes of the initial conditions.

3.1 Initial and boundary conditions
We simulate a protoplanetary disk with one planetary core, the 20 ME (Earth
mass) proto-Jupiter, which has already migrated close to its current position and
is about to enter the runaway accretion stage (Pollack et al. 1996). The initial
setup of the disk is mostly taken from Brož et al. (2021). The important disk
parameters chosen for this simulation are summarized in Table 4.1.

The initial relaxed hydrodynamic profile of the disk is assumed to be sym-
metric in azimuth.

The disk is radially constrained by the inner boundary at rmin = 2.8 au and
the outer boundary at rmax = 16 au. In addition, there are set wave-killing
zones (Chrenko et al. 2017). The zones are adjacent to the boundaries and cover
intervals [rmin, 1.2rmin] and [0.9rmax, rmax]. In these zones, a hydrodynamic quality
(the surface density Σ, the energy U , the azimuthal velocity vθ) is being damped
towards the reference values obtained after the initial relaxation, or for the case
of radial velocity vr, to zero. Each time the boundary condition is applied, the
following equation is solved in the zones (Chrenko et al. 2017)

dq

dt
= −q − q0

tdamp
f(r), (3.1)

where q and q0 represent said hydrodynamic quality. The time scale is set as
tdamp = 0.1Torb, which means one-tenth of the Keperian orbital period on the
boundary. The f(r) denotes a dimensionless ramp function that decreases from
1 at the boundary to 0 at the start of the wave-killing zone.

The computational polar mesh is divided into 512 radial rings and 768 az-
imuthal sectors. The maximum time step is ∆t = 3.725 [c.u.t] = 0.16 yr =
1/20 Porb at 5.2 au, with output every 1000 steps, which is 2,200 yrs. The code
units for time are c.u.t = 1

2π
sidereal yr =

√︂
1 AU
GM⊙

. The time step is controlled by
the CFL condition, which is calculated at every step using

dt = 0.5√︂
( cs

dx
)2 + vrad

dxrad
+ vθ

dxθ
+ 4c2

vNR
dv
dx

+ 4ν
dx2

, (3.2)

where vrad and vθ are the radial and the azimuthal velocities, dxrad and dxθ are
the sizes of current cell. When using the unindexed variables v and dx, it was
assumed that the lower of the radial and azimuthal values was used. cs stands
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for the speed of sound, ν for kinematic viscosity and cvNR, the von Neumann-
Richtmyer viscosity constant, valued at 1.41.

All of our simulation were calculated on the faculty Chimera cluster via the
SLURM scheduling system. Each simulation used 50 CPUs and ran for around
one day. We had to limit the number of particles to 100, because some particles
got captured as Jupiter’s moons, which resulted in severe time step limitations
of the N-body integrator.

Viscosity. We use a fixed value of the kinematic viscosity
ν = 5.0 × 1014 cm2 s−1. The relation between the kinematic and the dynamical
viscosity µ is

ν = µ

ρ
, (3.3)

where ρ is the volumetric density of the fluid. The kinematic viscosity ν is often
parametrized as (Shakura & Sunyaev 1973)

ν = αcsH, (3.4)

where α is a free parameter, cs the speed of sound, and H the vertical scale height.
If we use our fixed ν to compute α, the corresponding value is α ≈ 0.005. This
is relatively large value, suitable for an active, turbulent disk, with a magneto-
rotational instability (MRI; (Balbus & Hawley 1991))

Gas surface density. The initial surface density at 1 au chosen for our sim-
ulation was Σ0 = 200 g cm−2. This value is lower then the Minimal Mass Solar
Nebula (MMSN) (Hayashi 1981), so there is just enough gas around proto-Jupiter
for it to grow to its current mass of 317 ME.

The gas surface density initially follows a power law Σ = Σ0r
−0.5. Using this

exponent, we can estimate the initial surface density at 5.2 au, i.e., 87 g cm−2,
which is slightly higher, but comparable to the surface densities used in Pollack
et al. (1996), who use Σ0 = 750 g cm−2 but the power law exponent −1.5.

Figure 3.1 shows the surface density profile of the disk, after 9 kyr of evolution.
The proto-Jupiter is already around 300 ME and has opened a gap.

3.2 Models for 100 m asteroids
Our first simulation was set up with proto-Jupiter placed at 5.2 au, having size
20 ME and just entering runaway accretion, thus opening a gap. Initially, the
proto-Jupiter has no eccentricity and a very low inclination of 0.057◦. We pop-
ulated a hundred 100 m planetesimals on orbits right behind the proto-Jupiter’s
Hill sphere, from 5.34 au to 5.51 au. These planetesimals had zero eccentricities
and the inclinations were in the interval [0, 0.01◦].

The simulation was run for 11 kyr, which is about 920 Jupiter orbits. In the
course of time, we observed a rapid increase of proto-Jupiter’s mass by accretion,
similarly as in Pollack et al. (1996). Our proto-Jupiter grows from its starting
mass 20 ME to almost 300 ME. With the fast accretion, the proto-Jupiter im-
mediately began to open a gap and slowly migrated inwards due to the Type-II
migration. During our simulation, it moves from 5.20 au to 4.94 au.

12



Table 3.1: Summary of parameters for our hydrodynamical model of protoplanetary disk

Parameter Notation Value
Kinematic viscosity ν 5.0 × 1014 cm2 s−1

Gas surface density Σ0 200 g cm−2

Rosseland mean opacity κ Zhu et al. (2012)
Vertical opacity drop cκ 0.6

Disk albedo A 0.5
Stellar radius RS 1.5 RS

Effective stellar temperature TS 4370 K
Initial aspect ratio h 0.05
Pebble bulk density ρp 1 g cm−3

Pebble radial mass flux MF 2 × 10−4 ME yr−1

Inner radial boundary rmin 2.8 au
Outer radial boundary rmax 16 au
Radial mesh resolution Nr 512

Azimuthal mesh resolution Nθ 768

3.2.1 Aerodynamical acceleration
A planetesimal on a circular orbit at 5.35 au has the total acceleration of
a = 2.08 × 10−4 m s−2. This value is almost entirely due to the gravitational ac-
celeration. For eccentric orbits, the acceleration changes periodically, depending
on the position of the planetesimal along the orbit. For e = 0.05, the pericen-
ter is 4.94 au from the Sun and the apocenter is 5.46 au, so the corresponding
gravitational accelerations are 1.9 × 10−4m s−2 and 2.3 × 10−4m s−2.

We would like to compare these values to accelerations arising from aerody-
namic drag. This can be calculated from Stokes’ formula

a = 1
2C

S

m
ρv2

rel, (3.5)

where C is a constant C = 0.48, vrel the relative speed of planetesimal with
respect to gas, and ρ the volumetric density of gas in the disk.

In our simulation, we use the surface density Σ described in more detail in
Section 3.1. From surface density we can calculate the volumetric density using

ρ = Σ√
2πH

, (3.6)

where H is the height of the disk:

H = cs√
1.4Ωk

(3.7)

For reference, we can calculate ρ at a = 5.2 au as 1 × 10−10 kg m−3

Now we can calculate the effect of drag. If we have a 100 m planetesimal on
a circular orbit at 5.35 au, the aerodynamic acceleration adrag is stable, around
1×10−10 m s−2. For the eccentric or inclined orbit (e = 0.05, i = 5◦), acceleration
peaks around 1 × 10−7 m s−2.

For comparison, drag needs at least 24 days, or 0.005 Jupiter orbits, to have
an effect similar to gravity.
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Figure 3.1: Surface density profile of the disk with one massive protoplanet, after 9 kyr of
evolution. The proto-Jupiter is 300 ME has created spiral arms and has opened a gap.

3.2.2 Detection of capture
The main reason for our simulations is to look at planetesimal capture after the
interaction with Jupiter. The simulation is conveniently set up, so every plan-
etesimal interacts with Jupiter within the first few hundred years. This is done
by initially placing our planetesimals near the Hill sphere of rapidly expanding
proto-Jupiter, which almost doubles in size during 300 years. Therefore, its Hill
sphere increases and planetesimals orbiting near it find themselves in a perfect
position to be captured as Trojans. Of the 100 planetesimals, 29 were captured
this way. All bodies start on very cold orbits (have initial eccentricities and in-
clinations close to zero), therefore, the capture efficiency increases the closer the
planetesimal starts to proto-Jupiter. If a planetesimal starts below 5.4 au, the
efficiency of its capture is almost 75%.

All captures in our model occured during the planetesimals’ first corotation
orbits. When the proto-Jupiter catches up to the planetesimal for the first time,
if it is close enough, it either captures it and sends it on a horseshoe orbit, or
if the planetesimal is further away, it is sent on an eccentric orbit outwards or
inwards. This first interaction happens during the first 320 years of simulation,
or 27 Jupiter orbits.

We detect these captures by looking at the semimajor axis, if the semimajor
axis of a planetesimal stays inside proto-Jupiter’s Hill sphere radius, we detect
the planetesimal as captured. This process can be seen in Figure 3.2.

3.2.3 Analysis of captured asteroid trajectories in L4 and
L5

The captured planetesimals start orbiting as Trojans on horseshoe orbits, they li-
brate around 180◦ from proto-Jupiter and their orbits encompass both Lagrangian
points L4 and L5. In later phases, planetesimals begin to transition from full
horseshoe orbits to very extended tadpole orbits (orbits around the L4 or L5
points), with large amplitudes of libration, reaching almost 180◦. The libration
amplitudes of planetesimals caught in the L4 cloud tend to be by about 5 − 10◦
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Figure 3.2: Temporal evolution of the semi-major axes for one hundred 100 m planetesimals
and proto-Jupiter. The planetesimals are indicated in the color palette and arranged by their
initial semi-major axis, with the number one corresponding to 5.34 au and number 100 to
5.51 au. Proto-Jupiter was migrating and rapidly accreting gas, reaching up to 300 ME. Both
Jupiter and its Hill sphere are indicated in green. The proto-Jupiter causes perturbations to
free planetesimals orbiting around 4 au and 7 au. This is discussed in greater detail in Section
3.2.4. A total of 29 planetesimals were captured as Trojans when their semi-major axes were
within the Hill sphere of the proto-Jupiter.

Figure 3.3: Eccentricity e (left) and inclination i (right) versus semimajor axis a of proto-
Jupiter and 100 planetesimals from the first simulation after 6 kyr of evolution. Proto-Jupiter
has an initial mass 20 ME, and planetesimal are 100 m in diameter, set right outside of proto-
Jupiter’s Hill sphere. Both proto-Jupiter and the planetesimals have zero initial eccentricities
and inclinations. Proto-Jupiter’s Hill sphere is highlighted by vertical lines. Some planetesimals
were captured as Trojans, located inside the proto-Jupiter’s Hill sphere. Their eccentricities
are low (under 0.01) compared to other planetesimal scattered by proto-Jupiter, which are
subsequently damped down by drag. The inclinations stay very low for both captured and
scattered planetesimals, under 0.01◦. We can compare this figure to similar Figures (3.9, 3.10,
3.11), where we modify the initial eccentricities and inclinations.
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shorter than their L5 counterparts and also 10◦ further from proto-Jupiter.
As shown in Figure 3.4, the drag decreases the libration amplitude at a rate

of 10◦ every 3-5 kyr. During our 11 kyr simulation, the tadpole orbits shorten by
up to 40◦. By extrapolation, we can assume, it would take at least 40 kyr for the
planetesimals to reach zero amplitudes in L4/L5.

The trajectories of planetesimals closely resemeble the streamlines of gas in
Figure 3.5. The similarity is due to the three-body problem. There are notable
differences between streamlines near L4 and L5, which also correspond to the
different libration amplitudes mentioned above.

Figure 3.6 shows the libration periods of captured planetesimal at the end of
our simulation. We can see that the libration period on a tadpole orbit is at that
time between 15 to 20 Jupiter orbits or 180-240 yr. There is no significant differ-
ence between the L4 and L5 populations, with 10 planetesimals orbiting around
the L4 point and 10 planetesimals around L5. The remaining 9 planetesimals
stayed on horseshoe orbits. However, our sample size is very small.

The planetesimals in this first simulation have zero eccentricities and very
small inclinations, these values do not change significantly for the captured plan-
etesimals, i.e. Figure 3.3. With the eccentricities and inclinations being so low,
the tadpole orbits are very cold. This is all in stark contrast to observations,
because the observed inclinations of Trojans are as high as 30◦, i.e. Figure 1.
Achieving high inclinations of captured planetesimals will be the focus of our
second simulation.

The total mass of Trojans. Current estimates of the total mass of Trojans are
as per Vinogradova & Chernetenko (2015) (0.30±0.19)×10−10 MS. This number
is an extrapolation from physical characteristics and includes small asteroids.
If we assume all Trojans came from this kind of capture, for which we have
calculated the capture efficiency as 29%, the minimal planetesimal population in
the feeding zone must have been 3 × 10−5 ME. In our simulation, the feeding
zone is from 5.342 au to 5.514 au. With the metalicity of 0.01, the total mass of
solids in the feeding zone would be 0.18 ME, of which 0.03 ME are pebbles. The
minimal population of Trojans needs to be only 0.006% of the total mass, which
is not surprising as planetesimals contain only a tiny fraction of total solid mass.
Most of the solid mass would already already part of the proto-Jupiter’s core.

3.2.4 Analysis of free asteroid trajectories
Planetesimals that encountered proto-Jupiter and did not get captured as its
Trojans, were diverted on highly eccentric orbits and flung either inwards or out-
wards. These orbits are then damped by drag, from eccentricities up to 0.3 right
after the close encounter to up to 0.05 after 10 kyr of evolution, see Figure 3.3.

We are not examining the planetesimals flung outwards, because our model
only contains proto-Jupiter and not other giants, which could interact with these
planetesimals on their way to the become the Centaurs.

The planetesimals diverted inwards were flung to around 4 au, and from there,
they began a slow migration inwards driven by drag, not getting captured by
Jupiter’s resonances. The temporal evolution of their semi-major axes is plotted
in Figure 3.7. Even though no planetesimal got captured in the resonances, their
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Figure 3.4: Examples of planetesimals captured on tadpole orbits, shown in the X, Y plane.
The time span is from 4 to 11 kyr. The coordinate system is corotating with Jupiter (green
cross). There is an apparent decrease in the libration amplitude of tadpole orbits for both
bodies, due to drag. There is also a notable difference in the libration amplitude for the two
bodies, with the L5 orbit (right) being about 10◦ longer and 5◦ closer to proto-Jupiter.
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Figure 3.5: Gas streamlines inside proto-Jupiter’s gap in the disk after 9 kyr. The background
color shows the surface density Σ in the disk. The lagrange points L4 and L5 are clearly visible.
The L4 orbits are slightly larger than the L5. Planetesimals in our simulations orbit similarly
to the outer lines and slowly make their way inwards.

Figure 3.6: The libration amplitude and phase λJup −λpl of captured planetesimals in degrees
during the last 420 yrs of the first simulation. The libration periods on tadpole orbits are
around 200 yr. The number of planetesimals in both the L4 and L5 swarms is 10, remaining 9
are on horseshoe orbits, with periods of around 420 yr.
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Figure 3.7: Temporal evolution of the semi-major axis of scattered planetesimals. This figure
is zoomed in version of Figure 3.2. Highlighted in green are mean-motion resonances 4:3, 3:2,
5:3 with Jupiter. Platesimals slowly migrate inwards (due to drag), past these resonances.

effect is clearly visible, further scattering the planetesimal inwards, as they jump
over them.

The inward migration is very slow and we would need at least another 40 kyr
of evolution for planetesimals to reach the next resonances like the 2:1, where
they could get captured. Another problem we are facing is the proximity of the
inner boundary, which is at 2.8 au.

3.2.5 Analysis of pebble distribution
Looking at the pebble disk, we can see it acts very similarly to the gaseous disk.
The proto-Jupiter quickly opens a gap and accretes all the pebbles onto itself, as
shown in Figure 3.8. In this figure, we can also see in detail Jupiter’s clearing
of the gap, leaving an under-density right behind it, which is then filled again
by migrating pebbles. Importantly, there is not any substantial concentration
of pebbles near the L4/L5 points. Moreover, there are no noticeable pressure
maximum barriers on the outside nor the inside of the gap, which would block
the pebble flow or slow-down the migration of planetesimals.

3.3 Scenario with eccentric and inclined plan-
etesimals

In the first simulation, the final inclinations of planetesimals were too small com-
pared to the observed inclinations of Trojans, but we can assume that planetes-
imals were already on highly inclined orbits prior to migrating towards proto-
Jupiter’s Hill sphere. So in our next simulation, all parameters remain the same
(described in Section 3.1), except for the initial inclinations and eccentricities
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Figure 3.8: The surface density Σp of pebbles in the disk after 6 kyr of evolution, when
Proto-Jupiter opened a gap. There is a noticeable under-density right behind proto-Jupiter, as
recently cleared pebbles did not have a chance to spread again.

of planetesimals. The inclinations were randomly assigned from the interval
[10◦, 30◦] and the eccentricities from [0, 0.1].

The simulation ran for 10 kyr, or 900 Jupiter orbits. The capture efficiency
almost doubled to more than 50%. This is caused by the fact that the eccentric
orbits allow planetesimals from further out to better interact with proto-Jupiter,
thus getting captured.

If a planetesimal with high inclination is captured by the expanding proto-
Jupiter, it retains its inclination, thanks to very low gas density and drag in
Jupiter’s gap. The inclinations of all other planetesimals not captured by the
proto-Jupiter decrease to below 5◦. The distribution of inclinations of planetesi-
mal at the end of the simulation is in shown in Figure 3.9.

The captured trajectories are similar in nature to trajectories in the first
simulation, but are no longer as cold, due to having substantial eccentricities and
inclinations as mentioned above. Most of the orbits still began as horseshoes
and in time they become tadpole, with a decreasing amplitude of libration, but
here we have many outliers, which either stay on horseshoe orbits with very long
orbital periods , or enter tadpole orbits temporarily, for multiple kyr, and then
get back on the horseshoe. The decrease in amplitudes of libration is generally
slower, with some planetesimal seeing no decrease, and for the whole time span
of simulation staying on tadpole orbits, spanning almost 150◦.

3.4 Scenarios with eccentric and inclined Jupiter
During planetary migration in protoplanetary disks, hydrodynamic phenomena
such as the ”hot trail” effect, described in Chrenko et al. (2017), Eklund & Masset
(2017), can push planetary embryos to eccentric and inclined orbits. To account
for these effects, we set our third simulation so that proto-Jupiter has an eccen-
tricity of 0.05 and an inclination of 5. All other initial parameters remain the
same as in the first simulation, described in Section 3.1.
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Figure 3.9: Initial and evolved eccentricities and inclinations of proto-Jupiter and 100 plan-
etesimals from the second simulation. The figure is similar to Figure 3.3, except the initial
eccentricities and inclinations of planetesimal are non-zero, as shown, in the left plots. The ec-
centricities and inclinations of captured planetesimals are similar to the initial values, compared
to the scattered planetesimals, which were damped by drag. Again, we can compare figure this
to Figures 3.10, 3.11, where we modify the initial eccentricities of proto-Jupiter.
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3.4.1 Cold planetesimal orbits
First, we simulated a scenario where only proto-Jupiter had initial inclination and
eccentricity (e = 0.05, i = 5◦), while planetesimals were still on circular planar
orbits. The simulation ran for 10 kyr.

During the accretion and opening of the gap, Jupiter’s eccentricity and incli-
nation decreased and stabilized close to zero. Nevertheless planetesimals captured
by proto-Jupiter were exited to eccentricities up to 0.05 and the inclination up
to i = 5◦, as shown in Figure 3.10.

The capture efficiency substantially decreased in this model, down to 4 cap-
tured planetesimals out of the 100. In contrast to our previous model, the capture
is not stable. After the initial 50 orbits, the number of captured planetesimal is
similar to the first simulation (30), but as the evolution continues, the eccentric
Jupiter loses more than 80% of them.

The captured planetesimals mostly stay on horseshoe orbits, which libration
amplitude allows for close encounters with proto-Jupiter, ending about 10◦ from
it. Compared to the previous, stable simulations, this is 5◦ to −10◦ less. This
eventually causes another close encounter with proto-Jupiter and an ejection of
the planetesimal.

The planetesimals that transition to tadpole orbits do not decrease their li-
bration amplitude like in our first simulation. Conversely, after a few thousand
years their unstable orbits leave the tadpole region and return to the horseshoe;
this is commonly caused by another close interaction with proto-Jupiter and is
usually followed by leaving the proto-Jupiter orbit entirely.

The eccentric Jupiter also migrates inwards faster, in the span of 10 kyr, mi-
grating from 5.2 au to around 4.85 au, which is 0.1 more than without eccentricity.

3.4.2 Inclined planetesimal orbits
Next, we simulated a scenario, where both proto-Jupiter and planetesimals have
non-zero initial eccentricities and inclinations. The initial orbital elements of
planetesimals are the same as in the second simulation.

Similarly as in the third simulation, Jupiter’s eccentricity and inclination are
damped close to zero. Even though the initial eccentricities and inclinations are
high, the capture efficiency is still around 40%, moreover the orbits of captured
planetesimals are stable, because the close encounters with proto-Jupiter are rare.

When planetesimals are initially on eccentric orbits, the eccentric proto-Jupiter
has little or no effect on them, and the eccentricity evolves similarly as in the case
with eccentric planetesimals. Inclinations also evolve similarly to our second sim-
ulation. (Figure 3.11)

The transition from horseshoe to tadpole orbits is less common, and planetes-
imals are mostly staying on horseshoe orbits.
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Figure 3.10: Initial and evolved eccentricities and inclinations of proto-Jupiter and 100
plantesimals from the third simulation. The figure is similar to Figure 3.3, except here, the
initial eccentricities and inclinations of proto-Jupiter are non-zero, as shown in left plots. The
high initial e and i of proto-Jupiter are damped during its growth. However the eccentricities of
captured planetesimals are brought up in the course of the simulation to proto-Jupiter’s initial
eccentricity. The inclinations of captured planetesimals stay low (bellow 2.5◦) during the whole
simulation. These is a notable decrease in capture efficiency.
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Figure 3.11: Initial and evolved eccentricities and inclinations of proto-Jupiter and 100 plan-
etesimals from the fourth simulation. The figure is similar to Figure 3.3, except here, the initial
eccentricities and inclinations of both proto-Jupiter and planetesimals are non-zero, as shown in
left plots. The initial eccentricity and inclination of proto-Jupiter are dampened like in Figure
3.10, and the eccentricities and inclination of planetesimals evolve similarly as in Figure 3.9.
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4. Models for different
planetesimal sizes
In this chapter, we investigate, how the size of planetesimals affects their orbital
evolution, in the vicinity of growing Jupiter, and their potential capture. The
most notable difference, in the forces acting on these bigger vs smaller bodies, is
the aerodynamic drag force.

4.1 Models for 10 km asteroids
We start with a series of simulations using planetesimals with diameters d =
10 km. The drag force acting on these bodies is relatively low. Using the method
described in Section 3.2.1, we calculated the drag acting on a planetesimal on
a circular orbit at 5.2 au as adrag = 1 × 10−13 m s−2. This is three orders of
magnitude lower than for 100 m bodies. The gravity is at this distance agrav =
2.08 × 10−4 m s−2, which means we would need at least 63 years for drag to have
an effect similar to one-second gravitational effect.

In this scenario, we use the same initial conditions as in the third simulation,
described in Section 3.4.1. This means we assum a 20ME proto-Jupiter set up
on an eccentric inclined orbit (e = 0.5, i = 5◦). The orbits of planetesimals are
circular, with zero eccentricities and inclinations. The only difference here is that
the planetesimals are 10 km in diameter.

The evolution 14 kyr is shown in Figure 4.1. During this time proto-Jupiter
grew from 20ME to over 320ME and interacted with planetesimals placed near its
Hill sphere. The initial eccentricity and inclination of Jupiter are again damped
close to zero during the first 3.5 kyr. The first Jupiter planetesimal interaction
is the same as described in Section 3.2.2. After the first interaction 27 out of
the 100 planetesimals were captured on horseshoe orbits around Jupiter. The
rest was scattered inwards or outwards on very high eccentricities up to 0.6 and
inclinations up to 8◦. The eccentricities and inclinations at 6 and 12 kyr are
shown in Figure 4.2.

Similarly to simulation from Section 3.4.1, the horseshoe orbits of captured
planetesimals are very unstable. Moreover, in this scenario, all of the previously
captured Trojans had another close interaction with proto-Jupiter and thus were
scattered out of its orbit. This result is in accordance with results of Marzari
& Scholl (1998), who simulated similar capture of Trojans by growth of a pro-
toplanet, but without the hydrodynamical forces, which are, in this case, indeed
negligible.

Due to the low drag force, the planetesimal eccentricities decrease very slowly,
while they migrate outwards or inwards. Outward migration and resonances are
again not very interesting because our simulation does not contain Saturn and
other giant plantes. On the other hand, planetesimals that migrate inwards get
captured in the 3:2 and 2:1 mean-motion resonances; the latter one is clearly
visible in Figure 4.1.

If we initially place planetesimals on highly eccentric and inclined orbits, they
get captured on stable orbits and retain the inclinations after getting captured,
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Figure 4.1: Temporal evolution of the semi-major axis of eccentric proto-Jupiter and 10 km
planetesimals, similar to Figure 3.2. Captured planetesimals gradually leave the horseshoe
orbits until none is left in the vicinity of Jupiter’s orbit. The scattered planetesimal migrate
outwards and inwards. There is a single notable planetesimal captured in 2:1 mean-motion
resonance (just above 3 au).

the same as in Section 3.4.2. The only difference is that here, the drag force
outside Jupiter’s gap is not strong enough to damp the inclinations of free plan-
etesimals, thus both the free and captured planetesimals have similar inclinations,
around their initial values.

4.2 Models for 10 m asteroids
Finally, we simulated a capture of 10-meter-sized planetesimals. The initial con-
ditions are again the same as in the previous simulation. Proto-Jupiter is ini-
tialized on an eccentric inclined orbit, and in the first 300 orbits, opens a gap,
accretes 300ME of gas, and damps its eccentricity and inclination to zero. All
planetesimals are initially on circular planar orbits.

The drag force acting on planetesimals is strong enough to damp the eccen-
tricities, gained after the first encounter with proto-Jupiter, in a matter of a few
orbits. On a circular orbit at 5.2 au, the acceleration from drag is around adrag =
1×10−9 and on an eccentric orbit the acceleration reaches up to adrag = 1×10−6,
which is only two orders of magnitude less than the gravitational acceleration.

Because the drag acceleration is so substantial, only the planetesimals that
retain any eccentricity or inclination are the ones that got captured by proto-
Jupiter and thus are orbiting in the gap, where only little gas was left. For
this reason, the orbits of captured planetesimals are stable; there are no cases
of escaping planetesimals like in the simulation with 10 km ones. However, final
inclinations are too low (1◦ vs. 30◦) compare to observations.

The capture is very reminiscent of the first simulation, capturing, exclusively,
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Figure 4.2: The initial and evolved eccentricities and inclinations of proto-Jupiter and 10km
planetesimals, similar to Figure 3.10. The planetesimals do not lose eccentricities, due to their
size and migrate outwards and inwards. By the end of simulation, no planetesimal remains in
Jupiter’s orbit.
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the nearest 30 planetesimals, with numerous transitions from horseshoe to tadpole
orbits, including the subsequent shortening of libration amplitude.

Table 4.1: Summary of our simulations. In our model, the initial conditions for Jupiter on
eccentric orbit are e = 0.05 and i = 5◦ and for planetesimals e = [0, 0.1] and i = [10◦, 30◦]. The
eccentricity and inclination are the maximal values of captured pletesimals.

No. Initial conditions Timespan Efficiency e i

1. circ. Jup., circ. 100m pl. 11 kyr 29% 0.01 0.01◦

2. circ. Jup., ecc. 100m pl. 10 kyr 52% 0.06 20◦

3. ecc. Jup., circ. 100m pl. 10 kyr 6% 0.08 2◦

4. ecc. Jup., ecc 100m pl. 6 kyr 40% 0.1 20◦

5. ecc. Jup., circ. 10km pl. 14 kyr 0% - -
6. ecc. Jup., circ. 10m pl. 10 kyr 25% 0.04 1.5◦
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Conclusions
In this thesis, we studied a capture of planetesimals by rapidly accreting proto-
Jupiter. All of our simulations were done using the hydrodynamic Fargo-Thorin
code (Chrenko et al. 2017), simulating a two-fluid (gas and pebbles) protoplan-
etary disk with an embedded planetary embryo. The proto-Jupiter was initially
placed close to 5.2 au and its feeding zone is just behind proto-Jupiter’s Hill
sphere, in the interval [5.34, 5.51] au. Proto-Jupiter rapidly accretes mass and
almost immediately opens a gap. We simulated multiple scenarios with differing
initial eccentricities and inclinations of proto-Jupiter and 100 m planetesimals
and also examined scenarios with 10 km and 10 m planetesimals.

The first scenario, with both 20ME proto-Jupiter and 100 m planetesimals on
circular orbits, is considered a reference scenario. It gave us insight into the me-
chanics of Trojan capture by growing protoplanets and the evolution of captured
orbits, librating in the 1:1 mean-motion resonance with proto-Jupiter. The plan-
etesimals were initially captured on horseshoe orbits, transitioned onto tadpole
orbits, and then slowly decreased their libration amplitudes due to aerodynamic
drag. It also gave us a reference capture efficiency of about 30%.

The second scenario, with highly inclined (10◦ to 30◦) planetesimal orbits,
showed us the dependence on the initial inclination, as the capture of the in-
clined eccentric planetesimals was more efficient, with efficiency over 50%. The
planetesimals mostly retained their high inclinations.

The third and fourth scenarios were simulated with proto-Jupiter initially
on eccentric inclined orbit (e = 0.05, i = 5◦), with hopes that Jupiter would
through the capturing interaction send the planetesimals onto highly inclined
orbits. However, the final Trojan inclinations were only around 2.5◦, which is
very low compared to observation (i = 30◦). Moreover, the orbits of these Trojans
were not stable; in the course of time the planetesimals interacted with proto-
Jupiter again and were ejected out of its orbit. This loss of Trojans and the
low inclinations, however, could be solved again by high initial eccentricities and
inclinations of planetesimals.

The simulations in Chapter 4 had proto-Jupiter also on the inclined eccentric
orbit, but this time the planetesimals were larger (10 km in diameter) or smaller
(10 m). The different sizes of planetesimals implied different drag acting on them.
For the 10 km bodies, this resulted in even more losses of captured planetesimals
to the degree, that no Trojan was left in Jupiter’s orbit after 14 kyr of evolution.
In the case of 10 m bodies, the very high drag stabilized their orbits, but their
captured inclinations were even smaller, i = 1.5◦.

We conclude that the capture of Trojans by the growth of eccentric Jupiter
is unlikely, as it would require the planetesimals to orbit in the disk on highly
inclined orbits, prior to interacting with Jupiter or there would have to be an ex-
ternal dynamical excitation during the subsequent evolution of the Solar System.
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Future work. Alternative scenarios certainly exist, with different parameter
values, that could change the Trojan capture. For example, simulations with
a less turbulent, magnetically-inactive disk, with the kinematic viscosity one or
more orders of magnitude lower. As a continuation of this work, one could also
investigate the dynamics of planetesimal excitation, either before or after capture.
One possibility is a temporary capture of a massive planetesimal or embryo and
its influence on the remaining planetesimal inclinations.
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[2] Brož, M., Chrenko, O., Nesvorný, D. & Dauphas, N. (2021), ‘Early terres-
trial planet formation by torque-driven convergent migration of planetary
embryos’, Nature Astronomy 5, 898–902.
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