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Abstract: Cryptographic games with their transitions are a useful tool for proving
cryptographic properties of various security protocols. We have explored together
the notions of negligible functions, cryptographic games and their transitions,
computational, and perfect security. This served as our basis when analyzing
malware protocols, we translated each into a game that tested the property we
were trying to expose. Then, using transitions based on negligible functions, we
simplified said games to reach desired results.

We have decided to employ Cryptoverif as our tool for implementing these games,
it is designed to create sequences of games that lead to games exposing specified
properties. We translated the games into series of primitives that form an in-
terface of this tool. Using the theory described above we anchored individual
transitions in mathematical arguments and documented the proof strategy Cryp-
toverif employs.

To illustrate the usage, we have selected a few communication protocols used by
several malware families (Emotet, Mirai, Lockcrypt) and used the tooling to prove
a few characteristic properties. While this has been challenging for a few cases
(especially when the techniques were not entirely inside Cryptoverif’s scope) we
have managed to design our games accordingly to reach the desired results. We
have demonstrated Cryptoverif capabilities by revealing vulnerability in Mirai’s
key generation, verifying correctness of Emotet’s encryption and illustrating of
improper usage of one-time pad encryption by ransomware.
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Preface
When it comes to encrypting data we have two usually contradictory aims that
we follow - security and practicality. While perfect security maximizes security,
it usually comes at the cost of practicality. Therefore, we usually relax our secu-
rity requirements to a level that still provides practical security while providing
enough flexibility to cover most use cases. One way of achieving this is to base
our security assumptions on mathematical problems for which we have no knowl-
edge of an efficient (read polynomial) solution.

Furthermore, we need to restrict our attacker, because any security fails
against an adversary capable of brute-forcing the whole key space, therefore we
impose limitations reflecting real-world computational capabilities. Thus, we will
be most interested in efficient attackers, i.e. attackers working within polynomial
time.

We will also explore one of the ways of making proofs of the security of cryp-
tographic schemes and how can this be automated.
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1. Introduction
There are two types of security: perfect/unconditional and computational/con-
ditional. Perfect security relies on long keys that are never reused, making it
impractical for most purposes. It is based on information theory and, while
it has some applications, conditional/computational security is more commonly
used.

Computational/conditional security uses keys that are long enough to resist
brute-force attacks, but they do not need to be as long as plaintexts. the keys
are usually of a fixed length, and observing or interacting with the scheme should
not allow an adversary to efficiently reveal the keys.

1.1 Perfect security
Perfect security is based on the idea formulated in the following definition from
Katz and Lindell [2007]:

Definition 1. an encryption scheme over a message space M is perfectly secret
if for every probability distribution over M , every message m ∈ M , and every
ciphertext c ∈ C for which P [C = c] > 0 holds:

P [M = m|C = c] = P [M = m]

This means that plaintext is wholly determined by key in decryption, thus we
need to have at least as many keys as we have possible plaintexts.

Lemma 1. Let us have a perfectly-secret encryption scheme over a message space
M, and let K be the key space. Then |K| ≥ |M |.

Proof. Assume that |K| < |M |. Let us consider ciphertext c ∈ C and M(c) =
{dec(c, k)|k ∈ K} - set of all decryption of C. It follows that |M(c)| ≤ |K|.
Applying the assumption we arrive at |M(c)| < |M |, thus we can take m ∈
M \M(c).

Clearly, now:
P [X = m|C = c] = 0 ̸= P [X = m]

, which is in contradiction with the definition of perfect security.

Another limitation that we mentioned is key reuse. To comply with the defini-
tion of perfect secrecy the combined number of possible messages can not exceed
the number of possible keys. Therefore, it is possible to reuse the same key, but
the key set must be larger than the set of all concatenations of the messages.

1.2 Complexity and Big O notation
To compare functions and their asymptotic behavior, we use Big O notation,
which is defined in the following manner:

3



Definition 2. We say a function f is of class g if there is a positive number M
such that for values x sufficiently large inequality f(x) < Mg(x) holds:

∃x0 ∈ R : ∃M ∈ R+∀x > x0 : f(x) ≤Mg(x)

This gives us a more formal way to classify the asymptotic speed of growth
of functions, where g provides an upper bound. We can also order these classes
by subset relation, i.e. O(x) ⊂ O(x2) because x2 is strictly larger than x for num-
bers larger than 1. However, x2 ∈ O(x2) and certainly outgrows every polynomial
of form Mx for values larger than M . Using similar arguments we can prove that
O(xn) ⊂ O(xn+1) ⊂ O(kx) ⊂ O(x!) where k, n ∈ N, k > 1.

There are two definitions we will be using closely connected to this notation:

Definition 3. Function f(x) is superpolynomial if there is no k ∈ N such that
f(x) ∈ O(xk).

Intuitively, a superpolynomial function grows asymptotically faster than any
polynomial.

Definition 4. Function f(x) is negligible if for every k ∈ N holds f(x) ∈ O(x−k).

Intuitively, a negligible function grows asymptotically slower than any frac-
tional polynomial. Later on, we introduce a different but equivalent definition
of negligibility. We will call adversaries working in polynomial time efficient
adversaries.

1.3 Computational security
In our chosen approach we introduce a scaling parameter n ∈ N for a cryp-
tographic scheme that is determined for each session. This usually represents
the length of a key for a given scheme. Scaling n allows us to meet challenges pre-
sented by faster adversaries while preserving operability for honest parties. an in-
crease in n should be much more impactful for potential attacks than for an honest
party.

We consider the computational time of an adversary and its chance of success
as functions of n. It is also common to define times of actions of an honest party
such as encryption and decryption using a key as functions of n.

This will allow us to respond to more computationally powerful polynomial
attacks while preserving the operability of the scheme for honest parties. We
view computational time and the chance of success of an adversary as functions
of n and rather than demanding perfect security, we introduce two relaxations:

1. An adversary may have a negligible chance to succeed.

2. We consider only adversaries running in polynomial time: A(n) ∈ O(nk).

We need both of these relaxations. If we only use a finite set of keys, randomly
choosing from this set would provide a success probability of 1/|K|. While this
probability is small it is still non-zero, so we need to allow for a small chance
of success. Similarly, if an adversary can attempt all possible values of K (brute-
force attack), we must restrict the adversary’s computational power.
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Suppose that |K| ∈ O(nk), the computational time of an honest party is p(n),
then a simple brute-force attack runs in a time A(n) ∈ O(p(n)nk). So unless
p(n) is superpolynomial, then brute-force attack succeeds in polynomial time.
Therefore the key set must be superpolynomial.

We will use definitions of asymptotic security and of negligible function with
a proposition on its properties from Katz and Lindell [2007]:

Definition 5. a scheme is conditionally secure if every probabilistic polynomial
time adversary succeeds in breaking the scheme with only negligible probability.

Katz and Lindell [2007] uses a different but equivalent definition of negligibil-
ity.

Definition 6. a function f is negligible if for every polynomial p(n) there exists
an N such that for all integers n > N it holds that f(n) < 1/p(n).

f negligible ⇐⇒ ∀p(n)∃N∀n > N : f(n) < 1/p(n) (1.1)

Lemma 2 (Equivalence of definitions of negligibility). For function f(n) these
conditions are equivalent:

1. ∀p(n) ∈ R[x],∃n0 ∈ N,∀n ∈ N : (n > n0 =⇒ f(n) < 1
p(n))

2. ∀k ∈ N : (f(n) ∈ O(x−k))

Proof. Firstly, we will prove (1) =⇒ (2):
Suppose there is k ∈ N : f(n) /∈ O(x−k). That implies:

∀n0∃n > n0 : f(n) > x−k

Now let us apply the first definition on polynomial xk, we obtain:

∃m0 : ∀m > m0 : f(n) <
1
xk

= x−k

Which is a contradiction and f(n) ∈ O(x−k) for all k ∈ N.
(2) =⇒ (1): We will prove this once again by reaching a contradiction, so

assume that:

∀k∃M∃n0∀n > n0 : f(n) < Mx−k

∃p ∈ R[x]∀n0∃n > n0 : 1
p(n) ≤ f(n)

However, if there is one value for n0 for which the statement holds, then it
holds for all larger values since n0 is just a lower bound on n. Combining the two
statements we obtain:

1
p(n) <

M

nk

M · p(n) > nk

Let’s take n0 larger than 2 a define k = deg p(n) + M + ∑︁
ai where p(n) =∑︁

aix
i, then by simple observation we can conclude that we have reached a con-

tradiction.
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Lemma 3. Let f and g be negligible functions.

1. the function h(n) = f(n) + g(n) is negligible.

2. For any positive polynomial p, the function h(n) = p(n)f(n) is negligible.

Proof. Consider polynomial q(n), using definition 6 for 2q we obtain:

∃N∀n > N : f(n), g(n) <
1

2q(n)

which trivially yields the desired result:

∃N∀n > N : f(n) + g(n) <
1

p(n)

Similarly, we will apply definition on polynomial q(n)p(n):

∃N∀n > N : f(n) <
1

q(n)p(n)

∃N∀n > N : f(n)p(n) <
p(n)

q(n)p(n) = 1
q(n)

The second result implies that an adversary repeating an attack with a neg-
ligible probability of success polynomially-many times still has only a negligi-
ble chance. This means that we may ignore attacks that are simple repetitions
of the same attack.

1.4 Cryptographic games
Cryptographic games are built on top of protocols and may involve honest parties,
oracles, and adversaries. an adversary usually represents a potential attacker
that can read public messages, and intercept or resend them. an oracle is usually
a passive party other players in the scheme can freely interact with. It may
cipher messages, generates keys, etc and its running time is considered immediate.
Single usage of an oracle shouldn’t be generally considered a limiting factor, we
may consider the runtime of a call to an oracle to be O(1).

The games are used to explore properties of protocols, i.e. introducing an ad-
versary into an encryption and authentication scheme (thus creating a game from
a scheme) can be used to test whether the scheme is secure.

A simple example is the left-right game, which involves only one adversary
and an oracle. the adversary generates two messages and lets the oracle randomly
choose one of them to encrypt and send back to the adversary. the adversary
then guesses which of the two initial messages the resulting encrypted message
corresponds to.
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If an encryption scheme is secure against the left-right distinguishing game
with an adversary choosing what messages to play the game with, we refer to this
property as IND-CPA, which stands for indistinguishable under chosen plaintext
attack.

1.5 ElGamal left-right game
We will use the well-known ElGamal encryption protocol to illustrate what cryp-
tographic games are. Let us first walk through the protocol:

1. the first (receiving) party generates a private key x from known group Zq

and computes α = gx where g is publicly known group generator. It then
publishes α.

2. the second (sending) party generates a private key y from Zq, computes
the shared secret δ = αy, encrypted message ζ = m · δ and its own public
key β = gy, where m is a message for first party. It publishes ζ, β.

3. the first party decrypts the encrypted message using ζ, β as m = ζ/βx. It
only needs to calculate the inverse, which can be easily done if the order
of the group is known.
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A left-right distinguishing game applied to this protocol proceeds in the fol-
lowing way (it is separated into points so that it corresponds to the game repre-
sentation later):

1. the first party generates a private key x from a known group Zq and com-
putes α = gx where g ∈ G is a generator.

2. an adversary generates random coins r that serve as its decision mechanism
and two messages m0, m1.

3. the second party generates a bit b that determines what messages from
m0, m1 will be encrypted and another key y. Then it computes the shared
secret δ and finally calculates the encrypted message ζ.

4. the adversary creates an estimate of b using public information α, β, ζ de-
noted b′ .

Pi-calculus is another method for representing protocols in cryptography, it is
particularly useful for its well-definable syntax that can be easily parsed by a pro-
gram. Further on, we will encounter a different variation of this syntax when we
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get to implementing protocols. This is a representation of the ElGamal protocol
from Shoup [2004]:

ElGamal protocol in Pi-calculus
1 x←↩ Zq, α← γx

2 r ←↩ R, (m0, m1)← A(r, α)
3 b←↩ {0, 1}, y ←↩ Zq, β ← γy, δ ← αy, ζ ← δ ·mb

4 b′ ← A(r, α, β, ζ)

Symbols have the following meaning:

1. ← assigns the result of the calculation that immediately follows the arrow.

2. ←↩ uniformly draws an element from the set that immediately follows the ar-
row.

3. A(args) represents the decision of an adversary based on the information
provided in its arguments.

We also define events when we want to talk about certain states that may or
may not take place in a game. In our case, an event we might want to observe is
that an adversary has made a correct guess b = b′.

Our goal is to prove that an adversary has at most negligibly higher chance
of correctly guessing b than 1/2. We estimate the probability of an event P [S] =
P [b = b′]. If the given probability can’t be easily obtained from the original game,
we may transform the game into different where we observe a corresponding event
that is linked to the original up to a negligible probability.

1.6 Transitions of games
Transitions (or transformations, we used these term interchangeably) between
games may be based on these arguments:

1. Failure events

2. Indistinguishability

3. Semantic changes

Let us consider a set of cryptographic games and define a relation between
the two games to exist if and only if an adversary has at most a negligible chance
of differentiating between them. Thanks to the properties of negligible functions,
as described in lemma 3, this relation is transitive and from the definition follows
that it is also reflexive and symmetric. Therefore, we have an equivalence relation
on the set of all cryptographic games.

Within the resulting classes of equivalence of this set, we are transitioning
from one game to another in pursuit of a simpler expression of the same game
that will allow us to derive sought-after qualities. Specifically, we aim to reach
games that contain known mathematical problems which we may take advantage
of.
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1.6.1 Transitions based on failure events
To transition between two games, we may define an event that distinguishes
the two games from each other. For example, such an event could be a collision
between hash values. Elimination of this event would allow us to transition
to a game that assumes that the values are different.

Generally, in order to make such transition, we need to prove that, unless
a failure event takes place, the games are identical and just as importantly that
the probability of the failure event is negligible.

This allows us to discard cases where both parties generate the same private
key and other improbable scheme-breaking events. Thanks to these transitions we
may simplify the game at the cost of permitting a negligible chance of the games
not being equal.

More formally, we base our transitions on the following lemma from Shoup
[2004]:

Lemma 4. Let Sold, Snew, F be events defined in some probability distribution,
and suppose that Sold ∧ ¬F ⇐⇒ Snew ∧ ¬F . Then |P [Sold]− P [Snew]| ≤ P [F ].

Proof.

|P [Sold]− P [Snew]| = |P [Sold, F ] + P [Sold,¬F ]− P [Snew, F ]− P [Snew,¬F ]|
= |P [Sold, F ] + P [Sold,¬F ]− P [Snew, F ]− P [Sold,¬F ]|
= |P [Sold, F ]− P [Snew, F ]|
≤ P [F ]

In the first two steps, we split probabilities of Sold, Snew according to F , and
then apply the presume equality. Finally, what remains is a difference of two
probabilities, which is bound in F .

If we want to prove that |P [Sold]− const| is negligible using a failure event,
we are in fact using the following upper bound:

|P [Sold]− const| = |P [Sold]− P [Snew] + P [Snew]− const|
≤ |P [Sold]− P [Snew]|+ |P [Snew]− const|
≤ P [F ] + |P [Snew]− const|

Thanks to lemma 6 we can discard any negligible summands. Therefore, if
the probability of the failure event is negligible, we can transition from one game
to another.

1.6.2 Transitions based on indistinguishability
Transitions based on failure events allow us to discard unfavorable instances
of the game as long as there are negligibly few of them. On the other hand,
transitions based on indistinguishability allow us to make minor changes to all
instances of the game as long as an adversary has at most a negligible chance
of differentiating between the game modified and unmodified game.
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In transitions based on indistinguishability, we may model the noticeability
of the changes with events Sold, Snew. The success chance of an adversary is
tied to the difference of probabilities of Sold, Snew, therefore, we need to prove
that the difference is negligible. Suppose events are defined as an adversary
taking correct guess in a corresponding left-right distinguishing game, and that
the original aim was to prove that |P [Sold]− 1/2]| is negligible, the transition can
be mathematically expressed as:

|P [Sold]− 1/2]| = |P [Sold]− P [Snew] + P [Snew]− 1/2]|
≤ |P [Sold]− P [Snew]|+ |P [Snew]− 1/2]|

The point of the transition is that estimating or bounding of |P [Snew − 1/2]|
is possibly easier than |P [Sold]− 1/2|. However, we still need to prove that
|P [Sold]− P [Snew]| is negligible. To prove this, we define an algorithm D that
combines both distinguishing games and chooses between them based at random
(more formally this can be defined with distribution of the input).

An adversary in this combination of the two games has to guess what game
was played and we have to prove that his advantage is negligible. An advantage
refers to the difference between the success chance of an adversary and the chance
of uniformly distributed guesses.

1.6.3 Semantic transitions
These transitions include substitution and other semantically equivalent adjust-
ments, as they are a useful tool for automated transitions. They may be mathe-
matically unimportant but are essential for pattern matching used by some au-
tomated provers.
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2. Cryptoverif and Mirai example

2.1 Cryptoverif and implementation of crypto-
graphic games

Cryptoverif (as described in an article on the underlying algorithm Blanchet
[2008], formal description of the language Blanchet [2017], and manual Blanchet
and D. [2022]) is a prover that allows the implementation of custom protocols and
provides access to a library of predefined cryptographic primitives. Cryptoverif
takes advantage of custom types to distinguish different between variables, types
can have different properties but can also serve to distinguish messages as de-
scribed a little later.

Cryptoverif uses notation of the different interfaces. One interface models pro-
tocols as communication over several channels, where messages are then relayed
by specifying where individual messages are published and from what channels
are messages read by individual parties.

We will be using the other interface that models individual interactions as ora-
cles. These oracles read and publish messages, the format of a message determines
which other oracles can receive it. Messages are tuples of variables, terms, and
constants, and the tuple of types of individual elements of a message is referred
to as a format.

2.2 Mirai family with an example of game trans-
formation

One of the protocols we studied is from the Mirai malware family1, which we
chose for its simplicity and a glaring flaw. As described in Středa and Neduchal
[2018], the malware generates a 4-byte long key and then computes xor of all 4
bytes of the key, this is then used for message encryption.

Game 0
1 (k1, k2, k3, k4) < −Z232 , k ← k1 ⊕ k2 ⊕ k3 ⊕ k4
2 p← P, m← enc(p, k)

Game 1
1 k ←↩ Z28

2 p← P, m← enc(p, k)

This is a transition based on indistinguishability. To prove that it is valid
we will design a distinguishing game and prove that the adversary’s advantage is
negligible. In this case, it may be a bit of a mosquito-killing cannon approach.
We will do it nonetheless to demonstrate this proof technique.

Claim 5. Game 0 and Game 1 are indistinguishable.
1A malware family refers to a group of malware instances that have a common codebase.
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Proof. We will design a distinguishing game around the following algorithm that
takes two keys and a bit as an input, all drawn uniformly from respective sets.
The bit allows us to switch between games, if it is zero then the game 0 takes
place as ⊕bk2 becomes ineffectual.

Distinguishing algorithm
1 D(k1, k2, b) :
2 r ←↩ R, (m0, m1)← A(r)
3 p← P, m← enc(p, k1 ⊕ bk2)

An adversary may have a chance to distinguish between outputs of encryption
only if the distribution of k1 and k1 ⊕ k2 are different. If we reduce the problem
to just one bit of key length, then we can easily observe that both distributions
are uniform over {0, 1}. Now, we can extend this argument over any key length
thanks to the independence of individual bits.

2.2.1 Mirai: Protocol-specific primitiva
To enable Cryptoverif to work with this scheme we will take advantage of the pre-
defined xor macro and define a type key. Cryptoverif understands our function
formally by the inputs and outputs, additionally, it takes into account the prop-
erties we provide it with.

Listing 2.1: Cryptoverif xor implementation
1 def MiraiAddition (key , key2 , key3 , add) {
2

3 fun add(key2 , key3):key.
4

5 equation forall key1:key2 ,key2:key2; add(key1 , key2) = add(
key2 , key1).

6

7 equiv( KeyGeneration (add))
8 k1 <-R key2;
9 k2 <-R key3;

10 OracleKey () := return (add(k1 , k2))
11 <=(0)=>
12 k1 <-R key;
13 OracleKey () := return (k1).
14 }

In the Listing 2.1 we define a MiraiAddition macro2 that formally consid-
ers three different types key, key2, key3. However, in our case, they will be
the same. It defines a function add that takes two latter types and produces
a result of type key (see line 3).

For this function, we write an equation that ensures that it is commutative
(see line 5). We also know that generating two keys with uniform distribution
and xoring them is the same as generating just one with uniform distribution,

2All Cryptoverif code used here is a part of attachments as described in A.1.
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this is handled by the equivalence KeyGeneration (see line 7). This will allow
Cryptoverif to replace a complicated generation of a key with a simpler one when
processing the game.

2.2.2 Mirai: Oracles
In the Listing 2.2 we have a total of three different oracles that are maintained
by three independent processes. Honest parties A and B joined by an adversary
Adv. All oracles have access to variables of their respective processes, this allows
us to have the same secret for A and B. A also has a message m that it encrypts
and sends.

All oracles have specified input and output, input is specified inside paren-
theses following the name of the oracle, and output is specified by the return
command. As seen on line 2 oracle A doesn’t take any arguments and can execute
its action without a prompt from other participants. It sends a message of type
A: party, B: party, cipher: key that matches inputs of both oracle B and
the adversary Adv.

Both B and the adversary react to this message, B decrypts the message and
an adversary blindly guesses a key and tries to do the same. All three oracles
record what version of the plaintext message reached them (see lines 4, 10, 18).

Listing 2.2: Cryptoverif oracles implementation
1 let processA (keyA:bytestring , m: bytestring ) =
2 OA() :=
3 cipher <- xor(m, keyA);
4 event asent(m);
5 return (A, B, cipher ).
6

7 let processB (keyB: bytestring ) =
8 OB(=A, =B, cipher : bytestring ) :=
9 let plain = xor(cipher , keyB) in

10 event breceived (plain);
11 return ().
12

13 let processAdv () =
14 OAdv (=A, =B, cipher : bytestring ) :=
15 let (k1:bytestring , k2:bytestring , k3:bytestring , k4:

bytestring ) = keygen () in
16 keyguess <- add(add(k1 , k2), add(k3 , k4));
17 let messageguess = xor(cipher , keyguess ) in
18 event AdversaryGuess ( messageguess );
19 return ().

2.2.3 Mirai: Queries
The tracking of events allows us to make queries about what kind of message
reached individual oracles. The following query instructs Cryptoverif to try
to prove that if B decrypted a message m, A has sent the same message:
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Listing 2.3: Mirai query
1 query m: key;
2 event( breceived (m)) ==> event(asent(m)).

Cryptoverif will fail to make this proof because encryption by xoring is not se-
cure against resending attacks. We haven’t implemented interception of messages
and resending attacks in our code, however, Cryptoverif also takes into account
other than specified adversaries that have these abilities. Thus it is not thus
necessary to always specify an adversary nor is it intended usage, but it makes
our exemplary case more readable.

The following query asks Cryptoverif to prove that our adversary hasn’t cor-
rectly guessed the correct message:

Listing 2.4: Mirai secrecy query
1 query m: key;
2 (event(asent(m)) && event( AdversaryGuess (m))) ==> false.

Cryptoverif will succeed in proving this secrecy of m with an upper estimation
of the chance of success of the adversary. The output looks like this:

Listing 2.5: Cryptoverif output
1 Proved event(asent(m)) && event( AdversaryGuess (m)) ==>

false in game 10 up˜to probability 1 / |key |.

We can see that we have obtained an upper bound that precisely estimates
the chance of an adversary. Cryptoverif was able to make the necessary transfor-
mation and arrive at this result thanks to our primitive specified before. It is also
interesting to inspect the final version of the game (it was shortened for the sake
of readability):

Listing 2.6: Final game of Mirai
1 Game 10 is
2 ...
3 ((
4 OA() :=
5 cipher : key <- xor(message , sharedkey );
6 event asent( message );
7 return (A, B, cipher )
8 ) | (
9 OB(=A, =B, cipher_1 : key) :=

10 return ()
11 ) | (
12 OAdv (=A, =B, cipher_2 : key) :=
13 k1_9 <-R key;
14 event AdversaryGuess (k1_9);
15 return ()
16 ))

Oracle B was effectively removed from the game as it is not a relevant party
for this query. The adversary uses only a generated byte as its guess, which
is independent of any message sent by B. This simplification was possible due
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to the identical distribution of uniformly drawn keys and a sum of three uniformly
drawn elements keyAdv ⊕ keyA ⊕ m. Cryptoverif was able to deduce this thanks
to the library-defined xor operation that enables these transformations.

2.3 Proof strategy
Cryptoverif attempts to find proof of its queries as described in the following
pseudocode:

Listing 2.7: Pseudocode approximation of Cryptoverif proof strategy
1 Simplify ()
2 while " queries unsatisfied ":
3 CryptographicTransformations ()
4 Simplify ()
5

6 def CryptographicTransformations ():
7 for transformation in possible_transformations :
8 transformation .try ()
9 if transformation . successful :

10 return
11

12 advice = transformation . advice
13 if advice is not None:
14 advice ()

Generally, if a function inside Cryptoverif fails to execute a transformation,
it produces an advice - an instruction on what other transformation should be
attempted before this one.

advice in the pseudocode above is a placeholder for two different functions.
RemoveAssign and SArename are functions that execute semantic transformation
on the game. The first one tries to remove assignments of a variable in order
to create terms that are recognized by cryptographic transformations. however,
if the term saved inside this to-be-removed variable includes different variables
it may call itself again on these inner variables. It may also call ASrename if
there are multiple definitions of a single variable, SArename will attempt to split
the variable into several variables with different names if it is possible.
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The Simplify function goes through the game and collects information on all
points of the game. This includes a list of defined variables and possible values
of relevant boolean terms. This information may be further processed through
a system of rewriting rules that is based on and extends the Knuth-Bendix com-
pletion algorithm3. The preprocessed data is then used in the manipulation
of the game itself. This includes for example determining values of conditional
expressions if the collected information supports only one option. It also restruc-
tures the code in order to limit the size of states in individual points, meaning
that new definitions are pushed downward.

3The Knuth-Bendix completion algorithm creates from a set of rules a rewriting system that
aims to find identical objects.
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3. Emotet C&C protocol
To showcase a more advanced protocol, we will take a look at and implement an
example from the Emotet family described by VMRay Labs Team [2022].

From the perspective of the malicious binary the cryptographic protocol runs
approximately like this:

1. Using the Elliptic Curve Diffie-Hellman (ECDH) protocol, a shared secret
is conceived.

2. Using SHA256 hash function, the AES256 key is derived from the shared
secret.

3. The binary creates a message m and sends a packet of the form
ECDH public key|AES256(SHA256(m)|m)|random bytes

The fact that Emotet uses common primitives, allows us to take advantage
of Cryptoverif’s library. We even have access to the same elliptic curve which is
used in the protocol. However, Cryptoverif does not describe ciphers and hash
functions by their inner working but rather by their properties. Therefore we will
use the following primitives to model points 1-3:

1. DH X25519

2. CollisionResistant hash

3. IND CPA INT CTXT sym enc

DH X25519 is an implementation of this specific elliptic curve that is commonly
used in elliptic cryptography. The primitive we will be using perfectly fits what
is being used by Emotet and we don’t need to make further assumptions.

CollisionResistant hash is Cryptoverif’s implementation of a one-input
hash function resistant to a collision of hash values. SHA256 is currently widely
used and consider to be collision-resistent, this primitive fits our needs well.

IND CPA INT CTXT sym enc is an implementation of a generic cipher satisfying
two requirements. The first one is that any two messages are indistinguishable
under a chosen-plaintext attack (IND-CPA). The second requirement demands
that an adversary having access to pairs of ciphertexts and plaintexts can’t con-
struct a ciphertext that would decrypt to any message. This is referred to as
the integrity of ciphertext (INT-CTXT).

For an adversary to forge a ciphertext decrypting to SHA256(m)|m would mean
that he has an advantage against SHA256 or AES256 such as knowing the key.
Without any advantage, a random guess would have a chance to succeed of only
2−256 which is currently considered sufficiently safe. Otherwise an adversary
would have to be able to construct collision of hash values or have access to
encryption with the secret key, because the ciphertext determines hash value of
the plaintext and plaintext itself.

Both SHA256 and AES256 are currently considered safe, thus, we will assume
that this implementation of tagged encryption satisfies INT-CTXT.
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3.1 Implementing the protocol
We will call the party representing an infected device A and a command unit B.
Similarly to our Mirai implementation we will be using the oracle interface. This
time we will take advantage of the query secret command without implement-
ing an attacker manually. This is the implementation of the key exchange and
derivation:

Listing 3.1: Emotet: key exchange and derivation
1 let processA (pubS: G, pubR: G, mess: text) =
2 OA1 () :=
3 a˜<-R Z;
4 ga <- exp(g,a);
5 return (A, B, ga);
6

7 OA3 (=B, =A, gb:G) :=
8 shared <- exp(gb , a);
9 aeskey <- sha( shared );

10 ...
11

12 let processB (pubS: G, pubR: G) =
13 OB2 (=A, =B, ga:G) :=
14 b <-R Z;
15 gb <- exp(g,b);
16 shared <- exp(ga , b);
17 aeskey <- sha( shared );

exp is a function from the library implementation of the ECDH key exchange,
together with a group element type G, and an exponent type Z they provide
a simple way to access complicated properties of elements of an elliptic curve.
sha is our adjustment of the library-defined hash function that can take a key
as an argument, we define the key as constant inside our sha function. Rest
of the interaction follows:

Listing 3.2: Emotet: encryption
1 let processA (pubS: G, pubR: G, mess: text) =
2 OA1 () :=
3 a˜<-R Z;
4 ga <- exp(g,a);
5 return (A, B, ga);
6

7 OA3 (=B, =A, gb:G) :=
8 shared <- exp(gb , a);
9 aeskey <- sha( shared );

10

11 mess <-R text;
12 cipher <- aes(mess , aeskey );
13

14 event Asent(mess);
15 return (A, B, cipher ).
16
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17 let processB (pubS: G, pubR: G) =
18

19 OB4 (=A, =B, cipher :text) :=
20 let injbot ( decipher ) = deaes(cipher , aeskey ) in
21 event Breceived ( decipher );
22 return ().

However, the code itself doesn’t let us know what primitives lie below, so
this is the complete interface DH X25519 offers (as implemented in several of the
examples provided in the distribution of Cryptoverif):

Listing 3.3: Elliptic curve interface
1 expand DH_X25519 (
2 (* types *)
3 G, (* Public keys *)
4 Z, (* Exponents *)
5 (* variables *)
6 g, (* base point *)
7 exp , (* exponentiation function *)
8 mult , (* multiplication function for exponents *)
9 G8 ,

10 g8 ,
11 exp_div8 ,
12 exp_div8 ’, (* a˜ symbol that replaces exp_div8 after game

transformation *)
13 pow8 ,
14 G8_to_G ,
15 is_zero ,
16 is_zero8
17 ).

For Cryptoverif this is a very simple proof, in essence it is three secure cryp-
tographic primitives chained well together without vulnerabilities toward pub-
lic channels. This argument does not hold in general, nevertheless, in the case
of Emotet the primitives are combined safely. The last game is a bit cryptic, but
we still can obtain insight from inspecting it:

Listing 3.4: Emotet final game
1 Game 4 is
2 Ostart () :=
3 message <-R text;
4 return ();
5 ((
6 OA1 () :=
7 a˜<-R Z;
8 ga: G <- G8_to_G ( exp_div8 (g8 , a));
9 return (A, B, ga);

10 OA3 (=B, =A, gb_1: G) :=
11 shared : G <- G8_to_G ( exp_div8 (pow8(gb_1), a));
12 aeskey_1 : aeskey <- hash(dummy , shared );
13 mess_1 <-R text;
14 r <-R enc_seed ;
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15 cipher_1 : text <- enc_r(mess_1 , aeskey_1 , r);
16 event Asent( mess_1 );
17 return (A, B, cipher_1 )
18 ) | (
19 OB2 (=A, =B, ga_1: G) :=
20 b <-R Z;
21 gb_2: G <- G8_to_G ( exp_div8 (g8 , b));
22 shared_1 : G <- G8_to_G ( exp_div8 (pow8(ga_1), b));
23 aeskey_2 : aeskey <- hash(dummy , shared_1 );
24 return (B, A, gb_2);
25 OB4 (=A, =B, cipher_2 : text) :=
26 let injbot ( decipher : text) = deaes(cipher_2 ,

aeskey_2 ) in
27 event Breceived ( decipher );
28 return ()
29 ))

We can see that Cryptoverif replaces our encryption function with random
encryption (lines 13-15) as it is indistinguishable from the perspective of an ad-
versary. This is a transition based on indistinguishability and proof of that
would be very similar to the proof 2.2. In implementation, this is however
hard-coded as a property of the IND CPA INT CTXT and the encryption function
of the IND CPA INT CTXT primitive is considered random.

Besides that we can see symptoms of the proof strategy that was described
toward the end of the previous chapter, most of our code was replaced with
definitions as a result of RemoveAssign, this is especially notable on lines 8, 22.
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4. Ransomware inpsired games
Until now, we have been considering encryption schemes run by malware for
its own need for communication between different instances. This time we are
looking at another encryption scheme but from a LockCrypt ransomware. Its
purpose is to encrypt data on a victim’s drive and then demand ransom for
their decryption. We will consider two games modeling LockCrypt ransomware
encryption in two different situations.

4.1 One-time pad data encryption
The vulnerability we want to show has been described in Harpaz [2018] and
Malwarebytes Labs [2018]. LockCrypt first generates a large key buffer that is
then used during encryption.

Harpaz [2018] describes in detail, how the key is derived. It uses a random
number generator but that is not important for the observation we are trying
to make. The key is then used in two encryption rounds as described by the
following code:

Listing 4.1: LockCrypt xor pad generation round 1
1 def level1_crypt (file , file_size , key , key_size ):
2 iterations = file_size >> 2
3

4 k = 0
5 for i in range (4, file_size - 6, 2):
6 if k > key_size :
7 k = 0
8

9 section = file[i:i+4]
10 keypart = key[k:k+4]
11

12 inp = int. from_bytes (section , byteorder =’little ’)
13 out = inp ˆ int. from_bytes (keypart , byteorder =’

little ’)
14

15 file[i:i+4] = out. to_bytes (4, byteorder =’little ’)
16

17 k += 4

Listing 4.2: LockCrypt xor pad generation round 2
1 def rol32(val , shift):
2 return (val << shift) | (val >> (32 - shift))
3

4 def level2_crypt (file , file_size , key , key_size ):
5 iterations = file_size >> 2
6

7 key_iterator = 0
8 for i in range (4, iterations - 6, 4):
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9 if key_iterator > key_size :
10 key_iterator = 0
11

12 section = file[i:i+4]
13 keypart = key[k:k+4]
14

15 inp = endian_change (’<I’, section )[0]
16 inp = rol32(inp , 5)
17 out = inp ˆ endian_change (’<I’, keypart )[0]
18 out = endian_change (’>I’, out)
19

20 file[i:i+4] = out
21 key_iterator += 4

The bodies of the two for cycles in both rounds describe what happens to a
4-byte section of a plaintext. inp represents the impacted plaintext section, out is
its value after encryption and keypart is 4-byte long section of the pre-generated
key.

We can see that during the first round the stride is 2 bytes. Because of this,
most bytes (except for the first few bytes) are altered twice during this round in
two consecutive iterations. In the second round we can see that the stride has
increased to 4 bytes, therefore, every byte is altered just once by this round. This
time the round uses rotation and position swapping. These are fortunately only
permutations, which means we can easily reverse them.

The key does not rely on the to-be-encrypted file at all, thanks to this we
have a constant key schedule that is the same for all files. Each bit of the plain-
text is xored together with up to 3 predetermined bits of the key schedule. We
can reverse the permutations and with access to large enough plaintext, we can
determine the key schedule that is the same for all files. There are a few edge
cases that are better described in Harpaz [2018] but these concern only a small
number of bytes.

Suppose then that we indeed have access to a large enough plaintext of an
encrypted file and another encrypted file we want to decrypt. We can model
this situation easily enough, for simplicity we presume that the key schedule is
completely random but constant across files:

Listing 4.3: Multiple uses of xor pad
1 let processA (fileA :bytes , fileB :bytes) =
2 OAttacker () :=
3 pad <-R bytes;
4 encA <- xor(fileA , pad);
5 encB <- xor(fileB , pad);
6 return (encA , encB).

Once again, we will be taking advantage of the pre-defined xor makro and
alongside it the query secret command provided by Cryptoverif, however, this
time we will explicitly provide public variables:

Listing 4.4: Query
1 expand Xor(bytes , xor , zero).
2
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3 query secret unbacked_file public_vars backed_file .

Cryptoverif can’t prove the secrecy of the file that we want to encrypt, this is
due to the repeated usage of the key pad. Cryptoverif output looks like this:

Listing 4.5: Cryptoverif output: several times used pad
1 Game 1 is
2 Ostart () :=
3 backed_file <-R bytes;
4 unbacked_file <-R bytes;
5 return ();
6 OAttacker () :=
7 pad <-R bytes;
8 encA: bytes <- xor( backed_file , pad);
9 encB: bytes <- xor( unbacked_file , pad);

10 return (encA , encB)
11

12 RESULT Could not prove secrecy of unbacked_file with public
variables backed_file .

Now let us represent contents of a computer’s filesystem as a single file. Nat-
urally, now Cryptoverif can, thanks to not having a second file dependent on
pad variable, replace it with a randomly drawn element to illustrate the secrecy
property we are seeking.

Listing 4.6: Cryptoverif output: one-time pad
1 Game 4 is
2 Ostart () :=
3 unbacked_file <-R bytes;
4 return ();
5 OAttacker () :=
6 pad_1 <-R bytes;
7 return (pad_1)
8

9

10 Proved secrecy of unbacked_file in game 4
11 Adv[Game 1: secrecy of unbacked_file ] <= 0 + Adv[Game 4:

secrecy of˜ unbacked_file ]
12 Adv[Game 4: secrecy of unbacked_file ] <= 0
13 RESULT Proved secrecy of unbacked_file
14 All queries proved .

The final version of the one-time pad game has been significantly changed
by Cryptoverif’s routines. It has used the assumption that a xor product of two
uniformly drawn variables has the same distribution as one such variable as long
as no other variables or terms depend on them. It was thus able to replace
unbacked file with newly assigned to variable pad 1.

We can see the assumption used in the default library of primitives (lines
11-15):

Listing 4.7: Xor assumption
1 def Xor(D, xor , zero) {
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2

3 param nx.
4

5 fun xor(D,D):D.
6 const zero: D.
7 equation builtin ACUN(xor ,zero).
8

9 (* Xor is a one -time pad *)
10

11 equiv( remove_xor (xor))
12 foreach ix <= nx do a <-R D; Oxor(x:D) := return (xor(

a,x))
13 <=(0)=>
14 foreach ix <= nx do a <-R D; Oxor(x:D) := return (a).
15 }

The builtin ACUN is equation macro for pairs (f, zero) where f is a binary
function and zero is an element from the set, where f is defined. It specifies that
the function is commutative, ∀x : xfx = zero and a few other properties.
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Conclusion
We have connected the theory behind the implementation of cryptographic games
with underlying mathematical concepts. We then applied these concepts to real-
world cryptographic protocols used by malware in order to provide their formal
analysis.

In contrast to the usual process of designing new cryptographic protocols and
primitives, malware authors often resort to modifications of known designs or even
design their own cryptosystems. While our approach is sometimes limited by the
necessity to use certain level of abstraction, it still provided formal approach to
an analysis of such objects. Interestingly, some of the chosen examples were out
of the Cryptoverif’s scope. Nevertheless, the tooling itself was still sufficient to
hint at a proof of vulnerability.

The advantage of reliance on cryptographic games and in extension to Cryp-
toverif is that the proofs are usually easy to interpret and well-traceable. Since
the design of protocols and primitives is rather special in comparison to the
mainstream cryptography, there is a potential for improvement by building upon
Cryptoverif’s library and extending it with other commonly used primitives.
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A. Attachments

A.1 Code repository
Attached is a zip file that contains all code written for this thesis together with
instructions on how to use it. It is also accessible at:
github.com/MedOndrej/Vulnerabilities-Security-proofs-of-malware-protocols
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