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Abstract
The effect of face masks on Covid-19 transmission is crucial for the health of
populations. Nevertheless, its economic consequences cannot be overlooked. To
perform a quantitative meta-analysis, 258 estimates from 44 primary studies
were collected together with more than 30 variables mirroring the differences
among the studies. Publication bias was examined by implementing various
statistical tests resulting in mild evidence for the phenomenon. We contribute
to other meta-analyses on the topic by employing the Bayesian and Frequen-
tist model averaging to identify the drivers behind the heterogeneity of the
estimates. The results suggest that temperature, geographical latitude, and
panel data structure have a highly statistically significant and positive effect
on the risk of transmission associated with mask-wearing. Moreover, a pos-
itive effect was identified for healthcare set-up. In contrast, performing an
aerosol-generating procedure shifts the risk in the negative direction.
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Abstrakt
Vplyv rúšok na prenos Covidu-19 je kľúčový pre zdravie populácií, napriek
tomu nemožno prehliadať jeho ekonomické dôsledky. Na vykonanie kvan-
titatívnej meta-analýzy bolo zhromaždených 258 odhadov z 44 primárnych
štúdií spolu s viac ako 30 premennými reprezentujúcimi rozdiely medzi štú-
diami. Publikačné skreslenie bolo skúmané implementáciou rôznych štatistick-
ých testov. Výsledky vykonaných testov dokazujú miernu prítomnosť tohto
fenoménu. Pridaná hodnota našej práce leží v použití Bayesovského a Frekven-
tistického priemerovania modelov na identifikáciu faktorov zodpovedných za
heterogenitu odhadov. Výsledky naznačujú, že teplota, geografická šírka a
panelová štruktúra dát majú štatisticky významne pozitívny vplyv na riziko
prenosu spojené s nosením rúšok. Navyše, pozitívny vzťah bol identifiko-
vaný aj pre zdravotnícke prostredie. Naopak, zdravotnícke výkony, pri ktorých
dochádza k vzniku aerosólu ovplyvňujú riziko negatívne.
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Author Bc. Martina Lušková
Supervisor doc. PhDr. Zuzana Havránková, Ph.D.
Proposed topic The Effect of Face Masks on Covid Transmission: A
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Motivation As Covid-19 disease began to spread rapidly at the beginning of 2020
affecting the health and wellbeing of the population all around the world, some
protective measures were taken. Considering transmission channels (droplet and
airborne particles infected by virus penetrate the body mainly via the respiratory
system) of the disease, one of the protective measures was the usage of face masks
to prevent the spread of the disease.

The aim of my thesis is to assess the papers published on the relationship be-
tween face masks and the spread of Covid. So far, several studies investigated the
mentioned relationship using different techniques such as mathematical modelling
of Covid infection in a population (Eikenberry et al., 2020), logistic regression and
others.

Even though several meta-analyses were conducted on the relationship between
face masks and Covid transmission, there are several drawbacks. Firstly, some meta-
analyses include only a limited number of studies (Li et al., 2021). Secondly, there is
a missing link to economic and econometric reasoning in the interpretation of results
and lacking more complex policy recommendations based on the obtained results.
And lastly, since Covid is still present and evolving, I expect to find more recent
studies, that were not included in the other meta-analyses.

Hypotheses

Hypothesis #1: Publication bias is present in the literature estimating the
effect of face masks on Covid transmission.

Hypothesis #2: The publication bias exaggerates the mean value of the esti-
mated effect of face masks on Covid transmission.

https://ies.fsv.cuni.cz/


Master’s Thesis Proposal iii

Hypothesis #3: The estimated effect of face masks on Covid transmission is
driven by the geographical location.

Methodology Firstly, the dataset consisting of primary studies needs to be con-
structed. I will define a search query and use the Google Scholar database to full-text
search the studies. Secondly, I will examine already published meta-analyses and
make sure to incorporate the studies included by authors who already performed a
meta-analysis on the topic (Chu et al., 2020; Li et al., 2021; Liang et al., 2020).
Additionally, I will search for the studies published recently, to include more recent
evidence in my dataset. In the process of collection, I will also focus on other char-
acteristics of the studies, such as standard errors, number of observations, standard
deviation, confidence intervals and other effects relevant to the analysis of hetero-
geneity.

Once I will collect the dataset, I will examine the publication bias using the
graphical method – a funnel plot (Egger et al., 1997). In, addition, I will also per-
form the following tests: funnel asymmetry test (FAT) (Stanley, 2005) with different
estimators and weighting matrices, statistical power and bias (Ioannidis et al., 2017),
selection model (Andrews & Kasy, 2019), stem-based method (Furukawa, 2019), a
kinked meta-regression model (Bom & Rachinger, 2019) and p-uniform* method
(Aert & Assen, 2018).

In the second part of the thesis, I will focus on the examination of heterogeneity.
For this purpose, I will use the following methods. Bayesian (BMA) and frequentist
model averaging, which is used to deal with uncertainty by allowing to assign weights
to different models taking into account their data fit, specification and parsimony
(Steel, 2020; Amini & Parmeter, 2012). Moreover, I will include several robustness
checks – using different priors and weights.

Expected Contribution The effect of facemasks on Covid transmission is impor-
tant to investigate since it provides a base for policy implications and public health
perspective. Since there have been several meta-analyses conducted on the topic
(Chu et al., 2020; Li et al., 2021; Liang et al., 2020), I will focus on updating the
included studies with more recent evidence.

Additionally, the contribution of my thesis lies in the interpretation of the future
results to form a policy recommendation and include an economic and econometric
rationale behind chosen study design. I will also focus more on the literature review of
the relationship between face masks and Covid transmission, which was not included
to a larger extent in other meta-analyses. Additionally, my thesis will include the
examination of publication bias, which was also not included by other authors.
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Outline

1. Introduction – I will introduce the topic and provide my motivation and con-
tribution to the thesis.

2. Literature review – I will describe already published literature on the topic,
its methods, and the main results.

3. Data – This section will describe the process of collection of the dataset (search
query, inclusion criteria, etc.) The obtained dataset will be described, and
summary statistics will be presented.

4. Methodology – I will describe the methods used to perform a meta-analysis.
This section will include both methods related to the examination of publica-
tion bias and methods of heterogeneity analysis.

5. Results – I will describe the obtained results and provide their interpretation.

6. Conclusion – This section will summarize the thesis, provide the possible pol-
icy implication regarding the obligation of face mask usage, and states any
potential drawbacks and limitations. Additionally, possible topics for further
research will be mentioned.
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Chapter 1

Introduction

As Covid-19 disease began to spread rapidly, the lives of populations all around
the world were influenced. To slow down the spread of the contagious disease,
various measures were implemented. Since Covid-19 is transmitted mainly by
the droplets spread by an infected individual, all the interventions were centred
around social distancing. Social distancing can take various forms: stay-at-
home orders, restrictions on opening hours, indoor and/or outdoor gatherings,
travelling restrictions, school closures and more. Nevertheless, the most pop-
ular measure was ordering populations to wear face masks. Knowing the true
unbiased effect of face masks on Covid-19 transmission is essential not only
for the well-being and health of populations but also for proper policy setting
during the pandemic. Apart from the health-related reasons for the evalua-
tion of the mentioned effect, we need to consider the economic consequences of
the Covid-19 pandemic as well. As an outcome of social distancing measures,
economic activity experienced a major decline. As a result, according to The
World Bank, the world’s GDP annual growth experienced a drop to −3.1%
in 2020. A cost-effectiveness analysis of face masks was performed with the
following results: According to Bagepally et al. (2021) the additional incurred
costs associated with mask-wearing amounted to almost 1 billion USD with
the additional 1,121 prevented Covid-19 cases per million subjects with 328
quality-adjusted life years gained. These results are however sensitive to the
effectiveness of face masks in preventing Covid-19.

The objective of this thesis was to assess the literature published on the
effect of face masks on Covid transmission and perform a quantitative meta-
analysis. To do so, we collected 258 estimates from 44 studies, their standard
errors, and the variables representing the differences among the studies. We
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intend to estimate the true value of the effect corrected for publication bias.
Publication bias is a serious issue present in the majority of published litera-
ture (Stanley 2005). Since the publication of a paper is often determined by
the statistical significance of its results, the authors engage in the manipula-
tion of sample sizes and specification of models to achieve significance (Gerber
et al. 2008; Rothstein et al. 2005; Brodeur et al. 2018). To examine whether
publication bias is present in the collected literature on the mentioned effect,
we implemented several modern statistical tests. Firstly, the FAT-PET with
different specifications (OLS, Fixed effects, Between effects) and weights were
performed. Secondly, we applied a variety of current techniques such as the
Endogenous kink model by Bom & Rachinger (2019), the Stem-based method
as suggested by Furukawa (2019), the Selection model as in Andrews & Kasy
(2019), and more. Thirdly, methods allowing for endogeneity such as FAT-PET

with instrumental variable, p-uniform* method as proposed by van Aert &
Van Assen (2021) and Caliper tests (Gerber et al. 2008) were employed. Based
on the results of performed tests, we concluded that there is only mild evidence
for publication bias.

Apart from publication bias detection the majority of enumerated methods
can be used to estimate the effect beyond bias. The significant estimates of risk
associated with face mask-wearing were raging from −0.187 to −0.440. These
values can be interpreted as follows: Wearing a face mask is associated with
a reduced risk of Covid-19 infection by 18.7% to 44%. Such results suggest
a significant protective ability against Covid-19. As a consequent implication
in the case of another wave of Covid-19 or a variant resistant to available
vaccines, we recommend face masks be used. This thesis also aims to deter-
mine the potential drivers behind the heterogeneity of estimates of the effect
of face masks on Covid-19 transmission. It is not unlikely that the estimated
effects of primary studies vary not only because of the publication bias but
because of different settings of the studies, methodology and many other fac-
tors including the geographical location and the temperature. Despite several
meta-analyses already published on the mentioned effect, they all contain sev-
eral drawbacks. Firstly, the meta-analysis by Chu et al. (2020) published in
the Lancet evaluates the effect of face masks, however, the studies included in
the meta-analysis are focused on various respiratory diseases, not on Covid-19
specifically. The number of included studies on Covid-19 regarding mask use
is as low as four. Including other respiratory illnesses in the meta-analysis can
be seen in papers by Jefferson et al. (2023); Liang et al. (2020); Chaabna et al.
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(2021). Moreover, the findings of mentioned meta-analyses are contrasting.
While Chu et al. (2020) reports huge protective abilities of face masks, Jeffer-
son et al. (2023) found little to no difference in wearing a mask compared to
not wearing one. In addition, the contribution of this thesis lies in performing
a quantitative meta-analysis of studies on Covid-19 only. Furthermore, we aim
to focus on the examination of heterogeneity and determining its drivers as this
was not included in greater detail in the mentioned meta-analyses. Since many
variables reflecting the differences among the studies were collected, the model
uncertainty needs to be addressed. The solution we applied is the Bayesian and
Frequentist model averaging. We found the temperature, geographical latitude,
panel data structure, risk ratio estimate type, healthcare set-up, standard error
and age to have a positive effect on the risk of Covid-19 infection associated
with mask-wearing. The positive effect means that for these variables masks
provide lower protection. On the other hand, we found performing an aerosol-
generating procedure to have a negative effect. The interpretation of such a
result is that mask-wearing is essential during these procedures. Moreover, as
a robustness check, the Bayesian model averaging was estimated with differ-
ent model priors and g-priors yielding highly comparable posterior inclusion
probabilities for the variables.

Lastly, we would like to emphasize that the contribution of this thesis lies
in its relevance to policy-makers. Moreover, this thesis improves other meta-
analyses on the topic by including 44 studies specifically on Covid-19. As
compared to other authors, we implemented a wide spectrum of modern meta-
regression methods. In addition, we go beyond just estimating the true value
of the effect of face masks on Covid transmission and determine the drivers
behind the heterogeneity of the estimates.

The thesis is structured as follows. Chapter 2 provides a literature review
of not only the primary studies but also the meta-analyses on the effect of face
masks on Covid transmission. In order to understand the differences among the
studies, we also focus on their approaches used to estimate the effect. Chapter 3
describes in detail the procedure used to obtain the data and the recalculation
of both effects and standard errors to achieve comparability of the estimates.
Chapter 4 focuses on the examination of publication bias by various modern
methods. Chapter 5 implements the model averaging methods to explain the
drivers of heterogeneity. Chapter 6 presents the derived best practice estimates
and Chapter 7 summarises the thesis.

The data and code are available upon request.



Chapter 2

Literature review

The effect of face masks on Covid transmission has been subject to many de-
bates not only of the general public but especially the policymakers. The
following chapter provides a literature review of both meta-analyses and pri-
mary studies on the effect of face masks on Covid or other respiratory viral
illnesses transmission.

2.1 The Covid-19 pandemic
This section is intended to provide a better understanding of the Covid-19
pandemic and the role of face masks and, why and how they are able to prevent
the Covid infection. The pathogen causing Covid-19, officially named Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first discovered
in China, Hubei province’s city of Wuhan in December 2019. The coronavirus
has firstly been given the working name 2019 novel coronavirus (2019-nCoV)
(Lu et al. 2020). According to the World Health Organisation (WHO), 651
918 402 cumulative cases of SARS-CoV-2 infection and 6 656 601 cumulative
deaths due to SARS-CoV-2 were reported. The provided numbers were reported
as of 23rd December of 2022 (World Health Organisation 2022c). According to
Guo et al. (2020b) SARS-CoV-2 could come from bats that are believed to be
the virus’s native host or other unidentified intermediary hosts before infecting
humans. Ciotti et al. (2020) suggests SARS-CoV-2 originating by mutation of
RaTG13 virus that is infecting the horseshoe bat is supported by the substantial
similarity of SARS-CoV-2 and RaTG13 of approximately 96%.

Covid-19 is an acute respiratory infection that causes several symptoms.
WHO provides the list of the most common symptoms including fever, cough,
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tiredness, loss of taste and/or smell. The following symptoms: sore throat,
headache, aches and pains, diarrhoea, a rash on the skin, or discolouration
of fingers or toes, and red or irritated eyes are less common (World Health
Organisation 2022a). The majority of infected patients are able to overcome
the disease at home. However, some SARS-CoV-2 infected patients, who develop
more severe symptoms such as difficulty breathing or shortness of breath, loss
of speech or mobility, or confusion, and chest pain might require hospitalisation
(World Health Organisation 2022a).

The transmission of Covid-19 can be done via two main channels. Direct
infection can be acquired by droplet particles infected by the virus that pen-
etrates the body mainly via the respiratory system. The direct infection is
transferred human-to-human when the infected person coughs, sneezes, talks,
or sings. In addition, it is also possible to become infected indirectly. The
indirect infection can be acquired by contact with contaminated objects and
airborne contagion (Lotfi et al. 2020; Liu et al. 2020b). When talking about
transmission, it is essential to mention the reproductive number. According
to Chaudhry (2022) the basic reproduction rate (R0) is the most important
metric for predicting a new pathogen’s capacity to spread. It is defined as the
average number of secondary transmissions from a single sick individual. The
R0 exceeding one means that the epidemic is progressing. For Covid-19 the es-
timates by WHO are raging from 1.4 to 2.5, however, the review that examined
fourteen studies found the average reproduction number to be 3.28 and median
R0 to be 2.79 (Liu et al. 2020a).

Before the availability of vaccines, the main preventive measures were using
face masks and other Personal Protective Equipment (PPE) such as protec-
tive shields, goggles, gowns, and gloves to block pathogen transmission. These
were used especially by medical workers. Social distancing, home quarantine,
and disinfection of both home surfaces and hands are other common protec-
tive measures (Lotfi et al. 2020; Ciotti et al. 2020; World Health Organisation
2022b). According to Covid19 vaccine tracker (2022), there are eleven vaccines
against Covid-19 that have obtained the Emergency Use Listing (EUL) by WHO

as of 2nd of December 2022. In European Union (EU) there are seven vaccines
approved by European Medicines Agency (EMA), the last one was granted ap-
proval as of October 2022 (European Medicines Agency 2022).

From an economic point of view, the pandemic of Covid-19 is associated
with increased costs related to the treatment of the infected. Dôvera, a Slovak
health insurance company that provides health insurance for more than 30%
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of the Slovak population reports that the average cost of hospitalization for a
patient with Covid-19 during the second wave of the pandemic was 2,155 euros.
Whereas, if the patient additionally required artificial pulmonary ventilation,
the average costs increased up to 11,245 euros (Dôvera 2022). Additionally,
Brodeur et al. (2021) suggests the pandemic has also a negative impact on
labour markets, mental well-being, racial disparity, and gender-related out-
comes.

2.2 Meta-analyses on the effect of face masks on
Covid transmission

So far, some meta-analyses on the mentioned effect have already been pub-
lished. The most complex meta-analysis so far is the one published by Chu et al.
(2020). The authors included 44 comparative studies from 9 countries. Included
primary studies estimated the effect of face masks not only on SARS-CoV-2

transmission (SARS-CoV-2 is the virus causing the infectious disease Covid-19)
but also on Severe Acute Respiratory Syndrome Coronavirus 1 (SARS-CoV-1)
and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). In terms
of methodology, Bayesian and frequentist averaging and random effects meta-
regression was used. Chu et al. (2020) suggest that face masks usage decreased
the potential odds of infection by 85% (adjusted odds ratio = 0.15) The authors
argue the effect is more substantial for N95 type of face masks (or a face mask
of comparable quality) than it is for single-use surgical masks.

The meta-analysis by Li et al. (2021b) included only 11 primary studies
from 4 countries. In contrast to the first mentioned meta-analysis, the authors
only included primary studies on SARS-CoV-2. In terms of methodology, the
random effects meta-regression model was used. Authors suggest that using
a face mask is associated with lower odds of getting infected by SARS-CoV-2

compared to not wearing a face mask (odds ratio = 0.38). Additionally, the
effect was more apparent for a group consisting of healthcare workers (odds
ratio = 0.29).

Liang et al. (2020) meta-analysed 21 primary studies from 8 countries.
These studies focused on 5 different respiratory viruses: SARS-CoV-1, Influenza
virus, H1N1 (causing swine flu), SARS-CoV-2, and respiratory virus not speci-
fied in greater detail. The analysis was conducted using the fixed-effects model
(for pooled odds ratio) and the random-effects model. To assess the potential
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publication bias Begg’s and Egger’s tests were performed. Based on these tests,
the authors concluded that there seems to be no publication bias. Liang et al.
(2020) suggest that face masks provide increased protection against Respiratory
Viral Illnesses (RVIs) (odds ratio = 0.35) with the effect being stronger in the
healthcare setting.

Schoberer et al. (2022) focused on the effect of several protective measures
on Covid transmission. The meta-analysis of the effect of face masks was
performed based on 7 observational studies in a healthcare setting. The authors
used a (pooled) random effects model. Results suggest that wearing a face
mask was associated with a decreased probability of getting infected by Covid
for healthcare workers (odds ratio = 0.16). However, the authors additionally
pointed out that based on the magnitude of the effect, the certainty of the
results was classified as moderate.

In addition, there are more meta-analyses on the topic, however, there are
several drawbacks present. Firstly, Chaabna et al. (2021) included 13 primary
studies, but only one of these studies was focused on Covid. Secondly, Talic
et al. (2021) included only 6 primary studies focused directly on Covid. And
thirdly, Tabatabaeizadeh (2021) focused directly on Covid, still, the number of
included primary studies was only 4. As expected, the results of these meta-
analyses suggest that the usage of masks was associated with decreased risk of
infection. The odds ratios ranged from 0.12 to 0.66. Fixed and random effects
models were used.

2.3 Primary literature on the effect of face masks
on Covid transmission

Naturally, the research regarding the effect of face masks on Covid transmission
started as Covid-19 disease began to spread rapidly at the beginning of 2020 af-
fecting the health and well-being of the population all around the world. There
is quite a lot of evidence published on the topic of face masks and SARS-CoV-1

or MERS-CoV transmission. On the other hand, the literature that specifically
examines the effect of face masks on Covid-19 transmission is quite limited.
There are several study designs and parameters of the primary literature. The
main differentiation feature of the papers is whether they focus on healthcare,
non-healthcare setting, or on both of them. The papers focusing on health-
care settings include Wang et al. (2020b), Heinzerling et al. (2020), Guo et al.
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(2020a), Khalil et al. (2020), Chen et al. (2020), Wang et al. (2020a), and Wang
et al. (2020c). The effect of face masks on Covid transmission was examined in
the non-healthcare environment by Cheng et al. (2020), Catching et al. (2021),
Doung-Ngern et al. (2020), Eikenberry et al. (2020) and Mittal et al. (2020).
Moreover, Burke et al. (2020), and Chatterjee et al. (2020) focused on both
healthcare and non-healthcare setting.

As mentioned above, the availability of primary literature on the SARS-CoV-2

transmission and the effect of face masks is not ideal. There are, therefore,
many different methodologies used to estimate the effect. Wang et al. (2020b)
focused on laboratory-confirmed cases and their close contacts. These were used
to examine the secondary clinical attack rate. To do so, only symptomatic cases
were taken exclusively. The secondary attack rate was compared in different
settings. In one of the settings, PPE used by healthcare workers were included.
Similarly, the close contact with the index patient was analysed by Heinzerling
et al. (2020). The authors used a medical records review of the healthcare
workers of two hospitals, where one was specifically intended to treat Covid-19
patients, and thus face masks were used by the hospital staff. After acquiring
the number of medical workers who became infected following close contact with
the index patient, the comparison was carried out. Another paper by Wang
et al. (2020c) focusing on Covid infection in healthcare staff collected data
from six hospital departments in Wuhan, China. Half of these departments
were treating Covid patients. As a result, the personnel was protected by face
masks and frequently sanitized their hands. Once again, the authors compared
the results to the medical workers from the other three departments, where no
masks were used and hands were sanitized only sporadically.

Wang et al. (2020a) used the data from 107 hospitals located in Hubei
province, China. The number of Covid-19 cases among the neurosurgical
healthcare personnel was calculated. The effect of face masks was evaluated
based on the relative risk. The authors concluded that inadequate protection
was associated with an increased risk of contracting the infection. Guo et al.
(2020a) also focused on a specific medical speciality: orthopaedic surgeons and
trainees in Wuhan’s metropolitan region. The study was performed on hos-
pital level, 24 hospitals were studied. Data were collected using an online
self-administered questionnaire. The results were reported using the odds ra-
tio. Additionally, authors focused not only on face masks but also on other
factors such as hand sanitation, and availability of PPE. Another paper using
a questionnaire to collect data from almost 200 physicians at several health
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institutions in Bangladesh (Khalil et al. 2020). The results likewise in the pre-
vious study reported odds ratio supporting the protective ability of face masks.
Furthermore, Chen et al. (2020) also reported the odds ratio. However, the
methodological approach was different to the two papers described above. The
authors used nasopharyngeal swab samples and serum samples to determine
the prevalence of SARS-CoV-2 among 105 healthcare workers who were in close
contact with infected patients.

Papers by Burke et al. (2020) and Chatterjee et al. (2020) focused on both
healthcare and non-healthcare setting. Chatterjee et al. (2020) used the data
from the national database of performed Covid-19 tests in India. The database
included both medical workers and the general population. To gather informa-
tion on face mask use, the authors distributed a questionnaire among health-
care workers. To report the results authors presented an adjusted odds ratio.
On the other hand, the paper by Burke et al. (2020) used data acquired by
contact investigation of nine early travel-related Covid-19 cases in the United
States. The results were provided as a percentage of infected patients out of
all observed subjects for different categories of PPE.

Lastly, two papers focused on non-healthcare setting: Cheng et al. (2020)
and Doung-Ngern et al. (2020). Firstly, Doung-Ngern et al. (2020) reported
odds ratios and adjusted odds ratios. The study evaluated the effect of protec-
tive measures, masks included, in the general public in Thailand on Covid-19
transmission. Secondly, Cheng et al. (2020) focused on close contacts of Covid-
19 infected individuals in Taiwan. The authors reported risk ratios.

2.3.1 Types of study designs in healthcare

In healthcare, there are several types of study designs. According to the arti-
cle by Röhrig et al. (2009), primary research can be divided into three main
categories: basic research, clinical research, and epidemiological research.

• Basic research focuses especially on theoretical, experimental (animal ex-
periments), and other applied study designs such as genetic studies, or
cell studies.

• Clinical research can be divided into experimental (phase I up to IV clin-
ical trials) and observational studies. Examples of observational studies
include therapy studies, prognostic, and diagnostic studies.
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• Similarly to clinical research, epidemiological research contains experi-
mental (interventional studies) and observational study designs (cohort
study, cross-sectional study, case-control study, and others).

Probably the most common type of study in estimating the effect of face masks
on Covid transmission is the observational study.

2.3.2 Approaches to estimating the effect of face masks on
Covid transmission

To report the effectiveness of face masks in reducing Covid transmission authors
can estimate a Hazard Ratio (HR). The hazard ratio is defined by National
Cancer Institute (2022a) as "A measure of how often a particular event happens
in one group compared to how often it happens in another group, over time."
The interpretation of HR lower than one would be that the hazard of infection
in the first group is lower as compared to the second group by (1 − HR) ∗ 100
%. The interpretation of HR greater than one, on the other hand, would be
that the hazard of infection of the first group is higher by (HR − 1) ∗ 100 % as
compared to the second group. The HR that is equal to one means the hazard
of infection is the same for both groups.

As an alternative to the HR, researchers report the Relative Risk or Risk
Ratio (RR) which is defined by National Cancer Institute (2022b) as "A measure
of the risk of a certain event happening in one group compared to the risk of the
same event happening in another group." The risk ratio of 1 means that there
is no difference in the risk of Covid infection in one group compared to the
second group. For RR lower (greater) than one, the risk of Covid infection is
lower (greater) in the first group compared to the second one. If the protective
face masks were used by the first group, the interpretation of the RR lower
than 1 would be as follows. The usage of face masks decreases the risk of being
infected by Covid.

The third ratio that is often reported by researchers is the Odds Ratio (OR).
The definition of OR is the following. "A measure of the odds of an event
happening in one group compared to the odds of the same event happening in
another group (National Cancer Institute 2022c)." The two groups differ in
exposure to a certain factor (face masks, for example). The OR = 1 indicates
that the odds of exposure were the same for both groups, and as a result, the
exposure to the factor would most likely not increase the risk of infection. If
the OR > 1, the exposure to the factor would probably raise the chance of
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developing infection, and if the OR < 1, it is likely that the exposure would
lower the risk of infection. The OR can be estimated using the logit regression
model as well as the method described by Altman (1990).

In this sub-chapter, we will focus on approaches that were specifically used
to estimate the effect of face mask usage on Covid transmission.

Cox proportional hazards regression model

Health economics is often focused on survival analysis. The survival analysis
examines and models the duration of occurrences of an event. The title "survival
analysis" and most of its language are derived from the paradigmatic such event,
death, but the range of applications for survival analysis is far wider (Fox &
Weisberg 2002). One of the applications of the survival analysis is its utilization
in estimating the effect of face masks on Covid transmission and corresponding
hazard ratios.

Cox (1972) proposed a regression model on how to estimate a hazard ratio.
Firstly we will introduce basic concepts that are later used in the estimation
procedure. Equation 2.1 describes the hazard function h(t) - the instantaneous
risk of an event, given that no event occurred up till now.

h(t) = lim
∆t→0

Pr[(t ≤ T < t + ∆t) | T ≥ t]
∆t

= f(t)
S(t) (2.1)

Where survival time is represented by T . We assume non-negativity, T ≥ 0.
Survival time is viewed as a continuous random variable with the following
cumulative distribution function: P (t) = Pr(T ≤ t). The probability density
function can be derived as the following derivative: p(t) = ∂P (t)/∂t. Addi-
tionally, the distribution of survival times can be represented by the survival
function illustrated by Equation 2.2.

S(t) = Pr(T > t) = 1 − P (t) (2.2)

Survival function provides the probability that a person will live through time
t (Fox & Weisberg 2002; Cameron & Trivedi 2005).

To estimate the mentioned hazard ratio, we need the Cox proportional
hazards regression model specified by Equation 2.3.

log hi(t) = α(t) + β1xi1 + β2xi2 + ... + βkxik (2.3)
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The model is said to be semi-parametric, because baseline hazard function
α(t) = log h0(t) is left unspecified, without any distributional assumptions. It
does not assume any distribution such as exponential, Weibull, log-normal or
any other distribution frequently used in survival analysis. While the covariates
are represented in the model linearly. Now, the following two equations are
assumed.

ξi = β1xi1 + β2xi2 + ... + βkxik (2.4)

and
ξi′ = β1xi′1 + β2xi′2 + ... + βkxi′k (2.5)

Equations 2.4 and 2.5 are the predictions of the linear part of the Equation 2.3
for two observations i and i′ respectively. The two observations are different in
terms of their values of x-es. Using the Equations 2.4 and 2.5, and the baseline
hazard function the hazard ratio is defined as the following equation.

hi(t)
hi′(t) = h0(t)eξi

h0(t)eξi′
= eξi

eξi′
(2.6)

The resulting hazard ratio is independent of time t, meaning that the model
does not estimate the hazard rate’s variation over time. On the other hand, the
model estimates how covariates affect a baseline hazard rate (Fox & Weisberg
2002). The described model needs several specific assumptions to be fulfilled.
Firstly, the proportional hazards assumption needs to hold. The assumption
can be tested graphically by plotting the instantaneous hazard for the two sub-
groups of the analysis. If the assumption holds, the curves for both subgroups
should follow the same trend. The proportional hazard assumption can be
also tested by plotting the log cumulative cause-specific hazard function for
both subgroups of the analysis. In this case, the assumption holds if the two
curves do not cross. In a case when one does not want to rely on graphical
methods only, there are tests based on scaled Schoenfeld residuals available.
The residuals are calculated from the estimated model specifically for each of
the covariates and for the model as a whole, and correlated with time. The
assumption is violated if at least one of the covariates or the entire model ex-
hibits a significant relationship between the residuals and time (Grambsch &
Therneau 1994; Grambsch 1995; Fox & Weisberg 2002).

The second assumption that needs to hold is the linearity of functional form
in the parametric part of the model. Similarly, as with linear and extended
linear models, the martingale residuals may be used to create component-plus-
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residual (or partial-residual) plots and to visualize nonlinearity by plotting
them against variables.

Relative risk method

Altman (1990) suggests that in prospective research, groups of participants
with various characteristics are monitored to see if the desired outcome ma-
terializes. This is true of much clinical research as well as observational ones
in which the trait of interest, cannot be randomised. The proportions of each
group that have the result are simple to compute, and the ratio of these two
proportions indicates how much higher the risk is in one group than in the
other. This ratio is known as relative risk. Additionally, in the healthcare set-
ting, relative risk is often reported to provide information about the risk of an
event occurring in an exposed group relative to the control group. Generally,
the results of a study are usually presented in the following way (Table 2.1).
Regarding the situation of the effect of face masks on Covid transmission, the

Table 2.1: General presentation of study results

Outcome present Outcome not present Total
Group 1 a c a + c
Group 2 b d b + d
Total a + b c + d n

Source: Altman (1990)

event is considered the Covid infection. The two groups are individuals exposed
to Covid infection who were or were not using protective face masks. Using the
Table 2.1, the relative risk or risk ratio can be calculated as shown in Equation
2.7.

RR = a/(a + b)
c/(c + d) (2.7)

The following Equation 2.8 can be used to calculate the confidence intervals
of the relative risk/risk ratio. The equation uses the standard error of the
logarithm of relative risk.

SE (ln RR) =
√︄

1
a

− 1
a + c

+ 1
b

− 1
b + d

(2.8)
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Finally, the confidence intervals are calculated as shown in Equation 2.9

CI95% = exp(ln RR ± N0.975 ∗ SE(ln RR)) (2.9)

Since Altman (1990) assumed that the sampling distribution of the logarithm
of relative risk is the normal distribution, N0.975 is the appropriate value from
the normal distribution.

Odds ratio method

According to Tenny & Hoffman (2017), an indicator of how closely an incident
is linked to exposure is the odds ratio. The odds ratio uses the two odds.
Firstly, the odds of an event occurring in a group that has been exposed to the
disease. Secondly, the odds that the event will occur in a group that has not
been exposed to the disease. The odds ratio aids in determining how likely it
is for an exposure to cause a certain occurrence. Similarly, as in the relative
risk method, the results can be presented in a general form of a Table 2.1. If
we have a look at the formula for relative risk presented in Equation 2.7, we
can derive the formula for the odds ratio. Assuming the a to be small and c to
be small as well, the odds ratio can be calculated as shown in Equation 2.10.
Altman (1990) suggest that in case-control studies the case-defining outcome
of interest is usually rare, which is the basis for assuming a and c to be small
enough.

OR = ad

bc
(2.10)

Once again, to calculate the confidence intervals we need the equation using
the logarithm of odds ratio as in Equation 2.11.

SE (ln OR) =
√︄

1
a

+ 1
c

+ 1
b

+ 1
d

(2.11)

And the corresponding 95% confidence interval can be calculated according to
the formula presented in Equation 2.12

CI95% = exp(ln OR ± N0.975 ∗ SE(ln OR)) (2.12)

(Altman 1990). Additionally, it is important to mention, that if the outcome
of interest is rare, the risk ratio and odds ratio are not very different from
each other. However, if the outcome of interest is more common to observe,
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the relative risk and odds ratio are not directly comparable. To deal with this
issue, Holland (1989); Zhang & Kai (1998) proposed a method for transitioning
between the relative risk and odds ratio that was later summarised by Schmidt
& Kohlmann (2008). The relationship between risk ratio and odds ratio can
be seen in Equation 2.13.

RR = OR

1 − I0 + I0 ∗ OR

alternatively RR = OR ∗ 1 − I1

1 − I0

(2.13)

Where I1 stands for the fraction a/(a+b) and I0 represents the ratio of c/(c+d).
The fractions represent the prevalence (when cross-sectional data were used)
or incidence (when longitudinal data were used) between exposed (I1) and
unexposed (I0) individuals (Schmidt & Kohlmann 2008).

Logistic regression

Another method for estimating the odds ratio is using the logistic regression
model. Firstly, the dependent variable is binary, where 1 usually represents the
feature of interest. According to the Altman (1990), logistic regression is im-
plemented in order to predict the proportion of individuals with the mentioned
feature of interest for a given combination of the explanatory variables used
in the model. In the case of Covid, the feature of interest would be the infec-
tion by Covid. To keep the predicted proportion of individuals in the interval
bounded by 0 and 1, transformation needs to be used. Equation 2.14 shows
the logit transformation.

logit(p) = ln

(︄
p

1 − p

)︄
(2.14)

Where p represents the proportion of subjects with the given feature of interest
(to give an example, it could be the proportion of individuals infected by Covid.)
Whereas, the expression 1 − p stands for the proportion of individuals who do
not have the given feature (individuals not infected by Covid). Additionally, the
two predictions, one for the group with some characteristics and one without
can be compared. Hence, the two groups, one that has been using the face
masks and one that has not can be compared by taking the difference of their



2. Literature review 16

log odds as can be seen in Equation 2.15.

l1 − l2 = logit(p1) − logit(p2) =

= ln

(︄
p1

1 − p1

)︄
− ln

(︄
p2

1 − p2

)︄
= ln

[︄
p1(1 − p2

p2(1 − p1)

]︄ (2.15)

(Altman 1990).
When it comes to the estimation, the logit is a result of a general latent

regression framework y∗ = x′β +ϵ, where y = 1 for y∗ > 0 and y = 0 for y∗ ≤ 0.
Taking into account that estimated probabilities need to be bounded by 0 and
1, we need the probability P (y = 1|x) = 1 for x′β approaching plus infinity
and probability P (y = 1|x) = 0 for x′β approaching minus infinity. Logit uses
the logistic distribution as can be seen in the following Equation 2.16.

P (Y = 1|x) = exp(x′β)
1 + exp(x′β) = Λ(x′β) (2.16)

Where Λ(.) represents the logistic distribution function. The estimation frame-
work used to estimate the logit model is the maximum likelihood (Greene 2018).

Many studies in healthcare that are based on logit models report the odds
ratio. Firstly, the odds in favour of Y = 1 for the logit model are expressed as
in Equation 2.17.

Odds = P (Y = 1|x)
P (Y = 0|x) = exp(x′β)/[1 + exp(x′β)]

1/[1 + exp(x′β)] = exp(x′β) (2.17)

Secondly, when a change of a dummy variable is considered, the odds ratio can
be written as in 2.18.

OddsRatio = Odds(x, d = 1)
Odds(x, d = 0) =

=

[︄
exp(x′β + δ ∗ 1)/[1 + exp(x′β + δ ∗ 1)]

1/[1 + exp(x′β + δ ∗ 1)]

]︄
[︄

exp(x′β + δ ∗ 0)/[1 + exp(x′β + δ ∗ 0)]
1/[1 + exp(x′β + δ ∗ 0)]

]︄ = exp(δ)

(2.18)

As a result, although it is not a derivative, the odds’ change when a variable
changes by one unit is somewhat similar to a partial effect (Greene 2018).



Chapter 3

Data

In this chapter, we will describe the process of obtaining the data that will
be further used to examine potential publication bias and heterogeneity. To
construct the dataset, we first started by reading the primary studies included
in the meta-analyses already conducted on the effect of face masks on Covid
transmission by Chu et al. (2020); Li et al. (2021b); Liang et al. (2020) and
others. Out of these studies, we constructed a list of crucial primary studies,
that was used to adjust the search query until a sufficient number of these
crucial studies were included in the top results. Different combinations of the
keywords such as "mask", "face mask", "respirator", "Covid-19", "coronavirus",
"SARS-CoV-2", "transmission" and similar terms were used. The following query
was used to search the studies in the Google Scholar database.

(“SARS-CoV-2” OR “2019-nCoV” OR “coronavirus” OR “COVID-19”)
respirator transmission (observational OR descriptive OR case-control) face

mask respirator epidemiological -meta

Google Scholar is considered superior to other databases because of its ability
to search through the full text of studies. In this way, we were able to include
studies that do not have all the desirable keywords combined in the title or
abstract (Gechert et al. 2022). Additionally, including only one query for one
database allows the search process to be replicated. The search was performed
on the 2nd of February and returned more than 8,300 studies. Out of these
8,300 studies, the first 250 were examined. The studies were examined based
on the abstract, brief overview of the study and/or quick inspection of the
methods and results section (if methods were not described in the abstracts).
Sometimes the examination of the abstract was not sufficient because of the
following reason. A number of studies from the list of crucial studies did not
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include the required keywords (such as "mask", "face mask", and "respirator")
in the title. Accounting for this, the search query was designed to include also
studies that do not have required keywords in the title. As a consequence, the
results of the search included numerous narrative reviews, opinions of experts,
and papers of non-empirical nature. To quickly identify a study that can be
used in the meta-analysis, a deeper examination was needed even in this initial
step. The search was restricted to include only studies since 2019. The year
when Covid-19 has first been discovered in China. The search query was once
again repeated with a restriction including only the last 3 years (2021, 2022,
2023). Since the original search was quite restricted, because of the nature of
the topic of this thesis, no new eligible studies were identified this way.

Another source of primary studies is a technique called snowballing. Gener-
ally, snowballing is using the list of references of a study to identify additional
studies to be included in the meta-analysis (Wohlin 2014). To identify the
highest number of studies, we performed the snowballing on two levels. Firstly,
when initially screening the studies, we not only downloaded the studies rele-
vant for data collection but also the reviews and other types of literature that
included information on research already conducted on the topic. These sources
provided us with primary studies that were not captured by the search query.
Secondly, after reviewing the papers identified by the search query and the
first snowballing, we exported their reference lists. Scopus database was used
to download all the references. The references were sorted by the frequency
of appearance of the studies. All the studies whose frequency was at least 3
or more were examined. The number of examined studies was 47. In addi-
tion, we also reviewed the meta-analyses on the effect of face masks on Covid
transmission and identified 7 new studies.

3.1 Inclusion Criteria
In order to perform the quantitative analysis, the following inclusion criteria
were set.

• The effect of face masks on Covid transmission is reported as OR, RR,
hazard ratio, increase in the number of identified Covid cases for both
treatment and control groups or relative change in Covid cases.

• The study reports standard errors, confidence intervals or p-values.
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• The study reports the sample size or enough data to calculate it.

• The explanatory variable needs to be expressed as a number of trans-
missions/number of identified Covid cases or any other similar measure.
Primary studies that use the number of identified Covid-19 cases in nu-
merical units were excluded, if there was no information on the number of
transmissions in the absence of the intervention (face mask usage). Using
ratios allows us to express the risk in the treatment group relative to the
risk in the control group. Reporting a coefficient in numerical terms only
would not provide comparable effects among the studies.

• The study needs to include exact information on the intervention.

• The study provides a piece of sufficient information on the control group
and its definition.

In addition to the estimated effect reported as a RR, OR or change in Covid cases
for control and treatment groups, we included the studies that only report the
number of transmissions/Covid cases for treatment and control groups. From
these data, OR or RR can be calculated according to the Equation 2.7 and
Equation 2.10 described in Subsection 2.3.2. The main reason for including
these studies in the meta-analysis is that they were included also in the most
comprehensive meta-analysis on the effect of face masks on Covid transmission
by Chu et al. (2020). More analysis of these estimates is discussed in the
following sections.

The process of identification of studies can be seen on the Figure 3.1 to-
gether with the reasons for exclusion. Common reasons for exclusion included
the study not being oriented on face masks but on different protective measures
such as face shields, googles, gowns (for medical personnel especially) or even
other social distancing measures such as stay-at-home orders, restriction on
opening hours, indoor and/or outdoor gatherings, travelling restrictions, school
closures and others. Studies with different designs such as mathematical mod-
elling, prediction models and models performed on artificial datasets were ex-
cluded. 17 studies oriented on the different diseases (SARS-CoV-1 or MERS-CoV,
seasonal coronaviruses, influenza) were ruled out. The highest number of stud-
ies were not included due to their non-empirical nature. These include reviews,
narrative reviews, literature reviews, protocols, essays and opinion letters. The
number of studies included in the meta-analysis is 44. The list of these studies
can be seen in Table 3.1. Apart from the effects and their standard errors,
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Figure 3.1: PRISMA flow diagram
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Note: The figure shows a Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) flow diagram constructed in line with
the identification of studies. The diagram was created based on the tem-
plate by Page et al. (2021).
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we collected variables on the estimation methods, sample size, the data type
used in the primary studies, variables on publication, relevant control variables
included in the models, variables on study setting and country-level variables.
258 estimates were collected from 44 studies. Together with corresponding
variables more than 9,300 data points were collected.

Table 3.1: Studies identified for analysis

Author (year)
Abaluck et al. (2022) Khalil et al. (2020)
Akinbami et al. (2020) Li et al. (2021a)
Andrejko et al. (2022) Lio et al. (2021)
Budzyn et al. (2021) Loeb et al. (2022)
Bundgaard et al. (2021) Maltezou et al. (2020)
Davido et al. (2021) Martischang et al. (2022)
Dörr et al. (2022) Mitze et al. (2020)
Doung-Ngern et al. (2020) Nelson et al. (2021)
Fawcett et al. (2023) Nguyen et al. (2020)
Fletcher et al. (2022) Payne et al. (2020)
Gonçalves et al. (2021) Piapan et al. (2020)
Guo et al. (2020a) Pienthong et al. (2022)
Guy Jr et al. (2021) Rebmann et al. (2021)
Haller et al. (2022) Sharif et al. (2021)
Heinzerling et al. (2020) Sugimura et al. (2021)
Chatterjee et al. (2020) Toyokawa et al. (2022)
Chen et al. (2020) van den Broek-Altenburg et al. (2021)
Chernozhukov et al. (2021) Van Dyke et al. (2020)
Jehn et al. (2021) Venugopal et al. (2021)
Joo et al. (2021) Wang et al. (2020a)
Kahlert et al. (2021) Wang et al. (2020c)
Karaivanov et al. (2021) Wang et al. (2020d))

3.2 Recalculating effects
To perform a meta-analysis one needs the effect from the studies to be directly
comparable. Since we identified estimates in different forms, they needed to
be recalculated. The highest number of estimates were expressed as OR and
RR subsequently. Nevertheless, all the effects were recalculated to the risk of
Covid-19 infection. There are several reasons for this decision. Firstly, the risk
of infection is centred around zero. This means that if there would be zero risk
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of infection, the corresponding estimate would be = 0 as well. On the other
hand, estimates expressed in OR and RR are centred around one, meaning that
if there is no effect found, the corresponding estimate would be = 1. As a
result, the tests performed on these estimates and the computation of standard
errors would not be straightforward and would require additional adjustments.
Secondly, RR, OR and relative change in Covid cases can be easily recalcu-
lated to the risk of Covid-19 infection. On the other hand, the recalculation
of the effect expressed as a relative change in Covid cases to OR would require
more complex computations. The third reason for not choosing OR as a com-
mon measure of effects is interpretation difficulties. Moreover, Higgins et al.
(2019) suggest that the OR is the hardest measure in terms of understanding,
application, and is often misinterpreted by researchers. Throughout the data
collection, 7 estimate types were identified. The methods for recalculating each
type of estimate can be found below.

Risk Ratio For studies, that report their estimates as risk ratio, we can use
Equation 3.1 to express RR as 1 plus risk.

RR = risktreated

riskcontrol

= riskcontrol + riskchange

riskcontrol

= 1 + riskchange

riskcontrol

= 1 + risk (3.1)

Thus, to recalculate RR as the risk of Covid-19 infection, we subtract 1 from
the estimate.

risk = RR − 1 (3.2)

Apart from the risk ratio, we can find terms relative risk or rate ratio in the
literature. The use of these measures is however inconsistent. The main differ-
ence is that the risk ratio and relative risk compare the incidence of an event
between treatment and control groups. Whereas, the rate ratio uses the inci-
dence rate in two time intervals. In the studies included in the meta-analysis,
the time intervals are implemented in order to differentiate the treatment and
control period. As a result, we can treat all of the mentioned ratios similarly.

Prevalence Ratio Estimates reported as prevalence ratios can be considered
equivalent to the RR. The only recalculation needed is subtracting 1 from the
estimate.

Hazard ratio Hazard ratio is different from RR because it takes into account
not only the number of events occurring during the observation period but also
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the timing. Despite the two ratios not being identical, their interpretation is the
same. Spruance et al. (2004) suggest that the hazard ratio is an approximation
of RR. To standardise the hazard ratio, we subtract 1 from the estimate.

Odds Ratio If authors report their estimates as an odds ratio, we can use the
following formula described by Zhang & Yu (1998) to recalculate them to the
risk of Covid-19 infection.

risk = OR

1 − p0 + p0 ∗ OR
− 1 (3.3)

Where p0 represents the Covid-19 incidence of the control group. As already
mentioned, the OR tends to be misinterpreted as RR. This practice is however
troubling. If po < 10% the odds ratio estimated by logistic regression can
approximate the risk ratio. On the other hand, the higher the incidence, the
less precise the approximation is (Zhang & Yu 1998).

Percentage Increase For studies reporting the estimates as a percentage in-
crease, we implement the following standardisation.

risk = percentage_increase

100 (3.4)

Change Studies that report their estimates as a change to the absolute num-
ber of Covid-19 cases need the following standardisation.

risk = riskchange

riskbase

(3.5)

Regression Coefficient Studies that report the estimates of the effect of
masks on the logarithm weekly case growth rate were standardised accord-
ing to the following equation based on the interpretation of results of the study
by Karaivanov et al. (2021).

risk = exp(estimate) − 1 (3.6)

3.3 Standard error calculation
Standard errors were not always reported in primary studies. Some studies
only reported confidence intervals or p-values. In this subsection we describe
the process used to calculate standard errors.
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Delta Method Firstly, if the standard error was reported, but the estimate
needed to be standardised, we employ the Delta Method. The form of the
Delta Method always depends on the standardisation applied to the estimate.
We were able to use the Delta Method only for the studies that report their
estimates as the change to the absolute number of Covid-19 cases. Thus, the
Delta Method has the following form.

se(risk) = var

(︄
riskchange

riskbase

)︄ 1
2

=
(︄(︃ 1

riskbase

)︃2
var(riskchange)

)︄ 1
2

=

= se(riskchange)
riskbase

(3.7)

Budzyn et al. (2021) reported estimates as a change to the absolute number
of Covid-19 cases per 100,000 persons but did not report the standard errors.
In that case, standard errors of the original estimates were calculated from the
confidence intervals and then the Delta Method as in Equation 3.7 was used.

Calculation using p-value If a study reported p-values only. We determined
the corresponding t-statistic and calculated the standard error for a recalcu-
lated estimate using the t-statistic. This approach was used in the study by
Karaivanov et al. (2021).

Calculation using confidence intervals For studies reporting only confidence
intervals, we calculated the standard error according to the following equation
for 95% confidence intervals.

se(risk) = (CIupper − CIlower)
3.92

(3.8)

The upper and lower bounds of confidence first needed to be adjusted. If the
method was used for calculating standard errors of a study reporting for exam-
ple a percentage increase, the confidence interval bounds needed to be adjusted
at first according to the Equation 3.4. Similarly for other transformations.

3.4 Data description
After the data from studies presented in Table 3.1 were collected, we carefully
inspected the data-set and paid specific attention to the outliers. We excluded
two observations from the analysis. Both of these observations were collected
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from the study by Piapan et al. (2020). Since Piapan et al. (2020) reported
only two estimates, the number of studies was reduced to 43. After careful
inspection, we winsorized the effects and their standard errors at 1% level.
Figure 3.2 shows the distribution by effect magnitude. The estimates of the

Figure 3.2: Effect distribution

Note: The figure shows the distribution by effect magnitude using winsorized
data. The outliers were excluded from the figure but were included in the calcu-
lation. The solid vertical line represents 0 intercept. The dotted vertical line is a
simple mean and the dashed vertical line represents the weighted mean.

effect of face masks on covid transmission range from −0.956 to 0.33 with a
mean value of −0.268 and median value of −0.2. Additionally, we calculated the
mean weighted by the inverse number of observations per study which equals to
−0.425. The simple mean is higher because studies presenting a higher number
of estimates of higher values drive the mean closer to zero. Additionally, the
mean value is higher than the median which would suggest a skewed dataset.
Chu et al. (2020) report the effect as RR = 0.34 which can be expressed as
risk = 0.66. This estimate is much higher that the mean and median values for
our collected effects. If we take into account, that even though Chu et al. (2020)
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included 44 studies in their meta-analysis, only 4 of them were focused on face
masks and on Covid-19, their estimates might not be accurate. It is important
to mention, that these are just initial remarks based on Figure 3.2 observation
and we cannot draw any conclusions yet. Figure 3.3 or forest plot displays the

Figure 3.3: Risk of Covid-19 infection across included studies

Note: The figure shows the effect box plot for every included study calculated
using winsorized data. The solid vertical line represents 0 intercept. The dotted
vertical line is a simple mean and the dashed vertical line represents the weighted
mean.

estimates across studies. Each row represents the individual study included
in the meta-analysis. For each study, we present the box plot. Where boxes
represent the inter-quartile range (from 25% to 75%). The dots are outliers.
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It is apparent from the figure, that estimates vary not only across studies but
also within individual studies.

Table 3.2 shows the mean effect of face masks on Covid-19 transmission
for selected sub-samples. Some studies or some estimates of studies had their
control group protected by lower levels of face masks (respirators for the treat-
ment group and surgical masks for the control group). For these estimates,
the mean suggests that wearing a mask might reduce the risk of infection by
a lower amount compared to the estimates, where the control group was not
protected at all. That would be reasonable since masks might have reduced the
risk of transmission in the control group as well. For respirators, we can ob-
serve a lower conditional mean risk of infection compared to the surgical masks.
For panel data, we can see a higher mean likewise. This could be caused by
controlling for other social distancing policies. Additionally the policy control
variable and panel data variable are highly correlated.

Interestingly, for estimates with an average minimum temperature during
the study period higher or equal to 15°C (warm areas) the mean effect of masks
on Covid-19 transmission is higher compared to the mean of estimates where
the average maximum temperature was lower or equal to 15°C (cold areas)

For the estimates computing their effect from data only we calculated their
simple and weighted mean in order to check whether the effect was not overesti-
mated (masks would be too effective) in these cases. Both means were closer to
zero than the means for the rest of the sample. Additionally, these studies were
included in the meta-analysis by Chu et al. (2020). The estimates also include
results from studies with double zero events, which are highly suggested to be
included in a meta-analysis Xiao et al. (2021). What is more, they represent
only around 5% of all observations, thus we decided to include them in the
data-set.

Lastly, with available vaccination, the mean is lower. Which is caused by
the majority of studies not controlling for vaccination. Thus the seemingly
more protective effect of face masks might be probably caused by omitting the
vaccination variables from models of primary studies. These are again only
observations based on simple descriptive statistics, which cannot be used to
draw any conclusions.
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Table 3.2: Conditional means

Mean 95% CI n
Full sample -0.268 (-0.805, 0.269) 256
Methodology and effect type
RR -0.165 (-0.681, 0.351) 56
OR -0.425 (-1.062, 0.211) 96
change -0.158 (-0.320, 0.003) 82
effect from data -0.160 (-0.938, 0.618) 15
regression -0.266 (-0.767, 0.235) 238
logit -0.426 (-1.058, 0.207) 93
cox -0.240 (-0.524, 0.043) 25
Study set-up
personal controls -0.286 (-0.844, 0.273) 104
policy controls -0.191 (-0.481, 0.098) 94
healthcare -0.306 (-0.966, 0.354) 68
AGP -0.379 (-1.044, 0.287) 34
vaccination available -0.384 (-0.910, 0.143) 31
Mask variables
mask frequency = all -0.312 (-0.864, 0.239) 68
mask frequency = some -0.126 (-0.468, 0.216) 41
respirator -0.294 (-0.909, 0.321) 46
surgical mask -0.213 (-0.698, 0.272) 32
control masked = 1 -0.174 (-0.601, 0.253) 35
control masked = 0 -0.283 (-0.830, 0.265) 221
Data characteristics
panel data -0.160 (-0.411, 0.091) 164
individual level -0.315 (-0.932, 0.301) 172
random trial -0.148 (-0.428, 0.131) 42
data year = 2020 -0.276 (-0.830, 0.279) 189
data year = 2021 -0.245 (-0.730, 0.240) 67
Country characteristics
China -0.637 (-1.164, -0.110) 15
Bangladesh -0.151 (-0.562, 0.261) 36
Switzerland -0.175 (-0.549, 0.199) 39
USA -0.186 (-0.735, 0.363) 68
temperature min ≥ 15°C -0.276 (-0.786, 0.234) 108
temperature max ≤ 15°C -0.491 (-0.989, 0.007) 16

Note: The table displays conditional means of the effect of face masks on
Covid-19 transmission and corresponding confidence intervals for selected
sub-samples. n = sub-sample size



Chapter 4

Publication Bias

In this chapter, we are going to focus on the examination of publication bias.
Publication bias is a phenomenon occurring with a preference of researchers
for significant effects (Stanley 2005). To describe in greater detail, publication
bias occurs when the results of published papers are not a representative sample
of all the research conducted on a certain topic. With the increasing number
of empirical research, the bias present in the published literature is becoming
more severe (Rothstein et al. 2005). According to Gerber et al. (2008) there are
several reasons for publication bias to occur. Firstly, the probability of a paper
being published is often determined by whether or not the results of a paper
are significant. As a result, researchers would be less likely to submit a paper
with non-significant results. This is also known as the file drawer problem: the
paper remains in the researchers’ drawer.

As a result, researchers might be intentionally adjusting the data-sets or
creating sub-samples in order to achieve the desired statistical significance. Ad-
ditionally, researchers might be prone to using different specifications, which
might result in misspecified models with biased results. What is more, the sub-
sequent bias is present not only in individual studies but in the literature as a
whole. These practices are known as p-hacking (Brodeur et al. 2018). The prac-
tice is indeed present in the published literature. Brodeur et al. (2016) found
evidence for missing published papers with p-values just above the significance
threshold of 0.05.

With the use of meta-regression analysis, publication bias and p-hacking
have been discovered in the literature on different spheres, among others in
economics, social sciences, and medical research (Stanley 2005). Taking into
account, that publication bias in medical and related research might have se-
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rious consequences for the health of individuals. Some studies, especially at
the beginning of the Covid-19 pandemic reported a huge protective ability of
face masks (Doung-Ngern et al. 2020; Chen et al. 2020; Maltezou et al. 2020;
Wang et al. 2020a;c). Combined with uncertainty about the reproduction num-
ber of the different variants of Covid-19, populations relying too much on the
protective abilities of face masks could have had fatal consequences.

Since some meta-analyses were already published on the effect of face masks
on Covid transmission, we can first have a look at their results regarding the
publication bias. In the meta-analysis published in The Lancet, researchers
identified no indication of strong publication bias (Chu et al. 2020). On the
other hand, the main method used was a graphical Funnel plot approach. No
results of more rigorous methods for publication bias detection were reported.
The meta-analysis conducted by Li et al. (2021b) reported no signs of publica-
tion bias. The publication bias was examined using the Funnel plot and two
additional statistical tests. Nevertheless, with only six included studies, the
credibility of these results should be in question. Similarly, Liang et al. (2020)
applied the same methods with analogous results. Schoberer et al. (2022) ad-
dressed the risk of bias in individual primary studies by employing Newcastle
Ottawa Scale only. No other tests whether graphical or not were performed.

The importance of searching for publication bias on the effect of face masks
on Covid-19 transmission has already been outlined. Additionally, from the
cited literature, it is obvious that the evaluation of publication bias would
benefit from more rigorous methods. The methods that were used in this
thesis take inspiration from the ones used by Gechert et al. (2022); Havranek
et al. (2021) in their meta-analyses.

4.1 Graphical method: Funnel plot
The first method we employ is the graphical method for publication bias detec-
tion called Funnel plot. The funnel plot was initially described by Egger et al.
(1997). The graphical test is highly popular among researchers. The majority
of meta-analyses include the Funnel plot in the examination of publication bias.
The plot is constructed as follows. The horizontal axis plots the estimates of
the risk of Covid-19 infection associated with mask-wearing versus their accu-
racy (the inverse of standard errors) on the vertical axis. The estimates with
higher precision should be located around the true value of the risk. On the
other hand, the lower the precision of the estimates, the wider the distribution.
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In our case, it is obvious from Figure 4.1, that the less precise estimates are
located close to the horizontal axis. The funnel plot’s ability to graphically de-
tect publication bias lies in the following: If the publication bias is not present
in the sample, the funnel should appear symmetrical. In a case of publication
bias, the funnel will no longer be symmetrical and skewness and asymmetry
will be introduced. Observing the Funnel plot of the effects of face masks on

Figure 4.1: Funnel plot

Note: The figure shows the funnel plot as presented by Egger et al. (1997).
Outliers were excluded from the figure.

Covid-19 transmission and their corresponding precision - Figure 4.1, one can
notice the estimates with the highest precision are centred around a negative
value relatively close to zero. On the right side of the Funnel plot, we can
observe missing values, compared to the left side of the funnel, which only has
estimates with low precision. Such a pattern could suggest possible publication
bias. The interesting fact, that we consider important to mention, is that the
mean and weighted mean values of the effect are both negative and noticeably
different from zero, which is caused by a large number of studies with negative
effects of higher magnitude. Generally, the true effect being negative would be
in line with the existing theory about mask usage (Ueki et al. 2020; Wilson
et al. 2021) and why populations were advised for their use in the first place.
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4.2 Linear methods
Apart from the Funnel plot, there exist more precise tests for publication
bias. We first apply the numerical methods of Funnel Asymmetry Test (FAT)-
Precision Effect Test (PET) according to methodology suggested by Stanley
(2005). FAT-PET is designed in the following way. If the publication bias is
not present in the collected estimates, the risk of Covid-19 infection associated
with mask-wearing should not be correlated with the standard errors of the
risk estimates. The relationship could be induced by studies with less precise
estimates adjusting their specifications and/or sample sizes in order to achieve
significant results. The dependency of the effects on their standard errors can
be formally described according to the Equation 4.1.

riskij = β0 + β1 ∗ (SErisk)ij + uij (4.1)

Where riskij represents the i-th estimate of risk from the j-th study. The β0

stands for the effect beyond bias, hence the effect corrected for the publication
bias. (SErisk)ij is the standard error of the i-th estimate of risk from the j-th
study. The β1 represents the estimate of the magnitude of publication bias
and uij is the error term. As presented in Table 4.1 we used five different

Table 4.1: Publication bias: linear methods

OLS FE BE Study Precision
SE 0.074* -0.436*** -0.306 0.040 -0.436
Publication bias (0.038) (0.068) (0.222) (0.038) (2.104)
Constant -0.282*** -0.187*** -0.243*** -0.197*** -0.187
Effect beyond bias (0.018) (0.001) (0.027) (0.008) (0.158)
Studies 43 43 43 43 43
Observations 256 256 256 256 256
Note: The table displays linear methods for publication bias. OLS = Ordinary Least

Squares, FE = Fixed Effects, BE = Between Effects, Study = estimates were weighted by
the inverse number of observations reported per study, Precision = estimates were weighted
by the inverse of standard errors. Standard errors are reported in parentheses. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01

methods to estimate the Equation 4.1. The estimates from the Ordinary Least
Squares (OLS) are presented in the first column of the table. The estimated
publication bias seems to be quite small and significant only at 10%. The Fixed
Effects (FE) model, which was implemented in order to account for the different
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characteristics on the study level, is the only model showing a highly significant
presence of publication bias. The other three methods do not yield a significant
estimate of publication bias. The Between Effects (BE) model accounted for
between-study variance. The last two columns of the table present models
weighted by the inverse number of estimates reported per study and the inverse
of the variance as in Ioannidis et al. (2017). On the other hand, the estimates of
the effect beyond bias are all negative and highly statistically significant in four
out of five presented models. The estimation of all models was repeated using
the sub-sample of data where effects calculated from data were excluded. The
significance of estimates did not change. The table is presented in Appendix A.

4.3 Non-linear methods
In this section, we employ non-linear methods for the examination of publica-
tion bias. The non-linear methods are allowing for a non-linear relationship be-
tween effects and standard errors. We implemented six methods for estimating
the effect beyond bias and two of these methods to estimate the publication
bias. Firstly, we estimate the endogenous kink model as proposed by Bom
& Rachinger (2019). The authors developed a meta-regression technique for
publication bias correction that locates a kink in the distribution of standard
errors. The non-linear method features a horizontal part and a sloped line
that together create the kink. The kink in the standard errors’ distribution
is chosen to that publication bias is not probable beneath the distinguishing
value. The publication bias estimate is again not significant. Next, we esti-
mate a Hierarchical Bayes model according to Allenby & Rossi (2006). As we
already established, the estimates vary both within and between the studies.
Thus, with the use of Bayesian statistics, the model utilises the variability of
estimates within individual studies and based on these differences determines
the weights assigned to each estimate. Similar to the previous method, the
publication bias estimate is not significant. Regarding the effect beyond bias,
the estimate is yielding a magnitude similar to the weighted mean of the effects.

Ioannidis et al. (2017) proposed a method of the Weighted Average of the
Adequately Powered (WAAP). The author suggests that a high portion of the
research especially in economics is from the statistical point of view not powered
enough. Based on the paper, the usual power is as low as 18%. As a result of
low power, the non-existent effects are being detected, which can lead to faulty
policy implications. To avoid this trap the author suggests, as apparent from
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the name of the method, including only the adequately powered observations
and running a weighted meta-regression only on this sub-sample. As in the
original paper, we chose the statistical level of 5% and the bower bias level
of 80%. As a result, only 75 observations remained in the sample. The effect
beyond bias coefficient is significant and similar to the estimates from the linear
methods.

Table 4.2: Publication bias: non-linear methods

Effect beyond bias Publication bias
Endogenous Kink -0.187*** -0.436

(Bom & Rachinger 2019) (0.024) (1.315)
Hierarchical Bayes -0.440*** 0.180

(Allenby & Rossi 2006) (0.097) (0.304)
WAAP -0.223***

(Ioannidis et al. 2017) (0.030)
Stem-based method -0.092

(Furukawa 2019) (0.110)
Stem-based method sub-sample -0.017

(Furukawa 2019) (0.041)
TOP10 -0.094*

(Stanley et al. 2010) (0.035)
Selection model -0.240***

(Andrews & Kasy 2019) ( 0.032)
Note: The table displays non-linear methods for publication bias. WAAP = Weighted

Average of the Adequately Powered, TOP10 = Top 10 Method, Stem-based method sub-
sample = Stem-based method performed on data where observations with high negative
effects (effect < -0.9) and high precision were removed, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The Stem-based method focuses only on the most precise estimates, the
stem of the funnel. The technique as proposed by Furukawa (2019) uses the
Equation 4.2 to determine which observations to use in the estimation. The
idea is that the bias would decrease as the variance increases (given the higher
number of observations).

min
n

V ar(b2
0̂, σ0) + Bias˜ 2(bn

0̂ , b0̂) subject to V arˆ (bi | bn
0̂ ) = σ2

0 (4.2)

The presented equation is the analogue to the similar equation for the mean
square error minimization, which would require the knowledge of the unknown
true mean b0. More details are presented in the original paper. We estimated
the stem method for the full sample, but as apparent from Figure 4.2, the
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(a) Full sample (b) Sub-sample

Figure 4.2: Stem-based method

cumulative estimate at the top of the stem was driven by an effect with high
negative magnitude and precision. Additionally, we performed the estimation
again to see the behaviour of the estimate. The stem-based method was esti-
mated again but excluded the mentioned observation from the sample. After
this procedure, the estimate got closer to zero, but its significance did not
change. Next, we employ the TOP10 method as discussed by Stanley et al.
(2010). It uses a similar principle to the last described method. The author
suggests that using only the best 10% of the data can improve the statistical
estimation and reduces the publication selection bias, however contradictory
to the statistical theory this might be. Nevertheless, the reason for this is that
90% of the data are not representative because of the publication bias. Hence,
the remaining 10% of the data should be a better base for efficiently estimating
the true effect. The estimated effect beyond bias is significant only at the 10%
level and slightly lower than the estimates produced by the other methods.
The trustworthiness of the estimate should be in question because of the low
number of observations.

The last method for non-linear approaches is the Selection model (Andrews
& Kasy 2019). As presented by the authors, the non-parametrically determined
probability of a study being published is a function of its results. The proba-
bility can be applied in the correction of publication bias. For the purpose of
this thesis, we used a 5% significance level and the t-distribution. Results of
all methods are presented in Table 4.2.
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4.4 Methods allowing for endogeneity
In the last section of this chapter, we discuss the methods allowing for endo-
geneity. Until now, the methods we discussed assumed that the standard errors
are exogenous. The issue with this assumption is the following. The standard
errors and the effects could be correlated not only because of the presence of
publication bias but as a result of unobserved heterogeneity or measurement
errors. We suggest this would be the case for the effects and the standard errors
in the collected data-set. As a result of the different methodological approaches
used in the primary studies, we expect that some of the methods yield system-
atically higher standard errors. Table 4.3 shows the results of two methods:
Instrumental Variable (IV) estimation and p-uniform* method. The inverse
of the square root of the number of observations in primary studies was used
as an IV for standard errors (Gechert et al. 2022). Secondly, the p-uniform*
method developed by van Aert & Van Assen (2021) found the presence of pub-
lication bias significant. The effect beyond bias is closer to the weighted mean
of the studies compared to the other methods. P-uniform* was estimated us-
ing the method of moments. The idea behind the method is the following.
The p-values should be distributed uniformly. However, the publication bias
is affecting their distribution. Under publication bias, the significant estimates
just below the threshold are over-represented, on the other hand, the estimates
with p-values just above the 5% level are under-represented. The goal of the p-
uniform* method is to find a value around which the p-values follow a uniform
distribution.

Table 4.3: Publication bias: methods allowing for endogeneity

IV p-uniform*
Publication bias -0.249 0.148***

(0.191) (0.068)
Effect beyond bias -0.221*** -0.422***

(0.028) (0.111)
studies 43 43
number of observations 256 256
Note: The table displays methods for publication bias that

allow for endogeneity. IV = regression taking the inverse
of the square root of the number of observations as an in-
strument for the standard error, p-uniform* was estimated
using the method of moments, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Let us present the last method utilised in this thesis, allowing for endo-
geneity in standard errors. Caliper test as described by Gerber et al. (2008).
Authors suggest that publication bias is the cause of possible jumps in the dis-
tribution of t-statistics at significant thresholds of 1.96 and -1.96. Additionally,
it is possible to evaluate the behaviour at the 0 threshold. Figure 4.3 shows the
distribution of t-statistics for collected effects of face masks on Covid-19 trans-
mission. Looking at the -1.96 threshold we can see a jump in the distribution,
with more observations just above the threshold. At 1.96 we cannot observe
any t-statistics. Since the majority of our effects are negative, so are the cor-
responding t-statistics, resulting in no values at this threshold. At 0 we do not
observe any major jumps in the distribution. However, only a simple glance at
the figure suggests that there are more effects in the (−1.96, 0) interval than in
the (0, 1.96) one.

Figure 4.3: t-statistics distribution

Note: The figure shows the distribution of t-statistics. The solid vertical lines
display -1.96 and 0 thresholds. The dashed vertical line represents the simple
mean of t-statistics. The outliers were excluded from the figure but remained in
the calculations.

The Caliper test as compared to the previous methods does not assume
any relationship between effects and standard errors. The idea is to compare
the number of t-statistics above and below the significance threshold to detect
whether publication bias is present. Table 4.4 shows the performed Caliper
tests for -1.96 and 0 thresholds for presented Caliper widths. We would like to
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note that as a result of the sample size the Caliper widths were set quite wide
to have enough observations in the given Calipers. Since the Caliper of the
width 0.2 contains only 9 t-statistics we would rather not interpret the results
of the test. For Caliper widths 0.5, 0.6, 0.7 and 0.8 significant results were
obtained. The value 0.684 for 0.5 Caliper width can be interpreted as follows.
For interval (-2.21, -1,71) there are 38 t-statistics and 68.4% of them are below
the -1.96 threshold. The percentage is even higher for wider Calipers. For the
0 threshold, we do not detect any significant results.

Table 4.4: Publication bias: Caliper tests

Threshold = -1.96 n Threshold = 0 n
Caliper width = 0.2 0.778* 9

(0.147)
Caliper width = 0.3 0.632 19

(0.114)
Caliper width = 0.4 0.583 24

(0.103)
Caliper width = 0.5 0.684** 38

(0.076)
Caliper width = 0.6 0.745*** 51 0.615 13

(0.062) (0.140)
Caliper width = 0.7 0.724*** 58 0.556 18

(0.059) (0.121)
Caliper width = 0.8 0.730*** 63 0.579 19

(0.056) (0.116)
Note: The table displays the results of the Caliper test as described by Gerber

et al. (2008) for presented Caliper widths. Caliper width of 0.1 did not contain
enough observations even for the -1.96 threshold, standard errors are presented in
parentheses, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

To summarise, we found significant evidence for publication bias only in
some of the performed tests. For tests that identified the significant presence of
publication bias in the literature, its magnitude was considered mild. According
to Doucouliagos & Stanley (2013) the estimate of |β1̂| < 1 is considered to be
mild evidence of publication bias. These findings are in line with the ones
by Chu et al. (2020). The effect beyond bias was estimated to be negative
and statistically significant for almost all of the methods. In addition, we did
not detect any positive significant estimates of the effect beyond bias. As a
result, we believe that the true effect is negative, but its magnitude is varying.
The reasons why the effects are different not only among studies but within
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individual studies too need to be evaluated. We will focus on these reasons in
the following chapter.



Chapter 5

Heterogeneity

As already established in the previous chapters, the estimates of the effect of
face masks on Covid transmission vary. The effect is very likely driven by
different factors. As one was able to observe during the pandemic of Covid-19,
in different countries the virus was spreading at varying paces. Thus we expect
to find country variables affecting the risk of infection. Additionally, among
others, the set-up, quality, and estimation procedures of the included were not
the same. In this chapter, we focus our attention on the factors influencing the
effect of face masks on Covid transmission.

5.1 Coding of variables
During the data collection process, many variables were collected. To provide
the reader with a better understanding of how the studies differ, we explain
the rationale behind the individual variables. The variables were divided into
categories: Methodology and effect type, Study set-up, Data characteristics,
Country and individual characteristics, and Publication characteristics.

Methodology and effect type The methods in primary studies used to esti-
mate the effect of face masks on Covid-19 transmission differ. Nevertheless, as
already discussed in Chapter 3 collected estimates were recalculated to the risk
of infection. To account for the possibility of different methods producing sys-
tematically higher or lower estimates, we collected the corresponding dummy
variables. The majority of estimates were obtained by the implementation of
a certain type of regression. These estimates account for almost 95% of all
collected effects. Logistic regression was used in 22 studies. Additionally, re-
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gression with a logit link was the most common method for estimating OR as
seen in Andrejko et al. (2022); Bundgaard et al. (2021); Davido et al. (2021);
Doung-Ngern et al. (2020); Gonçalves et al. (2021); Haller et al. (2022) and
more. The last author additionally used Cox regression to estimate the effects.
Cox regression was also the method implemented by Loeb et al. (2022); Nguyen
et al. (2020). As already apparent from previous chapters, another commonly
reported effect type is RR. In the majority of studies, the RR was estimated
using regression (Loeb et al. 2022; Martischang et al. 2022; Sugimura et al.
2021). For instance, Abaluck et al. (2022) estimated weighted OLS. On the
other hand, some of the effects (around 5%) were not estimated by regression
but calculated from the data according to the equations in Subsection 2.3.2
(Fawcett et al. 2023; Fletcher et al. 2022; Heinzerling et al. 2020; Pienthong
et al. 2022; van den Broek-Altenburg et al. 2021). Lastly, we included a dummy
variable to distinguish the studies reporting the absolute and relative change in
Covid-19 cases (studies by Budzyn et al. (2021) and Van Dyke et al. (2020)).
The variable was later joined with a dummy variable for percentage increase
(studies by Guy Jr et al. (2021) and Joo et al. (2021)) and a dummy for regres-
sion coefficient and corresponding recalculation as seen Equation 3.6 (studies
by Karaivanov et al. (2021) and Chernozhukov et al. (2021)). The reason for
joining the three variables is the similarity in the approach of the primary
studies which estimated the types of effects.

Study set-up Regarding the estimation procedure and models of the primary
studies, we would consider it beneficial to include a set of dummy variables to
code the control variables included in the models. Unfortunately, the vast ma-
jority of primary studies included in the meta-analysis as well as other studies
that we encountered during the identification procedure are of low transparency.
The studies do not include the full list of variables included in their models.
Because of this reason, we decided to collect at least two dummy variables
representing controlling for personal and policy characteristics. Personal char-
acteristics represent for example age, education, number of children, number of
household members and occupation. The policy controls variable is designed to
represent the estimates, that were obtained from models controlling for other
social distancing policies. These policies might include stay-at-home orders,
restrictions on public gatherings, school closures, et cetera. Brooks-Pollock
et al. (2021) suggest that these variables influence the transmission of Covid-
19. Thus, their omission from the models would result in biased estimates of
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the effect of face masks. What is more, controlling for vaccination in the models
of primary studies was almost non-existent. The first reason could be that the
studies were conducted before the vaccination was available in the given region.
However, even the studies carried out during the periods when vaccination was
already available failed to control for the vaccination. To account for possibly
different values of the estimates, a dummy variable indicating the availability
of vaccination in a given region and time period was coded.

The primary studies could be divided into two categories: the ones per-
formed in a healthcare environment (among others Fletcher et al. (2022); Guo
et al. (2020a); Wang et al. (2020a); Heinzerling et al. (2020)) and the ones in a
non-healthcare environment such as Karaivanov et al. (2021); Toyokawa et al.
(2022); Wang et al. (2020d) and others. Additionally, the healthcare person-
nel performing Aerosol Generating Procedures (AGP) could be at higher risk
of Covid-19 infection given the transmission route of Covid-19 as discussed in
Section 2.1. The corresponding dummy variables were coded. We also coded
a dummy variable for studies that used a lower grade of protection as their
control or base group. Such a practice would likely produce different estimates
compared to having non-masked individuals as control.

Some studies were of randomised clinical trial design (Abaluck et al. 2022;
Bundgaard et al. 2021; Loeb et al. 2022). The difference is that the random trial
studies were properly randomized and the control and treatment groups should
be comparable in terms of the characteristics of included subjects (National
Cancer Institute 2022d). Consequently, estimates from these studies should be
close to the true effect. Lastly, the studies included in the meta-analysis were
performed either on an individual level where the outcome for every individual
was determined, or on the macro level reporting estimates per 100,000 subjects.
Macro estimates were collected from the studies by Chernozhukov et al. (2021);
Budzyn et al. (2021); Guy Jr et al. (2021); Jehn et al. (2021); Joo et al. (2021);
Karaivanov et al. (2021); Mitze et al. (2020); Van Dyke et al. (2020).

Data characteristics The collected effect could be influenced by the data
structure. We coded a dummy variable panel data, to distinguish the estimates
obtained from studies whose dataset was of the panel structure, for example,
Abaluck et al. (2022); Budzyn et al. (2021); Bundgaard et al. (2021); Dörr et al.
(2022); Guy Jr et al. (2021); Nguyen et al. (2020) and 8 more. Following the
reporting guidelines by Havránek et al. (2020) we collected the variables for the
sample size of a study and the average year in which the study was performed.
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Since Covid-19 is relatively a new disease, we included 32 studies conducted in
2020 and 11 in 2021.

Country and individual characteristics One of the advantages of the meta-
analysis is that we are able to collect country-level variables and estimate their
effect on the risk of Covid-19 infection. According to World Health Organisa-
tion (2022c) the number of Covid-19 cases vary for different countries. Thus,
we consider it essential to collect also the country-level variables. The variables
we collected were the geographical latitude of the region where the study was
conducted, and the minimum and maximum average temperatures. The tem-
perature variables were determined based on the area and time period of the
study. As suggested by Shi et al. (2020) and Notari (2021) the temperature is
a fundamental factor in the dynamics of Covid-19 transmission and thus deter-
mines the effect of face masks on Covid-19 transmission as well. In addition to
country-level variables, we included a variable representing the average age of
the subjects of a study. It is important to mention, that the majority of studies
reported the average age of subjects to be around 40 years. Abaluck et al.
(2022) and Joo et al. (2021) estimated the effect also for sub-samples where
the average age was more than 65 years. Six such estimates were collected.
The average age of 12 years was reported by tree studies (Budzyn et al. 2021;
Jehn et al. 2021; Nelson et al. 2021). From these studies, three estimates were
collected. Lastly, we collected eleven estimates with the average age of subjects
around 30 (Abaluck et al. 2022; Chen et al. 2020; Pienthong et al. 2022; Payne
et al. 2020; Sharif et al. 2021).

Publication characteristics The publication characteristics were collected in
line with Havránek et al. (2020). Namely, we collected a dummy variable
for studies published in a peer-reviewed journal. The variable could possibly
have an influence on the effects. Since peer-reviewed journals publish studies
with higher quality and validity (Kelly et al. 2014). We also coded a variable
reflecting the impact factor of a journal in which a study was published. Un-
fortunately, we were not able to use the RePEc factor, since the majority of
journals were not of an economic nature. As a substitute, we used Journal
Citation Reports (JCR) database which also includes medical journals. Next,
we collected a variable on the year of the publication of a study and the num-
ber of citations in Google Scholar. The number of citations could be a factor
determining the quality of a study.
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Table 5.1: Description of variables

Variable Description Mean SD
effect the risk of Covid-19 infection -0.268 0.274
standard error standard error of the risk of Covid-19 infection 0.187 0.470
Methodology and effect type

RR =1 if a study reports the estimates as RR 0.219 0.414
OR =1 if a study reports the estimates as OR 0.375 0.485
change =1 if a study reports the estimates as a change to

identified Covid-19 cases
0.320 0.468

effect from data =1 if the effect is calculated from data 0.059 0.235
regression =1 if the effect is estimated using any kind of

regression
0.930 0.256

logit =1 if the effect is estimated using regression with
logit link

0.363 0.482

cox =1 if the effect is estimated using Cox regression 0.098 0.297
Study set-up

personal controls =1 if a study controlled for personal characteristics
in its model

0.406 0.492

policy controls =1 if a study controlled for other social distancing
policies in its model

0.367 0.483

healthcare =1 if a study was conducted in a healthcare setting 0.266 0.443
AGP =1 if subjects were performing AGP 0.133 0.340
vaccination available =1 if vaccination was available during the period

and country in which a study was performed
0.121 0.327

random trial =1 if a study is of random trial design 0.164 0.371
individual level =1 if a study was performed on an individual level 0.672 0.470
control masked =1 if the control group was using a lower grade of

mask
0.137 0.344

Data characteristics
panel data =1 if the data is of panel structure 0.641 0.481
sample size logarithm of a sample size of a study 7.904 2.060
year data the year in which a study was performed (average

for more years)
2020.262 0.440

Country and individual characteristics
min temperature average minimum temperature for a study’s time

period and area
3.555 10.559

max temperature average maximum temperature for a study’s time
period and area

27.012 5.772

latitude logarithm of latitude of study’s area 3.627 0.429
age logarithm of the average age of study’s subjects 3.684 0.211
Publication characteristics

peer review =1 if published in peer-reviewed journal 0.992 0.088
impact logarithm of the impact factor of a journal 2.348 1.588
year publication logarithm of the year in which a study was published 2021.039 0.619
citations logarithm of the number of citations on Google

Scholar
4.262 1.395

Note: The table displays the mean and standard deviation of variables eligible for use in
meta-regressions, AGP = Aerosol Generating Procedure
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Table 5.1 displays the mean, standard deviation and a description of de-
scribed variables that could be causing the different values of the collected
effects. The year data and year publication variables were not shown in the
logarithmic scale because of low variability in these variables. The temperature
variables are also not shown in the logarithmic scale. The reason is the negative
values in the variable minimum temperature.

5.2 Estimation
Now that we have characterised potential drivers behind the heterogeneity of
the effects, we follow with the estimation. Since many of the collected vari-
ables were correlated, we needed to exclude some of them from the analysis
not to have multicollinearity present in the models. To decide which of the
correlated variables to remove, we proceed as follows. Firstly, we calculated
the Variance Inflation Factor (VIF) scores for all of the variables. The variables
with VIF score below 10 were selected for the analysis. Next, the correlation
coefficients were calculated among all of the variables. Additional variables
were removed based on which variables were already selected for the analysis
and their corresponding correlation coefficients. After the removal, VIF scores
were calculated again and the procedure was repeated two times. Additionally,
dummy variables impact factor and random trial were highly correlated. We
decided to remove the random trial variable and prioritize including the impact
factor in the model. Variables minimum temperature and latitude were cor-
related as well. Since the maximum temperature variable was not correlated
with the latitude, we decided to include the latitude in the model and remove
the minimum temperature variable. The maximum temperature in contrast to
the minimum temperature variable did not contain any negative values, hence
it was adjusted to the logarithmic scale. Lastly, the variable publication year
and data year did not have almost any variation, so we excluded them. The
VIF scores were large too. As a result, 8 variables were removed and 18 were
selected for the analysis. The selected variables together with their VIF scores
can be seen in Table 5.2. To estimate the effect of the selected variables on the
risk of Covid-19 transmission we could utilize the following equation.

riskij
ˆ = β0 +

18∑︂
l=1

βlXl,ij + γSE(riskij
ˆ ) + µij (5.1)
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Table 5.2: Variables and their VIF scores

Variable VIF

Standard error 2.55 Control masked 3.27
Risk ratio 5.29 Panel data 4.34
Effect from data 3.20 Sample size 3.74
Logit 6.53 Vaccination available 2.17
Cox 2.76 Max temperature 2.35
Personal controls 1.91 Latitude 3.01
Policy controls 4.38 Age 1.33
Healthcare 4.76 Impact 1.91
AGP 2.38 Citations 2.35

Where riskij
ˆ represents the i-th estimate of risk from the j-th study. β0 stands

for the effect beyond bias conditional on X. The estimate of β0 cannot be inter-
preted on its own. Xl,ij is the matrix of control variables listed in Table 5.2 with
their corresponding estimates βl. γ is the estimate of publication bias and µij

represents the error term. Unfortunately, it would be problematic to estimate
Equation 5.1 using OLS. The selected variables account for different settings
and methodological approaches of primary studies. It is not unlikely that the
inclusion of all variables into a single model would cause over-specification. On
the other hand, selecting only some of the variables would not be wise, be-
cause of the model uncertainty. Additionally, the results of such an estimation
would be likely biased and imprecise. If we were to estimate models with all of
the possible combinations of variables, the number of these models would be
218. As a solution, we selected the approach commonly used in meta-analyses,
Bayesian Model Averageing (BMA)(Havranek et al. 2018; Havranek & Sokolova
2020; Havranek et al. 2021; Gechert et al. 2022).

The idea behind the BMA is selecting the most appropriate subset of re-
gressors. To do so, each estimated model is assigned a score called Posterior
Model Probability (PMP) which is a representation of the model’s performance.
Next, the score called Posterior Inclusion probability (PIP) is assigned to a re-
gressor. PIP is calculated as a sum of all PMP for models where the given
regressor was included (Eicher et al. 2011; Steel 2020). Still, the number of all
possible specifications is large. Thus, it would not be feasible to estimate all
of the possible models. Hence, we use a Markov chain Monte Carlo (Madigan
et al. 1995) algorithm to select for estimation only those models from the model
space where PMP would be high. For BMA we need to specify the weight of the
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priors for each coefficient. This is referred to as g-prior (Havranek et al. 2018).
We set the g-prior to the common practice in meta-analyses a unit informa-
tion prior (Havranek et al. 2018). We use the unit information prior, meaning
the weights are set to give the prior the same importance as one individual
observation (Eicher et al. 2011; Havranek et al. 2018). In addition, we need
to choose the prior for the model probability. As a baseline, we selected two
approaches. The uniform model prior, which gives each model the same prior
probability and the dilution prior. The latter is more suitable when dealing
with potential collinearity. For small sample sizes - as is the case for this thesis,
the models are prone to suffer from collinearity. The dilution prior tackles the
issue by giving less weight to the models suffering from a lot of collinearity
(George et al. 2010). The robustness checks with different g-priors and model
priors are included in the appendices.

In addition to BMA we implement the Frequentist Model Averageing (FMA).
Following the practice of Gechert et al. (2022) we employ Mallow’s criteria as
weights (Hansen 2007). Analogously to the BMA, we need to subset the space
of all models to perform the estimation in a reasonable time. Since the Markov
chain Monte Carlo algorithm is not applicable for FMA, the orthogonalization of
the covariate space is used (Amini & Parmeter 2012). The results are presented
in Table 5.3, Figure 5.1 and Figure 5.2 show the graphical results of BMA

models.
The highest posterior probability inclusion can be seen for variables rep-

resenting the maximum average temperature and geographical latitude. The
coefficient for max temperature is positive, which can be interpreted as follows.
With increasing maximum temperature the protection provided by masks is
lower. This is probably caused by the lower transmission of Covid-19 during
summer periods (Shi et al. 2020). For latitude, the interpretation is the fol-
lowing: with increasing latitude, the masks are less effective. This would be
caused by lower temperatures for regions with higher latitudes. For variable
panel data, we got a positive estimate as well. The reason is that the panel
data variable was correlated with the random trial variable which was not in-
cluded in the model. The reasoning would be that these estimates are higher
because the panel structure of the data would likely decrease the probability
of estimating the effect at a non-representative point in the time. As expected,
the healthcare variable has also a positive effect. Meaning that the masks are
less protective in the healthcare environment because healthcare professionals
are in contact with infected individuals.
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Figure 5.1: BMA with a uniform model prior and unit information
g-prior

Note: The figure shows the Bayesian Model Averaging with the uniform model
prior and unit information g-prior. The response variable is the risk of Covid-19
infection. The horizontal axis represents the cumulative posterior model proba-
bility. The regressors are ordered in descending order based on their posterior
inclusion probabilities. The included regressors with positive signs are displayed
in blue (dark in grayscale) colour and with negative signs in red (light in grayscale)
colour. The Regressors not included in the model are left without any colour.

Additionally, the AGP variable has a negative effect. According to the
present author, it can be interpreted as follows: using a face mask during
procedures that generate aerosols is essential for decreasing the risk of infec-
tion. The risk estimated in the form of RR seems to be systematically higher
(lower protection of masks). Lastly, the posterior inclusion probability for the
standard error is just above the 0.5 bound for BMA with the uniform prior. For
BMA with the dilution prior standard error did not cross the 0.5 bound.

Moreover, to provide an explanation of posterior inclusion probability and
its meaning, we would like to present the following scale by Kass & Raftery
(1995):
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• PIP ∈ [0.5, 0.75) - week evidence

• PIP ∈ [0.75, 0.9) - positive effect

• PIP ∈ [0.9, 0.99) - strong effect

• PIP ∈ [0.99, 1) - decisive effect

Thus, the posterior inclusion probability can be considered analogous to the
statistical significance of a variable. As apparent from the Table 5.3 the results

Figure 5.2: BMA with a dilution model prior and unit information
g-prior

Note: The figure shows the Bayesian Model Averaging with the dilution model
prior and unit information g-prior. The response variable is the risk of Covid-19
infection. The horizontal axis represents the cumulative posterior model proba-
bility. The regressors are ordered in descending order based on their posterior
inclusion probabilities. The included regressors with positive signs are displayed
in blue (dark in grayscale) colour and with negative signs in red (light in grayscale)
colour. The Regressors not included in the model are left without any colour.

of all averaging methods are comparable. In addition to the already presented
models, we performed BMA with different g-priors and model priors. The reader



5. Heterogeneity 51

can access them in Appendix C. Furthermore, Figure 5.3 graphically compares
the posterior inclusion probabilities of all variables among the four performed
BMA models. We can conclude that the posterior inclusion probabilities are
similar for all of the models and no apparent differences are present.

Figure 5.3: Comparison of Posterior Inclusion Probability for per-
formed BMA models

Note: The figure shows the Posterior Inclusion Probability on the vertical axis
for all regressors on the horizontal axis. UIP and Dilut = unit information g-
prior and dilution model prior, UIP and Uniform = unit information g-prior and
uniform model prior, BRIC and Random = benchmark g-prior and random theta
model prior, HQ and Random = log(n)3 g-prior and random theta model prior.



Chapter 6

The best practice estimate

After examination of publication bias and heterogeneity of the estimates, we
would like to derive the best practice estimate. The best practice estimate can
be seen as the bottom line of the meta-analysis.

Firstly, we consider it necessary to mention that deriving the best practice
estimate is a subjective process. The process reflects the opinions and knowl-
edge of the present author acquired by studying the papers included in this
thesis and corresponding literature. For the subjective best practice estimate
we set the values as follows. The standard error was set to zero because we
would like to know the value of the effect after correcting for publication bias.
The variable effect from data represents the effect calculated from data only.
We would prefer the effect to be estimated by a regression method. Thus we
set the variable equal to zero. The personal control and policy control dummy
variables were put equal to one because we would like to know the effect of
face masks after controlling for other policies and characteristics of subjects.
Since the large sample size provides precise estimates, the sample size was set
to the maximum value. The panel data structure would be also prioritised.
The impact factor and the number of citations were set to their maxima to de-
rive a best practice estimate of high trustworthiness. Also, the estimate should
reflect the current state, thus we set the vaccination availability to one. Lastly,
it would be preferred to have a control group not masked at all. The rest of
the variables were set to their means.

In addition to the subjective best practice estimate, we derive the estimates
of the prominent studies on the effect of face masks on Covid-19 transmission
corrected for publication bias and misspecifications. Firstly, we chose the study
by Karaivanov et al. (2021). The study was published in the Journal of Health
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Economics with over 130 citations in Google Scholar. The econometric models
estimated in the study are described in great detail together with all included
control variables. Compared to the majority of studies regarding the effect of
face masks on Covid-19 transmission, the study stands out for its transparency.
The derived best practice estimate equals −0.136.

Secondly, the best practice estimate was derived for the study by Bundgaard
et al. (2021). The reason for choosing the study is its random trial design with
proper randomisation of the control and treatment groups. The study was
published in the Annals of Internal Medicine with over 350 citations in Google
Scholar. The derived best practice estimate equals −0.129. The third study, for
which we derived the best practice estimate is the one by Nguyen et al. (2020).
In contrast to the first two chosen studies, this one is performed in a healthcare
setting. In addition, it was published in The Lancet Public Health journal and
has over 2,000 citations in Google Scholar. Its best practice estimate equals
−0.157. All of the best practice estimates derived for the studies are negative
including the upper bounds of their 95% confidence intervals (Table 6.1).

Table 6.1: Best practice estimates

Study Best practice estimate 95%CI
Subjective -0.141 (-0.308, 0.025)
Karaivanov et al. (2021) -0.136 (-0.161, -0.111)
Bundgaard et al. (2021) -0.129 (-0.229, -0.030)
Nguyen et al. (2020) -0.157 (-0.288, -0.025)



Chapter 7

Conclusion

One might think that the effect of face masks on Covid-19 transmission is
strictly a medical topic. However, we would like to emphasise its economic
consequences. The Covid-19 pandemic and related social-distancing measures
caused a sharp decline in the GDP of major economies (Jena et al. 2021).
Bagepally et al. (2021) suggest that the costs associated with the surgical mask-
wearing amount to almost one billion USD. Resulting in avoiding more than
1,100 per million cases of Covid-19. However, these costs depend on the value
of the true unbiased effect. In addition, the results of this thesis could be
important for policymakers.

This thesis performs a meta-analysis on the effect of face masks on Covid
transmission. We collected 258 estimates of the effect from 44 studies together
with corresponding variables on the methodology and effect type, study set-up,
data, country and individual, and publication characteristics. Together more
than 9,300 data points were collected. Firstly, we examine the publication bias
by employing many modern tests. The performed methods can be divided into
three categories. The linear methods for publication bias detection include
a graphical method: funnel plot (Egger et al. 1997) and numerical FAT-PET

with different weights. We performed non-linear tests such as endogenous kink
model (Bom & Rachinger 2019), stem-based method (Furukawa 2019), selection
model (Andrews & Kasy 2019) and more. The last category includes the meth-
ods allowing for endogeneity: FAT-PET with instrumental variable, p-uniform*
method and Caliper test. As a result, only some of the tests yielded significant
estimates of publication bias. Nevertheless, these significant estimates imply
only mild evidence of publication bias. Such a result is in line with Chu et al.
(2020). Apart from the detection of publication bias, these methods estimate
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the effect beyond bias. The estimate was statistically significant for almost all
of the methods ranging from −0.187 to −0.440 which can be interpreted as
face masks being effective in reducing the risk of Covid-19 infection by 18.7%
to 44%. In contrast, Chu et al. (2020) found a more protective effect of face
masks. Nevertheless, Jefferson et al. (2023) found the protective effect of masks
to be small to none.

In the second part of the thesis, we focused on model averaging to examine
the heterogeneity. We performed Frequentist and Bayesian model averaging
with different priors. The purpose of implementing the averaging method is to
identify the important variables influencing the effect of face masks on Covid-19
transmission. 18 out of 26 eligible variables were used for the averaging. We
found the following variables to have a positive effect on the risk of transmis-
sion associated with mask-wearing (decreasing the effectiveness of masks): the
temperature, geographical latitude, panel data structure, risk ratio estimate
type, healthcare set-up, standard error and age. Performing aerosol-generating
procedures have a negative effect on risk (increasing the effectiveness of masks).
Unfortunately, we cannot compare these results to the results of other authors,
since they used a different design for their meta-analyses and did not evaluate
the heterogeneity and its drivers in greater detail. Nevertheless, the results
are in line with what we expected to find. In addition, performed robustness
checks were yielding very similar outcomes. As a bottom line of this thesis, we
derived the best practice estimate representing the effect of prominent studies
after correcting for publication bias and misspecifications. The derived best
practice estimates ranged from −0.129 to −0.157. Meaning the masks reduce
the risk of transmission by 12.9% to 15.7% for the set-ups of these studies.

Lastly, we would like to present some drawbacks. In spite of including 44
primary studies in the meta-analysis, we were able to collect only above 250
estimates. In addition, we were not able to collect specific controls included in
the models of primary studies. This issue is caused by the low transparency of
medical studies. We at least collected dummy variables for policy and personal
characteristics controls. The two dummy variables were not statistically signifi-
cant. Lastly, an extension of this thesis could be performing a cost-effectiveness
analysis as presented by Bagepally et al. (2021) with the adjusted estimate of
the effect of face masks on Covid-19 transmission.
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Appendix A

Linear methods for publication
bias: extention

Table A.1: Publication bias: linear methods extention

OLS FE BE Study Precision
SE -0.193* -0.432*** -0.306 -0.255 -0.432
Publication bias (0.162) (0.001) (0.280) (0.175) (2.211)
Constant -0.253*** -0.187*** -0.243*** -0.170*** -0.187
Effect beyond bias (0.024) (0.001) (0.032) (0.015) (0.158)
Studies 43 43 43 43 43
Observations 256 256 256 256 256
Note: The table displays linear methods for publication bias. Estimated on sub-sample

that excluded estimates calculated from data. OLS = Ordinary Least Squares, FE = Fixed
Effects, BE = Between Effects, Study = estimates were weighted by the inverse number
of observations reported per study, Precision = estimates were weighted by the inverse of
standard errors. Standard errors are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Appendix B

Correlation coefficients table

Figure B.1: Correlation table for all eligible variables

Note: The figure shows the correlation coefficients for all variables eligible for
BMA, only 18 of these 27 variables were selected for the final model.



Appendix C

Robustness checks

Figure C.1: BMA with a benchmark g-prior and random theta model
prior

Note: The figure shows the Bayesian Model Averaging with the benchmark g-
prior and random theta model prior. The response variable is the risk of Covid-19
infection. The horizontal axis represents the cumulative posterior model proba-
bility. The regressors are ordered in descending order based on their posterior
inclusion probabilities. The included regressors with positive signs are displayed
in blue (dark in grayscale) colour and with negative signs in red (light in grayscale)
colour. The Regressors not included in the model are left without any colour.



C. Robustness checks IV

Figure C.2: BMA with a log(n)3 g-prior and random theta model
prior

Note: The figure shows the Bayesian Model Averaging with the log(n)3 g-prior
and random theta model prior. The response variable is the risk of Covid-19 infec-
tion. The horizontal axis represents the cumulative posterior model probability.
The regressors are ordered in descending order based on their posterior inclu-
sion probabilities. The included regressors with positive signs are displayed in
blue (dark in grayscale) colour and with negative signs in red (light in grayscale)
colour. The Regressors not included in the model are left without any colour.
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