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Introduction
An insurance company may occasionally encounter the requirement to merge

or split some of its lines of business. Among other reasons, this may be a result
of change in legislation or an internal business decision. Our interest lies in the
mathematical background of these operations, especially from the perspective of
claim numbers models. We consider counting processes as a general model for the
number of insurance claims, the merging and splitting of the lines of business then
translates to the operations of superposition and thinning. The main goal is to
describe several classes of counting processes which are closed under superposition
and two elementary types of thinning, as some of the properties of the initial
models entering these operations are preserved in the resulting claim numbers
models for the merged or split lines of business.

The concept of a counting process is introduced in the first chapter and the
specific types of counting processes considered in the next parts of the thesis
are described. In particular, a Poisson process is introduced along with two of
its numerous possible generalizations, a nonhomogeneous Poisson process and
a renewal process. Several important properties of these types of processes are
also derived in this chapter.

The second chapter is concerned with the operations of superposition and
thinning. The definitions of superposition and two elementary types of thinning
are stated in the general setting of counting processes and several results about
superposition and thinning of the previously introduced types of counting pro-
cesses are presented. The well-known results that the Poisson processes are closed
under these operations are stated and the necessary conditions for this assertion
to also hold true for renewal processes are explored. The previous work on the
superposition of renewal processes is studied and clarified in further detail, and
an original result for thinning of a renewal process is derived.

The third chapter covers the necessary theory for application of the previously
stated results and the analysis of insurance data provided by the Czech Insurers’
Bureau. Specifically, an approach to estimate the parameters of one particular
type of intensity function is presented and the superposition of nonhomogeneous
Poisson processes is then used to estimate the future number of reported claims in
a model situation when an insurance company merges two of its lines of business.
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1. Counting Processes
This chapter is concerned with a particular class of stochastic processes often

used in claim numbers modeling, the so-called counting processes. We formally
define a counting process and introduce some specific types of counting process-
es, namely a Poisson process and two of its generalizations, a non-homogeneous
Poisson process and a renewal process. The definitions throughout this chapter
are inspired by Ross [2014].

1.1 Preliminaries
Let us begin with definitions of several concepts that will be used throughout

this text. We first introduce the fundamental idea of a stochastic process.

Definition 1.1. A collection of random variables {X(t), t ∈ T}, T being an
arbitrary index set, is called a stochastic process.

We will interpret index t as time and call X(t) the state of the process at
time t. Stochastic process {X(t), t ∈ T} is called a discrete-time stochastic pro-
cess if the set T is at most countable or a continuous-time stochastic process if
T is uncountable. A realization of a stochastic process is called a sample path.

A counting process is a specific type of continuous-time stochastic process
whose state at time t represents the number of certain events occurring in the
time interval (0, t]. This idea gives several formal conditions for a stochastic
process to be called a counting process.

Definition 1.2. A stochastic process {N(t), t ≥ 0} is said to be a counting
process if the following conditions are satisfied:

(1) N(t) ≥ 0,

(2) N(t) is integer valued,

(3) if s < t, then N(s) ≤ N(t).

The sample path of a counting process is always a nondecreasing step func-
tion, the points of discontinuity represent times when the observed events occur.
We will denote nth such time by Tn and call it the nth arrival time. Another
characterization is possible in terms of waiting times between two consecutive
events. We will denote the elapsed time between the (n − 1)st and the nth event
by Xn and call it the nth interarrival time.

The arrival and the interarrival times are naturally interconnected. If we
formally let T0 = 0, the nth interarrival time can be expressed as Xn = Tn −Tn−1,
and the converse expression for Tn is obtained as the sum of the first n interarrival
times, Tn = ∑︁n

i=1 Xi.
The figure below shows the sample path of a counting process with four events

occurring at times 1, 2, 4 and 7 (denoted by T1, . . . , T4) and the corresponding
interarrival times (denoted by X1, . . . , X4).
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Figure 1.1: The sample path of an arbitrary counting process N(t)

We continue by defining two possible properties of a counting process, the
independent and stationary increments.

Definition 1.3. A counting process {N(t), t ≥ 0} is said to possess independent
increments if N(t1) − N(t0), N(t2) − N(t1), . . . , N(tn) − N(tn−1) are independent
random variables for all n ∈ N and for all 0 ≤ t0 < t1 < · · · < tn. The process is
said to possess stationary increments if for any t ≥ 0 and s > 0, the probability
distribution of variables N(t + s) − N(t) only depends on s.

To conclude this introductory section, let us define an integral transform that
will be used in various parts of this text, the Laplace-Stieltjes transform.

Definition 1.4. Let g : [0, ∞) → [0, ∞) be a non-decreasing function. The
Laplace-Stieltjes transform of g, denoted by g∗, is defined as

g∗(t) =
∫︂ ∞

0
e−txdg(x)

for every t where the right-hand side integral converges.

Remark. There is a convenient connection between the Laplace-Stieltjes trans-
form and the moment generating functions of random variables. If we let X be
a nonnegative random variable with distribution function F , it is easy to verify
that F ∗(t) = E [e−tX ], which is just the moment generating function of X eval-
uated in −t. It can be therefore concluded that the Laplace-Stieltjes transform
uniquely determines the probability distribution of X.

1.2 Poisson Process
The first type of counting process that we introduce is a Poisson process. The

process is in its simplest form determined by a single constant parameter called
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rate or intensity. A Poisson process with constant rate is also called homogeneous.

Three different definitions of a homogeneous Poisson process will be given in
this section. The first describes the probability distribution of increments in an
interval of a fixed length. This definition will be referred to as axiomatic.

Definition 1.5. A counting process {N(t), t ≥ 0} is said to be a Poisson process
with rate λ > 0 if the following conditions are satisfied:

(A1) N(0) = 0,

(A2) the process has independent increments,

(A3) for all t, s ≥ 0, P[N(t + s) − N(t) = n] = e−λs (λs)n

n! , n = 0, 1, . . .

Remark. It follows from the property (A3) that this process also has station-
ary increments, as for a given constant rate λ, the probability distribution of
increments is identical for every interval of a fixed length s.

The name of the process of course also follows from the probability distri-
bution of increments, which is Poisson. Using the well-known properties of this
distribution, the expectation of a Poisson process at time t can be easily derived
as E [N(t)] = λt, which also explains why λ is called rate.

The second definition is concerned with number of increments in an interval as
its length h tends to zero. This definition will thus be referred to as infinitesimal.

Definition 1.6. A counting process {N(t), t ≥ 0} is said to be a Poisson process
with rate λ > 0 if the following conditions are satisfied:

(I1) N(0) = 0,

(I2) the process has independent and stationary increments,

(I3) P[N(h) = 1] = λh + o(h),

(I4) P[N(h) ≥ 2] = o(h),

where o(h) denotes any function f : R → R such that limh→0
f(h)

h
= 0.

Remark. Properties (I3) and (I4) also determine the probability of zero events
occurring in an interval of length h as P[N(h) = 0] = 1 − λh + o(h).

The infinitesimal definition states that in a Poisson process, as the length h of
an interval tends to zero, the probability of one event occurring is approximately
proportional to this length, while the probability of more events occurring is neg-
ligible. This property is useful for modeling events which do not occur multiple
times in a quick succession.

We now show that the first two definitions truly describe the same process.

Claim 1.1. The definitions 1.5 and 1.6 of a Poisson process are equivalent.
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Proof. The proof of 1.6 ⇒ 1.5 makes use of the Laplace-Stieltjes transform of
N(t) and the differential equations derived from the definition 1.6. It can be
found in full in Ross [2014, p. 299–300, Theorem 5.1].

We will add the proof of the converse implication 1.5 ⇒ 1.6. The first property
is identical in both definitions, stationary and independent increments follow from
the property (A2) and the remark below the axiomatic definition. We will use
the property (A3) to show that (I3) and (I4) are also satisfied.

(I3) P[N(h) = 1] = λhe−λh = λh(1 − 1 + e−λh)
= λh + λh(e−λh − 1) = λh + o(h),

(I4) P[N(h) ≥ 2] = 1 − (P[N(h) = 1] + P[N(h) = 0])
= 1 − (λhe−λh + e−λh)
= 1 − (λhe−λh + 1 − λh + o(h)) = o(h).

The third definition utilizes sequences of arrival and interarrival times de-
scribed in the previous section and can be thus thought of as a more constructive
one. We first notice that the probability distribution of the interarrival times can
be derived directly from the axiomatic definition.

Claim 1.2. The sequence of interarrival times {Xn, n ∈ N} of a Poisson process
{N(t), t ≥ 0} with rate λ > 0 consists of independent and identically distributed
random variables, he common distribution is exponential with parameter λ.

Remark. The exponential distribution with parameter λ is considered such that
its distribution function is in form F (x) = 1 − e−λx, x ≥ 0. The fact that X is
exponentially distributed with parameter λ will be denoted by X ∼ Exp(λ).

Proof. We first determine the distribution of waiting time for the first event, X1.
If N(t) = 0 at time t, the first event has not occurred yet, X1 must be therefore
greater than t. This observation and the axiomatic definition together give

P[X1 > t] = P[N(t) = 0] = e−λt,

hence, by the properties of distribution functions, X1 ∼ Exp(λ). We continue by
conditioning X2 on X1 and obtaining the distribution

P[X2 > t|X1 = s] = P[N(t + s) − N(s) = 0|N(s) = 1]
= P[N(t + s) − N(s) = 0] (by independent increments)
= e−λt (by property A3).

The conditional distribution does not depend on s, variables X1 and X2 are
thus independent. This immediately implies that also P[X2 > t] = e−λt, hence,
X2 ∼ Exp(λ). Repeating this argument gives independence and exponential
distribution for all Xn.

These properties of interarrival times provide necessary framework for the
third definition of a Poisson process. We will later see that the general idea of
identifying a counting process with its arrival and interarrival times can be also
used to define different types of counting processes.

6



Definition 1.7. Let {Xn, n ∈ N} be a sequence of independent, identically
distributed random variables having an exponential distribution with parameter
λ > 0. Let {Tn, n ∈ N} be a sequence of random variables such that Tn = ∑︁n

i=1 Xi.
A counting process {N(t), t ≥ 0} given by the sum

N(t) =
∞∑︂

n=1
I(0,t](Tn), t ≥ 0,

is said to be a Poisson process with rate λ, I(0,t](x) denotes the indicator function
of interval (0, t].

Remark. The independence and exponential distribution of interarrival times Xn

along with their relationship to the arrival times Tn all together imply that the
nth arrival time Tn has gamma distribution with parameters n and λ, we consider
the gamma distribution with density function in form f(x) = λn

Γ(n)x
n−1e−λx, x > 0.

We see that the formal statement of the last definition can be fully derived
from the axiomatic one. The converse is also true, the Poisson process defined
as in 1.7 has all the properties described in the axiomatic definition, the proof
of this claim can be found in Durrett [2019, p. 152–153]. All three definitions
of a Poisson process are thus equivalent and can be used interchangeably in the
following parts of this text.

1.3 Nonhomogeneous Poisson Process
The applications of a Poisson process can be sometimes limited by the re-

quirement of a constant arrival rate.
Consider for instance a counting process which tracks the occurrence of car

accidents in time. We have an information that the number of accidents tends to
increase during summer months or weekends and we would like to capture these
trends in our model.

If we let the arrival rate of a Poisson process vary over time, we obtain a
generalization called a nonhomogeneous Poisson process.

Two definitions of a nonhomogeneous Poisson process will be given. Similarly
to the axiomatic definition in the previous section, the first one describes the
distribution of increments in an interval of a fixed length.

Definition 1.8. A counting process {N(t), t ≥ 0} is said to be a nonhomogeneous
Poisson process with intensity function λ(t), t ≥ 0 if the following conditions are
satisfied:

(NA1) N(0) = 0,

(NA2) the process has independent increments,

(NA3) for all t, s ≥ 0, the number of increments N(t + s) − N(t) is Poisson
distributed with mean

∫︁ t+s
t λ(x)dx.

Remark. In general, a nonhomogeneous Poisson process does not possess station-
ary increments. This property is preserved only if λ(t) = λ for some constant λ,
the resulting Poisson process is of course the homogeneous one.
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The lack of stationary increments must be of course also considered in the
second definition, which again describes the behavior of increments in an interval
whose length h tends to zero.

Definition 1.9. A counting process {N(t), t ≥ 0} is said to be a nonhomogeneous
Poisson process with rate function λ(t), t ≥ 0 if the following conditions are
satisfied:

(NI1) N(0) = 0,

(NI2) the process has independent increments,

(NI3) P[N(t + h) − N(t) = 1] = λ(t)h + o(h),

(NI4) P[N(t + h) − N(t) ≥ 2] = o(h).

Just like in the homogeneous case, we can show that these two definitions
describe the same process.

Claim 1.3. The definitions 1.8 and 1.9 of a nonhomogeneous Poisson process
are equivalent.

Proof. The proof of 1.9 ⇒ 1.8 follows in a similar manner to the homogeneous
case and in full can be found in Ross [2014, p. 322–323, Theorem 5.3].

For the implication 1.8 ⇒ 1.9, it must be shown that (NI3) and (NI4) are
satisfied. Fix t ≥ 0 and let m(h) =

∫︁ t+h
t λ(x)dx. The Taylor expansion of m(h)

at 0 is
m(h) = m(0) + m′(0)h + o(h) = λ(t)h + o(h)

Using the Taylor expansions of m(h) and the exponential function, the prop-
erty (NA3) and the fact that

P[N(t + h) − N(t) ≥ 2] = 1 − (P[N(t + h) − N(t) = 1] +P[N(t + h) − N(t) = 0]),

we obtain

(NI3) P[N(t + h) − N(t) = 1] = e−m(h)m(h) = [1 − m(h) + o(h)]m(h)
= [1 − λ(t)h + o(h)][λ(t)h + o(h)]
= λ(t)h − [λ(t)h]2 + o(h)
= λ(t)h + o(h),

(NI4) P[N(t + h) − N(t) ≥ 2] = 1 − [e−m(h)m(h) + e−m(h)]
= 1 − [[1 − m(h) + o(h)]m(h) + 1 − m(h) + o(h)]
= 1 − [1 − [m(h)]2 + o(h)] = [m(h)]2 + o(h)
= [λ(t)h + o(h)]2 + o(h) = [λ(t)h]2 + o(h)
= o(h).
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1.4 Renewal Process
Another generalization of a Poisson process is obtained by allowing for other

than exponentially distributed interarrival times.
Let us recall that in a homogeneous Poisson process with with rate λ, the

sequence of interarrival times {Xn, n ∈ N} consists of independent, indentically
distributed random variables having an exponential distribution with parameter
λ and the nth arrival time Tn is gamma distributed with parameters n and λ.

If we preserve the requirements of independence and identical distribution of
interarrival times but allow for any nonnegative distribution that is not degenerate
at 0, we obtain a new type of counting process, the so-called renewal process.
Definition 1.10. Let {Xn, n ∈ N} be a sequence of independent, identically
distributed nonnegative random variables with a common distribution function F ,
such that F (0) = P[Xn = 0] < 1. Let {Tn, n ∈ N} be a sequence of random
variables where Tn = ∑︁n

i=1 Xi. A counting process {N(t), t ≥ 0} obtained as

N(t) =
∞∑︂

n=1
I(0,t](Tn), t ≥ 0,

is said to be a renewal process.
It is well known that the distribution function of the sum of n independent,

identically distributed random variables can be obtained as the n-fold convolution
of their common distribution function F with itself. We will denote such n-fold
convolution by Fn and additionally define F0 = 1.

It is easy to see that Fn determines the distribution of the nth arrival time Tn.
If the distribution of Tn is known, we can also determine the distribution of the
state of the process at time t.
Claim 1.4. Let {N(t), t ≥ 0} be a renewal process and let F be the distribution
function of its interarrival times. The distribution of the state of the process N(t)
at time t can be determined as P[N(t) = n] = Fn(t) − Fn+1(t), n = 0, 1, . . .

Proof. We first notice that if N(t) ≥ n at time t, the nth event must have occurred
at the latest at time t, hence Tn ≤ t. We then obtain

P[N(t) = n] = P[N(t) ≥ n] − P[N(t) ≥ n + 1]
= P[Tn ≤ t] − P[Tn+1 ≤ t]
= Fn(t) − Fn+1(t).

The mean function m(t) = E [N(t)] of a renewal process N(t) is another object
of interest. The function will be also called the renewal function.

It is rather straightforward to demonstrate that the renewal function is unique-
ly determined by the distribution function F of the interarrival times, the n-fold
convolutions of F again play an important role.
Claim 1.5. Let {N(t), t ≥ 0} be a renewal process and let F be the distribution
function of its interarrival times. The renewal function m(t) of the process N(t)
can be expressed as

m(t) =
∞∑︂

n=1
Fn(t).
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Proof.

m(t) = E [N(t)] = E [
∞∑︂

n=1
I(0,t](Tn)] =

∞∑︂
n=1

E [I(0,t](Tn)] =
∞∑︂

n=1
P[Tn ≤ t] =

∞∑︂
n=1

Fn(t)

Perhaps more interesting is the opposite statement which will conclude this
section and chapter.

Theorem 1.6. The renewal function m(t) uniquely determines the distribution
of the interarrival times and thus the whole renewal process {N(t), t ≥ 0}.

Proof. We begin by noticing two particular properties of the Laplace-Stieltjes
transform. First we show that the Laplace-Stieltjes transform translates convo-
lution to multiplication. Let Fn be the distribution function of the sum ∑︁n

i=1 Xi

where the variables Xi are independent with a common distribution function F .
It then holds true that

F ∗
n(t) = E [e−t

∑︁n

i=1 Xi ] =
n∏︂

i=1
E [e−tXi ] = [F ∗(t)]n.

Second, the fact that F ≤ 1 implies that for a nonnegative random variable
X which is not degenerate at 0, the Laplace-Stieltjes transform F ∗(t) < 1 for all
t > 0 and F ∗(0) = 1.

Using these two observation and the claim 1.5 we obtain for all t > 0

m∗(t) =
∫︂ ∞

0
e−txdm(x) =

∫︂ ∞

0
e−txd

(︄ ∞∑︂
n=1

Fn(x)
)︄

=
∞∑︂

n=1

∫︂ ∞

0
e−txdFn(x)

=
∞∑︂

n=1
F ∗

n(t) =
∞∑︂

n=1
[F ∗(t)]n = F ∗(t)

1 − F ∗(t) . (1)

The proof is completed by rearranging the equation as

F ∗(t) = m∗(t)
1 + m∗(t) , (2)

noticing that the fraction on the right-hand side tends to 1 for t → 0, so we
can formally let F ∗(0) = 1 and by the fact that the Laplace-Stieltjes transform
uniquely determines the probability distribution of a random variable.
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2. Superposition and Thinning
Now that the general concept of a counting process has been introduced, we

can describe two particular operations on counting processes, the superposition
and thinning. We begin by stating the general idea of these operations and
continue with several results that emerge when superposing and thinning the
specific types of counting processes defined in the previous chapter.

2.1 General Idea
The superposition of two counting processes results in a new counting process

whose events occur every time that an event has occurred in either of the two
initial processes.

Imagine we have two counting processes tracking the number of claims in two
lines of business of an insurance company, say that these are material damage
claims and bodily injury claims. One way to represent the combined number of
claims in these lines of business, for instance when merging them into one, is to
superpose the two initial processes.

Definition 2.1. Let {N1(t), t ≥ 0} and {N2(t), t ≥ 0} be two counting processes
with sequences of arrival times R = {Rn, n ∈ N} and S = {Sn, n ∈ N} respective-
ly. A counting process {N(t), t ≥ 0} whose sequence of arrival times is the union
T = R ∪ S ordered increasingly, is said to be a superposition of N1(t) and N2(t).

Remark. The state of the superposition process N(t) at time t is once again
obtained as N(t) = ∑︁∞

n=1 I(0,t](Tn), Tn ∈ T . It clearly does not make any difference
whether the occurrences of events until time t are counted jointly in the union T
or separately in the sequences R and S. One can thus write that

N(t) =
∞∑︂

n=1
I(0,t](Tn) =

∞∑︂
n=1

I(0,t](Rn) +
∞∑︂

n=1
I(0,t](Sn) = N1(t) + N2(t),

hence the superposition N(t) can be also obtained as the sum of the two initial
processes at every time t.
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Figure 2.1: The superposition of two arbitrary counting processes
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The aim of thinning is to classify each event of a counting process into one of
different categories based on some given rule.

Consider again a counting process tracking the number of claims in a certain
line of business. If an insurance company wanted to split this line of business in
two or more new ones, the processes resulting from thinning of the initial count-
ing process would provide a good representation of claim numbers for these new
lines of business.

Although various distinct thinning rules can be thought of, we will only con-
sider thinning based on the Bernoulli distribution which splits the initial process
in two processes and thinning based on the multinomial distribution which splits
the process in k different processes.

Definition 2.2. Let {N(t), t ≥ 0} be a counting process with sequence of arrival
times {Tn, n ∈ N} and let {Yn, n ∈ N} be a sequence of independent Bernoulli
random variables where P[Yn = j] = pj(1 − p)1−j, j ∈ {0, 1}, p ∈ (0, 1). Further-
more, let every Yn be independent of every Tn. The processes

Nj(t) =
∞∑︂

n=1
I{j}(Yn)I(0,t](Tn), t ≥ 0, j = 0, 1

are said to be thinned counting processes, the thinning rule will be referred to as
Bernoulli thinning.

Definition 2.3. Let {N(t), t ≥ 0} be a counting process with sequence of arrival
times {Tn, n ∈ N}, let {Yn, n ∈ N} be a sequence of independent random variables
such that P[Yn = j] = pj, j ∈ {1, 2, . . . , k}, pj ∈ (0, 1) for all j and ∑︁k

j=1 pj = 1,
and again let every Yn be independent of every Tn. The processes

Nj(t) =
∞∑︂

n=1
I{j}(Yn)I(0,t](Tn), t ≥ 0, j = 1, 2, . . . , k

are said to be thinned counting processes, the thinning rule will be referred to as
multinomial thinning.
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Figure 2.2: Bernoulli thinning of an arbitrary counting process
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2.2 Poisson Processes
One of the reasons why Poisson processes are vastly used in applications is

the fact that with the assumption of independence, they are closed under super-
position, Bernoulli and multinomial thinning. The resulting processes are again
Poisson and their intensities can be determined in a rather simple manner.

We start with the theorem about superposition and for generality assume
the initial Poisson processes to be nonhomogeneous. Throughout the proofs,
m(t) =

∫︁ t
0 λ(x)dx will denote the integral of the intensity function λ(t).

Theorem 2.1. Let {N1(t), t ≥ 0} and {N2(t), t ≥ 0} be two independent nonho-
mogeneous Poisson processes with intensity functions λ1(t) and λ2(t) respectively.
The superposition {N(t), t ≥ 0} of N1(t) and N2(t) is again a nonhomogeneous
Poisson process whose intensity function is λ(t) = λ1(t) + λ2(t).

Proof. We will use the fact that the superposition N(t) can be obtained as the
sum N(t) = N1(t) + N2(t) at every time t.

As both N1(0) = 0 and N2(0) = 0, also N(0) = 0. The property of indepen-
dent increments of the superposition follows from the independence of the initial
processes and the fact that they themselves possess independent increments.

We now show that the number of increments in a time interval (0, t] is Poisson
distributed. The proof would proceed similarly for an arbitrary interval (t, t + s].

P[N(t) = n] = P[N1(t) + N2(t) = n] =
n∑︂

k=0
P[N1(t) = k, N2(t) = n − k]

=
n∑︂

k=0
P[N1(t) = k]P[N2(t) = n − k] =

n∑︂
k=0

e−m1(t) [m1(t)]k
k! e−m2(t) [m2(t)]n−k

(n − k)!

= e−[m1(t)+m2(t)] [m1(t) + m2(t)]n
n!

n∑︂
k=0

(︄
n

k

)︄[︄
m1(t)

m1(t) + m2(t)

]︄k [︄
m2(t)

m1(t) + m2(t)

]︄n−k

.

We notice that the last sum can be thought of as the sum of probabilities
of the binomial distribution with parameters n and m1(t)

m1(t)+m2(t) , hence it must
equal 1. The proof is then finished by the linearity property of integrals, as
m1(t) + m2(t) =

∫︁ t
0 λ1(x) + λ2(x)dx.

Corollary. The theorem naturally holds true also for homogeneous Poisson pro-
cesses, if we let λ1(t) = λ1 and λ2(t) = λ2 for some constants λ1, λ2 > 0, the
superposition is a Poisson process with rate λ1 + λ2.
Corollary. The result can be easily generalized for the superposition of any finite
number k of independent Poisson processes. The resulting process is Poisson with
rate ∑︁k

j=1 λj or intensity function ∑︁k
j=1 λj(t) if the initial processes are generally

nonhomogeneous.
The theorem about thinning will be again proved for nonhomogeneous Pois-

son process and for the multinomial thinning rule, as Bernoulli thinning and
homogeneous process variations are once more only special cases of this theorem.

Theorem 2.2. Let {N(t), t ≥ 0} be a nonhomogeneous Poisson process with
intensity function λ(t). The thinned processes {Nj(t), t ≥ 0}, j ∈ {1, 2, . . . , k}
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resulting from the multinomial thinning of N(t) in the sense of definition 2.3 are
independent nonhomogeneous Poisson processes with intensity functions pjλ(t).

Proof. The properties of the initial process again imply that Nj(0) = 0 for every
j and that the thinned processes possess independent increments.

The independence of thinned processes and the Poisson distribution of incre-
ments will be again shown for a time interval (0, t].

We first notice that if nj events occurred until time t in the jth thinned
process, then n = ∑︁k

j=1 nj events must have occurred until time t in the initial
process N(t). The probability that these n events are classified such that there
are nj events in the jth thinned process is given by the multinomial distribution
and since the classification is independent of the initial process, we can write

P[N1(t) = n1, . . . , Nk(t) = nk] = e−m(t) [m(t)]n
n!

n!
n1!n2! . . . nk!

pn1
1 pn2

2 . . . pnk
k

= e−
∑︁k

j=1 pjm(t) [m(t)]
∑︁k

j=1 nj

n1!n2! . . . nk!
pn1

1 pn2
2 . . . pnk

k =
k∏︂

j=1
e−pjm(t) [pjm(t)]nj

nj!
.

The proof is once again finished by the linearity property of integrals, as
pjm(t) =

∫︁ t
0 pjλ(x)dx

Corollary. The result for Bernoulli thinning is a special case of the theorem if we
choose the number of categories k = 2, if we choose λ(t) = λ for some constant
λ > 0, we obtain the result for homogeneous Poisson processes.

2.3 Renewal Processes
Consider now that the initial processes are renewal. We are once again inter-

ested in conditions that must be satisfied in order for the renewal processes to be
closed under superposition and the two thinning rules mentioned earlier.

Just like in the previous section, we begin with results about superposition.
Let us first divide the renewal processes in two groups based on the distribution
of their interarrival times. We say that the renewal process is ordinary, if its
interarrival times are strictly positive random variables. If there is a positive
probability that any interarrival time is zero, the renewal process is said to have
multiple renewals.

It is shown in Samuels [1974] that if the superposition of two ordinary renewal
processes is again an ordinary renewal process, all processes must be Poisson. We
will now state an extension of this theorem which also considers processes with
multiple renewals. The statement and the proof of the theorem comes from
Ferreira [2000], we will provide further clarification of several steps of the proof
and correct some minor mistakes appearing in the original paper.

Theorem 2.3. Let {N1(t), t ≥ 0} and {N2(t), t ≥ 0} be two independent renewal
processes with sequences of interarrival times {Xn, n ∈ N} and {Yn, n ∈ N}, and
let F and G be the common distribution functions of these interarrival times. The
superposition {N(t), t ≥ 0} of N1(t) and N2(t) is a renewal process if and only if
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(1) all processes are ordinary, in which case F and G are exponential, hence
N1(t), N2(t) and N(t) are all Poisson,

(2) one and only one of the two processes has multiple renewals, in which case
F and G are concentrated on a set {0, δ, 2δ, . . . } for some δ > 0 and belong
to one of these families of distributions:

• F (x) = 1 − p[x/δ]+1, x ≥ 0, 0 < p < 1,
G(x) degenerate at δ,

• F (x) = 1 − p[x/δ]+1, x ≥ 0, 0 < p < 1,
G(x) = 1 − q[x/δ], x ≥ 0, 0 < q < 1,

where [x] denotes the integer part of x. The distributions of F and G can be
also interchanged.

Proof. The first alternative corresponds to the result proved in Samuels [1974]
and to the results about Poisson processes proved in the previous section.

Throughout the proof of the second alternative, F = 1 − F will denote the
survival function of any distribution F , supp(F ) will denote the support of the
distribution and x+

F will denote the right endpoint of the distribution, formally
x+

F = sup{x : F (x) < 1}. Furthermore, let us denote the sequence of interarrival
times of the superposition N(t) by {Zn, n ∈ N}.

To start with, let us look at the first two interarrival times of the superposition.
A necessary condition for the superposition to be a renewal process is that Z1
and Z2 are independent and identically distributed. This already enforces several
conditions for the interarrival distributions of the initial processes.

It is easy to determine that Z1 = min{X1, Y1}, Z2 then depends on whichever
of X1 and Y1 is smaller and is either the distance between X1 and Y1 or the next
interarrival time, so Z2 = min{|X1 − Y1|, X2I(X1 < Y1) + Y2I(Y1 < X1)}.

Let H be the distribution of Z1. Since the initial processes are independent,
P[min{X1, Y1} > u] = P[X1 > u]P[Y1 > u], hence H is determined by F and G
as H = F G. The independence and identical distribution of Z1 and Z2 is now
satisfied if the following equation holds

P[Z1 > u, Z2 > v] = F (u)G(u)F (v)G(v), u, v ∈ R.

For v ≥ 0, the left-hand side can be also expressed as

P[Z1 > u, Z2 > v] = P[Y1 > u, X1 − Y1 > v, Y2 > v]
+ P[X1 > u, Y1 − X1 > v, X2 > v]

=
∫︂ ∞

u
F (x + v)dG(x)G(v) +

∫︂ ∞

u
G(x + v)dF (x)F (v), u ∈ R,

which is just the split into cases when X1 < Y1 and when Y1 < X1, the final
equality expresses the probabilities as general Lebesgue-Stieltjes integrals, since
F and G can be arbitrary distribution functions, multiplied by the respective
survival functions, since X2 and Y2 are independent of the previous interarrival
times.
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For v < 0, the right-hand side simplifies to F (u)G(u), u ∈ R and so the formula
for integration by parts of right continuous functions in Lebesgue-Stieltjes integral
must hold. We have thus derived the two following formulas∫︂ ∞

u
F (x + v)dG(x)G(v) +

∫︂ ∞

u
G(x + v)dF (x)F (v) = F (u)G(u)F (v)G(v)

for u ∈ R, v ≥ 0 and∫︂ ∞

u
F (x)dG(x) +

∫︂ ∞

u
G(x)dF (x) +

∫︂ ∞

u
[G(x) − G(x−)]dF (x) = F (u)G(u)

for u ∈ R, where x− denotes the left-hand limit. By the additivity property of
integrals, the formulas can be also rewritten as∫︂ u+h

u−h
F (x + v)dG(x)G(v) +

∫︂ u+h

u−h
G(x + v)dF (x)F (v)

= F (v)G(v)[F (u − h)G(u − h) − F (u + h)G(u + h)], u ∈ R, v ≥ 0, h > 0
(3)

and ∫︂ u+h

u−h
F (x)dG(x) +

∫︂ u+h

u−h
G(x)dF (x) +

∫︂ u+h

u−h
[G(x) − G(x−)]dF (x)

= F (u − h)G(u − h) − F (u + h)G(u + h), u ∈ R, h > 0. (4)

Let us now assume that one of the initial processes has multiple renewals, say
F (0) = p < 1 and let G(0) = q. By putting u = 0 and letting h ↘ 0 in (3), we
obtain

F (v)G(v)(1 − q) + F (v)G(v)(1 − p) = F (v)G(v)(1 − pq), v ≥ 0,

which only holds if (1 − p)(1 − q) = 0 and since p < 1, q must equal 1, meaning
that G(0) = 1. Hence, for the superposition to be a renewal process, at most one
of the initial processes may possess multiple renewals.

We continue with the assumption that F (0) = p < 1 and thus G(0) = 1. For
v = 0, (3) can be simplified as∫︂ u+h

u−h
F (x)dG(x)p−1 +

∫︂ u+h

u−h
G(x)dF (x) = F (u − h)G(u − h) − F (u + h)G(u + h),

(5)
u ∈ R, h > 0. Now we combine (4) with (5). Since p−1 > 1, the combined
equation holds only if∫︂ u+h

u−h
[G(x) − G(x−)]dF (x) = 1 − p

p

∫︂ u+h

u−h
F (x)dG(x),

which can only be true if every u ≤ x+
F such that u ∈ supp(G) is also a point of

increase of F . Hence, if u ∈ [0, x+
F ] ∩ supp(G), u must be also in supp(F ) and so

the sets [0, x+
F ] ∩ supp(G) and supp(F ) ∩ supp(G) must be identical.

Since (4) is a general formula for integration by parts, it must also hold if we
interchange the two distributions. The combined equation of (4) and (5) can be
then simplified to∫︂ u+h

u−h
F (x)dG(x) = p

1 − p

∫︂ u+h

u−h
[F (x−) − F (x)]dG(x),
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letting h ↘ 0, we obtain

F (u) = pF (u−), u ∈ supp(F ) ∩ supp(G). (6)

We will now derive several additional properties of F and G.
(a) The set supp(F ) ∩ supp(G) = [0, x+

F ] ∩ supp(G) is not empty.
If [0, x+

F ] ∩ supp(G) was empty, then x ∈ supp(G) would imply x > x+
F , the

interarrival distribution of the superposition would thus be H = F and the su-
perposition N(t) would be a copy of the first initial process N1(t). Since the
equation m1(t)+m2(t) = m(t) must hold for the renewal functions of the respec-
tive processes and for all t ≥ 0, m2(t) would have to equal 0 for all t ≥ 0. This
is only possible if G is concentrated at ∞, an option that we exclude. This point
then implies that inf{supp(F ) ∩ supp(G)} < ∞.

(b) The set supp(F ) ∩ supp(G) = [0, x+
F ] ∩ supp(G) is not dense in any right

neighbourhood of 0.
If it was, we could choose 0 < ε < x+

F and an infinite sequence {xn} in the
intersection of the two supports such that 0 < x1 < x2 < · · · < xn < ε for every n.
If we repeatedly apply (6), we obtain

F (ε) ≤ pF (xn) = pF (xn−) ≤ pF (xn−1) ≤ p2F (xn−1−) ≤ · · · ≤ pn−1F (x1) ≤ pn

for all n, hence F (ε) = 1, which is a contradiction with the definition of x+
F . It

follows that inf{supp(F ) ∩ supp(G)} = min{supp(F ) ∩ supp(G)} > 0. Now let
u1 = min{supp(F ) ∩ supp(G)}. It can be then shown that u1 must be the first
support point of G. For if it was not, there would be a u ∈ supp(G), u < u1 and
since u < x+

F , u ∈ supp(F ), which contradicts the definition of u1.
(c) The interval (0, u1) contains no point of supp(F ).
If there was a u, 0 < u < u1 in supp(F ), we could take v = u1 − (u − h) for

a sufficiently small h, 0 < h < u and since u1 is the first support point of G, (3)
reduces to ∫︂ u+h

u−h
G(x)dF (x) = [F (u + h) − F (u − h)].

But G(x + v) = G(x + u1 − (u − h)) < 1 for every x > u − h, hence∫︂ u+h

u−h
G(x)dF (x) < [F (u + h) − F (u − h)],

which contradicts the previous equation and u1 is thus the first positive point of
increase of F . To sum up, we now know that F (0) = p, F (u1) = pF (0) = p2 and
G(u1) = q. Let us now set u1 = 1 for simplicity, although the next steps would
proceed similarly for any u1 = δ > 0.

(d) F and G are concentrated on N0 = N ∪ {0}.
If we let x ∈ supp(F ) be a non-integer, it can be easily derived that the two

following events have positive probabilites.

P[Y1 + Y2 + · · · + Y[x] = [x]] ≥
[x]∏︂
i=1

P[Y1 = 1] = (1 − q)[x] > 0

and
P[X1 ∈ (x − h, x + h)] > 0 for every h > 0.
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For any 0 < h < min{x − [x], 1 − x + [x]}, the two events imply that Y1 + Y2 +
· · ·+Y[x] = [x] < X1 and since Y[x]+1 ≥ 1, Z[x]+1 = X1 − [x]. But since all previous
events have positive probabilities, it must also be true that

P[Z[x]+1 ∈ (x − [x] − h, x − [x] + h)] > 0

and for the specified choice of h this also means that

P[Z[x]+1 ∈ (0, 1)] ≥ P[Z[x]+1 ∈ (x − [x] − h, x − [x] + h)] > 0,

which is a contradiction, because since F nor G has a point of increase in (0, 1),
neither can the interarrival distribution H of the superposition. The argument
also holds for F and G interchanged, which finishes the proof of this point.

The exact distributions of F and G can now be derived. We start with the
first family of distributions appearing in the statement of this theorem, we let
G be degenerate at u1 = 1. Since F (0) = P[Xn = 0] = 1 − p,P[Yn = 1] = 1 and
F is concentrated on N0, the interarrival distribution H is detemined as

H(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x < 0,

1 − p 0 ≤ x < 1,

1 x ≥ 1.

The Laplace-Stieltjes transforms m∗(t) and m∗
2(t) of the renewal functions m(t)

and m2(t) can be derived from (1) if we realize that the distribution function G
increases by 1 in one and H increases by 1 − p in zero and by p in one. It follows
that

G∗(t) =
∫︂ ∞

0
e−txdG(x) = e−t, m∗

2(t) = e−t

1 − e−t
, t ≥ 0

and

H∗(t) =
∫︂ ∞

0
e−txdH(x) = 1 − p + pe−t, m∗(t) = 1 − p(1 − e−t)

p(1 − e−t) , t ≥ 0,

the functions are defined by the right-hand limit in t = 0 if necessary. The
Laplace-Stieltjes transform m∗

1(t) of the renewal function m1(t) can now be de-
rived, and using (2), so can be the Laplace-Stieltjes transform F ∗(t) of the dis-
tribution function F

m∗
1(t) = m∗(t) − m∗

2(t) = 1 − p

p(1 − e−t) , F ∗(t) = 1 − p

1 − pe−t
, t ≥ 0.

It can be easily shown that F ∗(t) is the Laplace-Stieltjes transform of the distri-
bution function F (x) = 1 − p[x]+1, x ≥ 0 if we notice that the function increases
by pn(1 − p) in every n ∈ N0.

F ∗(t) =
∫︂ ∞

0
e−txdF (x) =

∞∑︂
n=0

e−tnpn(1−p) = (1−p)
∞∑︂

n=0
(pe−t)n = 1 − p

1 − pe−t
, t ≥ 0.

Now consider that G is not degenerate at u1 = 1 and so G(u1) = q > 0. We
also know that F (0) = p and F (u1) = p2. It follows that both distribution must
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have at least one more support point in {2, 3, . . . }. Let us assume that F and G
are in form

F (k) = pk+1, k = 0, 1, . . . , r, G(k) = qk, k = 1, . . . , r. (7)

The statement obviously holds for r = 1, we will now use the proof by induction.
Suppose the statement holds for an arbitrary r, we want to show that it also
holds for r + 1. The next equations for interarrival times of the superposition
again follow as a split into cases of different possible interarrivals of the initial
processes. We have

P[Z1 = 1, Z2 > r]
= P[X1 = 1, X2 > r, Y1 > r + 1] + P[Y1 = 1, Y2 > r, X1 > r + 1]
= P[X1 = 1]P[X2 > r]P[Y1 > r + 1] + P[Y1 = 1]P[Y2 > r]P[X1 > r + 1]
= p(1 − p)pr+1G(r + 1) + (1 − q)qrF (r + 1) (8)

and

P[Z1 = 1, Z2 = 0, Z3 > r]
= P[X1 = 1, Y1 = 1, Z3 > r] + P[X1 = 1, X2 = 0, Y1 > 1, Z3 > r]
= P[X1 = 1]P[Y1 = 1]P[X2 > r]P[Y2 > r]
+ P[X1 = 1]P[X2 = 0]P[X3 > r]P[Y1 > r + 1]
= p(1 − p)(1 − q)pr+1qr + p(1 − p)2pr+1G(r + 1) (9)

Since H = F G and by independence of the interrarival times of the superposition,
it must also be true that

P[Z1 = 1, Z2 > r] = P[Z1 = 1]P[Z2 > r]
= p2(1 − pq)(pq)r (10)

and

P[Z1 = 1, Z2 = 0, Z3 > r] = P[Z1 = 1]P[Z2 > r]P[Z3 > r]
= p2(1 − pq)(1 − p)(pq)r (11)

Setting (9) and (11) equal yields G(r + 1) = qr+1, if we plug this in (8) and set
it equal with (10) we also obtain that F (r + 1) = pr+2. Hence, if (7) holds for r,
it also holds for r + 1 and the two distributions are precisely the ones presented
in the second family of distributions in the statement of this theorem.

The proof is finally completed if we can show that the superposition of the
initial processes, whose interarrival times have the derived distributions F and
G, is in fact a renewal process, in other words that

P[Z1 = i1, . . . , Zk+1 = ik+1] = P[Z1 = i1] . . .P[Zk+1 = ik+1] =
k+1∏︂
j=1

P[Z = ij].

(12)
Without loss of generality, let again δ = 1 and so the equation must hold for
k = 1, 2, . . . and i1, . . . , ik+1 ∈ N0. The variable Z in the last expression is
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not indexed in order to show that the interarrival times must be also identically
distributed.

We begin with the second family of distributions and obtain

P[Z1 = i1, . . . , Zk+1 = ik+1]
= P[Z2 = i2, . . . , Zk+1 = ik+1, X1 = i1, Y1 > i1]
+ P[Z2 = i2, . . . , Zk+1 = ik+1, X1 ≥ i1, Y1 = i1]
= P[Z2 = i2, . . . , Zk+1 = ik+1|X1 = i1, Y1 > i1]P[X1 = i1]P[Y1 > i1]
+ P[Z2 = i2, . . . , Zk+1 = ik+1|X1 ≥ i1, Y1 = i1]P[X1 ≥ i1]P[Y1 = i1]. (13)

The interarrival times Zj, j = 2, . . . , k + 1 in the first conditional probability are
functions of X2, X3, . . . , Y2, Y3, . . . and Y1 − i1 and thus only depend on the latter
of the two conditioning events. Likewise, the interarrival times in the second
conditional probability only depend on the variable X1 through X1 − i1. We now
notice that the derived distributions F and G are memoryless, in other words

P[Y1 − i1 > x|Y1 > i1] = P[Y1 > x + i1, Y1 > i1]
P[Y1 > i1]

= q[x+i1]

q[i1] = q[x] = P[Y1 > x]

and similarly

P[X1 − i1 > x|X1 ≥ i1] = p[x+i1]+1

p[i1]+1 + pi1(1 − p) = p[x]+1 = P[X1 > x].

Hence, if Z1 = i1, the next interarrival times Zj, j = 2, . . . , k + 1 behave as if the
process was restarted and so

P[Z2 = i2, . . . , Zk+1 = ik+1|X1 = i1, Y1 > i1]
= P[Z2 = i2, . . . , Zk+1 = ik+1|X1 ≥ i1, Y1 = i1] = P[Z1 = i2, . . . , Zk = ik+1].

The equation (13) can thus be rewritten as

P[Z1 = i1, . . . , Zk+1 = ik+1] = P[Z1 = i2, . . . , Zk = ik+1]P[Z = i1],

P[Z = i1] of course being P[X1 = i1]P[Y1 > i1] + P[X1 ≥ i1]P[Y1 = i1]. The
induction on k would prove that (12) truly holds.

For the first family of distributions, i1, . . . , ik+1 in (12) can only be either 0
or 1. For i1 = 0, the equation reads

P[Z1 = 0, . . . , Zk+1 = ik+1] = P[Z2 = i2, . . . , Zk+1 = ik+1, X1 = 0]
= P[Z2 = i2, . . . , Zk+1 = ik+1|X1 = 0]P[X1 = 0]
= P[Z1 = i2, . . . , Zk = ik+1]P[Z = 0],

the last equality follows from the fact that Zj, j = 2, . . . , k + 1 are determined
by X2, X3, . . . , Y1, Y2, . . . upon conditioning on X1 = 0. For i1 = 1, the equation
reads

P[Z1 = 1, . . . , Zk+1 = ik+1] = P[Z2 = i2, . . . , Zk+1 = ik+1, X1 ≥ 0]
= P[Z2 = i2, . . . , Zk+1 = ik+1|X1 ≥ 1]P[X1 ≥ 1]
= P[Z1 = i2, . . . , Zk = ik+1]P[Z = 1],

memorylessness of F and the dependence of Zj, j = 2, . . . , k + 1 on X1 only
through X1 − 1 are once more used to obtain the final equality, the proof is again
finished by the induction on k.
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The result for multinomial and Bernoulli thinning of a renewal process is much
simpler to demonstrate. It turns out that the renewal processes are closed under
these two thinning rules and that the interarrival distributions of the thinned pro-
cesses can be determined with the help of moment generating functions. It is again
sufficient to prove the result for the multinomial thinning rule, as the Bernoulli
thinning is a special case for k = 2.

Theorem 2.4. Let {N(t), t ≥ 0} be a renewal process, let {Xn, n ∈ N} be a
sequence of its interarrival times and let MX(s) be the moment generating func-
tion of any Xn. Let {Nj(t), t ≥ 0}, j ∈ {1, 2, . . . , k} be the counting processes
resulting from multinomial thinning of N(t) in the sense of definition 2.3. Then
the following statements are true.

(1) Every thinned process Nj(t) is a renewal process.

(2) The probability distribution of interarrival times {Zj
n, n ∈ N} of any process

Nj(t) is determined by the moment generating function MZj(s) of any Zj
n as

MZj(s) = pjMX(s)
1 − (1 − pj)MX(s) .

Proof. Fix j ∈ {1, 2, . . . , k} and for a better clarity, let the interarrival times of
Nj(t) be denoted by {Zn, n ∈ N}

(1) We notice that the first interarrival time Z1 can be expressed as a random
sum, Z1 = ∑︁Y

i=1 Xi, where Y is a geometric random variable with parameter pj,
the distribution is considered such that P[Y = n] = pj(1 − pj)n−1, n = 1, 2, . . . It
follows from the definition of multinomial thinning that Y is also independent of
every Xn.

Let y1 denote the index of the first arrival time classified into jth thinned pro-
cess. The second interarrival time Z2 can then be expressed as Z2 = ∑︁Y +y1

i=y1+1 Xi,
where Y again has a geometric distribution with parameter pj.

Since every Xn is nonnegative, so are Z1 and Z2. Since the sequence of
interarrival times {Xn, n ∈ N} consists of independent variables and no Xn is
repeated in both random sums determining Z1 and Z2, they are also independent,
and since the random sum determining Z2 is the same as for Z1, only shifted by a
fixed number y1, this together with identical distribution of variables Xn implies
that Z1 and Z2 are also identically distributed.

The same argument can be used to show that these properties hold for all Zn.
The sequence {Zn, n ∈ N} thus consists of nonnegative, independent and identi-
cally distributed random variables, hence Nj(t) is by definition a renewal process.

(2) To determine the probability distribution of any Zn, it is convenient to use
moment generating functions. Let MZ(s) denote the moment generating function
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of any Zn. It can be then written that

MZ(s) = E [esZ ] = E [E (esZ |Y )]

=
∞∑︂

n=0
E [esZ |Y = n]P[Y = n]

=
∞∑︂

n=0
E [es

∑︁n

i=1 Xi ]P[Y = n] (by independence of Y and {Xn})

=
∞∑︂

n=0

n∏︂
i=1

E [esXi ]P[Y = n] (by independence of {Xn})

=
∞∑︂

n=0
P[Y = n][MX(s)]n (by identical distribution of {Xn})

which is just the probability generating function of Y evaluated at MX(s). Since
Y is geometric with parameter pj, the proof is completed by plugging MX(s) into
the probability generating function of this distribution, we obtain

MZ(s) = pjMX(s)
1 − (1 − pj)MX(s) .
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3. Application
To demonstrate the practical application of the theoretical results discussed

in the previous chapters, we will consider the following situation. An insurance
company is required to merge two of its lines of business. The company possesses
the data of reported claims until the day of merging and wants to estimate the
number of claims in the merged line of business for the following month.

We will model this situation by superposing the counting processes represent-
ing the numbers of claims in the initial lines of business. Although the necessary
conditions for the renewal processes to be closed under superposition have been
stated, they are a bit limiting due to the requirement of geometric-like distribu-
tions of interarrival times of the initial processes. The distribution of interarrival
times of the superposition process is also not that trivial to determine. However,
if we assume that the claims in the initial lines of business come from nonho-
mogeneous Poisson processes, the superposition will again be a nonhomogeneous
Poisson process whose intensity function can be easily determined as the sum of
the intensity functions of the two initial processes. The number of claims in the
following month will then be Poisson distributed, the parameter being the inte-
gral of the intensity function of the superposition process taken over the desired
month. Thus, from now on, we will only work with this type of counting process.

The chapter covers the necessary theory for parameter estimation of a par-
ticular type of intensity function used as a model for the intensities of the initial
processes and an application to insurance data provided by the Czech Insurers’
Bureau with a short discussion of different possible estimates for the future num-
ber of claims. Version 4.3.0 of the programming language R is used as a software
solution to perform the calculations.

3.1 Parameter estimation
The first step after choosing an appropriate model to represent the data is

to estimate its parameters. In this case, we will utilize the likelihood function
to estimate a particular type of intensity function of a nonhomogeneous Poisson
process. Let us first begin with a more general setting of this approach.

Suppose we have observed the times of events (t1, t2, . . . , tn)T in a certain time
period (0, T ], T > 0. As stated before, we assume that this observation is a real-
ization of a nonhomogeneous Poisson process. Furthermore, let us assume that
the intensity function of this process can be written as a function of parameter
θ = (θ0, θ1, . . . , θm)T from a certain set Θ ⊂ Rm+1. We will denote this intensity
function by λ(t|θ). According to Streit [2010, p.17, Equation 2.12], the likelihood
function in this setting can be written as

Ln(θ) =
(︄

n∏︂
i=1

λ(ti|θ)
)︄

e−m(T ), m(T ) =
∫︂ T

0
λ(x|θ)dx,

the log likelihood function is then

ℓn(θ) =
n∑︂

i=1
log(λ(ti|θ)) −

∫︂ T

0
λ(x|θ)dx.
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The maximum likelihood estimate of the parameter θ is of course obtained as

ˆ︁θML = arg max
θ∈Θ

ℓn(θ).

Various different types of intensity functions could be thought of, for instance
the polynomial intensities in form∑︁m

j=0 θjt
j or intensities containing trigonometric

terms to model the potential seasonality of events.
Despite that, we will only consider one specific type of the intensity function

proposed in Cox and Lewis [1966], the so-called log linear intensity function which
is in form λ(t) = eθ0+θ1t. The most notable advantage of this type of intensity
function compared to the polynomial models is that the log linear function is
always positive and so is its integral taken over any bounded interval. The latter
is a necessary condition for the Poisson distribution in the definition 1.8 to always
make sense.

Monotonically increasing or decreasing trends in the number of events can
be modeled with the log linear intensity for the choices of θ1 > 0 and θ1 < 0
respectively, the trend is locally close to linear for the values of θ1 near zero. If
θ1 = 0, there is no trend in the number of events, the Poisson process is thus
homogeneous with a constant parameter λ = eθ0 .

The log likelihood function for the log linear intensity is in form

ℓn(θ) = nθ0 + θ1

n∑︂
i=1

ti − eθ0(eθ1T − 1)
θ1

. (14)

Cox and Lewis [1966, p.46] however suggest that since the observations enter
the log likelihood function only through n and∑︁ ti and for a given θ1, the sufficient
statistic to determine θ0 is the number of events n, the conditional distribution
of ∑︁ ti given n can be used for inference about θ1. The conditional log likelihood
function in form

ℓ∗
n(θ1) = n log θ1 − n log(eθ1T − 1) + θ1

n∑︂
i=1

ti + log n!

is proposed to be used in order to determine the estimate of θ1. The score and
the Fisher information are then derived as

∂ℓ∗
n(θ1)
∂θ1

=

⎧⎪⎪⎨⎪⎪⎩
n
θ1

− nT
1−e−θ1T +∑︁n

i=1 ti, θ1 ̸= 0,

−1
2nT +∑︁n

i=1 ti, θ1 = 0
(15)

and

I(θ1) = E
[︄
−∂2ℓ∗

n(θ1)
∂θ2

1

]︄
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n
(︂

1
θ2

1
− T 2e−θ1T

(1−e−θ1T )2

)︂
, θ1 ̸= 0,

nT 2

12 , θ1 = 0.

The maximum likelihood estimate ˆ︁θ1 of θ1 must of course be the root of (15). It
can be found numerically, we will use the function uniroot built in the program-
ming langauge R for this purpose. The positivity of I(ˆ︁θ1) should also be checked
to confirm that the log likelihood function is concave at ˆ︁θ1.
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Once the estimate ˆ︁θ1 is obtained, it can be used for the estimation of param-
eter θ0. Differentiating (14) with respect to θ0 gives

∂ℓn(θ)
∂θ0

= n − eθ0(eθ1T − 1)
θ1

,

plugging in the estimate ˆ︁θ1 and setting the derivative equal to zero then gives the
maximum likelihood estimate of θ0 as

ˆ︁θ0 = log
(︄

nˆ︁θ1

eˆ︁θ1T − 1

)︄
.

A formal test for homogeneity of the process is also stated in Cox and Lewis
[1966, p. 47], in other words, the null hypothesis

H0 : θ1 = 0

is tested against the alternative

H1 : θ1 ̸= 0.

The test utilizes the fact that in the homogeneous Poisson process, the arrival
times Ti are independent variables with uniform distributon on (0, T ] when con-
ditioned on the total number n of events occuring in (0, T ]. With the help of the
central limit theorem, it can be then determined that the variable

Z =
∑︁n

i=1 Ti − 1
2nT

T
√︂

n
12

has an asymptotic standard normal distribution under the null hypothesis. The
test statistic is then

z =

∑︁n

i=1 ti

n
− 1

2T

T
√︂

1
12n

, (16)

the null hypothesis is rejected at a significance level α if |z| ≥ u1−α/2, the latter
denoting the (1 − α/2)-quantile of the standard normal distribution.

Once the intensity functions of the initial nonhomogeneous Poisson processes
have been estimated, we can also estimate the parameter of the Poisson distri-
bution representing the number of events in the desired following month. The
estimate will be denoted by ˆ︁µ, according to definition 1.8 and theorem 2.1 it can
be obtained as ˆ︁µ =

∫︂ T +d

T
λ1(x| ˆ︁θ1) + λ2(x| ˆ︁θ2)dx,

where d denotes the length of the month in the corresponding unit of time. Let-
ting ˆ︁θ1 = (ˆ︁θ0, ˆ︁θ1)T and ˆ︁θ2 = (ˆ︁θ2, ˆ︁θ3)T , for the log linear intesities of the initial
processes, the desired parameter can be determined as

ˆ︁µ =
∫︂ T +d

T
e
ˆ︁θ0+ˆ︁θ1x+e

ˆ︁θ2+ˆ︁θ3xdx =
eˆ︁θ0

(︂
eˆ︁θ1(T +d) − eˆ︁θ1T

)︂
ˆ︁θ1

+
eˆ︁θ2

(︂
eˆ︁θ3(T +d) − eˆ︁θ3T

)︂
ˆ︁θ3

. (17)
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3.2 Application to Insurance Data
The theoretical approach summarized in this chapter can now be applied to

real insurance data. The data set analyzed in this part was provided by the Czech
Insurers’ Bureau, it contains the reported insurance claims from car accidents in
the time span between 1 January 2010 and 31 December 2016. In total, there are
16141 reported insurance claims, 14078 of which are labeled as material damage
claims, the remaining 2063 are labeled as bodily injury claims. The reporting
time is measured in days, 1 January 2010 being day 0 and 31 December 2016
being day 2557. The value itself is a decimal number, specifying also the time of
the day when the claim was reported and as such can be considered continuous.

The model situation is that the material damage and the bodily injury lines
of business are to be merged as of 1 December 2016, we are interested in an esti-
mate for the number of claims in this merged line of business for December 2016.
The estimate will then be compared to the total number of material damage and
bodily injury claims actually reported during this month.

We first analyze the numbers of claims in the initial lines of business separately,
only the claims before 1 December 2016 are considered. To examine the potential
trends in the numbers of claims, the claims are grouped by month and visualized.
The descriptive statistics of the numbers of claims per month are also calculated.

Monthly material damage claims
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Figure 3.1: Numbers of claims per month between 01/2010 – 11/2016
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Table 3.1: The descriptive statistics of numbers of claims per month

Claim type Min 25% q. Median Mean 75% q. Max
MD 110.00 148.50 163.00 167.80 182.00 261.00
BI 8.00 19.50 25.00 24.55 28.50 39.00

It is obvious that the bodily injury claims are less frequent than the material
damage claims. When looking at the figure, a certain periodic trend in the num-
ber of claims could be noticed within every calendar year, which indicates that an
intensity function with trigonometric components might be a more appropriate
model for these particular data. But since the parameter estimates have only
been stated for the log linear model, we ignore the periodic trend and only focus
on a long term trend in the numbers of claims. The numbers of claims seem
to be decreasing in the long term in both lines of business, we would thus ex-
pect the trend parameters of the log linear models to be negative, although very
close to zero, because, thanks to the reporting time being measured in days, the
observation period is quite long.

We formally test the hypotheses whether the trend parameters of the initial
processes are zero and the processes are thus homogeneous. The test statistic
stated in (16) is used, the time T entering the test statistics is T = 2526 which
corresponds to the midnight between 30 Novemeber 2016 and 1 December 2016.
The significance level α is considered α = 0.05.

Table 3.2: The results of tests for homogeneity of the initial processes

Claim type z p-value
MD −13.23 < 0.0001
BI −5.74 < 0.0001

The hypothesis of the trend component equaling zero and the homogeneity of the
process is rejected in both cases, the observation that the trend parameters might
be negative is therefore sensible.

We proceed to the estimation of parameters of the log linear intensity functions
as described in the first section of this chapter. Once again, let ˆ︁θ1 = (ˆ︁θ0, ˆ︁θ1)T

denote the parameters of the intensity of the first process and ˆ︁θ2 = (ˆ︁θ2, ˆ︁θ3)T the
parameters of the intensity of the second process. The obtained estimates are
summarized in the table below, the values are rounded to five decimal places for
a better readability.

Table 3.3: Estimates of intensity functions parameters of the initial processes

MDˆ︁θ0 1.90093ˆ︁θ1 −0.00016

BIˆ︁θ2 −0.02901ˆ︁θ3 −0.00015

The estimated intensity functions are thus in form λ1(t) = e1.90093−0.00016t and
λ2(t) = e−0.02901−0.00015t. The functions are visualized, on the given scale, they
almost seem to be linearly decreasing.
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Figure 3.2: Estimated intensities of material damage and bodily injury claims

The estimate for the parameter ˆ︁µ of the Poisson distribution representing
the number of claims occurring in the merged line of business in December 2016
is then obtained by plugging the estimated parameters ˆ︁θ0, . . . , ˆ︁θ3 into (17), the
endpoints of the time interval representing December 2016 are T = 2526 and
T + 31 = 2557. The value of the estimate is

ˆ︁µ = 159.1184.

Once the distribution of the number of claims in December 2016 is determined
to be Poisson with parameter ˆ︁µ, various estimates for the precise number of claims
can be thought of. The insurance company might prefer some more conservative
estimates, such as the 95%-quantile or even the 99.9%-quantile of the distribution.
The estimates obtained in this way are compared with the actual number of
claims reported in December 2016, we see that both estimates are above the
actual number of reported claims.

Table 3.4: The estimates and the actual number of claims in 12/2016

MD + BI
Actual 174

95%-quantile 180
99.9%-quantile 199

As already mentioned, numerous more complex approaches could be used
to model this situation, such as different types of intensity functions containing
for instance the trigonometric terms to model the seasonality of events or even
different than Poisson processes, if the superposition of such processes turns out
to have reasonable properties. Additionally, the insurance company could also be
interested in the precise times when the future claims are likely to be reported.
The approaches for simulating realizations of a nonhomogeneous Poisson process
should be studied in that case.
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Conclusion
The purpose of this thesis was to describe several classes of counting processes

which are closed under the operations of superposition and thinning. Modeling
the number of claims with these types of processes is especially useful when an
insurance company faces the requirement to merge or split some of its lines of
business. The resulting models retain the basic properties of the models entering
the operations and in some cases, the parameters of the resulting models can be
directly determined from the parameters of the initial processes.

The term counting process was introduced in the first chapter and some spe-
cific types of counting processes were presented. Several definitions of a Poisson
and a nonhomogeneous Poisson process were stated and their equivalence was
demonstrated in both cases. A different generalization of a Poisson process, the
renewal process, was also introduced and some of its properties were derived.

The second chapter introduced the general idea of superposition and thinning
of the counting processes, Bernoulli and multinomial thinning rules were consid-
ered in particular. The classic results about the superposition and thinning of the
Poisson processes were proved for the more general, nonhomogeneous version of
this process. An interesting result about the necessary conditions for the renewal
processes to be closed under superposition was studied and explained in further
detail. An original result was derived, stating that the renewal processes are also
closed under the two mentioned thinning rules.

The third chapter covered the necessary theory to apply the previously stated
results to a model situation when an insurance company is required to merge
its lines business. The described approach was then used to estimate the future
number of claims in the merged line of business, real insurance data provided by
the Czech Insurers’ Bureau were used for a practical demonstration. In particular,
the maximum likelihood approach for the estimation of a log linear intensity
function of a nonhomogeneous Poisson process was described, the estimate of a
parameter of the Poisson distribution representing the future number of claims
in the merged line of business was derived and the quantiles of this distribution
were proposed as conservative estimates of the number of reported claims.

The future work related to this topic could examine closure under different
types of thinning, which could be for instance time-dependent. The interaction
of superposition and thinning with a generalized version of the renewal process,
the so-called renewal reward process, could be also investigated, as this process
provides a more complex approach for modeling both the claim numbers and claim
amounts. From the application point of view, different types of intensity functions
could be used to model the trends in number of claims and the algorithms for
simulating the realizations of a nonhomogeneous Poisson process could be studied.
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