
BACHELOR THESIS

Tomáš Guth Jarkovský

Adaptive generated encounters in a
rogue-like role-playing video game

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Vojtěch Černý

Study programme: Computer Science

Study branch: Computer Graphics and Game

Development

Prague 2023

I declare that I carried out this bachelor thesis independently, and only with the

cited sources, literature and other professional sources. It has not been used to

obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

AuthorŠs signature

i

I wish to greatly thank my supervisor Vojtěch Černý for so many consultations

and advice that I could not do without. I would also want to thank all the people

in my life whom I have neglected due to my studies.

ii

Title: Adaptive generated encounters in a rogue-like role-playing video game

Author: Tomáš Guth Jarkovský

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Vojtěch Černý, department

Abstract: We want to provide a video game player with a fun, unique, challenging

experience. That may not be the case in games involving a lot of possibilities or

randomness. This thesis introduces an algorithm for a procedural generation of

enemies in a rogue-like RPG game. The algorithm is based on running a series

of simulated battles to create an adequately difficult enemy group. We have

implemented the algorithm in a custom rogue-like turn-based RPG game and

in the experimental part, our approach has shown to be moderately successful.

The generated enemies have shown to be neither too difficult nor too easy while

providing a reasonable amount of variety and new challenges. The outcome of

this thesis may be a step forward in the generation of unique, fun, and balanced

enemy encounters in rogue-like RPG games.

Keywords: procedural generation games RPG difficulty

iii

Contents

Introduction 3

1 Background 5

1.1 Procedural content generation . 5

1.2 Video games . 5

1.3 Role-playing rogue-like video games 6

1.4 PCG in video games . 6

2 Related work 8

3 Problem deĄnition and analysis 10

3.1 DeĄnitions . 10

3.1.1 Enjoyment and Ćow . 10

3.1.2 Difficulty . 11

3.1.3 Originality . 12

3.1.4 Believability . 13

3.2 Problem Analysis . 13

3.2.1 Difficulty . 13

3.2.2 Difficulty increments . 14

4 The Game 16

4.1 Existing vs. custom game . 16

4.1.1 Existing game . 16

4.1.2 Custom game . 17

4.2 Game overview . 17

4.2.1 Game goal and structure 17

4.2.2 Gameplay . 18

4.3 Game-speciĄc deĄnitions . 18

4.4 Components . 19

4.4.1 Component types . 19

4.4.2 Timed Components . 21

4.4.3 Upgradable Components 21

5 AGE approach 23

5.1 Simulations . 23

5.1.1 Evaluation . 23

5.1.2 Simulation decision making 23

1

5.1.3 Enemy generation process 24

5.1.4 Simulation effieceny . 25

6 Experiment parameters 26

6.1 Goals . 26

6.2 Control group . 26

6.3 Experiment . 26

6.3.1 Data gathering . 27

7 Experiment Results 28

7.1 Result analysis . 28

8 Discussion 34

8.1 Testing game evaluation . 34

8.1.1 Goals . 34

8.1.2 Component system . 36

8.2 Procedural generation evaluation 36

8.2.1 Experiment . 37

Conclusion 38

Bibliography 39

List of Figures 41

A Attachments 42

A.1 Attachment 1 - Survey . 43

A.1.1 The form . 43

A.2 Attachment 2 - Technical details 47

A.2.1 Running the game build 47

A.2.2 Running the Unity project 47

A.3 Attachment 3 - Project Documentation 49

A.3.1 User Documentation . 49

A.3.2 ProgrammerŠs Documentation 49

A.4 Attachment 4 - Control group . 56

A.4.1 Level 1 . 56

A.4.2 Level 2 . 57

A.4.3 Level 3 . 57

A.4.4 Level 4 . 58

A.5 Attachment 5 - Credits . 59

2

Introduction

Rogue-like games are games focusing on progress through an increasingly

difficult dungeon. The focus is on getting the most effective combination of gear

and abilities to progress through the game. Such games also usually involve a

variation of an Şendless runŤ mode with constantly increasing difficulty with the

goal of getting the furthest. In a rogue-like game, a defeat usually means resetting

to back where you started and starting anew.

When playing the game, the player commonly encounters groups of enemies.

Fights with such enemies are usually turn-based with multiple characters in both

players and the enemy party. Examples of rogue-like games are Darkest dungeon,

Slay the Spire and Hades.

Players enjoy rogue-like games for the thrill of a challenge and the aim

of getting better at progressing through the game. Each playthrough must be

similar enough to allow improvement of skills and knowledge of the game but at

the same time variable enough to not get repetitive and stale. The difficulty of

a playthrough should gradually increase so that the playerŠs improvement over

several playthroughs is possible and can easily be recognized by both the player

and the game.

Procedural generation is a process of creating content by an algorithm,

rather than manually. Procedural generation allows to save development time

and provides the possibility to constantly produce new non-repeating content.

Procedural generation has been successfully used for creating massive worlds

and thousands of levels but it has not yet been widely used to generate enemy

encounters and to inĆuence the gameŠs difficulty. Procedural generation is often

used with no or very little regard to the playerŠs previous actions and current

progress, such as in games Spore or No ManŠs sky.

In this thesis, we will design an algorithm for the adaptive generation of

enemies (further called the ŞAGE algorithmŤ). The AGE algorithmŠs task is

to generate adaptive, unique, fun and adequately difficult enemy encounters for

a turn-based rogue-like game. Making the encounters adaptive means that the

group of enemies is generated considering the weak and strong sides of the playerŠs

party. Making the encounters adequately difficult means making them require

some strategy and decision-making while not making them too punishing. Such

automation allows to save time and resources on designing levels and enemies and

makes it possible to easily design an Şendless runŤ variant of the game.

3

The main goal of the thesis is to measure whether enemy encounters gen-

erated by the AGE algorithm are similarly fun, difficult, and unique as manually

designed encounters and whether the player has recognized the lack of human

involvement in their design. Such Ąndings may be key in deciding whether a

game designer wants to include adaptively generated enemy encounters in their

game. A successful outcome may also be a stepping stone towards expanding the

amount and variety of procedurally generated content in games.

The thesis is divided into four sections. The Ąrst section is about the topic

of, role-playing rogue-like games, procedural generation, the current progress in

the Ąeld, and some related work. The second section is about a custom game that

we have designed to test out our approach and about a component system crucial

for the algorithm itself. In the second section, we also explore the practicalities

of implementing our simulation-based approach into our game. The third section

is dedicated to the experimental part, testing playersŠ enjoyment and rating of

their playthrough of Deep Crawl with procedurally generated enemies.

4

1. Background

In this chapter, we need to deĄne several terms which we will be using

throughout this work. As this work is focused on procedural generation and the

enjoyment and difficulty of video games, the deĄned terms will be from these

areas.

1.1 Procedural content generation

Procedural content generation (further abbreviated as PCG) refers to a

process of content creation, where only a limited amount of parameters are set

up by a human, and the rest of the work is performed by an algorithm, usually

making use of randomness for creating unique pieces of content. [1]

The word ŤcontentŤ refers to any asset that players may encounter with

their senses within the game. As stated in a book Procedural content generation

[1], one of the widely known sources on the subject ŤIn our deĄnition, content is

most of what is contained in a game: levels, maps, game rules, textures, stories,

items, quests, music, weapons, vehicles, characters, etc.Ť

1.2 Video games

Video games are a piece of new media carrying entertainment and artis-

tic value. Video games have been around for more than 50 years [2], but only

recently have they been normalized and enjoyed by most of the population in

several demographic groups. In the US, a majority of all adults play video games

regularly, with the number reaching 80% with the younger population. [3] Fur-

ther in the text, whenever we refer to ŤgamesŤ we are going to be talking about

video games.

Famous video game designer Sid Meirs presents a very Ątting deĄnition

ŤGame is a series of meaningful choicesŤ, which appropriately describes the

amount of variety within the video game genre, which varies from text-based

adventure stories across large-scale battles fantasy Ąghts counting hundreds of

players to a simulation of presenting the opportunity to experience being a sen-

tient mobile bread.

5

1.3 Role-playing rogue-like video games

The term role-playing has been a subject to many interpretations and mean-

ings, but for the purpose of this text, we shall deĄne a role-playing game (further

abbreviated as RPG) as one, where a player controls one or multiple characters,

is expected to make meaningful choices about the progression of their characters

and such choices have an impact on the gameplay following such choice. An

example of an RPG is World of Warcraft.

In an RPG, the player is expected to create a connection to their characters

and to gain enjoyment from experiencing the result of their choices usually in a

form of victory or further progress. In most RPGs, the progress and state of oneŠs

character are characterized by their equipment, or by the state of their skills and

available abilities.

The term rogue-like game refers to a type of game, in which player repeat-

edly encounters similar scenarios and is expected to improve upon every iteration,

either in their expertise in mastering the gameŠs rules and logic or by improving

their character to a point in which the player is able to progress further into the

game.

An example of a rogue-like role-playing game is Darkest Dungeon, in which

the player controls a roster of fantasy-inspired characters with different skills and

possible gear options, and repeatedly ventures into dungeons, crypts, and similar

locations to hunt enemies, gather better gear and loot, and to gather experience

for their characters, so they may take on harder challenges and dungeons later

on.

1.4 PCG in video games

In video games, PCG is commonly used to generate content which would be

too time-consuming and money-consuming if it were done manually by a game

designer or a 3D artist. The most common use case is generating landscape

and nature. The randomness and chaos usually following PCG are perfect for

automating the creation of nature and of landscapes.

This case can be most clearly seen in the game Minecraft, in which the en-

tire world is procedurally generated, merely following predetermined constraints

with the aim to create a pseudo-realistic world made entirely of blocks. The sec-

ond example is the game No manŠs sky, in which the player is a space explorer

with the ability and task to explore plenty of procedurally generated planets, al-

6

together with generated biomes, Ćoras, and faunas, reaching hundreds of millions

of possible combinations.

In this work, we are going to focus on the procedural generation of enemies

and enemy encounters for a rogue-like role-playing game. Such a task brings a new

challenge due to the fact that the generated content must not only be acceptable

and unique but also adequately difficult and enjoyable to interact with - in this

case, enjoyable to defeat.

7

2. Related work

Not much academic work has been done in the Ąeld of PCG of enemies and

using PCG to balance the difficulty of a game.

There have been experiments related to balancing the difficulty of a game

using PCG, but the speciĄc research[4] used procedural generation for deter-

mining the number and formations of swarms of enemies, not the design and

parameters of the enemies themselves.

There has been a great deal of work related to the PCG of maps and levels

and generating quests, but not a lot regarding the generation of enemies.

One of the Ąrst games to ever use PCG was the game Rogue [5], involving

PCG in generating game levels following a set of rules. A secondary major break-

through in the history of PCG in games is Minecraft [6], which uses procedural

noise to generate the entirety of the game world including large mountain ranges

and deep cave systems below ground, following a complex set of rules and possible

interactions between generated objects and biomes.

There have, however, been related breakthroughs in the commercial video

gaming industry. In the game, No ManŠs Sky, the great majority of the explorable

game universe is procedurally generated, including planets and their fauna and

Ćora [7]. A very similar thing can be seen to a lesser extent in an older game

from 2008, Spore [8]. However, in both these games, the PCG of enemies is

used mostly for visuals, models, and behavior, rather than their difficulty and

the playerŠs ability to defeat them, so for the purpose of this thesis, we will not

consider that as a PCG of enemies.

Matouš Kozma [9] has written a thesis regarding the PCG of enemy en-

counters in a similar style of games, although with a very different approach. His

approach consisted of precalculating a difficulty matrix, with columns and rows

being indexed by whole creature groups and each cell describing the difficulty

of the encounter of the two groups. When trying to assess the difficulty of an

encounter, his algorithm tries to Ąnd the most similar encounter and estimates

the difficulty accordingly.

This approach brings several advantages and disadvantages. For one, try-

ing to assess the similarity between two groups requires a reliable comparative

function. Further on, calculating such a difficulty matrix may require a lot of

computation beforehand and any future change to the gameŠs mechanics requires

8

the new calculation of the whole matrix. With the used approach, the calculated

difficulty matrix might also take up a lot of space, and such required space grows

exponentially with more content and features in the game.

One of the key advantages of that approach is not require a lot of calcula-

tions during the playerŠs game. A secondary advantage is that the accuracy of

the difficulty matrix can be incrementally improved and even Ątted to a speciĄc

player to adequately reĆect their skill and the already resolved encounters.

In 2021, a research paper [10] described using Parallel Evolutionary Algo-

rithms (PEA) to procedurally generate enemies for a game in the action-adventure

genre, a genre closely tied to the rogue-like genre. In that piece of work and within

the PEA, they used a difficulty function to approximate and estimate a groupŠs

difficulty and then put players against sets of differently difficult groups.

Building a difficulty function bears similar advantages and disadvantages

as the difficulty matrix approach. It does not require additional processing power

during the game, but it is also potentially very hard to design correctly and has

to be redesigned or redone with every change to the mechanics of the game and

adding of new content.

9

3. Problem deĄnition and

analysis

In this section, we shall deĄne several terms related to the problem of PCG

of enemies in role-playing rogue-like games

3.1 DeĄnitions

3.1.1 Enjoyment and Ćow

The enjoyment of players in a game has been described using the idea of

a Ćow, a persistent cycle of new experiences, rewards, and the sense of moving

forward and having meaning. It was found that people with certain skills some-

times gain a positive experience from simply performing a difficult task requiring

their certain skill, improving the said skill in the process. [11]

On the understanding of Ćow, researcher Mihalyi Csikszentmihalyi [12]

formed eight elements of Ćow as an useful tool and indicators to measure Ćow in

a task. The said elements are:

• A challenging but tractable task to be completed

• One is fully immersed in the task, no other concerns intrude

• One feels fully in control One has complete freedom to concentrate on the

task

• The task has clear unambiguous goals

• One receives immediate feedback on actions

• One becomes less conscious of the passage of time

• Sense of identity lessens but is afterward reinforced

These elements have been iterated on and modiĄed over the years and still

serve as a solid background for measuring Ćow. These elements are the basis of

our survey for the experimental part of this work.

10

3.1.2 Difficulty

The question of difficulty is an integral question of Ćow. To achieve desired

Ćow and enjoyment, we present the player with a series of meaningful decisions

and must provide feedback on those decisions.

Video game designer Jesper Juul[13] brings a cohesive and understandable

description of what a game is, out of which we can derive a comprehensive under-

standing of difficulty: ŤA game is a rule-based formal system with a variable and

quantiĄable outcome, where different outcomes are assigned different values, the

player exerts effort in order to inĆuence the outcome, the player feels attached to

the outcome, and the consequences of the activity are optional and negotiable.Ť

With such a deĄnition, difficulty in video games is a difficulty of efforts to

bring the desired or the best outcome.

We can also divide difficulty into several categories depending on which

type of skills are required in improving the efforts towards the desired outcome.

Blogger and video game designer Rhys Frampton deĄnes a taxonomy of

difficulty in his blog[14], dividing difficulty into three categories.

Comprehensive difficulty describes the amount of knowledge and abil-

ity to connect such knowledge to form logical conclusions and solve relevant

knowledge-based puzzles. It tests not only the informational capacity but also the

ability to form logical connections between pieces of information. Such difficulty

is most often tested in puzzle and detective games.

Executive difficulty describes that a desired and best outcome requires

physical activity that is either, fast, precise, or somewhat another way physically

challenging. In the area of video games that may most often mean quickly and

precisely moving the computer mouse our having quick reĆexes and hand-eye

coordination. Such difficulty is most often tested in Ąrst-person shooter video

games, such as the Call of Duty series.

The last difficulty described is strategic difficulty and the related ability

to quickly evaluate a large number of information and make fast tactical choices,

usually requiring to react to new inputs and changes in both the rules or the

situations the game presents. It also usually requires thinking several steps for-

ward and picturing and preparing for different possible scenarios. This difficulty

is most often found in strategy games such as StarCraft or the Total War series.

Besides the presented taxonomy, in story-driven games, a difficulty may be

11

present in a hard ethical or emotional choice in the gameŠs story. For such a

decision to bear meaning and contribute to the Ćow, each such decision should

carry a resolution. In a dating simulator game, it may be either understanding

how to be affluential in social situations, or it may be simply understanding the

gameŠs mechanics.

In rogue-like games, in particular, the common randomness aspect requires

you to come up with new strategies on the spot and the player always needs to

adapt to new circumstances. Even within a familiar environment with under-

standable rules, the best rogue-like games are designed to constantly generate

new challenges. using the taxonomy described above, rogue-like games contain

both comprehensive and strategic difficulty.

In a lot of rogue-like games, there is also an aspect of permanent death.

Permanent death means no possibility for a player to save their progress and

rewind if they happen to fail. Failing and dying in a rogue-like often result in

a signiĄcant loss of progress or even having to completely start the game from

start. Such a high-rich rich-reward system may seem to deter a lot of players

from rogue-like games, but it is suggested that it may also bring a new meaning

and more impact to playersŠ actions and the impact of defeat. [15]

3.1.3 Originality

Whenever working with a procedural generation, one must implement a

way to make sure the generated content does not get repetitive too fast and to

provide new original content with enough variety so that the repetitiveness can

not be easily recognized.

A key component in PCG is therefore an element of required randomness.

Achieving true randomness has always been a struggle in the computer and math-

ematics world in general, but aside from cryptography and other particular uses,

semi-random generators built-in most current computers are sufficient enough to

seem random to human observers.

In PCG, the goal is usually not only to generate random numbers but usu-

ally to generate a random noise - two-dimensional pattern, out of which content

and assets can be generated. As described in State of the Art in procedural noise

functions: ŤIt is a random and unstructured pattern, and is useful wherever there

is a need for a source of extensive detail that is nevertheless lacking in evident

structure.Ť [16] Noise is most often used in generating maps and terrain.

12

3.1.4 Believability

At the moment, there is not a lot of hard evidence that players appreciate

hand-crafted-looking content more than procedurally generated. However, we

trust that it is safe to assume that content must seem as if crafted with intent

and intended experience in mind instead of randomly thrown together without

any underlying rules of consistency and realism.

For this reason, it can be expected to tighten the range of possibly gen-

erated outcomes with its own author-imposed rules to follow the desired design

intentions. As an example, with randomly generated maps, the designer might

impose restrictions for the maps to follow basic notions of geography.

3.2 Problem Analysis

The problem to be tackled brings several subproblems that desire to be

addressed

3.2.1 Difficulty

One of the major subproblems is generating enemy encounters to be appro-

priately difficult. The required difficulty is hard to pinpoint exactly, s we lack the

tools to measure and quantify ŤdifficultyŤ.

If we were trying to quantify a difficulty of a game, an enemy encounter, or

basically any situation, one simple solution may simply be to count the number of

outcomes that result in a victory. However, these solution quickly becomes inad-

equate, because simply the amount of possible positive outcomes hardly deĄnes

the actual difficulty player has in reaching them.

The previous approach could be modiĄed and improved by being able to

calculate the best decision at every step. That way we could deĄne a measurement

of difficulty as a number of mistakes one can make while still being able to reach

the desired outcome. This seems like a bit more nuanced way, but it requires

us to be able to compute every possible decision sequence in a game or speciĄc

encounter, and that can very easily not be possible with even simple games.

There may simply be too many possibilities to calculate. This approach is also

completely unusable in games that are not turn-based because the amount of

real-time decisions increases very fast and it even becomes unclear what can be

considered a decision in such a calculation.

The third approach IŠd like to mention is not as accurate but may prove as

13

the best one for our use case. The best way to measure difficulty is to let players

play the game and measure how often the player wins. We can also improve this

method by then asking them how it felt.

3.2.2 Difficulty increments

In any used algorithm, we are going to have to increase and decrease the

difficulty of an encounter in both big and small increments to reach our desired

encounter difficulty of an enemy encounter.

A large increment or decrement of difficulty could be adding or removing

an entire creature from the enemy encounter. This may run into constraints of

a game, especially with an upper bound of possible enemies present, and with a

large number of enemies, the expected difficulty increases may get diminishing

results.

A medium increment or decrement of difficulty is by adding or removing

a part of a creatureŠs equipment or skill. In a fantasy setting RPG game, this

could mean adding a layer of armor, a new weapon, or a new active or passive

ability an enemy could use. This seems promising but may result in a generated

creature with either too few or too many such pieces of equipment or abilities,

which may turn out hard to keep track of the player and may look out of place.

The slightest increments or decrements of difficulties in an encounter can

be changes in values of already present equipment or abilities, tuning it by a

small amount to reach even tiny desirable changes. The easiest implementation

of this is changing the amount of health an enemy can lose before being defeated.

However, such straightforward changes may result in a loss of enjoyment and

Ćow, due to encounters simply taking way too short or too long.

In contrast, the AGE algorithm we use in this thesis doesnŠt pre-compute

any encounters but relies on fast real-time simulations of combat encounters to

calculate the encounterŠs difficulty. This saves space because the pre-computed

difficulty matrix could be getting very large with more complex encounters, and

this approach allows for balance changes and additions to the game without

requiring computing a whole new difficulty matrix.

Matouš KozmaŠs approach, mentioned in the previous chapter, does bring

several advantages to the PCG of enemies. Firstly, it doesnŠt require a lot of pro-

cessing power. The AGE algorithm requires several sets of simulations, possibly

spanning even into hundreds and that simply may be too much for some com-

puters and may cause visible lag during the sections the simulation takes place

14

in the background. His approach also allows for incremental updates of the diffi-

cult matrix over time, allowing further balances reĆecting the playerŠs individual

playstyle and strengths. However, we see a great hindrance in having to renew

and recalculate the difficulty matrix with any new balance changes to the game,

which is why we have decided to go with our own approach.

15

4. The Game

4.1 Existing vs. custom game

A major question for the thesis was whether to tailor the algorithm to a

speciĄc existing game or whether to create our own to test and experiment on it.

Considering tailoring it to an existing game would very likely require advanced

programming skills and would very likely bring licensing issues, We have decided

to create a game from scratch, allowing for a much larger variety of options and

design paths and giving both creative and designer freedom. The created custom

game is however very clearly inspired and derives from existing known games

and the designed algorithm is easily imagined and implemented into similar-style

existing games.

4.1.1 Existing game

The game to test the AGE algorithm was from the start planned to be a

turn-based rogue-like game. A major inspiration for coming up with this problem

was the game Darkest Dungeon.

Darkest Dungeon is a turn-based role-playing rogue-like game in which you

control a party of adventurers, which you repeatedly send out in groups of four

to missions into catacombs and similar locations to hunt down enemies, gather

supplies, and fulĄll similar tasks. The chosen heroes all wield different skills and

equipment, and a major part of gameplay is deciding on the correct combinations

of skills and equipment to use to maximize the chance to win while being aware

of possibly losing it in case of a failed mission together with the party. Besides

this gameplay aspect, the player makes use of the gathered supplies, money, and

experience of their heroes to improve their hamlet, which serves as a camp of

operations in between missions.

The missions themselves consist of traversing a dungeon full of rooms in-

terconnected with pathways and tunnels. The PlayerŠs party is always either

battling an encountered group of enemies, or exploring the dungeon, gathering

loot, solving puzzles, and Ąnding new equipment and consumable items.

The battles are turn-based, with different characters having different speeds

and therefore acting in an order according to it. The battle also brings focus to

positioning, because both the battling parties stand in a line one behind another

and different skills have different reaches. For example, a stab with a sword may

16

only be able to reach the Ąrst two characters in an opposing group, so the game

requires strategic decisions around positioning as well.

4.1.2 Custom game

Creating a custom game allowed us to focus on the key aspects of the

gameplay that we Ąnd most important to our topic, which is repeated combat

encounters in a dungeon with time in between to rest, heal, and improve the

playerŠs characters to face subsequently tougher enemies.

In both existing and our custom game, the battles are four vs. four with

positioning having to be taken into account. In both games, the Ąght is going to

be turn-based with a system to determine when each character acts.

In the existing game, the player is rewarded with consumable items, new

equipment, and treasure for each Ąght, while in our custom game, we are going

to simplify this system to better suit our goal a to be more straightforward.

In the existing game, the time in between battles is spent exploring the

dungeon, Ąnding loot and solving puzzles, and occasionally having the opportu-

nity to heal and improve the playerŠs charactersŠ abilities. This we are going to

replace with a time for improvements and healing in between each battle and we

are going to make use of this downtime to generate a new enemy encounter.

4.2 Game overview

For the purpose of this thesis, we have created a lightweight turn-based

role-playing rogue-like game for testing the AGE algorithm. The custom game is

called Deep Crawl. The game is set within a giant humanoid body with the main

protagonists implied being microorganisms Ąghting against different microorgan-

isms, defending the body. The theme and setting of the game are very simplistic

to allow us to focus on the battles while also providing at least some signiĄcance

and meaning.

4.2.1 Game goal and structure

In Deep Crawl, the player controls a party of four characters, subsequently

facing up to four enemy encounters during the game. After each battle, the player

visits a room with a campĄre, giving their party time to rest and prepare for the

next combat. While in this phase, players may heal or revive their characters

17

and may purchase upgrades for them, improving their gear and abilities before

the following combat.

4.2.2 Gameplay

The main gameplay of Deep Crawl lies in carefully selecting and targeting

abilities to successfully eliminate the enemy group in combat before they eliminate

the playerŠs group. In battles, the player decides whom to target, what abilities

to use, and even whether heal their own creatures or deal more damage instead.

The second aspect of the gameplay is in the campĄre room, in which player

needs to strategize around allocating resources to heal and upgrade their charac-

ters. Each creature has a large array of possible upgrades that allow for tactical

choices to create a coherent and strong group for the following combats.

4.3 Game-speciĄc deĄnitions

From now on, all deĄnitions from now on will refer to the entities and

concepts in Deep Crawl. Whenever we would want to speak more broadly about

those words, we will make it clear

• Creature. An entity consisting of a name and components such as speed,

health, armor, etc...

• Creature group. Group of exactly four creatures.

• Enemy. A creature with the purpose of either being killed by or for defeating

the playerŠs creature group

• Enemy group. A creature group of enemies

• Defeat. A group is defeated in this game when all of its creaturesŠ are killed

• Kill. A Creature is killed when its health count reaches zero.

• Component. Part of a creature describing any of their attributes besides

name - health, armor, speed, and any others. All creatures have several

components.

• Health. A component that describes the amount of damage it takes for the

creature to be killed.

• CampĄre. A game phase, in which the player chooses upgrades for their

creatures, may heal the wounded ones and revive those killed.

18

• Upgrade. An action that permanently improves a component within a crea-

ture

• Downgrade. An action that permanently worsens a component within a

creature

• Combat encounter. A situation consisting of two creature groups trying to

defeat each other over the course of several rounds.

• Ability. An action usable during a creatureŠs turn. During its turn, a

creature can only play one ability. Each creature has exactly two abilities -

a basic attack and a special ability.

• Basic attack. An action possible by having a PhysicalWeapon component,

which all creatures in Deep Crawl contain. It Deals physical damage but is

modiĄable by additional components.

• Special ability. A second action that each Creature in Deep Crawl possesses,

usually provides a special attack, a spell, or healing. It is generally a more

modiĄable and speciĄc ability.

• CreatureŠs turn. When the creature is given the possibility to use one of its

abilities.

• Round. A period of time in which every creature on the battleĄeld gets to

have a turn. The order of creatures is dictated by their speed component.

Creatures that are dead or stunned donŠt take their turn.

• Speed. A component deciding the order in which the creatures take their

turns. The higher the value in the speed component, the earlier a creature

takes its turn. With high enough speed, a creature may play twice in a

round.

4.4 Components

Creatures in Deep Crawl are comprised of a name and a number of com-

ponent objects carrying information about the creature, its attributes, or its

behavior.

4.4.1 Component types

• Health. Keeps track of creaturesŠ health and changing it when receiving

damage or healing.

19

• Speed. Determines the order in which creatures get their turn.

• PhysicalWeapon. Describes the basic attack ability, which deals physical

damage, and which all creatures possess.

• LongWeapon. Provides the basic attack with a range to reach all enemies.

• ShortWeapon. Provides the basic attack with a range to reach only the Ąrst

row of opponents

• Armor. Reduces all incoming physical damage by a Ąxed amount.

• PowerStrike. Adds physical damage to a special attack. Restricts the reach

of special attack to short range.

• PoisonBlast. Provides the special attack with the ability to inĆict poison

that lasts several rounds.

• Poison. Deals elemental damage to its wielder at the end of a round.

• AmplifyPoison. Enhances basic attack to amplify the potency and duration

of poison on a targeted creature.

• ShieldBash. Adds physical damage, short range and the ability to inĆict

stun.

• Stun. Makes the creature unable to perform actions.

• Claws. Provides the special attack to deal physical damage at any range

and deals two times more damage to enemies bearing Clawed component.

InĆicts Clawed component to enemy hit.

• Clawed. Makes the holder receive 2x damage from Claws special attacks.

• FirstStrike. Makes the bearer do more physical damage when they are at

full health.

• Anger. Makes the bearer do more damage when below 50% health.

• FieryWeapons. Adds Ąre damage to all physical attacks.

• HealingWave. Makes the special attack able to target allies and heals the

target.

• ElementalResistance. Reduces poison or Ąre damage dealt to the wielder.

20

4.4.2 Timed Components

Some of the components are timed components, which means that they

persist only for a limited number of rounds before destroying themselves. At the

end of each turn, all components receive a query of a Tick type and reduce their

timer by one, some even performing an action and sending a query by themselves.

The timed components include:

• Stun. A creature in possession of the Stun component cannot act.

• Clawed. Attacks with Claws deal double Claws damage.

• Poison. Deals periodic elemental damage.

4.4.3 Upgradable Components

Some of the components are upgradable, having the possibility to increase or

decrease their effectiveness. All Components have their own means of upgrading,

their own costs for upgrades, and their own upgrade limits.

Some upgrades have an upper limit for upgrades, being unable to get up-

graded beyond a certain point, while others are able to be upgraded indeĄnitely.

This has been done for game balance reasons.

Almost all upgrades have a lower bound for downgrading. If you try to

downgrade beyond this point, the component gets removed instead. An exception

is Health, Speed and PhysicalWeapon, which are required for combat and therefore

cannot be removed.

• Health. Every upgrade adds or subtracts 10 health points and costs 2 points.

• Speed. Every upgrade adds or subtracts 1 speed and costs 2 points.

• PhysicalWeapon. Every upgrade adds or subtracts 5 physical damage and

costs 2 points.

• Armor. Every upgrade adds or subtracts 3 points of physical damage nega-

tion. Costs 2 points. Gets removed when below 3 armor.

• PowerStrike. Every upgrade adds or subtracts 10 physical damage and

costs 2 points. Gets removed when below 20 damage.

• PoisonBlast. Has three levels of upgrades. The second level increases dam-

age. The third level increases duration to inĄnite. Costs 2 points. Gets

removed if downgraded below the Ąrst level.

21

• ShieldBash. Has three levels of upgrades. The second level increases dam-

age. The third level increases both duration and damage. Costs 2 points.

Gets removed if downgraded below the Ąrst level.

• Claws. Every upgrade adds or subtracts 5 physical damage and costs 2

points. Gets removed when below 10 damage.

• FirstStrike. Every upgrade increases or decreases the damage modiĄer by

20%. Costs 1 point. Gets removed when below 20%.

• Anger. Every upgrade increases or decreases the damage modiĄer by 10%.

Costs 1 point. Gets removed when below 20%.

• FieryWeapons. Every upgrade adds or subtracts 5 Ąre damage and costs 2

points. Gets removed when below 5 damage.

• HealingWave. Every upgrade adds or subtracts 10 health restoration power

and costs 2 points. Gets removed when below 20 power.

• ElementalResistance. Every upgrade increases or decreases the resistance

by 20%. Costs 1 point. Gets removed when below 20%.

22

5. AGE approach

Our approach for generating adequately difficult enemies is based on prepar-

ing a base enemy group and then incrementally tuning its difficulty while running

multiple sets (further called series) of simulated encounters, each time changing

the setup until reaching the desired percentage of won battles (further called win

rate).

In further text, simulated encounter is an encounter in between the playerŠs

group and the enemy group, in which both sides are controlled by a simple

decision-making algorithm, trying to emulate the playerŠs behavior.

5.1 Simulations

In between each modiĄcation of the enemy group, a series of simulated

encounters is run and the results are evaluated.

5.1.1 Evaluation

When evaluating a result of a simulated encounter, we have decided to

look only and the fact of which side has won or lost. A more detailed approach

could be evaluating how much health the winning side has lost and/or how many

creatures have died on their side. We have decided to not implement such an

approach.

Depending on the game the approach may be used for, a more complex

evaluation of the results of combat can be used, taking into consideration abilities

used, loot gained, and even taking into consideration not only the result but also

the progress of the encounter.

5.1.2 Simulation decision making

For the purpose of simulation, there must be a way to adequately mimic

and simulate the playerŠs decision-making process and pick abilities accordingly.

In theory, there is a vast amount of approaches in the Ąeld of artiĄcial intelligence

as to how to approach such a decision-making system.

Our custom game provides full transparency regarding the outcome of each

characterŠs actions and even does not have any chance-based abilities, so it would

be possible to calculate an optimal strategy for each encounter. However, such

23

an approach would completely negate the purpose of the series of simulations, so

we do not engage in this approach.

In our custom game and for the experimental part, we employ a simple

decision-making system. Half the time, it picks the best course of action for a

character depending on simple metrics - how much damage it deals to an opponent

or heals an ally, considering all the possible combinations of abilities to use and

opponents to target. The remaining half the time, it picks a random ability for a

random possible target.

In future work, the decision-making system in simulations could be more

personally tailored to Ąt the playerŠs playstyle to reĆect their likely actions and

decision better, to generate even more precise adequately difficult enemies.

5.1.3 Enemy generation process

In the following text, the word modiĄcation means either upgrading, down-

grading or adding a component.

A base group of enemies is generated and a series of simulated combats is

performed. At the end of this series, the win rate is calculated and compared to

the desired target win rate, in the experiment being 40% - 60%. If the target

win rate was not hit, the group is modiĄed. The amount of modiĄcation is deter-

mined by a calculated amount of modiĄcation points U = Abs(targetWinrate −

achievedWinrate)/3. If the evaluated win rate was below the target, the group

is going to be upgraded, and vice versa with downgrading.

After computing the number of modiĄcation points, a creature is randomly

chosen from the group and a random modiĄcation is chosen from all the possible

ones to apply to the creature and its components. When a component is chosen

to be downgraded beyond its minimal point, it is removed instead. When a

component is chosen to be upgraded beyond the maximal possible upgrade, the

modiĄcation fails and a new possible modiĄcation is chosen.

Each modiĄcation has a previously assigned cost of modiĄcation points and

the process is repeated until modiĄcations are no longer possible. The addition

of the system of modiĄcation points is implemented to speed up the generation

process and lower the number of required series of simulations.

Each generated creature is restricted to only being able to contain six

upgradable components. This is to prevent information overload for the play-

ers having to Ągure out the enemy groupŠs strengths and weaknesses. It is also

24

not possible to remove health and speed components because of their necessity to

make the creature function and take turns.

5.1.4 Simulation effieceny

When running simulations of combat, the efficiency comes into question,

because all the simulations have to be run during the playerŠs gameplay, taking

up computational power. For this reason, the series of simulations are run during

the campĄre phase, when players are choosing upgrades for their party.

However, generating the enemy group during the campĄre phase while the

player is choosing upgrades means that the enemies are suited for the previous

version of the playerŠs group. This could be avoided by waiting for the player to

pick their upgrades and then making the player wait for the series of simulations

to Ąnish before starting the following level.

This slight Ćaw has been deemed acceptable as it doesnŠt invalidate the

generation results and may even be interpreted and accepted as always giving

the player a slight upper hand and a feeling of outsmarting the game, making the

player always a few steps ahead.

25

6. Experiment parameters

In this chapter, we describe the methods and parameters used for testing

the algorithm and approach presented in the previous chapters. First, we describe

the goals of the experimental part and we describe the speciĄc parameter of the

testing versions of the custom game.

6.1 Goals

The testing should fulĄll or deny the expectations of the presented algorithm

and component-based approach in PCG. SpeciĄcally, we want to focus on the

following targets

• The generated enemies should be beatable

• The generated enemies should be adequately difficult throughout the game

• The generated enemies should present new challenges

• The generated enemies should not overload the player with information

• The player should enjoy the game

• The player should not be able to recognize procedurally generated enemies

from human-designed ones.

6.2 Control group

We have created an algorithm for generating enemies and want to compare

it with an experience with human-designed counterparts. For the purpose of the

experiment, we have prepared two slightly altered versions of the game, one with

procedurally generated enemies, and a second with encounters hand-designed by

the author, both containing four enemy encounters to progress through.

6.3 Experiment

In both variants of the game, the Ąrst encounter was human-designed by the

author, a this is for the purpose of introducing the player to the game, showing the

mechanics and controls, and making the player ready for the harder encounters.

26

This decision was not necessary for the experiment but allowed us to gather

more data as opposed to presenting the player with three encounters and a written

tutorial. Such an approach would very likely take a similar time, provide less data,

and may even deter some testers from Ąnishing the experiment due to having to

read through a lot of text.

After Ąnishing each encounter, the player was awarded 10 upgrade points

and was moved to the campĄre phase, being given an opportunity to upgrade

their creatures.

In the meantime, a series of simulations were run, each series consisting of

30 simulated battles, running and modifying the party every 30 simulated battles

until the desired win rate of 40-60% was hit. After the simulations were Ąnished,

the next encounter was possible to be started.

6.3.1 Data gathering

All the testers have been asked to Ąll out a survey, which was also used to

assign them to real or control groups before presenting them with a link to their

respective variant of the game.

The survey has been focused on their Ćow, their perception of difficulty,

and their gaming experience and habits. In the survey, we used the EGameFlow

questionnaire to self-report Ćow in video games [17]. The whole survey can be

found in the Attachments.

27

7. Experiment Results

In this chapter, we will present the results gathered from the experiment

and testing, the achieved or not achieved goals, and a general overview of the

efficiency of our algorithm.

7.1 Result analysis

The entire results can be seen attached, while here we present the differences

between the test and control groups in sections of the survey. In the experimental

part, 23 people took part in the experiment and Ąlled out the form to the end.

Unfortunately, 2 of these have been sent an older version of the survey, missing

two questions. Their results have been counted in.

Concentration

Regarding the concentration questions, there are not a lot of important

differences. There are slightly higher scores in the test group regarding general

focus on the game. Other than that, an important result for our thesis is a similar

score regarding the question ŤThe game tasks are adequate for meŤ because it

gets close to the topic of difficulty.

Figure 7.1: Results of the survey subsection: Concentration

28

Goal clarity

Regarding goal clarity, there are very few differences in answers, only slightly

less predictability of the game for the test group.

Figure 7.2: Results of the survey subsection: Goal clarity

Feedback

There are no signiĄcant differences in feedback, with only a slightly larger

spread of answers in the test group.

Figure 7.3: Results of the survey subsection: Feedback

29

Challenge

This part of the survey shows similar scores regarding the challenge the

game provided, which is a key topic for our research and goal. There are no-

ticeably high scores in regarding the improvement of playersŠ skills and their

motivation for it, but as expected, there is a low score for tailoring the experience

differently for different players.

Figure 7.4: Results of the survey subsection: Challenge

Autonomy

There are very similar scores regarding the playŠs autonomy, with the test

group rating on average only slightly higher.

Figure 7.5: Results of the survey subsection: Autonomy

30

Immersion

There are some non-trivial differences in scores regarding immersion, but

considering this was not at all the focus of this thesis, we donŠt derive a great

deal from these results.

Figure 7.6: Results of the survey subsection: Immersion

Enemies

A key part of the survey and our thesis was to measure whether the gener-

ated enemies are easy to understand and if the generated enemies are interesting

to the player and not overwhelming. In general, the test group scored lower in

most of these indicators.

Figure 7.7: Results of the survey subsection: Enemies

31

Enemy design

We wanted the playerŠs opinion on how did the enemy groups feel in terms

of design, and whether they seemed designed by a human or by a computer. The

X-axis shows the number of answers each option received.

Comparing the test group to the control group, players in the control group

thought that more enemies were generated than those in the test group. In the

test group, more players also considered the groups to be well-designed.

Figure 7.8: Results of the survey subsection: Enemy design (test)

Figure 7.9: Results of the survey subsection: Enemy design (control)

32

Generated levels recognition

When tasked with assigning an individual level to be either human-designed

or computer-generated, both the control and test groups scored very similarly,

assigning most groups to be computer generated, with the exception of the Ąrst

one.

Figure 7.10: Results of the survey subsection: Generated levels recognition (con-
trol)

Figure 7.11: Results of the survey subsection: Generated levels recognition (test)

33

8. Discussion

In this chapter, we will discuss the results of the experiment and the possible

changes and improvements in either the algorithm itself or the methodology of

the experiment.

8.1 Testing game evaluation

We are quite satisĄed with the game designed for the purpose of this ex-

periment, as it fulĄlls all the criteria of a rogue-like RPG that we described,

while being nor too simplistic or not overly complicated. The game implements

a robust component system and is easily scalable implementing new components,

mechanics, and levels. In the game, we have failed to implement abilities hit-

ting multiple enemies and we have failed to properly make use of positioning and

switching positions on the battleĄeld.

8.1.1 Goals

The generated enemies should be beatable

84.6% of players report Ąnishing all four levels, and only 46.2% report

having lost at some point and having to repeat an encounter. Only one participant

reports having lost Ťmany timesŤ.

We are quite satisĄed with such results, making the game playable and

beatable, but not too easy at the same time.

The generated enemies should be adequately difficult throughout the

game

76.9% of players rate the statement ŤThe level of difficulty in this game

is suitable for me.Ť with a score of 3 or higher. Three participants even rated

this statement with a 5, meaning ŤdeĄnitely agreeŤ. 69.2 % of players rate the

statement ŤThe game tasks are adequate for me.Ť with a score of 3 or higher.

We are satisĄed with the result of this goal, as having adequately difficult

enemy encounters was the main goal of this thesis.

34

The generated enemies should present new challenges

61.5% of players rate the statement ŤThe game provides new challenges

at an appropriate pace.Ť with a score of 3 or higher. However, only 38.4 % of

the players rate the statement ŤThe game provides different levels of challenges

tailored to different players.Ť with a score of 3 or higher. However, only 46.1 %

rated ŤI liked the variability of enemiesŤ such scores.

This goal has not been met very well and we consider it unsuccessful.

The generated enemies should not overload the player with information

69.2% of players rate the statement ŤI understood powers and abilities of my

enemies. Ť with a score of 3 or higher. On top of that, only 46.1% of the players

rate the statement ŤI felt overwhelmed by the amount of information about my

opponents.Ť with a score of 3 or higher, signifying some amount of information

overload.

We are satisĄed with this goal, even though we wished for better results,

considering the information overload has been one of the repeated fears with the

AGE algorithm. However, the results are still quite satisfactory.

The player should enjoy the game

76.9% of players rate the statement ŤI forget about time passing while

playing the game.Ť with a score of 3 or higher. 69.2 % of players rate the statement

ŤThe game tasks are adequate for me.Ť with a score of 3 or higher.

We are reasonably satisĄed with the high scores in the questionnaire re-

garding the playerŠs enjoyment altogether. Considering the limited amount of

time and effort put into the game, such a result is satisfactory to the author and

motivates them to further pursue game development.

However, a recurring problem was a lack of clear instruction and a generally

bad user experience. The tutorial level has proven to be satisfactory in teaching

how to control the game but still did not provide enough clarity of instructions.

Unfortunately, there simply was not time for proper game testing before the

experimental part of the thesis has been launched.

35

The player should not be able to recognize procedurally generated

enemies from human-designed ones.

Unfortunately, we have not been able to achieve great results in the area

of players being or not being to able discern between human-designed and proce-

durally generated enemies, mostly due to the fact that most people thought even

the human-designed encounters to be procedurally generated. This only speaks

to the authorŠs game design ability, but not a lot more.

The goal was technically met, but not the way we would hope for, not

pointing at the quality of the algorithm but rather the opposite with the human

design. Looking back, the question in the experiment might have been put too

suggestively, prompting respondents to guess the computer generation more.

8.1.2 Component system

The component seems to be a promising robust catch-all system for imple-

menting most mechanics in the game. The component system may be scaled to

not only inĆuence the combat, but also animations, graphics, or storytelling.

The component could be made used in rendering graphics for a character,

with the component adding visual effects or adding new sprites. For example,

in the current version of the game, there is a component called ŤLongWeaponŤ

and such a component could likely easily be programmed to render the creature

sprite with a spear, adding multi-functionality to the system.

In the current version of the game, there are story screens before some of

the encounters, showing the dialogue of the player characters. Such screens could

also be generated in relation to the component presented in some of the player

characters dynamically reacting to the upgrades picked by the player or by other

events happening during or out of encounters.

8.2 Procedural generation evaluation

Overall we are satisĄed with the results of the PCG. Even though the initial

plays were much more ambitious, we even hoped to make the algorithm gather

information about the playerŠs playstyle and take it into consideration in the

enemy generation. However, such goals have proven to be worthy of a larger

piece of academic work.

The simulation-based PCG has proven to be viable, especially in a turn-

based game, where combats can be simulated efficiently and fast. Implementing

36

a similar approach in any real-time game would likely be a lot more processing

power intensive and therefore much harder to achieve.

The difficulty balancing part has proven to be successful, with testers rating

their experience to be moderately difficult throughout the game with no spikes

or falls in difficulty.

8.2.1 Experiment

The experimental phase has unfortunately brought fewer respondents than

expected, plus two of the have been mistakenly sent an older version of the form

lacking two questions. Besides that, some respondents have claimed the game

crashed during some of the simulations, and on top of that, there has been a bug

found causing the playerŠs group to completely heal before starting a new level.

As far as we can tell, the bug has not been noticed by any of the respondents and

does not invalidate the results, but still is unfortunate and a pity.

37

Conclusion

In this thesis, we developed and tested an approach to procedurally gener-

ate enemy groups for turn-based RPG rogue-like games. The developed approach

used simulations running in the background to create interesting adequately dif-

Ącult enemies. We have implemented the approach in a custom game bearing

similarities to games in the genre to run experiments with it and to measure

its success. The results of the testing phase have shown that the enemy groups

generated by our algorithm generally seem enjoyable and moderately difficult,

and the experience facing them has been overall rated as slightly positive. As a

secondary goal, we have tried to test whether players would be able to properly

tell a human-designed enemy group from the procedurally generated ones, and

in that sense, the experiments donŠt bring a lot of results since almost all of the

encounters were thought to be generated. The written algorithm is designed to

work within the custom game created for the purpose of this thesis, but the tested

approach can be expanded upon or implemented in games that would desire to

either partially tweak or completely generate enemies using simulations.

38

Bibliography

[1] Mark J. Nelson Noor Shaker, Julian Togelius. Procedural content generation

in games. Springer, 2016.

[2] Steven L. Kent. The Ultimate History of Video Games. Random House

International, 2002.

[3] Entertainment software association. 2020 Essential Facts About the Video

Game Industry. Entertainment software association, 2020.

[4] Pratama Atmaja, Sugiarto, and Eka Mandyartha. Difficulty curve-based

procedural generation of scrolling shooter enemy formations. Journal of

Physics: Conference Series, 1569:022049, 07 2020.

[5] Ken Arnold Michael Toy, Glenn Wichman. Rogue. https:

//web.archive.org/web/20080715035939/http://roguelikes.

sauceforge.net/pub/rogue/index.html. Accessed: 2022-12-10.

[6] Mojang Studios. Minecraft. https://www.minecraft.net/en-us/

about-minecraft. Accessed: 2022-12-10.

[7] Hello Games. No ManŠs Sky. https://www.nomanssky.com. Accessed: 2022-

12-10.

[8] Electronic Arts. Spore. http://www.spore.com/. Accessed: 2022-12-10.

[9] Matouš Kozma. Procedural generation of combat encounters in role playing

video games, 2020.

[10] Leonardo T. Pereira, Breno M. F. Viana, and Claudio F. M. Toledo. Pro-

cedural enemy generation through parallel evolutionary algorithm. In 2021

20th Brazilian Symposium on Computer Games and Digital Entertainment

(SBGames), pages 126Ű135, 2021.

[11] Benjamin Cowley, Darryl Charles, Michaela Black, and Ray Hickey. Toward

an understanding of Ćow in video games. Comput. Entertain., 6:1Ű27, 07

2008.

[12] M. Csikszentmihalyi. Flow: the Psychology of Optimal Experience by Mihaly

Csikszentmihalyi. CreateSpace Independent Publishing Platform, 2018.

[13] Jesper Juul. The Game, the Player, the World: Looking for a Heart of

Gameness. 01 2003.

39

https://web.archive.org/web/20080715035939/http://roguelikes.sauceforge.net/pub/rogue/index.html
https://web.archive.org/web/20080715035939/http://roguelikes.sauceforge.net/pub/rogue/index.html
https://web.archive.org/web/20080715035939/http://roguelikes.sauceforge.net/pub/rogue/index.html
https://www.minecraft.net/en-us/about-minecraft
https://www.minecraft.net/en-us/about-minecraft
https://www.nomanssky.com
http://www.spore.com/

[14] Rhys Frampton. A new taxonomy of difficulty. https:

//www.rhysframptongames.com/rhysframptongames-blog/

a-new-taxonomy-of-difficulty. Accessed: 2023-1-2.

[15] Amra Taggart. On the Nature of Permadeath Experiences in Video Games.

PhD thesis, Deakin University, 2022.

[16] Ares Lagae, Sylvain Lefebvre, Robert L Cook, Tony Derose, George Dret-

takis, David S Ebert, John P Lewis, Ken Perlin, and Matthias Zwicker.

State of the art in procedural noise functions. Eurographics (State of the Art

Reports), pages 1Ű19, 2010.

[17] Shu-Hui Chen, Wann-Yih Wu, and Jason Dennison. Validation of egame-

Ćow: A self-report scale for measuring user experience in video game play.

Computers in Entertainment, 16:1Ű15, 09 2018.

40

https://www.rhysframptongames.com/rhysframptongames-blog/a-new-taxonomy-of-difficulty
https://www.rhysframptongames.com/rhysframptongames-blog/a-new-taxonomy-of-difficulty
https://www.rhysframptongames.com/rhysframptongames-blog/a-new-taxonomy-of-difficulty

List of Figures

7.1 Results of the survey subsection: Concentration 28

7.2 Results of the survey subsection: Goal clarity 29

7.3 Results of the survey subsection: Feedback 29

7.4 Results of the survey subsection: Challenge 30

7.5 Results of the survey subsection: Autonomy 30

7.6 Results of the survey subsection: Immersion 31

7.7 Results of the survey subsection: Enemies 31

7.8 Results of the survey subsection: Enemy design (test) 32

7.9 Results of the survey subsection: Enemy design (control) 32

7.10 Results of the survey subsection: Generated levels recognition

(control) . 33

7.11 Results of the survey subsection: Generated levels recognition (test) 33

41

A. Attachments

42

A.1 Attachment 1 - Survey

The survey was presented as an electronic form to Ąll out, assigning the

respondent randomly to a control or test group in the process. The player was

Ąrst instructed to play the game running on a provided web page and then come

back to the form to Ąll it in.

A.1.1 The form

Have you Ąnished all four levels?

(single choice)

• Yes

• No

Have you at any point lost a level and had to restart?

(single choice)

• Yes, many times

• Yes, a few times

• No

In the following section, the respondent is tasked to rate on a scale of 1-5 how

much they agree with a statement regarding their experience. (1 = deĄnitely

agree, 2 = agree, 3 = neutral/unsure, 4= disagree, 5 = deĄnitely disagree)

Concentration

• The game grabs my attention.

• The game provides content that stimulates my attention.

• I do not get distracted when I play the game.

• Generally speaking, I can concentrate on the game.

• The game tasks are adequate for me.

43

Goal Clarity

• I understand the goals of this game from the start.

• The overall game goals are clear to me.

• I understand the overall progress of the game.

• I know what will happen next in the game.

• I understand what I need to do to win/complete the game.

Feedback

• I receive feedback on my progress in the game.

• I receive immediate feedback on my actions.

• I receive information on my game performance immediately.

• I am always aware of the score of the game.

Challenge

• The level of difficulty in this game is suitable for me.

• My skills gradually improve through the course of the game.

• I am motivated by the improvement of my skills.

• The game provides new challenges at an appropriate pace.

• The game provides different levels of challenges tailored to different players.

Autonomy

• I feel a sense of control over my opponent.

• I feel a sense of control over my movements while playing the game.

• I feel a sense of control over my interactions with the game itself.

• I feel that I can use strategies freely.

Immersion

• I forget about time passing while playing the game.

44

• I become unaware of my surrounding while playing the game.

• I can become deeply involved in the game.

• I feel emotionally involved in the game.

Enemies

• I understood powers and abilities of my enemies.

• I felt overwhelmed by the amount of information about my opponents.

• I liked the variability of enemies.

• I experienced fresh challenges.

• I encountered weird enemies.

Enemy groups

• Enemy groups seemed badly designed.

• Enemy groups seemed very well designed.

• Enemy groups seemed designed by a human designer.

• Enemy groups seemed generated by a computer.

Which of the which enemy groups do you think were generated by a

computer?

(multiple choice)

• level 1

• level 2

• level 3

• level 4

Do you play video games as a leisure activity?

(single choice)

• Yes, almost daily

• Yes, a few times a week

45

• Yes, a few times a month

• Yes, a few times a year

• No or less than a few times a year

What genres of games do you play, if so?

(multiple choice)

• Shooter/FPS

• Strategy/RTS

• Puzzle

• Racing

• exploration/walking simulators

• MOBA/ARTS

• Card games

• Fighting/dueling

• RPGs

What is your relationship to difficulty in games?

(single choice)

• I prefer a challenge

• I donŠt mind a challenge, but not too hard

• I prefer easy walkthroughs

• I donŠt have a preference

46

A.2 Attachment 2 - Technical details

In this attachment, we are going to explain how to set up our project

and inspect its inner workings. This thesis has been provided with a folder with

several subfolders, one containing the build testing game, a second one containing

the unity project and all the code, and a third one containing documentation

generated by Doxygen. The folder main is also provided with a form of results

from the survey from the experimental phase.

The entire thesis has been prepared on a Windows system and assumes

familiarity with this system. We cannot guarantee anything working on a different

operating system. Trying to test and explore the gameŠs inner workings requires

familiarity with the Unity game engine and development environment.

A.2.1 Running the game build

If you wish to run the game Deep Crawl in the version that was used as

the testing version during the experiment, you may do so by opening the folder

ŤDeepCrawl/DeepCrawl-buildŤ and running the Ąle ŤDeepCrawl/DeepCrawl-build/DeepCrawl.exeŤ

For running the game we recommended at least Windows 7 or newer, with

a CPU architecture of x86 or x64. There are no speciĄc RAM requirements, but

we recommend at least 4 GB of RAM.

The game is running in full-screen mode and the only way to close it is by

Ąnishing it or by pressing Alt+F4 (or a shortcut of the same function) to exit the

application. The game has background atmospheric music and unfortunately no

volume control. More on how to navigate in-game is in the project documentation.

A.2.2 Running the Unity project

The Unity project is what holds all the code and showcases how both the

game and the procedural generation of enemies are working. To access and control

the unity project, you must do the following.

1. Unzip all the Ąles onto a location on your hard drive

2. Install Visual Studio 2020, Visual Studio Code, or another favorite script

editor suited for C#

3. Install Unity Hub 3.4.1 (other versions may work just Ąne)

4. Open Unity Hub

47

5. Click ŤOpenŤ and ŤAdd project from diskŤ

6. Navigate to where you saved the unity project Ąles

7. The Unity Hub is going to prompt you to install a desired version of Unity

2020.3.0f1

8. From the Unity Hub, install Unity 2020.3.0f1 (other versions will very likely

not work)

9. Open the project DeepCrawl-Unity Project

10. In the Unity environment in the top bar, Ąnd ŤEdit-ćPreferences-ćExternal

toolsŤ and set the script editor to the script editor you installed in 2)

11. Project is ready to be browsed, tested, built, and modiĄed

48

A.3 Attachment 3 - Project Documentation

In this attachment, we provide both the programmer and user documenta-

tion for the game Deep Crawl and the implemented AGE algorithm.

A.3.1 User Documentation

You play the game by running the application DeepCrawl.exe in the game

folder. The game is controlled via a mouse, and all player input in the game is

performed with it by clicking the left mouse button on a UI button or in some

cases simply clicking anywhere. In such a case, the text ŤPress Mouse to continueŤ

will be on the screen in brown color.

Some information is obtained by hovering over objects, either over UI el-

ements or over characters in the game. Hovering over characters on your or

the enemyŠs team tells you their abilities and stats and is considered crucial in

Ąnishing the game.

The game consists of 4 enemy encounters and 3 campĄre scenes intended for

resting, healing, and upgrading your group. You control four characters, which

will be situated on the left in battle in a rectangular formation. The enemy holds

the same shape on the right.

The game is not 100% transparent and some information is hidden from

you not to overload you with information. You are expected to try out things

and discover some of the rules and interactions on your own.

You can quit the game by Ąnishing it or by pressing Alt+F4.

A.3.2 ProgrammerŠs Documentation

In the Ąles provided as attached, there is documentation automatically

generated by Doxygen. To browse the documentation, simply run the Ąle ŤProject

Documentation/index.htmlŤ and a website will open in your browser, where you

may browse the documentation.

The remaining programmerŠs documentation can be found within the code

itself, as we believe most of the implementation can be understood from there.

The game doesnŠt employ too difficult programming concepts, but there are still

mechanics that would beneĄt from thorough explanations. In the following sec-

tion, we are Ąrst going to explain the concept of Queries and describe how the

scenes work and change in Deep Crawl, and Ąnally how one characterŠs move in

49

combat is resolved.

It should be noted that in the comments in the code, the following terms

are used interchangeably:

• party/group/team - a group of four characters

• character/creature - an entity made of components

• combat/battle/encounter - a battle between two groups that ends when all

on one side are dead

• query/action - action is a deprecated term for queries

• component/status effect - status effect is a deprecated term for a component

From the thesis, the reader should be familiar with the component system

that makes the building blocks of all characters in Deep Crawl. The compo-

nent system closely interacts with a system of queries, which is a multi-purpose

communication tool among entities made of components.

Queries

Components respond to queries, which are objects that serve as carriers

of information and commands between creatures. Components of different types

respond to different queries and either modify themselves or modify the query

object itself, sending it modiĄed to the next component. Most in-game commands

are carried via queries, which are subsequently processed by all the components

in a creature, and the resulting modiĄed query is evaluated. The process is

illustrated in the following Ągure.

50

Component

internal state

Query

prms: Dictionary<Ind,double>

descriptions: List<String>

effects: Dictionary<Ind,Builder>

Query

prms: Dictionary<Ind,double>

descriptions: List<String>

effects: Dictionary<Ind,Builder>

Process (Query query)

return Query
(Optional: change internal state of component)

(Optional: change the query)

Component processing a query

The order in which components process queries is determined by a topo-

logical ordering of the components, with each component having requirements

for which component it needs to be evaluated before or after (For example, the

Armor component is required to be evaluated before the Health component, so it

can deduce the amount of incoming physical damage.

Query

ID: IDEnum

prms: Dictionary<Ind,double>

descriptions: List<String>

effects: Dictionary<Ind,Builder> Creature

Component

Component

Component

Component

Component

Component

Query

ID: IDEnum

prms: Dictionary<Ind,double>

descriptions: List<String>

effects: Dictionary<Ind,Builder>

Process(Query query)

There are many types of ID:

Attack
AttackBuilder
Question
Tick
Swap

...and even more types of parameters

Creature processing a Query

return value

The query system can be used in a multitude of ways. The most common

ones are very likely attacking or preparing an attack. An example of how such

an attack is resolved can be found in the following Ągure.

51

Component: FireResistance

Value: 50%

Query: Fireball

prms: (TrueDamage,25)

effects: Dictionary<Ind,Builder>

Process (Query)

Componet: Health

Health: 82->57

Query: Fireball

effects:(Enflame,SetOnFireBuilder)

BuilderHandler

BuilderHandler activates the carried Builder, which shall create a
new Component in current creature.

Component: OnFire

if (ID == Tick) do 5 FireDamage

Query: Fireballreturn value

BuilderHandler doesnt need to know anything

about fire and it can still set the creature on fire

Health just accepts any damage.

If there is a resistance,

it has already been handled

FireResistance doesn't care about

current health or any other properties

We just need to set that resistance

gets always handled before health

At the end of every round

a Tick query is send to every creature

Query : Fireball

ID: Attack

prms: (FireDamage,50)

descriptions: "Deals massive fire damage"

effects: (Enflame,SetOnFireBuilder)

Example - Attack

The system could be expanded upon in future work due to its Ćexibility

and simplicity in creating content. In the following example, it is demonstrated

how an easy combination of components and the query mechanic can create a

special attack from a legendary poisonous spear.

52

Component: Long Weapon

if (ID == AttackBuilder)
add new property (Reach,3)

Component: PoisonWeapon

+ potency: 5

+ duration: 3

if (ID == AttackBuilder)
add new effect (Poison,PoisonBuilder(potency,duration))

if (ID == Description || AttackBuild)
add new description
"Poisons the enemy."

Component: Physical Weapon

+ dmg: 15

if (ID == AttackBuilder)
add new property (PhysDmg,dmg)

if (ID == Description || AttackBuild)
)
add new description
"Deals <dmg> physical damage."

Component: History

+ description: "This is the mighty spear of Ka."

if (ID == Description || AttackBuild)
add new description (...)

Spear of serpent god Ka

Query

ID: AttackBuilder

Query

ID: Attack

prms: (PhysDamage, 15), (Reach,3)

descriptions:
"This is the mighty spear of Ka.
Deals 15 physical damage.
Poisons the enemy."

effects: (Poison,PoisonBuilder(5,3))

Now its very easy to make the

knife and crosbow of Ka

Example - preparing an attack

There are at the moment 7 IDs of Queries. There are

• Attack

• Description - for providing a description of abilities and a characterŠs status

• AttackBuild - for preparing attacks

• Question - for checking the characterŠs status - Are they alive? Are they

able to play? Are they in full health?

• Animation - Several animations are triggered by the creature having re-

ceived a special query. However, this function is not explored more widely.

• Tick - Query send to every creature at the end of a round, triggering timed

effects (Stun, Poison...)

• Swap - For swapping positions of creatures. The function has been removed

from the Ąnal game for unresolved bugs.

53

• None

Scenes

There are at the moment 4 scenes in the unity project.

• Main menu

• Game scene - for enemy encounters, is entered from the main menu and

the campĄre scene is exited when the player manages to defeat the enemy

group.

• CampĄre scene - For healing and upgrading the playerŠs characters. In the

meantime, the simulations are taking place. is entered from the game scene

and is exited when simulations are Ąnished and the player decides to go

Ąght the next encounter.

• Exit scene - The Ąnal static image with an exit button to close the game.

Is entered from the game scene after four encounters have been defeated.

We have decided to reuse one scene for all the combats. This approach

required setting up a system to load the scene each time accordingly to the desired

level, but this approach also makes room for much easier possible implementation

of an Ťendless runŤ type of challenge with an endless stream of encounters, which

is common in some rogue-likes. The process is visualized in the following Ągure.

Scene 2 - Campfire

healing, upgrades,
level advancement

Scene 1 - Battle

battle, main gameplay action

Scene 0 - Start menu Scene 3 - Endscene

after four defeated enemy encounters

once player is ready
and simulations finished

Defeating the enemy party

Objects kept between scenes

Player party

To keep track of characters,
their statuses and positions

Theatre

Object showing monologues at
beginning of each scene.

Transfered to keep track of
what has already been shown

LevelInfo

+ int: current level
+ int upgPoints

+ int upgPointsGain
+int upgPointsMaxGain

54

Game loop

In this section, we are not going to go into too much detail, but we will give

a high-level overview of the base game loop for combat. It is highly recommended

that you have played the game at this point and maybe even seen the source code,

as some of the used terms may make more sense that way.

The goal of this game loop was to make it usable in both the playerŠs game

and in the simulations, only tweaking and disabling some functionality to the

same processing power.

UI Manager activates
buttons

Targeting system
calculates possible

targets

Targeting system
highlights possible
targets and makes

them clickable

Battlemanager performs
 action on the picked target

Action is resolved
Battle manager picks
a next character to

play

Player picks
 an action by clicking

a corresponding
button

Player clicks on
a chosen target

Is AI or
player

controlled?

AI controller picks an
action

AI controller picks a
target from

 possible targets

AI

Character asks
its controller to

pick and action ¨
and a target

Text

Player

AI

Battle manager saves
and holds picked

action

passes both
action

and a target

Entry
point

55

A.4 Attachment 4 - Control group

In this attachment, we are going to describe the enemy groups used in the

control group for the experimental part. In both the control and test group, the

respondent was faced with four groups of enemies, but in the test part only the

Ąrst group was designed by a human - the author. The remaining levels were

generated using the AGE algorithm. The groups for all the levels were in this

order.

In the further text, dmg refers to damage, as in points of possible health

points taken if struck by this ability.

A.4.1 Level 1

Position: Top left

Health: 50

Armor: 3

Attack: 15 dmg

Special: Claws: 10 dmg, deals 2x to

clawed enemy

Speed: 2

Position: Bottom left

Health: 50

Armor: 3

Attack: 15 dmg

Special: Claws: 10 dmg, deals 2x to

clawed enemy

Speed: 2

Position: Top right

Health: 60

Armor: 3

Attack: 15 dmg

Special: Powerstrike: 15 dmg, may tar-

get only close enemies

Speed: 2

Position: Bottom right

Health: 60

Armor: 3

Attack: 15 dmg

Special: Powerstrike: 15 dmg, may tar-

get only close enemies

Speed: 2

56

A.4.2 Level 2

Position: Top left

Health: 60

Armor: 6

Attack: 15 dmg

Special: Claws: 10 dmg, deals 2x to

clawed enemy

Speed: 4

Position: Bottom left

Health: 60

Armor: 3

Attack: 15 dmg

Special: Claws: 10 dmg, deals 2x to

clawed enemy

Speed: 2

Position: Top right

Health: 60

Armor: 3

Attack: 20 dmg

Special: Powerstrike: 15 dmg, may tar-

get only close enemies

Anger: Deals 20% more dmg below half

health

Speed: 2

Position: Bottom right

Health: 80

Armor: 3

Attack: 15 dmg

Special: Powerstrike: 15 dmg, may tar-

get only close enemies

Speed: 2

A.4.3 Level 3

Position: Top left

Health: 60

Armor: 3

Attack: 15 dmg

Special: Claws: 10 dmg, deals 2x to

clawed enemy

Anger: Deals 20% more dmg below half

health

Speed: 2

Position: Bottom left

Health: 60

Armor: 3

Attack: 15 dmg

Special: Claws: 10 dmg, deals 2x to

clawed enemy

Anger: Deals 20% more dmg below half

health

Speed: 2

Position: Top right

Health: 60

Armor: 3

Attack: 15 dmg

Special: Powerstrike: 30 dmg, hits only

close enemies

Anger: Deals 20% more dmg when full

health

Speed: 2

Position: Bottom right

Health: 50

Armor: 3

Attack: 15 dmg

Special: Claws: 15 dmg, deals 2x to

clawed enemy

All abilities deal bonus 5 Ąre dmg.

Speed: 2

57

A.4.4 Level 4

Position: Top left

Health: 60

Armor: 6

Attack: 15 dmg

Special: Claws: 15 dmg, deals 2x to

clawed enemy

Speed: 3

Position: Bottom left

Health: 60

Armor: 6

Attack: 15 dmg

Special: Claws: 15 dmg, deals 2x to

clawed enemy

Speed: 3

Position: Top right

Health: 100

Armor: 3

Attack: 20 dmg

Special: Powerstrike: 25 dmg, hits only

close enemies

Anger: Deals 20% more dmg when full

health

Speed: 2

Position: Bottom right

Health: 50

Armor: 3

Attack: 15 dmg

Special: Powerstrike: 30 dmg, hits only

close enemies

Elem resist: 50Speed: 2

58

A.5 Attachment 5 - Credits

In this attachment, we would want to give credit to all the creators, whose

free available assets we have used in creating Deep Crawl. All the mentioned

assets are listed with their respective license.

1. Procedural Ąre by Hovl Studio - Standard Unity Asset Store EULA -

https://assetstore.unity.com/packages/vfx/particles/Ąre-explosions/procedural-

Ąre-141496

2. Music Storm, Mountain, Feeling, Legacy by AShamaluevMusic - free to

use in non-commercial projects - https://www.ashamaluevmusic.com

3. Anatomical illustrations by Arnaud Eloi Gautier dŠAgoty - in the public

domain - https://www.rawpixel.com/board/320761/anatomical-illustrations

4. Solar system planet pack by Batuhan Karagöl - Creative Commons v4.0

- https://andelrodis.itch.io/solar-system-pack

5. Living Tissue environment by ansimuz - Creative Commons v4.0 - https://ansimuz.itch.io/living-

tissue-environment

59

	Introduction
	Background
	Procedural content generation
	Video games
	Role-playing rogue-like video games
	PCG in video games

	Related work
	Problem definition and analysis
	Definitions
	Enjoyment and flow
	Difficulty
	Originality
	Believability

	Problem Analysis
	Difficulty
	Difficulty increments

	The Game
	Existing vs. custom game
	Existing game
	Custom game

	Game overview
	Game goal and structure
	Gameplay

	Game-specific definitions
	Components
	Component types
	Timed Components
	Upgradable Components

	AGE approach
	Simulations
	Evaluation
	Simulation decision making
	Enemy generation process
	Simulation effieceny

	Experiment parameters
	Goals
	Control group
	Experiment
	Data gathering

	Experiment Results
	Result analysis

	Discussion
	Testing game evaluation
	Goals
	Component system

	Procedural generation evaluation
	Experiment

	Conclusion
	Bibliography
	List of Figures
	Attachments
	Attachment 1 - Survey
	The form

	Attachment 2 - Technical details
	Running the game build
	Running the Unity project

	Attachment 3 - Project Documentation
	User Documentation
	Programmer's Documentation

	Attachment 4 - Control group
	Level 1
	Level 2
	Level 3
	Level 4

	Attachment 5 - Credits

