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Copula based models for multivariate
time series

Department of Probability and Mathematical Statistics

Supervisor of the master’s thesis: RNDr. Šárka Hudecová, Ph.D.
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Introduction
In many fields, especially in financial mathematics and econometrics, but also in
meteorology and medical research, multivariate time series are observed. In con-
trast to univariate time series modelling, which focuses on a single time-dependent
variable, multivariate modelling considers multiple variables that may interact
and have dependence between them. If we ignore the dependence structure in
the modelling, we lose some information in the estimation itself, and we do not
get better estimates. The modelling of time series with a dependence structure
is the main objective of this thesis.

The knowledge gained can thus be applied, for example, in risk management,
where the most common problem is to find the value at risk (VaR). In pricing
various financial derivatives, specifically credit default swaps (CDS), collateralized
debt obligation (CDO) and other options. Knowledge of the dependency structure
is also helpful in portfolio construction. Based on understanding the dependency
structure, we can construct an optimal portfolio. Or we can diversify the portfolio
appropriately among sectors that are not too dependent. Forex, or currency pair
exchanges, is another place where this theory can be applied.

In this work, we model the dependence structure using copulas. We show how
to estimate such series, including estimation of the copulas, and then suggest how
to make a prediction.

The paper is divided into five chapters. In the first chapter, we discuss the
modelling of univariate time series. ARMA-GARCH model is introduced. Using
quasi-maximum likelihood, we show how to estimate its parameters and then how
to forecast the series.

The second chapter deals with copulas. The basic theory is summarised,
and the most famous copulas are described, including the Clayton copula, the
Gumbel copula, the Gaussian copula, and the Student’s t-copula. Estimates for
the unknown parameters of the copulas are derived. The theory of copulas is
then concluded with a sample example.

The most important chapter of the thesis is chapter three. This chapter com-
bines the previous two chapters and provides a detailed look at the multivariate
copula-based time series model, which is the SCOMDY model. The model de-
scription and estimation process are discussed. Subsequently, the goodness-of-fit
(GOF) test applicable to copulas is explained, and three different approaches to
predicting multivariate time series with a dependence structure modelled by cop-
ulas are shown. The GOF test and the predictions are based on a parametric
bootstrap. Finally, the whole theory is again demonstrated by a simple example.

The fourth chapter contains a Monte Carlo simulation study. The performance
of the estimators, GOF test and prediction algorithms are investigated. We also
address the question of the relevance of copulas to modelling a portfolio composed
of modelled series.

The whole thesis concludes with a practical study where we consider a three-
dimensional time series composed of stocks of Apple Inc. Microsoft Corporation
and Alphabet Inc., which is the parent company of Google. The log returns of all
three series are modelled using ARMA-GARCH models linked through copulas.
The composition of the portfolio of these three titles is discussed.

3



The contribution of this thesis is to summarise the theory related to the
SCOMDY model. It was necessary to mention the theory concerning ARMA-
GARCH models and the copulas that are the building blocks of the SCOMDY
model. The prediction confidence intervals for the SCOMDY model are not in-
cluded in the literature. Therefore, three different algorithms constructing predic-
tion intervals based on bootstrap techniques are proposed in the thesis. The first
algorithm is based on simulations of the future evolution of the series. However,
this algorithm does not consider the possible variability of the estimate. For this
reason, two other algorithms have been proposed. The second algorithm is con-
structed only for the variability of the time series estimation. Finally, we present
a third algorithm that considers the variability of both time series and copula
estimation, which should be the correct approach. This third algorithm is the
main contribution of the thesis. The subsequent simulation study based on the
Monte Carlo method is also an intrinsic contribution. In the simulation section,
we compare estimates of the unknown parameters obtained using the MLE and
Kendall’s tau-based methods. The functionality of the GOF test is investigated.
Also, the performance of the three prediction algorithms is examined. The actual
contribution is also a practical study in which the theory is applied. We also
investigate the question of a portfolio composed of these assets.

The work includes four R scripts. The first script Copulas.R deals purely
with the theory of copulas. The main part of the file presents three possible
approaches to estimate the parameters of the copula. The second script Exam-
ple of SCOMDY.R deals with an example of the SCOMDY model. The third script
Simulations.R is for simulations. The second and third scripts implement predic-
tion intervals for the AR model only. In the last, fourth script Practical example.R,
a practical problem is implemented. Here, the prediction algorithms are extended
to the SCOMDY models with ARMA-GARCH models for univariate time series.
This script also includes portfolio creation. This file can be applied to any mul-
tivariate time series with minimal code changes.
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1. Time series
The first section of the thesis provides an overview of the essential concepts and
principles related to time series analysis. The necessary definitions of time series,
the ARMA-GARCH model, and the estimation procedure are introduced here.
This section was inspired by Cipra [2020], Tsay [2005] and Brockwell and Davis
[2002].

1.1 Introduction to time series
We begin with a general definition of time series as stochastic processes. This
definition can be found, e.g., in Cipra [2020].

Definition 1. A stochastic process is a family of random variables {Yt, t ∈ T}
defined on the same probability space (Ω, F , P) indexed by t from the set T ⊆ R
representing a time.

A time series is defined as a stochastic process.

Remark. Our work restricts to a discrete-time, i.e. T ⊆ Z. A time series is
denoted as {Yt, t ∈ Z}.

Definition 2. A time series {Yt, t ∈ Z} is said to be stationary if it has a finite
second moment and if for all s, t, h ∈ Z the following conditions hold

E (Yt) = µ, µ ∈ R,

cov(Ys, Yt) = cov(Ys+h, Yt+h).

A time series satisfying definition 2 is also called weakly stationary.

1.2 ARMA-GARCH
The book written by Box, Jenkins, and Reinsel [1970] summarises and algorith-
mises the so-far known conditional mean-based time series models and empha-
sises autocorrelation analysis. Therefore the method of these models is called
the Box-Jenkins methodology. The simplest Box-Jenkins models for modelling
time series are autoregressive (AR) models or moving-average (MA) models, or
a combination of these two, which is the autoregressive-moving-average (ARMA)
model. Financial time series often violate the assumption of constant conditional
variance, which these models assume. Due to this fact, we need to use more
sophisticated models. These models can be written in the general form

Yt = µ(Ft−1) + σ(Ft−1) εt, t ∈ Z, (1.1)

where Ft−1 is the full information about our time series until the time t − 1.
Formally, it is the smallest σ-algebra generated by all past values Yt−1, Yt−2, . . ..
Mathematically we write

Ft−1 = σ{Yt−1, Yt−2, . . . },
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see page 11 in Francq and Zakoian [2019].
Furthermore, {εt, t ∈ Z} is a process of independent and identically dis-

tributed (abbreviated as i.i.d.) random variables with zero mean and unit vari-
ance. For each t ∈ Z the random variable εt is being independent of Ft−1.
Random variables εt are referred to as innovations.
Remark. The random variables et = σ(Ft−1) εt, t ∈ Z, known as prediction errors,
are uncorrelated, and they are not generally independent, see page 205 in Cipra
[2020].

The equation (1.1) for Yt consists of two parts. The first part represents the
conditional mean

µ(Ft−1) = E (Yt | Ft−1), t ∈ Z,

and the second part denotes the conditional variance, better known as volatility
in finance

σ2(Ft−1) = var(Yt | Ft−1), t ∈ Z,

it is assumed σ(Ft−1) > 0, t ∈ Z.
Bollerslev [1986] introduced the generalised autoregressive conditional het-

eroskedasticity (GARCH) model to model conditional variance. Bollerslev devel-
oped the GARCH model as an extension of the earlier autoregressive conditional
heteroskedasticity (ARCH) model introduced by Engle [1982]. The GARCH
model is widely used in finance and econometrics to model time-varying volatility.

In what follows, the ARMA-GARCH model is described. In ARMA-GARCH,
the conditional mean is modelled using an ARMA model, and the conditional
volatility using a GARCH model. ARMA(p, q)-GARCH(m, s) model with orders
of p, q of ARMA part and m, s of GARCH part is described by the following
three equations. For t ∈ Z holds

Yt = µ +
p∑︂

i=1
φiYt−i + et +

q∑︂
j=1

θjet−j,

et = σtεt, (1.2)

σ2
t = α0 +

m∑︂
i=1

αie
2
t−i +

s∑︂
j=1

βjσ
2
t−j,

where εt are i.i.d. with zero mean and unit variance and µ, φ1, . . . , φp, θ1, . . . , θq,
α0, α1, . . . , αm, β1, . . . , βs are the parameters described in the following.

The first equation of the ARMA-GARCH model, defined in (1.2), represents
the ARMA(p, q) part. It is used for modelling the conditional mean, and the third
equation of (1.2) stands for the GARCH(m, s) part, which is used for conditional
variance modelling.

To make the ARMA-GARCH stationary, we impose the following constraints
on the parameters of (1.2).

All roots z1, . . . , zp of the polynomial

φ(z) = 1 − φ1z − · · · − φpzp

lie outside of the unit circle in the complex plane. Formally, it means that all the
roots fulfil |z1|, . . . , |zp|> 1.
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On the parameters α0, α1, . . . , αm, β1, . . . , βs of GARCH part we put the
following restrictions

α0 > 0, αi ≥ 0, βj ≥ 0, i = 1, . . . , m, j = 1, . . . , s,

max(m, s)∑︂
i=1

(αi + βi) < 1, αi = 0, i > m, βj = 0, j > s. (1.3)

This condition is sufficient for the existence of variance and for the series to be
stationary.

1.3 Estimation of ARMA-GARCH
Estimating the parameters of the ARMA-GARCH model is an essential part of
the modelling procedure. This part is inspired by Francq and Zakoian [2019].
The unknown parameters can be estimated using the maximum likelihood (ML)
method if we assume that εt follows a specific distribution for every t ∈ Z. It is of-
ten assumed that εt has a standard normal distribution. However, financial time
series commonly have heavier tails, which typically violates this assumption. For
this reason, we perform a Gaussian quasi-maximum likelihood estimation (Gaus-
sian QMLE) based on a quasi-likelihood function. The quasi-likelihood function
is constructed as a likelihood function under the possibly invalid assumption that
εt has a standard normal distribution for every t ∈ Z.

To derive the estimation, let {Y1, . . . , Yn}, n ∈ N be a time series generated
from a stationary ARMA(p, q)-GARCH(m, s) model with known orders p, q, m
and s.

The unknown parameters of ARMA(p, q)-GARCH(m, s) are denoted in the
following way

γ = (µ, φ1, . . . , φp, θ1, . . . , θq)⊤,

δ = (α0, α1, . . . , αm, β1, . . . , βs)⊤,

ψ = (γ⊤, δ⊤)⊤.

Also, we denote Ψγ ⊆ Rp+q+1, Ψδ ⊆ (0, ∞)× [0, ∞)m+s and Ψ = Ψγ ×Ψδ ⊆
Rp+q+1 × (0, ∞) × [0, ∞)m+s subspaces for γ, δ and ψ. It is assumed that
these subspaces are chosen so that the ARMA-GARCH is stationary for every
parameter combination from this subspace. The true value of the parameter is
denoted as ψ0 = (γ⊤

0 , δ⊤
0 )⊤ ∈ Ψ.

The parametric model we are going to solve is a reformulation of equa-
tions (1.2)

et(γ) = Yt − µ −
p∑︂

i=1
φiYt−i −

q∑︂
j=1

θjet−j(γ),

εt(ψ) = et(γ)/σt(ψ), (1.4)

σ2
t (ψ) = α0 +

m∑︂
i=1

αie
2
t−i(γ) +

s∑︂
j=1

βjσ
2
t−j(ψ),

where εt(ψ0) = εt, et(γ0) = et and σ2
t (ψ0) = σ2

t . Note that et(γ) and σ2
t (ψ) are

computed recursively. The initial values can be set to zero, for example. However,
they can be set to a different constant, see further.
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To construct the Gaussian quasi-likelihood function, εt is assumed to have
a standard normal distribution. From this assumption and from the ARMA-
GARCH representation in (1.4), we can derive the distribution of Yt | Ft−1, t =
1, . . . , n which is also normal. From assumption εt ∼ N (0, 1), t = 1, . . . , n it
holds

et | Ft−1 ∼ N
(︂
0, σ2

t

)︂
,

which implies

Yt − µ −
p∑︂

i=1
φiYt−i −

q∑︂
j=1

θjet−j

⃓⃓⃓⃓
Ft−1 ∼ N

(︂
0, σ2

t

)︂
,

from which the distribution of Yt | Ft−1 is obtained

Yt | Ft−1 ∼ N
(︃

µ +
p∑︂

i=1
φiYt−i +

q∑︂
j=1

θjet−j, σ2
t

)︃
.

Thus, the Gaussian quasi-likelihood function has the following form

Ln(ψ) =
n∏︂

t=1

1√︂
2πσ2

t (ψ)
exp

(︃
− e2

t (γ)
2σ2

t (ψ)

)︃
.

The estimator of ψ maximises Ln(ψ). Working with the logarithmic version of
the Gaussian quasi-likelihood function is more convenient. So for maximisation,
we use the logarithmic Gaussian quasi-likelihood function

ℓn(ψ) = log
(︂
Ln(ψ)

)︂
=

n∑︂
t=1

(︄
−1

2 log
(︂
2πσ2

t (ψ)
)︂

− e2
t (γ)

2σ2
t (ψ)

)︄
. (1.5)

To calculate the logarithmic Gaussian quasi-likelihood function, initial val-
ues must be set, see Francq and Zakoian [2019, part 7.2]. Denote ˜︁ℓn(ψ) the
logarithmic Gaussian quasi-likelihood function conditional on initial values

˜︁ℓn(ψ) =
n∑︂

t=1

(︄
−1

2 log
(︂
2π˜︁σ2

t (ψ)
)︂

−
˜︁e2

t (γ)
2˜︁σ2

t (ψ)

)︄
,

where for t = 1, . . . , n it holds

˜︁et(γ) = Yt − µ −
p∑︂

i=1
φiYt−i −

q∑︂
j=1

θj˜︁et−j(γ),

˜︁σ2
t (ψ) = α0 +

m∑︂
i=1

αi˜︁e2
t−i(γ) +

s∑︂
j=1

βj ˜︁σ2
t−j(ψ).

To compute ˜︁ℓn(ψ), several initial values need to be specified. For the selection
of initial values, see Francq and Zakoian [2019, part 7.2].

The QMLE of ψ is then

ˆ︁ψ = arg max
ψ∈Ψ

˜︁ℓn(ψ). (1.6)
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For completeness, we denote the individual estimates of all parameters by

ˆ︁ψ = (ˆ︁γ⊤, ˆ︁δ⊤)⊤,ˆ︁γ = (ˆ︁µ, ˆ︁φ1, . . . , ˆ︁φp, ˆ︁θ1, . . . , ˆ︁θq)⊤,ˆ︁δ = (ˆ︁α0, ˆ︁α1, . . . , ˆ︁αm, ˆ︁β1, . . . , ˆ︁βs)⊤.

Under quite general regularity conditions, see Francq and Zakoian [2019, part
7.2], the QMLE is consistent, and if E (ε4

t ) is finite, then the estimator is asymp-
totically normal.
Remark. In the previous section, we discussed an estimator that simultaneously
estimates ARMA and GARCH parts. However, estimating the ARMA component
first and then estimating the GARCH for the residuals from the first step is more
common in practice, see Tsay [2005].

If εt is normally distributed, it is possible to use the maximum likelihood
estimator directly based on the normal distribution. However, as mentioned
earlier, this is not the case for financial time series, as they have heavy tails. But
it is already possible to assume that εt can have a Student’s t-distribution. In
that case, it is already worth using maximum likelihood with the assumption of
a Student’s t-distribution. Another possible distribution for εt is the generalised
error distribution (GED). See Cipra [2020] for details.

1.4 Selection of model order
In the previous section, we estimated a model where the model order was assumed,
i.e., we estimated the ARMA(p, q)-GARCH(m, s) model where we assumed that
the model orders p, q, m, s are known. This section suggests how to determine
such an order.

The most common method to find orders is to estimate several ARMA-
GARCH models with different orders and then compute the Akaike information
criterion (AIC) or Bayesian information criterion (BIC) for the decision, see Tsay
[2005]. Finding the most suitable ARMA model orders and adding the GARCH
part as needed is also possible. The model with the lowest value of the criterion
is the most appropriate. Both criteria can be found in Burnham and Anderson
[2004] and are defined as follows

Definition 3. Let us assume a model M with unknown parameter θ ∈ Θ ⊆ RK.
Let ˆ︁θ is a maximum likelihood estimate of θ and LM( ˆ︁θ | X) is the maximum
likelihood of model M computed from the dataX, whereX = (X1, . . . , Xn)⊤, n ∈
N. The AIC of model M estimated from data X is defined as

AIC = −2 log
(︂
LM( ˆ︁θ | X)

)︂
+ 2K, (1.7)

and the BIC of model M estimated from data X is defined as

BIC = −2 log
(︂
LM( ˆ︁θ | X)

)︂
+ K log(n). (1.8)
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The definition is given in a general form, as we will use it in the next part of
the thesis. For time series, the AIC and BIC are sometimes defined as follows

˜︃AIC =
−2 log

(︂
LM( ˆ︁θ | X)

)︂
+ 2K

n
,

˜︃BIC =
−2 log

(︂
LM( ˆ︁θ | X)

)︂
+ K log(n)

n
,

where we make the same notation as in Definition 3 and n denotes the sample size.
The log-likelihood in our notation for time series from Definition 3 corresponds
to

log
(︂
LM( ˆ︁θ | X)

)︂
= ˜︁ℓn( ˆ︁ψ).

Finding the best model based on ˜︃AIC or ˜︃BIC is same as on AIC or BIC.

1.5 Prediction
The model is already estimated, so it is possible to look at predictions. The
analytical point prediction is constructed in the book of Cipra [2020]. Let us
denote ˆ︁Yt+K(t) the prediction of Yt+K , K ∈ N, constructed in time t, known as
K-step ahead prediction.

To introduce analytical predictions, we first define a general prescription for
the time series along with the unknown parameters denoted as ψ

Yt = µ(Ft−1, ψ) + σ(Ft−1ψ) εt, t ∈ Z. (1.9)

The K-step ahead point prediction ˆ︁Yt+K(t) of Yt+K for the ARMA-GARCH
model is iteratively derived from the first equation of (1.2)

ˆ︁Yt+K(t) = ˆ︁µ +
p∑︂

i=1
ˆ︁φi
ˆ︁Yt+K−i(t) + ˆ︁et +

q∑︂
j=1

ˆ︁θjˆ︁et+K−j,

where it is assumed

ˆ︁Yt+j(t) = Yt+j, j ≤ 0,

ˆ︁et+j(t) =

⎧⎨⎩0, j > 0,

Yt+j − ˆ︁Yt+j(t + j − 1) = et+j, j ≤ 0.

For volatility prediction, see Cipra [2020, Section 8.3.5].
Prediction intervals are typically derived under normality assumption and will

not be discussed in this thesis. It is possible to find it in the book written by
Cipra [2020]. Section 3.4 discussed predictive intervals based on bootstraps for
multivariate time series without assuming normality. It is possible to use these
algorithms in a one-dimensional time series, see Pascual, Romo, and Ruiz [2004].
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1.6 Multivariate time series
Univariate time series allows us to model the evolution of individual assets. In
practice, however, we need to model the whole portfolio’s evolution, consisting
of several individual assets that may depend on each other. For this reason, we
introduce multivariate time series that allows this modelling and deals with the
possible interdependence of individual univariate time series.

Simply saying, a multivariate time series is a union of two or more univari-
ate time series, defined in this work’s first part 1.1. The formal definition of a
multivariate stochastic process and multivariate time series follows.

Definition 4. A multivariate stochastic process is a family of D-dimensional
random vectors {Yt, t ∈ T}, where Yt = (Y1,t, . . . , YD,t)⊤, t ∈ T , defined on the
same probability space (Ω, F , P) indexed by t from the set T ⊆ R representing a
time.

A multivariate time series is defined as a multivariate stochastic process.

Remark. We again restrict ourselves to a discrete-time on T ⊆ Z.
A D-dimensional multivariate time series is denoted as {Yt, t ∈ Z}.
The following definition generalises weak stationarity for a multivariate time

series, see Cipra [2020].

Definition 5. A D-dimensional time series {Yt, t ∈ Z} is said to be stationary
if it has finite second moments and if for all s, t, h ∈ Z the following conditions
hold

E (Yt) = µ, µ = (µ1, . . . , µD)⊤ ∈ RD,

cov(Ys, Yt) = E (Ys − µ)(Yt − µ)⊤ = cov(Ys+h, Yt+h).

In other words, a multivariate time series is stationary if its mean vector and
covariance matrix are invariant in time. The definition is similar to the one-
dimensional case, also known as weak stationarity.

In Figure 1.1, we can see a multivariate time series created by connecting
three univariate time series of closing prices of Apple Inc. (ticker AAPL), Al-
phabet Inc. (GOOG) and Microsoft Corporation (MSFT). The start date is
January 2007, and the end is December 2022. All the data has been collected
from finance.yahoo.com.

All three series are non-stationary, which is a problem for modelling them.
However, we could model, for example, logarithmic returns (log returns), which
might already be stationary (we will deal with this later). Subsequently, we could
consider univariate ARMA-GARCH models for these individual series. Unfortu-
nately, this does not take into account their possible dependency. A model that
could take this into account is presented in the following sections of the work.

11
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Figure 1.1: Example of multivariate time series. In the figure closing prices of
Apple Inc., Microsoft Corporation and Alphabet Inc. Prices are in dollars.
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2. Copulas
The second chapter briefly introduces the theory of copulas. We define copu-
las, describe their basic properties, introduce Sklar’s theorem, and finally derive
parametric and non-parametric estimations of copulas.

Simply saying, copulas are functions which connect marginal distributions to
make a joint distribution. Copulas are very popular today for modelling depen-
dent random variables. Instead of modelling the entire joint distribution, we
can model the marginals and their dependence structure separately and combine
these components using a copula.

This chapter is based on Trivedi, Zimmer, et al. [2007].

2.1 Introduction to copulas
The introduction to copula theory begins with its definition. The basic properties
of the copulas are summarised in this section, including the famous and key Sklar’s
theorem.

Definition 6. Copula is a D-dimensional mapping C : [0, 1]D → [0, 1] satisfying
the following conditions:

(i) C(u1, . . . , uD) = 0 if ∃ d ∈ {1, . . . , D} such that ud = 0,

(ii) C(1, . . . , 1, ud, 1, . . . , 1) = ud, ∀ d = 1, . . . , D, ud ∈ [0, 1],

(iii) for all vectors
(︂
u

(1)
1 , . . . , u

(1)
D

)︂⊤
,
(︂
u

(2)
1 , . . . , u

(2)
D

)︂⊤
in [0, 1]D such that u

(1)
d ≤

u
(2)
d ∀ d = 1, . . . , D, it holds that

2∑︂
i1=1

. . .
2∑︂

iD=1
(−1)i1 + ... + iDC(u(i1)

1 , . . . , u
(iD)
D ) ≥ 0.

Remark. Definition 6 implies that the copula is a cumulative distribution function,
defined on a unit hypercube [0, 1]D, of a multivariate distribution whose marginal
distributions are uniform on an interval [0, 1].

A copula can be equivalently defined as a cumulative distribution function of
a D-dimensional random vector with uniform marginal distributions on [0, 1], see
Trivedi et al. [2007].

From the beginning of this chapter, we know that copulas are a tool for con-
necting multivariate distribution with its marginals. In this part, we describe this
connection using the most important theorem in copula theory, Sklar’s theorem.
This theorem was introduced in 1959 by Abe Sklar, see Sklar [1959]. This thesis
uses the formulation of this theorem from Embrechts [2009].

Theorem states that every joint distribution function can be written as a func-
tion of its marginals, and this function is a copula. The opposite implication is also
true. Copulas can conduct a multivariate distribution using univariate marginals
with a prescribed dependency structure.
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Theorem 1. (Sklar’s theorem) Let F be a joint distribution function defined on
RD with marginal distribution functions F1, . . . , FD. Then there exists a copula
C : [0, 1]D → [0, 1] such that for all (x1, . . . , xD)⊤ ∈ RD it holds

F (x1, . . . , xD) = C
(︂
F1(x1), . . . , FD(xD)

)︂
. (2.1)

Furthermore, if F1, . . . , FD are absolutely continuous distribution functions, the
copula C is unique. Otherwise, C is uniquely defined only on Ran(F1) × . . . ×
Ran(FD) where Ran(Fd), d = 1, . . . , D, denotes the range of the function Fd.

Conversely, having a copula C : [0, 1]D → [0, 1] and marginal distribution
functions F1, . . . , FD, the function F defined in equation (2.1) is a joint D-
dimensional distribution function with marginals F1, . . . , FD.

Proof. For the proof of Sklar’s theorem, see Carley and Taylor [2002].

Remark. In our work, we assume F1, . . . , FD to be absolutely continuous, so the
copula C is uniquely defined.

2.2 Modelling of dependence
There are several ways to measure the dependency of two random variables. For
example, we can use Pearson’s correlation coefficient, Spearman’s rho or Kendall’s
tau. We focus on Kendall’s tau, which we find to be intertwined with the copula.

Kendall’s tau measures the rank correlation between two random variables.
For example, the definition can be found in Embrechts, McNeil, and Straumann
[2002] and is following.

Definition 7. Let X1 and X2 be two random variables. Kendall’s tau of X1 and
X2 is defined as

τ(X1, X2) = P
(︂
(X1 − ˜︂X1)(X2 − ˜︂X2) > 0

)︂
− P

(︂
(X1 − ˜︂X1)(X2 − ˜︂X2) < 0

)︂
= E

[︃
sign

(︂
(X1 − ˜︂X1)(X2 − ˜︂X2)

)︂]︃
,

where
(︂˜︂X1, ˜︂X2

)︂⊤
is a random vector with the same distribution as

(︂
X1, X2

)︂⊤

and both are independent.

The main properties of Kendall’s tau are summarised in the following theorem.

Theorem 2. Let X1 and X2 be two random variables. Then it holds

1. τ(X1, X2) = τ(X2, X1),

2. τ(X1, X2) ∈ [−1, 1],

3. if X1 and X2 are independent then τ(X1, X2) = 0,

4. τ(X1, X2) = 1 if and only if there exists some nondecreasing transforma-
tion T such that X2 = T (X1) almost surely (X1, X2 are perfectly positively
dependent),
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5. τ(X1, X2) = −1 if and only if there exists some non-increasing transforma-
tion T such that X2 = T (X1) almost surely (X1, X2 are perfectly negatively
dependent).

Proof. For the proof see Embrechts et al. [2002, Theorem 3].

Perfect positive dependency is sometimes known as a comonotonicity, and
perfect negative dependency is known as a countermonotonicity.

The relationship between Kendall’s tau and the two-dimensional copula is
shown in the following theorem.

Theorem 3. Let X1 and X2 be two random variables with continuous distribution
functions F1 and F2, respectively. Assume F as their joint distribution and C as
a copula. Then it holds

τ(X1, X2) = 4
∫︂ 1

0

∫︂ 1

0
C(u1, u2) dC(u1, u2) − 1.

Proof. For the proof see Embrechts et al. [2002, Theorem 3].

From Theorem 3, we see that Kendall’s tau is a function of a copula C, not of
the marginal distributions, which is the main difference from Pearson’s correlation
coefficient, which is dependent on marginals. For this reason, we find Kendall’s
tau more convenient.

2.3 Bivariate copulas
So far, we have defined copulas for an arbitrary dimension D. Now we restrict
ourselves to D = 2. This section describes the commonly used bivariate copulas.
Definitions of selected copulas can be found in Trivedi et al. [2007].

2.3.1 Product (independence) copula
The simplest copula is the product copula, also called the independence copula.
The bivariate distribution function of two independent random variables is the
product of two univariate marginal distribution functions. The product copula is
therefore defined as

Cprod(u1, u2) = u1 u2,

where u1, u2 ∈ [0, 1].

Theorem 4. Two random variables are independent if and only if their joint
distribution function is a product copula.

Proof. The theorem can be proven using the well-known relationship be-
tween independent random variables X1, X2 and their joint distribution function
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F (x1, x2). It holds that two random variables with distribution functions F1(x1)
and F2(x2) are independent if and only if for all (x1, x2)⊤ holds

F (x1, x2) = F1(x1) F2(x2),

which proves the theorem.

The product copula can be generalised to a D-dimension, D > 2 in a straight-
forward way

Cprod(u1, . . . , uD) =
D∏︂

d=1
ud,

where ud ∈ [0, 1] for d ∈ 1, . . . , D.

2.3.2 Comonotonicity copula
Another simple copula is a comonotonicity copula

Ccom(u1, u2) = min(u1, u2),

where u1, u2 ∈ [0, 1].
This copula describes a perfect positive dependence. Its Kendall’s tau equals

one, see following Theorem 5. Comonotonicity copula can be generalised to a
D-dimensional D > 2 random vector like a product copula.

2.3.3 Countermonotonicity copula
Copula describing perfect negative dependence is known as countermonotonicity
copula and is defined as follows

Ccount(u1, u2) = max(u1 + u2 − 1, 0),

where u1, u2 ∈ [0, 1].
Its Kendall’s tau equals minus one, see following Theorem 5. Countermono-

tonicity copula cannot be generalised to higher dimensions.
The following theorem describes the relationship between Kendall’s tau and

comonotonicity, resp. countermonotonicity copula.

Theorem 5. Let X1 and X2 be two random variables with continuous distribution
functions and copula C. Then it holds

1. τ(X1, X2) = 1 if and only if C = Ccom,

2. τ(X1, X2) = −1 if and only if C = Ccount.

Proof. For the proof see Embrechts et al. [2002, Theorem 3].
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2.3.4 Clayton copula
We continue with a Clayton copula which is defined as

CCl
θ (u1, u2) = max

(︂
(u−θ

1 + u−θ
2 − 1)−1/θ, 0

)︂
, (2.2)

where u1, u2 ∈ [0, 1] and θ ∈ [−1, ∞) \ {0} is a dependence parameter. If θ
approaches minus one, we obtain a countermonotonicity copula, and if θ tends
to infinity, we obtain a comonotonicity copula. We get a product copula if θ
approaches zero from the right.

Kendall’s tau for the Clayton copula can be found in Ghalibaf [2020], and it
takes the following form

τ = θ

θ + 2 , (2.3)

where θ is the copula parameter.
To sum up, we can model both negative and positive dependency between

variables according to the parameter θ.
Figures 2.1(a), 2.1(b) and 2.1(c) compare densities, defined in (2.5), of the

Clayton copula for different parameters θ which correspond to Kendall’s tau equal
to 0.25, 0.5, 0.75. With the same parameters of θ in Figures 2.2(a), 2.2(b), and
2.2(c) distribution functions are compared. All figures assume uniform marginals.
For more information about figures, see Section 2.4.

2.3.5 Gumbel copula
A copula that models only a positive dependence is a Gumbel copula. This copula
has the following shape

CGu
θ (u1, u2) = exp

(︃
−
(︂
(− log u1)θ + (− log u2)θ

)︂1/θ
)︃

,

where u1, u2 ∈ [0, 1] and θ ∈ [1, ∞) is a dependence parameter. If θ = 1, the
Gumbel copula refers to a product copula, and if θ tends to infinity, we obtain a
comonotonicity copula.

Kendall’s tau for the Gumbel copula can also be found in Ghalibaf [2020], and
it is of the following form

τ = 1 − 1
θ

,

where θ is a copula parameter. The Gumbel copula cannot be used for modelling
negative dependency.

Figures 2.1(d), 2.1(e) and 2.1(f) compare densities, defined in (2.5), of the
Gumbel copula for different parameters θ which correspond to Kendall’s tau equal
to 0.25, 0.5, 0.75. With the same parameters in Figures 2.2(d), 2.2(e) and 2.2(f)
distribution functions are compared. All figures assume uniform marginals. For
more information about figures, see Section 2.4.

The Clayton and the Gumbel copula belong to the so-called Archimedean
copulas. The definition of Archimedean copulas follows.
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Definition 8. Bivariate Archimedean copula is copula defined as

C(u1, u2) = ϕ[−1]
(︂
ϕ(u1) + ϕ(u2)

)︂
,

where ϕ : [0, 1] → [0, ∞] is a continuous, decreasing and convex function satisfy-
ing ϕ(1) = 0. Further ϕ[−1] is pseudo-inverse function of ϕ defined as

ϕ[−1](x) =
{︄

ϕ−1(x), x ∈ [0, ϕ(0)],
0, x ∈ (ϕ(0), ∞].

The function ϕ(x) is the Archimedean copula’s generator function.

Clayton copula can be obtained using ϕ(x) = 1
θ
(x−θ − 1) and the Gumbel

copula using ϕ(x) = (− log x)θ.

2.3.6 Gaussian (normal) copula
A Gaussian copula, sometimes called a normal copula, is derived from the multi-
variate normal distribution

CGauss
ρ (u1, u2) = Φ2

R

(︂
Φ−1(u1), Φ−1(u2)

)︂
,

where u1, u2 ∈ (0, 1), Φ2
R is the joint cumulative distribution function of a bivari-

ate normal distribution with zero mean vector and covariance matrix

R =
(︄

1 ρ
ρ 1

)︄
,

where ρ ∈ [−1, 1]. Φ−1 is the quantile function of the standard normal distribu-
tion.

Kendall’s tau for the Gaussian copula is

τ = 2
π

arcsin(ρ),

see Ghalibaf [2020].
The Gaussian copula allows modelling both positive dependence (for positive

ρ) and negative dependence (for negative ρ). If ρ = 1, the random variables are
comonotonic, if ρ = −1, the random variables are countermonotonic.

Figures 2.1(g), 2.1(h) and 2.1(i) compare densities, defined in (2.5), of the
Gaussian copula for different parameters ρ which correspond to Kendall’s tau
equal to 0.25, 0.5, 0.75. With the same parameters in Figures 2.2(g), 2.2(h) and
2.2(i) distribution functions are compared. All figures assume uniform marginals.
For more information about figures, see Section 2.4.

Gaussian copula can be generalised to a D-dimension D > 2 in the same way
as the product copula.
Remark. A bivariate distribution with a distribution function defined by the
Gaussian copula

F (x1, x2) = CGauss
R

(︂
F1(x1), F2(x2)

)︂
for arbitrary marginal distribution functions F1(x) and F2(x) is not generally a
bivariate normal distribution. However, it can be easily derived that if F1(x) and
F2(x) are normal distribution functions, then the bivariate distribution given by
the above copula is bivariate normal.
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2.3.7 Student’s t-copula
The last copula we describe is a Student’s t-copula or simply t-copula. This
copula is based on multivariate t-distribution, and it is defined similarly to the
normal copula as

Ct
ν,ρ(u1, u2) = Tν,R

(︂
t−1
ν (u1), t−1

ν (u2)
)︂
, (2.4)

where u1, u2 ∈ (0, 1), Tν,R is the joint cumulative distribution function of a bi-
variate t-distribution with covariance matrix

R =
(︄

1 ρ
ρ 1

)︄
,

where ρ ∈ [−1, 1] and with ν degree of freedom, t−1
ν is the quantile function

of the Student t-distribution with ν degree of freedoms. For the definition of
multivariate t-distribution, you can see, for example, Kibria and Joarder [2006].

Kendall’s tau for Student’s t-copula is the same as for the Gaussian copula
and can be found Ghalibaf [2020]

τ = 2
π

arcsin(ρ),

Similarly to the normal copula, we can model both positive and negative
dependence.

Figures 2.1(j), 2.1(k) and 2.1(l) compare densities, defined in (2.5), of the Stu-
dent’s t-copula for different parameters ρ which correspond to Kendall’s tau equal
to 0.25, 0.5, 0.75. The degree of freedom is fixed as ν = 5, with the same pa-
rameters in Figures 2.2(j), 2.2(k) and 2.2(l) distribution functions are compared.
All figures assume uniform marginals. For more information about figures, see
Section 2.4.

Student’s t-copula can be generalised to a D-dimension D > 2 in the same
way as the product copula.

2.4 Copula visualization
Perspective plots of density and cumulative distribution functions of Clayton,
Gumbel, Gaussian and Student’s t (ν = 5) copulas are visualised in this section.
The density of a given copula is written in the following equation (2.5). Copulas
are compared with different parameters (θ for Clayton and Gumbel copulas or ρ
for Gaussian and Student’s t-copulas) that correspond to the same Kendall’s tau
τ ∈ {0.25, 0.50, 0.75}. Copula parameters corresponding to prescribed Kendall’s
tau values can be found in Table 2.1.

In Figure 2.1, densities are compared, and in 2.2, cumulative distribution
functions of copulas are compared. In both figures, each row contains three
figures for the same copula with different parameters that correspond to different
Kendall’s tau. Uniform marginals are assumed for all the figures.

Finally, we show the distribution functions and densities of the Clayton, see
Figure 2.3, and Gumbel, see 2.4, copulas with non-uniform marginals, specifically
with different combinations of normal distribution and exponential distribution.
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(a) Clayton(θ = 2/3) (b) Clayton(θ = 2) (c) Clayton(θ = 6)

(d) Gumbel(θ = 4/3) (e) Gumbel(θ = 2) (f) Gumbel(θ = 4)

(g) Gaussian(ρ =
√︁

2 −
√

2/2) (h) Gaussian(ρ =
√

2/2) (i) Gaussian(ρ =
√︁

2 +
√

2/2)

(j) Student(ρ =
√︁

2 −
√

2/2) (k) Student(ρ =
√

2/2) (l) Student(ρ =
√︁

2 +
√

2/2)

Figure 2.1: Density of different copulas with different parameters. The first
column corresponds to Kendall’s tau equal to 0.25, second to 0.50 and third to
0.75.
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(a) Clayton(θ = 2/3) (b) Clayton(θ = 2) (c) Clayton(θ = 6)

(d) Gumbel(θ = 4/3) (e) Gumbel(θ = 2) (f) Gumbel(θ = 4)

(g) Gaussian(ρ =
√︁

2 −
√

2/2) (h) Gaussian(ρ =
√

2/2) (i) Gaussian(ρ =
√︁

2 +
√

2/2)

(j) Student(ρ =
√︁

2 −
√

2/2) (k) Student(ρ =
√

2/2) (l) Student(ρ =
√︁

2 +
√

2/2)

Figure 2.2: Cumulative distribution function of different copulas with different
parameters. The first column corresponds to Kendall’s tau equal to 0.25, second
to 0.50 and third to 0.75.
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(a) Clayton(Norm,Norm) (b) Clayton(Norm,Exp) (c) Clayton(Exp,Exp)

(d) Clayton(Norm,Norm) (e) Clayton(Norm,Exp) (f) Clayton(Exp,Exp)

Figure 2.3: Density on the first row and distribution function on the second
row of Clayton copula with θ = 1 and with different margins which are normal
distribution with zero mean, variance equal to two and exponential distribution
with mean 1/2.

(a) Gumbel(Norm,Norm) (b) Gumbel(Norm,Exp) (c) Gumbel(Exp,Exp)

(d) Gumbel(Norm,Norm) (e) Gumbel(Norm,Exp) (f) Gumbel(Exp,Exp)

Figure 2.4: Density on the first row and distribution function on the second
row of Gumbel copula with θ = 2 and with different margins which are normal
distribution with zero mean, variance equal to two and exponential distribution
with mean 1/2.
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Copula τ = 0.25 τ = 0.5 τ = 0.75
Clayton θ = 2/3 θ = 2 θ = 6
Gumbel θ = 4/3 θ = 2 θ = 4

Gaussian ρ = 1/2
√︂

2 −
√

2 ρ =
√

2/2 ρ = 1/2
√︂

2 +
√

2

Student’s t ρ = 1/2
√︂

2 −
√

2 ρ =
√

2/2 ρ = 1/2
√︂

2 +
√

2

Table 2.1: Copula parameters corresponding to the specified Kendall’s tau.

2.5 Copula estimation
The estimation section is one of the key parts of the copula chapter. Various
procedures for estimating the copula together with its marginals are presented.
We restrict ourselves to bivariate copulas. However, the procedure can be easily
generalised to a higher dimension D > 2. This chapter is based on Choroś,
Ibragimov, and Permiakova [2010].

We describe three main approaches for estimation: fully parametric, semi-
parametric and fully non-parametric. The fully parametric approach estimates
marginal distributions and copula parameters, usually using the maximum like-
lihood. In the semi-parametric approach, we first non-parametrically estimate
marginal distributions, and then the copula parameter is estimated parametri-
cally. The maximum likelihood approach or estimation based on Kendall’s tau
can be used to estimate the copula parameter. Finally, we present a fully non-
parametric approach.

Let us assume that we have bivariate i.i.d. data X1, . . . , Xn, where Xi =
(X1,i, X2,i)⊤ for i = 1, . . . , n, from a bivariate continuous distribution with a
cumulative distribution function F (x1, x2) with marginals F1(x1) and F2(x2).
Due to Sklar’s theorem, see Theorem 1, there exists a unique copula C such that

F (x1, x2) = C
(︂
F1(x1), F2(x2)

)︂
.

Our main aim is to estimate marginal distributions and a copula C.
In the parametric and semi-parametric approach, it is further assumed that

C ∈ C = {Cθ : θ ∈ Θ}, where Θ is a set of all possible values for copula
parameter.

2.5.1 Parametric estimation
In the first case, the model is described by unknown parameters. The maximum
likelihood method is the most commonly used method for estimation. The density
of data X1, . . . , Xn is needed for likelihood.

Theorem 6. Assume the copula Cθ to be absolutely continuous with density

cθ(u1, u2) = ∂2Cθ(u1, u2)
∂u1 ∂u2

. (2.5)

Denote f the joint density of the distribution given by cumulative distribution
function F and f1, f2 marginal densities of distributions given by the cumulative
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functions F1, F2. The density f can be represented as the following multiplication

f(x1, x2) = cθ

(︂
F1(x1), F2(x2)

)︂ 2∏︂
d=1

fd(xd). (2.6)

Proof. From Sklar’s theorem, see Theorem 1, and chain rule, we have

f(x1, x2) = ∂2F (x1, x2)
∂x1 ∂x2

=
∂2Cθ

(︂
F1(x1), F2(x2)

)︂
∂x1 ∂x2

=

∂2Cθ

(︂
F1(x1), F2(x2)

)︂
∂F1(x1) ∂F2(x2)

∂F1(x1) ∂F2(x2)
∂x1 ∂x2

.

The first term can be simplified to the copula density due to (2.5), and the
second can be divided into the product of the marginal densities. To sum up, the
joint density can be written as

f(x1, x2) = cθ

(︂
F1(x1), F2(x2)

)︂ 2∏︂
d=1

fd(xd).

Theorem 6 can be generalised to a higher dimension D > 2

f(x1, . . . , xD) = cθ

(︂
F1(x1), . . . , FD(xD)

)︂ D∏︂
d=1

fd(xd),

which can be proved similarly to Theorem 6.
Let us denote α1 ∈ A1 and α2 ∈ A2 vectors of the unknown parameters of

marginal distributions F1, F2, respectively, and its spaces A1, A2. Using (2.6)
we can derive the log-likelihood

ℓ(α1, α2, θ) =
n∑︂

i=1
log f(X1,i, X2,i).

We divide this sum into two parts

ℓ(α1, α2, θ) =
n∑︂

i=1
log f(X1,i, X2,i) =

n∑︂
i=1

log cθ

(︂
F1(X1,i), F2(X2,i)

)︂
+

2∑︂
d=1

ℓd(αd),

(2.7)

where

ℓd(αd) =
n∑︂

i=1
log fd(Xd,i), d = 1, 2,

are marginal log-likelihoods. The MLE of the parameters are then derived as
arguments which maximise the log-likelihood (2.7)(︂ ˆ︁α1, ˆ︁α2, ˆ︁θ)︂⊤

= arg max
α1∈A1,α2∈A2, θ∈Θ

ℓ(α1, α2, θ).
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An estimator based on the method of maximum likelihood is consistent and
asymptotically normal under regularity conditions, which can be found, for ex-
ample, in Akahira and Takeuchi [2012].

It is possible to find a maximum likelihood estimator for all parameters si-
multaneously, as described above. However, sometimes it is complicated due to
a large number of parameters. In practice, it is more common first to estimate
the marginal distribution parameters α1 ∈ A1 and α2 ∈ A2 and then estimate
the copula parameter θ ∈ Θ with the marginal parameters fixed from the first
stage. It is seen that the log-likelihood in (2.7) consists of two main parts, so it
is possible to maximise one part first and then the second. For more information
on the two-stage estimation procedure, see Joe [2005].

2.5.2 Semi-parametric estimation
Semi-parametric estimation is the most commonly used estimation approach in
practice. To begin with, we estimate marginal distributions F1 and F2 first. We
can use different estimation methods. However, the most popular is the empirical
distribution function which is defined as

ˆ︁Fd(t) = 1
n + 1

n∑︂
i=1

1{Xd,i ≤ t}, t ∈ R, d = 1, 2. (2.8)

Here we divide by n + 1 to avoid possible ambiguities on the unit edges of the
copula. Due to this divider, we make the value ˆ︁Fd(t) < 1 for all possible t ∈ R.
From now on, this function will be called the adjusted empirical distribution
function.

For the estimation of the copula parameter, we have two options. We can
estimate it using maximum likelihood or using Kendall’s tau. The unknown
copula parameter is denoted as θ.

Estimation based on maximum likelihood

As a first method, we can use estimated distribution functions ˆ︁F1 and ˆ︁F2 for
creating pseudo-sample ˆ︂U1, . . . , ˆ︂Un where for i = 1, . . . , n it holds

ˆ︂Ui =
(︂ ˆ︁F1(X1,i), ˆ︁F2(X2,i)

)︂⊤
=
(︂ ˆ︁U1,i, ˆ︁U2,i

)︂⊤
.

Finally, we can estimate the copula parameter θ by maximising the likelihood

L(θ) =
n∏︂

i=1
cθ(ˆ︂Ui),

where cθ is the density of Cθ from (2.5).
Usually, it is more convenient to maximise log-likelihood

ℓ(θ) = log L(θ) =
n∑︂

i=1
log
(︂
cθ(ˆ︂Ui)

)︂
. (2.9)

Finally, the estimator is found as an argument of the maximaˆ︁θ = arg max
θ∈Θ

ℓ(θ),

where Θ is the set of all possible values of the copula parameter θ.
The resulting estimator ˆ︁θ is consistent and asymptotically normal under suit-

able regularity conditions, for more information, see Choroś et al. [2010].
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Estimation based on Kendall’s tau

The second method is based on Kendall’s tau. This method requires the expres-
sion for the relationship between the copula’s parameter and Kendall’s tau. Let
us assume that

τ = f(θ),

where f is an invertible function. These functions can be found for Clayton
copula, Gumbel copula, Gaussian copula and Student’s t-copula in Section 2.3.
Subsequently, we estimate Kendall’s tau from the data as

ˆ︁τ =
(︄

n

2

)︄−1 ∑︂
1≤i<j≤n

sign
(︂
(X1,i − X1,j)(X2,i − X2,j)

)︂
(2.10)

and we solve an equation

ˆ︁τ = f(ˆ︁θ),

which is equivalent to

ˆ︁θ = f−1(ˆ︁τ).

The properties of the estimator ˆ︁θ are summarised in the following theorem.

Theorem 7. The estimator ˆ︁θ estimated by a procedure based on Kendall’s tau is
consistent and asymptotically normal.

Proof. The consistency of ˆ︁θ follows from the consistency of ˆ︁τ shown in Gibbons
and Chakraborti [2011, Chapter 11]. The estimator ˆ︁τ is unbiased, and its variance
approaches zero as n tends to infinity, so the estimator ˆ︁τ is consistent due to
Chebyshev’s inequality. The consistency of ˆ︁θ comes from the Continuous mapping
theorem.

The asymptotic normality of ˆ︁θ follows from the asymptotic normality of ˆ︁τ ,
which is again shown in Gibbons and Chakraborti [2011, Chapter 11]. The statis-
tic ˆ︁τ is U-statistics, so the normality of ˆ︁τ follows from the general theory of
U-statistics. For the definition and normality of U-statistics, see Van der Vaart
[2000]. The asymptotic normality of ˆ︁θ then follows from the Delta method, see
Van der Vaart [2000].

2.5.3 Non-parametric estimation
Finally, the non-parametric approach is described. This method can be used if
we want to avoid making restrictive assumptions about the parametric shape of
the copula. This estimator is based on empirical distribution functions. Let us
denote ˆ︁F the bivariate empirical distribution function

ˆ︁F (t1, t2) = 1
n

n∑︂
i=1

1{X1,i ≤ t1, X2,i ≤ t2}, (t1, t2)⊤ ∈ R2, (2.11)
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and ˆ︁F −1
1 (u1), ˆ︁F −1

2 (u2) be the empirical quantile functions of F1, respectively F2.
Functions ˆ︁F −1

1 (u1) and ˆ︁F −1
2 (u2) are defined as an inversion of the empirical

distribution function

ˆ︁Fd(t) = 1
n

n∑︂
i=1

1{Xd,i ≤ t}, t ∈ R, d = 1, 2.

However, it is possible to define ˆ︁F −1
1 (u1) and ˆ︁F −1

2 (u2) as an inversion of an ad-
justed empirical distribution function defined in (2.8).

Then the non-parametric empirical copula ˆ︁C(u1, u2) is derived

ˆ︁C(u1, u2) = ˆ︁F(︂ ˆ︁F −1
1 (u1), ˆ︁F −1

2 (u2)
)︂
, (u1, u2)⊤ ∈ [0, 1]2.

The properties of this estimate, such as consistency and asymptotic normality,
will vary according to the situation. Further, details can be found in Choroś et al.
[2010].

Definition of empirical copula ˆ︁C(u1, u2) can be equivalently written into the
following form

ˆ︁C(u1, u2) = 1
n

n∑︂
i=1

1{ ˆ︁U1,i ≤ u1, ˆ︁U2,i ≤ u2}, (u1, u2)⊤ ∈ [0, 1]2, (2.12)

where pseudo-sample ˆ︂U1, . . . , ˆ︂Un is created in the same way as in Section 2.5.2
using empirical cumulative distribution function defined in (2.11). Note that this
pseudo-sample was created non-parametrically.

Also, it is possible to construct empirical copula using pseudo-sample created
by parametric estimation of their distribution. However, this is no longer a non-
parametric estimate.

There exist other methods how we can make a non-parametric estimation.
For example, estimation based on kernels. More information about kernels and
estimation based on it can be found in Chen and Huang [2007].

2.6 Copula selection
In the previous part, the model was estimated. However, we assumed that the
copula family was given in Sections 2.5.1 and 2.5.2. This section discusses the
methods for selecting the most suitable copula family for the model.

One general method is to estimate several copulas and then use the data to
compare which copula fits best. It is easier to use the Akaike information criterion
(AIC) or Bayesian information criterion (BIC) for the decision. Also, it is possible
to perform a goodness-of-fit (GOF) test. The AIC and BIC are defined in the
Definition 3 and in the following Section 3.3, a goodness-of-fit test for time series
data is presented.

Applying these criteria to copula models will be illustrated in more detail in
the next Section 3.

Another method which can be used for copula selection is restricted only to
Archimedean copulas. This is based on the generator function ϕ(x) defined in
Definition 8. The whole procedure can be found in Trivedi et al. [2007] in the
Copula Evaluation and Selection part.
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2.7 Example
In the last part of the chapter, we show an example. The main goal is to per-
form all estimating procedures presented above. Statistical calculations were per-
formed using R software, see R Core Team [2020], specifically for copula work,
we chose the copula package, created by Hofert, Kojadinovic, Maechler, and Yan
[2022]. We attach the script Copulas.R to this example.

To demonstrate the estimation methods, we generate data with a sample size
of n = 150 from a bivariate distribution created by Clayton copula with normal
and exponential margins. Formally, let us assume we have i.i.d. bivariate data
X1, . . . , X150, Xi = (X1,i, X2,i)⊤, i = 1, . . . , 150 fulfilling

Xi ∼ CCl
θ=1

(︂
F1(x1), F2(x2)

)︂
, x1 ∈ R, x2 ∈ R+

0 , i = 1, . . . , 150,

F1(x1) ∼ N (0, 4), F2(x2) ∼ Exp(λ = 2),

where CCl
θ=1(u1, u2) denote the Clayton copula with parameter θ = 1, for the

definition of Clayton copula see equation (2.2). The true distribution function of
this bivariate distribution is plotted in Figure 2.5(a) and the density in Figure
2.5(b).

Figure 2.6 provides scatter plots of the simulated data. Sub-figure 2.6(a)
compares simulated data with the contour of the true copula density with the
specified marginals, and sub-figure 2.6(b) compares true pseudo-observed data
created from simulated data using true marginals with the contour of the density
of the Clayton copula with parameter θ = 1.

Figure 2.7 shows the marginal histograms with their true densities - red curves.
In sub-figure 2.7(a), we can check that the first variable has a normal distribution.
In Figure 2.7(b), we can check the second marginal, which has an exponential
distribution.

The estimation of Kendall’s tau is expressed by an equation (2.10)

ˆ︁τ = 0.2546.

The true value is from (2.3) equal to 1/3.

Parametric estimation
The maximum likelihood (ML) is used for parametric estimation. We perform
the estimation described in Section 2.5.1, specifically, we perform a two-stage
estimation.

Firstly, it is necessary to find the distribution family of marginals. From the
histograms in Figure 2.7, we can conclude that we have a normal and exponential
distribution. It is easily derived that maximum likelihood estimation (MLE) for
normal distribution is

ˆ︁µ = 1
n

n∑︂
i=1

Xi,1 = Xn,1 = 0.0298,

ˆ︁σ2 = 1
n

n∑︂
i=1

(︂
Xi,1 − Xn,1

)︂2
= 3.7724.
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(a) Distribution function (b) Probability density function

Figure 2.5: Bivariate distribution generated by Clayton copula with normal and
exponential marginals.

(a) Scatter plot of simulated data (b) Scatter plot of true pseudo-observed simu-
lated data

Figure 2.6: Scatter plots of simulated data and true pseudo-observed simulated
data with contours of true densities.

MLE for exponential distribution follows

ˆ︁λ = 1
Xn,2

= 2.0505.

The second stage is an estimation of a copula parameter. Table 2.2 compares
the estimation of Clayton, Gumbel, Gaussian and Student’s t-copula parameters
and their 95 % confidence intervals based on the assumption of normality.

A note on the estimated degrees of freedom of the Student’s t-distribution
would be helpful here. From Table 2.2, the degree of freedom of the Student’s
t-copula is estimated to be ˆ︁ν = 10178.3842. It is well known that the Student’s
t-distribution converges to a normal distribution as the degree of freedom tends
to infinity. From the prescription of the Student’s t-copula, see equation (2.4), it
is easily seen that the Student’s t-copula converges to a Gaussian copula when
the degree of freedom tends to infinity. Thus the Gaussian and Student’s t fitted
copulas are similar.
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(a) Histogram of the first variable (b) Histogram of the second variable

Figure 2.7: Histograms of the marginals compared with the true density - red
curve.

Table 2.3 compares the values of AIC and BIC. These values were calculated
from the maximum log-likelihood using equations (1.7) for AIC and (1.8) for BIC
defined in Definition 3. The log-likelihood used for the calculation corresponds
to the log-likelihood of the copula from the second stage of estimation, where
we already assume the estimated parameters of the marginal distributions. The
log-likelihood is computed

ℓ(θ) =
n∑︂

i=1
log cθ

(︂ ˆ︁F1(X1,i), ˆ︁F2(X2,i)
)︂
,

where cθ(u1, u2) is the density of examined copula (Clayton, Gumbel, Gaussian
and Student’s t) and ˆ︁F1, resp. ˆ︁F2 are already estimated distribution functions
from the first stage. It can be seen that the Clayton copula, which is the true
copula, has the lowest AIC and also BIC.

It is possible to plot the estimated copula and compare it to the true copula,
but the two plots would be almost identical, so this step is omitted.

Copula Parameter Standard 95 % confidence interval
estimation deviation 2.5 % 97.5 %

Clayton ˆ︁θ = 0.9139 0.1587 0.6028 1.2250
Gumbel ˆ︁θ = 1.3187 0.0846 1.1530 1.4845
Gaussian ˆ︁ρ = 0.4795 0.0596 0.3627 0.5962

Student’s t ˆ︁ρ = 0.4794 0.0596 0.3626 0.5962ˆ︁ν =
10262.2863

42.8080 10178.3842 10346.1884

Table 2.2: Fully parametric estimation of an unknown parameter of different
copulas.
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Copula AIC BIC
Clayton -44.0498 -41.0391
Gumbel -17.7009 -14.6903
Gaussian -31.9777 -28.9671

Student’s t -29.9768 -23.9555

Table 2.3: Comparison of AIC and BIC values for fully parametric estimation.

Semi-parametric estimation
The estimation procedure based on Section 2.5.2 differs from the fully parametric
estimator in the non-parametric estimation of marginals. Marginals are estimated
using an empirical cumulative distribution function. The estimation of the copula
parameter is based on ML or Kendall’s tau. Table 2.4 summarises both estimation
procedure results. The first part of the table summarises the results based on the
ML method, and the bottom part summarises the results based on Kendall’s tau.

In Table 2.4 of the ML section, the degrees of freedom of the Student’s t-copula
are estimated as ˆ︁ν = 2814.9094. Similar to the parametric estimator above, it
can be concluded that the Student’s t-copula and the Gaussian copula estimated
by ML are similar.

Note that the Student’s t-copula estimation based on Kendall’s tau assumes
a fixed degrees of freedom default set to 4.

The table of estimates, see 2.4, shows that the MLE for Clayton copula is
less biased than the estimation based on Kendall’s tau. However, it has a higher
standard deviation.

Table 2.5 contains AIC and BIC for the MLE. Their calculation is again based
on the equation (1.7) for AIC and (1.8) for BIC defined in Definition 3. The log-
likelihood calculation is based on the equation (2.9). The lowest AIC and also
BIC are for Clayton copula, which is the true copula.

The advantage of a method based on ML is providing AIC and BIC values.

Non-parametric estimation
Lastly, non-parametric estimation is shown. Figure 2.8 compares a true distri-
bution with an empirical one. In Figure 2.9, the empirical copula, see (2.12), is
plotted with its true version.

Conclusion of the example
The main purpose of the example was to compare different estimation methods.
The fully parametric estimator came closest to the actual values. However, to
say this is the best method, we would have to make simulations and compare
whether this is the case in the other examples. Of course, it also depends on
how the estimation is done, a fully parametric estimator is not always possible.
Table 2.6 compares all the estimated parameters for the true Clayton copula. A
disadvantage of a fully parametric model may be, for example, a poorly chosen
family of distributions.
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Copula Parameter Standard 95 % confidence interval
estimation deviation 2.5 % 97.5 %

Estimation based on ML
Clayton ˆ︁θ = 0.8358 0.2213 0.4022 1.2695
Gumbel ˆ︁θ = 1.3003 0.0816 1.1404 1.4603
Gaussian ˆ︁ρ = 0.4517 0.0735 0.3075 0.5958

Student’s t ˆ︁ρ = 0.4512 0.0737 0.3067 0.5956ˆ︁ν =
2814.9094

Estimation based on Kendall
Clayton ˆ︁θ = 0.6831 0.2024 0.2865 1.0797
Gumbel ˆ︁θ = 1.3415 0.1012 1.1432 1.5398
Gaussian ˆ︁ρ = 0.3893 0.0813 0.2299 0.5488

Student’s t
ˆ︁ρ = 0.3893 0.0813 0.2299 0.5488ˆ︁ν = 4 (fixed)

Table 2.4: Semi-parametric estimation of an unknown parameter of different
copulas. The first part of the table refers to the estimation based on ML, and
the second part is based on Kendall’s tau.

Copula AIC BIC
Clayton -41.4908 -38.4802
Gumbel -16.8266 -13.8160
Gaussian -29.3603 -26.3497

Student’s t -27.3593 -21.3381

Table 2.5: Comparison of AIC and BIC of semi-parametric estimation based on
ML.

Copula Parameter Fully par. Semi-par. Semi-par.
MLE MLE Kendall

Clayton ˆ︁θ 0.9139 0.8358 0.6831

Table 2.6: Comparison of all estimated parameters for Clayton copula.
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(a) True distribution (b) Empirical distribution

Figure 2.8: Comparison of the true and empirical bivariate distribution function.

(a) True copula (b) Empirical copula

Figure 2.9: Comparison of the true and empirical copula distribution functions.
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3. Models for multivariate time
series based on copulas
This section connects concepts presented in the previous two chapters to perform
models for multivariate time series based on copulas. The model, its estimation
and prediction are presented. Three different algorithms for the prediction inter-
vals are proposed. This chapter is mainly inspired by Patton [2012] and Chen
and Fan [2006].

3.1 Model specification
A copula multivariate time series model is defined similarly to Patton [2012]. Let
us assume we have a multivariate time series {Yt, t ∈ Z} fulfilling Definition 4
and assume that each univariate time series {Yd,t, t ∈ Z}, d = 1, . . . , D can be
written in the form of (1.1) as follows

Yd,t = µd(Ft−1) + σd(Ft−1) εd,t, t ∈ Z, (3.1)

where Ft−1 is the smallest σ-algebra generated by all past values of multivariate
time series Yt−1, Yt−2, . . ., mathematically Ft−1 = σ{Yt−1, Yt−2, . . . }.

Furthermore, εd,t are innovations satisfying the following conditions

E (εd,t | Ft−1) = 0, d = 1, . . . , D,

var(εd,t | Ft−1) = 1, d = 1, . . . , D.

By the law of total expectation and total variance, the conditional mean and
variance of εd,t written above also hold unconditionally. For d = 1, . . . , D, it
holds that

E (εd,t) = E
(︂
E (εd,t | Ft−1)

)︂
= E (0) = 0,

var(εd,t) = E
(︂
var(εd,t | Ft−1)

)︂
+ var

(︂
E (εd,t | Ft−1)

)︂
= E (1) + var(0) = 1.

The vector of innovations is denoted as εt = (ε1,t, . . . , εD,t)⊤ and it is as-
sumed to be continuously distributed. The cumulative distribution functions of
innovations are denoted as follows

εd,t | Ft−1 ∼ Fd,t, t ∈ Z, d = 1, . . . , D,

εt | Ft−1 ∼ Ft, t ∈ Z,

where Fd,t, d = 1, . . . , D are univariate cumulative distribution functions with
zero mean and unit variance and Ft is the corresponding D-dimensional cumula-
tive distribution function.

For the sake of completeness of the thesis, we state here Sklar’s theorem for
conditional random variables. For example, this theorem can be found in Patton
[2001, Theorem 3].
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Theorem 8. (Sklar’s theorem for conditional distribution) Let F be a conditional
joint distribution function defined on RD with conditional marginal distribution
functions F1, . . . , FD and let us denote F conditioning set. Then there exists a
conditional copula C : [0, 1]D → [0, 1] such that for all (x1, . . . , xD)⊤ ∈ RD it
holds

F (x1, . . . , xD | F) = C
(︂
F1(x1 | F), . . . , FD(xD | F)

⃓⃓⃓
F
)︂
. (3.2)

Furthermore, if F1, . . . , FD are additionally absolutely continuous distribution
functions, the conditional copula C is unique. Otherwise, C is uniquely defined
only on Ran(F1) × . . . × Ran(FD) where Ran(Fd), d = 1, . . . , D denotes the
range of the function Fd.

Conversely, having a conditional copula C : [0, 1]D → [0, 1] and marginal
conditional distribution functions F1, . . . , FD, the function F defined by equation
(3.2) is a conditional joint D-dimensional distribution function with marginals
F1, . . . , FD.

Proof. For the proof of conditional Sklar’s theorem, see an appendix in Patton
[2001].

For simplicity we assume that for each d = 1, . . . , D innovations εd,t are i.i.d.
and independent of Ft−1 for each t ∈ Z. Therefore also εt are i.i.d. random
vectors. Further, it is denoted

εd,t ∼ Fd, t ∈ Z, d = 1, . . . , D,

εt ∼ F, t ∈ Z.

From Sklar’s theorem, see Theorem 1, there exists a unique copula C such
that for all (x1, . . . , xD)⊤ it holds

F (x1, . . . , xD) = C
(︂
F1(x1), . . . , FD(xD)

)︂
. (3.3)

In summary, univariate time series are linked to multivariate series through
innovations.

A stationary time series is assumed for the estimation of the model. The
estimation can be divided into three parts which need to be estimated. These are
the estimation of the univariate time series, for example, ARMA-GARCH, the
marginal distributions of innovations and the copula. It is possible to estimate
all parts parametrically and non-parametrically, so it is possible to create an
estimate using any combination.

It is possible to build a fully parametric model where all three parts of the
model are parameterised and estimated using the maximum likelihood method.
The disadvantage of this approach lies in the large number of parameters to be
estimated if we estimate all the parameters simultaneously. However, we also
need to identify the model class correctly, i.e. correctly identify the type of each
univariate time series, correctly identify the family of the distribution of the
innovations and correctly select the copula family. We will not deal with this
method, it can be found in the article Patton [2006] or in Patton [2013, Section
3.1] where a multi-stage procedure is shown.
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Another way to estimate the time series is the semi-parametric model. It
differs from the fully parametric estimator only in the non-parametric estimation
of the innovations. The marginal distribution function of innovations is usually
estimated using the empirical distribution function of residuals. The copula pa-
rameter can be estimated using estimators based on both maximum likelihood
and Kendall’s tau. This estimation is most often done in a multi-stage procedure.

The last option is the fully non-parametric approach. The non-parametric
estimation was discussed by Scaillet and Fermanian [2002], and we will not discuss
this approach further.

In the next section of the thesis, we describe the SCOMDY model, which
represents a semi-parametric option.

3.2 SCOMDY
The SCOMDY model is a semi-parametric approach to estimating pre-specified
multivariate time series {Yt, t ∈ Z}. This model was created by Chen and Fan
[2006]. SCOMDY is an abbreviation for Semi-parametric Copula-Based Multi-
variate Dynamic Models.

Each univariate time series is estimated using a parametric model such as the
ARMA-GARCH model. The cumulative distribution functions of innovations are
then estimated non-parametrically from univariate residuals. Finally, a paramet-
ric estimation of the copula is performed. The estimation process is described in
the next three sub-chapters. For simplicity, we again assume a two-dimensional
time series (D = 2), but the extension to a higher dimension is straightforward.

Before starting the estimations, we parameterise the time series defined in
equation (3.1). By ψd, we denote the vector of unknown parameters for d-th
time series. The time series is then written same as (1.9)

Yd,t = µd(Ft−1, ψd) + σd(Ft−1, ψd) εd,t, t ∈ Z, d = 1, 2. (3.4)

It is assumed that C ∈ C = {Cθ : θ ∈ Θ}, where Θ is a set of all possible
values for copula parameter. The copula C in equation (3.3) is then denoted as
Cθ. It is further assumed that there is a density cθ of the copula Cθ.

For the estimation procedure and illustration, it is assumed to have a bivariate
time series {Y1, . . . , Yn}, where Yt = (Y1,t, Y2,t)⊤ for t = 1, . . . , n.

To show that the model can be estimated in three steps, we introduce the
log-likelihood of the SCOMDY model.

Theorem 9. The log-likelihood function of a SCOMDY model of a bivariate time
series {Y1, . . . , Yn} connected with a copula Cθ with density cθ is

ℓ(ψ1,ψ2, θ) =
n∑︂

t=1
log fYt(y1, y2) =

n∑︂
t=1

{︃
log cθ

(︂
F1(ε1,t), F2(ε2,t)

)︂
+

2∑︂
d=1

log
(︂
fd(εd,t)

)︂
−

2∑︂
d=1

log
(︂
σd(Ft−1, ψd)

)︂}︃
,

(3.5)

where fYt(y1, y2) is density of Yt | Ft−1.
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Proof. For deriving the log-likelihood function, we use the theorem of transfor-
mation of random vectors, see Fessler [1998]. It is assumed

εt = (ε1,t, ε2,t)⊤ ∼ Cθ

(︂
F1(x1), F2(x2)

)︂
.

Thus the random vector of innovations (ε1,t, ε2,t)⊤ has the density expressed in
equation (2.6) in Theorem 6

fεt(x1, x2) = cθ

(︂
F1(x1), F2(x2)

)︂ 2∏︂
d=1

fd(xd).

The aim is to derive the density of Yt | Ft−1, since the log-likelihood function
is defined as

ℓ(ψ1,ψ2, θ) =
n∑︂

t=1
log fYt(y1, y2).

The bivariate time series can be written in a matrix form. For t = 1, . . . , n
it holds(︄

Y1,t

Y2,t

)︄
=
(︄

µ1(Ft−1, ψ1)
µ2(Ft−1, ψ2)

)︄
+
(︄

σ1(Ft−1, ψ1) 0
0 σ2(Ft−1, ψ2)

)︄(︄
ε1,t

ε2,t

)︄
.

Let us denote transformation function g : R2 → R2

g(x1, x2) =
(︄

µ1(Ft−1, ψ1)
µ2(Ft−1, ψ2)

)︄
+
(︄

σ1(Ft−1, ψ1) 0
0 σ2(Ft−1, ψ2)

)︄(︄
x1
x2

)︄
.

Transformation g fulfils all the assumptions related to the theorem of transfor-
mation. The inverse function of g follows

g−1(y1, y2) =
(︄

σ−1
1 (Ft−1, ψ1) 0

0 σ−1
2 (Ft−1, ψ2)

)︄(︄
y1 − µ1(Ft−1, ψ1)
y2 − µ2(Ft−1, ψ2)

)︄

=
(︄

y1 − µ1(Ft−1, ψ1)
σ1(Ft−1, ψ1)

,
y2 − µ2(Ft−1, ψ2)

σ2(Ft−1, ψ2)

)︄
.

The last building block we need is the Jacobian matrix of the transformation g−1

J =
⎛⎝∂g−1

1 (y1, y2)
∂y1

∂g−1
1 (y1, y2)

∂y2
∂g−1

2 (y1, y2)
∂y1

∂g−1
2 (y1, y2)

∂y2

⎞⎠ =
(︄

σ−1
1 (Ft−1, ψ1) 0

0 σ−1
2 (Ft−1, ψ2)

)︄
.

Finally, the density of Yt | Ft−1 is due to the theorem of transformation

fYt(y1, y2) = fεt

(︂
g−1(y1, y2)

)︂
·
⃓⃓⃓
det(J)

⃓⃓⃓
= cθ

{︄
F1

(︄
y1 − µ1(Ft−1, ψ1)

σ1(Ft−1, ψ1)

)︄
, F2

(︄
y2 − µ2(Ft−1, ψ2)

σ2(Ft−1, ψ2)

)︄}︄

·
2∏︂

d=1
fd

(︄
y1 − µd(Ft−1, ψd)

σ−1
d (Ft−1, ψd)

)︄
·
⃓⃓⃓⃓
⃓

2∏︂
d=1

σ−1
d (Ft−1, ψd)

⃓⃓⃓⃓
⃓

= cθ

{︃
F1
(︂
ε1,t

)︂
, F2

(︂
ε2,t

)︂}︃
·

2∏︂
d=1

fd(εd,t) ·
2∏︂

d=1
σ−1

d (Ft−1, ψd).
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The log-likelihood for the SCOMDY model is then

ℓ(ψ1,ψ2, θ) =
n∑︂

t=1
log fYt(y1, y2) =

n∑︂
t=1

{︃
log cθ

(︂
F1(ε1,t), F2(ε2,t)

)︂
+

2∑︂
d=1

log
(︂
fd(εd,t)

)︂
−

2∑︂
d=1

log
(︂
σd(Ft−1, ψd)

)︂}︃
.

The unknown parameters ψ1, ψ2 and θ are found as an argument maxima of
a log-likelihood function from Theorem 9, in equation (3.5).(︂ ˆ︁ψ1, ˆ︁ψ2, ˆ︁θ)︂⊤

= arg max
ψ1∈Ψ1,ψ2∈Ψ2, θ∈Θ

ℓ(ψ1, ψ2, θ),

where Ψ1 and Ψ2 are spaces of all possible values of ψ1 and ψ2, respectively.
The subspace of copula parameter θ is Θ. The initial values for computation of
ℓ(ψ1, ψ2, θ) can be set to zero. The initial values can also be selected as more
sophisticated.

It can be seen that the log-likelihood (3.5) can be divided into three sums that
can be maximised separately. The parameters ψ1 and ψ2 are hidden in ε1,t and
ε2,t, respectively and in the conditional variance σ1(Ft−1, ψ1) and σ2(Ft−1, ψ2),
respectively. The copula parameter θ is only in the first term of (3.5). Therefore,
we can split the estimation into three steps instead of optimising in one step,
which is computationally very demanding.

From the last term of (3.5) we firstly estimate unknown parameters of time
series ψ1 and ψ2. From the middle term of (3.5) estimate a distribution of
innovations given already estimated parameters ˆ︁ψ1 and ˆ︁ψ2 from the first step.
Finally, estimate θ from the first term of (3.5) using the previously estimated
parts.
Remark. The second and last steps of the estimation procedure refer to Section
2.5.2, where the cumulative distribution functions of innovations are estimated
non-parametrically, and the copula parameter is estimated parametrically.

3.2.1 Parametric estimation of time series
The first part of the estimation focuses on individual time series from which is
multivariate series composed. For this part, we have introduced ARMA-GARCH
models in Chapter 1, which are suitable for modelling financial time series. We
assume each of the univariate series to have a model in the following form

Yd,t = µd(Ft−1, ψd) + σd(Ft−1, ψd) εd,t, t = 1, . . . , n, d = 1, 2.

The estimator of ψd, d = 1, 2 is denoted as ˆ︁ψd and is derived in Section 1.3.
Recall that under regularity conditions is the estimator consistent, and if E (ε4

t )
is finite is the estimator asymptotically normal, see Francq and Zakoian [2019,
part 7.2].

In general, limiting yourself only to ARMA-GARCH models is not necessary.
Chen and Fan [2003] discussed VAR, Markov switching models, etc.
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3.2.2 Non-parametric estimation of the distribution func-
tion of innovations

The second part deals with the estimation of the distribution of innovations. It
is estimated non-parametrically from residuals defined as

ˆ︁εd,t = Yd,t − µd(Ft−1, ˆ︁ψd)
σd(Ft−1, ˆ︁ψd)

, t = 1, . . . , n, d = 1, 2. (3.6)

The empirical distribution function of these residuals is used as a non-para-
metric estimation of the distribution of innovations

ˆ︁Fd(s) = 1
n + 1

n∑︂
t=1

1{ˆ︁εd,t ≤ s}, s ∈ R, d = 1, 2.

3.2.3 Parametric estimation of copula
The estimation procedure finishes with the estimation of the copula parameter
θ. We already estimated time series parameters and marginal distributions of
innovations. So, it is possible to create pseudo-sample ˆ︂U1, . . . , ˆ︂Un, where

ˆ︂Ut =
(︂ ˆ︁F1(ˆ︁ε1,t), ˆ︁F2(ˆ︁ε2,t)

)︂⊤
, t = 1, . . . , n. (3.7)

The copula parameter, denoted as θ, is estimated by maximising the likelihood

L(θ) =
n∏︂

t=1
cθ(ˆ︂Ut),

where cθ is the density of Cθ from (2.5).
Same as in (2.9) we can derive log-likelihood

ℓ(θ) = log L(θ) =
n∑︂

t=1
log
(︂
cθ(ˆ︂Ut)

)︂
. (3.8)

Finally, the estimator is found as an argument of the maxima

ˆ︁θ = arg max
θ∈Θ

ℓ(θ),

where Θ is the set of all possible values of the copula parameter θ.
The unknown copula parameter θ can also be estimated using Kendall’s tau

in the same way as in Section 2.5.2 estimation based on Kendall’s tau.
The resulting estimator ˆ︁θ based on maximum likelihood is consistent and

asymptotically normal under suitable regularity conditions, for more information,
see Choroś et al. [2010]. The alternative estimator based on Kendall’s tau is also
consistent and asymptotically normal, see theorem 7.

3.3 Goodness-of-fit test
The goodness-of-fit test helps to determine whether the data can be modelled by
a particular family of copulas C, or whether another family should be chosen. The
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goodness-of-fit test is described in detail in Rémillard [2017]. This test examines
whether the estimated copula C was selected from a suitable copula family C.
The null hypothesis and alternative follow

H0 : C ∈ C, H1 : C /∈ C.

Remember C = {Cθ : θ ∈ Θ} is some parametric family of copula C and Θ is a
set of all possible values for the copula parameter θ.

To make a test statistics, denote Cˆ︁θ estimated parametric copula and ˆ︁C de-
notes the empirical copula defined in (2.12). To test the hypothesis H0, it is
defined so-called Cramér-von Mises test statistics

Sn =
∫︂

[0,1]2
n
(︂ ˆ︁C(u) − Cˆ︁θ(u)

)︂2
d ˆ︁C(u) =

n∑︂
t=1

(︃ ˆ︁C(︂ˆ︂Ut

)︂
− Cˆ︁θ(︂ˆ︂Ut

)︂)︃2
, (3.9)

where u = (u1, u2)⊤ ∈ [0, 1]2 and ˆ︂Ut are the pseudo-observations defined in (3.7).
It is easy to see that if the parametric family is correctly determined, then the
test statistic Sn would be low, so large values of Sn indicate a violation of the null
hypothesis. To derive the p-value of the test, we need to know the distribution of
Sn, assuming that H0 holds. However, this is difficult to derive, so the p-value is
obtained from the bootstrap. The following algorithm is proposed in Rémillard
[2017] and follows

1. Estimate the time series {Yd,1, . . . , Yd,n}, d = 1, 2, see Section 3.2.1. Com-
pute residuals from equation (3.6) and find the empirical cumulative dis-
tribution function of these residuals, see Section 3.2.2. Compute pseudo-
sample ˆ︂U1, . . . , ˆ︂Un from equation (3.7).

2. From computed pseudo-sample ˆ︂U1, . . . , ˆ︂Un compute the empirical copulaˆ︁C defined in (2.12). Estimate the unknown copula parameter θ using this
pseudo-sample above to find Cˆ︁θ. It can be estimated using the log-likelihood
defined in (3.8).

3. Compute the test statistic Sn defined above in equation (3.9).

4. Choose an integer B sufficiently large. Repeat the following steps for each
b ∈ {1, . . . , B}.

(a) Generate a random sample U (b)
1 , . . . , U (b)

n where U (b)
t =

(︂
U

(b)
1,t , U

(b)
2,t

)︂⊤
,

t = 1, . . . , n from estimated copula Cˆ︁θ.
(b) Compute pseudo-sample ˆ︂U (b)

1 , . . . , ˆ︂U (b)
n defined as

ˆ︂U (b)
t =

(︃ ˆ︁F1
(︂
U

(b)
1,t

)︂
, ˆ︁F2

(︂
U

(b)
2,t

)︂)︃⊤
, t = 1, . . . , n,

where ˆ︁Fd is an empirical cumulative distribution function created from
random sample U

(k)
d,1 , . . . , U

(k)
d,n , d = 1, 2 and is scaled by n + 1.

(c) Compute empirical copula from the pseudo-sample ˆ︂U (b)
1 , . . . , ˆ︂U (b)

n

ˆ︁C(b)(u) = 1
n

n∑︂
t=1

1{ˆ︂U (k)
t ≤ u}, u ∈ [0, 1]2,

and estimate copula parameter θ using this generated pseudo-sample.
The estimation of copula is denoted C

(b)ˆ︁θ .
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(d) Compute S(b)
n

S(b)
n =

n∑︂
t=1

(︃ ˆ︁C(b)
(︂ˆ︂U (b)

t

)︂
− C

(b)ˆ︁θ (︂ˆ︂U (b)
t

)︂)︃2
.

Approximated p-value is then computed from the S(1)
n , . . . , S(B)

n

ˆ︁p = 1
B

B∑︂
b=1

1{S(b)
n > Sn}.

The package “copula”, see Hofert et al. [2022] in statistical software R uses
the adjusted approximation for p-value

ˆ︁p = 1
B + 1

(︄
B∑︂

b=1
1{S(b)

n ≥ Sn} + 0.5
)︄

.

More detailed information about the algorithm and its technical assumptions
can be found in the article written by Rémillard [2017]. There, one can find
information that it is not necessary to replicate the whole time series. It is
enough to replicate the U (b)

1 , . . . , U (b)
n from the copula Cˆ︁θ.

3.4 Predictions
We most often estimate the time series to determine their future evolution. This
section shows three different algorithms to predict multivariate time series based
on copulas. All three algorithms are based on the bootstrap technique, allowing
us to find 1 − α confidence intervals, α ∈ (0, 1), usually α = 0.05.

It is assumed a multivariate time series {Yt, t ∈ Z}. For simplicity, we assume
a bivariate time series and denote it as {Y1, . . . , Yn}, where Yt = (Y1,t, Y2,t)⊤ for
t = 1, . . . , n. The methods can be easily extended to higher dimensions. We
also consider the same notation for all parameters as in the section on SCOMDY
models, see Section 3.2. We look for the K-step ahead prediction for Yn+K , K ∈ N
conditioned on the time series up to time n. The predicted value is denoted asˆ︂Yn+K(n) =

(︂ ˆ︁Y1,n+K(n), ˆ︁Y2,n+K(n)
)︂⊤

, K ∈ N.

3.4.1 First algorithm
The first described algorithm is simple and intuitive. However, its disadvantage is
that it does not consider the parameter estimation’s variability, i.e., the estimation
is random. Thus, this approximate method works if a sample size of time series
n is sufficiently large, i.e. the variability of the estimate will already be small.
The algorithm follows.

1. Estimate the time series {Y1, . . . , Yn} to obtain ˆ︁ψd, d = 1, 2. It can be
estimated using a parametric approach, see Section 3.2.1.

2. Compute residuals ˆ︁εd,1, . . . , ˆ︁εd,n, d = 1, 2 using an equation (3.6).

3. Estimate copula parameter from residuals ˆ︁εd,1, . . . , ˆ︁εd,n, d = 1, 2, see Sec-
tion 3.2.3 and denote Cˆ︁θ estimated parametric copula.
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4. Due to the assumption of zero expectation and unit variance of innovations,
standardise the residuals

˜︁εd,t =
ˆ︁εd,t − 1

n

∑︁n
t=1 ˆ︁εd,t√︃

1
n

∑︁n
t=1

(︂ˆ︁εd,t − 1
n

∑︁n
t=1 ˆ︁εd,t

)︂2
, t = 1, . . . , n, d = 1, 2.

5. Choose sufficiently large integer B of bootstraps. Repeat the following steps
for each b ∈ {1, . . . , B}.

(a) For each prediction time k ∈ {1, . . . , K} repeat the following steps.

i. Generate pseudo-observation U (b,k) =
(︂
U

(b,k)
1 , U

(b,k)
2

)︂⊤
from esti-

mated copula Cˆ︁θ.
ii. Compute simulated innovation ε(b,k) =

(︂
ε

(b,k)
1 , ε

(b,k)
2

)︂⊤
, where it

holds

ε
(b,k)
d = ˜︁F −1

d

(︂
U

(b,k)
d

)︂
, d = 1, 2,

where ˜︁F −1
d (s) is a quantile function of an empirical distribution

function ˜︁Fd(s) defined as

˜︁Fd(s) = 1
n + 1

n∑︂
i=1

1{˜︁εd,t ≤ s}, s ∈ R, d = 1, 2.

iii. Generate the possible future value of the series using the esti-
mated parameters ˆ︁ψd, d = 1, 2 and simulated innovation ε

(b,k)
d . In

the case of the ARMA-GARCH model, generate the new future
value from the prescription (1.2) using the sufficient number of
last observed values of the original series or use already generated
values. In short, we write it as follows and use this notation in the
following algorithms

Y
(b,k)

d,n+k(n) = µd(Fn, ˆ︁ψd) + σd(Fn, ˆ︁ψd) ε
(b,k)
d , d = 1, 2,

where Fn is the full information of the original time series up to
time n.

6. For each time k ∈ {1, . . . , K} and each series d = 1, 2 compute median
of bootstrapped data Y

(b,k)
d,n+k(n), b = 1, . . . , B to obtain predicted valueˆ︁Yd,n+k(n) and compute α/2 and 1−α/2 quantiles to obtain 1−α confidence

interval of prediction. The predicted value ˆ︁Yd,n+k(n) can also be obtained
analytically using the procedure in Section 1.5.

3.4.2 Second algorithm
We describe the second algorithm based on the article by Pascual et al. [2004].
This algorithm takes into account the variability of parameter estimation of time
series. The algorithm is based on generating new time series, which are subse-
quently estimated. These new estimates are then used to generate predictions
from the original series.
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1. Steps 1. − 4. are same as in the first algorithm, see Section 3.4.1.

2. Choose sufficiently large integer B of bootstraps to be performed. Repeat
the following steps for each b ∈ {1, . . . , B}.

(a) For each t = 1, . . . , n generate pseudo sample U (b)
t =

(︂
U

(b)
1,t , U

(b)
2,t

)︂⊤

from estimated copula Cˆ︁θ.
(b) Compute simulated innovation ε(b)

t =
(︂
ε

(b)
1,t , ε

(b)
2,t

)︂⊤
, where it holds

ε
(b)
d,t = ˜︁F −1

d

(︂
U

(b)
d,t

)︂
, t = 1, . . . , n, d = 1, 2,

where ˜︁F −1
d (s) is a quantile function of an empirical distribution func-

tion ˜︁Fi(s) defined as

˜︁Fd(s) = 1
n + 1

n∑︂
i=1

1{˜︁εd,t ≤ s}, s ∈ R, d = 1, 2.

(c) Construct a bootstrap series {Y (b)
1 , . . . , Y (b)

n }, Y (b)
t =

(︂
Y

(b)
1,t , Y

(b)
2,t

)︂⊤
,

t = 1, . . . , n where each univariate time series is constructed as follows

Y
(b)

d,t = µd(Ft−1, ˆ︁ψd) + σd(Ft−1, ˆ︁ψd) ε
(b)
d,t, t = 1, . . . , n, d = 1, 2.

Use the first few observations to initialise the bootstrapped series from
the original time series {Y1, . . . , Yn}.

(d) Estimate bootstrap series {Y (b)
1 , . . . , Y (b)

n } using the same model as
in the first step to obtaining ˆ︁ψ(b)

d , d = 1, 2.
(e) For each prediction time k ∈ {1, . . . , K} repeat the following steps.

i. Generate pseudo-observation U (b,k) =
(︂
U

(b,k)
1 , U

(b,k)
2

)︂⊤
from esti-

mated copula Cˆ︁θ.
ii. Compute simulated innovation ε(b,k) =

(︂
ε

(b,k)
1 , ε

(b,k)
2

)︂⊤
, where it

holds

ε
(b,k)
d = ˜︁F −1

d

(︂
U

(b,k)
d

)︂
, d = 1, 2,

where ˜︁F −1
d (s) is a quantile function of an empirical distribution

function ˜︁Fd(s) defined above.
iii. Generate the possible future value of the series using the newly

estimated parameters ˆ︁ψ(b)
d , d = 1, 2 and simulated innovation ε

(b,k)
d

Y
(b,k)

d,n+k(n) = µd(Fn, ˆ︁ψ(b)
d ) + σd(Fn, ˆ︁ψ(b)

d ) ε
(b,k)
d , d = 1, 2,

where Fn is the full information of the original time series up
to time n. For completeness, we use the original time series
{Y1, . . . , Yn} for predictions, not the bootstrapped time series
{Y (b)

1 , . . . , Y (b)
n }.

3. For each time k ∈ {1, . . . , K} compute median of bootstrapped data
Y

(b,k)
d,n+k(n), b = 1, . . . , B to obtain predicted value ˆ︁Yd,n+k and compute α/2

and 1 − α/2 quantiles to obtain 1 − α confidence interval of prediction.
The predicted value ˆ︁Yd,n+k(n) can also be obtained analytically using the
procedure in Section 1.5.
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3.4.3 Third algorithm
The last algorithm we show for predictions is the most theoretically correct but
time-consuming. This algorithm is similar to the second one, except that the
copula parameter is also estimated from bootstrapped time series. The newly
estimated copula parameter is then used to simulate innovations, which we use
for predictions similar to the second algorithm. This algorithm takes into account
the variability of all estimates.

1. Steps 1. − 4. are same as in the first algorithm, see Section 3.4.1.

2. Choose sufficiently large integer B of bootstraps. Repeat the following steps
for each b ∈ {1, . . . , B}.

(a) For each t = 1, . . . , n generate pseudo sample U (b)
t =

(︂
U

(b)
1,t , U

(b)
2,t

)︂⊤

from estimated copula Cˆ︁θ.
(b) Compute simulated innovation ε(b)

t =
(︂
ε

(b)
1,t , ε

(b)
2,t

)︂⊤
, where it holds

ε
(b)
d,t = ˜︁F −1

d

(︂
U

(b)
d,t

)︂
, d = 1, 2,

where ˜︁F −1
d (s) is a quantile function of empirical distribution function˜︁Fd(s) defined as

˜︁Fd(s) = 1
n + 1

n∑︂
i=1

1{˜︁εd,t ≤ s}, s ∈ R, d = 1, 2.

(c) Construct a bootstrap series {Y (b)
1 , . . . , Y (b)

n }, Y (b)
t =

(︂
Y

(b)
1,t , Y

(b)
2,t

)︂⊤
,

t = 1, . . . , n where each univariate time series is generated using the
estimated parameters ˆ︁ψd, d = 1, 2 and simulated innovations ε

(b)
d,t

Y
(b)

d,t = µd(Ft−1, ˆ︁ψd) + σd(Ft−1, ˆ︁ψd) ε
(b)
d,t, t = 1, . . . , n, d = 1, 2.

Use the first few observations to initialise the bootstrapped series from
the original time series {Y1, . . . , Yn}.

(d) Estimate bootstrap series {Y (b)
1 , . . . , Y (b)

n } using the same model as
in the first step to obtaining ˆ︁ψ(b)

d , d = 1, 2.
(e) From this newly estimated time series, compute residuals ˆ︁ε(b)

d,1, . . . , ˆ︁ε(b)
d,n,

d = 1, 2 using an equation (3.6).
(f) Estimate a copula parameter using ˆ︁ε(b)

d,1, . . . , ˆ︁ε(b)
d,n, d = 1, 2, see Section

3.2.3, and denote C
(b)ˆ︁θ estimated parametric copula.

(g) Due to the assumption of zero expectation and unit variance of inno-
vations, standardise the residuals

˜︁ε(b)
d,t =

ˆ︁ε(b)
d,t − 1

n

∑︁n
t=1 ˆ︁ε(b)

d,t√︃
1
n

∑︁n
t=1

(︂ˆ︁ε(b)
d,t − 1

n

∑︁n
t=1 ˆ︁ε(b)

d,t

)︂2
, t = 1, . . . , n, d = 1, 2.

(h) For each prediction time k ∈ {1, . . . , K} repeat the following steps.
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i. Generate pseudo-observation U (b,k) =
(︂
U

(b,k)
1 , U

(b,k)
2

)︂⊤
from esti-

mated copula C
(b)ˆ︁θ .

ii. Compute simulated innovation ε(b,k) =
(︂
ε

(b,k)
1 , ε

(b,k)
2

)︂⊤
, where it

holds

ε
(b,k)
d =

(︂ ˜︁F (b)
d

)︂−1(︂
U

(b,k)
d

)︂
, d = 1, 2,

where
(︂ ˜︁F (b)

d

)︂−1
(s) is a quantile function of an empirical distribu-

tion function ˜︁F (b)
d (s) defined as

˜︁F (b)
d (s) = 1

n + 1

n∑︂
i=1

1{˜︁ε(b)
d,t ≤ s}, s ∈ R, d = 1, 2.

iii. Generate the possible future value of the series using newly esti-
mated parameters ˆ︁ψ(b)

d , d = 1, 2 and simulated innovation ε
(b,k)
d

created with the help of newly estimated copula C
(b)ˆ︁θ

Y
(b,k)

d,n+k(n) = µd(Fn, ˆ︁ψ(b)
d ) + σd(Fn, ˆ︁ψ(b)

d ) ε
(b,k)
d , d = 1, 2,

where Fn is the full information of the original time series up
to time n. For completeness, we use the original time series
{Y1, . . . , Yn} for predictions, not the bootstrapped time series
{Y (b)

1 , . . . , Y (b)
n }.

3. For each time k ∈ {1, . . . , K} compute median of bootstrapped data
Y

(b,k)
d,n+k(n), b = 1, . . . , B to obtain predicted value ˆ︁Yd,n+k(n) and compute

α/2 and 1 − α/2 quantiles to obtain 1 − α confidence interval of predic-
tion. The predicted value ˆ︁Yd,n+k can also be obtained analytically using the
procedure in Section 1.5.

To clarify, all three algorithms use an estimator based on the SCOMDY model
in the first three steps, see Section 3.2.

All three algorithms are compared in a simulation study in Section 4.3.
Another prediction method is based on the backward representation, see

Thombs and Schucany [1990]. The disadvantage of this method is the need to
express the time series backwards. Since this method created B bootstrapped
time series similar to algorithm 2 with initialisation as the last observations. For
GARCH models, this method is therefore impossible since the GARCH model
cannot be expressed in a backwards-looking way.

3.5 Example
In this example, the estimation procedure of the SCOMDY model is shown on
a bivariate time series created by two autoregressions of order one whose inno-
vations come from a bivariate distribution obtained by composing two Student’s
t-distributions using the Clayton copula.
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Statistical calculations were performed using R software, see R Core Team
[2020], specifically for copula work, we chose the copula package, created by Hofert
et al. [2022]. We attach the script Example of SCOMDY.R to this example.

Each univariate time series in an autoregressive model of order 1. It is denoted
as AR(1). Generally for d = 1, 2, it holds

Yd,t = µ0,d + ϕdYd,t−1 + εd,t, t ∈ Z, (3.10)

where µ0,d and ϕd are parameters. Note that autoregressive model in (3.10) is of
the form of (3.4) if we denote

µd(Ft−1, ψd) = µ0,d + ϕdYd,t−1,

σd(Ft−1, ψd) = 1.

Let us generate bivariate data Y1, . . . , Yn from bivariate stationary time series
{Yt, t ∈ Z}, where Yt = (Y1,t, Y2,t)⊤, t ∈ Z, where Y1,t and Y2,t are autoregressions
of order one, defined in (3.10) with the following parameter values

µ0,1 = 0, ϕ1 = 0.6,

µ0,2 = 0, ϕ2 = 0.4.

Thus it holds

Y1,t = 0.6 Y1,t−1 + ε1,t, t ∈ Z,

Y2,t = 0.4 Y2,t−1 + ε2,t, t ∈ Z.

Further, we assume εt = (ε1,t, ε2,t)⊤, t ∈ Z to be i.i.d. coming from the
bivariate distribution generated by Clayton copula with parameter θ = 1, which
correspond to Kendall’s tau equal to 1/3, with Student’s t marginals with five
degrees of freedom. Thus it holds

εt ∼ CCl
θ=1

(︂
F1(x1), F2(x2)

)︂
, x1, x2 ∈ R, t ∈ Z,

where F1(x1) and F2(x2) are cumulative distribution functions of Student’s t-
distribution with five degrees of freedom and CCl

θ=1(u1, u2) denote the Clayton
copula with parameter θ = 1, see equation (2.2). This distribution is shown in
Figure 3.1.

Figure 3.2 plots the generated bivariate time series.
We estimate the simulated time series using the SCOMDY model. Firstly,

we estimate the unknown parameters of the univariate time series ϕ1 and ϕ2.
Secondly, we non-parametrically estimate the marginal distribution functions of
innovations F1 and F2. In the last third step, we parametrically estimate the
unknown parameter of the copula θ. Finally, predictions are made.

Parametric estimation of time series
The first step of the estimation is a parametric estimation of univariate time
series. The estimation is based on the theory presented in Section 3.2.1. It is
assumed to estimate the autoregressive processes of order one. Table 3.1 provide
all estimated parameters. It can be seen that we are close to the true values,
which are also included in the confidence intervals.
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(a) Distribution function (b) Probability density function

Figure 3.1: Bivariate distribution generated by Clayton copula with Student’s t
marginals with 5 degrees of freedom.

Parameter Estimation Standard 95 % confidence interval
deviation 2.5 % 97.5 %

ˆ︁µ0,1 -0.0233 0.1887 -0.3932 0.3466ˆ︁ϕ1 0.5481 0.0588 0.4328 0.6635ˆ︁µ0,2 0.2139 0.1367 -0.0540 0.4817ˆ︁ϕ2 0.3152 0.0670 0.1838 0.4465

Table 3.1: Estimation of unknown parameters of both autoregressive models of
order one.

Non-parametric estimation of the distribution function of
innovations
The second step of the estimation computes residuals using equation (3.6). The
distribution function of innovations is then estimated non-parametrically using
an adjusted empirical cumulative distribution function. Again for more theory,
visit Section 3.2.2.

Figure 3.3 provides histograms of residuals of both autoregressions. It is
compared with Student’s t-distribution with five degrees of freedom, which should
be the true distribution of these innovations.

Parametric estimation of copula
The last step of the estimation procedure follows. It estimates the copula pa-
rameter. For theory, see Section 3.2.3. Figure 3.4 shows scatter plots with true
contours.

Table 3.2 provides results of an estimation of copula parameter for different
copulas with its 95% confidence intervals. The first part of the table contains an
estimate based on the MLE, which can be compared with the second part, which
includes an estimate based on Kendall’s tau. To estimate the Student’s t-copula
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Figure 3.2: Generated bivariate time series. Each univariate time series is an
autoregressive model of order 1. Both time series are connected via innovations
simulated from Clayton copula with Student’s t marginals.

based on Kendall’s tau, the degrees of freedom are assumed to be fixed at the 4.
Table 3.3 concludes that the lowest AIC and BIC are for the Gaussian copula,

which is incorrect.

Copula Parameter Standard 95 % confidence interval
estimation deviation 2.5 % 97.5 %

Estimation based on MLE
Clayton ˆ︁θ = 1.1937 0.1163 0.9657 1.4217
Gumbel ˆ︁θ = 1.4738 0.0673 1.3420 1.6057
Gaussian ˆ︁ρ = 0.5299 0.0434 0.4448 0.6150

Student’s t
ˆ︁ρ = 0.5310 0.0442 0.4443 0.6176ˆ︁ν = 106.1044

Estimation based on Kendall
Clayton ˆ︁θ = 1.1937 0.1947 0.8121 1.5753
Gumbel ˆ︁θ = 1.5969 0.0974 1.4061 1.7877
Gaussian ˆ︁ρ = 0.5540 0.0499 0.4561 0.6518

Student’s t
ˆ︁ρ = 0.5540 0.0499 0.4561 0.6518ˆ︁ν = 4 (fixed)

Table 3.2: Parametric estimation of an unknown parameter of different copulas.
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(a) Histogram of the ˆ︁ε1,t (b) Histogram of the ˆ︁ε2,t

Figure 3.3: Histograms of the residuals of both time series compared with its true
distribution, Student’s t-distribution with five degrees of freedom - red curve.

Copula AIC BIC
Clayton -53.3430 -50.0447
Gumbel -47.0408 -43.7425
Gaussian -59.9778 -56.6794

Student’s t -57.9926 -51.3960

Table 3.3: Comparison of AIC and BIC values computed from Definition 3 using
likelihood of copulas from equation (3.8).

We can also use the goodness-of-fit test defined in Section 3.3 to find the
appropriate family of copulas. The p-values and values of the test statistics are
given in Table 3.4 for N = 1 000 replications. This table shows that Clayton and
Gumbel copulas are rejected at the five per cent significant level, but Clayton
copula is true. Conversely, the test does not reject the null hypothesis for Gaus-
sian and Student’s t-copulas. The wrong test decision is due to a small sample
size n. The appropriate sample size is discussed in Section 4.2 of the simulations
chapter.

Copula Sn p-value
Clayton 0.0382 0.0215
Gumbel 0.0705 0.0005
Gaussian 0.0293 0.1044

Student’s t 0.0290 0.0994

Table 3.4: Goodness-of-fit test statistics and p-value for different copula families
for N = 1 000 replications.
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(a) Scatter plot of residuals (b) Scatter plot of pseudo-observations

Figure 3.4: Scatter plots of residuals and pseudo-observations created in equation
(3.7). Both figures are compared with true contours. The first figure contains
contours of Clayton copula with Student’s t marginals with five degrees of free-
dom, and the second figure contains contours of Clayton copula with uniform
marginals. In both figures are Clayton copula’s contours plotted with parameter
θ = 1.

Predictions
In Section 3.4, predictions are discussed. Table 3.5 gives results of estimating both
time series three steps ahead with its 95% confidence intervals. The predicted
values can be compared with the true values that were also generated but not
used in the estimation part.

The number of bootstraps for the estimation is B = 10 000. Table 3.5 shows
that all three algorithms provide similar prediction results, as seen from the MSE.
Conclusions regarding the suitability of the prediction algorithms are discussed
in the simulation chapter, see Chapter 4. In addition to the prediction interval,
we also present the median as an estimate of the mean value of the series. The
mean value can also be derived analytically according to Section 1.5.

Prediction performance is measured by MSE, which is defined as

MSEd = 1
k

n+k∑︂
t=n+1

(︂
Yd,t − ˆ︁Yd,t

)︂2
, d = 1, 2,

where Yd,t is for t > n a test value for d-th time series. MSE is provided in
Table 3.5 for k = 1, 2, 3.

Conclusion of example
This example aimed to demonstrate the presented theory of SCOMDY modelling.
The model for this example was a bivariate time series consisting of two autore-
gressions of order one. Innovations of univariate series were linked via a Clayton
copula with the marginals of the Student’s t-distribution with five degrees of
freedom.

Parameters for all mentioned copulas were estimated here with their standard
deviations and 95% confidence intervals.
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Algorithm Quantile k = 1 k = 2 k = 3
The first time series

True observations 1.3264 1.2135 2.7571
97.5% 2.3931 2.6964 2.8122

1st Alg. 50% 0.1623 0.0672 0.0288
2.5% -2.5664 -2.7182 -2.8540
MSE 1.3551 1.3346 3.3709
97.5% 2.4123 2.6932 2.8319

2nd Alg. 50% 0.1234 0.0076 -0.0410
2.5% -2.5611 -2.8200 -2.9813
MSE 1.4472 1.4507 3.5769
97.5% 2.3820 2.6898 2.8047

3rd Alg. 50% 0.1333 0.0552 -0.0401
2.5% -2.5424 -2.8341 -3.0425
MSE 1.4235 1.3826 3.5298

The second time series
True observations 1.5211 0.3473 0.7850

97.5% 3.4508 3.3940 3.3989
1st Alg. 50% -0.2140 0.0558 0.1576

2.5% -2.9000 -2.6970 -2.5586
MSE 3.0106 1.5478 1.1631
97.5% 3.4578 3.6457 3.6344

2nd Alg. 50% -0.1539 0.2106 0.3157
2.5% -2.9464 -2.5095 -2.4041
MSE 2.8056 1.4122 1.0149
97.5% 2.5767 3.4791 3.6585

3rd Alg. 50% -0.1433 0.2196 0.3174
2.5% -2.7790 -2.5392 -2.5609
MSE 2.7702 1.3933 1.0017

Table 3.5: Prediction of bivariate time series three steps ahead with the 95%
confidence interval.

The tricky part is the choice of the correct copula. The data is generated from
the Clayton copula, which is rejected by the goodness-of-fit test. However, in this
example, the test does not reject the null hypothesis for Gaussian and Student’s
t-copulas on the five per cent significance level. A poor test result may be due to
a small number of observations. Please remember that the series was generated
with a length of 200.

Finally, a prediction of both time series is made. Suppose we have two assets
whose logarithmic return follows this model with a given dependence. Thus,
we can construct a portfolio comprising these two assets and model its return,
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including the 95% confidence interval. The power in modelling the dependence
structure is the most apparent when modelling the portfolio’s return. For more
information on the portfolio, see below.
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4. Simulations
This part of the thesis examines the functionality of the previously mentioned
theory. Using simulations, we can find the weaknesses or strengths of different
approaches. All the simulations performed are illustrated on a bivariate time
series consisting of two autoregressions connected by a Clayton copula with
marginals of the Student’s t-distribution. We consider the same model with the
same parameters as in Section 3.5, where an example was presented. Recall each
univariate time series is an autoregressive model of order 1, fulfilling

Y1,t = 0.6 Y1,t−1 + ε1,t, t ∈ Z,

Y2,t = 0.4 Y2,t−1 + ε2,t, t ∈ Z.

For εt = (ε1,t, ε2,t)⊤, t ∈ Z, it holds

εt ∼ CCl
θ=1

(︂
F1(x1), F2(x2)

)︂
, x1, x2 ∈ R, t ∈ Z,

where F1(x1) and F2(x2) are cumulative distribution functions of Student’s t-
distribution with five degrees of freedom and CCl

θ=1(u1, u2) denote the Clayton
copula with parameter θ = 1. Let us generate bivariate data Y1, . . . , Yn from
this model.

We compare the copula estimates based on MLE and Kendall’s tau of this
bivariate time series with different time horizons. Which estimation method is
better? Along with comparison, it is illustrated the consistency.

The behaviour of the goodness-of-fit test introduced in Section 3.3 is also
investigated. Specifically, we address the question of the appropriate sample size
for the correct test evaluation.

The three prediction algorithms are also compared here. Algorithm one is the
least time-consuming to compute, but is it also applicable? Which algorithm is
the most relevant?

Finally, we study prediction intervals for linear combinations of time series.
All the simulations were performed using R software, see R Core Team [2020].

Specifically for copula work, the copula package, created by Hofert et al. [2022],
was used. We attach the script Simulations.R to this chapter.

4.1 MLE vs Kendall tau’s estimation
This simulation compares maximum likelihood-based estimates and estimates
based on Kendall’s tau proposed in Section 2.5.2. The comparison is performed
for series with different sample sizes, namely n = 200, 500, 1 000, 2 000. We
always run 10 000 simulations for each sample size. For each simulation, the
parameters of the copula are estimated. Estimation of bias, sample standard
deviation and estimation of mean squared error (MSE) are calculated. Recall
MSE of an estimator ˆ︁θ of parameter θ is defined as

MSE(ˆ︁θ) = E θ

[︂
(ˆ︁θ − θ)2

]︂
= varθ(ˆ︁θ) + bias(ˆ︁θ, θ)2,
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where bias(ˆ︁θ, θ) is defined

bias(ˆ︁θ, θ) = E (ˆ︁θ) − θ.

Table 4.1 provides the results. Recall that for the Clayton copula, the true
value of the parameter is θ = 1. We see that the estimate based on Kendall’s tau
is less biased than the MLE, which on the other hand, has a smaller standard
deviation. Estimation based on ML has a smaller MSE.

Sample MLE Kendall
size bias SD MSE bias SD MSE

n = 200 0.0322 0.1830 0.0345 0.0067 0.2010 0.0405
n = 500 0.0163 0.1149 0.0134 0.0042 0.1271 0.0162

n = 1 000 0.0072 0.0797 0.0064 0.0006 0.0876 0.0077
n = 2 000 0.0033 0.0573 0.0033 -0.0003 0.0623 0.0039

Table 4.1: Comparison of the estimation of Clayton copula parameter based on
maximum likelihood and Kendall’s tau. The true value of the parameter is 1.

As a by-product, we can observe the consistency of both estimations. Table 4.1
shows that as the sample size n increases, the estimate becomes closer to the true
value.

We also tried the same bivariate model but with different types of copulas.
For Gumbel copula, Gaussian copula and Student’s t-copula, see appendix Tables
A.1, A.2 and A.3, respectively.

For the Gumbel and Gaussian copula, the estimation based on Kendall’s tau
is again less biased than the MLE. However, it is more biased for the Student’s
t-copula. It’s the other way around with the standard deviation. For the Gumbel
and Gaussian copula, the standard deviation is lower for estimation based on ML,
and for Student’s t-copula, is standard deviation lower for estimation based on
Kendall’s tau. The MSE is lower for MLE in all cases.

4.2 Performance of the GOF test
This section deals with the goodness-of-fit test introduced in Section 3.3. Again,
we simulate data from a known bivariate time series with different sample sizes
n. We count how many times the null hypothesis of the GOF test was rejected
on a significant level of 0.05. We perform the test for Clayton copula, Gumbel
copula, Gaussian copula and Student’s t-copula. Table 4.2 contains a percentage
of rejection of the null hypothesis. Recall that the true copula is Clayton copula.
So the number of rejections for Clayton copula should be around 0.05. The
number of simulations is set to 500, and for each series, the GOF test is computed
from 350 bootstrap selections. These numbers are selected because of the runtime
of the algorithm.

Table 4.2 shows that in all simulated sample sizes n, the true copula is rejected
in about 5% of the cases. Furthermore, we can see that the Gaussian and Student
t-copulas are less distinct from the Clayton copula for smaller n than is the case
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for the Gumbel copula. Finally, we can see that the power of the test increases
with increasing n and for n large enough (in our case n ≥ 1000) the power of the
test is equal to one.

Copula n = 200 n = 500 n = 1 000 n = 2 000
Clayton 0.0680 0.0720 0.0260 0.0720
Gumbel 0.9880 1.0000 1.0000 1.0000
Gaussian 0.6500 0.9860 1.0000 1.0000

Student’s t 0.6040 0.9840 1.0000 1.0000

Table 4.2: Percentage rejection of the null hypothesis of the goodness-of-fit test.

4.3 Prediction algorithms
In the next simulation, the prediction algorithms from Section 3.4 are compared
for one-step ahead prediction. The prediction is evaluated on the above-defined
two-dimensional time series for different sample sizes n = 200, 500, 1 000. The
number of simulations is set to 1 000. For each simulation, we generate bivariate
time series of sample size n + 1. The estimate and prediction are constructed
from the first n values, and the last one is used for evaluation, since we make
one step ahead. For each simulation, 500 bootstraps were performed for each
algorithm. For each simulation and each algorithm, the 95% confidence interval
was constructed for both the time series and their sum. We calculated the interval
length and found out if the actual value, which we predicted together with the
series, is within it.

Table 4.3 presents the average length of simulated 95% confidence intervals
and the coverage reliability, which is calculated as the number of actual values
inside the interval divided by the number of simulations 1 000.

Sample Algos Y1 Y2 Y1 + Y2

Size Avg int len Coverage Avg int len Coverage Avg int len Coverage

1st algo 5.2354 0.9520 5.2411 0.9360 9.0277 0.9660
n = 200 2nd algo 5.1690 0.9320 5.1740 0.9420 8.9283 0.9500

3rd algo 5.1638 0.9400 5.1821 0.9460 8.8910 0.9500
1st algo 5.2292 0.9380 5.1395 0.9440 8.9565 0.9400

n = 500 2nd algo 5.1744 0.9480 5.2459 0.9540 9.0215 0.9360
3rd algo 5.1803 0.9520 5.2048 0.9460 8.9366 0.9480
1st algo 5.2395 0.9420 5.2123 0.9420 9.0325 0.9540

n = 1 000 2nd algo 5.2169 0.9280 5.1664 0.9400 8.9846 0.9360
3rd algo 5.1343 0.9460 5.1531 0.9400 8.8860 0.9520

Table 4.3: The average interval length and empirical coverage of one-step ahead
prediction intervals based on three different algorithms are compared. Kendall’s
tau is equal to 1/3.

Table 4.3 shows that the predictive confidence intervals are similar for sample
sizes n. The average interval length and coverage are close to each other. However,
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for larger sample sizes n = 1 000, the average length of predictive intervals is
smaller for the 3rd algorithm. But coverage is still around 95%.

In Table 4.4, we present the same comparison for the above-defined model
with a change in dependence. We have increased Kendall’s tau to 2/3. The
length of the prediction intervals of each univariate series is almost the same.
However, the length of the prediction interval for the sum of the two series is
larger compared to the length of the prediction interval for the sum of the two
series in Table 4.3, where Kendall’s tau equals 1/3. The strength of the copulas
can be seen here.

Sample Algos Y1 Y2 Y1 + Y2

Size Avg int len Coverage Avg int len Coverage Avg int len Coverage

1st algo 5.2354 0.9520 5.2439 0.9540 9.7421 0.9540
n = 200 2nd algo 5.1690 0.9320 5.1697 0.9440 9.6791 0.9500

3rd algo 5.1638 0.9400 5.1739 0.9540 9.6205 0.9480
1st algo 5.2292 0.9380 5.1937 0.9460 9.7222 0.9420

n = 500 2nd algo 5.1744 0.9480 5.1696 0.9360 9.7130 0.9500
3rd algo 5.1803 0.9520 5.1715 0.9460 9.6564 0.9540
1st algo 5.2095 0.9410 5.2036 0.9410 9.7194 0.9380

n = 1 000 2nd algo 5.2005 0.9360 5.1722 0.9400 9.6631 0.9380
3rd algo 5.2241 0.9450 5.2037 0.9490 9.7394 0.9390

Table 4.4: The average interval length and reliability of the coverage of one-
step ahead prediction intervals based on three different algorithms are compared.
Kendall’s tau is equal to 2/3.

Simulations indicate that the verification of the proposed 3rd algorithm works
as expected. It seems that 1st algorithm, which is the least time-consuming, seems
to be sufficient.
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5. Practical application
In the last part of the thesis, we apply the acquired knowledge to the practical
problem we introduced in the first chapter. We develop a model for a three-
dimensional time series based on copulas. The daily closing prices of Apple Inc.
(ticker AAPL), Alphabet Inc. (GOOG) and Microsoft Corporation (MSFT) are
considered. Given the assumption of stationarity, we model logarithmic returns.
Therefore, before the application, we present a brief theory on returns.

5.1 Returns
This section provides a brief background on the returns. Specifically, we look at
the simple and logarithmic returns, see Cipra [2020].

Definition 9. Let Pt denote the price of an asset at time t, t ∈ Z. The simple
return Rt of the asset is defined as

Rt = Pt − Pt−1

Pt−1
.

The log return rt of the asset is defined as

rt = log
(︄

Pt

Pt−1

)︄
.

The basic properties and relationships of the returns and prices of the assets
are given in the following theorem.

Theorem 10. Let Pt denote the price of an asset at time t and Rt, rt denote
simple return and log return at time t, t ∈ Z, respectively. The initial price of an
asset is P0. Then it holds

1. rt = log(1 + Rt),

2. Pt−1 (1 + Rt) = Pt−1 exp(rt) = Pt,

3. Pt = exp
(︂∑︁t

i=1 ri

)︂
,

4. Pt = ∏︁t
i=1(1 + Ri).

Proof. The individual points can be easily derived from Definition 9.

5.2 Analyzing practical series
Now we move on to the analysis. As mentioned above, we model a three-
dimensional time series composed of the daily closing prices of Apple Inc. (ticker
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AAPL), Alphabet Inc. (GOOG) and Microsoft Corporation (MSFT). We orig-
inally wanted to model the series from January 2007 to December 2022. Un-
fortunately, the data corresponding to this series does not fit any copula. This
could be due to the financial crisis in 2008, the COVID-19 pandemic in 2019, or
a large amount of inconsistent data. In general, it is difficult to apply models to
overly long series. We, therefore, decided to model a shorter series. We use data
from January 2012 to December 2016, a total of 1, 258 of observations. All the
data has been collected from finance.yahoo.com. The multivariate time series is
presented in Figure 5.1.

Figure 5.1: Example of multivariate time series with reduced sample size. The
figure shows the closing prices of Apple Inc., Microsoft Corporation and Alphabet
Inc. in dollars.

Table 5.1 presents the basic properties of examined time series. For simplicity,
we refer to each company in the analysis by its ticker.

The main aim of the practical task is to predict all series for five trading days
ahead, including 95% prediction intervals. Also, we want to predict the value of
a portfolio consisting of these three assets.

All the statistical calculations were performed using R software, see R Core
Team [2020], specifically for copula work, we use the copula package, created by
Hofert et al. [2022]. For ARMA-GARCH modelling, we used the package called
rugarch, see Ghalanos [2022]. We attach the script Practical example.R to the
practical analysis example.

As mentioned above, we model the log returns defined in Definition 9. Figure
5.2 shows a time series of log returns.
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Characteristics AAPL MSFT GOOG
minimum 13.9475 26.3700 13.9241

1st quantile 18.9698 31.8250 20.2061
median 23.6527 41.4800 26.8735
mean 23.3404 41.3663 26.6767

3rd quantile 27.5944 48.6350 32.6086
maximum 33.2500 63.6200 40.6555

std deviation 5.0745 9.9780 7.5875

Table 5.1: Basic characteristics of examined time series. All values in dollars.

5.2.1 Building the model
For the time series modelling, we use the SCOMDY model. Firstly, the logarith-
mic return rt of each univariate time series is modelled using the ARMA-GARCH
model. The prescription of ARMA-GARCH can be found in (1.2). Orders of the
model are chosen according to AIC defined in Definition 3. Once we find the order
of the model, we look to see if all its parameters are significant. Non-significant
parameters are excluded. We use maximum orders for the ARMA series for the
AR and MA parts of p ≤ 5 and q ≤ 5, respectively. For the GARCH part, we
use maximum orders m ≤ 2, s ≤ 2. The following models were fitted

AAPL ∼ ARMA(2, 3)-GARCH(1, 1),
MSFT ∼ ARMA(2, 2)-GARCH(1, 1),
GOOG ∼ ARMA(5, 5)-GARCH(1, 1).

The estimated parameters with their standard deviations are presented in
Table 5.2.

The model needs to be verified. The estimated parameters fulfil the conditions
mentioned in (1.3). Correlograms of the standardised residuals and of the squares
of the standardised residuals were examined, and no patterns were found. Basic
diagnostic tools do not indicate any violation of assumptions, and we can work
with estimated models.

For interest, see standardised residuals in Figure 5.3. In Figure 5.3(a) are
the standardised residuals of the AAPL series, in 5.3(b) are the standardised
residuals of the MSFT series and finally, in 5.3(c) are the standardised residuals
of the GOOG series.

In the second step, we find the empirical distribution function of residuals.
Finally, we can estimate the copula parameter. Before estimating, we need to

find the most suitable copula. We choose from the Clayton, Gumbel, Gaussian,
and the Student’s t-copula. The selection is based on the GOF test, see Section
3.3. From Table 5.3, we cannot reject Student’s t-copula on 5% significance level.
Also, the AIC and BIC values are the lowest for Student’s t-copula. The Student’s
t-copula seems to be applicable.

The estimated parameters of Student’s t-copula follow. The covariance matrix
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(a) Log return of Apple Inc. (b) Log return of Microsoft Corporation

(c) Log return of Alphabet Inc.

Figure 5.2: Log returns of all the three considered companies.

Param AAPL MSFT GOOG

Estim SD Estim SD Estim SDˆ︁µ 0.0010 0.0005 0.0007 0.0004 0.0006 0.0000ˆ︁ϕ1 -1.3408 0.0020 1.8595 0.0076 0.6834 0.0000ˆ︁ϕ2 -0.9826 0.0053 -0.9597 0.0077 1.8192 0.0002ˆ︁ϕ3 -1.2921 0.0001ˆ︁ϕ4 -0.9762 0.0001ˆ︁ϕ5 0.7089 0.0001ˆ︁θ1 1.3655 0.0010 -1.8784 0.0003 -0.7188 0.0001ˆ︁θ2 1.0203 0.0001 0.9687 0.0007 -1.8348 0.0001ˆ︁θ3 0.0171 0.0003 1.3535 0.0001ˆ︁θ4 0.9978 0.0001ˆ︁θ5 -0.7378 0.0001ˆ︁α0 0.00002 0.0000 0.00000 0.0000 0.00001 0.0000ˆ︁α1 0.0749 0.0184 0.0087 0.0020 0.4298 0.0700ˆ︁β1 0.8637 0.0208 0.9761 0.0046 0.2527 0.0827

Table 5.2: Estimated parameters for each time series.
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(a) Standardised residuals of AAPL (b) Standardised residual of MSFT

(c) Standardised residuals of GOOG

Figure 5.3: Standardised residuals.

Copula AIC BIC Statistics Sn p-value
Clayton -484.0706 -478.9341 0.3679 0.0005
Gumbel -507.7244 -502.5879 0.2514 0.0005
Gaussian -533.4013 -517.9918 0.0522 0.0105

Student’s t -640.8629 -620.3170 0.0345 0.1304

Table 5.3: AIC, BIC and p-value of GOF test for copula selection.

is estimated as

ˆ︁R =

⎛⎜⎝ 1 0.3723 0.3799
0.3723 1 0.4794
0.3799 0.4794 1

⎞⎟⎠ ,

and estimation of degrees of freedom is ˆ︁ν = 5.4643. We finally have a model
built.

5.2.2 Prediction
In this section, we use the model we estimated. Five steps ahead prediction
is performed, K = 5. We construct the estimation of expectations and their
95% confidence intervals. Section 3.4 presents the theory of confidence interval
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creation, and Section 1.5 provides an analytical estimation of the expectation.
We create confidence intervals by creating a 10 000 bootstraps interaction. The
predicted logarithmic returns were converted to closing prices using Theorem 10.

Table 5.4 provides closing prices for the AAPL time series. Results of MSFT
can be found in Table 5.5. Last Table 5.6 provides results regarding GOOG.
In these tables, the relevant quantiles (2.5%, 50%, 97.5%) are recorded with
an analytical prediction from Section 1.5, which is denoted as “Pred”. “True”
remains for the observed value not used for the estimation.

Date 03/01/17 04/01/17 05/01/17 06/01/17 09/01/17
Algos k = 1 k = 2 k = 3 k = 4 k = 5

True 29.0375 29.0050 29.1525 29.4775 29.7475
Pred 29.2593 29.0778 29.0530 29.2966 29.0265

97.5% 29.6490 30.0087 30.2764 30.4682 30.7151
1st algo 50% 28.9315 28.9603 28.9779 28.9719 28.9981

2.5% 28.2643 27.9434 27.6854 27.4613 27.3127
97.5% 30.5781 31.0064 31.5138 31.9133 32.2699

2nd algo 50% 28.9729 28.9516 28.9945 28.9809 29.0064
2.5% 27.4285 26.5436 25.6726 25.0489 24.6652
97.5% 30.6274 30.9732 31.7170 31.9271 32.3033

3rd algo 50% 28.9430 28.9264 28.9598 28.9267 28.9563
2.5% 27.4526 26.4672 25.8312 25.4051 24.9159

Table 5.4: Point prediction and 95% predictive bootstrapped confidence interval
for AAPL with different algorithms. All values are in dollars.

Date 03/01/17 04/01/17 05/01/17 06/01/17 09/01/17
Algos k = 1 k = 2 k = 3 k = 4 k = 5

True 62.5800 62.3000 62.3000 62.8400 62.6400
Pred 61.6696 60.5342 59.7048 58.3438 57.3978

97.5% 63.7100 64.3897 64.4530 64.4281 64.2721
1st algo 50% 62.0532 61.8527 61.4788 61.0248 60.4816

2.5% 60.4251 59.6244 58.8298 57.9250 57.0299
97.5% 66.3132 67.7811 72.2152 77.3351 87.1383

2nd algo 50% 62.7088 63.0091 64.2359 64.9341 66.4316
2.5% 59.3460 57.6057 56.8513 57.1709 58.2618
97.5% 66.2474 68.0299 71.1211 76.3173 84.6847

3rd algo 50% 62.7026 63.0392 64.3113 64.9994 66.4312
2.5% 59.7366 57.8730 57.2467 57.2434 58.4250

Table 5.5: Point prediction and 95% predictive bootstrapped confidence interval
for MSFT with different algorithms. All values are in dollars.

5.2.3 Portfolio creation
We create a fictitious portfolio consisting of a single stock of Apple Inc, Microsoft
Corporation, and Alphabet Inc. We want to know the value of the portfolio. Five
days ahead, a prediction is made, including a 95% confidence interval. In Table
5.7, the results can be found.
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Date 03/01/17 04/01/17 05/01/17 06/01/17 09/01/17
Algos k = 1 k = 2 k = 3 k = 4 k = 5

True 39.3070 39.3450 39.7010 40.3075 40.3325
Pred 38.3597 37.8040 37.5469 37.0913 36.9307

97.5% 39.5797 40.0537 40.3857 40.7868 41.2244
1st algo 50% 38.6021 38.6303 38.6747 38.8027 38.9127

2.5% 37.6585 37.2355 37.0108 36.8821 36.6911
97.5% 42.3190 42.9164 46.6534 49.9361 57.1252

2nd algo 50% 39.0160 39.1355 39.8116 40.0388 40.8724
2.5% 36.1808 34.4274 34.0166 33.4840 34.1766
97.5% 42.4591 43.3097 46.7600 50.1000 57.3320

3rd algo 50% 39.0321 39.1450 39.8693 40.0338 40.9816
2.5% 36.2557 34.7374 34.6064 33.7158 34.8994

Table 5.6: Point prediction and 95% predictive bootstrapped confidence interval
for GOOG with different algorithms. All values are in dollars.

Date 03/01/17 04/01/17 05/01/17 06/01/17 09/01/17
Algos k = 1 k = 2 k = 3 k = 4 k = 5

True 130.9245 130.6500 131.1535 132.6250 132.7200
Pred 129.2885 127.4160 126.3046 124.7318 123.3550

97.5% 131.7606 132.5654 132.9345 133.2049 133.3177
1st algo 50% 129.6047 129.4966 129.1459 128.8158 128.4089

2.5% 127.5800 126.5793 125.7082 124.7794 123.9102
97.5% 135.8885 137.9470 144.4599 152.6146 169.6926

2nd algo 50% 130.7136 130.9919 133.1124 134.0947 136.8538
2.5% 126.2024 123.5961 122.8496 122.0269 122.9959
97.5% 136.0510 137.8639 144.8486 151.1231 164.4251

3rd algo 50% 130.7300 130.9313 133.1592 134.1938 136.9095
2.5% 126.2311 123.8506 123.5279 122.5839 124.1392

Table 5.7: Point prediction and 95% predictive bootstrapped confidence interval
for portfolio created from AAPL, MSFT and GOOG. All values are in dollars.

5.2.4 Conclusion of practical example
In the example, we have shown the functioning of the SCOMDY model on real
data. From the prediction part, we can see that predictive intervals are shorter
for the first algorithm. From the behaviour of the series, we can conclude that
this algorithm will not be suitable for long-term interval predictions as it does
not take into account the previously mentioned variability of the estimate. The
interval is inaccurate.

If we wanted to model the full, original series from January 2007 to December
2022, it would be necessary to make a complex model. For example, we can use
a model that changes the value of the copula parameter over time. Alternatively,
we can change the whole copula during the time. However, this topic is beyond
the scope of this work.
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Conclusion
This thesis discussed an approach to modelling multivariate time series. In par-
ticular, we have considered a copula-based approach. To address this topic, it was
necessary to introduce ARMA-GARCH models and copulas. Thus, in the first
chapter, we discussed ARMA-GARCH models. We discussed how to estimate it
and how to make a prediction. We defined multivariate time series and motivated
a practical example.

The second chapter summarizes the basic theory of copulas. We introduced
Sklar’s theorem, which is a key theorem for copula theory, and mentioned the most
basic four copulas - Clayton, Gumbel, Gaussian and Student’s t-copula. Copula
with different values of the dependence parameter and different marginal func-
tions were visualised. Subsequently, we derived different methods for estimating
the unknown parameters. Specifically, we discussed parametric, semi-parametric,
and non-parametric approaches.

The main chapter of the thesis is chapter three, where the SCOMDY model
was introduced. We presented a goodness-of-fit test. Three different bootstrap
algorithms have been proposed to build confidence intervals for the prediction of
conditional expectations of time series. Furthermore, the prediction algorithms
could be extended to the estimation of conditional volatility.

In the fourth chapter, we dealt with simulations. A comparison between the
ML-based estimate and Kendal’s tau-based estimate is presented. As a result of
the study, we found that the MLE has a smaller MSE than the estimator based
on Kendal’s tau. Furthermore, we tested the functionality of the GOF test.
We found that if we increase the sample size n, the power of the test increase.
The test rejects the incorrect hypothesis reliably on the sample size of at least
n = 1 000. Finally, we tested the proposed prediction algorithms. We found that
our proposed third algorithm gives us the expected results. For n large enough,
the prediction interval length of the third algorithm is the smallest among the
three proposed algorithms. But we also found that the first algorithm, which is
time-saving, also gives usable results. Hence, using this algorithm in applications
where time plays an important role can be advisable.

Finally, in Chapter 5, we applied the theory to a real problem. We investigated
a three-dimensional time series composed of the closing stock prices of Apple
Inc., Microsoft Corporation, and Alphabet Inc., Google’s parent company. We
examined the series over a time horizon of five years, from January 2012 to
December 2016. We created prediction and 95% prediction intervals for five
steps ahead and then created a fictitious portfolio consisting of one stock of each
mentioned company. Thus, we examined the evolution of the portfolio price over
time. It is worth noting the lengths of the prediction intervals, which are shorter
for the portfolio than if we had created the sum of the individual stocks and
considered them to be independent. In fact, the dependency structure modelled
by the copula has played a role in this result.

The limitations of the SCOMDY model, are primarily related to the max-
imum dimension, D. From a practical point of view, a maximum of 10 series
is recommended to study. This is because the number of unknown parameters
increases, and the model becomes more complex. Oh and Patton [2017] proposes
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how to model more dimensions, up to a maximum of 100.
Other models not discussed in this thesis are models with the so-called time-

varying copula. This is a model where the conditional volatility of the time series
varies over time. This topic is addressed in Patton [2001].

In practice, it is also sometimes necessary to model time series of different
lengths. One possibility is to model only part of all series. However, it is possible
to use theory concerning multivariate time series of different lengths. This issue
is discussed in Patton [2006].
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A. Appendix

Sample MLE Kendall
size bias SD MSE bias SD MSE

n = 200 0.0172 0.0991 0.0101 0.0023 0.1006 0.0101
n = 500 0.0080 0.0614 0.0038 0.0014 0.0630 0.0040
n = 1000 0.0043 0.0426 0.0018 0.0004 0.0439 0.0019
n = 2000 0.0024 0.0305 0.0009 0.0003 0.0313 0.0010

Table A.1: Comparison of the estimation of Gumbell copula parameter based on
maximum likelihood and Kendall’s tau. The true value of the parameter is 1.5.

Sample MLE Kendall
size bias SD MSE bias SD MSE

n = 200 0.0072 0.0541 0.0030 -0.0035 0.0574 0.0033
n = 500 0.0029 0.0341 0.0012 -0.0022 0.0363 0.0013
n = 1000 0.0017 0.0237 0.0006 -0.0010 0.0252 0.0006
n = 2000 0.0009 0.0168 0.0003 -0.0007 0.0178 0.0003

Table A.2: Comparison of the estimation of Gauss copula parameter based on
maximum likelihood and Kendall’s tau. The true value of the parameter is 0.5.

Sample MLE Kendall
size bias SD MSE bias SD MSE

n = 200 -0.0001 0.0643 0.0041 -0.0039 0.0638 0.0041
n = 500 0.0005 0.0404 0.0016 -0.0010 0.0403 0.0016
n = 1000 -0.0003 0.0283 0.0008 -0.0010 0.0283 0.0008
n = 2000 -0.0004 0.0198 0.0004 -0.0007 0.0198 0.0004

Table A.3: Comparison of the estimation of Student’s t-copula parameter based
on maximum likelihood and Kendall’s tau. The true value of the parameter is
0.5.
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