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Supervisor: RNDr. Šárka Hudecová, Ph.D., Department of Probability and Math-
ematical Statistics

Abstract: This thesis describes the theory of multivariate rank tests based on
center-outward ranks and signs. The definition of the center-outward ranks and
signs is based on the measure transportation problem and depends highly on
the chosen underlying grid. Several ways to generate such grids are suggested.
Center-outward ranks and signs are then used to construct various test statistics
for one-sample testing of location. The main contribution of the work is the
introduction of new variants of the one-sample test of location. The proposed
test statistics are based on randomized signs and added zero with the usage of
the permutation tests for obtaining p-values. The tests are constructed under the
assumption of both central or angular symmetry of the underlying distribution.
In the end, a simulation study is performed to illustrate the performance of the
proposed tests under different settings for several alternatives.

Keywords: center-outward distribution function, rank tests, multivariate ranks,
multivariate signs, one-sample test of location

iii



Contents

Introduction 2

1 Preliminaries 3
1.1 Ranks, distribution and quantile function in one-dimensional space 3
1.2 Rank-based tests and their main properties . . . . . . . . . . . . . 5

2 Center-outward ranks 12
2.1 Center-outward ranks in one dimension . . . . . . . . . . . . . . . 12
2.2 Center-outward ranks in multi-dimensional space . . . . . . . . . 14

2.2.1 Measure transportation . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Center-outward ranks and signs . . . . . . . . . . . . . . . 14

2.3 Properties of the center-outward ranks . . . . . . . . . . . . . . . 17
2.4 Elliptical distributions . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Construction of grids . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Grids in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Grids in spaces with dimension d > 2 . . . . . . . . . . . . 24

3 Test statistics based on center-outward ranks 28
3.1 Multivariate simple rank statistic . . . . . . . . . . . . . . . . . . 28

3.1.1 Assumptions and the definition of the center-outward rank
statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Asymptotic normality . . . . . . . . . . . . . . . . . . . . 29
3.2 Two-sample test of location . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Asymptotic behavior of the test statistic . . . . . . . . . . 33
3.2.2 Permutation test . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 One-sample test of location under central symmetry . . . . . . . . 37
3.3.1 Test with randomized signs . . . . . . . . . . . . . . . . . 37
3.3.2 Test based on added θ0 . . . . . . . . . . . . . . . . . . . 39

3.4 One-sample test of the location under angular symmetry . . . . . 44

4 Simulation 49
4.1 Factorization and performance of different grids . . . . . . . . . . 49
4.2 Asymptotics of the two-sample test of location . . . . . . . . . . . 51
4.3 One-sample test of location . . . . . . . . . . . . . . . . . . . . . 56
4.4 Angular symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Conclusion 66

Bibliography 68

1



Introduction

Rank-based tests are well known and are used mostly for their convenient prop-
erties which include distribution-freeness. The concept of ranks and signs is
connected with order statistics and therefore with the ordering of the real line. It
is natural to try and generalize these ideas into their multidimensional versions.
Unfortunately, the ordering of points on a real line cannot be easily transferred to
multidimensional spaces. Therefore, the mentioned concepts are hard to define
in Rd, d ≥ 2.

There are already many proposed ways how to introduce multivariate versions of
ranks and signs and therefore also quantile functions. One possible way is to use
ranks and signs componentwise, but this idea has several problems, including the
fact that the ranks are not asymptotically distribution-free. Another way is to use
depth-based ranks. These concepts have been studied by many statisticians, for
more information see for example Liu & Singh (1993) or Li & Liu (2004).

Another approach built upon measure transportation has been recently proposed
by Chernozhukov et al. (2017). Based on these concepts, the center-outward
ranks and signs were defined. The center-outward ranks and signs have properties
like distribution-freeness and essential maximal ancillarity, making them a useful
tool in statistical testing, see Hallin et al. (2021) or Hallin, Liu & Verdebout
(2022).

This thesis provides the definition of the center-outward ranks and signs based on
the existing theory. Subsequently, our aim was to propose several test statistics
for one-sample testing of location. The introduced semiparametric tests are useful
in situations where normality or even central symmetry of underlying distribu-
tion cannot be assumed. Most of the presented concepts are supplemented with
practical examples and illustrating figures. The thesis provides recommendations
of specific tests useful in multiple various settings and compares the newly pro-
posed one-sample tests with the already well-known Hotelling’s test of location.
The main contribution of this work is a proposal of one-sample tests of location
under central and angular symmetry and their comparison with known tests in
the simulation study.

In the first chapter, the basic properties of the rank-based tests are stated. The
second chapter provides a definition of the center-outward ranks and signs, their
main properties, and the construction of grids for the empirical center-outward
distribution function. Then, test statistics based on the previously described the-
ory are introduced in the third chapter and their asymptotic behavior is studied.
Both, the two-sample and one-sample tests of location are discussed together
with the proposal of a new test statistic based on adding zero for the one-sample
problem. The one-sample tests are constructed under the assumption of central
and angular symmetry. The last chapter contains a simulation study that tries
to compare some of the proposed test statistics under different settings and using
different test alternatives.
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1. Preliminaries

In this section, we will introduce the basics of ranks and rank-based test statistics
to be able to define more complex concepts of center-outward ranks and signs for
multivariate data. These concepts generalize the ideas from the univariate case
and using some additional theory we construct statistical instruments such as
ranks, signs, and quantile functions. First, we need to introduce a notation for
the basic tools we use in the following chapters. Most of the elementary concepts
in the first two chapters are based on the work Hallin et al. (2021). Therefore,
we use the same notation.

Let us use µd as a denote for the Lebesgue measure over Rd with its Borel σ-field
Bd. Let Pd denote the family of Lebesgue absolutely continuous distributions over
(Rd,Bd) and Fd denote the corresponding family of densities. We will consider
Bn

d as the n-fold product Bd × · · · × Bd, and let P (n) or P (n)
f be the distribution

of an i.i.d. n-tuple with marginals P = Pf ∈ Pd and P(n)
d be the corresponding

collection {P (n)
f , f ∈ Fd}. Using P(n)

d -a.s. means P (n)-a.s. for all P ∈ P(n)
d . We

denote the support of P and its interior by spt(P ) and spt(P ), respectively. Some
of the most used terms throughout the thesis are the unit sphere and the open
and closed unit ball in Rd. Therefore, we present their definitions.

Definition 1.1. The (d− 1)-dimensional unit sphere is defined by

Sd−1 = {x ∈ Rd | ∥x∥ = 1}.

In the same way, we define the d-dimensional open and closed unit ball by

Sd = {x ∈ Rd | ∥x∥ < 1},

Sd = {x ∈ Rd | ∥x∥ ≤ 1},

respectively.

Our main aim is to construct semiparametric tests for multivariate distributions.
One of the main advantages of these tests is their distribution-freeness. We would
like to transfer this property from the one-dimensional case to the multidimen-
sional one. In the next parts, at first, we revisit the theory behind ranks and
signs and the test statistics based on them. Then, we present concepts of center-
outward ranks. Finally, the aim of this thesis is to construct several testing tools
based on the previous theory and illustrate the according behavior in a simulation
study.

1.1 Ranks, distribution and quantile function in
one-dimensional space

In dimension one, concepts of distribution, quantile functions, and ranks are well-
known. We will go through them only briefly before getting to their multivariate
extensions.
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Let us consider F to be the distribution function of a random variable Z with
distribution P ∈ P1 and let us suppose we have a sample Z(n)

1 , . . . , Z(n)
n from the

distribution P ∈ P1 which has, with probability one, n distinct values. Then we
can define the following

• the ranks of Z(n)
1 , . . . , Z(n)

n denoted by R(n) := (R(n)
1 , . . . , R(n)

n )⊤, where

R
(n)
i =

n∑︂
j=1

1[Z(n)
j ≤ Z

(n)
i ],

• the order statistic is denoted by Z
(n)
(·) :=

(︂
Z

(n)
(1) , . . . , Z

(n)
(n)

)︂⊤
, where

Z
(n)(︂

R
(n)
i

)︂ = Z
(n)
i , i = 1, . . . , n,

• the empirical distribution function at Z(n)
i is given by

F (n)(Z(n)
i ) = R

(n)
i

n+ 1 = 1
n+ 1

n∑︂
j=1

1[Z(n)
j ≤ Z

(n)
i ].

The value n+ 1 in the denominator of the empirical distribution function is used
so that F (n)(Z(n)

i ) takes values in the open interval (0,1) instead of the closed one
[0, 1]. The mapping Z(n)

i ↦→ R
(n)
i /(n+1) is non-decreasing with the domain given

by the sample and the range in a regular grid{︃ 1
n+ 1 , . . . ,

n

n+ 1

}︃
.

The empirical distribution function F (n) as a function over R is then given
by

F (n)(t) = 1
n+ 1

n∑︂
j=1

1[Z(n)
j ≤ t], t ∈ R. (1.1)

Glivenko-Cantelli’s result connects empirical distribution functions to their pop-
ulation versions. Here, we present its well-known formulation, and we try to pro-
vide similar results for the center-outward version in the following chapters.

Theorem 1.1 (Cantelli-Glivenko). Let P be a probability measure on Borel sets of
the real line R with the distribution function F . Let X1, . . . , Xn be i.i.d. random
variables with the distribution function F . Let Fn be the empirical distribution
function computed as Fn(x) = 1

n

∑︁n
i=1 1[Xi ≤ x]. Consequently, it almost surely

holds that

sup
x∈R

|Fn(x) − F (x)| → 0 as n → ∞.
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Proof. The formulation of the Cantelli-Glivenko theorem and its proof can be
found in Dudley (2014) Theorem 1.3.

From the Cantelli-Glivenko theorem, we can conclude

max
1≤i≤n

⃓⃓⃓
Fn(Z(n)

i ) − F (Z(n)
i )

⃓⃓⃓
→ 0 a.s. as n → ∞.

1.2 Rank-based tests and their main properties
In this part, we present rank-based tests and their properties. The following
description of the problem is based on Section 1.1 in Hallin et al. (2021).

Let us consider a semiparametric model of some real-valued observation

X = (X1, . . . , Xn)⊤, n ∈ N

with distribution P(n)
θ,f , which depends on finite-dimensional parameter θ ∈ Θ,

and on density f ∈ F1 (where F1 is the family of Lebesque densities over R)
of Zi(θ) being some unobserved univariate noise. We write X ∼ P(n)

θ,f if and
only if Z1(θ), . . . , Zn(θ) are independent and identically distributed with density
f . We call Z(n)(θ) := (Z1(θ), . . . , Zn(θ)) θ-residuals. In the described model,
the problem of testing the null hypothesis H(n)

0 : θ = θ0 can be transformed to
testing whether Z1(θ0), . . . , Zn(θ0) are independent and identically distributed
with unspecified density f ∈ F1. For that, rank tests based on R(n)(θ0) :=
(R(n)

1 (θ0), . . . , R(n)
n (θ0))⊤ ranks of Z1(θ0), . . . , Zn(θ0) are available. These tests

are distribution-free because, under the null hypothesis, the distribution of the
ranks is uniform over n! permutations of the set {1, . . . , n}, regardless of the
density f ∈ F1. This property is one of the main advantages of univariate rank-
based tests.

We illustrate the above presented concepts in a univariate case.

Consider X1, . . . , Xn independent random variables such that Xi has a density
f(x − ciθ), where ci, i = 1, . . . , n are known constants and θ is an unknown
parameter. If θ0 is the true value of the parameter, then random variables

Zi(θ0) = Xi − ciθ0

are independent and identically distributed with density f . The density f is
unspecified, and the model is, therefore, semiparametric.

Without loss of generality, we assume θ0 = 0. We want to test the null hypothe-
sis

H0 : θ = 0 versus H1 : θ > 0.

Let R(n)
i denote ranks of Zi := Zi(0). Then based on Hájek et al. (1999) or Anděl

(2007), a suitable test statistic takes form

S =
n∑︂

i=1
ci a(R(n)

i ), (1.2)
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where a(i) = J
(︂

i
n+1

)︂
, i = 1, . . . , n and J : (0, 1) → R is a function called score

function, and numbers ci, i = 1, . . . , n are referred to as regression coefficients.
The statistic S is called simple linear rank statistic.

Same as in Section 2.2.4 in Hájek et al. (1999), let us denote function φ(u, f) of
density f corresponding to distribution function F by

φ(u, f) = −f ′(F−1(u))
f(F−1(u)) , 0 < u < 1.

Next, we define scores in the same way as Hájek et al. (1999) in Section 3.4.3.

Definition 1.2. Let us consider U (n)
(1) , . . . , U

(n)
(n) an ordered sample from the uni-

form distribution on [0, 1]. Then the numbers

an(i, f) = E φ(U (n)
(i) , f), 1 ≤ i ≤ n,

are called scores, corresponding to the density f .

If X(n)
(1) , . . . , X

(n)
(n) is an ordered sample from the distribution with density f , we

can rewrite an(i, f) as

an(i, f) = E

⎧⎨⎩−
f ′(X(n)

(i) )
f(X(n)

(i) )

⎫⎬⎭ ,
and the test statistic (1.2) with J chosen as φ takes form

S =
n∑︂

i=1
ci an(R(n)

i , f). (1.3)

It is usually difficult to compute an(i, f). Therefore, we can replace the scores
with the approximation

a∗
n(i, f) = φ(EU (n)

(i) , f) = φ
(︃

i

n+ 1 , f
)︃
.

Consequently, we get a test statistic

S∗ =
n∑︂

i=1
cia

∗
n(R(n)

i (θ), f).

It is possible to show (Theorem a and Lemma a in Section V.1.6 in Hájek & Šidák
(1967)) that S∗ and S are asymptotically equivalent.

From Theorem 1 in Section 3.4.6 in Hájek et al. (1999), we have the following
theorem.

Theorem 1.2. If f is absolutely continuous and∫︂ ∞

−∞
|f ′(x)| dx < ∞
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holds, then the test with the critical region

n∑︂
i=1

cian(R(n)
i , f) ≥ k

is the locally most powerful rank test at the given level of significance for

H0 : θ = 0 versus H1 : θ > 0.

The level of significance mentioned in the previous theorem is

α = P
(︄

n∑︂
i=1

cian(R(n)
i , f) ≥ k

)︄
,

where probability is computed under the null hypothesis H0.

We provide the following example to illustrate the above-presented construction
of θ-residuals and the test statistic. It is based on Section 11.2.1. in Anděl
(2007).

Example 1.1 (Two-sample test of location). Let us consider a random sample
X1, . . . , Xn1 from a continuous distribution with distribution function F1 and
density f1. Also, consider another independent random sample Y1, . . . , Yn2 from
a continuous distribution with distribution function F2 and density f2. We want
to test whether the two densities coincide. We assume that under the alternative,
there is a difference in location, i.e., that f1(x) = f(x − θ) and f2(x) = f(x) for
a particular density f . The null hypothesis and the alternative are

H0 : θ = 0 versus H1 : θ > 0.

This is a special case of the previous problem with the following regression coef-
ficients

ci =
⎧⎨⎩1, if i = 1, . . . , n1,

0, if i = n1 + 1, . . . , n1 + n2.

Let us consider a sample Z1(θ), . . . , Zn(θ), n = n1 + n2, which under the null
hypothesis H0 can be computed as follows:

Zi := Zi(0) =
⎧⎨⎩Xi, if i = 1, . . . , n1,

Yi−n1 , if i = n1 + 1, . . . , n.
(1.4)

The test statistic is of the form

S =
n∑︂

i=1
ci an(R(n)

i , f) =
n1∑︂
i=1

an(R(n)
i , f),
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where R(n)
i are ranks of Zi, i = 1, . . . , n, i.e., ranks computed for the joint sample.

For the special case of a logistic distribution, we have

f(x) = e−x

(1 + e−x)2

and
F (x) = 1

1 + e−x
.

Then

f ′(x) = −e−x(1 + e−x) − e−x2(1 + e−x)(−e−x)
(1 + e−x)4 =

= −e−x + 2e−2x

(1 + e−x)3 = −e−x(1 − e−x)
(1 + e−x)3

and
F−1(u) = ln u

1 − u
.

From that we can conclude φ(u, f) = 2u− 1 so

E φ(U (n)
i , f) = 2i

n+ 1 − 1.

The corresponding test statistic is

S =
n1∑︂
i=1

⎛⎝2R(n)
i

n+ 1 − 1
⎞⎠ = 2

n+ 1

n1∑︂
i=1

R
(n)
i − n1.

This test statistic is a linear transformation of the two-sample Wilcoxon test
statistic

W =
n1∑︂
i=1

R
(n)
i ,

so the tests based on these two statistics are equivalent, meaning the null hypoth-
esis is rejected by one test if and only if it is rejected by the other. Therefore,
based on Theorem 1.2, we can conclude that the two-sample Wilcoxon test is the
locally most powerful rank test in the case of the logistic distribution.

In the same way, for standard normal distribution, we get

f(x) = 1√
2π
e−x2/2, F (x) = Φ(x),

and
f ′(x) = −xf(x), φ(u, f) = Φ−1(u).

We use the approximated scores

a∗
N(i, f) = Φ−1

(︃
i

N + 1

)︃
.
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The corresponding test statistic is

S =
n1∑︂
i=1

Φ−1

⎛⎝ R
(n)
i

n+ 1

⎞⎠ .
Therefore, the van der Waerden test is the asymptotically locally most powerful
rank test in the case of normal distribution. We talk about the “asymptotically”
locally most powerful rank test because of the usage of the approximated scores.

The asymptotic normality of S from (1.3) is given by Theorem a in Section V.1.5
in Hájek & Šidák (1967).

Theorem 1.3. Consider scores an(i, f) from Definition 1.2 associated with an
integrable function φ(u, f). We denote

φ =
∫︂ 1

0
φ(u, f)du

and we assume ∫︂ 1

0
(φ(u, f) − φ)2du > 0.

Under the null hypothesis H0 and the following condition for regression coeffi-
cients ∑︁n

i=1(ci − c)2

max1≤i≤n(ci − c)2 → ∞ as n → ∞,

where c := n−1∑︁n
i=1 ci, the test statistic

S =
n∑︂

i=1
ci an(R(n)

i , f)

is asymptotically normal N (µc, σ
2
c ) with mean

µc = c
n∑︂

i=1
an(i, f)

and variance
σ2

c =
(︄

n∑︂
i=1

(ci − c)2
)︄∫︂ 1

0
(φ(u, f) − φ)2 du.

The statement that the test statistic S is asymptotically normal N (µc, σ
2
c ) means

that
S − µc

σc

d−→ N (0, 1), as n → ∞.

Example 1.2 (Two-sample test). Let us suppose two independent random samples
X1, . . . , Xn1 and Y1, . . . , Yn2 with a shift in location θ which is the same as in
Example 1.1. We want to test the null hypothesis

H0 : θ = 0 versus H1 : θ > 0.
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The test statistic could then be

S =
n1∑︂
i=1

⎛⎝2R(n)
i

n+ 1 − 1
⎞⎠ = 2

n+ 1

n1∑︂
i=1

R
(n)
i − n1,

where R(n)
i is the rank of Xi in the joint random sample X1, . . . , Xn1 , Y1, . . . , Yn2 .

For the test statistic S, it holds due to Theorem 1.3

S − µc

σc

d−→ N (0, 1).

We compute µc in the same way as in Theorem 1.3

µc = c
n∑︂

i=1
an(i, f) = n1

n

(︄
n∑︂

i=1

2i
n+ 1 − n

)︄
= n1

n

2
n+ 1

n(n+ 1)
2 − n1 = 0.

It holds
n∑︂

i=1
(ci − c)2 =

n1∑︂
i=1

(︃
1 − n1

n

)︃2
+

n∑︂
i=n1+1

(︃
−n1

n

)︃2
= n1

(︃
n2

n

)︃2
+ n2

(︃
n1

n

)︃2
= n1n2

n
,

φ =
∫︂ 1

0
φ(u, f)du =

∫︂ 1

0
2u− 1du = 0,

and it also holds∫︂ 1

0
(φ(u, f) − φ)2du =

∫︂ 1

0
(φ(u, f))2du =

∫︂ 1

0
(2u− 1)2du =

∫︂ 1

0
4u2 − 4u+ 1du =

= 41
3 − 41

2 + 1 = 1
3 .

It can be easily derived that the asymptotic variance under the null hypothesis is

σ2
c = n1n2

3n .

From this and the previous theorem, we get

2
n+1

∑︁n1
i=1 R

(n)
i − n1√︂

n1n2
3n

d−→ N (0, 1),

i.e.,
W − n1(n+1)

2√︂
n1n2(n+1)2

12n

d−→ N (0, 1),

where W is the Wilcoxon test statistic W = ∑︁n1
i=1 R

(n)
i .

On the other hand, from Theorem c in Hájek et al. (1999), we also obtain

ES = a
n∑︂

i=1
ci, varS = σ2

a

n∑︂
i=1

(ci − c)2,

where
a = 1

n

n∑︂
i=1

a(i) = 1
n

(︄
n∑︂

i=1

2i
n+ 1 − n

)︄
= 1
n

2n(n+ 1)
2(n+ 1) − 1 = 0,
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c = 1
n

n∑︂
i=1

ci = n1

n
.

Therefore, ES = 0 equals µc from the previous computations. Moreover,

σ2
a = 1

n− 1

n∑︂
i=1

(a(i) − a)2 = 1
n− 1

n∑︂
i=1

(a(i))2 = 1
n− 1

n∑︂
i=1

(︃ 2i
n+ 1 − 1

)︃2
=

= 1
n− 1

(︄
n∑︂

i=1

4i2
(n+ 1)2 −

n∑︂
i=1

4i
n+ 1 + n

)︄

= 1
n− 1

(︄
4n(n+ 1)(2n+ 1)

6(n+ 1)2 − 4n(n+ 1)
2(n+ 1) + n

)︄
=

= 1
n− 1

(︄
2n(2n+ 1)
3(n+ 1) − n

)︄
= 1
n− 1

(︄
2n(2n+ 1) − 3n(n+ 1)

3(n+ 1)

)︄
=

= 1
n− 1

n2 − n

3(n+ 1) = n

3(n+ 1) .

From that can be concluded

varS = n

3(n+ 1)
n1n2

n
= n1n2

3(n+ 1) ,

which behaves asymptotically, the same way as σ2
c . Then from ES we get

0 = 2
n+ 1 EW − n1,

so EW = n1(n+1)
2 , same as in the previous part, and from varS we get

n1n2

3(n+ 1) = 4
(n+ 1)2 varW,

so varW = n1n2(n+1)
12 which is asymptotically equivalent to n1n2(n+1)2

12n
from the

previous computations.

11



2. Center-outward ranks

In this chapter, we first outline the idea of center-outward ranks and signs for
the univariate case, and then we move to the d-dimensional generalization. Most
of the concepts and notation are taken from the articles Hallin et al. (2021) and
Hallin (2022).

2.1 Center-outward ranks in one dimension
The ordering of the real line cannot be expected to hold in multidimensional
spaces. Therefore, we will present new concepts based on center-outward orien-
tation. We will assume that the distribution function F of a random variable Z
is strictly increasing. Accordingly, the corresponding density f is greater than
0, the quantile function is well-defined, and the median and other quantiles are
unique.

Definition 2.1. For a random variable Z with the distribution P ∈ P1, we define
the center-outward distribution function as F± := 2F − 1, where F is the
distribution function corresponding to the distribution P.

From the definition, it is obvious that F± is just a linear transformation of the
distribution function F . Then ∥F±(z)∥ = |2F (z) − 1| and we define

S±(z) := I [F±(z) ̸= 0] F±(z)/∥F±(z)∥.

Clearly, S± is the sign of the deviation from the median or, said otherwise, a
point on the unit sphere S0 = {−1, 1} because for median M , we have

F±(M) = 2F (M) − 1 = 0.

Definition 2.2. The inverse of F± is called the center-outward quantile
function. We denote it by Q±. The sets

{Q±(u)| |u| = p}

and the intervals
{Q±(u)| |u| ≤ p}

are called quantile contours and quantile regions respectively, with the quan-
tile level
0 ≤ p < 1.

The quantile regions are closed, connected, and nested. Next, we will define the
empirical version of the center-outward distribution function. For that, let us
have a sample Z(n)

1 , . . . , Z(n)
n which has, with probability one, n distinct values.

Therefore, let us, without loss of generality, suppose that the values are distinct.
There are ⌊n/2⌋ values on the right side of the sample median which for n even
is taken as an average of the two middle values. We order them and assign them
ranks R(n)

±,i with the values 1, . . . , ⌊n/2⌋ and the signs S
(n)
±,i = 1. In the same way,

12



we give to ⌊n/2⌋ values on the left side of the sample median the ranks R(n)
±,i with

the values ⌊n/2⌋, . . . , 1 and the signs S
(n)
±,i = −1.

Definition 2.3. We call R(n)
±,i and S

(n)
±,i from the previous paragraph the center-

outward ranks and the center-outward signs. We define the empirical
center-outward distribution function as

F
(n)
± (Z(n)

i ) := S
(n)
±,i

R
(n)
±,i

⌊n/2⌋ + 1 =

⎧⎪⎨⎪⎩
2F (n)(Z(n)

i ) − 1 n odd
n+ 1
n+ 2

(︂
2F (n)(Z(n)

i ) − 1
)︂

+ 1
n+ 2 n even,

where F (n) is the empirical distribution function from (1.1).

The empirical center-outward distribution function takes values on a regular grid
which is the intersection of two unit vectors ±1 and ⌊n/2⌋ circles, with the center
at the origin and radii

1
⌊n/2⌋ + 1 , . . . ,

⌊n/2⌋
⌊n/2⌋ + 1 .

For n odd, the grid also contains the origin.

Example 2.1. Let us consider samples Z(n)
1 , . . . , Z(n)

n for n = 7 and n = 8. Then,
the empirical center-outward distribution function F

(n)
± (Z(n)

i ), i = 1, . . . , n takes
values from the grid in Figure 2.1.

−3/4 −2/4 −1/4 0 1/4 2/4 3/4

n = 7

−4/5 −3/5 −2/5 −1/5 1/5 2/5 3/5 4/5

n = 8

Figure 2.1: A regular grid with values of the empirical
center-outward distribution function for n = 7 and n = 8 in the
dimension d = 1.

Under the previous assumptions for n even, signs are uniformly distributed over
the unit sphere S0 (for n odd we have the additional sign 0 for the sample median)
and independent of the ranks R(n)

± . Ranks are uniformly distributed over the
integers (0, . . . , ⌊n/2⌋) or (1, . . . , ⌊n/2⌋), according to n being odd or even.

Glivenko-Cantelli’s result also holds for the empirical center-outward distribution
function F

(n)
± yielding

max
1≤i≤n

⃦⃦⃦
F

(n)
± (Z(n)

i ) − F±(Z(n)
i )

⃦⃦⃦
→ 0 a.s. as n → ∞.
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2.2 Center-outward ranks in multi-dimensional
space

In this section, we present the definition of the center-outward ranks in multi-
dimensional space, here Rd, d > 1. For that, we use the concept of measure
transportation which is associated with the so-called Monge-Kantorovich prob-
lem. How should one best move given piles of sand to fill up given holes of the same
total volume? That is a very practical question, with which it all started.

2.2.1 Measure transportation
To describe the problem in a formal way, let P1 and P2 denote two probability
measures over (Rd; Bd). Consider a Borel-measurable function L : R2d → [0, 1]
such that for x1, x2 ∈ Rd the value L(x1, x2) represents the cost of transporting
x1 to x2. We need to find a measurable mapping TP1,P2 : Rd → Rd which solves
the minimization problem

inf
T

∫︂
Rd
L(x, T (x))dP1 subject to T#P1 = P2, (2.1)

where T#P1 is called a push forward of P1 by T . Explicitly, for any Borel set A,
T#P1(A) := P1(T−1(A)). Equivalently, for X ∼ P1, it holds T (X) ∼ P2, see
Villani (2003). The mapping TP1,P2 for which the infimum of the problem (2.1)
is obtained is called theoptimal transport.

The main result connected with the presented problematics is McCann’s theorem,
see McCann (1995). It implies that for any given absolutely continuous distribu-
tions P1 and P2 over Rd, there exists a convex function ψ : Rd → R with almost
everywhere gradient ∇ψ pushing P1 forward to P2. The function ψ may not be
unique, but ∇ψ is P1-a.s. uniquely determined. Under the existence of finite mo-
ments of order two, moreover, ∇ψ is an L2-optimal (in the Monge-Kantorovich
sense) transport pushing P1 forward to P2. By L2-optimal we mean an optimal
transport for cost function L given by L(x1, x2) = ∥x1 − x2∥2

2.

2.2.2 Center-outward ranks and signs
In this section, we finally get to the definition of the center-outward distribution
function, quantile function, ranks, and signs. All of the following concepts and
definitions in this section are taken from Section 2 in Hallin et al. (2021). Let
us assume that P has a non-vanishing density over Rd, i.e., density f := dP/dµd

where µd is the Lebesgue measure over Rd, such that for all D > 0 there exist
constants λ−

D,P , λ
+
D,P satisfying

0 < λ−
D,P ≤ f(z) ≤ λ+

D,P < ∞

for all z with the norm ∥z∥ ≤ D. We will denote that by P ∈ P+
d .

By the uniform distribution over the unit ball we mean the distribution Ud ob-
tained by the product of the uniform measure over the unit sphere and the uni-
form distribution over the unit interval [0, 1]. Equivalently, X has a uniform
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distribution, if and only if it can be written as

X
d= RU,

where R is uniformly distributed over [0,1], U is uniformly distributed over the
unit sphere, and they are independent. Then we can define the center-outward
distribution function as follows.

Definition 2.4. We define the center-outward distribution function F±
as the unique gradient of a convex function ψ, where the gradient ∇ψ is pushing
P forward to the uniform distribution over the unit ball Sd.

To define the center-outward quantile function, we use the result given by Figalli
(2018) which implies that the center-outward distribution function F± is a home-
omorphism from the punctured unit ball Sd \ {0} onto Rd \ F −1

± ({0}). Therefore,
F± has a well-defined homeomorphic inverse over these domains. We denote it
by Q± and extend it to the whole unit ball by defining Q±(0) = F −1

± ({0}).

Definition 2.5. The homeomorphic inverse Q± of the center-outward distribu-
tion function F± extended by letting Q±(0) = F −1

± ({0}) is called the center-
outward quantile function and Q±(0) is called the center-outward me-
dian. For q ∈ (0, 1), we define the center-outward quantile region as

C(q) := Q±(q Sd) = {z | ∥F±(z)∥ ≤ q}.

We denote by

C(q) := Q±(q Sd−1) = {z | ∥F±(z)∥ = q}

the center-outward quantile contour of a given order q.

From the definition of the center-outward distribution function, we move to its
empirical version. For that, let Z(n) := (Z(n)

1 , . . . ,Z(n)
n ) denote an n-tuple of

random vectors. These might be observations or residuals associated with a
parameter θ of interest, see Section 1.2. Let us suppose that Z

(n)
i ’s are i.i.d. with

density f ∈ Fd, distribution P , and the center-outward distribution function
F±.

The extension of the definition of the empirical distribution function F
(n)
± of

F± from univariate concepts into its multivariate version is connected with a
transformation of the data into a grid. Assuming d ≥ 2, we factorize n into

n = nRnS + n0, nR, nS, n0 ∈ N, 0 ≤ n0 < min(nR, nS), (2.2)

where nR → ∞ and nS → ∞ as n → ∞ (implying n0/n → 0). Using this
factorization, we create a “regular” grid. The grid is formed by nRnS points in
the unit ball Sd−1 arising as the intersection between an nS-tuple (u1, . . . ,unS

)
of unit vectors of Sd and nR hyperspheres with the center at 0 and radii

j/(nR + 1), j = 1, . . . , nR,

together with n0 copies of the origin. The nS-tuple should be as uniform as
possible. For dimension 2, the uniformity can be obtained by dividing the unit
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circle into nS arcs of equal length 2π/nS. In higher dimensions, this problem
becomes more complicated. In the simulation study in Chapter 4, we investigate
also other types of grids in different forms. More information about some possible
constructions of grids is provided in Section 2.5.

For the resulting grid, we form a discrete distribution with probability masses 1/n
at each of the nRnS non-zero points and a probability mass n0/n at the origin.
This distribution converges weakly to the uniform Ud over the ball Sd.

Definition 2.6. We define the empirical distribution function F
(n)
± as a

mapping F
(n)
± : (Z(n)

1 , . . . ,Z(n)
n ) ↦→ (F (n)

± (Z(n)
1 ), . . . ,F (n)

± (Z(n)
n )) so that

n∑︂
i=1

∥Z
(n)
i − F

(n)
± (Z(n)

i )∥2 = min
π∈Π

n∑︂
i=1

∥Z
(n)
π(i) − F

(n)
± (Z(n)

i )∥2,

where Π is a set of all n! possible permutations of the set {1, . . . , n} and

{F
(n)
± (Z(n)

i ), i = 1, . . . , n}

is a set of the n points from the grid.

Along with the definition of the empirical distribution function, we also introduce
terms connected with it.

Definition 2.7. We define the center-outward ranks by

R
(n)
±,i := (nR + 1)∥F

(n)
± (Z(n)

i )∥.

The empirical center-outward quantile contours and regions are given
by

C(n)
±,Z(n)

(︃
j

nR + 1

)︃
:= {Z

(n)
i |R(n)

±,i = j} and C(n)
±,Z(n)

(︃
j

nR + 1

)︃
:= {Z

(n)
i |R(n)

±,i ≤ j}.

Last, we define by

S
(n)
±,i := F

(n)
± (Z(n)

i )I
[︂
F

(n)
± (Z(n)

i ) ̸= 0
]︂
/∥F

(n)
± (Z(n)

i )∥

the center-outward signs.

The center-outward sign is a d-dimensional vector which can be interpreted also
as a direction.

Example 2.2. Let us suppose we have a sample Z(n) := (Z(n)
1 , . . . ,Z(n)

n ), n = 24.
We factorize n into n = nRnS + n0, where nR = 4, nS = 6, and n0 = 0. Then the
described grid might look like Figure 2.2.

The highlighted point of the grid in Figure 2.2 corresponds to the rank R(n)
± = 4

and the sign

S
(n)
± =

(︄
cos(2π/3)
sin(2π/3)

)︄
.
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1/5 2/5 3/5 4/5−1/5−2/5−3/5−4/5

Figure 2.2: A regular grid with values of the empirical
center-outward distribution function in dimension 2 for nR = 4 and
nS = 6.

The next concept to present is an order statistic. In this case, it is not clear how
to order the n-tuple of Z

(n)
i values. We fix the notation as follows. Let the order

statistic Z
(n)
(·) be given by the following expression

Z
(n)
(·) = (Z(n)

(1) , . . . ,Z
(n)
(n)),

where the first component of Z
(n)
(i) is the ith order statistic of the n-tuple of the

first components of values Z
(n)
(i) .

2.3 Properties of the center-outward ranks
In this section, we present the main properties of the center-outward ranks. The
propositions and also their proofs can be found in Section 2 in Hallin et al. (2021).
We also present additional examples to illustrate the stated properties.

The following proposition summarizes the properties of the center-outward dis-
tribution function and the corresponding quantile function. It is taken from
Propositions 2.1 and 2.2 in Hallin et al. (2021).

Proposition 2.1. For a random variable Z with the distribution P ∈ Pd, denote
by F± the center-outward distribution function of P and by Q± the corresponding
center-outward quantile function. Then

1. F± takes values in Sd−1 and F±#P = Ud. F±, thus, is a probability-integral
transformation,

2. ∥F±(Z)∥ is uniform over [0, 1], S(Z) := F±(Z)/∥F±(Z)∥ is uniform over
Sd−1, and they are mutually independent,

3. F± entirely characterizes P,
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4. for d = 1, F± coincides with 2F−1 (F the traditional distribution function),

5. Q± pushes Ud forward to P, hence entirely characterizes P,

6. the center-outward quantile region C(q), 0 < q < 1, has P-probability content
q,

7. Q±(u) coincides for d = 1 with inf{x|F (x) ≥ (1 + u) = 2)}, u ∈ (−1, 1),
and C(q), q ∈ (0, 1) with

[inf{x|F (x) ≥ (1 − q)/2}, inf{x|F (x) ≥ (1 + q)/2}]
⋂︂

spt(P),

F meaning the traditional distribution function.

Properties 1 and 2 follow immediately from the construction of F±.

Also, the equivalent of the Glivenko-Cantelli theorem holds for the center-outward
distribution function. The proposition can be found in Hallin et al. (2021) (Propo-
sition 2.4) and the proof for an even more general version which extends this
proposition under sup form to cyclically monotone interpolations of F

(n)
± is given

there (Proposition 3.3).

Proposition 2.2. Let Z
(n)
1 , . . . ,Z(n)

n be i.i.d. with distribution P ∈ P+
d . Then,

max
1≤i≤n

⃦⃦⃦
F

(n)
± (Z(n)

i ) − F±(Z(n)
i )

⃦⃦⃦
→ 0 a.s. as n → ∞.

Other, no less important, properties are distribution-freeness and maximal ancil-
larity. These are the properties that make rank-based tests useful. Their validity
in one-dimensional spaces has already been described in Chapter 1. Here we
present their extension to multidimensional spaces for ranks and order statistics
based on the center-outward distribution function, see Proposition 2.5 in Hallin
et al. (2021).

Proposition 2.3. Let Z
(n)
1 , . . . ,Z(n)

n be i.i.d. with distribution P ∈ Pd, center-
outward distribution function F±, order statistic Z

(n)
(·) , and empirical center-

outward distribution function F
(n)
± . Then,

1. Z
(n)
(·) is sufficient and complete, hence minimal sufficient, for P(n)

d ,

2. F
(n)
± = (F (n)

± (Z(n)
1 ), . . . ,F (n)

± (Z(n)
n )) is uniformly distributed over the n!/n0!

permutations with repetitions (the origin counted as n0 indistinguishable
points) of the grid described in Section 2.2,

3. for n0 = 0, the vectors of center-outward ranks (R(n)
±,1, . . . , R

(n)
±,n) and signs

(S(n)
±,1, . . . ,S

(n)
±,n) are mutually independent. For n0 > 0, the same inde-

pendence holds for the (nRnS)-tuple of ranks and signs associated with the
(random) set {i1, . . . , inRnS

}, such that F
(n)
± (Z(n)

ij
),

4. for all P ∈ Pd, Z
(n)
(·) and F

(n)
± (Z(n)

ij
) are mutually P -independent.

Another property of the center-outward ranks and signs is their invariance with
respect to the change of location. Their properties under orthogonal transfor-
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mation are summarized in the following proposition. Let F Z
± denote the center-

outward distribution function of a random variable Z. The proposition and its
proof can be found in Hallin, Hlubinka & Hudecová (2022) (Proposition 2.2, proof
in Appendix A.1).

Proposition 2.4. Let µ ∈ Rd and let O be a d× d orthogonal matrix. Then,

1. F µ+OZ
± (µ + Oz) = OF Z

± (z), z ∈ Rd,

2. denoting by F
µ+OZ,(n)
± the empirical distribution function of the sample µ+

OZ1, . . . ,µ+OZn, associated with the grid OGn, analogously by F
Z,(n)
± the

empirical distribution function of the sample Z1, . . . ,Zn, associated with the
grid Gn, then it holds

F
µ+OZ,(n)
± (µ + OZi) = OF

Z,(n)
± (Zi), i = 1, . . . , n,

3. the center-outward ranks R(n)
±,i and the angles between S

(n)
±,i and S

(n)
±,j, i, j =

1, . . . , n computed from the sample Z1, . . . ,Zn and the grid Gn are the same
as those computed from the sample µ + OZ1, . . . ,µ + OZn and the grid
OGn.

Example 2.3. Let us assume a random sample Z1, . . . ,Zn, n = 100 from a 2-
dimensional normal distribution N (µ,Σ), where µ = (0, 0)⊤ and

Σ =
(︄

1 0
0 1

)︄
.

We factorize n into n = nRnS + n0, where nR = 10, nS = 10 and n0 = 0, and
again create a regular grid Gn with the values of the empirical center-outward
distribution function, see Figure 2.3. In Figure 2.3, we randomly chose one ob-
servation and highlighted it in the plot corresponding to the sample and in the
grid Gn of the empirical center-outward distribution function F±.

−2 −1 0 1 2

−
2

−
1

0
1

2

−0.5 0.0 0.5

−
0.
5

0.
0

0.
5

Figure 2.3: A random sample from a 2-dimensional normal
distribution and the corresponding regular grid with the values of
the empirical center-outward distribution function.
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The highlighted point of the grid corresponds to the rank R(n)
± = 10 and the sign

S
(n)
± =

(︄
cos(2π/5)
sin(2π/5)

)︄
.

We want to demonstrate Proposition 2.4. Therefore, we choose µ = (3, 3)⊤ and
an orthogonal matrix corresponding to the rotation by an angle θ = 6π/5

O =
(︄

cos(6π/5) sin(6π/5)
sin(6π/5) cos(6π/5)

)︄
.

We take the sample Z1, . . . ,Zn, n = 100 and transform it to

Xi = µ + OZi, i = 1, . . . , 100.

For the new random sample X1, . . . ,Xn, we use the same grid Gn with the val-
ues of the corresponding empirical center-outward distribution function from the
untransformed sample. The results with the same highlighted point as in the
previous part are plotted in Figure 2.4. The previous random sample is plotted
in gray, with the highlighted point in red and the new one in black and blue color.

−2 0 2 4

−
2

0
2

4

−0.5 0.0 0.5

−
0.
5

0.
0

0.
5

Figure 2.4: Transformed random sample (shifted and rotated
2-dimensional distribution) and the corresponding regular grid with
the values of the empirical center-outward distribution function.

Subsequently, denoting by F
µ+OZ,(n)
± the empirical distribution function of the

sample µ + OZ1, . . . ,µ + OZn and analogously by F
Z,(n)
± the empirical distribu-

tion function of the sample Z1, . . . ,Zn, then for the highlighted point it holds

F
µ+OZ,(n)
± (µ + OZi) = OF

Z,(n)
± (Zi), i = 1, . . . , n.

In other words, the rank R(n)
± of the highlighted point in the transformed sample

is the same as in the original one, and the sign S
(n)
± of the highlighted point is

the same as the previous one rotated by the angle θ = 6π/5. It is clear that
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the angles between the empirical center-outward distribution function of the two
observations are the same as before the transformation. That is consistent with
Property 3 in Theorem 2.4.

2.4 Elliptical distributions
In this section, we present the resulting center-outward distribution function for
elliptical distributions. First, let us define this type of distribution. Most of the
following definitions are taken from Fang et al. (1990).

Definition 2.8. A d-dimensional random vector Z is said to have a spherical
distribution if for every Γ ∼ O(n), it holds

Z
d= ΓZ,

where the sign d= means equality of the distributions, and O(n) denotes the set of
n × n orthogonal matrices, i.e., the set of real square matrices Γ whose columns
and rows are orthonormal vectors meaning

ΓΓ⊤ = Γ⊤Γ = In,

where In is an n× n identity matrix.

From the corollary of Theorem 2.2 and Theorem 2.3 in Fang et al. (1990), it
follows that a random vector Z has a spherical distribution if and only if

Z
d= RU, (2.3)

where R d= ∥Z∥, R is from a continuous distribution with a distribution function
F , with the corresponding density f , and U

d= Z/∥Z∥, U has a uniform distri-
bution over the unit sphere Sd−1. Moreover, R and U are independent. The
distribution function F of ∥Z∥, and density f , are called the radial distribution
and radial density.

It holds that Z has a spherical distribution if and only if

Fsp(Z) := F (∥Z∥)Z/∥Z∥ ∼ Ud.

It follows from the representation (2.3) and from the fact that the distribution
Ud is obtained by the product of the uniform over the unit interval [0, 1] and the
uniform measure over the unit sphere.

Let us suppose a spherical distribution with non-vanishing radial density. The
mapping Z ↦→ Fsp(Z) is such that it pushes the distribution P of the random
vector Z forward to the uniform distribution over the unit ball Sd. Because of the
uniqueness of F±, the mapping Z ↦→ Fsp(Z) coincides with the center-outward
distribution function corresponding to Z.

Definition 2.9. Let X be a d-dimensional random vector. We say that X has an
elliptical distribution Pµ,Σ,f with location µ ∈ Rd, positive definite symmetric
d × d scatter matrix Σ, and radial density f if and only if Z := Σ−1/2(X − µ)
has a spherical distribution with radial density f .
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Analogously as for spherical distribution, we have

Fell(X) := F (∥Σ−1/2(X − µ)∥)(Σ−1/2(X − µ))/∥Σ−1/2(X − µ)∥ ∼ Ud.

Same as for spherical distributions, the mapping X ↦→ Fell(X) pushes the distri-
bution P of the random vector X forward to Ud. Due to the uniqueness of F±,
Fell(X) coincides with the center-outward distribution function corresponding to
X.

Let X
(n)
1 , . . . ,X(n)

n be a sample from an elliptical distribution. Consider ˆ︁µ(n) andˆ︁Σ(n) consistent estimators of µ and Σ. The empirical version of Fell is based on
Mahalanobis ranks and signs.

Definition 2.10. The ranks R(n)
i of the residual moduli

∥Z
(n)
i ∥ := ∥( ˆ︁Σ(n))−1/2(Xi − ˆ︁µ(n))∥

are called Mahalanobis ranks. In the same way, we call the unit vectors

S
(n)
i := Z

(n)
i /∥Z

(n)
i ∥

Mahalanobis signs.

With these definitions, the empirical version of Fell is the following

F
(n)
ell (X(n)

i ) := (R(n)
i /(n+ 1))S(n)

i .

The consistency in Glivenko-Cantelli sense can be obtained for F
(n)
ell , see Propo-

sition C.1 in Hallin et al. (2021).

Proposition 2.5. Let X
(n)
i , i = 1, . . . , n be i.i.d. with an elliptical distribution

Pµ,Σ,f and assume that ˆ︁µ(n) and ˆ︁Σ(n) are strongly consistent estimators of µ and
Σ, respectively. Then, Fell and F± coincide and

max
1≤i≤n

⃦⃦⃦
F

(n)
ell (X(n)

i ) − F
(n)
± (X(n)

i )
⃦⃦⃦

, hence also max
1≤i≤n

⃦⃦⃦
F

(n)
ell (X(n)

i ) − F±(X(n)
i )

⃦⃦⃦
tend to zero a.s. as n → ∞ where F± denotes the center-outward distribution
function of Pµ,Σ,f .

2.5 Construction of grids
The values of ranks, signs, and the empirical center-outward distribution function
F

(n)
± completely depend on the choice of the underlying grid Gn. The grids are

associated with the factorization

n = nRnS + n0, nR, nS, n0 ∈ N, 0 ≤ n0 < min(nR, nS).

We assume a sequence of grids {Gn} such that nR → ∞ and nS → ∞ as n → ∞
(implying n0/n → 0). As mentioned in Section 2.2.2, we want the grids {Gn} to
be as “regular” as possible. We also want that for nR → ∞ and nS → ∞, the
uniform discrete distribution over the grid Gn converges weakly to the uniform
distribution over Sd.
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2.5.1 Grids in R2

In R2, the points on the grid can be written using polar coordinates in the
form

gi,j =
(︄
ri cos(φj)
ri sin(φj)

)︄
, i = 1, . . . , nR, j = 1, . . . , nS.

Denoting

sj =
(︄

cos(φj)
sin(φj)

)︄
, j = 1, . . . , nS,

the directions, i.e., unit vectors in R2, we get

gi,j = risj,

where ri corresponds to the norm of the vector.

One possible way of solving the problem is to construct grids in the same way as
in Section 2.2.2. This means dividing the unit circle into nS arcs of equal length
2π/nS and taking the intersections between an nS-tuple (u1, . . . ,unS

)

uj =
(︄

cos(φj)
sin(φj)

)︄
, j = 1, . . . , nS,

where φj = (2πj)/nS, j = 1, . . . , nS of created unit vectors of Sd and nR hyper-
spheres with the center at 0 and radii rj = j/(nR + 1), j = 1, . . . , nR along with
n0 copies of the origin. For an example, see Figure 2.2.

Another possible approach is to create a random grid, i.e., to take for example
nS-tuple (u1, . . . ,unS

), same as before, but for each of the unit vectors to take nR

random variables with uniform distribution over [0, 1] and to create nR points as
intersections of the unit vector and hyperspheres with radii given by the random
variables along with n0 copies of the origin. An example of such grid for nR =
nS = 10, n0 = 1 is in the left top subplot of Figure 2.5.

The previous method is just one possible way to construct a random grid with
the required properties. Let us assume we take nS random variables φ1, . . . , φnS

with uniform distribution over [0, 2π] and create the unit vectors as

(cosφi, sinφi)⊤, i = 1, . . . , nS.

Then we can again construct the grid by taking intersections of these unit vectors
and nR hyperspheres with the center at 0 and radii j/(nR+1), j = 1, . . . , nR along
with n0 copies of the origin, see the right top subplot of Figure 2.5.

We can also combine the two approaches using randomness and take nS random
variables φ1, . . . , φnS

with uniform distribution over [0, 2π] to create the unit vec-
tors as (cosφi, sinφi)⊤, i = 1, . . . , nS and, moreover, for each of the unit vectors
we can take nR random variables with uniform distribution over [0, 1] and create
nR points as intersections of the unit vector and hyperspheres with radii given by
the random variables. This, along with n0 copies of the origin, creates the grid,
see the left bottom subplot of Figure 2.5.
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Another possible combination of the two mentioned random approaches is to
generate the points of the grid as

gi = risi, i = 1, . . . , n,

where ri are independent identically distributed random variables from the uni-
form distribution over [0, 1] and si are independent identically distributed random
variables from the uniform distribution over unit sphere S1 which can be gener-
ated in the same way as mentioned in the beginning of the subsection, using angles
φi. This approach does not need factorization, see the right bottom subplot of
Figure 2.5.

Figure 2.5: Some possible choices of grids for empirical
center-outward distribution function F

(n)
± , for nR = nS = 10, n0 = 1.

In the left top subplot, there are random ranks, and in the right top,
there are random signs. In the left bottom subplot, there is a
combination of both with fixed signs for nR points, and in the right
bottom, there is a combination of both with ranks and signs
generated independently.

2.5.2 Grids in spaces with dimension d > 2
In the higher dimension, the problem of choosing the grid for the empirical dis-
tribution function becomes quite complex. If we have nS unit vectors created
by points on a unit sphere Sd−1 in Rd, it is possible to create the grid from the
intersections of these unit vectors with nR hyperspheres with the center at 0 and
radii j/(nR + 1), j = 1, . . . , nR along with n0 copies of the origin or to take nR

random variables with uniform distribution over [0, 1] and create nR points as
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intersections of the unit vector and hyperspheres with radii given by the random
variables. Therefore, the grid points can be written as

gi,j = risj, i = 1, . . . , nR, j = 1, . . . , nS,

where ri, i = 1, . . . , nR are ranks and sj, j = 1, . . . , nS are directions. ri, sj, or
both might be random or deterministic (i.e., like the regular grid shown in Figure
2.2).

Again, the choices of the nS directions should be as “regular” as possible. One
way to choose the directions is to generate the unit vector directly from the
uniform distribution on Sd−1. That can be achieved, for example, by generating
a random sample X1, . . . ,Xn from a multivariate normal distribution and then
taking X1/∥X1∥, . . . ,Xn/∥Xn∥, which follows from the properties of spherical
distribution presented in Section 2.4. The resulting random sample is uniformly
distributed over the unit sphere Sd−1. Another possible way is to choose points
in the unit cube Cd−1 in Rd−1 as uniformly as possible and then transform these
points onto the unit sphere Sd−1 in Rd to form unit vectors. For that, we can
use the method described in Section 1.5.3 in Fang & Wang (1994) and spherical
coordinates, which are defined by

xj =
j−1∏︂
i=1

SiCj, j = 1, . . . , s− 1,

xs =
s−1∏︂
i=1

Si,

where Si = sin(πφi), Ci = cos(πφi), i = 1, . . . , s − 2 and Ss−1 = sin(2πφs−1),
Cs−1 = cos(2πφs−1).

This is a transformation of the unit cube in Rd−1 onto a unit sphere Sd−1 in
Rd. In order to get x with uniform distribution on Sd−1, the random variables
φ1, . . . , φs−1 should be independent, and the density of φi is

pi(φ) = π

B
(︃1

2 ,
s− i

2

)︃(sin(πφ))s−i−1. (2.4)

The proof can be found in Appendix B.2 in Fang & Wang (1994). The corre-
sponding cumulative distribution function is

Fi(φ) =
∫︂ φ

0
pi(t)dt. (2.5)

To illustrate the previous method, we present the following example inspired by
Section 1.5.3 in Fang & Wang (1994).

Example 2.4 (Constructing grid in R3). In this case, s from the previous theory
equals 3. Therefore, we need two random variables φ1, φ2. Their density is given
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by (2.4) and can be computed as

p1(φ) = π

B
(︃1

2 , 1
)︃(sin(πφ))1 = π

2 sin(πφ),

p2(φ) = π

B
(︃1

2 ,
1
2

)︃(sin(πφ))0 = π

π
= 1,

and the cumulative distribution functions are given by (2.5)

F1(φ) = 1/2(1 − cos(πφ)),

F2(φ) = φ.

Let us suppose we have a set of points in the unit cube C2 denoted by {(ck1, ck2), k =
1, . . . , n} and we want to transform them onto the unit sphere S2 in R3. For
{(ck1, ck2), k = 1, . . . , n} uniformly scattered in the unit cube in R2, we get, using
the inverse of the cumulative distribution function, the points uniformly scattered
on the unit sphere S2. From the inverse of the cumulative distribution functions,
we compute

φ̃k1 = F−1
1 (ck1) = 1

π
arccos(1 − 2ck1),

φ̃k2 = F−1
2 (ck2) = ck2.

From that and the trigonometric identity, we have

cos(πφ̃k1) = 1 − 2ck1,

sin(πφ̃k1) =
√︂

1 − cos2(πφ1̃) =
√︂

1 − (1 − 4ck1 + 4c2
k1) = 2

√︂
ck1(1 − ck1),

cos(2πφ̃k2) = cos(2πck2),
sin(2πφ̃k2) = sin(2πck2).

The points on the unit sphere S2 are given by

xk1 = cos(πφ̃k1) = 1 − 2ck1,

xk2 = sin(πφ̃k1) cos(2πφ̃k2) = 2
√︂
ck1(1 − ck1) cos(2πck2),

xk3 = sin(πφ̃k1) sin(2πφ̃k2) = 2
√︂
ck1(1 − ck1) sin(2πck2).

This transformation gives us a way how to map points from the unit cube Cd−1
onto the unit sphere Sd−1 in Rd while keeping them uniformly scattered, for more
details and formalities see Theorem 1.6 in Fang & Wang (1994).

This method turns the problem of finding a regular grid on the unit sphere into a
problem of finding the uniformly scattered points in the unit cube. The procedure
described in the previous example can be generalized into higher dimensions.
In the following simulation study in Chapter 4, we generate data also in the
dimension 4, but the details of the computation of the transformation are similar
to the previous example and are omitted here. The low-discrepancy sequences,
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such as the Halton sequence, see Section 1.3.3 in Fang & Wang (1994), might be
useful to generate points in the unit cube Cd−1.

In the following Figure 2.6, we present the Halton sequence generated in the unit
cube in R2 and the corresponding unit sphere in R3 after the transformation
described in this section.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
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8
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0

Figure 2.6: Halton sequence transformed from the unit cube in R2

onto the unit sphere in R3.
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3. Test statistics based on
center-outward ranks

In this chapter, we present test statistics based on the center-outward ranks.
The main idea comes from the theory of rank statistics in Hájek et al. (1999),
and some of the following concepts are taken from Hallin, Hlubinka & Hudecová
(2022).

3.1 Multivariate simple rank statistic
In this section, we provide some concepts for testing the difference in location
between two samples. The construction of the tests will be based on center-
outward ranks and signs.

3.1.1 Assumptions and the definition of the center-outward
rank statistic

We generalize the ideas presented in Section 1.2 and Example 1.1 by taking a
vector score function J : Sd → Rd and real numbers c(n)

1 , . . . , c(n)
n , n ∈ N as

regression constants. In order to establish the asymptotic normality of the later
presented test statistic, we make the following assumptions, same as in Section
3.1 in Hallin, Hlubinka & Hudecová (2022).

Assumption 3.1. (i) J : Sd → Rd is continuous over Sd,

(ii) for any sequence s(n) = {s(n)
1 , . . . , s(n)

n } of n-tuples in Sd such that the uni-
form discrete distribution over s(n) converges weakly to Ud as n → ∞, it
holds

lim
n→∞

n−1tr
n∑︂

i=1
J(s(n)

i )J ′(s(n)
i ) = tr

∫︂
Sd

J(u)J ′(u)dUd,

where
∫︁
Sd

J(u)J ′(u)dUd < ∞ has full rank.

We also need to make an assumption about regression constants.

Assumption 3.2. The c(n)
i , i = 1, . . . , n are not all equal (for given n) and satisfy

∑︁n
i=1(c

(n)
i − c(n))2

max1≤i≤n(c(n)
i − c(n))2

→ ∞ as n → ∞,

where c(n) := n−1∑︁n
i=1 c

(n)
i .

Let us denote

T (n)
a :=

(︄
n∑︂

i=1
(c(n)

i − c(n))2
)︄−1/2 n∑︂

i=1
(c(n)

i − c(n))J(F (n)
± (Z(n)

i )),
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and

T (n) :=
(︄

n∑︂
i=1

(c(n)
i − c(n))2

)︄−1/2 n∑︂
i=1

(c(n)
i − c(n))J(F±(Z(n)

i )).

It is typically impossible to compute T (n) in practice because F± is unknown. We
will use T (n) to derive the asymptotic distribution of T (n)

a which will be used for
testing.

We call T (n)
a an approximate-score linear rank statistic. It is constructed in the

same way as a simple linear rank statistic (1.2) in Section 1.2. Moreover, it is
already normalized in some way, see the connection to Theorem 1.3.

We can also assume J(u),u ∈ Sd, to be of a special form

J(u) := J(∥u∥) u

∥u∥
I [∥u∥ ≠ 0] , u ∈ Sd, (3.1)

where J : [0, 1) → R is a univariate score function. Then Assumption 3.1 reduces
to

Assumption 3.3. (i) J is continuous,

(ii) it holds

0 < lim
n→∞

n−1
n∑︂

r=1
J2(r/(n+ 1)) =

∫︂ 1

0
J2(u)du < ∞.

The test statistics T (n)
a and T (n) can also be rewritten for score function J of

form (3.1). We get

T (n)
a :=

(︄
n∑︂

i=1
(c(n)

i − c(n))2
)︄−1/2 n∑︂

i=1
(c(n)

i − c(n))J
⎛⎝ R

(n)
±,i

nR + 1

⎞⎠S
(n)
±,i (3.2)

and

T (n) :=
(︄

n∑︂
i=1

(c(n)
i − c(n))2

)︄−1/2 n∑︂
i=1

(c(n)
i − c(n))J

(︂
∥F±(Z(n)

i )∥
)︂ F±(Z(n)

i )
∥F±(Z(n)

i )∥
. (3.3)

3.1.2 Asymptotic normality
The asymptotic normality of the univariate rank-based test statistic was stated
in Section 1.2 (Theorem 1.3). In this section, we provide its multivariate version
for the test statistics presented above.

Let us consider a random sample Z
(n)
1 , . . . ,Z(n)

n , n ∈ N of d-dimensional random
vectors with distribution P from a family of distributions with non-vanishing
densities P+

d . Let F± be the corresponding center-outward distribution function
and F

(n)
± its empirical version with a range on a grid Gn.

In the following, we will consider a sequence of grids {Gn} such that nR → ∞ and
nS → ∞ and a uniform distribution on the grid Gn converges to Ud as nR → ∞
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and nS → ∞. Then, we have a sequence of empirical center-outward distribution
functions F

(n)
± with corresponding grids Gn satisfying the previous condition. By

n → ∞ in the following Theorems 3.1, 3.2, and 3.3 we mean the convergence of
nR → ∞, nS → ∞, and corresponding grids Gn and empirical center-outward
distribution functions F

(n)
± with factorization n = nRnS + n0.

Due to the following theorem the two presented test statistics T (n)
a and T (n) are

asymptotically equivalent.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Then for Z
(n)
1 , . . . ,Z(n)

n i.i.d.
with distribution P ∈ P+

d , it holds that T (n)
a − T (n) converges to zero in quadratic

mean (hence also in probability) as n → ∞.

The proof can be found in Appendix A.2 in Hallin, Hlubinka & Hudecová (2022).
Along with asymptotic equivalence, we present a theorem about the asymptotic
normality of the mentioned test statistics.

Theorem 3.2. Let Assumptions 3.1 and 3.2 hold. Then for Z
(n)
1 , . . . ,Z(n)

n i.i.d.
with distribution P ∈ Pd, the test statistics T (n)

a and T (n) are asymptotically
normal as n → ∞, with mean 0 and covariance matrix∫︂

Sd

J(u)J ′(u)dUd.

The main idea of the proof is to take the statistic T (n) (3.3) and use the central
limit theorem to prove its asymptotic normality. Then it is sufficient to use
the asymptotic equivalence from Theorem 3.1. The full proof can be found in
Appendix A.3 in Hallin, Hlubinka & Hudecová (2022), and we will prove it for a
simpler form of the score function J(u) presented in (3.1).

Theorem 3.3. Let Assumptions 3.3 and 3.2 hold. Then for Z
(n)
1 , . . . ,Z(n)

n i.i.d.
with distribution P ∈ Pd, the reduced test statistics T (n)

a and T (n) from equations
(3.2) and (3.3) are asymptotically normal as n → ∞, with mean 0 and covariance
matrix ∫︁ 1

0 J
2(u)du
d

Id,

where Id is d× d unit matrix.

Proof. We will prove the asymptotic normality of T (n) and the asymptotic nor-
mality of T (n)

a then follows from Theorem 3.1. We take F±(Z(n)
1 ) which is a

random variable such that

W := F±(Z(n)
1 ) = ∥F±(Z(n)

1 )∥ F±(Z(n)
1 )

∥F±(Z(n)
1 )∥

d= RU ,

where R is uniform over [0, 1], U is uniform over Sd−1, and they are mutually
independent.
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T (n) is a sum of independent random variables and it holds that E U = 0 (see
Fang et al. (1990), Theorem 2.7). Therefore,

E T (n) =
(︄

n∑︂
i=1

(c(n)
i − c(n))2

)︄−1/2 n∑︂
i=1

(c(n)
i − c(n)) E [J (R) U ] =

=
(︄

n∑︂
i=1

(c(n)
i − c(n))2

)︄−1/2 n∑︂
i=1

(c(n)
i − c(n)) E J (R) E U = 0.

For variance, it holds from the independence and the fact that T (n) is a sum of
i.i.d. random variables that

var (T (n)) =
(︄

n∑︂
i=1

(c(n)
i − c(n))2

)︄−1 n∑︂
i=1

(c(n)
i − c(n))2var[J (R) U ] =

= var [J(R) U ] = E [(J(R)U)(J(R)U)⊤] − E [J(R)U ] E [J(R)U ]⊤ =
= E J2(R) E UU⊤ − (E J(R))2 E U E U⊤ =
= E J2(R) E UU⊤ − E J2(R) E U E U⊤

+ E J2(R) E U E U⊤ − (E J(R))2 E U E U⊤ =
= E J2(R)var U + var J(R) E U E U⊤.

From Theorem 2.7 in Fang et al. (1990), we have E U = 0 and var U = 1
d
Id.

Therefore,

var (T (n)) =
∫︁ 1

0 J
2(u)du
d

Id.

Altogether, we obtain T (n) as a sum of independent variables for which the Feller-
Lindeberg condition is satisfied due to Assumption 3.2. Therefore, from the
central limit theorem, we get

T (n) d−→ Nd

(︄
0,
∫︁ 1

0 J
2(u)du
d

Id

)︄
, as n → ∞,

in a way described in the formulation of Theorem 3.3.

We get back to the situation of the two-sample test of location from Example 1.1
and generalize the idea into a multivariate case based on the theory presented
above.

3.2 Two-sample test of location
Let us consider a random sample X1, . . . ,Xn1 from a d-dimensional distribution
with a continuous distribution function F1 and a density f1. Also, consider an-
other independent random sample Y1, . . . ,Yn2 from a d-dimensional distribution
with a continuous distribution function F2 and a density f2. We want to test
whether the two densities coincide. We assume that under the alternative, there
is a difference in location, i.e., that f1(x) = f(x − θ) and f2(x) = f(x),x ∈ Rd

for a density f . The null hypothesis and the alternative are

H0 : θ = 0 versus H1 : θ ̸= 0.
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The joint density of the sample X1, . . . ,Xn1 ,Y1, . . . ,Yn2 is

qθ(z) =
n1+n2∏︂

i=1
f(zi − ciθ),

where z = (z1, . . . ,zn1+n2)⊤ = (x1, . . . ,xn1 ,y1, . . . ,yn2)⊤, and

ci =
⎧⎨⎩1, if i = 1, . . . , n1,

0, if i = n1 + 1, . . . , n1 + n2.

We can define a sample Z1, . . . ,Zn computed as a multivariate version of (1.4)
under the null hypothesis H0:

Zi := Zi(0) =
⎧⎨⎩Xi, if i = 1, . . . , n1,

Yi−n1 , if i = n1 + 1, . . . , n1 + n2.
(3.4)

In this case, the test statistic T (n)
a based on (3.2) is of form

T (n)
a :=

(︄
n∑︂

i=1
(c(n)

i − c(n))2
)︄−1/2 n∑︂

i=1
(c(n)

i − c(n))J
⎛⎝ R

(n)
±,i

nR + 1

⎞⎠S
(n)
±,i =

=
⎛⎝ n1∑︂

i=1

(︃
1 − n1

n

)︃2
+

n∑︂
i=n1+1

(︃
−n1

n

)︃2
⎞⎠−1/2

n∑︂
i=1

(c(n)
i − c(n))J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i =

=
(︄
n1

(︃
n2

n

)︃2
+ n2

(︃
n1

n

)︃2
)︄−1/2 n∑︂

i=1
(c(n)

i − c(n))J
⎛⎝ R

(n)
±,i

nR + 1

⎞⎠S
(n)
±,i =

=
(︃
n1n2

n

)︃−1/2
⎛⎝ n1∑︂

i=1
J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i − n1

n

n∑︂
i=1

J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i

⎞⎠ ,
where nR is from factorization (2.2) and R(n)

±,i and S
(n)
±,i , i = 1, . . . , n are ranks and

signs computed out of the sample Z1, . . . ,Zn. If J is an identity and the grid
Gn = {gi, i = 1, . . . , n} is chosen in a way that

n∑︂
i=1

gi =
n∑︂

i=1

R
(n)
±,i

nR + 1S
(n)
±,i = 0,

then the test statistic T (n)
a is of form

T (n)
a =

(︃
n1n2

n

)︃−1/2 n1∑︂
i=1

R
(n)
±,i

nR + 1S
(n)
±,i .

It is a multivariate analogy of Wilcoxon test statistic, i.e., the sum of ranks
corresponding to the first sample just multiplied by the sign and partly standard-
ized.
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3.2.1 Asymptotic behavior of the test statistic
To test the null hypothesis H0 : θ = 0 versus H1 : θ ̸= 0, we can use Theorem
3.3 which states

T (n)
a

d−→ Nd

(︄
0,
∫︁ 1

0 J
2(u)du
d

Id

)︄
, as n → ∞.

Therefore, it holds(︄
d∫︁ 1

0 J
2(u)du

)︄1/2

T (n)
a

d−→ Nd (0, Id) , as n → ∞.

We construct the following test statistic as a quadratic form

Q(n) :=
⃦⃦⃦⃦
⃦⃦
(︄

d∫︁ 1
0 J

2(u)du

)︄1/2

T (n)
a

⃦⃦⃦⃦
⃦⃦

2

=

=
(︄

nd

n1n2
∫︁ 1

0 J
2(u)du

)︄ ⃦⃦⃦⃦
⃦⃦ n1∑︂

i=1
J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i − n1

n

n∑︂
i=1

J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i

⃦⃦⃦⃦
⃦⃦

2

.

(3.5)

From the previous theory, the test statistic Q(n) under H0 have asymptotically
χ2

d distribution. Therefore, we reject the null hypothesis at the asymptotic level
of significance α as long as Q(n) is greater than (1 − α)−quantile of χ2

d distribu-
tion.

To illustrate the theory, we provide an example of behavior under the null hy-
pothesis and the alternative in the case of two Gaussian samples.

Example 3.1. At first, we simulate the behavior under the null hypothesis. Con-
sider two random samples X1, . . . ,Xn1 and Y1, . . . ,Yn2 , where n1 = n2 = 50
and both are generated from 2-dimensional normal distribution N (µ,Σ), where
µ = (0, 0)⊤ and

Σ =
(︄

1 0
0 1

)︄
.

Let Z1, . . . ,Zn, n = 100 be a sample, which can be computed under the null
hypothesis as follows

Zi =
⎧⎨⎩Xi, if i = 1, . . . , n1,

Yi−n1 , if i = n1 + 1, . . . , n1 + n2.

We factorize n into n = nRnS + n0, where nR = 10, nS = 10 and n0 = 0, and
create a regular grid Gn with values of the empirical center-outward distribution
function for a random sample Z given by Z1, . . . ,Zn. We distinguish the two
samples by color (X1, . . . ,Xn1 in red and Y1, . . . ,Yn2 in blue) and plot them, see
the left subplot of Figure 3.1.
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We take the multivariate analogy of the Wilcoxon test statistic (so J is the iden-
tity) and the grid is chosen in a way that

n∑︂
i=1

R
(n)
±,i

nR + 1S
(n)
±,i = 0.

The test statistic T (n)
a is of form

T (n)
a =

(︃
n1n2

n

)︃−1/2 n1∑︂
i=1

R
(n)
±,i

nR + 1S
(n)
±,i .

We compute the test statistic T (n)
a and plot the resulting vector into the grid Gn

with values of the empirical center-outward distribution function, see the right
subplot of Figure 3.1. The two samples are again distinguished by color. It
can be seen that T (n)

a is a sum of vectors given by red points and multiplied by(︃
n1n2

n

)︃−1/2
.
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Figure 3.1: Two Gaussian random samples with µ = (0, 0)⊤ and

Σ =
(︄

1 0
0 1

)︄
, distinguished by color on the left. The corresponding

regular grid with values of the empirical center-outward distribution
function is plotted with additional vector statistic T (n)

a in the right
subplot.

The value of T (n)
a is (0.609, 0.190)⊤ and we compute the test statistic followingly

Q(n) =
(︄

nd

n1n2
∫︁ 1

0 J
2(u)du

)︄ ⃦⃦⃦⃦
⃦⃦ n1∑︂

i=1

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i

⃦⃦⃦⃦
⃦⃦

2

.

The value of Q(n) is 2.444 and the corresponding asymptotic p-value is

p = 1 −G(q) .= 0.295,

where G is the distribution function of χ2
2 distribution and q is the value of the

test statistic Q(n). Therefore, we do not reject the null hypothesis of the same
location.
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Next, we generate data under the alternative. We have two random samples
X1, . . . ,Xn1 and Y1, . . . ,Yn2 , where n1 = n2 = 50, and both are generated from 2-
dimensional normal distribution. The first sample has mean µ1 = (0, 0)⊤ and the
second one µ2 = (1, 1)⊤. Both samples are generated from a normal distribution
with the following covariance matrix

Σ =
(︄

1 0
0 1

)︄
.

We create a sample Z and grid Gn in the same way as above. The statistics
T (n)

a and Q(n) are computed analogously to the previous case. The value of T (n)
a

is (−1.459,−1.697)⊤, Q(n) = 30.042, and the corresponding p-value is less than
0.001. Therefore, we reject the null hypothesis of the same location. See Figure
3.2 for the plot of both samples, with the grid Gn with samples distinguished by
color and the vector statistic T (n)

a added as the red arrow.
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Figure 3.2: Two Gaussian random samples with µ1 = (0, 0)⊤,

µ2 = (1, 1)⊤, and Σ =
(︄

1 0
0 1

)︄
, distinguished by color on the left.

The corresponding regular grid with values of the empirical
center-outward distribution function is plotted with the additional
vector statistic T (n)

a in the right subplot.

Due to Figure 3.2, the observations from the first sample, i.e., the red points are
accumulated on the left side of the grid Gn resolving into a vector statistic T (n)

a

with large norm.

3.2.2 Permutation test
A permutation test might be useful when n is small and we cannot rely on the
asymptotic behavior. It is another point of view on testing the null hypothesis,
for basic theory see Davison & Hinkley (1997).

Let us assume a situation from Section 3.2 where we have a sample Z given by
Z1, . . . ,Zn, computed under the null hypothesis H0 as (3.4). The idea is to take
the permutation π of set {1, . . . , n} and to create a sample Z∗ from Z1, . . . ,Zn
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permuted according to the permutation π. The first n1 random vectors form the
first sample and the other n2 form the second one to be compared. For sample
Z∗, we compute test statistic Q∗ analogously to (3.5).

Generally, we reject the null hypothesis H0 for values of the test statistic Q(n)

greater than (1 − α)−quantile of χ2
d distribution. Under the null hypothesis H0,

the distribution of Q∗ is the same as the distribution of Q(n), and the p-value can
be computed as a sample quantile. Under the alternative by the change of the
allocation into the groups, we get from the situation in Figure 3.2 to the situation
in Figure 3.1. Therefore, the test statistic Q(n) should be greater than Q∗ and
the test should reflect it in the p-value. The p-value of the corresponding test can
be computed by

p = number of permutations such that Q∗ ≥ Q(n)

number of all possible permutations ,

where Q(n) is the test statistic computed for the two-sample problem.

With n increasing, the number of permutations increases so fast that it might be
impossible to compute them all. Therefore, we approximate p-value by taking B
randomly selected permutations. We get samples Z∗

1 , . . . ,Z∗
B and corresponding

test statistics Q∗
1, . . . , Q

∗
B and compute

p = 1 +∑︁B
b=1 I[Q∗

b ≥ Q(n)]
1 +B

.

For the permutation test in the two-sample testing of the same location, it is
enough to transport the data into the chosen grid just once. The permutations of
allocations of the points into the two groups can be done separately. It is enough
to recolor the given points on the grid with the empirical distribution function
due to the new allocation and compute the test statistic based on the two new
groups.

Example 3.2. Let us get back to the situation in Example 3.1. For the same
situation and the same data, we also perform a permutation test. We have two
random samples X1, . . . ,Xn1 and Y1, . . . ,Yn2 , where n1 = n2 = 50, and both are
generated from 2-dimensional normal distribution.

First, consider the behavior under the null hypothesis. The test statisticQ(n) from
Example 3.1 is 2.444 and the corresponding asymptotic p-value is 0.295. There
are 100! different permutations of observations. Out of all of them, we choose
B = 999 permutations and use the previously described method to perform the
permutation test. The corresponding p-value for our chosen permutations is 0.284.

We perform the same procedure for B = 999 and for the data from Example
3.1 simulated under the alternative. For this scenario, the test statistic Q(n)

from Example 3.1 is 30.042 and the corresponding asymptotic p-value is less than
0.001. From the permutation test, we obtain the p-value equal to 0.
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3.3 One-sample test of location under central
symmetry

This section provides several concepts for testing the location with test statistics
based on the center-outward ranks and signs. The idea of location is relatively
broad and not specified. We will first deal with location as a center of symme-
try.

At first, we define the central symmetry the same as in Serfling (2006).

Definition 3.1. A d-dimensional random vector X is centrally symmetric about
θ ∈ Rd if

X − θ
d= θ − X.

Consider a random sample X1, . . . ,Xn satisfying Definition 3.1. The parameter
θ is the center of symmetry and we want to test the null hypothesis H0 : θ = θ0.
Let us assume without loss of generality θ0 = 0. Then we test

H0 : θ = 0 versus H1 : θ ̸= 0. (3.6)

The following subsection shows one of the ways how to test the null hypothesis
(3.6).

3.3.1 Test with randomized signs

Under the null hypothesis (3.6), it holds X
d= −X. Let us consider a random

variable Y independent of X with uniform distribution on {−1, 1}. It holds that
the random variables X and X∗ := YX have the same distribution.

Consider a random sample Y1, . . . , Yn independent of the random sample X1, . . . ,Xn.
Then the distribution of the random sample Xn = (X1, . . . ,Xn) and random sam-
ple X ∗

n = (X∗
1 , . . . ,X

∗
n), where X∗

i := YiXi, i = 1, . . . , n, coincide under the null
hypothesis. Let us denote I+ = {i | Yi = 1}, n+ = |I+| and

X + = {X∗
i | i ∈ I+}, X − = {X∗

i | i /∈ I+}.

It holds that the samples X + and X − are independent and have the same dis-
tribution. This takes us back to the situation of the two-sample test shown in
Sections 3.1.1 and 3.1.2. Therefore, we can use the test statistic in the same way
as in Section 3.2:

T (n) =
(︄
n+(n− n+)

n

)︄−1/2
⎛⎝∑︂

i∈I+

J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i − n+

n

n∑︂
i=1

J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i

⎞⎠ ,
(3.7)

where R(n)
±,i,S

(n)
±,i are ranks and signs of X∗

i , i = 1, . . . , n. It follows from Theorem
3.3 that under Assumptions 3.3 and 3.2, the test statistic T (n) is asymptotically
normal as n → ∞ (in such way that nR and nS from factorization n = nRnS +n0
satisfy nR → ∞ and nS → ∞), with mean 0 and covariance matrix∫︁ 1

0 J
2(u)du
d

Id,
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where Id is d×d unit matrix. Therefore, we reject the null hypothesis H0 : θ = 0
if

Q(n) =
(︄

nd

n+(n − n+)
∫︁ 1

0 J2(u)du

)︄ ⃦⃦⃦⃦
⃦⃦ ∑︂

i∈I+

J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i − n+

n

n∑︂
i=1

J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i

⃦⃦⃦⃦
⃦⃦

2

is greater than (1 −α)-quantile of χ2
d distribution. n+ and n− n+ must converge

to infinity with the same speed of convergence to satisfy Assumption 3.2. In this
case, n+ and n− n+ are random variables with binomial distribution with mean
n/2. Therefore, the Assumption 3.2 holds with probability 1.

For a given random sample Xn, the result of the statistical test is random. For
another realization of the sample Y1, . . . , Yn, we would get another p-value. It
might be possible to combine these p-values from more replications with different
Y1, . . . , Yn, but this problem is beyond the scope of this work.

We provide the following example to illustrate the concept and the behavior under
the null hypothesis and the alternative.

Example 3.3 (One-sample test of location under central symmetry). First, let us
explore the behavior under the null hypothesis. Consider a sample X1, . . . ,Xn,
n = 100 from a 2-dimensional normal distribution N (µ,Σ), where µ = (0, 0)⊤

and
Σ =

(︄
1 0
0 1

)︄
.

We generate a random sample Y1, . . . , Yn, n = 100, from the uniform distribution
on {−1, 1} and assign these signs to observations X1, . . . ,Xn. The allocation of
the signs to the observations is displayed on the left in Figure 3.3. The obser-
vations with assigned negative signs are colored blue and the observations with
assigned positive signs are colored red. Then, we create the random sample X ∗

n

by
X∗

i := Yi Xi, i = 1, . . . , n,
where the blue points from the left subplot of Figure 3.3 are reflected through
the origin.

We take the blue and red points as two separate samples and perform a two-
sample test of location. In the situation in Figure 3.3, the null hypothesis is not
violated so the test should not reject it.

Next, we simulate the behavior under the alternative. We consider a sample
X1, . . . ,Xn, n = 100 from a 2-dimensional normal distribution N (µ,Σ), where
µ = (1, 1)⊤ and

Σ =
(︄

1 0
0 1

)︄
.

We again test the null hypothesis H0 : θ = (0, 0)⊤ and we proceed in a similar way
as in the previous part. The resulting allocation of signs to the observations and
the random sample Xn colored according to the allocation of signs are displayed
in Figure 3.4.
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Figure 3.3: The behavior under the null hypothesis. A random
sample Xn colored according to the allocation of signs in the left
subplot and a random sample X ∗

n with blue points reflected through
the origin on the right.
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Figure 3.4: The behavior under the alternative hypothesis. A
random sample Xn colored according to the allocation of signs in the
left subplot and a random sample X ∗

n with blue points reflected
through the origin in the right one.

In this case, it is clear that after the reflection of the blue points through the
origin, we get two almost separate samples, see Figure 3.4. Thus, the two-sample
test of location should reject the null hypothesis.

3.3.2 Test based on added θ0

In this subsection, we provide another way to test the location of a random
sample. Let us again consider the null hypothesis (3.6).

Let us suppose we have a centrally symmetric random sample X1, . . . ,Xn and,
moreover, we add an origin as another observation Xn+1 = 0. We factorize

n+ 1 = nRnS + 1
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to get a grid Gn with exactly one copy of the origin. We compute the empirical
center-outward distribution function F

(n)
± and the test statistic would be

T
(n)
0 := ∥F

(n)
± (0)∥.

Under the null hypothesis, we assume that F
(n)
± (0) would be in the origin or at

least in its close proximity. Therefore, the value of T (n)
0 should be small. On the

contrary, we expect the norm to be large under the alternative. Therefore, we
should reject the null hypothesis because of the large test statistic values. To
illustrate intuition, we provide the following example.

Example 3.4. Let us again consider the behavior under the null hypothesis. Sup-
pose we have a sample X1, . . . ,Xn, n = 100 from a 2-dimensional normal distri-
bution N (µ,Σ), where µ = (0, 0)⊤ and

Σ =
(︄

1 0
0 1

)︄
.

We add an origin as another observation Xn+1 = 0 and factorize n+1 = nRnS +1,
where nR = nS = 10. The random sample with added zero and the regular grid
with values of the empirical center-outward distribution function F

(n)
± computed

from the sample with added zero is plotted in Figure 3.5. The origin is highlighted
in red color.
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Figure 3.5: The behavior under the null hypothesis. A random
sample Xn with added zero and a regular grid with values of F

(n)
± .

The origin is highlighted in red color.

In the same way, we can simulate the behavior under the alternative. Let us
consider a sample X1, . . . ,Xn, n = 100 from a 2-dimensional normal distribution
N (µ,Σ), where µ = (1, 1)⊤ and

Σ =
(︄

1 0
0 1

)︄
.

We performed the same procedure as under the null hypothesis and plot the
random sample with added zero and the regular grid with values of the empiri-
cal center-outward distribution function F

(n)
± in Figure 3.6. The origin is again

highlighted in red color.

40



−1 0 1 2 3

−
1

0
1

2
3

−0.5 0.0 0.5

−
0.
5

0.
0

0.
5

Figure 3.6: The behavior under the alternative hypothesis. A
random sample Xn with added zero and a regular grid with values of
F

(n)
± . The origin is highlighted in red color.

Everything is consistent with our previous intuition about the test statistic

T
(n)
0 := ∥F

(n)
± (0)∥.

One way to test the null hypothesis H0 (3.6) is to derive the exact or at least
asymptotic distribution of T (n)

0 , which could be quite difficult. Thus, we use
another approach using a permutation test similarly as in Section 3.2.2.

Same as in Section 3.3.1, it holds X
d= −X under the null hypothesis. Consider

a random sample Y1, . . . , Yn with uniform distribution on {−1, 1} independent
of a random sample X1, . . . ,Xn. Then the distribution of a random sample
Xn = (X1, . . . ,Xn) and a random sample X ∗

n = (X∗
1 , . . . ,X

∗
n), where X∗

i :=
YiXi, i = 1, . . . , n, coincide under the null hypothesis. We add an origin as
another observation X∗

n+1 = 0 to the random sample X ∗
n and compute

T ∗
0 := ∥F

∗(n)
± (0)∥.

Under the null hypothesis H0, the X1, . . . ,Xn are equally likely to be positive and
negative. There are 2n possible combinations of observations with the given signs.
We again approximate the p-value by taking B randomly selected assignments
of signs to observations. We get samples Z∗

1 , . . . ,Z∗
B and the corresponding test

statistics T ∗
0,1, . . . , T

∗
0,B and compute

p =
1 +∑︁B

b=1 I[T ∗
0,b ≥ T

(n)
0 ]

1 +B
.

In this case, we need to transform the data into the chosen grid for each permu-
tation separately. Therefore, the computation of the p-value might be computa-
tionally expensive.

The result of this approach is dependent on the choice of the grid Gn. For the
regular grid we have chosen so far, each rank is common for nS points. Therefore,
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the test statistic T (n)
0 is discrete with nR + 1 possible values. Because of that, we

might not be able to construct a test on the exact chosen level of significance.
Consequently, we suggest using a slightly non-regular grid. We use the grid with
random ranks presented in Section 2.5.1.

Example 3.5. Let us suppose the same situation as in the previous Example 3.4
and the behavior under the null hypothesis. In this case, we use a random grid
with random ranks described in Section 2.5.1 and plotted in the left top subfigure
of Figure 2.5. We add an origin as another observation Xn+1 = 0 and factorize
n+ 1 = nRnS + 1, where nR = nS = 10. We compute the test statistic

T
(n)
0 := ∥F

(n)
± (0)∥.

In this case, T (n)
0 = 0.013. The random sample with added zero and the non-

regular grid with values of the empirical center-outward distribution function F
(n)
±

computed from the sample with added zero is plotted in Figure 3.7. The origin
is highlighted in red color.

−2 −1 0 1 2

−
2

−
1

0
1

2

−0.5 0.0 0.5 1.0

−
0.
5

0.
0

0.
5

Figure 3.7: The behavior under the null hypothesis. A random
sample Xn with added zero and a non-regular grid with values of
F

(n)
± . The origin is highlighted in red color.

We perform the permutation test with B = 999 based on the theory described
above. The random grid was fixed, i.e., the same for all permutations, and we
get a p-value equal to 0.741. It is consistent with the fact that we generated the
data under the null hypothesis. We also provide the histogram of the values of
the test statistic T ∗

0,b from the permutation test with the value of T (n)
0 highlighted

in red.

We can also generate the data under the alternative, i.e., a sample X1, . . . ,Xn,
n = 100 from a 2-dimensional normal distribution N (µ,Σ), where µ = (1, 1)⊤

and
Σ =

(︄
1 0
0 1

)︄
.

We again add an origin as another observation Xn+1 = 0 and factorize

n+ 1 = nRnS + 1, where nR = nS = 10.
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The value of test statistic from the permutation test
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Figure 3.8: The histogram of the values of the test statistic T ∗
0,b from

the permutation test, with the value of T (n)
0 highlighted in red.

The random sample with added zero and the regular grid with values of the
empirical center-outward distribution function F

(n)
± computed from the sample

with added zero is plotted in Figure 3.9. The origin is highlighted in red color.
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Figure 3.9: The behavior under the alternative. A random sample
Xn with added zero and a non-regular grid with values of F

(n)
± . The

origin is highlighted in red color.

After performing the permutation test with B = 999, we get p-value equal to 0.
The random grid was again fixed, i.e., the same for all permutations. The results
are consistent with the fact that we generated the data under the alternative.
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3.4 One-sample test of the location under angu-
lar symmetry

The previous Section 3.3 presents tests based on the assumption of central sym-
metry. This assumption is not fulfilled for a number of distributions. A slightly
more general concept is angular symmetry, which will be covered here. We define
the angular symmetry based on Serfling (2006).

Definition 3.2. A d-dimensional random vector X has a distribution angularly
symmetric about θ ∈ Rd if

X − θ

∥X − θ∥
d= θ − X

∥X − θ∥
.

For X angularly symmetric due to Definition 3.2, it holds that X − θ

∥X − θ∥
has a

centrally symmetric distribution.

Consider a random sample X1, . . . ,Xn satisfying Definition 3.2. In this situation,
we can again test the null hypothesis (3.6). We denote

W = X

∥X∥

for a random vector X. Under the null hypothesis, it holds W
d= −W , which

takes us back to the situation of the test with randomized signs for one-sample
test of location in Section 3.3.1.

The only problem is that the distribution of W is not absolutely continuous over
R2. Therefore, we cannot use the theory described in previous sections. One way
how to solve this problem is to work with the data on the unit sphere directly,
for details see Hallin, Liu & Verdebout (2022). Another way to work with such
data and also with the theory described in the previous section is to denote

˜︂X = R
X

∥X∥
,

where R is a random variable with continuous distribution over [0,∞) which is
independent of X

∥X∥
. Then we use the following lemma to derive that under the

null hypothesis ˜︂X d= −˜︂X.

Lemma 3.4. Let us consider a random vector X defined on Rd satisfying angular
symmetry about 0 from Definition 3.2 and suppose we have a continuous random
variable R defined on R which is independent of X

∥X∥
, then it holds ˜︂X d= −˜︂X.

Proof. We have
X

∥X∥
d= − X

∥X∥
,
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therefore, the equality of the cumulative distribution functions holds

F X
∥X∥

(x) = F− X
∥X∥

(x),x ∈ Rd.

From this we can conclude FR(y)F X
∥X∥

(x) = FR(y)F− X
∥X∥

(x), y ∈ R,x ∈ Rd.

Because R and X

∥X∥
are independent, the product of the cumulative distribution

functions is the cumulative distribution of the product of the random variable
and vector. We get FR X

∥X∥
(x) = F−R X

∥X∥
(x),x ∈ R × Rd. From the equality of

the distribution function, we get

R
X

∥X∥
d= −R X

∥X∥
,

which is the wanted result.

Due to Lemma 3.4, under the null hypothesis it holds ˜︂X d= −˜︂X and ˜︂X is
absolutely continuous.

Therefore, we consider a random sample Y1, . . . , Yn with the uniform distribution
on {−1, 1} and independent of the random sample X1, . . . ,Xn and a random
sample R1, . . . , Rn with the uniform distribution over [0,1] which is independent
of the random vectors X1, . . . ,Xn and also independent of Y1, . . . , Yn. We de-
note ˜︂Xi = Ri

Xi

∥Xi∥
.

Subsequently, the distribution of a random sample Xn = (˜︂X1, . . . , ˜︂Xn) and a
random sample X ∗

n = (˜︂X∗
1 , . . . ,

˜︂X∗
n), where ˜︂X∗

i := Yi
˜︂Xi, i = 1, . . . , n, coincide

under the null hypothesis. Let us denote I+ = {i | Yi = 1}, n+ = |I+|, and

X + = {˜︂X∗
i | i ∈ I+}, X − = {˜︂X∗

i | i /∈ I+}.

It holds that the samples X + and X − are independent and have the same distribu-
tion under the null hypothesis. Therefore, we can again use the test statistic

Q(n) =
(︄

nd

n+(n − n+)
∫︁ 1

0 J2(u)du

)︄ ⃦⃦⃦⃦
⃦⃦ ∑︂

i∈I+

J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i − n+

n

n∑︂
i=1

J

⎛⎝ R
(n)
±,i

nR + 1

⎞⎠S
(n)
±,i

⃦⃦⃦⃦
⃦⃦

2

,

where R(n)
±,i,S

(n)
±,i are ranks and signs of ˜︂X∗

i , i = 1, . . . , n. We reject the null hy-
pothesis H0 : θ = 0 if Q(n) is greater than (1−α)-quantile of χ2

d distribution.

Remark. We presented in detail the one-sample test of location with randomized
signs, but it is also possible to use the one-sample test based on added zero derived
under the central symmetry, see Section 3.3.

The result of this statistical test is again random. There are two sources of
randomness here, the samples Y1, . . . , Yn and R1, . . . , Rn.

Same as before, we provide the following example to illustrate the concept and
the behavior under the null hypothesis and the alternative.

45



Example 3.6 (One-sample test of location under angular symmetry). At first, let
us explore the behavior under the null hypothesis. Consider a sample X1, . . . ,Xn,
n = 100 from an angularly symmetric distribution. In our case, we created an
angularly symmetric distribution by taking a sample from 2-dimensional normal
distribution N (µ,Σ), where µ = (0, 0)⊤ and

Σ =
(︄

1 3 × 0.9
3 × 0.9 9

)︄
,

i.e., with correlation 0.9. Then we multiplied all observations with the first ele-
ment greater than 0 by a random variable from a uniform distribution over [0,3]
and the rest by a random variable from a uniform distribution over [0,1]. Each
observation is multiplied by another new realization of the random variables from
uniform distributions over [0,3], resp. [0,1]. This distribution is not centrally sym-
metric, which can be seen in the left subfigure of Figure 3.10. The distributions
of X(black color) and −X(red color) are clearly different. On the other hand,
after normalizing the sample, the resulting unit vectors are centrally symmetric.
See the right subfigure of Figure 3.10, again with the original normalized sample
in black and the normalized sample reflected through the origin colored in red.
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Figure 3.10: The angularly symmetric distribution described in
Example 3.6. In the left subplot, there is the sample in black, and its
version reflected through the origin in red. In the right subplot, the
same method is done for normalized observations of the sample.

So, we have a sample X1, . . . ,Xn, n = 100 from an angularly symmetric distribu-
tion described above. Moreover, we generate a random sample Y1, . . . , Yn, n = 100
from a uniform distribution on {−1, 1} and assign these signs to observation˜︂X1, . . . , ˜︂Xn computed by ˜︂Xi = Ri

Xi

∥Xi∥
,

where R1, . . . , Rn are independent, Ri has a uniform distribution over [0,1], and
is independent of Xi/∥Xi∥. The allocation of the signs to ˜︂Xi is displayed in the
left subplot of Figure 3.11. The observations with assigned negative signs are
in blue, and the observations with assigned positive signs are in red. Then, we
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create the random sample X ∗
n by

˜︂X∗
i := Yi

˜︂Xi, i = 1, . . . , n,

where the blue points from the left subplot of Figure 3.11 are reflected through
the origin. The result is shown in the middle subplot of Figure 3.11.
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Figure 3.11: The behavior under the null hypothesis. The
normalized random sample ˜︂Xn colored according to the allocation of
signs in the left subplot. The random sample ˜︂X ∗

n with blue points
reflected through the origin in the middle. The corresponding regular
grid with values of the empirical center-outward distribution function
is plotted with additional vector statistic T (n) from (3.7) in the right
subplot.

We take the blue and red points as two separate samples and perform a two-
sample test of location. In the situation in Figure 3.11, the null hypothesis
should not be violated, which corresponds to the fact that the plotted vector
T (n) computed as in (3.7) has small norm and Q(n) = 0.665 which is smaller than
(1 − α)-quantile of χ2

2 distribution.

Next, we simulate the behavior under the alternative. We consider a sample
X1, . . . ,Xn, n = 100, again from an angularly symmetric distribution. We cre-
ated the sample X1, . . . ,Xn by taking a sample from 2-dimensional normal dis-
tribution N (µ,Σ), where µ = (1, 1)⊤ and

Σ =
(︄

1 3 × 0.9
3 × 0.9 9

)︄
,

i.e., with correlation 0.9. Then, we multiplied it by a random variable from a
uniform distribution over [0,3], respectively over [0,1], depending on the sign of
its first element, same as in the sample created under the null hypothesis. We
again test the null hypothesis H0 : θ = (0, 0)⊤ and we proceed in a similar way
as in the previous part. The resulting allocation of signs to the observations and
the random sample Xn colored according to the allocation of signs are displayed
in Figure 3.12.

In this case, it is clear that after the reflection of the blue points through the
origin, we get two almost separate samples, see Figure 3.12. The vector statistic
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T (n) is equal to (3.087, 0.3643)⊤ and the test statistic is 57.986, which is greater
than (1 − α)-quantile of χ2

d distribution. Therefore, we reject the null hypothesis
(3.6).
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Figure 3.12: The behavior under the alternative. The random sample˜︂Xn is colored according to the allocation of signs in the left subplot.
The random sample ˜︂X ∗

n with blue points reflected through the origin
is in the middle. The corresponding regular grid with the values of
the empirical center-outward distribution function is plotted with the
additional vector statistic T (n) from (3.7) in the right subplot.
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4. Simulation

In the previous chapters, we presented the theory behind the tests based on the
center-outward ranks and signs. In this part, we try to illustrate the performance
of mentioned tests with respect to different conditions. The following study was
conducted in R Core Team (2022) and will be divided into several sections con-
sidering partial tasks. To compute the center-outward distribution function, we
use the function solve LSAP from package clue, see Hornik (2023) and Hornik
(2005). For generating the Halton sequences, the function ghalton from library
qrng was used, see Hofert & Lemieux (2020).

4.1 Factorization and performance of different
grids

In this section, we present the results of the simulation study concerning the
power of the one-sample test of location with randomized signs with the identity
scores function J(u) = u, see Section 3.3.1 while using different grids for the
empirical center-outward distribution function.

We generate the data under the null hypothesis from a centered multivariate
normal distribution with the correlation between all marginals equal to 0.7 and
variances of marginals equal to 1. Then, we also generate data from the same dis-
tribution under several alternatives by taking a shift in the form of a d-dimensional
vector with the first element shifted by δ, i.e., s = (δ, 0, . . . , 0)⊤ for

δ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.

The following grids in the following dimensions were considered (for more infor-
mation on the grids, see Section 2.5):

1. For d = 2:

• regular grid – created as an intersection of unit vectors creating
arcs of equal length 2π/nS and spheres with radii rj = j/(nR + 1),
j = 1, . . . , nR,

• grid with random ranks – created as an intersection of unit vec-
tors creating arcs of equal length 2π/nS and spheres with radii rj,
j = 1, . . . , nR, where rj are realizations of nR random variables with a
uniform distribution over [0, 1],

• grid with random signs – created as an intersection of randomly
chosen unit vectors and spheres with radii rj = j/(nR + 1), j =
1, . . . , nR,

• grid with random ranks and signs – created as an intersection of
randomly chosen unit vectors and spheres with radii rj, j = 1, . . . , nR,
where rj are realizations of nR random variables with a uniform dis-
tribution over [0, 1],
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• grid with random ranks and signs separately – created as
gi = risi, i = 1, . . . , n, where ri are independent identically distributed
random variables from the uniform distribution over [0, 1] and si are
independent identically distributed random variables from the uniform
distribution over unit sphere S1.

2. For d = 4:

• grid with uniform signs and regular ranks – created as an inter-
section of the unit vectors generated from the uniform distribution on
Sd−1 and hyperspheres with radii rj = j/(nR + 1), j = 1, . . . , nR,

• grid with uniform signs and random ranks – created as an in-
tersection of the unit vectors generated from the uniform distribution
on Sd−1 and hyperspheres with radii rj, j = 1, . . . , nR, where rj are
realizations of nR random variables with a uniform distribution over
[0, 1],

• grid with Halton signs and regular ranks – created as an inter-
section of the unit vectors generated by a transformation of the Halton
sequence in R3 onto a hypersphere in R4 and hyperspheres with radii
rj = j/(nR + 1), j = 1, . . . , nR,

• grid with Halton signs and random ranks – created as an inter-
section of the unit vectors generated by a transformation of the Halton
sequence in R3 onto a hypersphere in R4 and hyperspheres with radii
rj, j = 1, . . . , nR, where rj are realizations of nR random variables with
uniform distribution over [0, 1].

• grid with Halton signs and random ranks separately – cre-
ated as gi = risi, i = 1, . . . , n, where ri are independent identically
distributed random variables from the uniform distribution over [0, 1]
and si are the unit vectors generated by transforming the Halton se-
quence in R3 onto a hypersphere in R4.

The power of the chosen test was computed from 500 replications and for the
following sample sizes and factorizations:

1. For n = 100:

• nR = nS = 10,
• nR = 20, nS = 5,
• nR = 5, nS = 20.

2. For n = 400:

• nR = nS = 20,
• nR = 40, nS = 10,
• nR = 10, nS = 40.
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The results are summarized in Figures 4.1, 4.2, 4.3, 4.4. In Figures 4.1 and 4.3,
there are greater differences between the grids compared to Figures 4.2 and 4.4,
where n = 400. For d = 2, we recommend using the grid with random ranks and
signs separately. It performs well for n = 100, and for n = 400 the differences
between grids completely disappear. For d = 4, we recommend using the grid
with random ranks and signs separately or the grid with Halton signs and random
ranks separately because of good performance for both n = 100 and n = 400.
For d = 4, we observe the differences between the grids even for n = 400. The
performance of the given test for different factorizations of the grid seems to be
quite similar both for d = 2 and d = 4. For the next parts of the simulation,
we chose the square root factorization, i.e., for n = 100 nR = nS = 10 and for
n = 400 nR = nS = 20.

4.2 Asymptotics of the two-sample test of loca-
tion

In this part, we illustrate the behavior of the test statistic from the two-sample
test of location described in Section 3.2. We have two random samples X1, . . . ,Xn1

and Y1, . . . ,Yn2 from a d-dimensional distribution with continuous distribution
functions. The null hypothesis of no shift in the samples and the alternative
are

H0 : θ = 0 versus H1 : θ ̸= 0.

For more details, see Section 3.2.

In Section 3.2.1, we have derived that the test statistic Q(n) (3.5) has asymptoti-
cally χ2

d distribution, where d is the dimension corresponding to the dimension of
the two tested samples. We have chosen the following initial parameters for the
simulation. We use n1 = n2 = n/2:

1. d = 2, a grid with random ranks and signs separately with factorization
n1 + n2 = n = nRnS chosen in a way that

• n = 16, nR = nS = 4,
• n = 36, nR = nS = 6,
• n = 64, nR = nS = 8,
• n = 100, nR = nS = 10,
• n = 144, nR = nS = 12,

2. d = 4, a grid with Halton signs and random ranks separately with factor-
ization n1 + n2 = n = nRnS chosen in a way that

• n = 16, nR = nS = 4,
• n = 36, nR = nS = 6,
• n = 64, nR = nS = 8,
• n = 100, nR = nS = 10,
• n = 144, nR = nS = 12,
• n = 196, nR = nS = 14,
• n = 400, nR = nS = 20.
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Figure 4.1: Comparison of powers of the one-sample test with
randomized signs for different grids and different factorizations
computed out of a sample of size 100 in dimension 2.
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Figure 4.2: Comparison of powers of the one-sample test with
randomized signs for different grids and different factorizations
computed out of a sample of size 400 in dimension 2.
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Figure 4.3: Comparison of powers of the one-sample test with
randomized signs for different grids and different factorizations
computed out of a sample of size 100 in dimension 4.
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Figure 4.4: Comparison of powers of the one-sample test with
randomized signs for different grids and different factorizations
computed out of a sample of size 400 in dimension 4.
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The test statistic from the two-sample test of location was computed for the pre-
vious initial parameters and 500 replications. An empirical distribution function
of the test statistic Q(n) is presented for each set of parameters. The results are
shown in Figures 4.5 and 4.6.
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Figure 4.5: The values of the empirical distribution function for the
test statistic Q(n) from the two-sample test of location in dimension
2 for different sample sizes. We chose a grid with random ranks and
signs separately in R2, see Section 2.5. The asymptotic χ2

2
distribution function is added as the black line.

From Figures 4.5 and 4.6, we observe that in dimension 2 for n greater than 100
the asymptotic χ2

2 distribution seems to approximate the real distribution of the
test statistic well enough. In dimension 4, it seems that we need a greater size of
samples for the asymptotic distribution to well approximate the real distribution
of the test statistic. The simulations indicate that for n ≥ 400, the approximation
by the asymptotic distribution is good enough.

4.3 One-sample test of location
In this part, we try to illustrate the behavior of the proposed one-sample tests
of location. From the previous Section 4.1, we chose the factorizations of grid
n = 100 = 10 × 10 = nR × nS and n = 400 = 20 × 20 = nR × nS. We perform
the test in dimensions 2 and 4 for the grid with random ranks and signs sep-
arately.
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Figure 4.6: The values of the empirical distribution function for the
test statistic Q(n) from the two-sample test of location in dimension
4 for different sample sizes. We chose a grid with Halton signs and
random ranks separately in R4, see Section 2.5. The asymptotic χ2
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distribution function is added as the black line.

We generate the data from the following distributions:

• mixture of L(X) and L(−X) with the same weights and X with marginals,
with exponential distribution with the rate 2, correlation equal to 0.9, and
connected through a normal copula,

• multivariate centered normal distribution with identity variance matrix,

• multivariate t distribution with degrees of freedom equal to 1 and identity
scale matrix,

• multivariate t distribution with degrees of freedom equal to 2 and identity
scale matrix.

All mentioned distributions were generated under the null hypothesis and sev-
eral alternatives by taking a shift in the form of a d-dimensional vector with all
elements shifted by δ, i.e., s = (δ, . . . , δ)⊤ for

δ ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.
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We observed the power of the following tests with the corresponding abbrevia-
tions, used in Figures, in parentheses:

• Hotelling’s test (hotelling),

• permutation test with added zero (perm0),

• test with randomized signs (rand signs),

• test with randomized signs under angular symmetry (angular).

For the test with randomized signs under angular symmetry, we chose R from a
uniform distribution over [0, 1], same as in Example 3.6. For Hotelling’s test, the
test with randomized signs, and the test with randomized signs under angular
symmetry, we computed 500 replications to get the power of the tests. For the
permutation test with added zero from Section 3.3.2, we computed 100 replica-
tions, for n = 100, we chose B = 999 while for n = 400, we chose only B = 199
because of the high computational complexity. The results are summarized in
Figures 4.7, 4.8, 4.9, 4.10.

From the previous Figures 4.7, 4.8, 4.9, 4.10, we observe that for both dimensions
and both sample sizes, the power of Hotelling’s test for t distribution with 1 degree
of freedom is lower compared to the other one-sample tests of location. The other
three one-sample tests have similar power, except for the situation in dimension
4 and sample size 400. We would recommend the one-sample test of the location
under the angular symmetry for its best performance.

For a normal distribution, the power of the permutation test with added zero is
lower in both dimensions and for both sample sizes. Also, the one-sample test
under angular symmetry seems to have lower power in all cases. The one-sample
test with randomized signs achieves results as good as Hotelling’s test despite
weaker assumptions.

For t distribution with 2 degrees of freedom, we would recommend the one-sample
test with randomized signs or the one-sample test under angular symmetry. The
difference in power for Hotelling’s test and the permutation test with added zero
compared to the one-sample test with randomized signs or the one-sample test
under angular symmetry is smaller for sample size 100. For n = 400 and di-
mension 4, the one-sample test under the angular symmetry gets the best results
considering the power.

For the mixture distribution, all compared tests perform really well, the differ-
ences might be found for sample size 100. In dimension 4 and with sample size
100, the permutation test with added zero seems to fail. The power of the per-
mutation test with added zero also looks not as smooth as the other ones. This
might be partly caused by the lower number of chosen permutations (B = 199)
and the lower number of repetitions (100).
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Figure 4.7: Comparison of powers of the one-sample tests of location
for different distributions computed out of a sample of size 100 in
dimension 2.
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Figure 4.8: Comparison of powers of the one-sample tests of location
for different distributions computed out of a sample of size 400 in
dimension 2.

60



0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mixture

shift

po
w
er

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Norm

shift

po
w
er

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t1

shift

po
w
er

hotelling
perm0
rand_signs
angular

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t2

shift

po
w
er

Figure 4.9: Comparison of powers of the one-sample tests of location
for different distributions computed out of a sample of size 100 in
dimension 4.
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Figure 4.10: Comparison of powers of the one-sample tests of
location for different distributions computed out of a sample of size
400 in dimension 4.
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4.4 Angular symmetry
This part contains a simulation study for data with angularly symmetric but
not centrally symmetric distribution, similarly as in Example 3.6. The angu-
larly symmetric data are created by taking a sample from d-dimensional normal
distribution N (µ,Σ), where

• for d = 2:
µ = (0, 0)⊤ and

Σ =
(︄

1 3 × 0.9
3 × 0.9 9

)︄
,

i.e., with correlation 0.9, and variances 1 and 9,

• for d = 4: µ = (0, 0, 0, 0)⊤ and

Σ =

⎛⎜⎜⎜⎝
1 3 × 0.9 1 × 0.9 3 × 0.9

3 × 0.9 9 3 × 0.9 9 × 0.9
1 × 0.9 3 × 0.9 1 3 × 0.9
3 × 0.9 9 × 0.9 3 × 0.9 9

⎞⎟⎟⎟⎠ ,

i.e., with correlation 0.9, and variances 1, 9, 1 and 9.

Then, we multiplied all observations with the first element greater than 0 by a
random variable (for each observation new independent one, see Example 3.6)
from a uniform distribution over [0,3] and the rest by a random variable from a
uniform distribution over [0,1]. This distribution is not centrally symmetric but
angularly symmetric. We generate the data under the null hypothesis and various
alternatives by adding a shift in the form of a d-dimensional vector (δ, . . . , δ)⊤,
where

δ ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.

We compare several settings:

• d = 2:

– n = 100, nR = nS = 10,
– n = 400, nR = nS = 20,

• d = 4:

– n = 100, nR = nS = 10,
– n = 400, nR = nS = 20.

For these four settings, we compare the power of the following tests with the
corresponding abbreviations in parentheses:

• Hotelling’s test (hotelling),

• test with random signs (rand signs),

• test with random signs under angular symmetry (angular)
with Ri, i = 1, . . . , n from the definition of ˜︂Xi, see Section 3.4, generated
from the uniform distribution over [0,1],
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• test with random signs under angular symmetry (angular exp)
with Ri, i = 1, . . . , n from the definition of ˜︂Xi, see Section 3.4, generated
from the exponential distribution with a rate equal to 1.

The powers are computed out of 500 replications for all these different types of
tests. The results are plotted in Figure 4.11.

The results in Figure 4.11 show that for data from angularly symmetric distribu-
tion described in this part of the simulation study, the usage of Hotelling’s test
or the one-sample test with randomized signs is wrong. Both of these tests have
a much higher size of the test under the null hypothesis. For n = 400, the power
of both tests is 1, no matter the null hypothesis.

This is caused by the fact that in this case, the mean does not correspond to the
center of angular symmetry and the data are not centrally symmetric. Therefore,
testing the null hypothesis of zero mean or center of central symmetry is com-
pletely different from testing the center of angular symmetry. It is important to
determine meaningfully what we mean by the location of the sample. Both ver-
sions of the one-sample test under the angular symmetry are similar, considering
the power for all different settings, and both perform well.
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Figure 4.11: Comparison of powers of the one-sample tests of
location for angularly but not centrally symmetric distributions
computed out of a sample of sizes 100 and 400 in dimensions 2 and 4.
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Conclusion

In this thesis, we used the theory of center-outward ranks and signs to intro-
duce and then compare several one-sample tests of location. In the beginning,
the theory and main properties of rank-based tests were presented. From the
several possible approaches discussed in the introduction, we have chosen the
center-outward ranks and signs. The definition was given and its main properties
were discussed. The concept of the center-outward ranks and signs is connected
with the underlying grid and the measure transportation. We provided several
ways how to construct such grids both in 2-dimensional and multidimensional
spaces.

In the main part of the thesis, we introduced test statistics based on the previous
theory. Their asymptotic normality was shown and used to derive statistical
tools for testing. These test statistics were then used for the two-sample test of
location. Another possible way to test the same hypothesis was proposed using
the permutation test.

The main contribution of this thesis is the proposal of the one-sample tests of
location under central and angular symmetry. The first approach is based on
the randomized assignment of signs to data, reflection through the origin, and
using the two-sample test for the two samples created by allocation of the signs.
The next one is adding a zero observation to the sample, transporting the new
sample onto the underlying grid, and taking the norm of the empirical distribution
function of the zero observation. For evaluating the p-value, the permutation test
is used again. All proposed tests are supplemented by illustrative examples.

In the end, we performed a simulation study to compare the presented tests un-
der different settings and using different alternatives. At first, different grids were
studied. The results were more different for smaller sample sizes and for higher
dimensions. The grid with random ranks and signs taken separately seemed to
work fine for both dimensions. For the rest of the simulation, we chose factoriza-
tion given by square roots. The asymptotics of the two-sample test of location
was illustrated for both dimensions, 2 and 4.

The comparison of the one-sample tests of location was added for several dis-
tributions with central symmetry as well as for one angularly but not centrally
symmetric. For a normal distribution, the one-sample test with randomized signs
achieved results as good as Hotelling’s test, despite the weaker assumptions. For
t distribution with 1 degree of freedom, Hotelling’s test failed, but high power was
achieved by the one-sample test under angular symmetry as well as the other pre-
sented one-sample tests. For data generated from the distribution angularly but
not centrally symmetric, the one-sample test under angular symmetry performed
well for Ri generated from both the uniform and the exponential distribution.
Hotelling’s test and the one-sample test with randomized signs failed in this case,
probably due to the different null hypotheses. Moreover, the one-sample test
under angular symmetry we introduced in this work performed well even in the
case of an elliptical distribution with heavy tails.
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The one-sample test with added zero performs well for the mixture distribution,
which is non-elliptical. Compared to Hotelling’s test, it performs better for dis-
tributions with heavy tails (t with 1 degree of freedom). On the other hand, we
would not recommend it in the case of normal distribution. Also, one must keep
in mind that the permutation test with added zero is computationally complex,
and it might take time to get the desired p-values.
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