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Introduction
Quantum information science connects quantum physics with information theory
to study the processing, analysis, and transmission of information. Nowadays
one of the most promising applications of quantum information is in quantum
technologies, especially in quantum computing [1]. It manipulates and processes
information. Beyond computing, quantum information is also being used to ex-
plore and understand fundamental questions about the nature of reality, such as
the role of entanglement in quantum systems. Quantum information comes in
two forms, discrete and continuous [2]. For both of these approaches, light is a
natural testing ground due to the ease of preparing, manipulating, and measuring
suitable quantum states [3].

The continuous-variable (CV) quantum system has an infinite dimensional
Hilbert space described by observables with continuous eigenspectra. Such a sys-
tem is usually a bosonic field, in our case a light field, represented by bosonic
modes. All information about the bosonic system is contained in density op-
erator ρ̂. Any density operator can be represented in terms of quasi-probability
distribution - Wigner function. States with a Gaussian Wigner function are Gaus-
sian states and the others are non-Gaussian states. An arbitrary non-Gaussian
state can be Gaussified to a Gaussian state due to the same covariance matrix of
non-Gaussian and Gaussified states. Unitary operations that transform Gaussian
states into Gaussian states are called Gaussian operations [4]. Gaussian states
were the first CV states that occurred in quantum technologies due to easy theo-
retical description [4]. They are also efficiently producible in the laboratory [2, 4].
Regardless of all successes of Gaussian states, they have a major drawback in the
context of quantum technologies: all Gaussian measurements of such states can
be efficiently simulated [5]. To achieve a quantum computational advantage in
the CV, one must consider non-Gaussian states [6, 7]. If one would like to quan-
tify non-Gaussian states in the sense: Given two non-Gaussian states, which one
has more non-Gaussianity?, then one finds there is no obvious answer. One of the
possibilities is the negative volume of the Wigner function [8]. Is it sufficient or
can be non-Gaussian states described by other properties? If yes, which proper-
ties should it be? Although there can be found decent development in the area of
non-Gaussian states in recent years [8, 9, 10], these questions still remain open.

Another main resource needed in quantum technologies is entanglement. En-
tanglement is a non-classical correlation between two systems, these correlations
cannot be created by any local operations and classical communications [11]. In
entanglement theory there are two main questions: Is the state entangled? and
if yes, then how much entanglement does it have? A key tool for studying entan-
glement is a partial transposition (the transposition with respect to one of the
two subsystems) [12, 13]. In the case of pure states, the entanglement can be
quantified by the entropy of entanglement. For mixed states, there is no single
definition of a measure of entanglement [11]. Many of them are not computable.
As shown in [14], there is one easy measure to compute, the logarithmic negativ-
ity, which can be used both for mixed and pure states. Furthermore, it can be
expressed both in terms of the density operator and the covariance matrix [14],
which means that it can easily evaluate entanglement of a non-Gaussian state
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and its Gaussified form.
In this work, we will analyze a specific example - the subtraction of pho-

tons from a two-mode squeezed state (TMSV). The two-mode squeezed state is a
Gaussian entangled state that can be prepared, in practice, by parametric ampli-
fication, the first realization is in [15]. Photon subtraction that can be realized on
a theoretical level by annihilation operators is a non-Gaussian operation. When
applied to the two-mode squeezed state, it changes it into a non-Gaussian state
and increases its entanglement [16]. In experiments, a generation of non-Gaussian
states is challenging, the most recent experiment can be found in [17]. The oper-
ation can change both the Gaussian and the non-Gaussian entanglement of the
state. However, since the Gaussified state is always an approximation without
full information about the state, the non-Gaussian entanglement will be higher
than the Gaussian one. The difference between these two kinds of entanglements
is therefore an indicator of a non-Gaussian nature of the state. We can now ask
a question, whether this difference can be used as a measure for non-Gaussianity,
or some different property, of the quantum state.

In the first chapter, we are going to introduce Wigner representation and
Gaussian and non-Gaussian states. We present the necessary overview of basic
Gaussian unitaries starting with vacuum and thermal states and eventually com-
ing to the TMSV state. The TMSV is the first instance of quantum entanglement
in continuous variable systems. After that the logarithmic negativity as a mea-
sure of entanglement in mixed states is introduced. The first chapter is ended
with a basic tool of a symplectic analysis - Bloch-Messiah decomposition. In the
second chapter, we have tried to derive a non-Gaussianity measure denoted as
∆. We used TMSV with one subtracted photon in superposition denoted as |ψ⟩.
We discuss why is ∆ good measure and we try to interpret the measure with the
help of the Wigner negativity.
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1. Methods
We present an overview of needed tools and methods. The quantization of the
electromagnetic field is not presented in the following text, straight away we start
with the quantized light field. We use

ℏ = 1

notation throughout the thesis.

1.1 Single mode electromagnetic oscillator
The quantization of an electromagnetic field leads to N pairs of bosonic opera-
tors corresponding to N quantized modes, i.e. N quantum harmonic oscillators.
Hilbert space of these N bosonic modes is a tensor product of Hilbert spaces of
individual modes H = ⊗N

k=1Hk. Hilbert space H is infinitely large and separable.
A consequence of the tensor product is the possibility to find out how each pair
of mode operators, in particular annihilation and creation operator, determines
an individual Hilbert space [18]. We will usually work within one mode and then
we try to generalize some results into multi modes.

A pair of bosonic operators must satisfy the Bose commutation relation

[â, â†] = 1. (1.1)

The single-mode Hilbert space is spanned by countable basis {|n⟩}∞
0 called Fock

basis (or number-state basis). These basis states are eigenstates of a number
operator n̂:

n̂ = â†â, n̂|n⟩ = n|n⟩. (1.2)

The bosonic operators â and â†, annihilation and creation operators respectively,
lowers and raises photon number in integer steps

â|n⟩ =
√
n|n− 1⟩, â†|n⟩ =

√
n+ 1|n+ 1⟩. (1.3)

There is one more additional condition to the annihilation operator

â|0⟩ = 0, (1.4)

where |0⟩ is the lowest (ground) state. Intuitively, we cannot find any lower state
that is the ground state. Note, the mode operators of different modes commute,
naturally, they represent distinct physical systems.

We can also describe the bosonic system by other field operators. These are
the quadrature operators q̂ and p̂. They can be interpreted as a real and an
imaginary part of the complex amplitude1 â

q̂ = 1√
2

(â† + â), p̂ = i√
2

(â† − â). (1.5)

1Note that in Eq.1.5 we could use a different definition, e.g. q̂ = (â† + â).
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Inverse relations are

â = 1√
2

(q̂ + ip̂), â† = 1√
2

(q̂ − ip̂). (1.6)

From Eq.1.1 we can see that they satisfy
[q̂, p̂] = i. (1.7)

We can easily generalize Bose commutation relation 1.1 to N -mode case using
a formal vector b̂ = (â1, â

†
1, ..., âN , â

†
N)T , which must also satisfy [4]

[b̂i, b̂j] = iΩij,

where Ω is block-diagonal 2N × 2N matrix with diagonal matrices J

Ω =
N⨁︂
1
J =

⎛⎜⎜⎝
J

. . .
J

⎞⎟⎟⎠ , J =
(︄

0 1
−1 0

)︄
. (1.8)

We can also arrange pairs of {q̂kp̂k}N
k=1 into the formal vector

x̂ = (q̂1, p̂1, ..., q̂N , p̂N)T . (1.9)
So we can reformulate one-mode commutation relation 1.7 to the multi-mode case

[x̂i, x̂j] = iΩij. (1.10)
It is not a coincidence that we used q and p symbols. The commutation

relation 1.7 is the same as for quantization of the position and momentum of the
harmonic oscillator. The quantization of the electromagnetic field leads to an
analogy of the quantization of the harmonic oscillator and quadratures q̂ and p̂
can be regarded as position and momentum respectively. It is easily seen from
the Hamiltonian of the quantized electromagnetic field with unit frequency [18]

Ĥ = n̂+ 1
2 = q̂2

2 + p̂2

2 . (1.11)

A single mode of the quantized electromagnetic field is equivalent to an oscillator
with position q̂ and momentum p̂, so-called the electromagnetic oscillator.

The quadrature states are eigenstates of q̂ and p̂

q̂|q⟩ = q|q⟩, p̂|p⟩ = p|p⟩. (1.12)
Their spectrum is continuous. They are orthogonal and complete therefore create
bases {|q⟩}q∈R, {|p⟩}p∈R. We can pass from one basis to another by Fourier
transform because q̂ and p̂ obey canonical commutation relation

|p⟩ = 1√
2π

∫︂
exp (iqp)|q⟩dq,

|q⟩ = 1√
2π

∫︂
exp(−iqp)|p⟩dp.

We are also able to generalize it to the multi-modes
x̂T |x⟩ = xT |x⟩. (1.14)

Note that x are continuous variables. We have come to a definition of a continuous-
variable system: a quantum system is called a continuous-variable system when
it has an infinite-dimensional Hilbert space described by observables with con-
tinuous eigenspectra [4]. The quadrature states are useful to define quadrature
wave functions ψ(q) = ⟨q|ψ⟩ and ψ(p) = ⟨p|ψ⟩ as well.

5



1.2 Quasi-probability distribution
In classical mechanics, we can represent a state of a system as a point in phase
space (p, q), where p and q are canonical variables. If we want to describe statis-
tical properties of classical systems e.g. classical oscillator, we can come up with
a probability distribution function W (q, p), then this distribution quantifies the
probability of finding pair of q and p values in simultaneous measurements. If
statistical distribution is known, we can calculate all statistical quantities, so we
have a full description of a given state. In the hope of the successful introduction
of density matrix as a complete description of quantum systems, we can look for
a quantum analog of a probability distribution W (q, p). It turns out that W (q, p)
can be negative. Therefore we talk about quasi-probability distribution W (q, p)
[18, 19]. We will often refer to the Wigner distribution as the Wigner function.

1.2.1 Wigner representation
Let us briefly sketch the derivation of the Wigner distribution, The Wigner func-
tion can be obtained by postulating its properties [18]. We assume that the
distribution behaves like a joint probability distribution of q and p, therefore the
marginals of the distribution must give the position and momentum probability
distributions. To connect it with quantum mechanics we postulate

⟨q|ρ̂|q⟩ =
∫︂
W (q, p)dp, (1.15a)

⟨p|ρ̂|p⟩ =
∫︂
W (q, p)dq. (1.15b)

The left-hand sides also generate probability distribution but in the whole Hilbert
space, where ρ̂ is defined. We have connected quasi-probability distribution
W (q, p) to quantum mechanics. Notice, these formulas also connect quantum
states to observations. This can be used in quantum tomography to measure
marginals and thus reconstruct the quantum state [18].

If we want to find an explicit form of W (q, p), we define a characteristic
function χ(u, v). It is Fourier transformation of W (q, p):

χ(u, v) =
∫︂
W (q, p) exp (iuq − ivp)dqdp. (1.16)

Actually, we can look at the characteristic function as an expectation value [19]

χ(u, v) =
⟨︂

exp (iuq − ivp)
⟩︂

W
(1.17)

A quantum analog of the expectation value for arbitrary ρ̂ is

C(u, v) = tr
(︂
ρ̂ exp (iuq̂ − ivp̂)

)︂
, (1.18)

where the introduced operator

D̂(u, v) = exp (iuq̂ − ivp̂) (1.19)

is the Weyl operator. So C(u, v) is a ”quantum Fourier transform” of density
operator. We came up to

C(u, v) = χ(u, v).
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After the classical inverted Fourier transform, we get the Wigner quasi-probability
distribution

W (x, p) =
∫︂ 1

(2π)2 exp
(︂

− i(uq − vp)
)︂
C(u, v)dudv. (1.20)

Let us explicitly calculate the trace in Eq.1.18 and then the characteristic function
C(u, v). The Baker-Husdorff formula is as useful as the appropriate substitution
q → x+ v/2 in the last step of

C(u, v) =
∫︂

⟨q|ρ̂ exp (iuq̂ − ivp̂)|q⟩dq

= exp (−iuv2 )
∫︂

exp (iuq)⟨q|ρ̂|q − v⟩dq

=
∫︂

exp (iux)
⟨︂
x+ v

2 |ρ̂|x− v

2
⟩︂
dx.

(1.21)

According to Eq.1.20, the Wigner function can be extract from C(u, v) by inverted
Fourier transform

W (q, p) = 1
2π

∫︂
exp (ipv)

⟨︂
q + v

2 |ρ̂|q − v

2
⟩︂
dv, (1.22)

where we used the traditional formula for the Delta function

δ(x− q) = 1
2π

∫︂
exp

(︂
iu(x− q)

)︂
du.

The Wigner function from the momentum representation can be obtained in a
similar way.

As usual, we would like to generalize the Wigner function 1.22 to the multi-
mode case. Instead of q and p, we use the same 2N -dimensional vector x as in the
section above. Therefore, we introduce a 2N -dimensional vector ξ in the same
units as u and v. The Weyl operator is then

D̂(ξ) = exp (ix̂T Ωξ), (1.23)

The characteristic function has a similar form as in the one-mode case

C(ξ) = tr(ρ̂D̂(ξ)). (1.24)

Finally, the general Wigner function is

W (x) =
∫︂ d2Nξ

(2π)2N
exp (−ixT Ωξ)C(ξ). (1.25)

Therefore, continuous variables x span a real R2N space called phase space.
Let us introduce a few basic properties for the one-mode case, N = 1. It is

real W (q, p) = W ∗(q, p), for Hermitian ρ̂. It can be easily verified from Eq.1.22.
The Wigner function is normalized∫︂

W (q, p)dqdp = 1 (1.26)

because of normalization tr(ρ̂) = 1. For us, the most important property of the
Wigner function is its negativity, more in Sec.1.7.
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1.2.2 Gaussian and non-Gaussian states
We have introduced the phase space representation of the continuous variable
quantum states. We can distinguish two types of states occurring in the Wigner
representation: Gaussian and non-Gaussian states [4, 10]. Gaussian states are
easy to characterize. By definition, their Wigner function is a Gaussian

W (x) =
(︂
(2π)N

√
detV

)︂−1
exp

(︂
− 1

2(x − x̄)TV −1(x − x̄)
)︂
. (1.27)

Mean values are arranged in the similar formal vector x̄ = ⟨x̂⟩ = tr(x̂ρ̂) as the
vector of the quadratures and the vector of their eigenvalues x̂ and x, respectively.
The second moments are arranged into the covariance matrix V whose elements
are defined by

Vij = 1
2
⟨︂
{∆x̂i,∆x̂j}

⟩︂
, (1.28)

where ∆x̂i = x̂i − ⟨x̂i⟩ and the curly brackets represent the anti-commutator.
The last equality defines the covariance matrix for any quantum state. If we
set the first moment to zero2 in Gaussian state 1.27 then its Wigner function is
completely characterized by the covariance matrix V . The covariance matrix is
real and symmetric. It has a 2N × 2N form. It must satisfy the uncertainty
principle [20]

V + i

2Ω ≥ 0. (1.29)

This matrix equation means that the matrix sum on the left-hand side has only
non-negative eigenvalues. Eq.1.29 is a direct consequence of the commutation
relation 1.10 and of the non-negativity of ρ̂.3 Eq.1.29 implies V > 0. Note that
Eq.1.29 applies to any state, not only the Gaussian state.

Contrary to nicely described Gaussian states there is a vast and wild set of non-
Gaussian states. All states with non-Gaussian Wigner functions are contained
within this class. If we compare pure Gaussian and pure non-Gaussian states
then the pure state can have a positive Wigner function if and only if the state
is Gaussian [21]. This no longer holds for mixed states. There are states, which
are non-Gaussian but have positive Wigner function, examples can be found in
[10]. Therefore, if one wants to create a characterization of non-Gaussian states
based only on the negative volume of the Wigner function, he or she will quickly
be limited by that fact above.

1.3 Gaussian unitaries
We have to start with the Gaussian states before the non-Gaussian come to the
scene because the non-Gaussian states are usually created from the Gaussian.
First of all we introduce transformation T , which takes quantum state ρ̂ into T (ρ̂),

2Without loss of generality the first moments can be set to zero with the usage of local
unitary displacement operators [30].

3If we consider an operator matrix x̂x̂T , it can be written in terms of anti-commutator and
commutator of its factors, then from the definition of expectation value ⟨x̂x̂T⟩ = tr(x̂x̂Tρ̂) we
know that ⟨x̂x̂T⟩ ≥ 0, due to positive definiteness of ρ̂. From the anti-commutator, we get the
definition of V and that is all we need to show the necessity of the relation 1.29.
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it is called a quantum operation. The simplest case is for the trace-preserving and
reversible transformations, quantum channels, they are represented by unitary
transformations U † = U−1 [4], for which T (ρ̂) = Uρ̂U †.4 Gaussian operation is a
quantum operation which preserves the Gaussian character of the state, in other
words, they always transform a Gaussian state into a Gaussian state. Gaussian
unitaries (channels) are generated via U = exp (−iĤ/2) from Hamiltonians which
are second-order polynomials in the field operators [2, 4]. A Gaussian unitary
can be reformulated into a language of quadrature operators (≡ transition to
the Heisenberg picture). Gaussian unitary corresponds to the transformation of
quadrature operators. There exists a whole group of transformations that act on
the quadratures. It is called the symplectic group Sp(4,R). It is a set of linear
transformations S of a four-dimensional vector space over the R. It preserves
commutation relation 1.10:

S ∈ Sp(4, R) : SΩST = Ω,
x̂ → x̂′ = Sx̂, [x̂′

i, x̂
′
j] = iΩij. (1.30)

Clearly, eigenvalues x of the quadrature x̂ have to follow the same map x → x′ =
Sx. Thus an arbitrary Gaussian unitary in the Hilbert space is equivalent to a
symplectic map acting on the phase space. As a consequence of the action of S
on the phase space, the Wigner function is transformed W (x) → W (S−1x) while
the covariance matrix is transformed by V → SV ST , it can be seen from the
definition of the Wigner function.

In the following, we are going to introduce one- and two-mode squeezed states,
their appropriate unitaries, and beam splitter transformation. For a more com-
plete overview of different Gaussian unitaries and states the reader may take a
look into e.g.: [4].

1.3.1 Vacuum and thermal states
Definitely, the most important Gaussian state is the vacuum (ground) state, |0⟩.
The wave function of the vacuum state can be obtained from Eq.1.4 if we use
p̂ = −i∂/∂q in the q representation

ψ0(q) = π−1/4 exp
(︂

− q2

2
)︂
. (1.31)

Even if the light mode is empty, we have to associate a physically meaningful
state with this vacuum. If we measured quadrature fluctuations of the vacuum,
we would get a Gaussian distribution [18]. This can be seen from the covariance
matrix. For the vacuum state, the covariance matrix is diagonal V = 1

2I, where I
is the 2 × 2 identity matrix, which means that position and momentum operators
have the same variances V (q̂) = V (p̂) = 1

2 . From Eq.1.29 we see that the variances
fulfill the Heisenberg uncertainty principle

V (q̂)V (p̂) ≥ 1
4 . (1.32)

Thermal states are defined as

ρ̂th = e−βĤ

tr(e−βĤ)
. (1.33)

4Bare in mind, we do not use hats over the unitaries throughout the thesis.
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The reason why it is called the thermal state can be found in statistical physics,
the probability of obtaining an eigenenergy En of the Hamiltonian Ĥ is

P (En) = ⟨En|ρ̂th|En⟩ = e−βEn

Z
, (1.34)

where Z is the partition function, but this is exactly the probability distribution of
states (probability for finding a certain En for a system at temperature T ) that
maximizes the entropy. The system has maximum entropy at thermodynamic
equilibrium. The thermal states are maximizing the entropy. For the electro-
magnetic oscillator of the light mode, the partition function Z can be summed
up, therefore the mean number of photons n̄ ≡ ⟨n⟩ is the famous Bose-Einstein
distribution. If we consider that the non-diagonal elements of the Boltzmann
distribution 1.34 are zero and for the harmonic oscillator the eigenstates of Ĥ are
Fock states we can reformulate the density matrix into

ρ̂th(n̄) =
∞∑︂

n=0

e−βEn

Z
|n⟩⟨n| =

∞∑︂
n=0

n̄n

(1 + n̄)1+n
|n⟩⟨n|.

It is a Gaussian state with zero mean and the covariance matrix V = (n̄+ 1
2)I.

1.3.2 One-mode squeezing
So far, we have met states that were balanced in their variances of the quadra-
tures (the coherent states were skipped we will not need them in what follows).
Therefore a natural question arises: What are the minimum uncertainty states?
The Heisenberg uncertainty principle of Eq.1.32 gives us that variances of the
quadratures should hold that equation, but we can excess the variance in one
quadrature and shrink in the other one. Let us parameterize the variances of
quadratures with a squeezing parameter r

V (q̂) = 1
2e

−2r, V (p̂) = 1
2e

2r. (1.35)

Obviously, the product of the variances equals the minimal value of 1/4. The wave
function of the squeezed vacuum is equivalent to the wave function of vacuum
Eq.1.31 with scaled position and different normalization factor

ϕ(q) = e−r/2ψ0(e−rq). (1.36)

The wave function in the momentum representation has +r in the exponent.
The corresponding Gaussian unitary is the one-mode squeezing operator, which
is defined as

ÛSq(r) = exp
(︂r

2(â2 − â†2),
)︂

= exp
(︂
i
r

2(x̂p̂+ p̂x̂
)︂
. (1.37)

Squeezed vacuum state is then |ϕ⟩ = ÛSq(r)|0⟩. In the Heisenberg picture, the
quadrature operators x̂ = (q̂, p̂)T are transformed by the symplectic map x̂ →
SSq(r)x̂, where

SSq(r) =
(︄
e−r 0
0 er

)︄
(1.38)
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as can be seen from Eq.1.36.
An experimental realization of the single-mode squeezed states provided proof

of the quantum theory of light [22] forty years ago.
The photon statistics of the coherent state is Poissonian distribution [18]. The

photon statistics of the squeezed vacuum state are rather different

pn = |⟨n|ÛS|0⟩|2.

After simple calculations, it turns out that pn is zero for odd photon states. A
squeezed vacuum contains only photon pairs. It can be explained thanks to the
form of Gaussian unitary 1.37.

The Gaussian unitary can be viewed as a unitary evolution of a given Hamil-
tonian. Consequently, we know the form of the quadratic Hamiltonian. This
Hamiltonian is responsible for the specific physical process that generates the
squeezed vacuum state. This process is known as parametric down conversion.
The beam of laser light, which is focused on a non-linear crystal, induces elec-
tric dipoles in the atoms of that crystal. The atoms oscillate with that beam
frequency and emit electromagnetic radiation - light. The law of energy conser-
vation is valid, so the energy of the incoming photons must add up to the energy
of the emitted photons. The non-trivial case is a pair production [18], where
the crystal emits pairs of signal photons, and the incoming beam is called the
pumping beam. This process can be used in parametric amplifier. In a degen-
erate parametric amplifier a signal at the frequency ω is amplified by pumping
a crystal at frequency 2ω. Usually, a simple model of a degenerate parametric
amplifier is considered where the pump at 2ω is classical and the signal mode at
ω is described by the annihilation operator [23]. The such process corresponds to
one-mode squeezing 1.37.

1.3.3 Beam splitter
To extend squeezing into two modes, we have to introduce a beam splitter. An
ideal beam splitter is a reversible device and a lossless device in which two incident
beams may interfere to produce two outgoing beams [18]. If we send back the
two outgoing beams without changing their phase we reconstruct the original
beam. Theoretically, it is modeled as a four-port device with two input and two
output beams. The incident fields are described by the annihilation operators
â1 and â2 and the outgoing beams are characterized by the â′

1 and â′
2. Thus,

we are looking for a transformation matrix B of the Bogoliubov transformation
(â′

1, â
′
2)T = B(â1, â2)T . Elements of the matrix B are t and v, transmissivity and

reflectivity respectively

B =
(︄
t −v
v t

)︄
. (1.39)

The elements t and v can be defined through parameter Θ, t = cos (Θ/2) and v =
sin (Θ/2), therefore the relation t2 + v2 = 1 accounts for the energy conservation.
The matrix B represents a rotation of the amplitude operators. The symplectic
map x̂ → SB(τ)x̂ can be deduced from the Bogoliubov transformation of Eq.1.39

SB(τ) =
(︄
tI −vI
vI tI

)︄
, (1.40)
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where I is an 2 × 2 identity matrix and x̂ = (q̂1, p̂1, q̂2, p̂2).
To find a Gaussian unitary of the beam splitter, we have to switch to the

Shrödinger picture. We would like to find unitary operator ÛB that evolve state
|ψ⟩ as |ψ⟩′ = ÛB|ψ⟩. It turns out [18] that ÛB is given by

ÛB = exp
(︂
i
θ

2(x̂1p̂2 − p̂1x̂2)
)︂
. (1.41)

The parameter Θ determines the transmissivity of the beam splitter. The beam
splitter is balanced if parameter θ = π

2 . If we use formalism of the quadrature wave
functions ψ(q1, q2), we get from Eq.1.41 transformed wave function ψ′(q1, q2) =
ψ(q′

1, q
′
2). We know that eigenvalues of the quadratures q̂i are in the position

representation just qi, so they are transformed by matrix B, eventually the wave
function

ψ′(q1, q2) = ψ(tq1 + vq2,−vq1 + tq2), (1.42)
is simply rotated.

1.3.4 Two-mode squeezing
Two-mode squeezing involves two modes of the electromagnetic field which exhibit
quantum noise reduction below the noise of the ground state. Two-mode squeezed
vacuum can be produced from the interference of two oppositely squeezed vacuum
states

ϕ1(q1) = er/2

4
√
π

exp
(︂

− 1
2e

2rq2
1

)︂
, (1.43a)

ϕ2(q2) = e−r/2

4
√
π

exp
(︂

− 1
2e

−2rq2
2

)︂
, (1.43b)

at the balanced beam splitter (τ = ρ = 1/
√

2).

ϕ′(q1, q2) = 1√
π

exp
(︂

− 1
4e

2r(q1 + q2)2 − 1
4e

−2r(q1 − q2)2
)︂
. (1.44)

In the momentum representation state ϕ′(p1, p2) is similar

ϕ′(p1, p2) = 1√
π

exp
(︂

− 1
4e

2r(p1 − p2)2 − 1
4e

−2r(p1 + p2)2
)︂
. (1.45)

In the next, we argue why is the two-mode squeezed vacuum viewed as the EPR
state [24]. First of all, let us remind you about the EPR paradox: Einstein,
Podolsky, and Rosen considered two spatially separated particles that show a
maximum correlation between their positions and their momenta. A measure-
ment of the position of the first particle implies with certainty the position of the
second particle and a measurement of the momentum of the second particle im-
plies with certainty the momentum of the first particle. This thought experiment
(Gedankenexperiment) led Einstein, Podolsky, and Rosen to the conclusion, that
quantum mechanics is not complete, because in quantum mechanics we cannot
know the position and momentum of one object simultaneously. Later, Shrödinger
came up with the term Entanglement [25].

Two-mode squeezing is often seen as the EPR state in its original formulation
in terms of continuous position and momentum observables, hence it is the first

12



instance of continuous-variable entanglement because the wave functions 1.44 and
1.45 describe an entangled state due to quadratures which are correlated. For
strong squeezing r → ∞ the wave function 1.44 nearly vanishes unless q1 = q2
and the wave function 1.45 vanishes unless p1 = −p2. The first possibility of
observing the EPR correlations was introduced in [26].

Let us introduce the corresponding quantum state of light to the wave function
of Eq.1.44: [18]

|TMSV⟩ ≡ |ψ⟩ = ÛS12|0, 0⟩, (1.46)

where ÛS12 is a two-mode squeezing operator

ÛS12 = exp
(︂

− r(a1̂a2̂ − a1̂
†a2̂

†)
)︂

= exp
(︂
−ir(x̂1p̂2 + p̂1x̂2)

)︂
. (1.47)

Please note, that the squeezing parameter r is real. We will not need a symplectic
map of quadratures, but let us briefly comment on it. The symplectic map is in
the form of hyperbolic rotation, or Lorentz transformation

SSq2 =
(︄
I cosh r Z sinh r
Z sinh r I cosh r

)︄
,

thus amounts to a re-scaling along the rotated axis and inverse re-scaling along
the other. This is equivalent to two one-mode squeezing operators and a beam
splitter, as shown in the wave function formalism. Z is 2 × 2 diagonal matrix
with Z = diag(1,-1).

Not just the correlations of the quadratures are expected but also the correla-
tions of two photons are expected. Since both photons have been in their vacuum
states after pair production each photon in mode one must be accompanied by a
partner in mode two [18]. It is possible to rewrite 1.46 in the Fock representation
as

|TMSV⟩ =
√

1 − λ2
∞∑︂

n=0
λn|n, n⟩, (1.48)

where λ(r) = tanh (r). A proof is simple, we will show that 1.47 and 1.48 obey
the same first-order differential equation [18]

(a1̂
†a2̂

† − a1̂a2̂)|ψ⟩ = (a1̂
†a2̂

† − a1̂a2̂)
∞∑︂

n=0

(tanh r)n

cosh r |n, n⟩

=
∞∑︂

n=0

(tanh r)n

cosh r
(︂
(n+ 1)|n+ 1, n+ 1⟩ − n|n− 1, n− 1⟩

)︂

=
∞∑︂

n′=0

(tanh r)n′−1

cosh r
(︂
n′ − (n′ + 1)(tanh r)2

)︂
|n′, n′⟩

= ∂

∂r

∞∑︂
n′=0

(tanh r)n′

cosh r |n′, n′⟩ = ∂

∂r
|ψ⟩,

(1.49)

in the third step we use proper substitutions (n → n′ ± 1) and in the fourth we
know (tanh r)′ = 1 − (tanh r)2.

The two-mode squeezed states were experimentally observed a few years after
the observation of single-mode states [15].

13



Similarly as in the case of one-mode squeezing, from the Gaussian unitary,
we can see the physical process of generating a two-mode squeezed vacuum. The
non-degenerate parametric amplifier is a simple generalization of the degenerate
parametric amplifier considered in the previous section. Instead of one mode at
one signal frequency, we have to consider two modes with frequencies ω1 and ω2.
The law of energy conservation still holds, 2ω = ω1 + ω2. Usually, photons in
one outgoing mode are called signals and the others are called idlers. Thus the
system is described by two different annihilation operators. This corresponds to
the two-mode squeezing 1.47.

Optical parametric amplifiers are widely used everywhere where entangled
photons are needed, e.g. in quantum teleportation [27], in Bell tests [28], or even
in the production of single photon states [29].

1.4 Bipartite entanglement
In Section 1.3.4 we have discovered a coincidence between quadrature measure-
ments and the EPR state. After the discovery of entanglement, a natural question
arises whether we can find a measure of entanglement. If someone would like to
quantify entanglement, the first thing they need is a criterion of separability. It
is also important to distinguish between pure and mixed states because measures
of entanglement are not the same for both types of states.

1.4.1 Pure states
To begin with, consider two Hilbert space H = HA ⊗ HB. It corresponds to a
global bipartite system. Imagine a system described by state |Ψ⟩, we are allowed
to write the system in the form

|Ψ⟩ =
∑︂
i,j

cij|ei
A⟩ ⊗ |ej

B⟩, (1.50)

where {|ei
A⟩ ⊗ |ej

B⟩} is an orthonormal product basis. The system is separable if
|Ψ⟩ can be described as a product of states of individual subsystems

|Ψ⟩ = |ψ⟩1 ⊗ |ψ⟩2. (1.51)

Otherwise |Ψ⟩ is called entangled.
An introduction of quantum entropy is motivated by information and ther-

modynamic entropies.5

S(ρ̂) = −tr(ρ̂ ln ρ̂) = −
∑︂

i

ρi ln ρi, ρ̂ =
∑︂

i

ρi|i⟩⟨i|. (1.52)

5Let us have a set of random variables i with a given probability pi, Shannon (information)
entropy H measures the average amount of information content conveyed by knowing outcome i
of random trial: H = −

∑︁
i pi ln pi,

∑︁
i pi = 1. Less probability pi of event i gives more entropy

H. If pi = 0 or = 1 then H = 0, so there is no information we can get. In thermodynamics,
there is the Gibbs entropy: S = −kB

∑︁
i pi ln pi. It is a measure of all possible microstates in

equilibrium compatible with a given macrostate. We can understand S in the context of H:
Entropy of the macrostate is a measure of how much information is ’missing’ to know which
microstate occurs.
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S(ρ̂) can be understood as a measure of ’mixedness’ of ρ̂. This can be used to
quantify the entanglement of a pure bipartite system. Let us explain: If the
system is entangled then its subsystems are in mixed states (after partial tracing
[19]) and vice versa if the system is separable then its subsystems are in pure
states. So we can use 1.52 to measure the mixedness of a state of either one or
the other subsystem. The more mixed the subsystems are, the more entanglement
is in the whole system. Please note it does not depend on the selected subsystem
because every state of a coupled system can be expressed in a Schmidt form

|Ψ⟩ =
∑︂

n

cn|χ1n, χ2n⟩,

where cn is Schmidt number. Consequently, reduced density operators ρ̂i of ρ̂ =
|Ψ⟩⟨Ψ| have same diagonal form with elements |cn|2. Note, if system is separable,
then |cn|2 = 0 or |cn|2 = 1. Finally, the entropy of the subsystems is

S(ρ̂i) = −
∑︂

n

c2
n ln c2

n = −tr(ρ̂i ln ρ̂i).

Later we will discuss why we did not choose entropy as the measure of the
entanglement even if the TMSV is a pure state.

1.4.2 Mixed states
In the beginning, we will show formulas usually for the two-mode states, they are
the simplest bipartite systems. Eventually, we will come to expressions that are
valid in multi-mode bipartite systems.

Peres-Horodecki criterion

Consider again two Hilbert space H = HA ⊗ HB of a global bipartite system.
The motivation why the mixed states are important can be found in real-world
experiments, it is an environment where mixed states usually emerge. Then we
are forced to use density matrix formalism ρ̂ instead of |Ψ⟩. The separability of
a mixed state is no longer equivalent to product states, as in the case of pure
states. One calls the mixed state of the bipartite system separable if it can be
written as a convex combination of product states

ρ̂ =
∑︂

i

piρ̂
A
i ⊗ ρ̂B

i , (1.53)

where pi ≥ 0 and ∑︁
i pi = 1, ρ̂A

i and ρ̂B
i are defined on local Hilbert spaces HA

and HB. The problem is that we cannot use the same separability condition as
in the case of a pure bipartite system. The first practical criterion of separability
was introduced by Peres and Horodecki [12, 13], it is called the positive partial
transpose criterion (PPT) and it employs the properties of partial transposition.
It is the transposition with respect to one of the two subsystems, usually denoted
with an index Ti, i = A,B. In fact, if a quantum state ρ̂ is separable then the
new density matrix, e.g. ρ̂TB is a density operator, i.e., it has a non-negative
spectrum, thus it is a quantum state. In a language of matrix elements of ρ̂TB

the partial transposition of separable state ρ̂ is

⟨k, l|ρ̂TB |k′, l′⟩ ≡ ⟨k, l′|ρ̂|k′, l⟩.
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Therefore, the positivity of the partial transposition is a necessary condition for
a separable state. On the other hand, the non-positivity of a single negative
eigenvalue of the partially transposed density operator is a sufficient condition
for an entangled state.

The PPT can be seen in terms of maps. The PPT demands the positivity of
the operator (IA ⊗ TB)(ρ̂), where TB is a transposition map. Transposition is a
positive operation, but it is not completely positive.6 As a consequence, partial
transpose is a non-physical operation that can change an entangled quantum state
into a non-physical one.

Let us extend the PPT criterion into continuous-variable states. Noting that
density matrix ρ̂ is a Hermitian operator, then transposition corresponds to com-
plex conjugation. For the time evolution of a quantum system described by the
Schrödinger equation, complex conjugation is equivalent to time reversal. Hence,
intuitively, the transposition of a density operator means time reversal. In the
continuous variables, it corresponds to a sign change of the momentum variables
[30]

ρ̂ → ρ̂T ⇔ W (q, p) → W (q,−p). (1.54)

Also, it can be seen from the definition of the Wigner function 1.22. The two-
mode states are the simplest of continuous-variable bipartite systems. From that
follows the partial transposition of the density operator of the bipartite system
of two modes transforms the Wigner function as

W (q1, p1, q2, p2) → W (q1, p1, q2,−p2). (1.55)

This corresponds to a mirror reflection or local time reversal

x → Λx, Λ = diag(1, 1, 1,−1), (1.56)

where x = (q1, p1, q2, p2) is a formal four-vector. This general transposition rule is
in the case of two-mode Gaussian states of Eq.1.27 reduced to the transformation
of the covariance matrix

V → Ṽ = ΛV Λ (1.57)

Since transformed W (q1, p1, q2,−p2) is also a Wigner function if the state is sep-
arable, from Eq.1.29 we have

Ṽ + i

2Ω ≥ 0. (1.58)

The matrix Ω is based on its definition 1.8, it has 4 × 4 block diagonal form. The
equation 1.58 is a necessary condition for the separability of two-mode bipar-
tite Gaussian states. Notice, Eq.1.57 and Eq.1.58 hold also for any multi-mode
bipartite Gaussian states.

We can simplify the condition 1.58, for that, we use a basic tool in symplectic
analysis - Williamson’s theorem [31] (sometimes called symplectic decomposition)
which gives the possibility of carrying out the symplectic diagonalization of real

6An operator is positive iff it is Hermitian and has non-negative eigenvalues.
A positive map maps any positive operator into a positive one.
The map T is completely positive iff I⊗T is positive for identity map I on any finite dimensional
system.
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matrices in even dimensions under the definite positivity constraint

V = SV ⊕ST , V ⊕ =

⎛⎜⎜⎜⎝
ν−

ν−
ν+

ν+

⎞⎟⎟⎟⎠ . (1.59)

The diagonal elements ν± are called the symplectic eigenvalues and ν− ≤ ν+.
The diagonal matrix V ⊕ is called the Williamson form of V . The matrix S is the
symplectic matrix as defined in Sec.1.3. Please note, it can be generalized into
N -modes

V ⊕ =
N⨁︂

k=1
νkI, (1.60)

where I is 2 × 2 unit matrix. The symplectic spectrum can be computed as
the standard eigenspectrum of the matrix |iΩV |, where the modulus must be
understood in the operational sense.

Let us go back to the PPT criterion. We can use the power of the symplectic
spectrum to express the fundamental properties of the state, specifically the sep-
arability of the state. So the arbitrary V is a quantum covariance matrix if and
only if it satisfies V > 0 and ν− ≥ 1/2. A truth of this statement can be seen from
uncertainty principle 1.29 which implies SV ST > 0 because we already know that
uncertainty principle gives V > 0 and from the eigenvalues of iΩ/2. If the state
is separable, then Ṽ also satisfies uncertainty principle 1.58 as discussed. Since
Ṽ > 0, this is equivalent to check ν̃− ≥ 1/2, where ν̃− is the minimal eigenvalue
of the symplectic spectrum of Ṽ . That is the separability criterion.

Due to general Eq.1.60 the separability criterion holds for any multi-mode
bipartite Gaussian state.

We could continue in modification of the criterion, e.g. with symplectic in-
variants but it is not necessary [30, 32, 34]. Instead, we introduce analytical
expression for symplectic eigenvalues ν± and ν̃±.

The two-mode Gaussian states are special because we can find exact analytical
expressions for ν± and ν̃±. The covariance matrix V of the two-mode Gaussian
state can be expressed in the following block form

V =
(︄
A C
CT B

)︄
, (1.61)

A,B,C are 2×2 real matrices. It can be seen from the definition of the covariance
matrix 1.28. Then the symplectic spectrum ν± is given

ν± =

√︄
∆ ±

√
∆2 − 4detV

2 , (1.62)

where ∆ = detA+ detB + 2detC and det is determinant [32, 33]. For ν̃± we just
change a sign in ∆ = detA+ detB − 2detC.

Logarithmic negativity

For mixed states, we do not have a single definition of measure of entanglement
[11]. There are many ways how to get different entanglement measures [11]. Our
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focus will be on an axiomatic approach because we will get easily computable
measures. In short, any function can be an entanglement measure if it satisfies
certain postulates [11]. The most important of them is monotonicity under local
operations and classical communication (LOCC). 7 The entanglement cannot in-
crease under LOCC. For any LOCC operation Λ and the entanglement measure
E(ρ̂) the postulate above is written as

E(Λ(ρ̂)) ≤ E(ρ̂). (1.63)

If a function E satisfies the monotonicity axiom, it means that E should be
constant on separable states, because every separable state can be converted by
LOCC to any other separable state [11]. It is reasonable to set this constant to
zero. Naturally, we can invert this condition to the basic axiom: every entangle-
ment should disappear on separable states. Those two axioms impose E to be
non-negative. We can also think of other axioms, we can require normalization
of E, so on maximally entangled states, it counts e-bits.

An easy measure to calculate is so-called logarithmic negativity [14]. It is a
direct consequence of the PPT criterion. To understand logarithmic negativity
it is better to start with negativity

N (ρ̂) =
∑︂
λ<0

λ, (1.64)

where λ are eigenvalues of ρ̂TB (partially transposed density matrix with respect
to B-part of the bipartite system). It quantifies how much the state fails to sat-
isfy the positivity of the partial transpose condition. It vanishes for unentangled
states. It can be proved that N does not increase under LOCC and it is an entan-
glement monotone [14]. Another version of the measure is logarithmic negativity
given by

EN (ρ̂) = log2 ∥ρ̂TB ∥1, (1.65)

where ∥Â∥1 = tr(
√︂
ÂÂ

†) is a trace norm of the Hermitian operator Â, which is
equal to the sum of the absolute values of the eigenvalues of Â. If ∥ρ̂TB ∥1 = 1
then EN = 0. The logarithmic negativity is an additive quantity. It can be seen
from the identity ∥ρ̂1 ⊗ ρ̂2∥1 = ∥ρ̂1∥1∥ρ̂2∥1 (it is best shown from the definition of
the trace norm via eigenvalues) and from the additive properties of the logarithm
EN (ρ̂1 ⊗ ρ̂2) = EN (ρ̂1) + EN (ρ̂2). Both quantities N and EN are practically
computable as we will see.

As in the previous subsection, we have to exactly formulate the logarithmic
negativity 1.65 for bipartite Gaussian states. This was done in [14]. If the state is
not separable, the uncertainty principle 1.58 does not hold, and Ṽ may fail to be
the positive operator. However, we have introduced symplectic diagonalization
1.60 of Ṽ , then Ṽ is equal to the tensor product of the operators with symplectic
eigenvalues on diagonal 1.60. The trace norm of this tensor product, as shown
above, is just the product of the trace norms. We can modify the definition of

7Local quantum operation is performed on part of the system, and the result is communicated
classically to another part. We have tried to introduce quantum operations in Sec.1.3, but a
much wider definition can be found in [11]. Thus a proper definition of LOCC can be also found
in [11].
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the logarithmic negativity 1.65 for N -mode bipartite Gaussian states as follows

EN (ρ̂) =
N∑︂
k

F (ν̃k=1), (1.66)

where F (ν̃) = log2 ∥ρ̂ν∥1 and ρ̂ν is the operator whose Wigner function is a
Gaussian. It can be shown [14], that F (ν) vanishes for ν ≥ 1/2 and for ν < 1/2
is F (ν) = − log2(2ν).

We stress once more that for Gaussian states Eq.1.65 is equal to Eq.1.66. For
non-Gaussian states, this does not hold.

1.5 Bloch-Messiah decomposition
The need for this subsection will become apparent in the computation section. We
have already started with a symplectic analysis namely the symplectic eigenvalues
were useful for the computation of the logarithmic negativity. At the beginning of
Gaussian unitaries in Sec.1.3 we have stated that for every Gaussian US in Hilbert
space, there exists S in the phase space. The symplectic decomposition of Eq.1.60
corresponds to the thermal decomposition because we know that thermal states
1.3.1 have diagonal covariance matrix with a diagonal element equal to n̄+ 1/2,
in our case the diagonal element of V ⊕ is νk, therefore n̄ = νk − 1/2. For S in
1.60 there exists US such that

ρ̂(V ) = US ρ̂(V ⊕)U †
S, (1.67)

where
ρ̂(V ⊕) =

N⨂︂
k=1

ρ̂th(νk − 1
2) (1.68)

is a tensor product of one-mode thermal states. There is another decomposition.

Sq1

BS1 BS2

Sq2

Figure 1.1: Bloch-Messiah decomposition

The canonical unitary US can be decomposed using the Bloch-Messiah decompo-
sition [35]

US = UB2
[︂ N⨂︂

k=1
USq(rk)

]︂
UB1, (1.69)

where [⨂︁N
k=1 USq(rk)] is a set of N one-mode squeezers sandwiched between beam

splitters UBi. If we combine the thermal decomposition of Eq.1.67 with the Bloch-
Messiah decomposition of Eq.1.69, then an arbitrary multi-mode Gaussian state
ρ̂(V ) can be realized by preparing N thermal states ρ̂(V ⊕), applying multi-mode
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interferometers and one-mode squeezer. The Bloch-Messiah decomposition can
be expressed in terms of symplectic matrices, particularly

S = SB2
[︂ N⨁︂

k=1
SSq(rk)

]︂
SB1. (1.70)

Eq.1.70 will be useful in numerical calculations. We remind you that we will
be interested in the two-mode states then we set N = 2. Previously, we have
denoted ν± ≡ ν1,2.

Please note, our case is not the most general one because we have considered
the first statistical moment equal to zero. In the opposite case, we should have
included a displacement operator to Eq.1.67.

1.6 Subtraction of photon
Here comes the section, where we will finally generate non-Gaussian states. From
a theoretical point of view, a generation of non-Gaussian states is not too different
from Gaussian states. It suffices to apply non-Gaussian unitary transformations
that would allow for the deterministic generation of non-Gaussian states as in
the case of presented Gaussian states. From an experimental point of view is
this approach hard to obtain. Thus another approach is conditional. It is based
on a different experimental approach, where one measures part of the system
and conditions on a certain measurement outcome. On a theoretical level, it is
done by the action of a combination of quadrature operators on a system [10].
The most simple case is single-photon subtraction or addition. For single photon
subtraction the annihilation â is used on the system ρ̂,

ρ̂ → âρ̂â†

tr(âρ̂â†)
. (1.71)

The experiment setup consists of a high transmissivity beam splitter, it splits
some light of the incident field toward a photodetector. Click on this photodetec-
tor represents one subtracted photon, thus this corresponds to conditional pre-
paredness of subtracted state [36]. The most recent experiment in multi-photon
subtraction can be found in, e.g. [17].

1.7 Existing measure of non-Gaussianity
We have created non-Gaussian states in the previous section, now we would like to
know if there exists some measure of non-Gaussianity. Obviously, one can think
of negative values of the Wigner function, so-called Wigner negativity. There is
one natural measure of the Wigner negativity [37]. We are looking for a measure,
which has to be zero if and only if the Wigner function is Gaussian. The starting
point is the normalization of the Wigner function 1.26. It implies∫︂

R2N
dx |W (x)| ≥ 1,
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where N is the number of modes. That equality is always strict when the Wigner
function is non-negative. The easiest measure of the Wigner negativity is through
the negative volume [37]

WN (ρ̂) =
∫︂
R2N

dx |W (x)| − 1. (1.72)

By definition, the quantity WN (ρ̂) is equal to zero for coherent and squeezed
states, for which W is non-negative. Similarly, as in the case of entanglement
negativity and logarithmic negativity, there was recently introduced Wigner log-
arithmic negativity (WLN) [8]

WLN (ρ̂) = log
(︂ ∫︂

R2N
dx |W (x)|

)︂
.

Notice that the WLN is computable in the sense that its value can usually be
assessed by numerical integration.

We will use the Wigner negativity in a discussion of numerical results in the
next chapter.
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2. Results
Our ultimate goal is to find a new measure of non-Gaussianity based on the
existing entanglement measure, the logarithmic negativity. First of all, we need
a Gaussian entangled state, the simplest entangled state in the CV is the TMSV
Sec.1.3.4

|TMSV⟩ =
√

1 − λ2
∞∑︂

n=0
λn|n, n⟩, (2.1)

corresponding density operator is ρ̂TMSV = |TMSV⟩⟨TMSV|. To obtain a non-
Gaussian state, it is appropriate to subtract a photon from the Gaussian state as
discussed in Sec.1.6. Single photon subtracted states are theoretically obtained
by acting with an annihilation operator on the state. Subtraction of a photon is
given by

|ψ⟩ = M
∑︂

λn(c1â1 + c2â2)|n, n⟩, (2.2)
M is a normalization constant and corresponding density operator is ρ̂ = |ψ⟩⟨ψ|.
The annihilation operators always act on one mode of the Hilbert space, i.e.
â1 = (â ⊗ I) and â2 = (I ⊗ â). The normalization constant M can be easily
computed as

M = 1 − λ2

λ
. (2.3)

The coefficients c1 and c2 fulfill a condition

c2
1 + c2

2 = 1, c1, c2 ∈ R. (2.4)

Thus ci can be represented by one parameter θ. We set

c1 = cos θ, c2 = sin θ. (2.5)

In this way, we have obtained a dose of non-Gaussian states parameterized by
squeezing parameter λ and subtraction θ.

We would like to extract a clear non-Gaussian entanglement from the given
non-Gaussian state |ψ⟩. To do that, we need to compute the logarithmic nega-
tivity of the non-Gaussian state and its Gaussified form.

The logarithmic negativity of a general bipartite state ρ̂χ can be computed
directly from the definition 1.65, we will denote the logarithmic negativity com-
puted in this way by the symbol ENNG

. Let us briefly remind you of the definition:
The logarithmic negativity ENNG

is calculated as a sum of the absolute values
of the eigenvalues of the partially transposed ρ̂χ. To numerically compute the
ENNG

, we chose programming language - Python with external library QuTip
[38]. In the QuTip environment, we can easily program an arbitrary state based
on truncated Fock space, the dimension of the Fock space N has to be finite.
Thus the ENNG

of the state is just an approximation because it depends on the
chosen dimension of the state

ENNG
→ ENNG

(N), N = dim of trunc. Fock space.

The logarithmic negativity of a general bipartite Gaussian state ρ̂χG can be
computed from the determination of the covariance matrix Ṽ , where Ṽ corre-
sponds to partially transposed state ρ̂χG. We can compute the logarithmic neg-
ativity of ρ̂χG, as shown in the last paragraph of the subsection 1.4.2, from the
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symplectic eigenvalues ν̃k of the matrix Ṽ , the symplectic eigenvalues can be ob-
tained from Eq.1.62. The logarithmic negativity computed in this way is marked
as ENG

. The computation of ENG
can be done by hand analytically or numeri-

cally again with the help of the QuTip. Analytical calculation is not very exciting
but it can be done from the definition of the covariance matrix V 1.28. Occur-
ring infinite sums from the infinite large Fock spaces used in the definition of the
state are usually eliminated by Kronecker’s deltas. Thus we can obtain exact (no
dependence on the chosen size of dimensions) ENG

. The numerical approach is
again limited by the dimension N ′ of Fock space. The state is defined in trun-
cated Fock space and then the covariance matrix V (N ′) can be obtained, where
the dependence on chosen N ′ is propagated. Therefore ν̃k(N ′) of the Ṽ (N ′) are
also depended on N ′, thus

ENG
→ ENG

(N ′), N ′ = dim of trunc. Fock space.

Before the discussion of a non-Gaussianity measure, we have to calibrate the used
algorithms.

2.1 Calibration
In order to prevent any unnecessary errors, the first calculation is a calibration of
the used algorithms. The best state for the calibration is the |TMSV⟩ itself. From
Chapter 1, we know, that a two-mode squeezed vacuum may be obtained in a few
ways. Firstly, we can use the two-mode squeezing operator on a two-mode vacuum
|0, 0⟩, 1.47. Secondly, we can also use two one-mode squeezing operators on one-
mode vacua |0⟩, |0⟩,1.37. The one-mode squeezing operators have to squeeze
each vacuum in the opposite way. Eventually, we use a balanced beam splitter
and let the oppositely squeezed vacua interfere with that beam splitter, 1.41. To
define these operators numerically, we have to again consider finite Hilbert space,
thus in the QuTip we can define creation and annihilation operators in finite N
dimensions, we had chosen a relatively small size of dimension

N = 15.

Later, we discuss that higher dimension is not calculable on an average laptop in
a reasonable time. Therefore the resulting state |TMSV⟩ is dependent on N as
well as its logarithmic negativity ENNG

(N). In Figure 2.1 there is the logarithmic
negativity relative to the squeezing parameter λ. The yellow curve corresponds
to the two-mode squeezing operator and the orange curve corresponds to two
one-mode squeezing plus the beam splitter operators.

We can also calculate ENG
of the |TMSV⟩ because it is a Gaussian state. The

obtained exact form of Ṽ is

Ṽ =

⎛⎜⎜⎜⎝
a 0 b 0
0 a 0 b
b 0 a 0
0 b 0 a

⎞⎟⎟⎟⎠ ,
where a and b are depended on λ. Thus symplectic eigenvalues are easily calcu-
lated as in Eq.1.62

ν̃± = (a± b),
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Figure 2.1: The logarithmic negativity relative to the squeezing parameter λ. The
logarithmic negativity is ENNG

is computed for the |TMSV⟩ obtained from the
two-mode squeezing operator it is represented by the yellow curve, the |TMSV⟩
obtained from the one-mode squeezing operators and the balanced beam split-
ter it is represented by the orange curve, both are calculated for the dimension
N = 15 of the Fock base. The Gaussian logarithmic negativity ENG

calculated
analytically is represented by the red curve. ENG

computed numerically is the
grey curve for the dimension of the Fock basis N ′ = 100.
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with
a = 1 + λ2

2(1 − λ2) , b = 2λ
2(1 − λ2) .

And that is all we need to get ENG
of Eq.1.66. In Figure 2.1 the red curve is

representing described approach.
As described in the introduction of the chapter, we can also compute ENG

numerically. We generate |TMSV⟩ directly from its definition in the Fock basis of
Eq.2.1, then the ENG

is computed in dependence of the chosen size of dimension,
it is really fast, we can set

N ′ = 100.

The grey curve is computed in this way in Figure 2.1. It uses inner functions of
QuTip. For the λ → 1 it slightly deviates from the exact analytical approach
(red). Thus the analytical solution and numerical solution of ENG

are inter-
changeable.

The state |TMSV⟩ is a Gaussian state, thus ENNG
= ENG

. For low squeezing
(up to λ ≈ 0.5) we see an expected coverage of all curves. If we increased the
dimension of Fock space N , we would get better coverage of the orange and
yellow curves. Up to λ ≈ 0.5 it does not matter, which procedure we use for the
computation of the logarithmic negativity of the |TMSV⟩.

2.2 Subtraction of photon
In this section, we switch to the density operator formalism. We subtract a
photon from ρ̂TMSV in order to create the non-Gaussian state ρ̂.

How do we compute ENG
if the state is non-Gaussian? Despite that fact, we

can ’Gaussify’ the state. Let us explain. We can easily compute the covariance
matrix V of the state ρ̂ as well as the Wigner function due to general Eq.1.20.
We can also use this covariance matrix V and plug it into the Gaussian Wigner
function Eq.1.27. We have obtained the Gaussian state ρ̂G described by the
Gaussian Wigner function 1.27. So to one given covariance matrix, there exists
two states: the non-Gaussian ρ̂ state and the Gaussian state ρ̂G. Please note that
we do not need to know the specific form of ρ̂G because the logarithmic negativity
ENG

is computed from the covariance matrix V , specifically from Ṽ . As already
discussed it can be done by hand or numerically. If one decides to do it by hand,
he or she will come to the general form of the covariance matrix

Ṽ =

⎛⎜⎜⎜⎝
a1 0 c1 0
0 a2 0 c2
c1 0 b1 0
0 c2 0 b2

⎞⎟⎟⎟⎠ , (2.6)

where all matrix elements are dependent on λ. There is no simple formula for
symplectic eigenspectrum ν̃± as in the previous case. It is not interesting and
useful to present it here. Numerical computation of ENG

gives roughly the same
result as analytical like in the calibration section.

The logarithmic negativity ENNG
of ρ̂ can be computed numerically as previ-

ously.
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Figure 2.2: The logarithmic negativity relative to λ. The logarithmic negativity
ENNG

computed for non-Gaussian state ρ̂ is represented by the cyan curve. The
logarithmic negativity of the ρ̂TMSV computed in one chosen procedure is the grey
curve. The logarithmic negativity ENG

of the Gaussified state ρ̂G is represented
by the blue curve. The difference ∆ is the green curve.

In Figure 2.2 there are four plots, the parameter θ is fixed for each plot
and the parameter λ runs from 0 to 0.5. The grey curve corresponds to the
logarithmic negativity of the ρ̂TMSV as before. The cyan curve corresponds to the
logarithmic negativity ENNG

and the blue curve is the ENG
. We see that non-

Gaussian entanglement always increases compared to the entanglement of the
original two-mode squeezed state. The Gaussian entanglement always decreases.
In some cases, it even goes to zero.

In the following, we always compute the difference ∆ of these two logarithmic
negativities for a given non-Gaussian state and its Gaussified state.

∆ = ENNG
− ENG

. (2.7)

This difference should always be positive because the ENNG
contains full infor-

mation about the state ρ̂ on the other hand Gaussified state does not contain
the non-Gaussian part of the state so its logarithmic negativity ENG

should be
lower. In principle, we have got how much of non-Gaussian entanglement is in
the state ρ̂, therefore the difference could be an indicator of the non-Gaussianity
of the state. In Figure 2.2 the green curve is always the difference ∆ of the cyan
and blue curves.

In Figure 2.3 there are shown the differences ∆ for various states with various
fixed θ to get different perspectives. We see that the balanced superposition
θ = 45◦ of the state ρ̂ is always the highest.

If we want to interpret ∆ as a measure of non-Gaussianity, first of all, we have
to define properties of non-Gaussianity:
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Figure 2.3: The difference ∆ of Gaussian and non-Gaussian entanglement relative
to λ. The difference ∆ is always the highest for balanced superposition θ = 45◦.
The non-smooth point is connected with the non-smooth behavior of ENG

.

1. A non-Gaussianity is a functional from the set of quantum states to non-
negative real numbers F : S(H) → R0,+.

2. F is zero for Gaussian states F (ρ̂G) = 0, where ρ̂G is a Gaussian state.

3. Monotonicity under deterministic Gaussian operations, for any Gaussian
operation ΛG, the functional must not increase F (ρ̂) ≥ F (ΛG(ρ̂)).

Some additional properties are usually convexity and additivity [8].
Firstly, obtained function ∆ is invariant under local Gaussian operations be-

cause the logarithmic negativity should not change under local operations (one-
mode squeezers) [14]. However, non-local Gaussian operations (beam splitter)
can change the ∆, it can be seen in the next section, thus the third condition is
not satisfied.

Secondly, as you can see from the plots 2.2, it does not meet the second
condition for all λ. Thus we should look for a better (in terms of axioms) measure
of non-Gaussianity.

2.2.1 Looking for measure
In the following, we will use a series of Gaussian unitaries US acting on the state
|ψ⟩ to adjust ∆ in order to meet the axioms of the non-Gaussianity. We can
adjust the covariance matrix V of the non-Gaussian state ρ̂. The Williamson
form of Eq.1.59 transforms V to its symplectic diagonal form V ⊕. From the
discussion in the Bloch-Messiah section 1.5, we know that V ⊕ corresponds to the
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tensor product of two thermal states of Eq.1.68. Thus the Gaussian logarithmic
negativity

ENG
→ 0

should go to zero because the tensor product of two sub-systems is equivalent to
a separable state of the whole system. This modifies our measure to just

∆ = ENNG
. (2.8)

So our procedure is following, we have to find S that symplectically diagonalizes
the covariance matrix V , then find the corresponding Gaussian unitary US, and
eventually, we use this unitary to non-Gaussian state |ψ⟩, US|ψ⟩. The covariance
matrix V ⊕ of the state US|ψ⟩ gives ENG

= 0 and non-zero ENG
.

For the procedure described above, we use a slightly different form of the
Williamson decomposition than used in Eq.1.59

V ⊕ = SV ST.

We remind you, that we are able to find the symplectic eigenspectrum from the
Eq.1.62, so our problem reduces to find S from known V and V ⊕. Here comes
the Bloch-Messiah decomposition of Eq.1.70, we directly plug the decomposition
of S into the Williamson form

V ⊕ = SB2
[︂ 2⨁︂

k=1
SSq(rk)

]︂
SB1V S

T
B1

[︂ 2⨁︂
k=1

SSq(rk)
]︂
ST

B2.

From the Eq.1.40 we know the form of SBi and from the Eq.1.38 we know SSq.
This matrix equation has six variables (t1, t2, v1, v2, r1, r2), but just four of them
are independent due to conditions

t21 + v2
1 = 1, t22 + v2

2 = 1.

One of the tricks, how to simplify the system of these non-linear equations is
re-arrangement of the system in the following way:

ST
B2V

⊕SB2 =
[︂ 2⨁︂

k=1
SSq(rk)

]︂
SB1V S

T
B1

[︂ 2⨁︂
k=1

SSq(rk)
]︂
. (2.9)

Another trick consists of the transformation of the covariance matrix V of Eq.2.6.1
Basically, it is just a form change of the covariance matrix under local Gaussian
operations. The proof can be found in [34], the new form of the covariance matrix
is

V ′ ↔
[︂ 2⨁︂

k=1
SSq(r′

k)
]︂
V [

2⨁︂
k=1

SSq(r′
k)
]︂

(2.10)

where V ′ is simplified as follows

V ′ =

⎛⎜⎜⎜⎝
m 0 c+ 0
0 m 0 c−
c+ 0 n 0
0 c− 0 n

⎞⎟⎟⎟⎠
1We remind you, there is a simple relation between V and Ṽ , see 1.57.
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Matrix elements can be obtained from the elements of the covariance V

m = √
a1a2, n =

√︂
b1b2,

c+ = c1
4

√︄
a2b2

a1b1
, c− = c2

4

√︄
a1b1

a2b2
.

It is usually called the standard form of the covariance matrix. Therefore Eq.2.9
is

ST
B2V

⊕SB2 =
[︂ 2⨁︂

k=1
SSq(rk)

]︂
SB1V

′ST
B1

[︂ 2⨁︂
k=1

SSq(rk)
]︂
. (2.11)

After some time spent playing with the system of Eq.2.11, we are able to find
an equation that depends only on one of the four unknown variables, t2, this
equation is the order of eight with square roots

α1α2β1β2 − (ν+ν− + γ1γ2)2 = 0,

where

α1 = m+ 2c+t2
√︂

1 − t22,

α2 = m+ 2c−t2
√︂

1 − t22,

β1 = m− 2c+t2
√︂

1 − t22,

β2 = m− 2c−t2
√︂

1 − t22,

γ1 = c+(2t22 − 1),
γ2 = c−(2t22 − 1).

Probably it is not possible to find an analytical solution. We have used a nu-
merical solver implemented in Python library - Scipy. Solutions for remaining
variables can be found analytically. Now with solved variables at hand, we can
find the corresponding Gaussian unitaries USq(r1,2), UB1, UB2 from Eq.1.41 and
Eq.1.37. We should not forget about transformation into the standard form in
Eq.2.10, we have to also implement USq(r′

1,2). Therefore, we can write the Bloch-
Messiah decomposition of US

US = UB2
[︂ 2⨂︂

k=1
USq(rk)

]︂
UB1

[︂ 2⨂︂
k=1

USq(r′
k)
]︂

For given θ, we are able to plot ENNG
of the state US|ψ⟩ relative to λ, it is the

green curve in Figure 2.4. There is also ENG
, the blue curve, which is a control

curve of the algorithm of computation of US, we can see, that it is always zero,
thus our algorithm works fine. Figure 2.5 compares differences ∆ for more θ.

Comparing Figures 2.3 and 2.5 there is an interesting result, in the case of
θ = 45◦. It goes from maximum ∆ in the first Figure to minimum ∆ in the second
for all λ. But why? The ρ̂TMSV state from which ρ̂ originates is generated via
two one-mode squeezers and one beam splitter operation. After the action of US,
which consists of two beam splitters and two one-mode squeezers, the state US

is completely disentangled, one of the beam splitters is balanced and the other
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Figure 2.4: The logarithmic negativity relative to λ. The logarithmic negativity
ENNG

computed for non-Gaussian state US ρ̂U
†
S is represented by the green curve.

The logarithmic negativity of the ρ̂TMSV computed in one chosen procedure is the
grey curve. The logarithmic negativity ENG

of the Gaussified stat US ρ̂GU
†
S is the

blue curve.

has a transmissivity coefficient equal to one. Ideal beam splitters are reversible
devices.

Let us discuss the properties of the new ∆. The potential measure of non-
Gaussianity ∆ of the state US|ψ⟩ definitely fulfills the first condition, the logarith-
mic negativity ENNG

is always positive it can be seen from the definition. The sec-
ond condition is also fulfilled because for Gaussian states hold ENNG

= ENG
= 0.

The third condition - monotonicity: If we use a Gaussian unitary UG ≡ UB, USq

on a given state |ψ⟩
|ϕ⟩ ≡ UG|ψ⟩,

we can use the procedure above, but instead of looking for US, we have to look for
US′ which corresponds to S ′. This S ′ symplectically diagonalizes the covariance
matrix of the state |ϕ⟩. With that procedure the Gaussian logarithmic negativity
ENG

is always zero. What about ENNG
? Figure 2.6 is the same plot as the plot in

the left bottom corner in Figure 2.4. The green curve is the same non-Gaussian
logarithmic negativity of the state US|ψ⟩ and the non-Gaussian logarithmic neg-
ativities of the state US′|ϕ⟩ are the red and the orange curves. We have tried
random Gaussian unitaries, the red corresponds to UG = UB(θ = π/6) and the
orange one is UG = USq(r1 = 0.2). They both cover the green. Thus we have
numerically shown that ∆ = ENNG

is invariant under Gaussian operations. The
US′ always compensates for UG because US′ is a series of Gaussian operations.
Therefore, the third condition is also fulfilled.

Given any non-Gaussian state, we can find a corresponding Gaussified state.
To find the thermal decomposition 1.67 of the Gaussified state, we have to solve
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Figure 2.5: The difference ∆ relative to λ. The difference ∆ is the lowest for
balanced superposition θ = 45◦.

the Williamson decomposition 1.59 with the help of Bloch-Messiah decomposition
1.69. If we know the unitary operator occurring in thermal decomposition, we
act with it on a non-Gaussian state, then its Gaussified state is a separable
state of one-mode thermal states 1.68, thus Gaussian entanglement is zero and
the non-Gaussian entanglement is invariant under Gaussian operations. Any
Gaussian operation is compensated by Gaussian operations in the Bloch-Messiah
decomposition. Therefore, with this procedure at hand, the ∆ fulfills all axioms
of the non-Gaussianity measure.

We should comment on why the entropy of entanglement was not used even
if the two-mode squeezed state ρ̂TMSV and non-Gaussian state ρ̂ are both pure
states. The measure based on the difference of entropies of a non-Gaussian state
and its Gaussified state would not look like the difference of logarithmic negativ-
ities because Gaussian states are the states with the highest entropy [39]. The
entropy is invariant under unitary transformations and thanks to the Williamson
decomposition 1.59 every Gaussian state can be decomposed to the tensor product
of thermal states 1.68 and thermal states maximize the entropy. This property
can be used to define non-Gaussianity measure in the case of one-mode Gaussian
states because there is no entanglement [8]. It measures the distance between
the non-Gaussian states from the Gaussian ones in terms of entropy. In the case
of bipartite states, the entropy starts to measure also the entanglement of the
system. Thus it would not be clear, what the difference between non-Gaussian
entropy and Gaussian entropy would mean. The second reason is that we do not
know the form of the Gaussified state ρ̂G, it can be also the mixed state.
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Figure 2.6: The logarithmic negativity relative to λ. It is the same plot as the
plot in the left-bottom corner in Figure 2.4. It is the numerical proof of the
invariance of the ∆ under Gaussian operations. The red curve corresponds to
UG = UB(θ = π/6), the orange to UG = USq(r1 = 0.2).

2.3 Comparing to other measures

2.3.1 Wigner negativity
Going back to Figure 2.5, one may ask, if there is another measure of non-
Gaussianity to find the interpretation of ∆. As discussed in the section 1.7, there
is a measure of non-Gaussianity based on the Wigner negativity. Therefore, we
need to compute the Wigner function of a given non-Gaussian state. It turned
out, there is no algorithm for a calculation of the Wigner function in two modes.
We have taken the algorithm for computation of the Wigner function in one mode
in QuTip and we have tried to extend it to two modes. The original iterative
method is based on the definition of the Wigner function 1.22

W =
∑︂
nm

ρnmW̃ nm(x, p),

where ρnm is the matrix element of the density matrix ρ̂

ρ̂ =
∑︂
nm

ρnm|n⟩⟨m|

of a given state. Therefore W̃ nm is the Wigner function of an element n,m. Due
to the integral relation between Hermite and Laguerre polynomials [40], we can
express

W̃ nm = (−1)m

π

√︄
m!
n!
(︂√

2(x+ ip)
)︂n−m

e−(x2+p2)L(n−m)
m

(︂
2(x2 + p2)

)︂
,
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where Ln((α)y) is the associated n-th Laguerre polynomial. The algorithm itself
is based on the recurrence relation for the Laguerre polynomials. Our extension
consists of the addition of a second mode

W =
∑︂

n1m1n2m2

ρn1m1n2m2W̃ n1m1(x1, p1)W̃ n2m2(x2, p2).

After some time of calibration, we have partly succeeded because the algorithm
is really slow due to the product of two Laguerre polynomials. We are able to
compute the Wigner function in two modes.

We can use our algorithm to compute squeezed Wigner function of the US|ψ⟩.
Obviously, we are not able to show the whole four-dimensional Wigner space, we
have to choose which variables (x1, p1, x2, p2) we set to zero or to any other value.
It is a sort of cut of that space. In Figure 2.7 we chose one state with λ = 0.1
and θ = 45◦, we set p1 = p2 = 0. It has some Wigner negativity (at this stage it
is not important to quantify the Wigner negativity).

Compared with Figure 2.5 the state US|ψ⟩ for θ = 45◦ should be Gaussian
because ∆ = 0 but in Figure 2.7, you can clearly see, that the state for λ = 0.1
and θ = 45◦ is non-Gaussian. Even if the Figure shows only cut in the whole
Wigner space. Therefore the measure of non-Gaussianity ∆ does not measure the
non-Gaussianity based on the state’s negativity in the Wigner representation.
Nevertheless, the non-Gaussian states are not the only states with a negative
Wigner function. It remains open, to what a property of the non-Gaussian states
∆ measures.

The possible interpretation can be the following: From Figure 2.5 we see
that ∆ is always the highest for θ = 0◦, this corresponds to subtraction only
in one mode. So this state is created by the local non-Gaussian operation. We
also see that ∆ is always the lowest for θ = 45◦, this corresponds to balanced
subtraction from both modes. So this state is created by non-local non-Gaussian
operation. Therefore ∆ is not able to detect non-Gaussianity which was obtained
by non-local non-Gaussian operations. So even if the states with θ = 45◦ are
non-Gaussian ∆ vanishes.

In the next research, we should test more states, with multi-photon subtrac-
tion or photon addition. Also, the algorithm for the computation of the Wigner
function of multi-mode states should be optimized because we lacked computation
power during computations of highly squeezed states, high squeezing demanded
a higher size of the Fock basis.
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Figure 2.7: The Wigner function W (x1, 0, x2, 0) of the state US|ψ⟩ with λ = 0.1
and θ = 45◦.
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Conclusion
We have found the procedure how to find the measure of non-Gaussianity ∆ for
two-mode bipartite systems. It is based on the difference between non-Gaussian
and Gaussian entanglement of the state. With the usage of Gaussian unitaries, we
were able to vanish the Gaussian entanglement and the remaining non-Gaussian
entanglement meets the axioms of non-Gaussianity measure. However, it is not
clear what property of non-Gaussian states it measures. During the search for an
interpretation of the non-Gaussianity measure ∆, we have extended the numerical
algorithm for the computation of the Wigner function to two modes.

In future research, other two-mode Gaussian states should be tested, e.g.
multi-photon subtracted states or states with added photons. Based on the results
the property of non-Gaussian states which is measured by ∆ should be revealed.
If the interpretation is found, the research can have a significant impact in the
field of non-Gaussian states because it would give a new perspective on how to
look at non-Gaussian states. The understanding of non-Gaussian states implies
progress in the field of quantum computing.
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