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Introduction
One of the main challenges of creating a successful machine learning model is

obtaining labeled data. With easy access to a variety of modern tools, devices,
and sensors, we are able to rapidly collect unlabeled data. But, in supervised
learning, prediction models are trained using labeled data. The problem is that
acquiring labels for the collected data can be expensive, time-consuming, or even
impossibly difficult in some cases.

However, methods have been developed to help reduce the number of labeled
data required to train the classifier. Active learning is a semi-supervised machine
learning framework where the model is trained with a smaller set of labeled data
but which also aims to exploit trends within the unlabeled data. It’s a framework
in which the learner has the freedom to select which data points are added to its
training set (Roy and McCallum [2001]).

Active learning is different from other frameworks because it uses the unla-
beled data and some evaluation criteria to determine which candidate could be
the most beneficial to the model if it was given a label. The model requests the
label from some oracle that provides the label then it takes this new labeled data
and rebuilds the classifier. We describe it as semi supervised active learning be-
cause the model is initially trained on both the labeled and unlabeled data, and
then active learning is used to select the most informative examples for labeling.

In our case we will provide a set of labeled data to the active learning frame-
work (or sampling strategy). The sampling strategy will assume all the data is
unlabeled and then choose a candidate from the unlabeled data pool. Then the
label is revealed and the classifier is updated using the new data. The newly
labeled data is then added to the labeled pool and the process repeats.

We have some data (website urls) for some company or business that are given
to us from our partner. From this data our partner currently utilizes human labor
to browse the website and then label the url with a category (23 labels) and a sub-
category ( 234+ tags, that branch from the main category but still have some
relation). This is a repetitive and expensive task that could be supplemented
using active learning.

To reduce the amount of data required to train the classifier we consider a
combination of tools and frameworks, namely: Scrapy, Postgres, a translation
service, and an active learning sampling strategy paired with a classifier. We
also explore the use of different classifiers to determine if there is some optimal
classifier.

A website is required, then we use the Scrapy framework to navigate to the
webpage, and collect then store the scraped data into the database. Next we
access the data, translate the text, and add the translated data back into the
database. During this process we also remove the html and numbers.

Once the the data is close to just pure text we use TF-IDF to transform it into
a vectorized representation so we can use it with the classifiers. We experiment
with different classifiers to determine if there is some optimal classifier for our
data.

In the first section we introduce active learning and the different components
of active learning. In the second section we look more into the details of xPAL
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and how it works. In the third section we discuss the data and the steps we took
to collect and process the data. In the fourth and fifth sections we conduct a
variety of experiments to explore the performance of the sampling strategies and
alternative classifiers.

Our goal is to understand the entire process including the web scraping, trans-
lation, storage, and performance of the selection strategies and classifiers. This
analysis will allow our partner to learn from our tests and experiments. It will
also allow them to make an informed decision on which models and selection
strategies may be best suited for their needs moving forward.
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Definitions
In this section we define some terms and ideas that will be helpful in under-

standing the upcoming sections.

Definition 1 (Beta Prior). A beta prior is a conjugate prior for the binomial
distribution. It is a continuous probability distribution defined on the interval [0,
1] and is parameterized by two positive shape parameters, α and β. The beta
distribution is defined as:

Beta(α, β) = Γ(α + β)
Γ(α)Γ(β)xα−1(1 − x)β−1

where Γ is the gamma function and x is a random variable. The gamma function
is defined as:

Γ(x) =
∫︂ ∞

0
tx−1e−tdt

The gamma function is used as a normalizing constant to ensure that the proba-
bility density function integrates to 1 over the simplex, which is the space of all
probability vectors that sum to 1.

Definition 2 (Conjugate Prior). A conjugate prior is a prior distribution that is
in the same family of distributions as the likelihood function. In other words, the
posterior distribution will have a similar functional form to the prior distribution.

Definition 3 (Decision-Theoretic). Decision-theoretic active learning is a frame-
work that uses the expected performance gain of a candidate to determine which
candidate to label. The expected performance gain is the expected performance of
the classifier after labeling the candidate minus the expected performance of the
classifier before labeling the candidate. The expected performance of the classifier
is the expected value of the performance measure given the posterior distribution
of the classifier.

Definition 4 (Dirichlet Distribution). The Dirichlet distribution is a multivari-
ate generalization of the beta distribution. It is a continuous probability distri-
bution defined on the K-simplex, ∆K = {x ∈ R

K : xi ≥ 0,
∑︁K

i=1 xi = 1}. The
Dirichlet distribution is parameterized by a vector of positive shape parameters,
α = (α1, α2, . . . , αK). The Dirichlet distribution is defined as:

Dir(α) = Γ(∑︁K
i=1 αi)∏︁K

i=1 Γ(αi)

K∏︂
i=1

xαi−1
i

where Γ is the gamma function as defined in Definition 1 and where x is a random
vector.

Definition 5 (Ground Truth). Ground truth is the true label of a data point.

Definition 6 (Posterior Probabilities). Posterior probability is a type of condi-
tional probability that results from updating the prior probability with information
summarized by the likelihood via an application of Bayes’ rule. The posterior
probability is the probability of an event occurring given that another event has
occurred.
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Definition 7 (Omniscient Oracles). Omniscient oracle is a hypothetical entity
that has complete knowledge of the true labels of all data points in a given dataset.
An omniscient oracle knows the ground truth labels of all data points.

Definition 8 (TF-IDF). TF-IDF is a numerical statistic that is intended to
reflect how important a word is to a document in a collection or corpus. It is
often used as a weighting factor in information retrieval and text mining. The
TF-IDF value increases proportionally to the number of times a word appears
in the document and is offset by the frequency of the word in the corpus (large
structured set or collection of speech or text data).
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1. Active Learning

1.1 Introduction
Russel and Norvig succinctly define an agent and different types of learning

in their book ”Artificial Intelligence: A Modern Approach” (Russell and Norvig
[2009]), their definition is paraphrased here. They define an agent as something
that acts and a rational agent as one that acts so as to achieve the best outcome.
If there is uncertainty, then the agent tries to achieve the best expected out-
come. Any component of an agent can be improved by learning from data. The
improvements and techniques used to make them depend on four major factors:

1. Which component is to be improved.

2. What prior knowledge the agent already has.

3. What representation is used for the data and the component.

4. What feedback is available to learn from.

Here we will mostly be focused on the final point, ”What feedback is avail-
able to learn from”. However, we will also discuss the importance of the second
and third points because we will use Bayesian learning. There are three main
types of feedback that determine the three main types of learning, which are:
unsupervised, reinforcement, and supervised.

In unsupervised learning an agents goal is to discover patterns in the data
even though no feedback or labels are provided. In reinforcement learning, the
agent learns from a series of rewards or punishments that are dealt out based
on its decisions. In supervised learning, an agent learns from input-output pairs,
which can be discrete or continuous, to find a function that maps the pairs as
best as possible.

The goal of supervised learning, given a training set of N example input-
output pairs:

(x1, y1), (x2,y2),...(xN ,yN),

where each yj was generated by some unknown function y = f(x), is to find
a function h that approximates the true function f .

In reality, the types of learning overlap. In semi-supervised learning, some
data points are labeled, and some are not. The model is trained on the labeled
data, and then the knowledge gained from that labeled data is used to improve
the model’s predictions on the unlabeled data.

Supervised learning models almost always get more accurate with more labeled
data. Active learning is the process of deciding which data to select for annotation
(Munro [2021]). In other words, the central component of an active learning
algorithm is the selection strategy, or deciding which of the unlabeled data could
be the most useful to the model if it was labeled. Active learning uses a selection
strategy that augments the existing classifier, it is not itself a classifier but rather
an evaluation methodology working with a classifier.
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Many different sampling strategies exist. First we will discuss query functions
then we will briefly define three basic sampling strategies: uncertainty, diversity,
and random sampling to get an idea of sampling. We will then discuss some
other more advanced sampling strategies that are used in our experiments. When
sampling the unlabeled data an ordered list is returned and the top candidate is
the candidate that is expected to be most valuable for the model, but we are not
strictly limited to taking just one candidate.

1.2 Query Function Construction
There are various techniques used to construct the querying functions. We

will focus on pool-based active learning, but a number of interesting and relevant
ideas appear within other active-learning frameworks that are worth mentioning.

1.2.1 Pool-Based
In pool-based active learning, a fixed set of unlabeled examples is provided at

the start of the learning process, and the active learner iteratively selects a subset
of these examples for annotation (Huang and Lin [2016]). The selection of the
subset is based on a query strategy that aims to maximize the information gain
from each annotation. Pool-based active learning is useful in situations where
all the data is available in advance, such as in document classification or image
classification.

1.2.2 Stream-Based
In stream-based active learning, data arrives in a continuous stream, and

the active learner must make real-time decisions about which examples to label
(Baram et al. [2004]). This is common in settings such as sensor networks or
social media feeds. The selection of examples for annotation is based on a query
strategy that takes into account the current state of the model, as well as the
uncertainty and informativeness of each incoming example. The stream-based
model can be viewed as an online version of the pool-based model.

1.2.3 Membership Queries
In membership query based active learning, the active learner can make

queries to an oracle or construct a point in input space and requests its label
from an oracle, such as a human expert, to obtain labels for specific examples
(Baram et al. [2004]). The goal is to select the examples for which obtaining a
label is most informative, in order to minimize the number of queries required
to achieve a high accuracy. Membership-query-based active learning is useful
when labeling each example is expensive or time-consuming, such as in medical
diagnosis or legal document review.
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1.3 Sampling Strategies
Sampling strategies, also referred to as selection strategies, are the core of the

active learning process. The goal of sampling is to select the most useful data
points from the unlabeled pool to label. The most useful data points are those
that are expected to improve the classifier the most.

1.3.1 Random Sampling
Random sampling is self explanatory as it randomly selects an unlabeled data

point from the pool and requests to have it labeled then it uses this newly selected
data point to update the model. Random sampling is good to use as a baseline
to compare other sampling strategies with.

1.3.2 Diversity Sampling
Diversity sampling is the set of strategies for identifying unlabeled items that

are underrepresented or unknown to the machine learning model in its current
state (Munro [2021]). The items may have features that are unique or obscure
in the training data, or they might represent data that are currently under-
represented in the model.

Either way this can result in poor or uneven performance when the model
is applied or the data is changing over time. The goal of diversity sampling
is to target new, unusual, or underrepresented items for annotation to give the
algorithm a more complete picture of the problem space.

1.3.3 Uncertainty Sampling
Uncertainty sampling is based on the idea that the most informative examples

to query are the ones that the current model is most uncertain about. For exam-
ple, in binary classification, an uncertain example might be one that is close to
the decision boundary, or one that has a low predicted probability for the major-
ity class (Munro [2021]). The idea is that by querying these uncertain examples,
the model can better learn the boundary between the classes and improve its ac-
curacy. Uncertainty sampling is simple given a classifier that estimates P (C|w)
(Lewis and Gale [1994]). On each iteration, the current version of classifier can
be applied to each data point, and the data with estimated P (C|w) values closest
to 0.5 are selected, since 0.5 corresponds to the classifier being most uncertain of
the class label.

These items are most likely to be wrongly classified, so they are the most
likely to result in a label that differs from the predicted label, moving the decision
boundary after they have been added to the training data and the model has been
retrained.

1.3.4 EER
Monte Carlo estimation of error reduction (EER) estimates future error rate

by log-loss, using the entropy of the posterior class distribution on a sample of the
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unlabeled examples, or by 0-1 loss, using the posterior probabilities of the most
probable class for the sampled unlabeled examples (Roy and McCallum [2001]).

Basically, the goal is to estimate the expected reduction in error for each
unlabeled example by randomly sampling from the model’s predictions and com-
paring the performance of the model with and without the example included in
the training data.

1.3.5 PAL
Probabilistic Active Learning (PAL) follows a smoothness assumption and

models for a candidate instance both the true posterior in its neighborhood and its
label as random variables (Krempl et al. [2014]). By computing for each candidate
its expected gain in classification performance over both variables, PAL selects the
candidate for labeling that is optimal in expectation. PAL shows comparable or
better classification performance than error reduction and uncertainty sampling,
has the same asymptotic linear time complexity as uncertainty sampling, and its
faster than error reduction based on the tests from the paper.

1.3.6 xPAL
Extended probabilistic gain for active learning (xPAL) is a decision-theoretic

selection strategy that directly optimizes the gain and misclassification error,
and uses a Bayesian approach by introducing a conjugate prior distribution to
determine the class posterior to deal with uncertainties (Kottke et al. [2021]).
Although the data distribution can be estimated, there is still uncertainty about
the true class posterior probabilities.

These class posterior probabilities can be modeled as a random variable based
on the current observations in the dataset. For this model, a Bayesian approach
is used by incorporating a conjugate prior to the observations. This produces
more robust usefulness estimates for the candidates.

1.3.7 ALCE
Active Learning with Cost Embedding (ALCE) is a non-probabilistic uncer-

tainty sampling algorithm for cost-sensitive multiclass active learning (Huang and
Lin [2016]). First a cost-sensitive multiclass classification algorithm called cost
embedding (CE) was designed, which embeds the cost information in the dis-
tance measure in a special hidden space by non-metric multidimensional scaling.
Then a mirroring trick was used to let CE embed the possibly asymmetric cost
information in the symmetric distance measure.

It works by augmenting the example space with an additional dimension that
represents the cost of labeling each example. This cost embedding can be learned
from previous labeling efforts or estimated based on domain knowledge. The cost
embedding can then be used to guide the active learning process by selecting
examples that are not only informative but also cost-effective to label.
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1.3.8 QBC
Query By Committee (QBC) uses an ensemble of classifiers that are trained

on bootstrapped replicates of the labeled set (Seung et al. [1992]). The idea is
to train a committee of classifiers on the available labeled data and then use the
committee to select the most informative unlabeled data for labeling (Freund
et al. [1997]). The committee consists of several classifiers, each trained on a
slightly different subset of the available labeled data.

The QBC algorithm measures the disagreement of the committee’s predictions
on each unlabeled data point. The intuition is that if the committee members
disagree then it is likely to be a difficult data point for the current classifier and
thus informative for labeling.

The algorithm selects a fixed number of the most informative examples and
requests their labels. The labeled examples are then added to the labeled pool,
and the committee is retrained on the expanded labeled pool. This process is
repeated until the algorithm achieves a desired level of accuracy or the available
labeling budget is exhausted.

1.4 Classifiers
The classifier integrated into the active learning sampling strategy repository

we used is the Parzen Window Classifier (PWC). It is a non-parametric method
used for classification and density estimation in machine learning. It works by
estimating the probability density function of a given class using a kernel density
estimator, and then using Bayes’ theorem to classify new instances based on their
estimated probability densities.

We will also explore using other classifiers from Scikit-Learn and TensorFlow
and compare their performance on the data without using active learning to see
if there is any improvement beyond the PWC classifier.

1.5 Summary
It should now be more clear how the sampling strategy is the major component

of active learning. The query function construction is also important but it is
just a means of routing the data to be sampled. In the next chapter we will look
into the specifics of xPAL.
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2. Defining xPAL
We have introduced many different active learning sampling strategies in the

previous section, and we will use them to test which strategy performs best with
our data. However, we will mainly focus on using the xPAL sampling strategy
and a pool based query function. The xPAL sampling strategy is a decision-
theoretic approach to measure the usefulness of a labeling candidate in terms of
its expected performance gain (Kottke et al. [2021]). We can estimate the data
distribution but we are uncertain about the true class posterior probabilities.
The class posterior probabilities are modeled as a random variable based on the
current observations. Therefore a Bayesian approach is used by incorporating
a conjugate prior to the observations. In general, the idea is to estimate the
expected performance gain for the classifier, using the unlabeled data, and then
select the best data point and request or reveal its label. Descriptions of the
variables used throughout the paper are listed in Table 2.1.

Descriptions
C Number of classes
x Input x ∈ RD (D-dimensional vector space)
y Class label y ∈ Y
Y Set of all labels Y = {1,...,C}
fL Classifier that maps input x to label y using L
L Loss
R Risk
RE Empirical risk
L Set of labeled data {(x1,y1),...,(xn,yn)}
U Set of unlabeled data {x1,...,xn}
E Set of available labeled and unlabeled data {x : (x,y) ∈ L} ∪ U

Table 2.1: Variable names and descriptions.

2.1 Kernel
A kernel based classifier is used in xPAL which determines the similarity of

two data points. The kernel function K(x,x′) is a function that maps two data
points to a real number, which is then used to estimate the probability density of
the data. The kernel frequency estimate kL

x of an instance x is calculated using
the labeled instances L. The y-th element of that C-dimensional vector describes
the similarity-weighted number of labels of class y.

kL
x,y =

∑︂
(x′,y′)∈L

1y=y′K(x,x′) (2.1)

The Parzen Window Classifier uses the labeled data for training and predicts
the most frequent class and was selected by Kottke et al. to use because of its
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speed and ability to implement different kernels depending on the data (Kottke
et al. [2021]). It was used for all the selection strategies in their experiments.

fL(x) = arg max
y∈Y

(︂
kL

x,y

)︂
. (2.2)

We will use the PWC classifier for our experiments because that is what is
implemented with the active learning strategies, but we will also evaluate other
classifiers and compare their performance less active learning.

2.2 Risk
For xPAL, Kottke et al. use the classification error as the performance measure

and minimize the zero-one loss. The risk describes the expected value of the loss
relative to the joint distribution given some classifier. The zero-one loss returns
0 if the prediction from the classifier is equal to the true class else it returns
1. The risk is a theoretical concept that cannot be computed directly since it
requires knowledge of the entire population distribution. Instead, we typically
try to approximate the risk using the empirical risk.

R(fL) = E
p(x,y)

[L(y,fL(x))] (2.3)

= E
p(x)

[︄
E

p(y|x)
[L(y,fL(x))]

]︄
(2.4)

L(y,fL(x)) = 1fL(x)̸=y (2.5)

Because it is not known how the data is generated Kottke et al. use a Monte-
Carlo integration with all available data E to represent the generator. The em-
pirical risk RE is the average of the loss over all data in the dataset. It refers to
the average value of a given loss function over a finite set of observed data points.

RE(fL) = 1
|E|

∑︂
x∈E

E
p(y|x)

[︂
L(y,fL(x))

]︂
(2.6)

= 1
|E|

∑︂
x∈E

∑︂
y∈Y

p(y|x)L(y,fL(x)) (2.7)

The empirical risk is a computable quantity that can be used as an estimate
of the risk. However, it is only an approximation and is subject to sampling error.

2.3 Conjugate Prior
The conditional class probability p(y|x) depends on the ground truth which

is unknown. The conditional class probability is exactly the y-th element of the
unknown ground truth vector p. The ground truth is an unknown but fixed
deterministic function t : RD → [0,1]C that maps an instance x to a probability
vector p. The nearby labels from L can be used to estimate the ground truth
p because the oracle provides the labels according to p. If we assume a smooth
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distribution then the estimate is relatively close to the ground truth if we have
enough labeled instances.

p(y|x) = p(y|t(x)) = p(y|p) = Cat(y|p) = py (2.8)
A Bayesian approach is used for estimation by calculating the posterior pre-

dictive distribution (calculating the expected value over all possible ground truth
values). The probability of y given some x is approximately equal to the kernel
frequency estimate of x.

p(y|x) ≈ p(y|kL
x ) = E

p(p|kL
x )

[py] =
∫︂

p(p|kL
x )pydp (2.9)

Bayes theorem is then used to determine the posterior probability of the
ground truth at instance x in Equation 2.10. The likelihood p(kL

x |p) is a multi-
nomial distribution because each label has been drawn from Cat(y|p). A prior
is introduced and selected as a Dirichlet distribution with α ∈ R

C as this is the
conjugate prior of the multinomial distribution. An indifferent prior is chosen and
each element of alpha is set to the same value. The Dirichlet distribution is an
analytical solution for the posterior when the conjugate prior of the multinomial
likelihood are used.

p(p|kL
x ) = p(kL

x |p)p(p)
p(kL

x )
(2.10)

= Mult(kL
x |p) · Dir(p|α)∫︁

Mult(kL
x |p) · Dir(p|α)dp

(2.11)

= Dir(p|kL
x + α) (2.12)

The conditional class probability is determined next from Equation 2.9. It is
calculated with the expected value of the Dirichlet distribution.

p(y|kL
x ) = E

Dir(p|kL
x +α)

[py] (2.13)

=
∫︂

Dir(p|kL
x + α)pydp (2.14)

= (kL
x + α)y

||kL
x + α||1

(2.15)

The last term is the y-th element of the normalized vector. The 1-norm is
used to normalize the vector.

2.4 Risk Difference Using the Conjugate Prior
Next, we insert equation 2.15 into the empirical risk equation 2.7. We are

approximating p(y|x) with p(y|kL
x ) which is the empirical risk based on the labeled

data L.

R̂E(fL, L) = 1
|E|

∑︂
x∈E

∑︂
y∈Y

(kL
x + α)y

||kL
x + α||1

· L
(︂
y,fL(x)

)︂
. (2.16)
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Now lets assume we add a new labeled candidate (xc,yc) to the labeled data
set L. We will now denote the set with the newly labeled data point L+ =
L∪{(xc,yc)}. Next we need to determine how much this new data point improved
our classifier. We then make an estimate of the gain in terms of risk difference
using the probability to estimate the ground truth.

∆R̂E(fL+
, fL, L+) = R̂E(fL+

, L+) − R̂E(fL, L+) (2.17)

= 1
|E|

∑︂
x∈E

∑︂
y∈Y

(kL+

x + α)y

||kL+
x + α||1

·
(︂
L(y,fL+(x)) − L(y,fL(x))

)︂
(2.18)

The observations used to estimate the risk are the same for both the old
and new classifiers. We do this because we assume that adding labeled data
will make the classifier better, so this allows us to more accurately compare the
current classifier and the new one.

2.5 Expected Probabilistic Gain
If we are able to reduce the error with the new L+ model then equation 2.18

will be negative. As a result, we negate this term and maximize the expected
probabilistic gain. To simplify things we set α = β.

xgain(xc, L, E) = E
p(yc|kL

xc
)

[︂
−∆R̂E

(︂
fL+

, fL, L+
)︂]︂

(2.19)

= −
∑︂
y∈Y

(kL
x + β)y

||kL
x + β||1

· 1
|E|

∑︂
x∈E

∑︂
y∈Y

(kL+

x + α)y

||kL+
x + α||1

·
(︂
L(y,fL+(x)) − L(y,fL(x))

)︂
(2.20)

Finally, for the xPAL selection strategy, we simply choose this candidate x∗
c ∈

U where the gain is maximized:

x∗
c = arg max

xc∈U
(xgain(xc, L, E)) . (2.21)
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3. Related Works
The main paper that influenced our work is called ’E-Commerce Merchant

Classification using Website Information’ published by Sahid et al. [2019]. In this
paper the authors test different text processing strategies, embeddings, machine
learning methods, and scraping methodologies.

3.1 E-commerce Merchant Classification
The authors explaining the importance of e-commerce and the need for accu-

rate classification of e-commerce merchants for market analysis and risk manage-
ment in relation to using a payment gateway service. In their case it is important
to classify a merchant to see if they are in a high risk category. They then de-
scribe the proposed method, which consists of three main stages: data collection,
data preprocessing, and merchant classification.

In the collection stage, the authors collect data from e-commerce websites
using a web crawler. They extract the html text data from the home page and
various sibling pages, depending on the experiment.

In the preprocessing stage, the authors perform several steps to clean and
transform the data. They remove missing and redundant features, characters
of length 1 or 2 and sequences of numbers. Next, they use TF, TF-IDF, or
embedding to create their dataset.

In the merchant classification stage, the authors apply several machine learn-
ing algorithms, including Decision Trees, Naive Bayes, k-NN, MLP, Logistic Re-
gression, and Support Vector Machine (SVM) to classify the e-commerce mer-
chants into several categories, such as electronics, flowers, and gambling. They
evaluate the performance of each algorithm using several metrics, such as accu-
racy, precision, recall, and F1 score.

The experimental results show that the proposed method outperforms the
baseline method in terms of classification accuracy and other metrics. The SVM
algorithm achieves the highest macro averaged F-score of 0.83 indicating that the
proposed method is effective in classifying e-commerce merchants based on their
website data.

3.2 Influence
The e-commerce paper helped guide us in our work because we used lessons

they learned to tailor our approach. For example, we focused on scraping data
from just the home page and using TF-IDF instead of exploring other meth-
ods. However, we also incorporate active learning which was not used in the
e-commerce paper.
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4. Data Review
In this chapter we take a deeper look into the data and the process of collect-

ing, translating, and encoding. Our partner has provided a small sample of 1000
labeled data points. This data was manually labeled by a human annotator.

4.1 Overview
The provided data consists of a merchant name, merchant website (url), mer-

chant category, and merchant tag as shown in Table 4.1.

merchant name merchant url merchant category merchant tags
State Hospital http://hospital.com/ Health ’{”Clinic”}’

Table 4.1: This is a faux example of a single data point.

The current process consists of giving the merchant url to an annotator. The
annotator then views the website and can instantly (after viewing the homepage)
provide a label and tags for the website. However, in some cases the annotator
may need to browse further (by viewing sibling pages such as the ’About Us’
section or individual product pages) to get an idea of how the website should be
labeled.

The annotator simply needs to view then mentally process the text and images
from the website and make some reasonable decisions on how the site should be
classified. However, the annotator does not record what the content on the site
said or what drove them to make their decision.As a result we are missing a key
portion of data for the classification process, the text.

Tags are also used when labeling the data to provide further granularity.
The merchant tags are ordered by specificity, with the first tag in the list being
the most general and the final being the most specific. An example of the tag
hierarchy is show in Table 4.2 where we can see that this sample consists of data
from various categories all contained within the ’Eco’ side tag grouping.

Category Level 1 Tag Level 2 Tag Level 3 Tag Side Tag
Travel Local Transport Micro-mobility Bike Sharing Eco

Public Transport Eco
Fashion Clothing - Other Second Hand Eco
Car Charging Station Eco

Car Sharing Eco

Table 4.2: This is an example of how the tags use different levels.

The tags are important because they allow us to separate the data even further
and group or sort the data differently. However, in our work we didn’t opt to
include the tags in the classification or selection strategy process at this time.
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4.2 Collection
Our goal is to automate the website navigation and data collection, data

storage, and classification. This has the potential to speed up the browsing
process in comparison to current methods. We make the obvious checks to see
if the website has already been scraped and stored in the database to ensure we
are not wasting time and resources.

The labels needed to be augmented with the text from the websites. For the
human annotator, this text data is simply stored in their short term memory
while they view the website. Once they have a category for the website they can
mostly forget about the text data and move on to assigning a category to the
next website.

To gather the text data from the websites we used the Scrapy framework to
extract text data from a single top level page from the website. We chose only to
scrape the top level (main or home) page text because of the results published in
another study where it was observed that adding more pages to the data set does
not necessarily mean obtaining better classification results (Sahid et al. [2019]).

Out of these initial data points 184 contained links that could not be accessed
or links that provided no text data that could be scraped. Two websites were
particularly problematic. Facebook and Instagram both are used by businesses as
main information webpages. However, neither site allows for simple text scraping
and a more advanced approach would be needed to extract data from business
with information on these platforms. In an effort to reduce the complexity of our
scraper we decided to not create an additional scraper or integrate an API to
handle these websites. Out of the remaining 816 data points 275 of them were in
English. Out of the remaining 275 English data points the data was distributed
into the categories as shown in Figure 4.1.

Our goal was to see how well the classifier and active learning sampling strate-
gies would perform with limited data, but 275 samples with 23 categories was a
bit to small and we still had a significant amount of data that wasn’t being used
(i.e. the untranslated data). It was clear we needed to find a way to translate the
existing data. We tried various libraries available on GitHub but weren’t getting
good consistent results and we were hitting API request limits. After some time,
we found that Azure had a service available and a free option of up to 2 million
characters translated per month. This was a viable option and we were able to use
this API to translate the remaining data. We limited the number of characters
to 1000 per non English data point from the scraped text to avoid maxing out
the API. After translating the non English data we had an additional 541 data
points in English, giving us a total of 816 English samples, which was enough for
us to get started with testing.

4.3 Processing
It is important for us to have the data in English as it allows us to exploit

stop words when using the Scikit-Learn TF-IDF vectorizer to construct our data
set. Stop words are words like “and”, “the”, “him”, which are presumed to be
uninformative in representing the content of a text, and which may be removed
to avoid them being construed as signal for prediction (Pedregosa et al. [2011]).
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This holds true for our data set as well because we are not analyzing the text
for sentiment or other linguistic features. We are simply looking for the most
common words in each category.

Before we opted to translate the data we tried to make what we had in english
work. But we found that the ’Food and Drink’ category has many more data
points then the ’Culture’ and ’Investments’ categories which each had a single
data point, see Figure 4.1. The ’Children’ and ’Financial Services’ categories
weren’t represented at all. Obviously this was problematic because we would like
to have, minimum, three data points in each category to build train and test
sets. This was the moment it was clear that our data set wasn’t representing all
categories equally and we needed to translate the other text.

A
tm

B
ea
u
ty

B
il
ls

A
n
d
H
ou

se
h
ol
d

C
ar

C
h
il
d
re
n

C
on

su
m
er

G
o
o
d
s

C
u
lt
u
re

D
ig
it
al

S
er
v
ic
es

D
ru
gs
to
re

E
le
ct
ro
n
ic
s

F
as
h
io
n

F
in
an

ci
al

S
er
v
ic
es

F
o
o
d
A
n
d
D
ri
n
k

F
re
et
im

e

G
ro
ce
ri
es

H
ea
lt
h

H
ou

se
A
n
d
G
ar
d
en

In
ve
st
m
en
ts

P
et
s

P
ro
fe
ss
io
n
al

S
er
v
ic
es

S
h
op

p
in
g
O
n
li
n
e

S
p
or
t

T
ra
ve
l

Categories

0

20

40

60

80

100

C
ou

n
t

Original English Data

Figure 4.1: The histograms for the original usable english data.

An example of the first 100 characters of scraped text data from a website
is shown in Table 4.3. The scraped text data is a single string of text that is
a concatenation of all the text data pulled from the website url with the html
removed.

Table 4.3: Raw text collected by scraper and the translated text.

Raw DentalVision - Profesionálńı soukromá zubńı klinika v
centru Hradce Králové ÚvodSlužby a ceńıkOrdina

Translated DentalVision Professional private dental clinic in the
center of Hradec Králové IntroductionServices

We can see that html and other symbols are removed and the majority of the
words were translated. There are still some issues with words being concatenated
such as ’IntroductionServices’ however we do try to separate these words after
translation using regex, before passing the text to the TF-IDF vectorizer.

To complement the original data we manually collected and labeled 141 addi-
tional data points for the categories that had low representation. This consisted
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of searching the internet for lists of websites similar to the ones in each category.
Next we would browse the site to see if it was relevant and then add it to our list
of additional websites and provide it a label. This was necessary because some
categories only had 2 or 3 samples, however it was quite time consuming. The
additional data are almost all from English language websites, this made it easier
for us to explore and provide accurate labels for the sites. These data group splits
will be referenced in the following experiments and a table of the exact counts
for each group can be found in the Attachments in Table A.1. In Figure 4.2. we
show a bar chart of the counts of the original data and the additional data for
each category and for each language, with the two letter language codes used to
represent the languages.
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Figure 4.2: The histograms for the original and additional data for all languages.

After translating the data we used the TF-IDF vectorizer from Scikit-Learn.
TF-IDF is an important tool commonly used in natural language processing and
data science. The first part, TF, stands for term frequency and is a measure of
how often a term appears in a document, while IDF (inverse document frequency)
is a measure of how important a term is in a set of documents. The idea behind
IDF is that a term that appears in many documents is less important than a term
that appears in only a few documents, as the former is likely to be more common
and less discriminative. The formula for calculating TF-IDF is as follows:

TF-IDF = TF × IDF (4.1)
where:

TF = number of occurrences of term t in document
total number of terms in document

IDF = loge

(︄
total number of documents

number of documents with term t in it)
)︄
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To calculate the TF-IDF score for a given term in a document, we would
first calculate the term frequency then calculate the inverse document frequency
multiply them to get the TF-IDF score for the term in the document as shown
in Equation 4.1.

This process is repeated for each term in each document in the corpus, result-
ing in a TF-IDF matrix that can be used for various natural language processing
tasks such as text classification, information retrieval, and clustering. It is im-
portant to understand TF-IDF because it is the basis for the feature selection we
use throughout our experiments.

4.4 Statistical Tests
We explored statistical significance of the relationship between variables and

identifying highly contributing variables using chi-squared analysis, variable im-
portance, and Fisher’s exact test with all useable data. We also explored dimen-
sionality reduction techniques with PCA but found no significant results.

4.4.1 Chi-squared
Chi-squared analysis is a statistical method used to determine the association

between two categorical variables. It is used to test whether two categorical vari-
ables are independent of each other or not. In other words, it helps to determine
if there is a significant relationship between two variables.

The chi-squared test involves comparing the observed frequencies of each cat-
egory in a contingency table to the expected frequencies. A contingency table is
a two-dimensional table that shows the frequency distribution of two categorical
variables. The expected frequencies are the frequencies that would be expected
if the two variables were independent. The difference between the observed and
expected frequencies is then squared, divided by the expected frequency, and
summed over all categories to give the chi-squared statistic. The formula for
calculating the chi-squared statistic is as follows:

χ2 =
∑︂ (Oi − Ei)2

Ei

(4.2)

where:

χ2 = the chi-squared statistic
Oi = the observed frequency of category i

Ei = the expected frequency of category i

The degrees of freedom for the chi-squared test are calculated as (number of
rows - 1) x (number of columns - 1). The chi-squared statistic is then compared to
a critical value from a chi-squared distribution table with the degrees of freedom
and a specified level of significance. If the calculated chi-squared statistic is
greater than the critical value, then we reject the null hypothesis that the two
variables are independent.

Some categories such as ’Culture’, ’Digital Services’, ’Shopping Online’ that
have few data points have words such as ’kihnu’, ’synnex’, ’joom’, respectively,
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which have no relative meaning to the category in English but also may show
the limitations of our website scraping and translation capabilities. We have a
problem where some words are actually important but weren’t translated cor-
rectly such as ’maso’ in the ’Groceries’ category, which means ’meat’ in Czech.
See Table 4.4 for more information.

From what we discussed in the previous section, we can see that the ’Culture’
category has only one data point and the ’Digital Services’ category has only two
data points. This is problematic because if the single data point we have doesn’t
represent the category well then we will continue to have difficulty classifying
until we have more robust data.

Table 4.4: Keywords from TF-IDF with chi-squared using all useable data.

Keyword 1 Keyword 2 Keyword 3
Atm caixa bank banking
Beauty hairdressing hairdresser hair
Bills And Household internet fullness trash
Car parts auto car
Children toy toysrus toys
Consumer Goods smoke flowers flower
Culture museum kihnu theater
Digital Services salesforce bitly servers
Drugstore walgreens detergent drimble
Electronics onoff electronics computers
Fashion jewellery women men
Financial Services venmo mutual retirement
Food And Drink bar cafe restaurant
Freetime lanes casino bowling
Groceries kohl maso bakery
Health patient pharmacy dental
House And Garden paints garden hardware
Investments tesla financial investment
Pets animal veterinary pet
Professional Services headhunters school parcel
Shopping Online default joom ends
Sport hydrogen functional singltrek
Travel accommodation rooms hotel

Realistically, chi-squared may not be the best statistical method to use with
our data because we have some categories that have very few samples. However,
we still wanted to also explore variable importance.

4.4.2 Variable Importance
Variable importance analysis is used to identify the most important predictors

or variables that contribute to a particular outcome. This analysis can help to
identify which variables are most predictive and should be included in a predictive
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model, or which variables may need further investigation to better understand
their relationship to the outcome.

We calculated the variable importance using the RandomForestRegressor from
Scikit-Learn and provided a list of the top 20 most important words from the
TF-IDF vectorizer. In the context of a random forest regression model, variable
importance refers to the relative importance of each input feature used in the
model. It is an ensemble machine learning technique that builds multiple decision
trees, each using a random subset of the features and samples from the training
data. The random forest combines the predictions of all the decision trees to
generate the final output.

The variable importance in a random forest model is based on the Gini im-
purity. The Gini impurity measures the degree of randomness or impurity in a
decision tree node. A low impurity indicates that a node contains mostly one
class, while a high impurity indicates that a node contains an equal number of
different classes. The Gini importance of a variable is calculated as the sum of
the Gini impurity decreases across all the decision trees that used that variable
as a split criterion. The higher the Gini importance of a variable, the more it
contributes to reducing the overall impurity of the decision tree nodes and hence
the model.

The feature importances attribute returns an array of values, one for each
input feature, that represent the relative importance of the feature in the random
forest model, the results for our data can be found in the Attachments in Table
A.2.

4.4.3 Fisher’s Exact Test
Fisher’s exact test is a statistical significance test used in the analysis of

contingency tables. It is used to determine whether or not there is a significant
association between two categorical variables. Technically, Fisher’s exact test is
appropriate for all sample sizes. However, the number of possible tables grows at
an exponential rate. Therefore it’s typically best for smaller sample sizes.

In our case, we constructed a contingency table with one category versus
the rest of categories for each word. We then calculated the p-value for each
word using Fisher’s exact test. The p-value is the probability of observing a test
statistic at least as extreme as the one that was actually observed, assuming that
the null hypothesis is true. The null hypothesis is that the two variables are
independent. If the p-value is less than the significance level, then we reject the
null hypothesis and conclude that the two variables are dependent.

Typically a significance level of 0.05 is used but it may be wise to consider
the Bonferroni correction to account for multiple comparisons in our case. As
a result, we would need to adjust the significance level to 0.05 divided by the
number of categories. This would give us a new significance level of 0.0022 and
we would reject the null hypothesis for words with a p-value less than this. Our
results can be found in the Attachments in Table A.7.

23



5. Testing with Original Data
Here we will explore the results of different classifiers and active learning

strategies on the original data. The original data consists of data discussed pre-
viously in Figure 4.1 and shown discretely in the Attachments in Table A.1. The
original data was comprised of the original English and translated data but not
the additionally collected data.

5.1 PWC, RBF Kernel, and Active Learning
In our first experiment we used the radial bias function (RBF) kernel which

is a popular kernel function. It is defined as:

K(xi, xj) = exp
(︄

−∥xi − xj∥2

2σ2

)︄
(5.1)

where σ is a parameter that controls the smoothness of the kernel and xi and
xj are the two points in the feature space to compare. The budget is the number
of available samples we can use to train the classifier, where the active learning
method selects the next sample to add to the labeled data. Here, it is set to 612
which is 75% of the the available samples. The remaining samples are used for
calculating the test error. In later experiments we reduce the budget to decrease
the evaluation time.

In Figure 5.1 we have the train and test errors for four different active learning
sampling strategies. XPAL appears to find the best examples to reduce the test
error the fastest but all sampling strategies appear to plateau around the 50%
error mark.

5.2 PWC, Cosine Kernel, and Active Learning
In Figure 5.2 we have the train and test errors for the same four different active

learning sampling strategies tested on the same data. The only change was that
we used cosine kernel instead of the RBF kernel.The cosine kernel is another
important kernel function that is used in many machine learning algorithms. It
is defined as:

K(xi, xj) = xi · xj

∥xi∥ ∥xj∥
(5.2)

where xi and xj are the two points in the feature space to compare. We
found that we got better and more responsive results using the cosine kernel in
comparison to the RBF kernel.

In Figure 5.2 it seemed that PAL and xPAL were able to reduce the training
error, early in the training process compared to random selection and QBC. We
also tested the other sampling strategies with the cosine kernel and found that
the results were similar. The other sampling strategies and their test data results
are shown in Figure 5.3 along with the test data from Figure 5.2.
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Figure 5.1: Train and test error using different query strategies and RBF kernel
for the PWC classifier using the original data.

We can see that the sampling strategies test performance converges over time
(as we are using the same data and classifier). XPAL appears to be performing
well early on in the training process, in the 100-200 budget range. This test is
only showing the results of one data split. We can get a better idea if we run
more tests with different train-test splits and average the results.

Figure 5.3 shows that xPAL seems to be performing the best with our data
but we wanted to see if we ran more tests with different train-test splits how the
results would average out and which sampling strategy would perform the best
on average. We ran 10 different data splits with each of the 7 sampling strategies
and then took the average to get a smoother curve compared to the single run
results shown in Figure 5.3. The results for this experiment are shown in Figure
5.4.

It is clear in Figure 5.4 that xPAL is performing the best early on (budget
from 0-100) in the sample selection process. XPAL selects the data that minimizes
the test error and builds the strongest classifier quickly while it takes the other
sampling strategies more to get to the same level of performance. Around the
100 budget mark we can see that the other selection strategies catch up to xPAL
performance wise. We want to note that for each plot where we averaged query
strategies (10 runs/ splits per query strategy) that it took 24 hours on average
to run the experiment on a CPU cluster, with PAL taking the longest of any of
the sampling strategies.
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Figure 5.2: Train and test error using different query strategies and cosine kernel
for the PWC classifier using the original data.

5.3 Classifier Evaluation
We also decided to test out some classifiers from the Scikit-Learn library

to compare performances. We used the original data with TF-IDF vectorizer
methodologies in all following chapters. It should be noted that cross validation
was used here for evaluation but it was not used in the previous sections.

The goal of this exploratory phase was to try and decide which classifier to
conduct more thorough testing with. As a result, we didn’t use GridSearchCV
for each classifier at this stage and we mostly used the default parameters and
their cross validation scores with all of the original data (i.e. additional data not
included). In some cases where using weights was an option for the classifier we
included the precomputed cosine decay weights. A table of the parameters used
for each classifier is shown in the Attachments in Table A.4.

The results for the different classifiers are shown in Figure 5.5. In the box-
plot, the whiskers extend from the box to the furthest data points that are within
1.5 times the inter-quartile range (IQR) of the box. Any data points that are
beyond the whiskers are considered outliers and are plotted as individual points
or symbols (diamonds) as seen in the figure.

The base LinearSVC classifier model performed best compared to other clas-
sifiers and it is a fast running algorithm even with data that has many features.
We decided to look further into LinearSVC because it performed well.

The LinearSVC is a type of machine learning algorithm that can be used for
binary or multiclass classification problems. It’s designed to predict one of two

26



0 50 100 150 200 250 300

Budget

0.0

0.2

0.4

0.6

0.8

1.0

E
rr
o
r

alce

entropy

log-loss

pal

qbc

random

xpal

Figure 5.3: Comparing test error with one data split using different query strate-
gies and cosine kernel for the PWC classifier using the original data.

possible outcomes based on a set of input features.
The basic idea behind the LinearSVC is to find the best line (or hyperplane)

that can separate the two classes in the feature space. To do this, the algorithm
looks for the line that maximizes the margin between the two classes. The margin
is the distance between the decision boundary (i.e., the separating line) and the
closest data points from each class. By maximizing the margin, the LinearSVC
can achieve good generalization performance on new data.

In the case of multiclass classification, the LinearSVC works by dividing the
data into multiple binary classification problems, one for each possible combi-
nation of classes. It then trains a separate binary classifier for each of these
problems, which can then be used to classify new data points.

For example, if we have three classes A, B, C, then we have three classifiers,
one for A versus B and C, one for B versus A and C, and another for C versus A
and B. Once we have trained a separate LinearSVC for each binary classification
problem, we can use them to classify new data points. To classify a new data
point, we simply apply each binary classifier to the data point and see which
classes it is predicted to belong to. If a data point is predicted to belong to more
than one class, we can use a tie-breaking rule or simply choose the class with the
highest predicted probability.

The LinearSVC algorithm seeks to find the hyperplane that maximally sepa-
rates the classes in feature space, and weights are sometimes used that correspond
to the coefficients of the hyperplane equation.

Consider another example using a binary classification problem where we have
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Figure 5.4: Comparing test error using different query strategies and cosine kernel
for the PWC classifier with results averaged over ten different data splits using
the original data.

two classes labeled as -1 and +1. Given a set of training examples, the goal of
the LinearSVC algorithm is to learn a hyperplane that separates the examples of
the two classes in feature space. The hyperplane is defined by the equation:

wT x + b = 0 (5.3)

where w is a weight vector of the same dimension as the feature vectors x,
and b is a bias term that shifts the hyperplane in the direction of the negative
class.

During training, the LinearSVC algorithm tries to find the values of w and b
that minimize the classification error while also maximizing the margin between
the hyperplane and the closest examples of each class. This is achieved by solving
a constrained optimization problem that involves minimizing the norm of the
weight vector subject to the constraint that all training examples are correctly
classified with a margin of at least 1.

Once the weights are learned, they can be used to make predictions on new
examples by evaluating the sign of the decision function:

f(x) = wT x + b (5.4)

If f(x) is positive, the example is classified as the positive class, and if it is
negative, the example is classified as the negative class. We created three differ-
ent models using LinearSVC, the first was a boilerplate LinearSVC with no class
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Figure 5.5: Performance of base classifiers.

weight argument modification. The second model used the class weights param-
eter set to ’balanced’. The ’balanced’ mode uses the values of y to automatically
adjust weights inversely proportional to class frequencies in the input data as
n samples/(n classes ∗ np.bincount(y)). For the third test we created a dictio-
nary of weights for each class using the cosine decay function. The weights for
each category range from 0.1 to 1.0 where the most frequent classes had smaller
weights. The cosine decay function is defined as:

wi = 1
2

(︃
1 + cos

(︃
πt

T

)︃)︃
(5.5)

where wi is the weight for the ith class, t is the index of the current category
in the sorted list, and T is the total number of categories. The categories are
counted and sorted in ascending order. The calculated cosine weights are shown
in the Attachments in Table A.6.

We used the same train test spilt for these experiments and the results for
are shown in Table 5.1. We also wanted to conduct more testing with KNeigh-
borsClassifier and Neural Networks so created some small experiments to test
these classifiers.

Using K-Neighbors Classifier (KNN) and a Neural Network from TensorFlow
we conducted additional tests. For the KNN we found that using 8 neighbors
and the cosine distance metric yielded the lowest error.

For the Neural Network we used a dense hidden-layer with 1000 neurons with
Sigmoid activation and 23 output neurons with Softmax activation. For the NN
optimizer we used Adamax with cosine decay with an initial learning rate of 0.1,
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Table 5.1: Test error for three different LinearSVC models using the original data.

Model Error
No Weights 0.382
Balanced Weights 0.402
Cosine Decay Weights 0.499

alpha value of 0.1, and 915 decay steps:

Decay = Number of X Data Samples
Batch Size · Number of Epochs (5.6)

where the division is integer division. The results are shown in Table 5.2. We
can see that the K-Nearest Neighbors classifier and the Neural Network classifier
performed slightly worse compared to LinearSVC.

The LinearSVC outperformed the other classifiers and we decided to exper-
iment with it further. We attempted to boost performance of the LinearSVC
classifier using multiple cross validation grid searches with bagging. Bagging
(bootstrap aggregating) is a type of ensemble learning, where multiple models
are trained on different subsets of the training data and their predictions are
combined to make the final prediction. In Scikit-Learn we used the BaggingClas-
sifier to implement bagging. An example of our setup and parameters are shown
in the code snippet in the Attachments in Figure A.1.

Performance was not improved from what we had already seen. Using bagging
may not be the best approach at this stage because there are some categories that
have very few samples so bagging may be unable to create a good model. We also
didn’t use the class weights parameter because we had already seen that it didn’t
improve performance. The BaggingClassifier and GridSearchCV combination
didn’t improve the performance of the LinearSVC classifier beyond what we had
already achieved.

Table 5.2: Test error for best performing classifiers using original data.

Model Error
LinearSVC 0.382
Tensor Flow Neural Network 0.417
K Neighbors Classifier 0.451

The precision-recall curve for the best performing classifier (LinearSVC) is
shown in Figure 5.6 and the confusion matrix is shown in Figure 5.7 for the best
performing LinearSVC classifier. The precision-recall curve gives us an idea at
how well our classifier can correctly categorize the data. It also gives us a visual-
ization of how unbalanced our categories are. We can see this imbalance clearly
in Figure 5.6 where we have straight lines and large steps for some categories.
This is a result of having a small number of data in a class. However, we can
also see that for some classes the precision is relatively high even though we have
few data points. Here we are namely concerned with the ’Culture’ and ’Beauty’
categories which have 10 and 31 data points respectively. It may be that the
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keywords in the ’Culture’ and ’Beauty’ categories are drastically different from
the other categories so the performance is better.
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Figure 5.6: Precision-recall curve for the best performing LinearSVC using the
original data.

The confusion matrix shown in Figure 5.7 may be a better metric for visualiz-
ing this data. In addition, the classification report for the LinearSVC classifier is
shown in the Attachments in Table A.3 with F1, accuracy, precision, recall, and
support scores.
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Figure 5.7: Confusion matrix for the best performing LinearSVC classifier using
the original data.

32



6. Testing with All Data
In this section we will take what we have learned from the experiments in the

previous sections and apply that knowledge to the original data set augmented
with the additional data that we collected (i.e all data or all useable data). The
total category count tallies can be located in the Attachments in Table A.1. We
hope these experiments will provide us with a better understanding of how the
data is interacting with the active learning sampling strategies and the PWC
classifier. We will also try removing some data from the set if the text length is
below some threshold, and evaluate the performance with a reduced number of
categories.

6.1 Classifier Evaluation Revisited
We wanted to re-run the classifier experiment that we ran with the original

data with the new data to get an idea of how the new data performed with the
classifiers from Scikit-Learn. The results are shown in Table 6.1.

Table 6.1: Test errors for best performing classifiers using all data.

Model Error
LinearSVC 0.429
Tensor Flow Neural Network 0.433
K Neighbors Classifier 0.471

Its interesting to see that the errors increased across the board but our previ-
ous results could have been skewed possibly because we had so few data samples
in some categories. We ran the Bagging Classifier GridSearchCV from the previ-
ous chapter and again could not tune the model to perform better than the base
untuned LinearSVC.

6.2 Active Learning using All Data
In these experiments we tested all the active learning methods available in

the repository from the paper by Kottke et al. [2021]. We encoded all available
text data using TF-IDF as we had done previously. In Figure 6.1a we show a
previous experiment using just the original data so we could have a more accurate
comparison with the results for all the data shown in Figure 6.2a. In Figures 6.1b
and 6.2b we used an arbitrary text length filter of 50 characters to see how the
performance of the selection strategies changed when we removed some of the
data. The categorical data splits for the 50 character filter can be found in the
Attachments in Table A.5.

We again used the different active learning methods and PWC with the cosine
kernel to run our experiments. We ran 10 test runs for each method and then
averaged the test error of all the runs resulting in a single curve for each sampling
strategy. We only used the first 300 data points instead of using the entire budget
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(b) Text length data > 50.

Figure 6.1: Active learning results using the original data.

because we want to reduce the amount of time it takes to run our experiments.
As a result, the test error doesn’t converge in these plots. With the original data
we can see that the xPAL sampling strategy finds the best data early (20-30
budget range) in the sampling process and exploits this to improve the classifier
the most. Eventually we see that PAL and QBC have similar performance to
xPAL but, ultimately, after 300 samples xPAL is the best performing sampling
strategy. We also want to note that in 6.1a the results for ALCE are almost
entirely hidden behind the random sampling strategy curve.

Using all the data, we repeated this same experiment. The results are shown
in Figure 6.2a. In both experiments in this section it appeared that the test error
for xPAL was converging to around roughly 50%. But for the second experiment
using all the data xPAL was finding and exploiting the best data earlier and for
longer in the sampling process. We can see the dominance of xPAL throughout
the plot except around the 200 budget range where entropy sampling starts to
momentarily perform well.
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Figure 6.2: Active learning results using all data.

In both the re-run original data and all data experiments, xPAL appears to
perform well on average over 10 different runs in comparison to the other selection
strategies, it even seemed to perform markedly well with more data available and
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then having some filtering applied as shown in Figure 6.2b where it seemed to
have some dominance over the other selection strategies. This led us to believe
that the more data that is available and the more text that is available per data
sample the better xPAL will perform. This will not always be true but it seems
that if we have a large enough amount of text, 50 characters being an arbitrary
example, xPAL will have an easier time selecting the best data points to label.

We were curious what xPAL was doing when more data was available, so while
running the experiments we recorded when a data point was selected (its index
in the selection budget) and for which category it was selected from. This data
is shown in Figure 6.3.
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Figure 6.3: Data point selection swarm plot using xPAL.

This distribution data is from a sample run for each of the data sets without
any filtering. In this data split the ’Shopping Online’ category for the original
data went without asking for a label in the given budget window. It is interesting
that it chose not to select its sole sample but, intuitively, it may make sense
because there is only one other ’Shopping Online’ sample point and it is in the
test set. Its possible that because there is only one sample xPAL may not yet
find it necessary to know its label this early in the budget and other data points
labels are more valuable to know. It is clear from Figure 6.3 that when new data
is available the xPAL selection strategy reevaluates what is important and selects
data points that are more likely to be helpful. This is a good sign that xPAL is
able to adapt to the data and find the most helpful data points.
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6.3 LinearSVC with Text Length Filtering
We have some data that may not have enough text to classify correctly and

others that have more than 1000 characters of text that may be noisy. We also
know that sometimes while scraping the text data from a website we collected a
non empty string that actually provided no words that were related to the label,
such as a simple error or warning message.

Using all available data, we now have the luxury of having more than the
minimum of 2 data points in some categories and can afford to remove data from
the set that may have unhelpful or confusing words. We decided to explore if
filtering the data based on text length could improve the performance of the
classifier and use LinearSVC as it has performed well with this data previously
and it is relatively fast to train.

Before conducting the filtering data experiments we can view how the text
length is distributed throughout our text data as shown in Figure 6.4a. This
helps us visualize how much data we may be removing if we filter the data based
on text length.
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Figure 6.4: Text length experiments data and results.

The distribution of the text show a steady decrease in length and frequency
until around the 1000 length mark where we have an increase of data with large
amounts of text. The spike here is a results from when we capped the non English
data text to 1000 characters so that we could translate all of our data using the
Azure translation services.

We imported the data and either selected a minimum number of characters or
we altered the maximum number of characters allowed and created a new dataset.
For each run we selected the data based on this criteria and then built the TF-
IDF array. For the minimum string size tests we incremented the string size by 1
character. While for the max string size tests we decremented the string size by
10. We again used a train test split of 25% which has been our standard for testing
throughout our experiments. We found that around the 200 character mark we
would filter out too much data and would not have a minimum representation (2
data points) for all the categories. The results for this experiment are shown in
Figure 6.4b.
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We also tested with a minimum text length and a maximum text length con-
straint implemented together but this combination did not yield any obvious
gains. This naive approach to filtering the data did not yield any obvious im-
provements in the test error. At best it may have filtered out some bad data and
provided a small improvement in the test error. However, when implementing
xPAL we hope to have it filter out the bad data in a more calculated manner.

6.4 Testing with Fewer Categories
In this section we will briefly look at the PWC with xPAL and LinearSVC

performance using progressively fewer categories. We will use all available data
and remove the category from the data set if it has less than the minimum number
of samples. We assume that reducing the number of categories decreases the test
error. Intuitively, this should be the case because as we reduce the number of
categories we are reducing the number of classes that the classifier has to learn
and classify. This should make the classification task easier and therefore the test
error should decrease. However, we have a lot of data in the ’Food and Drink’
and ’Groceries’ categories and we have seen that the classifiers struggle to classify
these categories correctly. Results from some tests are shown for the PWC with
xPAL in Figure 6.5.
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Figure 6.5: PWC with xPAL with category reduction on all data.

Dumais and Chen [2000] discuss the issue of reducing the number of categories
in web content classification in their paper. They note that reducing the number
of categories can improve the accuracy and efficiency of the model by reducing the
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complexity of the classification problem. However, they also note that reducing
the number of categories can reduce the specificity of the classification and make
it more difficult to distinguish between similar categories.

Looking at the results from the xPAL and PWC tests in Figure 6.5 we can
see that we have generally have reduction in test error except between the 30 and
40 category minimum tests. This table also shows us the categories that were
used in the classification. This might tell us that ’Consumer Goods’, ’House and
Garden’, and ’Professional Services’ are easily linearly separable as the change in
test error after 300 samples was small.

Reviewing these results it seems that ’Food and Drink’ and ’Groceries’ may
be skewing a portion of the test error and if there was better way to classify these
categories it would improve the overall test error.

Table 6.2: LinearSVC performance with category reduction on all data, where
category minimum is the min number of samples required.

Category
Minimum

LSVC
Error

Categories Count

20 0.359756 [Beauty, Car, Consumer Goods, Fash-
ion, Food And Drink, Groceries, Health,
House And Garden, Pets, Professional
Services, Sport, Travel]

12

30 0.362416 [Beauty, Car, Consumer Goods, Food And
Drink, Groceries, Health, House And Gar-
den, Professional Services, Travel]

9

40 0.320896 [Beauty, Car, Food And Drink, Groceries,
Health, House And Garden, Travel]

7

50 0.234783 [Car, Food And Drink, Groceries, Health,
Travel]

5

We ran this experiment again to see if we could increase the performance by
taking ’Groceries’ completely out of the equation. The results are shown in Table
6.3 and the categories are the same as previously with the only difference being
that ’Groceries’ is not included in the test.

Table 6.3: Same as previous table but with ’Groceries’ category removed.

Category
Minimum

LSCV
Error

Count

20 0.278912 11
30 0.303030 8
40 0.279661 6
50 0.214286 4

It is interesting to see how removing the ’Groceries’ category was able to
improve the test error across the board. It may be that since we have removed
a category with similar data to ’Food and Drink’ the classifier is able to better
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classify the ’Food and Drink’ category and because we have a lot of data in this
category we perform better.

Table 6.4: Same as previous table but with ’Food and Drink’ category removed.

Category
Minimum

LSVC
Error

Count

20 0.423423 11
30 0.343750 8
40 0.256098 6
50 0.190476 4

Removing the ’Food and Drink’ category did not have the same effect as
removing the ’Groceries’ category. This may be because the ’Food and Drink’
category, again, has a lot of data and removing it may have reduced the amount
of data available for the classifier to learn from.
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Conclusion
Our goal was to understand the entire process including the web scraping,

translating, storing, and performance of the selection strategies and classifiers.
This analysis provides some insight for our partner and allows them to learn
from our tests and experiments.

The scraping and data collection process was an exercise in itself. We initially
wanted to dockerize the entire project but this was more time consuming and
cumbersome than expected, so this approach was abandoned. We setup Scrapy
to take a list of websites as input and then navigate the main webpage and scrape
the html. We then processed the html and saved the text locally in a Postgres
database.

After the text was collected and stored we realized we had some issues because
we assumed more of the text would be in English. At this stage, after inspecting
the data we realized we had 9 categories with 2 or less samples and a total of 275
data points for 23 categories. However, we had a large amount of unused data
that we needed to figure out how to use. We experimented with a number of
API’s and other tools for collecting English text but ultimately ended up using
the Azure API for translation, which allowed us to have a bit larger data set of
text to work with.

One issue we struggled with was the quality of the collected data. We used
some statistical methods to analyze the most frequent words and sometimes found
non english words as being influential for a category. This emphasized a few
different things. First, was that maybe scraping text data from just a websites
homepage isn’t enough and experiments should be run with additional pages from
the site tree. Second, that we may be lacking in quality train data as a result
of our raw text scrubbing and preprocessing methods were not optimal. Finally,
we could have explored better web scraping tools to collect more data from the
websites. However, at a certain point the scraper was performing well enough
and we decided to move on to keep with our timeline.

Our next task was to start experimenting with Scikit-Learn and TensorFlow
classifiers and see how they performed on our data. We used a number of different
classifiers and found that the linear support vector classifier performed well with
the data. However, we only scratched the surface with TensorFlow and more
testing could be done with it.

We also used the Parzen Window Classifier from the Probabilistic Active
Learning GitHub repository from the ”Toward optimal probabilistic active learn-
ing using a Bayesian approach” paper by Kottke et al. [2021]. This repository
provided a number of different sampling strategies and we modified the repository
to fit our needs and data. We found that the xPAL sampling strategy was the
best for our data and was able to reduce the testing error the most compared to
the other available sampling strategies in the repository based on our results.

Our work is collected into two repositories. One repository is the main repos-
itory that contains the code for the web scraper, data processing, and the thesis.
The second repository is a fork of the Probabilistic Active Learning from Kottke
et al. [2021] repository that contains the code for the Parzen Window Classifier,
xPAL, and other sampling strategies as well as the main active learning exper-
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iments, results, vectorized data from previous experiments, and text data. The
raw text data scraped from the websites is stored locally. The main repository
can be found at https://github.com/borchr27/charles-university-thesis
and the Probabilistic Active Learning repository is available at https://github.
com/borchr27/probal.

The Probabilistic Active Learning repository was setup with the PWC so that
when new data was added the classifier could be updated quickly and only where
there was a change or there was data effected by the new data. This caused
issues as we tried to implement LinearSVC with xPAL as we would naively have
to retrain the entire model for every new data point.

To improve performance we would suggest making a number of changes. One
of the first changes would be to try and improve the quality of the text data
from the websites. For example, a stronger web scraper could have allowed us to
avoid potential IP address restriction issues and scrape data from social media
websites that refused to allow our scraper to collect any data and resulted in some
unusable data. We could have also run our own tests regarding how the number
of sibling pages could have fortified the data.

The scraper could be upgraded to scrape social media pages. This could
improve the quality of the data and allow for more accurate classification. We
think that improving the quality of the data is one of the key points to improving
the performance.

To be more thorough, we could have run exhaustive tests for all the available
classifiers within Scikit-Learn using GridSearchCV and other ensemble methods
to see if any more performance gains were attainable.

The current setup of the active learning xPAL process uses the PWC as it is
fast (because it updates only parts of the classifier with each new data point) and
relatively simple to implement. However, it is not the best method for classifying
our data as we have seen from our experiments. Based on our experiments we
assume that we could improve the performance of the classifier by implementing
xPAL with the LinearSVC classifier, but we weren’t able to test this explicitly.
We discussed this with the authors of the Probabilistic Active Learning repository
Kottke et al. [2021] and it could be the focus of future work.

Although there are many things that could have been improved, we still were
able to increase our understanding about the data collection process, translation,
storage, classification, active learning, and the nature of the data itself.

In conclusion, we found that xPAL appeared to select the best data samples
to train a classifier earlier and faster than other active learning methods and we
found that the LinearSVC classifier performed best in comparison to the other
classifiers we tested.
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A. Attachments

Table A.1: Category counts of data. Orig. = Orig. English + Translated, is the
data from the original set that had usable text. Orig. English is a subset of Orig.
that was in English. Translated is a subset of Orig. that was not in English. Add.
is the newly collected data, translated if needed. All Useable = Orig. English +
Translated + Add.

Category Orig. Orig. English Translated Add. All Useable
Atm 4 2 2 4 8
Beauty 31 8 23 18 49
Bills And Household 9 4 5 10 19
Car 91 28 63 0 91
Children 4 0 4 5 9
Consumer Goods 28 5 23 7 35
Culture 10 1 9 6 16
Digital Services 16 12 4 4 20
Drugstore 3 2 1 5 8
Electronics 15 6 9 5 20
Fashion 22 6 16 6 28
Financial Services 4 0 4 6 10
Food And Drink 262 110 152 0 262
Freetime 8 2 6 8 16
Groceries 75 21 54 9 84
Health 64 14 50 8 72
House And Garden 44 11 33 3 47
Investments 2 1 1 5 7
Pets 18 6 12 8 26
Professional Services 32 15 17 5 37
Shopping Online 2 2 0 5 7
Sport 14 2 12 7 21
Travel 58 17 41 7 65
TOTALS 816 275 541 141 957
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Table A.2: Variable importance, top 20 words using all data.

Importance
hotel 0.078177
hair 0.046888
car 0.045024
auto 0.017192
services 0.014782
station 0.013815
flower 0.010145
spa 0.010054
search 0.009680
energy 0.009531
internet 0.009404
parking 0.009226
barber 0.007874
service 0.007823
stations 0.007491
beauty 0.007353
hairdresser 0.007080
rental 0.006944
banking 0.006849
mobile 0.006536
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Table A.3: Best LinearSVC model classification report using original data.

precision recall f1-score support
Atm 0.00 0.00 0.00 1.00
Beauty 0.75 0.38 0.50 8.00
Bills And Household 0.00 0.00 0.00 2.00
Car 0.63 0.55 0.59 22.00
Children 0.00 0.00 0.00 1.00
Consumer Goods 1.00 0.29 0.44 7.00
Culture 0.00 0.00 0.00 2.00
Digital Services 1.00 0.50 0.67 4.00
Drugstore 0.00 0.00 0.00 1.00
Electronics 0.50 0.25 0.33 4.00
Fashion 1.00 0.40 0.57 5.00
Financial Services 0.00 0.00 0.00 1.00
Food And Drink 0.49 0.94 0.64 64.00
Freetime 0.00 0.00 0.00 2.00
Groceries 0.50 0.21 0.30 19.00
Health 0.73 0.53 0.62 15.00
House And Garden 0.50 0.45 0.48 11.00
Investments 0.00 0.00 0.00 0.00
Pets 1.00 0.50 0.67 4.00
Professional Services 0.50 0.14 0.22 7.00
Shopping Online 0.00 0.00 0.00 0.00
Sport 0.00 0.00 0.00 3.00
Travel 0.70 0.50 0.58 14.00
micro avg 0.55 0.55 0.55 197.00
macro avg 0.40 0.24 0.29 197.00
weighted avg 0.57 0.55 0.51 197.00
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Table A.4: Set of parameters used to test all other Scikit-Learn classifier shown
in Figure 5.5.

Classifier Parameters
LinearSVC {’C’: 1.0, ’class weight’: None, ’dual’: True,

’fit intercept’: True, ’intercept scaling’: 1, ’loss’:
’squared hinge’, ’max iter’: 10000, ’multi class’:
’ovr’, ’penalty’: ’l2’, ’random state’: 42, ’tol’:
0.0001, ’verbose’: 0}

KNeighborsClassifier {’algorithm’: ’auto’, ’leaf size’: 30, ’metric’: ’co-
sine’, ’metric params’: None, ’n jobs’: None,
’n neighbors’: 8, ’p’: 2, ’weights’: ’uniform’}

MLPClassifier {’activation’: ’relu’, ’alpha’: 0.0001, ’batch size’:
’auto’, ’beta 1’: 0.9, ’beta 2’: 0.999,
’early stopping’: False, ’epsilon’: 1e-08, ’hid-
den layer sizes’: 500, ’learning rate’: ’con-
stant’, ’learning rate init’: 0.001, ’max fun’:
15000, ’max iter’: 100, ’momentum’: 0.9,
’n iter no change’: 10, ’nesterovs momentum’:
True, ’power t’: 0.5, ’random state’: 42, ’shuffle’:
True, ’solver’: ’adam’, ’tol’: 0.0001, ’valida-
tion fraction’: 0.1, ’verbose’: False, ’warm start’:
False}

SVC {’C’: 1.0, ’break ties’: False, ’cache size’:
200, ’class weight’: None, ’coef0’: 0.0, ’deci-
sion function shape’: ’ovr’, ’degree’: 3, ’gamma’:
’scale’, ’kernel’: ’rbf’, ’max iter’: -1, ’probability’:
False, ’random state’: None, ’shrinking’: True,
’tol’: 0.001, ’verbose’: False}

GaussianNB {’priors’: None, ’var smoothing’: 1e-09}
LogisticRegression {’C’: 1.0, ’class weight’: None, ’dual’: False,

’fit intercept’: True, ’intercept scaling’: 1,
’l1 ratio’: None, ’max iter’: 1000, ’multi class’:
’auto’, ’n jobs’: None, ’penalty’: ’l2’, ’ran-
dom state’: 42, ’solver’: ’lbfgs’, ’tol’: 0.0001, ’ver-
bose’: 0, ’warm start’: False}

RandomForestClassifier {’bootstrap’: True, ’ccp alpha’: 0.0, ’class weight’:
None, ’criterion’: ’gini’, ’max depth’: None,
’max features’: ’sqrt’, ’max leaf nodes’: None,
’max samples’: None, ’min impurity decrease’:
0.0, ’min samples leaf’: 1, ’min samples split’:
2, ’min weight fraction leaf’: 0.0, ’n estimators’:
200, ’n jobs’: None, ’oob score’: False, ’ran-
dom state’: 42, ’verbose’: 0, ’warm start’: False}
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Table A.5: Data counts with 50 string character filter minimum.

All w Str Filter Original w StrFilter
Atm 8 4
Beauty 49 31
Bills And Household 19 9
Car 91 91
Children 9 4
Consumer Goods 35 28
Culture 16 10
Digital Services 20 16
Drugstore 8 3
Electronics 20 15
Fashion 28 22
Financial Services 10 4
Food And Drink 262 262
Freetime 16 8
Groceries 84 75
Health 72 64
House And Garden 47 44
Investments 7 2
Pets 26 18
Professional Services 37 32
Shopping Online 7 2
Sport 21 14
Travel 65 58
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Table A.6: Cosine decay weights for each category.

Weight
Shopping Online 1.000
Investments 0.996
Drugstore 0.983
Atm 0.963
Financial Services 0.934
Children 0.899
Freetime 0.857
Bills And Household 0.810
Culture 0.757
Sport 0.701
Electronics 0.642
Digital Services 0.581
Pets 0.519
Fashion 0.458
Consumer Goods 0.399
Beauty 0.343
Professional Services 0.290
House And Garden 0.243
Travel 0.201
Health 0.166
Groceries 0.137
Car 0.117
Food And Drink 0.104
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Table A.7: Fisher’s exact tests for each category with all useable data.

category p-value keyword
Atm 0.000136 investing
Atm 0.003265 territories
Atm 0.007307 advisor
Beauty 0.019653 browser
Beauty 0.026494 plus
Beauty 0.057132 canada
Bills And Household 0.107499 documents
Bills And Household 0.145065 internet
Car 0.000001 car
Car 0.004088 customer
Car 0.004399 global
Consumer Goods 0.152154 selection
Digital Services 0.009286 solutions
Digital Services 0.030111 start
Digital Services 0.043597 mobile
Electronics 0.010449 electronic
Financial Services 0.000112 debit
Financial Services 0.000112 accounts
Food And Drink 0.000008 events
Food And Drink 0.000136 location
Food And Drink 0.000410 english
Groceries 0.015781 store
Groceries 0.021125 products
Groceries 0.041137 save
Health 0.000175 procedure
Health 0.000319 resources
Health 0.000980 schedule
Investments 0.053213 investment
Investments 0.064524 financial
Professional Services 0.000009 business
Professional Services 0.000257 media
Professional Services 0.000321 reports
Travel 0.000007 check
Travel 0.000488 transfer
Travel 0.000529 rate
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Figure A.1: Bagging classifier setup.

i n t e r c e p t s = np . l i n s p a c e ( 0 . 1 , 1 , 20)
c v a l s = np . l i n s p a c e ( 0 . 1 , 1000 , 20)
b a s e c l a s s i f i e r = LinearSVC (

random state=args . seed ,
max iter =10000)

b a g g i n g c l a s s i f i e r = B a g g i n g C l a s s i f i e r (
ba s e e s t imato r=b a s e c l a s s i f i e r ,
n e s t imato r s =10,
random state=args . seed )

params = {
’ ba s e e s t imato r random sta t e ’ : [ a rgs . seed ] ,
’ b a s e e s t i m a t o r i n t e r c e p t s c a l i n g ’ :

np . concatenate ( ( i n t e r c ep t s , [ 1 ] ) ) ,
’ b a s e e s t i m a t o r l o s s ’ : [ ’ h inge ’ ,

’ squared h inge ’ ] ,
’ b a s e e s t i m a t o r p e n a l t y ’ : [ ’ l 2 ’ ] ,
’ ba s e e s t imato r C ’ :

np . concatenate ( ( c va l s , [ 1 ] ) ) ,
’ b a s e e s t i m a t o r m u l t i c l a s s ’ :

[ ’ ovr ’ ]
}

g r i d s e a r c h = GridSearchCV (
es t imator=b a g g i n g c l a s s i f i e r ,
param grid=params ,
cv=5,
s c o r i ng=’ accuracy ’ ,
n j obs =6)
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