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sional leadership, countless pieces of advice and much of his time.

I would also like to thank RNDr. Martin Žonda, Ph. D. for many suggestions
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Abstract: Dzyaloshinskii-Moriya interaction (DMI) is a type of exchange in-
teraction found in non-centrosymmetric structures. It favors spin canting, and
it is an important mechanism for stabilizing non-collinear magnetic structures,
such as skyrmions, which are promising candidates for applications in spintron-
ics. Furthermore, DMI plays a significant role in multiferroics and can support
magnetoelectricity. Both phenomena are often observed in layered materials.

This thesis explores, through numerical simulations, the effect of out-of-plane
DMI on magnetic ordering in two-dimensional triangular lattices. It uses the
classical Heisenberg model together with Markov Chain Monte Carlo and spin
dynamics simulation methods. Apart from DMI, the Hamiltonian includes ferro-
magnetic exchange interaction between nearest neighbours and interaction with
external magnetic field.

In the first part, the zero-temperature properties of the system are computed for
various DMI strengths and external magnetic fields, and a phase diagram is con-
structed. Three magnetic phases are observed: ferromagnetic, antiferromagnetic
cycloidal, and conical – a mixture of the former two.

The second part focuses on finite-temperature properties, starting with specific
heat capacity, magnetization, and magnetic susceptibility. DMI does not affect
the critical ordering temperature but enhances magnetization at higher temper-
atures below the critical temperature. It was shown that DMI favours magne-
tization in the z-direction in the ferromagnetic phase. Next, finite-temperature
hysteresis loops are presented. Anomalous hysteresis in the ferromagnetic phase
induced by DMI and temperature is observed, resulting in non-zero coercivity
increasing with DMI strength and temperature. The coercivity is associated with
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romagnetic order were observed in the otherwise ferromagnetic phase at higher
temperatures.
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Introduction
In recent years, magnetism has become a more and more popular topic of study
amongst solid-state physicists and despite this, there are still many magnetic
phenomena not yet fully understood and many yet to be explored.

Take, for example, the giant magnetoresistance effect, where the electric re-
sistance of a layered sample significantly depends on the orientation of individual
ferromagnetic layers. This phenomenon was deemed so important that the 2007
Nobel Prize in Physics was awarded to its discoverers, Albert Fert and Peter
Grünberg. Indeed the giant magnetoresistance effect has drastically improved
the storage capacity in hard drives, a very important application.

The giant magnetoresistance effect is just one of many couplings between
magnetism and other physical properties. Other similar effects can be observed
in materials called multiferroics, which are materials that exhibit multiple ferroic
properties in the same phase: a combination of ferromagnetism, ferroelectricity,
and ferroelasticity. An example of this is the magnetoelectric effect – a sample
becomes magnetized in an electric field, or becomes electrically polarized in a
magnetic field. Dzyaloshinskii-Moriya exchange interaction (DMI) has been found
to play an important role in magnetoelectricity (Sergienko and Dagotto [2006])
because it is coupled to displacement of some atoms in the lattice. This is in turn
coupled with electric polarization.

DMI is essential in one other area of interest: spintronics. Spintronics is
a branch of solid-state physics which studies behaviour of electronic spin in
solid-state devices. It has been shown that DMI stabilizes magnetic skyrmions
(Muehlbauer et al. [2009]), topologically stable magnetic textures made of spin
vortices. Skyrmions are currently researched for application as a computer mem-
ory storage device (Fert et al. [2013]) or in neuromorphic computing (Song et al.
[2020]), because they are topologically stable, but they can be manipulated using
spin currents, potentially providing a more energy efficient alternative to present
computers based on charge current. Ultrathin magnetic films are often picked
for this purpose. Magnetic ordering in these films can be modeled on a two-
dimensional lattice.

In this thesis, we explore the role of DMI in one particular configuration: on
a two-dimensional triangular lattice together with ferromagnetic direct exchange
interaction, external magnetic field, and with DMI vector pointing out of plane.
We use classical Heisenberg model with Monte Carlo Markov Chain and spin
dynamics (Landau-Lifshitz-Gilbert equation) methods. In the first part, we in-
vestigate the zero-temperature magnetic ordering for various DMI and external
magnetic field strengths and construct a phase diagram. In the second part, we
calculate temperature dependence of specific heat capacity, magnetization, and
susceptibility to determine the critical ordering temperature Tc. We also calcu-
late the hysteresis loops for various DMI strength and temperatures, observing
anomalous ferromagnetic hysteresis induced by DMI and temperature.

The model was choosed based on the structure of EuAl12O19 – a triangular
ferromagnetic compound experimentally investigated by Gaël Bastien, Ph. D. 1.

1Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter
Physics, Prague, Czech Republic
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1. Theory

1.1 Magnetism in solid-state materials
The particles responsible for magnetism in solids are electrons. The magnetic
moment of a single electron has two sources: spin angular momentum and orbital
angular momentum.

µS⃗ = gS
e

2me

S⃗ = gS
µB

ℏ
S⃗

µL⃗ = e

2me

L⃗ = µB

ℏ
L⃗

(1.1)

where gS ≈ 2.0023 is the spin g-factor, me is electron mass, µB is the Bohr
magneton, L⃗ is the electron orbital angular momentum and S⃗ is the spin angular
momentum. Magnitudes of the magnetic moments are linked to the spin quantum
number s = 1/2 and orbital quantum number l = 0, 1, 2, ..., n:

|µS⃗| = gSµB

√︂
s(s + 1)

|µL⃗| = µB

√︂
l(l + 1)

(1.2)

Magnetism in solids is further classified as itinerant or localized, depending
on the state of the electrons responsible for it.

Itinerant magnetism

Itinerant magnetism arises from the band electrons and spontaneous
spin-dependent band splitting, caused by the repulsive Coulomb interaction (aris-
ing from the Pauli exclusion principle). In this case, the half-filled band near the
Fermi level splits into distinct spin-up and spin-down bands. Electrons move
from one band to the other, causing uneven band filling and occupying states
with higher energy. However, the total energy is lower, due to the weakened
repulsive Coulomb interaction. The condition for the band splitting is called the
Stoner criterion

D(EF ) · U > 1 (1.3)
where D(EF ) is the density of states at Fermi level and U is the strength of the
repulsive Coulomb interaction.

Localized magnetism

On the other hand, localized magnetism, as the name suggests, comes from local-
ized electrons orbiting a single atom. The magnetic dipole moment of one whole
atom is a sum of magnetic dipole moments of all its electrons. This means that
lower, fully occupied shells do not contribute to magnetism, since individual angu-
lar momentum contributions cancel out. Only half-occupied shells have a non-zero
contribution to the atomic magnetic dipole moment. Localized magnetism most
commonly appears in half-filled 4f shells of rare-earth compounds. The total
magnetic dipole moment depends on the electron configuration in the outermost
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shell. Each electron state is identified by spin quantum number mS = ±1/2 and
orbital quantum number mL = ±0, ±1, .., ±l so that there is a total of 2(2l + 1)
electron states in one shell. A concrete electron configuration yields total spin
angular momentum number S = ∑︁

mS, total orbital angular momentum num-
ber L = ∑︁

mL, and total angular momentum number J = L + S. Hund’s rules
determine the ground state electron configuration and resulting S, L, J :

1. Configuration with largest possible S has the lowest energy.

2. From the configurations permitted by the first rule, configuration with the
largest possible L has the lowest energy.

3. From configurations permitted by the rules above, configuration with J =
|L − S| or J = |L + S|, respectively for less or more than half-filled shells,
has the lowest energy.

The first two rules come from the Pauli exclusion principle and the repulsive
Coulomb interaction. The last rule comes from the spin-orbit interaction, which
couples the direction of µS⃗ and µL⃗. Effective magnetic moment of the atom is
then

|µeff⃗ | = gJµB

√︂
J(J + 1) (1.4)

where gJ is the Landé g-factor.

1.2 Magnetic interactions
In the previous section, we described the microscopic magnetic dipole moment
carried by one atom. What happens when there are multiple magnetic atoms
nearby? Several types of exchange interactions, mediated by the electrons, are
present. These interactions are the prerequisites for macroscopic magnetic be-
haviour which is introduced in section 1.3.

1.2.1 Direct exchange
We start with a simple model – a hydrogen molecule with two orthogonal 1s states
φ1 and φ2 and one electron (Pavarini et al. [2012]). We begin with a simplified
scenario, where the two electrons behave independently and do not interact. Both
protons have one orbital function: ϕ1, ϕ2, and they are orthogonal. φ1 and φ2
form the basis of the system. The hopping element is

−t = ⟨φ1| Ĥ |φ2⟩ =
∫︂

dr3φ∗
1(r⃗)

[︄
− ℏ2

2me

∇2 + U(r⃗)
]︄

φ2(r⃗) (1.5)

resulting in Hamiltonian matrix

H =
(︄

0 −t
−t 0

)︄
(1.6)

Diagonalization of H yields two eigenstates

φ± = 1√
2

(φ1 ± φ2) (1.7)
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with energies ϵ± = ∓t.
We will denote a spin-up electron in orbital φ1 as |↑, ·⟩. Let us now have

2 electrons with opposite spins. The basis consists of four states: |↑, ↓⟩, |↓, ↑⟩,
|↑↓, ·⟩, |·, ↑↓⟩.

H =

⎛⎜⎜⎜⎝
0 0 −t −t
0 0 +t +t

−t +t U 0
−t +t 0 U

⎞⎟⎟⎟⎠
|↑, ↓⟩
|↓, ↑⟩
|↑↓, ·⟩
|·, ↑↓⟩

(1.8)

In |↑↓, ·⟩ and |·, ↑↓⟩ states, two electrons share one orbital and are subject to
the repulsive Coulomb interaction U . The electron hopping results in the off-
diagonal elements ±t, where the sign change is related to electron order change
and Fermi statistic.

Diagonalization of the matrix above yields the following eigenstates:

Ψ± =
|↑, ↓⟩ − |↓, ↑⟩ − ϵ±

2t
(|↑↓, ·⟩ + |·, ↑↓⟩)√︂

2 + ϵ2
±/(2t2)

ϵ± = U

2 ±
√

U2 + 16t2

2

Ψcov = 1√
2

(|↑, ↓⟩ + |↓, ↑⟩) ϵcov = 0

Ψion = 1√
2

(|↑↓, ·⟩ − |·, ↑↓⟩) ϵion = U

(1.9)

Now we assume that U is far larger than t and work with the limit of U → ∞.
In that case, energy of states Ψ+ and Ψion is very large and these states can be
neglected. Remaining are states Ψcov and Ψ−. Energy of Ψ− can be expanded to
ϵ− = −4t2/U . Assuming that both t and U are positive, Ψ− is the ground state
of a system with spin-up and spin-down electron.

In the case of same-spin electrons, the ground states are |↑, ↑⟩ or |↓, ↓⟩ with
energy ϵ = 0 – electron hopping is forbidden and no energy decrease is happening.

From here, we can construct the effective Hamiltonian. Let us denote the
exchange interaction energy as J = 4t2/U and electron spin operators Ŝ1 and Ŝ2.
The value of product Ŝ1 ·Ŝ2 is 1/4 for parallel spins and −3/4 for antiparallel spin
(Ashcroft and Mermin [2011]). The effective Hamiltonian satisfying the condition
is

H = J
(︃

S⃗1 · S⃗2 − 1
4

)︃
(1.10)

Since J is positive in this case, direct exchange interaction favours antiparallel
(antiferromagnetic) orientation of neighbouring spins.

1.2.2 Superexchange
Superexchange is an interaction between two magnetic atoms working on a prin-
ciple similar to direct exchange. It can explain antiferromagnetism in transition-
metal oxides, where the magnetic atoms are too far apart for direct exchange
interaction (Pavarini et al. [2012]). In this case, the exchange is mediated by a
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non-magnetic atom located in the middle of the two magnetic atoms. An ex-
ample of such a compound is MnO with Mn-O-Mn bonds, where d-orbitals in
manganese and p-orbital in oxygen participate in the interaction.

O MnMn

↓ ↑↑ ↓

pz dz2dz2

The state with antiparallel spins on Mn atoms has lower energy, because it
allows additional electron hopping processes, while parallel spins do not. The
effective Hamiltonian is

H =
t2
Mn,O

U
S⃗1 · S⃗2 (1.11)

1.2.3 Double exchange
Double exchange shares a similarity with superexchange – it is also an exchange
between two magnetic atoms mediated by a central non-magnetic atom. But
in this case, the magnetic atoms need to be in different oxidation states. This
happens in systems with a non-integral number of electrons per site caused by
conduction electrons moving around the system. Again, we will demonstrate the
interaction on the Mn-O-Mn system. The difference from superexchange lies in
the oxidation states of manganese atoms Mn3+ and Mn4+. Here, the conduction
electron hopping from atom Mn3+ to Mn4+, while retaining the original spin,
is most favourable when the remaining electrons in both d-orbitals are parallel.
This follows from the repulsive Coulomb interaction and first Hund’s rule – the
conduction electron must be parallel to the rest of d-shell electrons both before
and after the hopping. For this reason, the double exchange interaction favours
parallel (ferromagnetic) ordering of the spins. The exchange interaction term in
effective Hamiltonian has negative coefficient −J :

H = −JS⃗1 · S⃗2 , J > 0 (1.12)

1.2.4 Dzyaloshinskii-Moriya interaction
Dzyaloshinskii-Moriya interaction (DMI), or antisymmetric interaction, is the
antisymmetric part of anisotropic superexchange. It originates from spin-orbit
coupling and is only present in lattices with broken inversion symmetry. The
effective Hamiltonian for DMI is

H = D⃗ · (S⃗1 × S⃗2) (1.13)
DMI favours spin canting in otherwise antiferromagnetic structures and ex-

plains weak ferromagnetism (Moriya [1960]).
Furthermore, it is considered one of the most important interactions for spe-

cific chiral textures such as magnetic skyrmions (Ham et al. [2021]).
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The direction of DMI vector is to some extent dictated by the lattice symmetry
(Moriya [1960]). Let us denote locations of magnetic ions as A and B and point
bisecting AB as C. The rules for DMI vector D⃗ are:

• When a center of inversion is located at C, D⃗ = 0⃗.

• When a mirror plane perpendicular to AB passes through C, D⃗ is parallel
to that mirror plane and perpendicular to AB.

• When there is a mirror plane including A and B, D⃗ is perpendicular to that
mirror plane.

• When a two-fold rotation axis perpendicular to AB passes through C, D⃗ is
perpendicular to that axis.

• When there is an n-fold axis (n ≥ 2) along AB, D⃗ is parallel to that axis.

1.2.5 Magnetic dipole interaction
Every magnetic atom has a non-zero magnetic dipole moment, so a classical
dipole-dipole interaction is also present in magnetic compounds. The Hamiltonian
of this interaction is

H = − µ0

4π|r⃗|3
(3(m⃗1 · r⃗)(m⃗2 · r⃗) − m⃗1 · m⃗2) (1.14)

where m⃗1 and m⃗2 are the magnetic dipole moments and r⃗ is their relative position.
In most solids, this interaction has energy in the order of 10−4 eV, while the
other exchange interactions usually have energies of a fraction of eV (Ashcroft
and Mermin [2011]). Magnetic dipole-dipole interaction is therefore neglected in
this thesis.

1.3 Magnetic ordering
Now, let us move to a larger scale and imagine an infinite lattice of magnetic
atoms (or sites). So far, we have established that some compounds are made of
magnetic atoms possessing a non-zero magnetic dipole moment. The moments
themselves are microscopical and as long as they are arranged randomly, they do
not amount to any macroscopic magnetization. We have also introduced exchange
interactions between the magnetic dipole moments which couple their directions.
They result in macroscopic-scale magnetic ordering, which results in non-zero
macroscopic magnetization.

In this section, we will go through possible magnetic orderings and their be-
haviour in finite temperatures.

Ferromagnetic ordering

Ferromagnetic ordering arises when neighbouring spins prefer parallel orientation.
This results in a situation when all spins in the lattice are oriented in the same
direction. The magnetization of such ordering is

M = µeff

V
(1.15)
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where µeff is the magnetic dipole moment of one site and V is the unit cell volume.

Antiferromagnetic ordering

Antiferromagnetic ordering occurs when the exchange interaction between neigh-
bouring magnetic atoms favours antiparallel spin orientation. The magnetization
of antiferromagnetic ordering is M = 0. Depending on the lattice symmetry, we
can observe more complicated orderings, such as:

• amplitude-modulated ordering – magnetic dipole moment magnitude and
direction oscillates between −µeff , µeff along one spatial direction, moments
with |µ| < µeff are permitted

• spiral ordering - magnetic moments rotate around an axis parallel to the
direction of propagation

• cycloidal ordering - magnetic moments rotate around an axis perpendicular
to the direction of propagation

There is another type called conical ordering – magnetic moments rotate
around a conus with axis perpendicular to the direction of propagation. The
ordering is antiferromagnetic in the plane of propagation but has a non-zero
magnetization in the direction of the axis.

Note that another kind of ordering with non-zero magnetization, called un-
compensated antiferromagnetic, or ferrimagnetic, exists. It requires multiple
kinds of magnetic atoms with different magnetic dipole moments and it does
not appear in this thesis.

Propagation vector

Propagation vector k⃗ further describes magnetic ordering. It expresses the re-
lationship between a chemical unit cell of the compound and a magnetic unit
cell. A magnetic unit cell is an analogy to an ordinary (chemical) unit cell, but
also with the magnetic moments placed on the magnetic atoms. The magnetic
unit cell is either the same or larger than the chemical unit cell. It contains an
integral number of chemical unit cells and it is the smallest possible cell fulfilling
the translational symmetry of both the atoms and the magnetic moments.

We demonstrate this on an example 2D lattice.

Figure 1.1: 2D lattice with magnetic moments. The magnetic unit cell (blue)
consists of 3×2 chemical unit cells (green). Antiferromagnetic cycloidal ordering.
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Figure 1.1 shows an example magnetic unit cell containing X × Y = 3 × 2
chemical unit cells. The propagation vector is then calculated as k⃗ = (1/X, 1/Y )
(or k⃗ = (1/X, 1/Y, 1/Z) in 3D lattices). In this case k⃗ = (1/3, 1/2). Note that
ferromagnetic structures are conventionally described by a propagation vector
k⃗ = (0, 0).

Temperature dependence

The situation described above, where the spins are precisely ordered, only hap-
pens for zero temperature. Temperature, which disorders the spins, competes
with the exchange interactions. For a ferromagnetic system, this means decreas-
ing magnetization as the temperature increases. At critical temperature Tc (called
Curie temperature for ferromagnetic and Néel temperature for antiferromagnetic
orderings), the system undergoes a second-order phase transition. The system
loses the magnetic ordering for temperatures higher than Tc and becomes para-
magnetic.

Mean field approximation provides expressions for magnetization in both fer-
romagnetic and paramagnetic states. In the paramagnetic state, the defining
quantity is the paramagnetic susceptibility determined by the Curie-Weiss law
χ = C/(T − Tc), where C is the Curie constant. In the ferromagnetic state, mag-
netization is determined by the Brillouin expression m = tanh (m/t), where m is
reduced magnetization and t is reduced temperature (t = 1 is critical tempera-
ture). Note that mean-field approximation does not give a good result in low tem-
peratures, where magnetization follows Bloch law M(T ) = M(0)(1 − (T/Tc)3/2).

The magnetic order (or disorder) contributes to entropy and the magnetic
moment disordering contributes to the specific heat capacity of the system. In-
deed, one can calculate specific heat capacity of the magnetic system in the
classical Heisenberg model simulation. The (anti-)ferromagnetic/paramagnetic
second-order phase transition is connected to a peak in specific heat capacity.

Determining the critical temperature solely based on specific heat is inaccu-
rate, because of the limited size of the simulated lattice. Binder cumulant is a
useful quantity for overcoming this problem and determining the phase transition
temperature accurately (Landau and Binder [2009]). In the context of magnetism,
it is calculated using magnetization as

UL = 1 − ⟨M4⟩L

3⟨M2⟩2
L

(1.16)

where ⟨...⟩L denotes averaging over the statistical ensemble measured for specific
temperature and lattice size L. The critical temperature is the point where UL

curves for different lattice sizes cross.

1.4 Classical Heisenberg model
The classical Heisenberg model is used to describe the behaviour of magnetic
moments in a lattice. As the name suggests, it neglects quantum effects, making
it unsuitable for certain classes of materials, like antiferromagnets, where the
quantum effects are significant and the ground state is a mixed quantum state
unreachable by the classical model.
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It works on a lattice of 3D fixed-magnitude spin vectors S⃗i ∈ R3, |S⃗i| =
1, representing the localized magnetic dipole moments. The Hamiltonian can
include various interactions amongst the spins or with external field. Direct
exchange, superexchange, double exchange, or others are specified only by Jij ∈ R
which specifies the interaction energy between Si

⃗ and Sj⃗. DMI is defined by DMI
vectors Dij ∈ R3. Interaction with external field depends on the local magnetic
field strength h⃗i and the magnetic dipole moment of the spin µi.

H = −
∑︂
ij

JijS⃗i · S⃗j −
∑︂
ij

D⃗ij · (S⃗i × S⃗j) −
∑︂

i

µ0µih⃗i · S⃗i (1.17)

This is the general form of the classical Heisenberg model Hamiltonian. Note
that other types of interactions can also be included, like anisotropic exchange
interaction, biquadratic interaction, or magnetocrystalline anisotropy. However,
the general form is rarely used in practice. An example of a simplified Hamiltonian
is

H = −
∑︂
⟨ij⟩

JS⃗i · S⃗j −
∑︂
⟨ij⟩

D⃗ij · (S⃗i × S⃗j) −
∑︂

i

H⃗ · S⃗i (1.18)

where ⟨ij⟩ denotes summing of all nearest neighbour pairs. We can see several
simplifications: exchange interaction is considered only between nearest neigh-
bours with constant global interaction energy J . The same applies for DMI,
although the DMI vector D⃗ij usually depends on the relative position of S⃗i and
S⃗j. All spins have the same magnetic dipole moment µ0µi = 1 and the external
field is homogeneous h⃗i = H⃗.

1.5 Markov Chain Monte Carlo
Almost all calculations in this thesis are based on searching either for a ground
state of a specific Hamiltonian or for thermal average of states within a certain
temperature. The state space for the Heisenberg model is infinite because there
is an infinite number of unique unit vectors in three-dimensional space. We could
discretize the unit vector space into N states (a unit vector S⃗i is in 1 out of N
states), but for a Heisenberg model with L × L spins, the state space is far too
large (number of states is NL2) to iterate over all states in a reasonable time. We
need a better method to search for the ground state.

Stochastic algorithms based on the Markov Chain Monte Carlo (MCMC)
method have proven useful for finding approximate solutions to problems based
on the classical Heisenberg model in a reasonable time. Mathematically speaking,
the MCMC method aims to accurately sample given probability distribution. In
our case, we want to sample the Boltzmann distribution of the system, where the
lowest-energy states are the most probable. This suits our goal of searching for
the ground state.

Markov Chains

Markov chain is a useful mathematical formalism to model a wide class of stochas-
tic processes. In this thesis, we use Markov chains to sample the Boltzmann
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distribution of the system, since constructing this distribution explicitly is im-
possible due to the infinite state space. Here, we present a simple definition of
Markov chains inspired by Chan et al. [2012].

Markov chain is a sequence of random variables S0, S1, S2, ..., Sk, Sk+1, ..., such
that

1. Each variable takes a value from the state space Sk ∈ S, S = 0, 1, 2, ....

2. Conditional probability fulfills condition
P (Sk+1 = j|Sk = ik, Sk−1 = ik−1, S0 = i0) = P (Sk+1 = j|Sk = ik). In other
words, the probability of transition P (Sk+1 = j|Sk = ik) does not depend
on the history of the process.

3. P (Sk+1 = j|Sk = i) = pij, which does not depend on k.

The transition probability pij ∈ ⟨0, 1⟩ needs to be defined for each pair of
states i and j. For finite state spaces, pij is often written as a matrix. For infinite
state spaces, it is a general function p(i, j) ∈ ⟨0, 1⟩.

We require that the modeled distribution P (S) is stationary and does not
depend on k. This is guaranteed by the detailed balance condition (Loison et al.
[2004]):

P (S = i) · pij = P (S = j) · pji (1.19)

Metropolis-Hastings algorithm

Metropolis-Hastings algorithm is a Markov Chain Monte Carlo method designed
to solve the problem of sampling from a Boltzmann distribution.

It uses Markov chains to draw random samples from a distribution of states.
The distribution does not need to be described explicitly, but rather as a Markov
Chain transition probability function. This is very convenient because it allows us
to easily describe a state distribution that would be difficult to define explicitly.

Let us have the Heisenberg model of L × L spin lattice. A state Xk consists
of L2 spin vectors Xk = (S⃗1, S⃗2, ..., S⃗L×L). The state distribution is defined via
transition probability function p(Xi, Xj) ∈ ⟨0, 1⟩. Initial state X0 is selected
randomly or based on specific initial conditions. Markov Chain Monte Carlo
draws samples X1, X2, ... from the state space based on following scheme:

1. site i ∈ 1, 2, ..., L2 is randomly selected

2. random new state Xprop based on current state Xk is proposed, such that
only the i-th spin is modified: Xprop = (S⃗k

1, S⃗
k

2, ..., S⃗
prop
i , ..., S⃗

k

L×L)

3. number p′ is randomly generated from uniform distribution ⟨0, 1⟩

4. Xk+1 = Xprop (proposed state is accepted) if p′ < p(Xk, Xprop), otherwise
Xk+1 = Xk (proposed state is rejected)

The beauty of this method is in the simplicity of the transition probability
function p(Xi, Xj), which depends only on the energy of states Ei and Ej, and
current temperature T .
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p(i, j) =
⎧⎨⎩exp (−Ej−Ei

kbT
) Ej > Ei

1 Ej ≤ Ei

(1.20)

The proposed spin vector S⃗
prop
i is usually generated reasonably close to the

original spin vector, such that S⃗
prop
i · S⃗

k

i → 1. The choice of the new spin vector
affects the speed of convergence of the method. If almost all proposed states
are accepted, the spin vector modifications are too small. On the other hand, if
almost all proposed states are rejected, the algorithm rarely updates the state. A
proposal acceptance rate of 0.5 is optimal with respect to the speed of convergence
(Becca and Sorella [2017]).

Heat Bath

Heat bath is another Markov Chain Monte Carlo method, an alternative to the
Metropolis-Hastings algorithm. The principle of heat bath is that all interactions
in the Hamiltonian can be expressed in the form of an effective field H⃗ i acting on
spin S⃗i. For each spin S⃗i, a Boltzmann probability distribution can be defined,
telling us what is the probability of finding a spin in a certain direction at tem-
perature T . This probability distribution is then directly sampled and the spin
direction is updated.

We follow the scheme proposed by Miyatake et al. [1986]. We start with
rearranging the Hamiltonian to express the local effective field

H = −J
∑︂

<ij>

S⃗i · S⃗j −
∑︂

<ij>

D⃗ij · (S⃗i × S⃗j) − H⃗ ·
(︄∑︂

i

S⃗i

)︄
=

= −
∑︂

i

⎡⎣∑︂
i<j>

(︂
JS⃗j + S⃗j × D⃗ij

)︂
+ H⃗

⎤⎦ · S⃗i =

= −
∑︂

i

H⃗eff,i · S⃗i

(1.21)

where ∑︁i<j> iterates over the nearest neighbours of spin S⃗i. The DMI term was
modified via vector identity D⃗ij ·(S⃗i × S⃗j) = S⃗i ·(S⃗j ×D⃗ij). The effective external
field H⃗eff,i depends on nearest neighbours of S⃗i, but not on S⃗i itself (∂H⃗effi

∂S⃗i
= 0).

The same result is obtained if we calculate the field as a partial derivative of the
Hamiltonian with respect to spin S⃗i: H⃗eff,i = ∂H

∂S⃗i
.

S⃗i can be expressed in polar coordinates as θi, ϕi, where θi = 0◦ corresponds to
the direction of the effective field. The Hamiltonian can be rewritten as

H = −
∑︂

i

H⃗eff,i · S⃗i = −
∑︂

i

|H⃗eff,i| cos θi (1.22)

The probability of finding S⃗i in solid angle dωi = sin θidθidϕi follows Maxwell-
Boltzmann statistics
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P (θi, ϕi) sin θidθidϕi = C exp
⎛⎝−|H⃗eff,i| cos θi

kBT

⎞⎠ sin θidθidϕi

1/C =
∫︂ 2π

0
dϕ
∫︂ π

0
sin θidθi exp

⎛⎝−|H⃗eff,i| cos θi

kBT

⎞⎠ (1.23)

Now we introduce variables Ri, R′
i sampled from uniform probability distribution

(0, 1). The relationship between Ri and θi is defined by P (θi, ϕi)

Ri =
∫︂ 2π

0
dϕi

∫︂ π

0
sin θidθidϕi

R′
i = ϕi 2π

(1.24)

Energy does not depend on ϕi, so it follows uniform probability distribution
(0, 2π). To sample θi from distribution P (θi, ϕi) using R from the uniform distri-
bution, we need inverse of the equation above

cos(θi) = kBT

|H⃗eff,i|
log

⎡⎣exp
⎛⎝ |H⃗eff,i|

kBT

⎞⎠ (1 − Ri) + Ri exp
⎛⎝−|H⃗eff,i|

kBT

⎞⎠⎤⎦ (1.25)

Assuming we run the heat bath algorithm on L×L lattice, the computational
scheme is:

1. site i ∈ 1, 2, ..., L2 is randomly selected

2. H⃗eff,i is calculated

3. random numbers Ri and R′
i are sampled from uniform distribution and θi,

ϕi are calculated

4. θi, ϕi are transformed to original Cartesian coordinates into vector S⃗new

5. spin at site i is updated S⃗i → S⃗new

The main advantage of the heat bath compared to the Metropolis-Hastings
algorithm is that all updates are automatically accepted and we do not need to
tune the acceptance rate, resulting in faster convergence.

Simulated annealing

Simulated annealing is a technique used in optimization when searching for global
minimum, for example via the Monte Carlo method. It is especially useful when
the optimization problem contains lots of local minima. Some optimization algo-
rithms can get stuck in a local minimum and cannot go over a barrier in the target
function. Simulated annealing overcomes this problem by potentially accepting
a worse proposed state with a certain probability based on the current ”temper-
ature”, where the term ”temperature” is abstract and does not necessarily mean
the physical quantity. Metropolis-Hastings and Heat Bath algorithms already
incorporate the idea of temperature, primarily to calculate finite-temperature
simulations. However, this physical temperature is also used in the simulated
annealing scheme to improve the search for the ground state.
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Specifically in the classical Heisenberg model, the simulated annealing scheme
is:

1. start with T0 > Tc, where Tc is the ordering temperature

2. run Monte Carlo updates until the system is in thermal equilibrium (its
total energy does not decrease anymore)

3. lower the temperature: Ti+1 < Ti

4. repeat from step number 2 until Ti ≤ Tf , where Tf is the final desired
temperature (sufficiently close to 0 when searching for ground state)

1.6 Spin dynamics method
The spin dynamics method takes advantage of the Landau-Lifshitz-Gilbert (origi-
nally Landau-Lifshitz) equation (Landau and Lifshitz [1992]), which describes the
evolution of the direction of a magnetic dipole moment in an external magnetic
field.

Let us present a brief derivation of the equation inspired by Lakshmanan
[2011]. We will begin with the Hamiltonian term for the interaction of the spin
angular momentum operator with the external magnetic field:

S⃗ = (Sx, Sy, Sz) , |S⃗| = 1

HH = −gµB

ℏ
S⃗ · B⃗ , B⃗ = µ0H⃗

(1.26)

where g is the gyromagnetic ratio, µB is the Bohr magneton and µ0 is permeability
in vacuum. From the Schrödinger equation and Hellmann-Feynman theorem, we
can write a dynamical equation for the spin expectation value

d
dt

⟨S⃗(t)⟩ = gµB

ℏ
⟨S⃗(t) × B⃗(t)⟩ (1.27)

which leads to the Landau-Lifshitz equation for spin angular momentum without
the damping term:

dS⃗

dt
= −γ0(S⃗ × H⃗) (1.28)

This equation expresses the spin precession around the axis of the external
field. However, it does not account for the spin relaxation process observed
experimentally. Gilbert suggested adding a damping term, acting perpendicularly
to the precession term, and ultimately aligning the spin collinearly to the external
field.

dS⃗

dt
= −γ0

[︂
S⃗ × H⃗

]︂
+ αγ0

⎡⎣S⃗ × dS⃗

dt

⎤⎦ (1.29)

where α ≪ 1 is the damping parameter which varies for different materials and
is generally difficult to obtain (both experimentally and theoretically) (Nishino
et al. [2020]). This equation can be rewritten as

(1 + α2γ0)
dS⃗

dt
= −γ0

[︂
S⃗ × H⃗

]︂
− αγ0S⃗ ×

[︂
S⃗ × H⃗

]︂
(1.30)
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and further simplified by rescaling γ = γ0/(1 + α2γ0)

dS⃗

dt
= −γS⃗ × H⃗ − γαS⃗ ×

[︂
S⃗ × H⃗

]︂
(1.31)

H⃗
S⃗

S⃗ × H⃗

S⃗ × [S⃗ × H⃗]

Figure 1.2: Spin precession around external field axis with damping.

To include the exchange interactions, we replace the magnetic field with ar-
bitrary effective magnetic field H⃗eff , which can be expressed from the complete
Hamiltonian, same as in Equation 1.21

H = −J
∑︂

<ij>

S⃗iS⃗j −
∑︂

<ij>

D⃗ij · (S⃗i × S⃗j) − H⃗
∑︂

i

S⃗i =

= −
∑︂

i

H⃗eff,i · S⃗i

(1.32)

To conduct finite-temperature simulations, we need to extend the effective
external field with the term for stochastic external field representing random
thermal fluctuations (Skubic et al. [2008], Leliaert et al. [2017]):

H⃗
′
eff,i = H⃗eff,i + H⃗therm,i

H⃗therm,i = η⃗

√︄
2kbTα

γ

(1.33)

where η⃗ is a random vector drawn from the standard normal distribution, such
that:

⟨H⃗therm,i(t)⟩ = 0

⟨H⃗therm,i(t1)H⃗therm,j(t2)⟩ = 2kbTα

γ
δijδ(t1 − t2)

(1.34)

meaning that the field is not correlated across different spin sites and time.

1.7 Motivation - materials of interest
The thesis focuses on investigating the effect of DMI on triangular
two-dimensional spin lattices (described in section 2.2).

The theoretical results are potentially comparable to experimental results, as
there are known compounds matching the following description:
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• magnetic atoms are arranged in planes with triangular planar symmetry

• individual planes are separated by sufficient distance so that inter-planar
interactions can be neglected

• inversion symmetry is broken (non-centrosymmetric), usually by additional
non-magnetic atoms

One example of such compound is EuAl12O19, where magnetic Eu ions are
arranged in planar triangular lattices. The exchange interaction between the
europium ions is mediated by the oxygen atoms (superexchange). The Eu-O-
Eu bond forms an angle of 175.5◦ ̸= 180◦ 1 (Jain et al. [2013]) – the inversion
symmetry is broken and DMI is allowed. In this case, the DMI vector points in
the out-of-plane direction.

Another such compound is Ba3CoSb2O9 (Fortune et al. [2021]). Other sam-
ples matching the theoretical description are layered samples, such as ultrathin
magnetic films.

1Data retrieved from the Materials Project for EuAl12O19 (mp-1212749) from database
version v2022.10.28.
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2. Methods

2.1 UppASD and pyUppASD
All numerical results in this thesis have been computed using UppASD. The
UppASD (Uppsala Atomistic Spin Dynamics) package is a simulation tool for
atomistic spin dynamics at finite temperatures (Skubic et al. [2008]). It imple-
ments all methods described in section 1.5: Metropolis and heat bath algorithms
for the Markov Chain Monte Carlo method and the spin dynamics method using
the Landau–Lifshitz–Gilbert equation. It can leverage multi-core processors and
vectorization for efficiency.

To run a simulation, a set of text-based configuration files needs to be defined
first. This includes the lattice, inter-atomic interactions, external field, tempera-
ture, initial state, computation method, observable sampling, and more.

UppASD can then be launched, producing text-based output files with mea-
surements and resulting lattice.

To conduct more complicated experiments, like the heat capacity measure-
ment (subsection 3.2.1) or hysteresis loop measurement section 3.3, users need
to implement a considerable portion of the logic themselves (e.g. in Bash) and
chain individual UppASD executions together.

To simplify this, we introduce pyUppASD, a wrapper library for UppASD
written in Python, which has been developed as a part of this thesis. It allows
users to define complicated experiments programmatically in Python and access
the simulation results in the form of Numpy (Harris et al. [2020]) arrays. It
also features some basic capabilities of plotting or animating resulting lattices.
It is distributed as open-source software and available at https://github.com/
janpriessnitz/pyUppASD.

2.2 Studied system

2.2.1 Lattice

a⃗

b⃗

Figure 2.1: 2D triangular lattice studied in this thesis. The red and blue arrows
show the basis vectors of the lattice. Grey arrows point to the 6 nearest neigh-
bours of the central site.
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The studied system is based on a two-dimensional triangular lattice. The unit cell
of the lattice contains a single site with a magnetic moment. In this experiment,
we place the magnetic site at the origin (coordinates (0, 0)), although the site
placement is irrelevant in this case (a single site per unit cell). Multiple valid
choices for unit cell dimensions are available. Here, we generate the lattice using
two basis vectors: a⃗ = (1, 0) and b⃗ = (−1/2,

√
3/2).

Each site has got six equivalent nearest neighbours, with unit distance from
the site. The translation vectors to the nearest neighbours expressed both in the
real coordinate system and the coordinate system of the basis vectors, are:

• n⃗1 = (1, 0) = 1a⃗ + 0b⃗

• n⃗2 = (1/2,
√

3/2) = 1a⃗ + 1b⃗

• n⃗3 = (−1/2,
√

3/2) = 0a⃗ + 1b⃗

• n⃗4 = (−1, 0) = −1a⃗ + 0b⃗

• n⃗5 = (−1/2, −
√

3/2) = −1a⃗ − 1b⃗

• n⃗6 = (1/2, −
√

3/2) = 0a⃗ − 1b⃗

The boundary conditions of the lattice are chosen to be periodic, meaning
that the lattice sites are bound by the condition:

S⃗(N + k, M + l) = S⃗(k, l) (2.1)

where S⃗(k, l) is the spin of the magnetic dipole located at ka⃗ + lb⃗ and N and M
are the lattice dimensions in respective directions. In this thesis, we choose N and
M divisible by 3, since the observed antiferromagnetic phases have a propagation
vector of (1/3, 1/3).

We use the Heisenberg model, meaning that each magnetic moment is repre-
sented by a 3-dimensional vector of constant magnitude. Bohr magneton (µB) is
selected as the primary unit of magnetic dipole moment in this simulation. Each
lattice site has got a magnetic dipole with a moment of 1 µB.

2.2.2 Hamiltonian
In the studied system, we consider 3 types of interactions:

• exchange interaction J

• Dzyaloshinskii-Moriya interaction D

• interaction with external field H
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Figure 2.2: Scheme of nearest neighbours in the studied system. Solid black lines
indicate the interaction between the central site and its neighbours. Smaller red
and blue circles indicate the directions of the respective DMI vectors. Red means
into the paper, blue means out of the paper.

The exchange and DM interaction are considered only between nearest neigh-
bours. All interactions between more distant sites are neglected. The Hamilto-
nian can be expressed as:

H = −J
∑︂

<ij>

S⃗i · S⃗j −
∑︂

<ij>

D⃗ij · (S⃗i × S⃗j) − H⃗ ·
(︄∑︂

i

S⃗i

)︄
(2.2)

where < ij > iterates over all pairs of nearest neighbours. The DMI vector D⃗ij

depends on the relative position of i-th and j-th moment denoted as u⃗ij:

D⃗ij =
{︄

(0, 0, D) if u⃗ij ∈ {(1/2,
√

3/2), (−1, 0), (1/2, −
√

3/2)}
(0, 0, −D) if u⃗ij ∈ {(1, 0), (−1/2,

√
3/2), (−1/2, −

√
3/2)} (2.3)

The strength of the interactions is specified by J, D, H ∈ R. These are the
most influential parameters of the simulation, governing the behaviour of the
simulated systems. Since we are not interested in the total energy scale, we set
J ± 1 and specify D and H in units of |J |. This contracts the parameter space.

From the definition of D⃗ij, we see that the DMI vector points of out the lattice
plane. In-plane DMI is the subject of extensive study yielding different results
(Hog et al. [2022], Aldarawsheh et al. [2023]), but is out of the scope of this thesis.

2.3 Method
In chapter 1, we discussed the principles of computational methods used in this
thesis. In this section, we will focus on the practical aspects of the individual
simulation experiments. They will include, among others:

• computational schemes (algorithms)

• parameters of the simulations

• available observables and their sampling
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2.3.1 Ground state
Finding the ground state of the studied lattice is an important simulation that
shows us fundamental information about the lattice.

We start with a random lattice of L × L sites (L = 90, L = 180, or L = 270
in this thesis): the moment vector at each site is individually set to a random
direction. From this state, we begin the process of simulated annealing. We start
with an initial temperature T0 and end with a final temperature Tf . The process is
divided into N temperature steps with temperatures T0, T1, ..., TN−1 = Tf . In each
temperature step, we make M Markov Chain update sweeps across the lattice,
meaning M · L · L individual updates. The simulated annealing temperature
schedule (values of Ti) is chosen so that the temperatures follow the geometric
sequence:

Ti = T0 · ai , a = (Tf

T0
) 1

N (2.4)

We also need to choose the Markov Chain update algorithm. UppASD offers
Metropolis or heat bath update algorithms (described in section 1.5). We compare
the two on a limited set of parameters to ensure that they are consistent and give
equivalent results. Further on, we use the heat bath algorithm, because the lattice
reaches equilibrium faster (using less update steps and computation time).

To obtain a good result (a state close to the true ground state), we need to
fulfill two important conditions:

• The starting temperature must be sufficiently high so that when the lattice
reaches equilibrium at this temperature, it is still random. In particular,
the starting temperature must be above the critical ordering temperature
of the system.

• The number of steps N and M must be large enough so that a) equilibrium
is achieved at the end of each temperature step, and b) the temperature
drop between two temperature steps is not too big. This ensures that the
annealing process is approximately adiabatic (quasi-static).

We found that T0 = 1000 K, Tf = 0.01 K, N = 30 is a satisfactory temperature
scale for our system. M in range of 10000 ≤ M ≤ 100000 is sufficient depending
on specific conditions like J , D and H. Ideally, we would need Tf = 0 K to
observe the true ground state. Zero temperature is principally impossible to
reach with simulated annealing. Instead, we require lim(Tf ) = 0. Tf = 0.01 K is
small enough for the purposes of this thesis.

The initial simulated annealing phase is followed by the measurement phase
with fixed temperature Tf . The measurement phase is useful when measuring
observables at finite temperatures. Here, the ground state is found at the end of
the initial annealing phase and the measurement phase can be skipped.

2.3.2 Observables
We can calculate several characteristic observables of the ground state to bet-
ter understand it. Most importantly, it helps us with classifying the magnetic
ordering.
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In this thesis, we will present the following observables when investigating
ground states:

• magnetization M⃗ = 1
L2
∑︁

i S⃗i

• static spin structure factor S̃(k⃗)

• magnetic susceptibility tensor ξαβ = Mα/Hβ

• total energy and Hamiltonian projections with respect to individual inter-
action types Etot, EJ , ED, EH

Static spin structure factor is a useful quantity that clearly shows spatial
periodicity in the lattice. It is very similar to the conventional structure factor
widely used in crystallography:

S̃(k⃗) = 1
L2

∑︂
i

∑︂
j

(S⃗i · S⃗j)eik⃗·(r⃗i−r⃗j)

= 1
L2 (

∑︂
i

S⃗ie
ik⃗·r⃗i)(

∑︂
j

S⃗je
−ik⃗·r⃗j )

(2.5)

To reduce noise, multiple independent lattices (ensembles) are simulated and
the measured observables are averaged.

2.3.3 Finite-temperature measurements
In the section above, we described how to obtain zero-temperature properties
of a lattice. We might also be interested in those same properties but at finite
temperatures. The method for measuring finite-temperature properties is very
similar. The first step is simulated annealing, only with Tf not approaching 0,
but the temperature of interest.

However, the measurement phase itself is principally different: at finite tem-
peratures, there is no single ground state available. Instead, there is a thermody-
namic ensemble of possible states at a certain energy. To correctly measure any
observable, we need to calculate the thermodynamic average of such observable
by sampling over the thermodynamic ensemble. Assuming the system is in equi-
librium, this is achieved by applying Markov Chain updates upon the lattice and
periodically sampling the observables.

2.3.4 Heat capacity
Heat capacity is measured to find the critical ordering temperature of the lattice.
First, the ground state is found using the method described above. Then, we
run a temperature sweep: N temperature steps with increasing temperatures
Ti+1 > Ti. In each step, the lattice first reaches the equilibrium. After that, the
observables are sampled in the same way as was described in subsection 2.3.3.
Here, we measure energy, magnetization and its higher moments. Temperature-
averaged variables are enclosed in ⟨...⟩.
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The specific heat capacity is calculated from measured energy:

cV = 1
L2

d⟨E⟩
dT

(2.6)

Binder cumulant can be used to precisely determine the critical ordering tem-
perature (Landau and Binder [2009]). It can eliminate the inaccuracy which
originates from the finite size of the simulated system:

UL = 1 − ⟨M4⟩
⟨M2⟩2 (2.7)

To determine the critical temperature, the Binder cumulant versus tempera-
ture dependency needs to be measured for multiple lattice sizes.

2.3.5 Hysteresis loop
The hysteresis loop is measured as a sweep over all values of an external field.
Let us first define the saturation external field HS as the minimal external field
strength needed to achieve maximal magnetization (|M | = 1 in our case).

We start with a lattice that is fully saturated. This is achieved by performing
simulated annealing down to the desired temperature with initial external field
|Hmax

⃗ | > |HS
⃗ |.

The next phase employs the spin dynamics algorithm, Markov Chain Monte
Carlo is not used anymore. It consists of 2N steps, during which we sweep through
the external field strength range. In each step, we first update the external field
Hi → Hi+1. After that, M spin dynamics timesteps are carried out. Again, M
must be large enough so that the lattice can reach equilibrium and the process can
be considered quasi-static. Finally, magnetization is measured and the external
field is updated again.

A simple sweep is a linear sequence from negative to positive values and back:

H0 = −Hmax

Hi = Hmax(−1 + 2i

N
) , if 0 < i < N

HN−1 = Hmax

HN+i = Hmax(1 − 2i

N
) , if N < i < 2N

(2.8)

which corresponds to N steps from −Hmax to Hmax and N steps from Hmax to
−Hmax.

This sequence can be improved by ”slowing down” at critical points:
1. N1/2 steps from −Hmax to −Hthresh

2. N2 steps from −Hthresh to Hthresh

3. N1/2 steps from Hthresh to Hmax

and analogically from Hmax to −Hmax. Note that 0 ≤ Hthresh ≤ Hmax.
Hysteresis loop can be measured for various values of J and D, but also

temperature T (subsection 3.3.2).
All spin dynamics simulations in this thesis use timestep ∆t = 10−15 s and

damping parameter α = 0.05.
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3. Results

3.1 Ground state (zero-temperature)
In this section, we will present the ground states (lowest-energy states) of the
studied lattice at zero temperature for various parameter settings - we will ex-
plore the parameter space of the Hamiltonian defined in the previous chapter
(subsection 2.2.2). We used heat bath MCMC with the simulated annealing
technique to calculate the ground states. The method is described in detail in
section 1.5.

3.1.1 Qualitative analysis
To get a basic overview of all possible orderings of the lattice, we first show small-
scale lattices for a few selected parameter sets without the external magnetic field
(H⃗ = (0, 0, 0)). The following figures illustrate 30 × 30 lattice states in the form
of x, y, and z components of the magnetic moment vectors.

Ferromagnetic exchange interaction

Figure 3.1: Ground state lattice for J = 1, D = 0.

We start without the DMI (D = 0), only with exchange interaction J = 1 which
favours parallel orientation of neighbouring spins. The resulting state is shown
in Figure 3.1 is a ferromagnetic ordering in an arbitrary direction, i. e. it is not
particularly oriented with respect to the lattice plane.

Figure 3.2: Ground state lattice for J = 1, D = 1.
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In the next step, we enable the DMI. Figure 3.2 shows ground state for J = 1,
D = 1 which is ferromagnetic as well. However, we can notice that the magnetic
moments are oriented in the z-direction, perpendicular to the lattice plane. This
is an effect of the DMI and it is more closely investigated in subsection 3.2.3.

Figure 3.3: Ground state lattice for J = 1, D = 1.8.

Figure 3.4: Ground state lattice for J = 1, D = 1.8. Alternative plot showing
the in-plane cycloidal ordering. Arrows show in-plane spin component, white
background colour means zero z-component.

The DMI can be further strengthened, which results in a sharp phase transi-
tion. Figure 3.3 and Figure 3.4 shows ground state for J = 1 and D = 1.8. The or-
der is antiferromagnetic, cycloidal with propagation vector k⃗ = (1/3, 1/3), mean-
ing that neighbouring magnetic moments form an angle of 120◦. Note that the
moments rotate inside the lattice plane, the rotation axis lies in the z-direction.
Identical antiferromagnetic ordering was observed in Hog et al. [2022].
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Antiferromagnetic exchange interaction

Figure 3.5: Ground state lattice for J = −1, D = 0.

Figure 3.6: Ground state lattice for J = −1, D = 0. Alternative plot showing
the cycloidal ordering. Arrows show in-plane spin component, colour shows z-
component.

Figure 3.5 and Figure 3.6 shows the ground state with no DMI and antiferro-
magnetic exchange interaction (J = −1, D = 0). The order is antiferromagnetic,
cycloidal with propagation vector k⃗ = (1/3, 1/3). The plane of rotation of the
magnetic moment is arbitrary – z-component of spins is non-zero.
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Figure 3.7: Ground state lattice for J = −1, D = 0.1.

Next, we include small DMI: D = 0.1. In Figure 3.7 of the ground state, we
see that the antiferromagnetic order has not changed, but it is now oriented such
that the moments rotate inside the lattice plane, the same way as in the case
J = 1, D = 1.8. This was also observed in Hog et al. [2022].

Antiferromagnetic exchange interaction J = −1 is not covered further, be-
cause quantum effects, neglected by the classical Heisenberg model, play a signif-
icant role there (as explained in the theoretical part).

Spin structure factor

Figure 3.8: Spin structure factor of various ground states: a) ferromagnetic order,
b) antiferromagnetic order caused by strong DMI, c) antiferromagnetic order
caused by antiferromagnetic exchange interaction.

Figure 3.8 shows the spin structure factor of ground states shown in the section
above. Hexagonal symmetry is clearly visible in all three plots – the magnetic
order does not decrease the symmetry of the underlying lattice. The scale of the
k-vector is defined by the inter-site distance of the lattice, which was set to 1.

Figure 3.9: Crystallographic planes in the ferromagnetic lattice belonging to the
spin structure factor peaks at k⃗ = (0, ± 4π√

3).
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In the ferromagnetic lattice, there are 3 sets of equivalent spin structure factor
peaks. Peak at k⃗ = (0, 0) implies non-zero overall magnetization, peaks at |k⃗| =
4π√

3 correspond to the inter-planar distance d =
√

3
2 , peaks at |k⃗| = 4π correspond

to distance d = 1
2 .

In the antiferromagnetic lattice, the central peak at k⃗ = (0, 0) is missing as
expected. The first set of peaks is located at |k⃗| = 4π

3 . Figure 3.1.1 shows the
crystallographic plane family belonging to these peaks.

Figure 3.10: Crystallographic planes in the antiferromagnetic lattice belonging to
the spin structure factor peaks at k⃗ = ±4π

3 (1
2 ,

√
3

2 ). Interplanar distance is d = 3
2 .

We can use the k-vectors to write an equation for the spin vectors in this
in-plane antiferromagnetic order. A spin vector located at r⃗ = (rx, ry) is:

S⃗(r⃗) = (Re[eik⃗r⃗], Im[eik⃗r⃗], 0) (3.1)

where the origin of the r⃗ coordinate system can be freely chosen to accommodate
for the phase shift.

Using the spin structure factor to identify phases in the lattice has significant
advantages compared to using other quantities, such as magnetization. The spin
structure factor is unique for the specific phase so that equal spin structure factor
implicates equal phase and vice versa. Such a claim does not hold for magneti-
zation. This also means that it can be averaged over many simulation ensembles
to reduce noise. Spin structure factor is used in section 3.4.

3.1.2 Phase diagrams
In the last section, we have seen possible magnetic orders in the lattice. Now is
the time to examine the Hamiltonian parameter space in more detail and find the
ground state for each possible combination of parameters. Exchange interaction
is set to J = 1 since there is no need to explore other values (as explained in
subsection 2.2.2). Other parameters are a) strength of DMI (or D), and b) either
in-plane or out-of-plane component of the external field vector (Hx or Hz). The
results are plotted in the form of a phase diagram showing the magnetization of
the lattice state.
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Figure 3.11: Phase diagram featuring magnetization with ferromagnetic exchange
interaction (J = 1). The external field is either in-plane (left) or out-of-plane
(right). Red colour (M = 1) corresponds to ferromagnetic order. Yellow colour
(M = 0) means antiferromagnetic order. Grey dots show individual measuring
points. The black line shows the analytically calculated phase transition from
subsection 3.1.3. L = 90.

When applying external magnetic field, new magnetic phases can be induced.
These phases are usually called metamagnetic and the related magnetic phase
transitions with respect to the external magnetic field as the control parameter
are called metamagnetic transitions. A phase transition between two magnetic
phases can be a first- or second-order type depending on whether it is connected
with a discontinuity of the first derivative (e.g., magnetization) or the second
derivative (e.g., magnetic susceptibility) of the magnetic part of the free energy
(Sechovský [2001]).

In the in-plane case, the phase boundary is sharp (from completely ferromag-
netic to completely antiferromagnetic). It can be classified as a first-order phase
transition, because of the discontinuity of magnetization on the phase boundary.
The transition can be observed, for example, using the spin dynamics method,
finite temperature and varying external field: we start with parameters favour-
ing the ferromagnetic order, find the ground state, then run spin dynamics while
gradually decreasing the external field strength. This is essentially the experimen-
tal setup for measuring the hysteresis loop. Figure 3.12 shows a snapshot lattice
from the measurement of hysteresis loop (from section 3.3) featuring first-order
phase transition.
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Figure 3.12: Intermediate lattice state featuring first-order phase transition from
ferromagnetic to antiferromagnetic phase. Lattice obtained via spin dynamics
method with J = 1, D = 2, T = 0.013, and varying in-plane external field.

In the out-of-plane case, the phase transition is gradual – for D >
√

3, mag-
netization Mz gradually increases with increasing external field Hz. The corre-
sponding lattice state can be classified as conical. It is a mixture of the antifer-
romagnetic order with moments rotating in-plane and ferromagnetic order with
non-zero z-component of the moment vectors. This state can be characterized
via an equation for the spin vectors, similarly to Equation 3.1:

S⃗(r⃗) = (
√︂

1 − Sz2 Re[eik⃗r⃗],
√︂

1 − Sz2 Im[eik⃗r⃗], Sz) (3.2)

where −1 ≤ Sz ≤ 1 and Sz = Mz.

Figure 3.13: Lattice state with conical magnetic order for J = 1, D = 2, Hz = 1.

Let us investigate the out-of-plane magnetization seen in Figure 3.11 more
closely, namely the region D >

√
3.

30



Figure 3.14: Measured out-of-plane magnetization Mz vs. external field Hz for
J = 1 and various D.

Figure 3.14 shows that the dependence of Mz on Hz is linear up until satura-
tion Mz = 1. This means that the magnetic susceptibility is constant throughout
the external magnetic field range (0, Hs) where Hs is the saturation external field:
At Hs, susceptibility drops to zero, indicating second-order phase transition.

χ = M

H
= 1

Hs

(3.3)

Saturation external field and susceptibility are only dependent on DMI strength
D.

Figure 3.15: Inverse of magnetic susceptibility vs. DMI strength D. 1/χ = 0 for
D <

√
3 indicating ferromagnetic order. The red dashed line is a fit obtained via

the least-squares method.

3.1.3 Analytical solution
Only two magnetic orderings are present in the phase diagrams presented above.
We will assume that this is correct and no other phases can appear. This situa-
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tion is simple enough so that the phase diagrams can be derived from analytical
calculations. We will resolve the Hamiltonian for each phase and obtain its en-
ergy. We can compare these energies and determine which phase is favored for a
set of Hamiltonian parameters. Let us first write down some useful relations:

E = EJ + ED + EH

EH = −H⃗
∑︂

i

S⃗i = −L2H⃗ · M⃗

EJ = −J
∑︂

<ij>

S⃗i · S⃗J = −J
∑︂

<ij>

|S⃗i||S⃗j| cos αij = −J
∑︂

<ij>

cos αij

ED = −D
∑︂

<ij>

(0, 0, ±1) · (S⃗i × S⃗j) =

= −D
∑︂

<ij>

(0, 0, ±1) · (Sy
i Sz

j − Sz
i Sy

j ; Sz
i Sx

j − Sx
i Sz

j ; Sx
i Sy

j − Sy
i Sx

j ) =

= −D
∑︂

<ij>

±(Sx
i Sy

j − Sy
i Sx

j ) = −D
∑︂

<ij>

±S⊥
i S⊥

j sin α⊥
ij

S⊥ =
√︂

Sx2 + Sy2

(3.4)

where αij denotes the counterclockwise angle between the spin vectors Si
⃗ and

Sj⃗, α⊥
ij denotes the angle between the vectors’ in-plane projections and the ±

sign behaves such that the calculation is consistent with DMI vector defined in
Equation 2.3.

Let us start by calculating the energy of the purely antiferromagnetic phase,
defined using Equation 3.1 and k⃗ = (4π

3 , 0). From the definition, it follows that
αij only depends on r⃗i − r⃗j. The angle between a site and its nearest neighbour
in a certain direction is therefore constant (the translation vectors are written
down in subsection 2.2.1). Since Sz = 0, αij = α⊥

ij.

αij = k⃗ · (r⃗i − r⃗j)

ᾱ1 = k⃗ · n1⃗ = (4π

3 , 0) · (1, 0) = 4π

3
...

ᾱ6 = k⃗ · n6⃗

ᾱ1 = ᾱ3 = ᾱ5 = 4π

3 = 240◦

ᾱ2 = ᾱ4 = ᾱ6 = 2π

3 = 120◦

(3.5)
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where ᾱi denotes the angle between a site and its i-th nearest neighbour.

EAF M
H = −L2H⃗ · M⃗ = 0

EAF M
J = −J

∑︂
<ij>

cos αij = −J
∑︂

i

(cos ᾱ1 + ... + cos ᾱ6) =

= −JL2(3 cos 2π

3 + 3 cos 4π

3 ) = −JL2(−3
2 − 3

2) = 3JL2

EAF M
D = −D

∑︂
<ij>

±S⊥
i S⊥

j sin α⊥
ij = −D

∑︂
<ij>

± sin αij =

= −D
∑︂

i

(− sin ᾱ1 + sin ᾱ2 − sin ᾱ3 + sin ᾱ4 − sin ᾱ5 + sin ᾱ6) =

= −DL2(3 sin 2π

3 − 3 sin 4π

3 ) = −3
√

3DL2

EAF M = 3JL2 − 3
√

3DL2 = 3L2(J −
√

3D)

(3.6)

Now to the ferromagnetic order. We assume that |M⃗ | = 1, M⃗ ∥ H⃗ and αij = 0:

EF M
H = −L2H⃗ · M⃗ = −L2|H⃗|

EF M
J = −J

∑︂
<ij>

cos αij = −6JL2

EF M
D = −D

∑︂
<ij>

±S⊥
i S⊥

j sin α⊥
ij = 0

EF M = −L2|H⃗| − 6JL2 = L2(−H⃗ − 6J)

(3.7)

We can calculate the position of the phase boundary by comparing EAF M and
EF M :

EAF M = EF M

3L2(J −
√

3D) = L2(−|H⃗| − 6J)
−3

√
3D = −H⃗ − 9J

(3.8)

for the J = 1 case:
−3

√
3D = −|H⃗| − 9

|H⃗| = 3
√

3D − 9
(3.9)

This phase boundary expression is consistent with the observed phase diagram
in Figure 3.11.

The out-of-plane external field case needs to be calculated differently because
there exists a mixed state between ferromagnetic and antiferromagnetic order
(conical ordering) satisfying Equation 3.2. We will compute the energy of a single
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mixed phase with variable Sz, then find Sz
min for which the energy is minimized:

|S⃗| = 1 =
√︂

S⊥2 + Sz2

S⃗(r⃗) = (S⊥Re[eik⃗r⃗], S⊥Im[eik⃗r⃗], Sz) , k⃗ = (4π

3 , 0)

Emix
H = −L2H⃗ · M⃗ = −L2H⃗ · (0, 0, Sz) = −L2HzSz

Emix
J = −J

∑︂
<ij>

S⃗i · S⃗j = −J
∑︂

<ij>

(S⊥
i S⊥

j cos α⊥
ij + Sz

i Sz
j ) =

= −JL2(−3S⊥2 + 6Sz2) = −JL2(−3(1 − Sz2) + 6Sz2) = −JL2(9Sz2 − 3)
Emix

D = −D
∑︂

<ij>

S⊥
i S⊥

j sin α⊥
ij = ... = −DL2S⊥23

√
3 = −3

√
3DL2(1 − Sz2)

Emix = −L2(HzSz + J(9Sz2 − 3) + 3
√

3D(1 − Sz2))
dEmix

dSz
= −L2(Hz + 18JSz − 6

√
3DSz) = 0

Sz
min = Hz

6
√

3D − 18J
(3.10)

Since Sz = Mz, we can also compute the magnetic susceptibility. For J = 1:

1
χ

= Hz

Mz

= Hz

Sz
= 6

√
3D − 18 ≈ 10.39D − 18 (3.11)

This result is consistent with the magnetic susceptibility measurement in Fig-
ure 3.15.

Most importantly, we have analytically explained why is the phase boundary
without an external field at D =

√
3.

3.2 Finite-temperature properties

3.2.1 Heat capacity and critical temperature
Specific heat capacity was measured using the method described in
subsection 2.3.4 for various D to observe the effect of DMI on critical ordering
temperature.
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Figure 3.16: Specific heat capacity vs. temperature for various DMI strengths D.

Figure 3.16 shows specific heat capacities for D = 0, D = 1, D = 1.7 with
ferromagnetic order and D = 2.2, D = 2.5 with antiferromagnetic order. Peaks
of specific heat capacity at critical ordering temperature indicate a magnetic
phase transition. For the ferromagnetic order (D <

√
3), the critical temperature

does not change with D. The critical temperature of antiferromagnetic order
(D >

√
3) significantly increases with increasing D. The temperature scale is

defined with respect to the energy scale of the exchange interaction as described
in Appendix A, meaning that T = 157.9 K ≈ 1 kBT/J.

We can see a fundamental discrepancy in the model – specific heat capacity
goes to 1 at zero temperature, while it should correctly go to zero. This is a
property of the classical Heisenberg model (Kapitan et al. [2019]).

To determine the critical temperature more precisely, we will employ the
method of Binder cumulants.
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Figure 3.17: Binder cumulant U vs. temperature for J = 1, various D and
lattice size L. The crossover of U curves for various lattice sizes indicates a phase
transition. The critical temperature is marked by the vertical line.

Figure 3.18: Magnetization vs. temperature for J = 1, various D and L = 270.
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Figure 3.19: Magnetic susceptibility vs. temperature for J = 1, various D and
L = 270.

Figure 3.17 shows the temperature dependence of Binder cumulant for various
D and lattice sizes L = 90, L = 180 and L = 270. Critical temperature Tc was
determined from the crossover point of different curves. The critical temperature
is in the range of 2 < Tc < 2.2 and does not show any trend on D. Crossover for
D = 1.9 (antiferromagnetic phase) could not be determined.

Figure 3.18 shows the temperature dependence of magnetization for various
ferromagnetic D, which qualitatively follows the standard ferromagnetic curve
(Brillouin expression or Bloch’s law). DMI visibly enhances magnetization at
higher temperatures.

In Figure 3.19, we see that DMI reduces the magnetic susceptibility of the
ferromagnetic phase at lower temperatures.

3.2.2 Magnetization
In zero-temperature measurements, the moment vectors in the ferromagnetic or-
der (J = 1, D <

√
3) are completely collinear and |M⃗ | = 1. Let us investigate

the role of temperature – how do the thermal excitations, which are disordering
the moments, lower the overall magnetization and what is the role of the DMI.
Let us look at z-direction magnetization dependence on the external field in the
out-of-plane direction for various temperatures and D.
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Figure 3.20: Magnetization in z-direction vs. external field in the out-of-plane
direction for various temperatures and D. Grouped into subplots by D. L = 180.

Figure 3.21: Magnetization in z-direction vs. external field in the out-of-plane
direction for various temperatures and D. Grouped into subplots by temperature.
L = 180.

In Figure 3.20, we see that for all values of D, higher temperature consis-
tently lowers the magnetization in the z-direction in the whole range of Hz. The
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magnetization present in a strong external field is less at higher temperatures,
regardless of D. On the other hand, DMI significantly increases magnetization in
the z-direction in the low external field. For D = 0 and small Hz, Mz is small –
the magnetization direction of the ferromagnetic phase is fairly random. However,
for larger values of D, magnetization in the z-direction is more favourable and the
effect of the thermal disordering diminishes. Finally, for D = 1.5, the magnetiza-
tion dependencies are constant. Despite that, DMI does increase magnetization
in strong external fields.

The effect of DMI is better visible in Figure 3.21, where we clearly see the
stabilization effect for weak external fields. This effect is more closely investigated
in subsection 3.2.3 and subsection 3.3.2

3.2.3 Magnetization pinning
In the previous section, we noticed that the DMI affects the ferromagnetic phase
in such a way that magnetization in the z-direction is favoured. In this section,
we look at this effect from a different angle.

For a few selected D, we will repeatedly run simulations to find the ground
state using the usual method described in subsection 2.3.1. We will then calculate
the probability distribution of Mz depending on D. The external field is disabled
in this experiment.

Figure 3.22: Probability distribution density of magnetization in z-direction for
various D. The dashed line shows the distribution of Mz for M⃗ randomly dis-
tributed on a unit sphere. 300 samples for each D. L = 180.

In Figure 3.22, we see that for D = 0, the measured Mz distribution is roughly
equal to the random distribution. For D = 0.1, we see that larger Mz are slightly
favoured. For D = 1, all magnetization samples are 0.9 < Mz ≤ 1. The ferro-
magnetic phase strongly favours magnetization in the z-direction.
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3.3 Hysteresis loop
In this section, we will present hysteresis loops calculated for various
DMI strengths and temperatures. We will later see that temperature plays an im-
portant role and significantly affects the hysteresis loop calculated in this model.
The hysteresis loop is calculated using the method described in subsection 2.3.5.

3.3.1 Zero-temperature hysteresis
We start with measuring the hysteresis loop at zero temperature. To be more
precise, we set T = 0.00006 = 0.01 K, which is many orders of magnitude smaller
than exchange interactions energies.

Figure 3.23: Hysteresis loop for J = 1 and various D in the out-of-plane direction.
Left plot: ferromagnetic phase, right plot: antiferromagnetic phase. L = 90.

Figure 3.23 shows the hysteresis loop in the out-of-plane direction. In the left
plot, we see a ferromagnetic behaviour without almost any hysteresis (coercivity
Hc ≈ 0, notice the small Hz scale). The very narrow gap in the hysteresis loop is
a computational artifact caused by an imperfection of the spin dynamics method.
In the case of a magnetization flip, the speed of the flip is proportional to the
driving force of the external field. Thus, for field strength approaching zero, the
number of time steps required to do a full magnetization flip goes to infinity.
However, the computation needs to finish in a reasonable amount of time, so the
number of time steps is limited, resulting in this artifact. The important fact is
that D does not modify the hysteresis loop at zero temperature. DMI does not
cause hysteresis for the ferromagnetic phase (D <

√
3) at zero temperature.

On the right side, we see a hysteresis loop for the antiferromagnetic phase
(D >

√
3). Remanence Mr = 0 and coercivity Hc = 0, so no hysteresis was

observed and the curve is fully consistent with the phase diagram observed in
Figure 3.11.
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Figure 3.24: Hysteresis loop for J = 1 and various D in the in-plane direction.
Left plot: ferromagnetic phase, right plot: antiferromagnetic phase, including the
virgin curve. L = 90.

In the in-plane direction, the system behaves the same as in the out-of-plane
direction for D <

√
3 – the ferromagnetic phase simply flips from Mx = −1 to

Mx = 1.
However, for D >

√
3, the situation gets more complicated. In the plot for

D >
√

3, the simulation begins with Hx = 0 and Mx = 0, first mapping the
virgin curve up until magnetization saturation and then mapping out the rest
of the hysteresis loop. In subsection 3.1.2, we have observed ferromagnetic and
antiferromagnetic phases depending on D and Hx. In Figure 3.24, the magneti-
zation Mx ≈ 0 corresponds to the antiferromagnetic phase and Mx = ±1 to the
ferromagnetic phase. We also see a sharp phase transition between the two phases
in the hysteresis loop, ferromagnetic and antiferromagnetic phase (both phases
are also present in the phase diagram in Figure 3.11). Due to hysteresis, the
phase transitions happening in the hystersis loop do not directly correspond to
the phase boundary in the phase diagram! Take, for example, the case of D = 2:
the phase boundary is located around Hx = 1 in the phase diagram, while the
phase transition occurs at around Hx = 5 in the hysteresis loop. We need a larger
external field to force the lattice to transition from the antiferromagnetic to the
ferromagnetic phase.

However, once the lattice state is ferromagnetic, it does not go back to anti-
ferromagnetic. Around Hx = 0, it just flips from Mx = 1 to Mx = −1, just like
in the D <

√
3 case. This behaviour is altered at higher temperatures, where the

lattice transitions back to antiferromagnetic around Hx = 0 (see section 3.3.2).
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3.3.2 Finite-temperature ferromagnet hysteresis
In-plane direction

Figure 3.25: Hysteresis loop of the ferromagnetic phase in the in-plane direction
for various D and temperatures. Without the virgin curve. L = 90.

If we compare hysteresis loops in Figure 3.25 with Figure 3.24, we immediately see
the effect of temperature on the system. For lower temperatures at T = 0.0063,
systems with lower D behave the same as in zero temperature, flipping magneti-
zation from Mx = 1 to Mx = −1 around Hx = 0 and staying in the ferromagnetic
phase, even though the antiferromagnetic phase is more favourable around Hx = 0
(see Figure 3.11). At low temperatures, only systems with stronger D transition
to the antiferromagnetic phase around Hx = 0. However, at higher temperatures,
the transition is happening even for systems with smaller D.

One possible explanation is that the ferromagnetic phase forms a local energy
minimum and at low temperatures, the system cannot overcome the energy bar-
rier to get to the global energy minimum represented by the antiferromagnetic
phase. Higher temperatures allow the system to overcome this barrier due to
thermal fluctuations.
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Out-of-plane direction

Figure 3.26: Hysteresis loop of the ferromagnetic phase in the out-of-plane direc-
tion for various D and temperature. L = 90.

Figure 3.26 shows the hysteresis loop for ferromagnetic phases for various D and
temperature. As in the previous subsection, the very narrow hysteresis seen for
low D and temperature is a computational artifact related to the fact that each
simulation step has a finite amount of time steps, not enough to flip the mag-
netization and establish equilibrium in vanishingly small external fields. More
importantly, though, the figure shows a hysteresis broadening caused by a com-
bination of temperature and DMI. The significance of said hysteresis increases
with increasing D and temperature and can be quantified by magnetic coercivity
Hc – strength of the external magnetic field required to flip the z-magnetization
of the system.

This temperature-induced hysteresis is further investigated in the following
section.

3.4 Temperature and DMI induced hysteresis
In this section, we will investigate the hysteresis (and non-zero coercivity) shown
in Figure 3.26. We will focus on a very narrow, but interesting part of the
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hysteresis loop – the magnetization flip.

3.4.1 Simulation setup
To explore the magnetization flip, we need a frequent sampling of several observ-
ables, including snapshots of the whole lattice. Capturing such large amounts
of data for the whole hysteresis loop is inefficient and unnecessary, because most
of the time, the lattice is purely ferromagnetic. We are mainly interested in the
dynamics of the magnetization flip.

We will perform a simulation of the magnetization flip using the spin dynamics
method. Unlike previous simulations, the initial state will not be random, but all
spins are set such that S⃗ = (0, 0, −1), such that Mz = −1 – an ideal ferromagnet.
The external magnetic field is set to a constant value H⃗ = (0, 0, Hc), where Hc

is the coercivity of the system for given D and temperature. The system is then
simulated until the magnetization flip from Mz = −1 to Mz = 1 occurs (about
500 000 spin dynamics steps were sufficient). The average magnetization and
energy of the system are sampled frequently during the simulation.

3.4.2 Energy barrier
First, let us see what is the development of the energy of the system during
the magnetization flip. We will assume that the energy of the system is mainly
determined by its magnetization Mz.

Figure 3.27: Energy of different interactions vs. magnetization during the mag-
netization flip. D = 0.5, T = 0.203 = 32 K, Hz = 0.0074, L = 90. Black dots
represent individual measurements, blue line is smoothed average of 5 simulation
runs.

Figure 3.27 shows energies of different interactions vs. magnetization in the z-
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direction. The top-left plot shows the energy of the DMI. Several important facts
are visible in this plot. Firstly, the assumption that energy depends mainly on
magnetization is valid for the DMI – the individual measurements do not deviate
far from the averaged curve. Secondly, ED approaches zero for Mz = 0. Thirdly,
the curve is parabolic, forming an energy barrier between Mz = −1 and Mz = 1.
The top-right plot shows the exchange interaction energy. The measurement
deviation is much larger in this case and the assumption that magnetization
uniquely determines energy seems to be invalid here. The averaged curve seems
to be parabolic, but in the negative energy direction, like it is compensating the
energy ED. That idea is confirmed in the left-bottom plot, which shows EJ +ED.
Indeed, ED and EJ are compensated and EJ + ED is constant. The last plot
in the bottom right corner shows the total energy of the system. Here, we see
that the energy of the interaction with the external field dominates, forcing the
system to flip its magnetization.

Figure 3.27 showed that a well-defined energy barrier caused by DMI exists.
This barrier also explains why DMI favours ferromagnetic ground state in the
z-direction, investigated in subsection 3.2.3.

Figure 3.28: DMI energy vs. magnetization for various D. T = 0.203 = 32 K,
L = 90. Average of 5 simulation runs. Dashed black lines show parabolic fit.

Figure 3.28 shows the DMI energy for various D. We see that the energy bar-
rier height increases with increasing D, but the shape continues to be parabolic.
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Figure 3.29: Lattice state in the middle of magnetization flip. D = 0.3, T =
0.203 = 32 K, Hz = 0.007, L = 90.

Figure 3.29 shows a lattice state in the middle of the magnetization flip for
D = 0.3, which is not too strong. Notice that the lattice is homogeneous to a
large extent.

Figure 3.30: DMI energy vs. magnetization for D = 1. A single simulation run.
L = 90.

Figure 3.30 again shows the DMI energy vs magnetization for a stronger D =
1. In contrast with Figure 3.28, the parabolic shape of the energy dependence is
broken. This is caused by inhomogenities in the finite system. Note that this is
only one of many examples and the shape of the curve is not generally symmetric
nor does it have exactly two maxima.

46



Figure 3.31: Lattice state in the middle of magnetization flip. D = 1, T =
0.203 = 32 K, Hz = 0.04, L = 90.

Figure 3.31 shows a lattice state in the middle of the magnetization flip for
stronger D = 1. Contrary to Figure 3.29, the lattice is not homogeneous and
magnetization domains emerge.

Energy barrier size

Let us now focus on the energy barrier caused by DMI and its height, which will
be calculated as

∆ED = ED(Mz = 0) − ED(Mz = −1) (3.12)

Figure 3.32: DMI energy barrier height vs. D at various temperatures.

Figure 3.32 shows dependence of ∆ED on D at various temperatures. We see
that the ∆ED non-linearly increases with D at all temperatures.
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Figure 3.33: DMI energy barrier vs. temperature for various D. Black lines show
linear fits of the individual curves.

Figure 3.32 shows dependence of ∆ED on temperature for various D. ∆ED

linearly increases with temperature with high precision.

Energy barrier vs. coercivity

Figure 3.34: Observed DMI energy barrier height ∆ED vs. coercivity Hc.

We have analyzed the DMI energy barrier during the magnetization flip. Fig-
ure 3.34 compares the coercivity Hc in the hysteresis loop (Figure 3.26) and the
energy barrier height ∆ED calculated for equal D and temperatures. It verifies
that the barrier height is indeed equal to coercivity (in units of energy). This is
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another indication that the system behaves as expected – it is following the gra-
dient of the magnetization-dependent energy. Most importantly, the hysteresis
observed in Figure 3.26 can be satisfyingly explained by the energy barrier.

3.4.3 Observed partial antiferromagnetic ordering
In the last section, we observed the energy barrier induced by the negative energy
of the DMI. However, we do not know anything about the exact lattice config-
uration leading to this energy decrease. Let us look at the lattice configuration
before the magnetization flip when the lattice finds itself in the DMI energy well.

Figure 3.35: Lattice state of ferromagnetic phase Mz ≈ −1 for D = 1.7, T =
0.101 = 16 K, L = 90. Traces of the antiferromagnetic phase are visible in the
marked areas.

Figure 3.35 shows the lattice state of the ferromagnetic phase for a very strong
D = 1.7. We can see traces of short-range antiferromagnetic ordering, similar to
that seen in Figure 3.3.

Figure 3.36: Structure factor of ferromagnetic phase Mz ≈ −1 for D = 1.7,
T = 0.101 = 16 K. Displayed in logarithmic scale.
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Figure 3.36 shows the structure factor of that lattice state. Peak at k⃗ = (0, 0)
and peaks at |k⃗| = 4π√

3 are by far the most significant. These peaks belong to the
ferromagnetic phase. However, a set of weaker peaks at |k⃗| = 4π

3 is also visible,
although these peaks are orders of magnitude smaller. These peaks belong to the
cycloidal antiferromagnetic phase introduced in section 3.1.

Figure 3.36 clearly shows that a small trace of the antiferromagnetic phase
exists in the mainly ferromagnetic phase at higher temperatures and with strong
DMI.

Moreover, the antiferromagnetic phase can explain the negative DMI energy
ED. Let us recall the analytical computations of antiferromagnetic phase energy
in subsection 3.1.3 which arrived at the result EAFM

D = −3
√

3DL2 – the energy
of DMI is negative in the antiferromagnetic phase.
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Conclusion
In this thesis, we investigated the effect of out-of-plane Dzyaloshinskii-Moriya in-
teraction (DMI) between nearest neighbours on magnetic ordering of the classical
Heisenberg model on a two-dimensional triangular lattice. Apart from DMI, fer-
romagnetic exchange interaction between nearest neighbours and interaction with
external field were present. We used Markov Chain Monte Carlo and spin dy-
namics method to calculate, among other results, the ground state, heat capacity
and hysteresis loop for various model parameter combinations. Varied parameters
included: DMI strength, in-plane/out-of-plane external magnetic field strength
and temperature.

We constructed two magnetic phase diagrams parametrized by external mag-
netic field strength and DMI strength: one for out-of-plane external field and one
for in-plane external field. Three different magnetic orderings have been observed:
ferromagnetic ordering for weak DMI, antiferromagnetic ordering for D/J >

√
3

and a mixture of the former two. The antiferromagnetic ordering is a cycloidal
one, with spins lying completely in the lattice plane, neighbouring spins form-
ing an angle of 120 ◦ with propagation vector k⃗ = (1/3, 1/3). The mixed state
is induced by the out-of-plane external field. It is a conical magnetic ordering,
with z-component of the spins forming a ferromagnetic order and xy-component
forming the cycloidal antiferromagnetic order. In the in-plane phase diagram, a
first-order phase transition occurs on the phase boundary. In the out-of-plane
case, a second-order phase transition occurs. The observed phase diagram has
been supported by analytical calculations.

We found that DMI affects the finite-temperature properties of the ferromag-
netic phase, in that it favours magnetization in the z-direction. Furthermore, it
enhances magnetization at higher temperatures, although the critical tempera-
ture Tc seems not to be affected by DMI.

No chiral magnetism, such as skyrmions, or spin spirals has been observed,
rather being a domain of in-plane DMI.

Finite-temperature hysteresis loop calculations of ferromagnetic phase (D <√
3) have found non-zero coercivity, which linearly depends on temperature and

increases even more rapidly with DMI strength. Analysis of the energetics of
the magnetization flip in the hysteresis loop has uncovered that the hysteresis
is caused by DMI energy barrier in parabolic shape (when plotted against z-
direction magnetization). One possible mechanism for this has been observed
for especially strong D = 1.7 – traces of antiferromagnetic cycloidal order have
been found in the otherwise ferromagnetic phase. These traces lower the DMI
energy. However, many questions about this phenomenon are left unanswered.
Why is there no decrease in DMI energy at Mz = 0? How to explain the peculiar
linear temperature dependence? The exact nature of the spin arrangement that
decreases DMI energy and creates the energy barrier is yet unknown and it is an
interesting subject which could be further studied in the future. Another question
left unanswered because of lack of time is whether this effect can be observed in
other models, such as the quantum Heisenberg model, or whether it is a property
of the classical Heisenberg model.

The results obtained in this thesis, mainly the magnetization curves and
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hysteresis loops, were compared with yet unpublished experimental data for
EuAl12O19 compound measured by Gaël Bastien, Ph. D. 1. However, theoretical
and experimental data do not match and the model in this thesis is not suitable
to describe magnetic properties of the compound.

1Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter
Physics, Prague, Czech Republic
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A. Units of measurement
We use a single arbitrary energy scale for all interactions to simplify presentation
of results. However, one needs to use real units of measurements when configuring
UppASD. The exchange and Dzyaloshinskii-Moriya interaction strength must be
specified in millirydbergs (mRy). The external field strength is entered in Teslas
(T), temperature in Kelvins (K) and magnetic dipole moment in Bohr magnetons
(µB).

Therefore, we need to convert these units when configuring an experiment or
processing measured data. In all experiments, we fix the magnetic dipole moment
to 1 µB.

Exchange interaction of 1 mRy is converted to external field Tesla equivalent
according to following formula:

1 mRy ∼ 2.17987 · 10−21 J
∼ (2.17987 · 10−21 J)/(9.27401 · 10−24 J/T) · 1 µB

∼ 235.0314 T · 1 µB

(A.1)

We can also convert Kelvins to the common energy scale in mRy:

1 mRy ∼ 2.17987 · 10−21 J
∼ (2.17987 · 10−21 J)/(1.38065 · 10−23 J/K) · 1 kB

∼ 157.8872 K · 1 kB

(A.2)
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B. Contribution to UppASD
UppASD was used extensively in this thesis. While using UppASD, we found a
bug in its implementation of the heat bath method.

The bug is well visible in a simulation conducted by the thesis supervisor,
Pavel Baláž. The simulation data are presented here with his permission.

The simulation is classical Heisenberg model of a two-dimensional square lat-
tice with direct exchange interactions and in-plane DMI between nearest neigh-
bours and external magnetic field applied in the out-of-plane direction. The model
was used to construct low-temperature phase diagrams featuring magnetization
and topological charge depending on DMI strength D and external field B. The
low-temperature states were obtained via simulated annealing with two MCMC
methods: either Metropolis-Hastings or heat bath method.

Figure B.1: Phase diagrams featuring magnetization and topological charge de-
pending on DMI strength D and external magnetic field B calculated using either
heat bath or Metropolis-Hastings method.

In Figure B.1, we see that heat bath and Metropolis-Hastings methods pro-
duce significantly different results. The Metropolis-Hastings phase diagrams
are consistent with results presented in (Iakovlev et al. [2018a], Iakovlev et al.
[2018b]). That suggests there is a bug in the heat bath implementation in Up-
pASD.

We found a bug in the UppASD code related to random sampling in the heat
bath method (the part that corresponds to Equation 1.24) and proposed a patch
1. We then successfully verified that the patch resolves the issue – heat bath
phase diagram matched the Metropolis-Hastings phase diagram.

1The patch is available online at https://github.com/janpriessnitz/UppASD/commit/
43c8f52a16e1f7ab78a06bcf76571e4dade2cff0
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