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Abstract: Describing viscoelastic fluids is a difficult task, as the viscoelastic phe-
nomena are not fully understood. This work follows a method for deriving vis-
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Preface
Viscoelastic fluids are complex fluids that exhibit both viscous and elastic be-
haviors. They are ubiquitous in nature and have a wide range of industrial and
biomedical applications. These fluids are characterized by their ability to store
and release energy, which gives rise to a variety of non-Newtonian phenomena.
Understanding the behavior of viscoelastic fluids is a challenging task, and the
development of accurate models of their behavior is an active area of research.

In this work, we follow a consistent thermodynamic framework for which is
sufficient to provide only two mentioned informations – how the body stores the
energy and how the body dissipates the energy in the form of scalar functions
that dependent on the internal variables. This framework has ability to generate
plethora of viscoelastic models, which allows us to capture the complex behavior
of viscoelastic fluids, for example the stress diffusion, stress relaxation, non-linear
creep, or non-zero normal stress differences in a simple shear flow.

We focus on the implementation of viscoelastic models using the finite element
method. The finite element method is a numerical technique for solving partial
differential equations, and is widely used in the simulation of fluid dynamics
problems. Using the open-source computing platform FEniCS as a finite element
library for Python, we investigate the effect of the stress diffusion as a stabilization
on benchmark flow past the cylinder.

Moreover, we numerically simulate well-known non-Newtonian phenomena
in axisymmetric setting. The most complex computation is the simulation of
rod-climbing (Weissenberg) effect, for which we use the arbitrary Lagrangian-
Eulerian method, the non-symmetric stabilized Nitsche method, and the Implicit
Glowinski three-step time scheme. The stress diffusion is not considered in these
simulations.

Overall, the work presented in this paper provides an insight for understand-
ing viscoelastic fluids and their behavior, using numerical simulations. It demon-
strates that simulations of complex non-Newtonian phenomena in a computa-
tionally efficient manner are possible, which makes a contribution to the field of
computational fluid dynamics.
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1. Continuum mechanics
introduction
In this section, we introduce essential concepts for derivation of the variants of
rate-type viscoelastic fluid models. We will follow the approach by Rajagopal
and Srinivasa [2000], who introduce a notion of natural configuration related to
the relaxation mechanisms that viscoelastic materials exhibit, and the approach
of Rajagopal and Srinivasa [2004], that uses thermodynamic framework to derive
such models consistently with the second law of thermodynamic.

1.1 Kinematic quantities
Let us introduce basic concept of continuum mechanics. As usual, let t ∈ [0, T ]
denote time, where T > 0 is a fixed constant. Let B denote an abstract three-
dimensional body, and for any t ∈ [0, T ] we define κt : B −→ R3 a placer which
maps B into the configuration κt(B), and which is assumed to be one-to-one
mapping. Configuration κt(B) represents a current configuration and {κt}t∈[0,T ]
is called motion. In behalf of convenience, we identify the initial configuration
κ0(B) with the reference configuration κR(B), see Figure 1.1. Next, we define
the so-called deformation mapping χκR

: [0, T ] × κR(B) −→ κt(B) by setting:

x = χκR
(t,X) forX ∈ κR(B) andx ∈ κt(B). (1.1)

Figure 1.1: Sketch of the reference configuration κR(B) and the current configu-
ration κt(B). The deformation gradient FκR

maps an infinitesimal filament from
the κR(B) to the κt(B).

Using the deformation mapping, we introduce the Lagrangian velocity V, the
(Eulerian) velocity v and the deformation gradient FκR

:

V(t,X) = ∂χκR

∂t
(t,X), (1.2)

v(t, x) = ∂x

∂t
( ⇐⇒ v = V(t, χ−1

κR
(t, x))), (1.3)

FκR
= ∇χκR

(t,X). (1.4)
Note that the deformation gradient and the velocity gradient L := ∇v are linked
through the following relation describing the evolution of FκR

:

L = ḞκR
F−1

κR
( ⇐⇒ ḞκR

= LFκR
), (1.5)
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where we used the definition of the material time derivative, that for an arbitrary
scalar function g takes the form:

ġ = ∂g

∂t
+ v · ∇g, (1.6)

and for a arbitrary vectorial function g, tensorial function G respectively, ana-
logical equation holds, i. e., the dot-product term takes the form:

(v · ∇g)i =
3∑︂

j=1
vj
∂gi

∂xj

, (v · ∇G)ij =
3∑︂

k=1
vk
∂Gij

∂xk

respectively. (1.7)

Moreover let us introduce symmetric D and antisymmetric W parts of L:

D := 1
2(L + LT ) and W := 1

2(L − LT ), (1.8)

where AT denotes the transpose of a tensor A, and the left and right Cauchy-
Green tensors:

BκR
= FκR

FT
κR

and CκR
= FT

κR
FκR

. (1.9)
Using the chain rule, it follows from eq. (1.9) and eq. (1.5) that:

ḂκR
= ḞκR

FT
κR

+ FκR
ḞT

κR
= LBκR

+ BκR
LT . (1.10)

Then by introducing upper convected Oldroyd derivative (which will be later
recognized as a member of the class of Gordon-Schowalter derivatives):

∇
Bκp(t) = ḂκR

− LBκp(t) − Bκp(t)L
T , (1.11)

it is possible to rewrite preceding identity (1.10) as:

∇
Bκp(t) = O, (1.12)

where O denotes the zero tensor.
In addition, it follows from eq. (1.10) and eq. (1.8) with the symmetry of BκR

and the definition of the trace of a tensor trA := ∑︁3
i=1 Aii that:

trḂκR
= 2D · BκR

. (1.13)

1.2 Setting of natural configuration
Let us introduce concept of natural configuration, which can be in words defined
as a configuration that the body in the current configuration would take if the
external stimuli were removed. Hence the natural configuration κp(t)(B) is as-
sociated with the current configuration κt(B) and it evolves with the body as
the body produces entropy. This allows us to split the the total deformation
FκR

into purely elastic (reversible) part Fκp(t) : κp(t)(B) −→ κt(B) and the rest
(dissipation) G : κR(B) −→ κp(t)(B) so that:

FκR
= Fκp(t)G, (1.14)
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Figure 1.2: Sketch of the reference configuration κR(B), the current configuration
κt(B) and the natural configuration κp(t)(B). The deformation gradient FκR

is
multiplicatively decomposed.

see Figure 1.2.
Next, we introduce quantities connected with the natural configuration κp(t),

see preceding section for comparison. Namely, identity for mapping G and Fκp(t) :

G = F−1
κp(t)

FκR
and Fκp(t) = FκR

G−1. (1.15)

Motivated by the relation (1.5) we define the velocity gradient of the natural
configuration Lκp(t) , its symmetric Dκp(t) and antisymmetric Wκp(t) parts:

Lκp(t) = ĠG−1, Dκp(t) := 1
2(Lκp(t) +LT

κp(t)
), Wκp(t) := 1

2(Lκp(t) −LT
κp(t)

), (1.16)

the left Cauchy-Green tensor and the right Cauchy-Green tensor:

Bκp(t) = Fκp(t)F
T
κp(t)

and Cκp(t) = FT
κp(t)

Fκp(t) . (1.17)

In order to compute material time derivative of Bκp(t) , we compute a following
identity from the eq. (1.5, 1.15, 1.16), the material time derivative of the eq.
(1.15) and the material time derivative of the identity GG−1 = I, where I stands
for the identity tensor:

Ḟκp(t) = ḞκR
G−1 + FκR

̇G−1

= ḞκR
F−1

κR
FκR

G−1 − FκR
G−1ĠG−1

= LFκp(t) − Fκp(t)Lκp(t) .

(1.18)

Hence by chain rule we obtain:

Ḃκp(t) = Ḟκp(t)F
T
κp(t)

+ Fκp(t)Ḟ
T
κp(t)

= LBκp(t) + Bκp(t)L
T − 2Fκp(t)Dκp(t)F

T
κp(t)

, (1.19)

which can be expressed with the use of upper convected Oldroyd derivative (1.11)
as:

∇
Bκp(t) = −2Fκp(t)Dκp(t)F

T
κp(t)

. (1.20)
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Note that the setting with only one natural configuration leads to the rate-
type fluid models of the first order. To obtain models for materials with multiple
relaxation mechanisms, it is necessary to incorporate additional co-existing natu-
ral configurations. In the setting with two natural configurations, one can derive
variants of the Burgers model for example, see work by Málek et al. [2018] for
details.

1.3 Balance equations, thermodynamic frame-
work

Finally in this chapter, we describe thermodynamic framework that will be used
in the next chapter to derive variants of rate-type viscoelastic fluid models. We
start with the set of balance equations, namely balance of mass:

ρ̇ = −ρ div v, (1.21)

balance of linear momentum:

ρv̇ = divT + ρb, (1.22)

balance of angular momentum:

T = TT , (1.23)

balance of energy:

ρĖ = div (Tv − je) + ρb · v, E = e+ |v|2

2 , (1.24)

balance of entropy:
ρη̇ + div jη = ζ, ζ ≥ 0, (1.25)

where ρ is the density, b is the specific density of the given body force, T is
Cauchy stress tensor, e is internal energy, je is the energy flux, η is the entropy,
jη is the entropy flux and ζ is the entropy production.

Let us take further assumptions. Assuming incompressibility, eq. (1.21) re-
duces to:

div v = 0. (1.26)
Note that in the case of inhomogeneous incompressible fluid, one still need to use
the transport equation for the ρ. Moreover, later we will show another approach
how to incorporate the incompressibility restriction into the models.

Next, we assume all processes to be isothermal, hence we postulate temper-
ature Θ to be constant and we make special choice of entropy flux jη = je/Θ.
Now, by introducing the Helmholtz free energy Ψ := e− Θη, taking its material
derivative and using the balance of energy (1.24) subtracted by (1.22)·v:

ρΨ̇ = ρė− ρΘη̇ = T · D − div je − ρΘη̇

⇐⇒ ρη̇ + div je

Θ = 1
Θ(T · D − ρΨ̇),

7



and comparing to the balance of entropy (1.25), we obtain the reduced thermo-
dynamic identity (RTI):

T · D − ρΨ̇ = ξ, ξ = ρΘζ ≥ 0. (1.27)
On the other hand, without special choice of the entropy flux, one can obtain the
general form of the reduced thermodynamic identity:

T · D − ρΨ̇ − div (je − Θjη) = ξ, ξ = ρΘζ ≥ 0. (1.28)
Therefore one of these identities together with balance of mass (1.21), balance
of linear (1.22) and angular (1.23) momentum create a new set of the balance
equations.

Also note that the assumption on a constant temperature is in contradiction
with the heating due to the non-zero dissipation. Nevertheless, we can assume
that the heat capacity of the body is large enough to ensure temperature changes
to be insignificant or we can assume that the thermal conductivity of the body
is large enough so that the dissipated energy (heat) is taken out instantaneously
from the body into an external thermal reservoir surrounding the body.

Lastly, to outline derivation of the models in the next chapter, we will proceed
accordingly to the following framework. To the set of the balance equations,
we add assumption on how the material stores the energy by prescribing the
Helmholtz free energy in the form:

Ψ = ˜︁Ψ(y1, . . . , yn), (1.29)
where y1, . . . , yn are the state variables. Then substituting the chosen energy
(1.29) into the reduced thermodynamic identity (1.27), we arrive at the following
equality:

ξ =
k∑︂

α=1
JαAα, (1.30)

where Jα stands for the terms that can be identified as thermodynamic fluxes, Aα

stands for the terms that can be identified as thermodynamic affinities and each
of the summands J1A1, . . . , JkAk represents a different dissipative mechanism.
The term T : D from the eq. (1.27) is also included in the sum.

Now, we add assumption on how the material dissipates the energy, which
gives a full model and closes the system of equations. In order to satisfy restriction
ξ ≥ 0, we can proceed in two ways. We postulate the constitutive assumption on
the rate of entropy production in the form:

ξ = ˜︁ξ(J1, . . . , Jk) ≥ 0 or ξ = ˜︁ξ(A1, . . . , Ak) ≥ 0, (1.31)
Firstly, we can ensure that every product JαAα, α = 1, . . . , k is non-negative
based on comparison with the prescribed ˜︁ξ by Jα, which then determines the
constitutive equation for the Cauchy stress tensor T. Secondly, we obtain the
constitutive equation for the Cauchy stress tensor T by using assumption on
maximization of ˜︁ξJ1,...,Jk

(A1, . . . , Ak) with respect to A1, . . . , Ak provided that˜︁ξJ1,...,Jk
(A1, . . . , Ak)−∑︁k

α=1 JαAα = 0. If the prescribed ˜︁ξ is quadratic in affinities
Aα, α = 1, . . . , k, then both procedures gives the same equation for tensor T.

Note that the last assumption of maximization says that the body dissipates
the energy in the fastest possible way. Moreover, one can prescribe entropy
production in fluxes and maximize with respect to fluxes, since the expression is
symmetric to the interchange of fluxes and affinities.

8



2. Derivation of the variants of
the Oldroyd-B model with stress
diffusion
In this chapter we derive classical Oldroyd-B model, presented by Oldroyd [1950],
using mechanical analogs and discuss imperfections of such derivation. Then we
derive variant of the Oldroyd-B model by the approach mentioned in the preceding
chapter, following work of Málek et al. [2018]. And finally we derive generalized
model with stress diffusion containing convex combination of Oldroyd-B and
Giesekus model, which was proposed in work by Bathory et al. [2020].

2.1 Classical Oldroyd-B model due to the me-
chanical analog

To derive classical Oldroyd-B model in one spatial dimension one can use the
mechanical analogs, which are mechanical systems consisting of springs and dash-
pots. On the one hand, spring characterizes the elasticity of the material well
and describes reversible deformation. On the other hand, dashpot characterizes
viscosity of the material well and describes irreversible (dissipative) deformation.
From parallel and serial connection of such elements, one can obtain a plethora
of models describing non-Newtonian phenomena such as stress relaxation, non-
linear creep or presence of non-zero normal stress differences in a simple shear
flow (Phenomenas, that classical Oldroyd-B model is able to describe.). Note that
this method leads to the stress-strain relations that are in the form of differential
equations of arbitrary order.

We use combination of elements described in the Figure 2.1, that is a spring
of the shear modulus G and a dashpot of the viscosity µ2 on the lower branch (B)
in a serial connection, and a dashpot of the viscosity µ1 on the upper branch (A)
connected in parallel to the first branch. Such mechanical analog must satisfy
following conditions due to a basic physics: shear rate ε̇ of the both branches is
the same, total shear stress σ is a sum of stresses at each branch, displacement
on each branch is a sum of displacements of elements located on that branch.

Figure 2.1: Mechanical analog for the classical Oldroyd-B model consisting of
three elements located on the branches (A) and (B). Note that branch (B) cor-
respond to the Mawxell element.
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Preceeding physical conditions can be written in the same order as:

ε̇ = ε̇A = ε̇B, (2.1)

σ = σA + σB, (2.2)

εB = εel,B + εvis,B, (2.3)
where subscript A, B coincide with the labels of branches (A), (B), subscript
el refers to a spring and subscript vis refers to a dashpot. Basic relations that
spring and dashpot for (incompressible) material satisfy:

σ = Gε, (2.4)

σ = µε̇. (2.5)
Now, we obtain model for each branch separately. Using condition (2.3), relations
(2.4) and (2.5) modified for the branch (B), we obtain a well-known relation for
the Maxwell element:

σB + µ2

G
σ̇B = µ2ε̇B. (2.6)

Also, we get simple a relation for dashpot modified for branch (A):

σA = µ1ε̇A. (2.7)

Next, we use derivation trick proposed by Wineman and Rajagopal [2000].
We use condition (2.1) and formally rewrite obtained equation for each branch:(︄

1 + µ2

G

d

dt

)︄
· σB = µ2ε̇, (2.8)

1 · σA = µ1ε̇, (2.9)
in the sense of differential operators. Finally, the last unused condition (2.2)
dictates how to multiply each equation and sum them together. Hence we aplly
differential operator from the left (2.9)·(1 + µ2

G
d
dt

) and (2.8)·1, obtaining:(︄
1 + µ2

G

d

dt

)︄
· (σB + σB) = (µ1 + µ2)ε̇+ µ1µ2

G
ε̈, (2.10)

leading to the stress-strain relation for the Oldroyd-B model:

σ + µ2

G
σ̇ = (µ1 + µ2)ε̇+ µ1µ2

G
ε̈, (2.11)

that is a first order differential equation for total shear stress and shear rate.
To generalize such model to three spatial dimensions, we identify shear stress

σ as the Cauchy stress tensor T and the time derivative of shear rate as two
times the symmetric part of the velocity gradient D, motivated by the relations
for the simple shear flow. Now, we need to take one more time derivative of
these quantities, however material time derivative applied on such quantities is

10



not an objective quantity, as a quantity is objective if it transforms as: s∗ = s,
w∗ = Q(t)w, U∗ = Q(t)UQT (t), where superscript s∗ denotes the euclidean
change of observer, and Q : R → SO(3). Hence, we use upper convected Oldroyd
derivative, that is a special case (a = 1) of the Gordon-Schowalter family of
objective derivatives:

δA
δt

:= Ȧ − a(DA + AD) − (WA − AW), a ∈ [−1, 1], (2.12)

as it has favourable physical properties. But in principle, arbitrary member of
the Gordon-Schowalter family could been used. That is why the generalization
is not unique and is not suitable. Moreover, throughout the derivation it is not
obvious that the model satisfies the second law of thermodynamics. Hence the
derivation with the use of thermodynamic framework is preferred.

2.2 Variant of the Oldroyd-B model
In this section we derive variant of the Oldroyd-B model by following thermo-
dynamic framework described in the preceeding chapter. This model includes
models such as Maxwell model, Giesekus model and classical Oldroyd-B model
as its special cases. Hence this derivation also shows hierarchy of viscoelastic
models. Based on that, in the next section, we obtain Oldroyd-B model with
stress diffusion by modification of the following procedure.

First of all, let us emphasise, that we derive an incompressible model, meaning
that the whole deformation is isochoric, which was expressed by eq.(1.26):

div v = trD = 0 and detFκR
= 1. (2.13)

However, by the discussion of an instanteneous response of viscoelastic material
by Málek et al. [2015], we suppose that splitted deformations Fκp(t) and G due to
the natural configuration κp(t) do not have to be isochoric, in other words, these
deformations do not necessarily fulfill detFκp(t) = 1 = detG.

Next, we assume that the energy of elastic deformation Fκp(t) corresponds to
the compressible neo-Hookean solid:

Ψ(Bκp(t)) = G

2ρ(trBκp(t) − 3 − ln(detBκp(t))), (2.14)

where G is the elastic modulus. According to the framework, we insert this
energy to the reduced thermodynamic identity (1.27), and using identity that
can be found for example in Appendix A in the paper by Málek et al. [2015] (first
equality):

̇ln(detBκp(t)) = tr(Ḃκp(t)B
−1
κp(t)

) (1.11)= 2trD − 2trDκp(t) , (2.15)

we obtain:

ξ = T : D − ρΨ̇ = (T −GBκp(t) + I) : D − (Cκp(t) − I) : Dκp(t)

(2.13)= (T −GBκp(t))
d : Dd − (Cκp(t) − I) : Dκp(t) ,

(2.16)
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where we used incompressibility condition for the full deformation and following
identity for the deviatoric parts A : D = (Ad + 1

3(trA)I) : (Dd + (trD)I) = Ad : Dd

that also uses the incompressibility.
Let us now consider rate of entropy production ˜︁ξ given by:

˜︁ξ(D,Dκp(t) ,Cκp(t)) = 2µ2|Dd|2+2µ1Dκp(t)C
λ
κp(t)

: Dκp(t) , µ1, µ2 > 0, λ ≥ 0, (2.17)

where µ := µ1 + µ2 is total viscosity of the material consisting of viscosities of
polymeric and solvent components. Note that it holds 2µ1Dκp(t)Cλ

κp(t)
: Dκp(t) =

|Dκp(t)Uλ
κp(t)

|2, where Uκp(t) comes from the polar decomposition of the deformation
gradient Fκp(t) = Rκp(t)Uκp(t) . Hence ˜︁ξ is quadratic in affinities.

Finally, by comparison of the term with D in eq. (2.16) and eq. (2.17) we
obtain:

Td = 2µ2Dd +GBd
κp(t)

. (2.18)

Hence by definition of deviatoric part T = −mI + Td we get the constitutive
equation for the Cauchy stress tensor T:

T = −ϕI + 2µ2Dd +G(Bd
κp(t)

− I), ϕ = −(m−G
trBκp(t)

3 ). (2.19)

Furhermore, comparing of the term with D in eq. (2.16) and eq. (2.17) leads to:

G(Cκp(t) − I) = 2µ1Dκp(t)C
λ
κp(t)

. (2.20)

Now, multiplying this equation by Fκp(t) from the left and by U1−2λ
κp(t)

RT
κp(t)

from

the right, where we identify
∇
Bκp(t) , we obtain desired rate-type equation:

∇
Bκp(t) + G

µ1
(Bκp(t) − I)B1−λ

κp(t)
= O. (2.21)

Note that the case λ = 0 corresponds to the Giesekus model and case λ = 1
corresponds to the Oldroyd-B model, Maxwell model respectively, depending on
whether µ2 is positive or zero respectively.

2.3 Convex combination of the Oldroyd-B and
Giesekus model with stress diffusion

Motivied by the derivation in the preceeding section, where it was sufficient to
provide only two scalar functions to obtain the model, now we obtain convex
combination of Oldroyd-B and Giesekus model with stress diffusion. To achieve
it, we modify the first of scalar functions – the Helmholtz free energy Ψ. Then
we prescribe rate-type equation with stress diffusion that we desire. This is a
change of thinking compared to the preceeding procedure. However, immediately
afterwards we verify validity of the second law of thermodynamic, and if one
would like to obtain the second scalar function – the rate of entropy production,
it can be read from this verification.
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We postulate a modified constitutive equation for the Helmholtz free energy
for the compressible neo-Hookean solid:

Ψ(Bκp(t)) = µ((1 − β)(trBκp(t) − 3 − ln(detBκp(t))) + 1
2β|Bκp(t) − I|2), (2.22)

where β ∈ [0, 1] is a parameter interpolating between two forms of the energy
and one can identify constant µ = G/2ρ by comparison with the previous model
if needed. The last newly introduced term 1

2β|Bκp(t) − I|2 depends only on the
invariants of Bκp(t) and hence can be considered consistently with the principles of
continuum thermodynamic. Furthermore, on the logaritmic scale in the asymp-
totic expansion of Ψ near I the last term does not effect the original form of the
energy. For the full explanation of the new term, follow the work by Bathory
et al. [2020].

Let us now add the last piece of information needed to derive this model, as
was discussed above. Motivated by eq. (2.21), we postulate rate-type equation
in the form:

δBκp(t)

δt
+ δ1(Bκp(t) − I) + δ2(B2

κp(t)
− Bκp(t)) = λ∆Bκp(t) , (2.23)

where λ > 0, δ1, δ2 ≥ 0 are parameters and Gordon-Schowalter objective deriva-
tive (2.12) is used.

Next, we insert energy Ψ into the the general form of the reduced thermo-
dynamic identity (1.28), as we will assume another relation for the entropy flux,
which will naturaly arrise from the derivation. To evaluate it, we rewrite rate-type
equation (2.23) as:

−Ḃκp(t) = − λ∆Bκp(t) − (WBκp(t) − Bκp(t)W) + a(DBκp(t) + Bκp(t)D)
+ δ1(Bκp(t) − I) + δ2(B2

κp(t)
− Bκp(t)),

(2.24)

and following the chain rule Ψ̇ = ∂Ψ(Bκp(t))/∂Bκp(t) · Ḃκp(t) we compute:

∂Ψ(Bκp(t))
∂Bκp(t)

= µ(1 − β)(I − B−1
κp(t)

) + µβ(Bκp(t) − I) =: J. (2.25)

Therefore from the Green’s first identity for tensors, we obtain:

−Ψ̇ = a(DBκp(t) + Bκp(t)D) · J + δ1(Bκp(t) − I) · J + δ2(B2
κp(t)

− Bκp(t)) · J
− λ∆Bκp(t) · J − (WBκp(t) − Bκp(t)W) · J

= a(DBκp(t) + Bκp(t)D) · J + δ1(Bκp(t) − I) · J + δ2(B2
κp(t)

− Bκp(t)) · J
− λ div (∇Ψ(Bκp(t))) + λ∇Bκp(t) · ∇J,

(2.26)

where ∇Ψ(Bκp(t)) = J · ∇Bκp(t) and skew-symmetric tensor W vanishes due to
the obvious relation Bκp(t)J = JBκp(t) . Now, we simplify each term from the last
equality. Starting with:

(Bκp(t) − I) · J =µ(1 − β)(B
1
2
κp(t)(B

1
2
κp(t) − B− 1

2
κp(t))) · (B− 1

2
κp(t)(B

1
2
κp(t) − B− 1

2
κp(t)))

+ µβ(Bκp(t) − I) · (Bκp(t) − I)

=µ(1 − β)|B
1
2
κp(t) − B− 1

2
κp(t)|2 + µβ|Bκp(t) − I|2,

(2.27)

13



where we used symmetry, positive definiteness of the matrix Bκp(t) and identity
(AB)·(A−1B) = Aij(A−1)ilBjkBlk = |B|2, where A, B are arbitrary tensors. Hence
in the same manner we obtain:

(B2
κp(t)

− Bκp(t)) · J = µ(1 − β)|Bκp(t) − I|2 + µβ|B
3
2
κp(t) − B

1
2
κp(t) |2, (2.28)

∇Bκp(t) · ∇J = µβ|∇Bκp(t)|
2 − µ(1 − β)∇Bκp(t) · ∇B−1

κp(t)

= µβ|∇Bκp(t)|
2 + µ(1 − β)∇Bκp(t) · (B−1

κp(t)
(∇Bκp(t))B

−1
κp(t)

)

= µβ|∇Bκp(t)|
2 + µ(1 − β)|B− 1

2
κp(t)(∇Bκp(t))B

− 1
2

κp(t) |2,

(2.29)

a(DBκp(t) +Bκp(t)D) · J = 2aµ
(︂
(1 − β)(Bκp(t) − I) + β(B2

κp(t)
− Bκp(t))

)︂
·D. (2.30)

Finally using eq. (2.26), . . . , (2.30) with the general form of the reduced thermo-
dynamic identity (1.28), we obtain the rate of entropy production:

ξ = − div (λ∇Ψ(Bκp(t)) + je − Θjη)
+
[︂
T − 2aµ

(︂
(1 − β)(Bκp(t) − I) + β(B2

κp(t)
− Bκp(t))

)︂]︂
· D

+ µλ
(︃
β|∇Bκp(t)|

2 + (1 − β)|B− 1
2

κp(t)(∇Bκp(t))B
− 1

2
κp(t)|2

)︃
+ µ

(︃
(1 − β)δ1|B

1
2
κp(t) − B− 1

2
κp(t) |2 + βδ2|B

3
2
κp(t) − B

1
2
κp(t)|2

)︃
+ µ((1 − β)δ2 + βδ1)|Bκp(t) − I|2.

(2.31)

To ensure the rate of entropy production to be non-negative, we assume entropy
flux to satisfy:

λ∇Ψ(Bκp(t)) + je − Θjη = 0, (2.32)
and we set

T = −mI + 2νD + 2aµ((1 − β)(Bκp(t) − I) + β(B2
κp(t)

− Bκp(t))), (2.33)

where ν is a parameter and corresponds to the dynamic viscosity. Hence, using
I · D = trD = div v = 0 (2.13), the rate of entropy production takes the form:

ξ = 2ν|D|2 + µλ
(︃
β|∇Bκp(t)|

2 + (1 − β)|B− 1
2

κp(t)(∇Bκp(t))B
− 1

2
κp(t) |2

)︃
+ µ

(︃
(1 − β)δ1|B

1
2
κp(t) − B− 1

2
κp(t)|2 + βδ2|B

3
2
κp(t) − B

1
2
κp(t) |2

)︃
+ µ((1 − β)δ2 + βδ1)|Bκp(t) − I|2.

(2.34)

Clearly, the rate of entropy production in non-negative and the derived model is
compatible with the second law of thermodynamic.
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3. Weak formulation and Finite
element method
In this chapter, we introduce coupled equations with initial and boundary con-
ditions decribing homogeneous incompressible rate-type viscoelastic fluids with
stress diffusion (model derived in the Section 2.3) flowing in a closed three-
dimensional container. Then, following work by Bathory et al. [2020], we show
an energy inequality, state a weak formulation and a existence theory theorem of
such equations. Existence theory can be obtained due to the presence of stress-
diffusive term and plays important role in the numerical simulations. However,
later we will use configurations with inflow and outflow, which violate considered
boundary conditions in the theory. Moreover, we will use weak formulation con-
taining pressure. Nevertheless, other assumptions of the theorem remain valid.
At the end of the section, we introduce basics of finite element method.

3.1 Definition of a closed system of equations
Let us start with the definition of the notation. For a bounded domain Ω ⊂
R3 with the Lipschitz-continuous boundary ∂Ω and a finite time interval of the
length T > 0, we define the time-space cylinder Q := (0, T ) × Ω and we set
Σ := (0, T ) × ∂Ω as a part of its boundary. The symbol n denotes the outward
unit normal vector on ∂Ω and, for arbitrary vector z, the vector zτ denotes the
projection of the vector to a tangent plane on ∂Ω, which can be formulated as
zτ := z − (z · n)n. Then, for a given specific density of the given body forces
f : Q −→ R3, a given initial velocity v0 : Ω −→ R3 and a given initial extra stress
tensor Bκp(t),0 : Ω −→ R3×3

>0 (where R3×3
>0 denotes the set of symmetric positive

definite (3 × 3)-matrices), we look for a vector field v : Q −→ R3, a scalar field
p : Q −→ R and a positive definite matrix field Bκp(t) : Q −→ R3×3

>0 solving the
following system in Q:

div v = 0,
ρv̇ = divT + b,
T = −pI + 2νD + 2aµ((1 − β)(Bκp(t) − I) + β(B2

κp(t)
− Bκp(t))),

δBκp(t)

δt
= −δ1(Bκp(t) − I) − δ2(B2

κp(t)
− Bκp(t)) + λ∆Bκp(t) ,

(3.1)

which consists of the balance of mass (1.26), the balance of linear momentum
(1.22), the constitutive law for the Cauchy stress tensor (2.33) and the rate-type
equation with stress diffusion (2.23). Note that for the sake of simlicity, in this
chapter we set ρ = 1. This system is completed by the following boundary
conditions on Σ:

v · n = 0,
(Tn)τ = −σvτ ,

(n · ∇)Bκp(t) = O,
(3.2)
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where σ > 0 is a parameter of the Navier slip boundary condition that allows
more comprehensive description of the boundary interaction, and by the initial
conditions in Ω:

v(0, ·) = v0,

Bκp(t)(0, ·) = Bκp(t),0.
(3.3)

3.2 Formal a priori estimates
To identify suitable spaces for the proper concept of weak solution, we show the
basic energy estimates. By taking scalar product of velocity with the balance of
linear momentum (1.22)·v, we obtain kinetic energy identity:

1
2
∂|v|2

∂t
+ 1

2 div (|v|2v) − div (Tv) − T · D = b · v, (3.4)

where we used symmetry of T, identity div (Tv) = v· divT+T·L and identity with
incompressibility condition (1.26): div (|v|2v)/2 = (v · ∇v) · v + |v|2 div (v)/2 =
(v · ∇v) · v. Now, using general form of the reduced thermodynamic identity
(1.28), and assumption on fluxes (2.32), we obtain:

∂

∂t

(︃
Ψ + 1

2 |v|2
)︃

+ div
(︃

(Ψ + 1
2 |v|2)v

)︃
− div (Tv + λ∇Ψ) + ξ = b · v. (3.5)

Finally, use of the final form of the rate of entropy production (2.34) leads to:

∂

∂t

(︃
Ψ + 1

2 |v|2
)︃

+ div
(︃

(Ψ + 1
2 |v|2)v

)︃
− div (Tv + λ∇Ψ) + 2ν|D|2

+ µλ
(︃
β|∇Bκp(t)|

2 + (1 − β)|B− 1
2

κp(t)(∇Bκp(t))B
− 1

2
κp(t) |2

)︃
+ µ

(︃
(1 − β)δ1|B

1
2
κp(t) − B− 1

2
κp(t) |2 + βδ2|B

3
2
κp(t) − B

1
2
κp(t)|2

)︃
+ µ((1 − β)δ2 + βδ1)|Bκp(t) − I|2 = b · v.

(3.6)

Finally, by integrating this identity over Ω, using Gauss theorem and the bound-
ary conditions (3.2), we get an energy equality:

∂

∂t

∫︂
Ω

(︃
Ψ + 1

2 |v|2
)︃

+ σ
∫︂

∂Ω
|v|2 + 2ν

∫︂
Ω

|D|2

+ µλ
∫︂

Ω

(︃
β|∇Bκp(t)|

2 + (1 − β)|B− 1
2

κp(t)(∇Bκp(t))B
− 1

2
κp(t) |2

)︃
+ µ

∫︂
Ω

(︃
(1 − β)δ1|B

1
2
κp(t) − B− 1

2
κp(t) |2 + βδ2|B

3
2
κp(t) − B

1
2
κp(t) |2

)︃
+ µ

∫︂
Ω
((1 − β)δ2 + βδ1)|Bκp(t) − I|2 =

∫︂
Ω

b · v,

(3.7)

where we used following identity:

−
∫︂

Ω
div (Tv + λ∇Ψ) = −

∫︂
∂Ω

(Tv + λ∇Ψ) · n = −
∫︂

∂Ω
(Tn) · v = σ

∫︂
∂Ω

|v|2.

The energy equality reveals appropriate choice of function spaces for the solution
(v, Bκp(t)) and the form of the weak formulation of the solution of the closed set
of equations (3.1), . . . , (3.3).
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3.3 Definition of a weak solution and its exis-
tence

Before stating the main result of the existence theory, we fix some notation. By
Lp(Ω) and W n,p(Ω), 1 ≤ p ≤ ∞, n ∈ N, we denote the usual Lebesgue and
Sobolev space, with their usual norms denoted as ∥·∥p and ∥·∥n,p, respectively.
The trace operator that maps W 1,p(Ω) into Lq(∂Ω), for certain q ≥ 1, we denote
by T . Further, we set W−1,p′(Ω) = (W 1,p(Ω))∗ , where p′ = p/(p − 1). We will
use the same notation for the function spaces of scalar-, vector-, or tensor-valued
functions, but we will distinguish the functions themselves using different fonts
as before. Also, we denote the duality pairing by ⟨·, ·⟩. Moreover, for certain
subspaces of vector valued functions, we will use the following notation:

C∞
n = {w : Ω → R3 : w infinitely differentiable, w · n = 0 on ∂Ω},

C∞
n, div = {w ∈ C∞

n : div w = 0 in ∂Ω},

L2
n, div = C∞

n, div
∥·∥2 , W 1,2

n, div = C∞
n, div

∥·∥1,2 , W−1,2
n, div = (W 1,2

n, div )∗.

The Bochner spaces of mappings from (0, T ) to a Banach space X will be denoted
as Lp(0, T ; X) with the norm ∥·∥Lp(0, T ; X) = (

∫︁ T
0 ∥·∥p

X)
1
p .

Now, we state definition of a weak solution, that is motivated by the formal
a priori estimate shown in the preceeding section.

Definition 1 (Bathory et al., 2020, page 507). Let T > 0 and assume that
Ω ⊂ R3 is a Lipschitz domain. Let β ∈ (0, 1), ν, σ, λ > 0, δ1, δ1 ≥ 0, a ∈ R, and
b ∈ L2(0, T ;W−1,2

n, div ), v0 ∈ L2
n, div (Ω). Furthermore, let Bκp(t),0 ∈ L2(Ω) be such

that
−
∫︂

Ω
ln(detBκp(t),0) < ∞. (3.8)

Then, we say that a couple (v, Bκp(t)) : Q −→ R3 × R3×3
>0 is a weak solution to

(3.1)-(3.3) if the following hold:

v ∈ L2(0, T ;W 1,2
n, div ) ∩ L∞(0, T ;L2(Ω)), ∂v

∂t
∈ L

4
3 (0, T ;W−1,2

n, div ),

Bκp(t) ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L2(Ω)),
∂Bκp(t)

∂t
∈ L

4
3 (0, T ;W−1,2(Ω));

(3.9)

For all ϕ ∈ L4(0, T ;W 1,2
n, div ) we have∫︂ T

0
⟨∂v
∂t
, ϕ⟩ +

∫︂
Q

(v · ∇)v · ϕ+ σ
∫︂ T

0

∫︂
∂Ω

T v · T ϕ =

−
∫︂

Q
(2νD + 2aµ((1 − β)(Bκp(t) − I) + β(B2

κp(t)
− Bκp(t)))) · ∇ϕ+

∫︂ T

0
⟨b, ϕ⟩;

(3.10)

For all A ∈ L4(0, T ;W 1,2(Ω)), A = AT , we have∫︂ T

0
⟨
∂Bκp(t)

∂t
,A⟩ +

∫︂
Q

((v · ∇)Bκp(t) + 2Bκp(t)W − 2aBκp(t)D) · A

+
∫︂

Q
(δ1(Bκp(t) − I) + δ2(B2

κp(t)
− Bκp(t))) · A + λ

∫︂
Q

∇Bκp(t) · ∇A = 0.
(3.11)
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The initial conditions are satisfied in the following sense

lim
t→0+

(∥v(t) − v0∥2 + ∥Bκp(t)(t) − Bκp(t),0∥2) = 0. (3.12)

Moreover, we say that the solution satisfies the energy inequality if, for all t ∈
(0, T ): ∫︂

Ω

(︄
|v(t)|2

2 + Ψ(Bκp(t)(t))
)︄

+
∫︂ t

0

(︂
2ν∥D∥2

2 + σ(∥T v∥2
2,∂Ω

)︂
+ µλ

∫︂ t

0

(︃
(1 − β)∥B− 1

2
κp(t)(∇Bκp(t))B

− 1
2

κp(t)∥2
2 + β∥∇Bκp(t)∥

2
2

)︃
+ µ

∫︂ t

0

(︃
(1 − β)δ1∥B

1
2
κp(t) − B− 1

2
κp(t)∥2

2 + βδ2∥B
3
2
κp(t) − B

1
2
κp(t)∥2

2

)︃
+ µ

∫︂ t

0
(βδ1 + (1 − β)δ2)∥Bκp(t) − I∥2

2

≤
∫︂

Ω

(︄
|v0|2

2 + Ψ(Bκp(t),0)
)︄

+
∫︂ t

0
⟨b · v⟩.

(3.13)

Next, we state the main theorem of this chapter. For the full explanation of
the difficulties connected with such analysis, see Bathory et al. [2020].
Theorem 1 (Bathory et al., 2020, page 508). Let T > 0 and assume that Ω ⊂ R3

is a Lipschitz domain. Suppose β ∈ (0, 1), ν, σ, λ > 0, δ1, δ2 ≥ 0, a ∈ R, and
b ∈ L2(0, T ;W−1,2

n, div ), v0 ∈ L2
n, div (Ω). Furthermore, let Bκp(t),0 ∈ L2(Ω) be such

that (3.8) holds. Then there exists a weak solution to (3.1)-(3.3) satisfying the
energy inequality.
Proof. The individual steps of the proof are described in detail in the work
Bathory et al. [2020, p. 509], Chapter 3 Proof of the Theorem.

3.4 Finite element method (FEM)
In this section we introduce details of finite element method of our implementation
in open-source computing platform FEniCS as a finite element library for Python.

3.4.1 Weak formulation for FEM
For FEM we need to use a different weak fomulation than the one defined in the
Definition 1 as it is not convenient to work with the space W 1,2

n, div within the FEn-
iCS library. Thus we must modify the choice of spaces in (3.9) to a formulation
with the pressure and we formally write for all admissible test functions (ψ, ϕ,A):

∫︂
Ω

div vψ = 0,∫︂
Ω
ρ

[︄
∂v
∂t

+ (v · ∇)v
]︄

· ϕ−
∫︂

Ω
T · ∇ϕ+

∫︂
ΓN

t · ϕ−
∫︂

Ω
ρb · ϕ = 0,

T = −pI + 2νD + aG
[︂
(1 − β)(Bκp(t) − I) + β(Bκp(t) − I)Bκp(t)

]︂
,∫︂

Ω

δBκp(t)

δt
· A +

[︂
δ1(Bκp(t) − I) + δ2(B2

κp(t)
− Bκp(t))

]︂
· A + λ

∫︂
Ω

∇Bκp(t) · ∇A = 0,
(3.14)
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where we setted G := 2µ and t = Tn is a traction, n is a unit outward normal.

3.4.2 Space discretization
We discretize system of equations (3.14) in each time step (or at a stationary
state) using the FEM. We approximate computational domain Ω by a regular
triangulation and approximate curved boundaries is such a way that the vertices
of boundary triangle edges lie on ∂Ω. We also occasionaly refine certain parts of
the mesh by red-green refinement1, which is based on empirical experiences, not
on a posteriori error estimates. As a basis functions, we use Taylor-Hood elements
for solution of a classical Navier-Stokes unknowns (p, v), as it is a typical choice
that satisfies Babuška-Brezzi (inf-sup) condition. We complete this basis with a
standard continuous piecewise linear elements P1 for each independent entry of
the left Cauchy-Green tensor Bij (6 elements in 3D). Moreover, for the problems
with the ALE method, we use the very same elements for mesh deformation û as
it correspond to the velocity.

3.4.3 Numerical solver
We use a monolithic non-linear solver, which uses well-known Newton method
with MUMPS as a linear solver based on LU decomposition.

3.4.4 Time discretization
In this section, we introduce time discretization of the evolutionary problem given
by set of equations (3.1) that is solved in time-space cylinder Q. We split the
time interval [0, T ] into N subintervals and denote ∆tn := tn+1 − tn the n-th time
step, n = 0, . . . , N − 1. Note that system of equations is generally in the form:

∂u(x, t)
∂t

+ f(u(x, t)) = 0 in Q, (3.15)

and at every time level tn+1 we solve for un+1(x) := u(x, t0 +∑︁n
i=0 ∆ti) by FEM.

Basic first order unconditionally stable time scheme is the Implicit backward
Euler scheme (BE):

un+1(x) − un(x)
∆tn + f(un+1(x)) = 0. (3.16)

We also experiment with the Implicit Glowinski three-step scheme, while using
ALE method. For more details, see corresponding section in numerical results.

1Refinement iteration is done by finding the barycenter of the triangle and connecting it
to each of its vertices, creating four triangles from one. And if the neighboring triangle is not
refined also, then the new vertex on his edge is connected with its opposite vertex.
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4. Numerical implementations
In this chapter we introduce results, that we obtained by simulating classical
benchmark Fan et al. [1999] in 2D and well-known non-Newtonian phenomena
using derived models, namely the model with stress diffusion. For simulation
purposes, we use open-source computing platform FEniCS as a finite element
library for Python. All used scripts are published in the Charles University Digital
Repository, and they are available in public repository: https://github.com/
cachja/master-thesis. Moreover, see Appendix A.1 for their description.

4.1 Flow past a cylinder
In this section, we simulate classical 2D benchmark of a planar viscoelastic flow
around a cylinder in a narrow channel. For this purpose, the convex combination
of the Oldroyd-B and Giesekus model with stress diffusion is used, governed
by equations (3.1). Based on that simulations, we study the effects of stress
diffusion, convex combinations of the models and various objective derivatives.
Finally, these results are compared to the large data existence Theorem 1.

4.1.1 Definition of the benchmark
This benchmark was introduced by Fan et al. [1999], therefore the dimensions of
the channel in this simulation correspond to this benchmark. In order to decrease
computational cost, we assume problem to be symmetric along horizontal axis as
the setting of the problem is symmetric and the only asymmetry may be induced
by numerical errors. Hence the dimensions are the following: length of the channel
Len = 40, width of the channel Wid = 2, and the radius of the cylinder R = 1,
see sketch of the domain in Figure 4.1. Note that all quantities are dimensionless
as the only parameter given is the Weissenberg number We.

Figure 4.1: Sketch of the computational domain for the flow past cylinder bench-
mark.

The boundary of the computational domain is split into the following bound-
ary parts: Γ1, . . . , Γ5 denote in the same order inflow, outflow, upper wall,
symmetric axis, and cylinder wall, see Figure 4.1. Part of the domain where the
local refinement of the mesh is used due to the curvature of the boundary and
the channel narrowing leading to the velocity increase is marked by the dashed
line. Axis x, y are defined as usual, i.e., x horizontally, y vertically and the origin
is placed at the lower left corner of the domain.
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4.1.2 Boundary conditions
Boundary conditions are chosen naturally: no-slip condition on the upper wall Γ3
and the cylinder wall Γ5, free-slip condition due to the symmetry on Γ4, condition
v = (3

8(4 − y2), 0) at the inflow Γ1, traction-free condition at the outflow Γ2.
Given the inlet velocity, one can try to a priori obtain solution (used as a

boundary condition later) for Bκp(t) on the velocity inlet Γ1. This can be done by
assumption that flow entering the domain is a Poiseuille flow. That is a laminar
Stokes flow in the form v = (vx(y), 0) in the 2D uniform rectangular channel,
which is moreover steady, fully developed and the y-component of the velocity is
zero. Note that as we assume flow to be steady, it implies ∂Bκp(t)/∂t = 0 on Γ1.
Moreover, we observe that v · ∇Bκp(t) = 0 on Γ1. This simplify the equation (3.1)
(specifically equation (2.23)) to the non-linear system of three ordinary non-linear
differential equations as the matrix equation is symmetric:

δ2B2
κp(t)

⃓⃓⃓
Γ1

+ (δ1 − δ2)Bκp(t)

⃓⃓⃓
Γ1

− (aD + W)Bκp(t)

⃓⃓⃓
Γ1

−Bκp(t)

⃓⃓⃓
Γ1

(aD − W) − δ1I − λ∆Bκp(t)

⃓⃓⃓
Γ1

= O,
(4.1)

recall that a is a parameter of the Gordon-Schowalter family of objective deriva-
tives. In practice, this cannot be solved analytically, hence we focus on a special
case δ2 = 0, λ = 0 and for other cases this boundary condition is omitted. Fi-
nally, by substituting velocity inlet condition into the above equation we find the
solution for Bκp(t) :

B
⃓⃓⃓
Γ1

= 1
9(1 − a2)y2 + 16δ2

1

(︄
16δ2

1 + 9(a+ 1)y2 −12ayδ1
−12ayδ1 16δ2

1 + 9(1 − a)y2

)︄
.

4.1.3 Stationary solution – quantities of interest
In this benchmark, we are interested in the steady solution. Hence we drop
time derivatives in the equation (3.1). Moreover, in order to converge to the
steady state as quickly as possible, we follow the work of Damanik [2011] and we
drop the non-linear term in the material time derivative in the balance of linear
momentum. This is the same approach as was used in the work by Walkington
et al. [2016], where was the density ρ was set to zero.

In the steady state, we compute forces acting on the cylinder boundary Γ5.
From the symmetry, it is obvious that lift = 0. However, drag is nonzero:

drag = −2
(︄

1
0

)︄
·
∫︂

Γ5
T · n dΓ5, (4.2)

where n in a unit outward normal vector. Note that in this case the forces are
dimensionless and the multiplication by coefficient 2 is due to the symmetry of
the domain. The effect of the Weissenberg number on the drag will be studied.

As was shown by Dostaĺık et al. [2019], even the internal viscoelastic flow
faces instabilities for the high Weissenberg number. Regarding such instabilities
in our simulation, we are also interested in the coefficient λ in the stress diffusion
term. We expect that due to the instability and numerical errors there will be a
lower bound λ∗ for this coefficient under which we will not be able to converge to
the steady solution. Hence for every solution, λ will be minimized to this bound
monotonically from a greater estimate λ0, see next section for details.
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4.1.4 Continuation (homotopy) method
As discussed in the previous section, we are interested in the steady solution only.
Hence it could seem that the choice of the initial condition (for a monolithic
numerical solver) is not that important if we are able to converge to the solution
from trivial initial condition on the whole domain: v = 0, p = 0, B = I. However,
this is not true for the high Weissenberg numbers and λ close to λ∗. Hence for
increasing We and decreasing λ we use a continuation method, i.e., as an initial
solution for the next problem, the previous solution is used.

Note that even though continuation method seems trivial, the proof of con-
vergence of such approach for our complicated problem greatly exceeds this work.
Also, this method does not work always, following cases may occur: 1) Change
of parameters between two solutions must be sufficiently small, even close to
the machine precision, which makes the problem so computationally demanding
that it is practically unbearable. 2) The curve in the phase space of a solution
parametrized by chosen parameter may contain a blow-up for some interval of
parameters. One of these cases was observed in my bachelor thesis Cach [2021],
where the problem could not be solved for any We using this method together
with stabilization over edges. However, in this work, we were able to overcome
these bounds by adding the stress diffusion. Also, since we know that the problem
cannot be solved without the stress diffusion, we expect lower bound for λ∗ > 0.
We may consider the elliptic term with λ as a stabilization term, hence the value
of λ∗ > 0 may be mesh-size dependent.

Specifically, we use the continuation method for one parameter only, i.e., with
fixed λ we solve for higher We and then with We fixed we solve for smaller λ
where we use monotonic 1D minimizing method, that finds λ∗ with 10 % relative
error. Note that change of both parameters at once may cause solution to be
outside of converging neighborhood of a direct solver.

4.1.5 Mesh
All computational meshes are generated by setting the following parameters in
the scripts using FEniCS available in the appendix: cr := cylinder_refinement,
mr := mesh_refinement, and lri := local_refinement_iterations, meaning:
number of points on the cylinder boundary, refinement of the mesh in the whole
domain, number of iterations of extra refinement of the mesh in the middle around
the cylinder. Refinement iteration is done by finding the barycenter of the triangle
and connecting it to each of its vertices, creating four triangles from one (red-
green refinement). We generated in total three meshes, see Figure 4.2 and Figure
4.3. Also see Table 4.1 for the important parameters of these meshes: the smallest
edge length of a triangle in the mesh hmin, the largest edge length of a triangle
in the mesh hmax and the size of the problem, i.e., total number of degrees of
freedom DoF . We recommend mesh No. 1 for quick tentative results, mesh No. 2
for minimizing λ as the minimizing method together with continuation method
takes a lot of iterations and mesh No. 3 for very accurate results.
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Mesh No. cr mr lri hmin hmax DoF

1 100 200 1 0.0222 0.3604 39882
2 150 300 2 0.0074 0.2402 229002
3 200 400 2 0.0056 0.1802 384902

Table 4.1: Overview of important parameters of used meshes.

(a) Mesh No. 1.

(b) Mesh No. 2.

(c) Mesh No. 3.

Figure 4.2: Mesh cutout for x ∈ (10, 30).

4.1.6 Fluid model parameters
The last, and the most important, piece of information needed for this benchmark
are the properties of the fluid given by parameters occurring in the equation (3.1).
These parameters are varied in order to investigate validity of the large data
existence Theorem 1 by numerical experiment and possibly propose an extension
of the parameters that are not stated there, however, are working in simulations.

From the work of Damanik et al. [2010] we took the parameters corresponding
to the equation (3.1), note that µ̂ is a dummy parameter here, namely µ̂+ ν = 1,
ν = 0.59, 2µ =: G = µ̂/We = (1 − ν)/We = 0.41/We, where We is varied. Recall
that the fluid is incompressible and homogeneous. These properties are common
for all following simulations.

Then we distinguish following cases, see (2.21), for a = 1 and λ = 0: if
δ1 = 1/We and δ2 = 0 we obtain Oldroyd-B model while if δ1 = 0 and δ2 = 1/We
we obtain Giesekus-like model. For those models we vary β ∈ [0, 1], λ ∈ [λ∗, λ0].
We also use stabilization over edges parametrized by α coefficient if needed, and
is not used unless otherwise stated. Eventually, one can also vary parameter
a corresponding to Gordon-Schowalter derivatives. Obviously, for a = 0 there
is no extra stress in Cauchy stress tensor and the equations (3.1) simplify to
Naviers-Stokes equations. See Table (4.2) for used combinations of parameters.
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Table 4.2: All coefficients combinations used in the simulations. The following
problems are investigated: Giesekus Combo 1 model, Giesekus Combo 2 model,
Oldroyd-B Combo 1 model (all these models come with convex combinations of
energies) and change of an objective derivative for Oldroyd-B Combo 2 model.

Model a β δ1 δ2 λ

Giesekus Combo 1 1 [0,1] 0 1/We [λ∗, λ0]
Oldroyd-B Combo 1 1 [0,1] 1/We 0 [λ∗, λ0]
Giesekus Combo 2 1 [0,1] 1/We 1/We [λ∗, λ0]
Oldroyd-B Combo 2 [0,1] 0 1/We 0 [λ∗, λ0]

(a) Mesh No. 1.

(b) Mesh No. 2.

(c) Mesh No. 3.

Figure 4.3: Mesh cutout for x ∈ (18.5, 21.5).
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4.1.7 Giesekus Combo 1 model
In this section, we use parameters in the first line of the Table (4.2) corresponding
to this model. Remaining parameters are specified later.

Finding minimal λ for Giesekus Combo 1 model

First of all, we are interested in the λ∗ dependence w. r. t. We for varying β.
Using approach mentioned above, we choose λ0 = 10 together with parameters
in the first line of the Table (4.2), where α = 0, i.e., no additional stabilization
over edges is used. See Figure (4.4) for the plot of such dependence. We observe
fast growth at the beginning, which indicates that we will not be able to compute
simulations for large We without stress diffusion. Also, the functions can be
bounded by a relatively small constant λmax ≈ 0.012, hence stress diffusion may
be seen as a reasonable stabilization.
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Various convex combinations; Mesh No 2.
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β = 1.0

Figure 4.4: Plot for Giesekus Combo 1 model of λ∗ versus We for varying β.

Effect of λ on drag for Giesekus Combo 1 model

Next, we check effect of λ > 0 on the solution by looking at drag dependence
w. r. t. We for varying λ. Moreover, we set β = 0 and α = 0.01. As can be seen
from the Figure (4.5), even with the stabilization over edges we are not able to
find solution for We > 0.5 (without this stabilization, we are not able to reach
even We = 0.4). However, stabilization by stress diffusion works well and the
difference between solution with λ = 0 and the solutions with λ > 0 is more than
acceptable for λmax.
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Figure 4.5: Plot for Giesekus Combo 1 model (β = 0, α = 0.01) of drag versus
We for varying λ.

Effect of β on drag for Giesekus Combo 1 model

Finally, we fix λ = 0.02 and study drag dependence w. r. t. We for varying β.
Looking at Figure (4.6), one can state that all convex combinations of energies
given by β are physically relevant. Note, that there is no bound for We, one can
proceed for larger We than plotted.
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Figure 4.6: Plot for Giesekus Combo 1 model (λ = 0.02) of drag versus We for
varying β.

Moreover, we plot streamlines in the domain colored by velocity magnitude
for a few We with the last parameter choice, see Figure (4.7). We observe a vortex
behind of the cylinder. With increasing β, it occurs for lower We, and hence we
plot vortex for β = 0.99 as for this β the convex combination of energies takes
into account both of them.
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(a) For β = 0 and We = 1.

(b) For β = 0 and We = 21.

(c) For β = 0.99 and We = 1.

(d) For β = 0.99 and We = 21.

Figure 4.7: Plot of streamlines over velocity magnitude for Giesekus Combo 1
model.
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4.1.8 Oldroyd-B Combo 1 model
In this section, we use parameters in the second line of the Table (4.2) corre-
sponding to this model. Remaining parameters are specified later.

Finding minimal λ for Oldroyd-B Combo 1 model

For Oldroyd-B model, we are interested in the same dependencies as in the case
of Giesekus model. Hence we plot λ∗versus We for varying β, see Figure (4.8).
However in this case, we observe quick jump for We ≈ (1.5, 2.0) following by
linear growth for β > 0.2.

Looking on streamlines plotted over domain colored by velocity magnitude,
see Figure (4.9) for β = 0, Figure (4.10) for β = 0.2, Figure (4.11) for β = 0.9,
and Figure (4.12) for β = 1, it is obvious that growth of λ∗ is connected with the
need of stabilization of growing vortex downstream from the cylinder. Moreover,
for β = 0.0 there is quick change of velocity profile between We = [2.0, 2.1]
connected with the jump change of λ∗. Same behavior is observed for β = 0.9
and We = [1.5, 1.6]. Moreover, for this β, we observe that linear growth of λ∗

after the jump is connected to the growth of the vortex upstream in front of
the cylinder. Finally, we observe that for β = 1 the vortex appears for the first
time for lesser We than in the case of β = 0.9. Note that this physical behavior
is correct as it was experimentally observed for viscoelastic fluids in the works of
Kenney et al. [2013] and Hopkins et al. [2022], see Appendix A.2.
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Figure 4.8: Plot for Oldroyd-B Combo 1 model of λ∗ versus We for varying β.
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(a) For β = 0 and We = 1.0.

(b) For β = 0 and We = 1.5.

(c) For β = 0 and We = 2.0.

(d) For β = 0 and We = 2.1.

Figure 4.9: Plot of streamlines over velocity magnitude for Oldroyd-B Combo 1
model. Observe growing vortex downstream from the cylinder and how it changes
its shape w. r. t. We and velocity profile around the cylinder.
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(a) For β = 0.2 and We = 5.0.

(b) For β = 0.2 and We = 5.5.

(c) For β = 0.2 and We = 8.0.

(d) For β = 0.2 and We = 10.0.

Figure 4.10: Plot of streamlines over velocity magnitude for Oldroyd-B Combo 1
model. Observe growing vortex both downstream and upstream from the cylin-
der and how it changes its shape w. r. t. We and velocity profile around the
cylinder.
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(a) For β = 0.9 and We = 1.5.

(b) For β = 0.9 and We = 1.6.

(c) For β = 0.9 and We = 1.8.

(d) For β = 0.9 and We = 2.1.

Figure 4.11: Plot of streamlines over velocity magnitude for Oldroyd-B Combo 1
model. Observe growing vortex both downstream and upstream from the cylin-
der and how it changes its shape w. r. t. We and velocity profile around the
cylinder.
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(a) For β = 1 and We = 1.5.

(b) For β = 1 and We = 1.6.

(c) For β = 1 and We = 1.7.

(d) For β = 1 and We = 2.1.

Figure 4.12: Plot of streamlines over velocity magnitude for Oldroyd-B Combo 1
model. Observe growing vortex both downstream and upstream from the cylin-
der and how it changes its shape w. r. t. We and velocity profile around the
cylinder.
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Effect of λ on drag for Oldroyd-B Combo 1 model

Before further investigation of this different behavior, we check impact of λ > 0 on
the solution by looking at drag dependence w. r. t. We for varying λ. Moreover,
we set β = 0 and α = 0.01. As can be seen from the Figure (4.13), λ > 0 spoils
the stabilization over edges until we reach λ∗, however λ ≈ λ∗ affect drag greatly.
Note that stabilization over edges does not work for We > 2.1 and that without
both stabilizations, we are not able to reach even We = 0.6. Also note, that for
λ = 0 the comparison with the benchmarks was successfully done in my bachelor
thesis Cach [2021].
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Figure 4.13: Plot for Oldroyd-B Combo 1 model (β = 0, α = 0.01) of drag versus
We for varying λ.

Effect of β on drag for Oldroyd-B Combo 1 model

Now, we fix λ = 2.0 and study drag dependence w. r. t. We for varying β. Look-
ing at Figure (4.14), one can state that all convex combination of energies given
by β are physically relevant, however, there is qualitatively different behavior for
β → 1.

Note, that there is no bound for We, one can proceed for larger We than
plotted, if the sufficient λ is chosen. This we demonstrate by computing on Mesh
No. 3. See Figure (4.15), where for β = 0 we fix λ = 0.5 and for β = 0.99 we set
λ = We/10 + 0.1 (proper fit of obtained data leads to the λ = 0.075We + 0.11,
hovewer, we overestimate this fit in order to make sure that the simulation will
work for untested high We) as it is much cheaper than solving for λ∗ for each
We. Note that we use the very same fit for β = 0.3, otherwise solution does not
converge. This is due to the fact that the vortex for such β eventually grows to
the same size with given We as for β = 0.99.

However, it allows us to simply solve for high We and plot streamlines in
the domain colored by velocity magnitude with nearly as small stress diffusion
as possible and investigate flow properly, see Figure (4.16), see Figure (4.18)
(compare formation of vortices with β = 0.2 (Figure (4.10))) and Figure (4.19).
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Figure 4.14: Plot for Oldroyd-B Combo 1 model (λ = 2.0) of drag versus We for
varying β.

For β = 0 we do not observe any vortices upstream from the cylinder even for
very high We. For β = 0.99 we observe shift of vortex towards the symmetry
axis (compare with Figure (4.12)), which is connected with drag drop at We ≈ 3,
see Figure (4.15). For higher We, vortex is growing upstream. One can measure
upstream vortex size as the distance on x-axis at y = 0 from the cylinder to
the point where the velocity changes its direction, i.e., vx = 0. We observe that
vortex stops growing at We ≈ 200, see Figure (4.17), where the error is given by
edge length in the specific part of the mesh.
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Figure 4.15: Plot for Oldroyd-B Combo 1 model (β = 0 : λ = 0.5, β ∈ {0.3, 0.99}
: λ = We/10 + 0.1) of drag versus We for varying β.
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(a) For β = 0 and We = 5.

(b) For β = 0 and We = 200.

Figure 4.16: Plot of streamlines over velocity magnitude for Oldroyd-B Combo 1
model. Observe growing vortex downstream from the cylinder. Also notice, that
for β = 0 there is no upstream vortex even for huge We = 200.
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Figure 4.17: Plot for Oldroyd-B Combo 1 model (β ∈ {0.3, 0.99}, λ = We/10 +
0.1) of upstream vortex size versus We.

35



(a) For β = 0.3 and We = 5.

(b) For β = 0.3 and We = 10.

(c) For β = 0.3 and We = 100.

(d) For β = 0.3 and We = 200.

Figure 4.18: Plot of streamlines over velocity magnitude for Oldroyd-B Combo 1
model. Observe growing vortex both downstream and upstream from the cylin-
der.
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(a) For β = 0.99 and We = 5.

(b) For β = 0.99 and We = 21.

(c) For β = 0.99 and We = 100.

(d) For β = 0.99 and We = 200.

Figure 4.19: Plot of streamlines over velocity magnitude for Oldroyd-B Combo 1
model. Observe growing vortex both downstream and upstream from the cylin-
der.
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Oscillations of λ∗ during linear growth for Oldroyd-B Combo 1 model

Regarding the oscillations in the plot of λ∗ w. r. t. We that starts to appear for
β ≥ 0.9 and high We, see Figure (4.8). On the mesh No. 3 for β = 1 we compute
very same procedure for β = 1 and compare results with the results obtained on
Mesh No. 2, see Figure (4.20). We observe very same jump for We ∈ (1.5, 1.6).
Moreover, slope of the function is the same for finer mesh and we observe similar
oscillation for We > 15 as in the previous case.

By comparison of the plots of streamlines on the Mesh No. 3 during the
oscilation, see Figure (4.21), we observe differently shaped vortices. This means
that the solution for high We is very sensitive on the chosen continuation method,
which can face difficulties around real λ∗ where the stationary solution may stops
to exist.

This can be explain by several reasons. Recall that the main idea of contin-
uation method is to follow the curve in the space of a solution parametrized by
chosen parameter and approach convergent neighborhood of the endpoint of the
curve. However, following situations may occur: a) Continuation method may
contain bifurcation that results into non-uniqueness of the solution. And we may
follow different solutions for different We. b) Trajectory of the solution may be
discontinuous in the sense, that there exists blow-up, i.e. there exist an interval
I ⊂ [λ∗, λ0] s.t. λ∗ ̸∈ I for which solution does not exist. And our continuation
method may not use step large enought to cross this interval. Hence with our
approach we may not find the smallest λ. Such research exceeds this work, and
we suggest this direction as another possible topic of interest.

Lastly, we observe basic turbulence behaviour. If the vortex surrounds large
portion of surface of the obstacle (cylinder), then the drag is several times larger
than if the vortex is positioned before the cylinder and touches the obstacle
only on the small amount of its surface, see peaks of drag in the Figure (4.22),
which corresponds to the first formation of the vortex (Figure (4.12) d)) and the
differently shapes vortices during oscilations of λ∗ (Figure (4.21)).
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Figure 4.20: Plot for Oldroyd-B Combo 1 model (β = 1) of λ∗ versus We.
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(a) For β = 1 and We = 17, λ∗ ≈ 1.68. Here drag = 158.48.

(b) For β = 1 and We = 18, λ∗ ≈ 0.99. Here drag = 3957.58.

Figure 4.21: Plot of streamlines over velocity magnitude for Oldroyd-B Combo 1
model. Observe change of the vortex shape with a small change of We but a
significant drop of λ∗.
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Figure 4.22: Plot for Oldroyd-B Combo 1 model (β = 1, λ = λ∗) of drag versus
We.
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4.1.9 Giesekus Combo 2 model
In this section, we investigate the case of δ1 ̸= 0, δ2 ̸= 0, and we set δ1 = δ2 =
1/We, see the third line of Table (4.2). Note that this is a special case as in
general one can have δ1 ̸= δ2. Also, this model may be seen as a combination
of Giesekus Combo 1 model and Oldroyd-B Combo 1 model. However we call it
Giesekus Combo 2 as there is quadratic term in the rate-type equation that is
typical for Giesekus-like models.

Finding minimal λ for Giesekus Combo 2 model

Looking on graph of λ∗ versus We for varying β, see Figure (4.23), one can
observe similarities with Giesekus Combo 1 model, which means that either the
instabilities of Oldoyd-B Combo 1 model are shifted to the highest We or none
will even arise.

Effect of β on drag for Giesekus Combo 2 model

For λ = 0.011 we plot drag versus We, see Figure (4.24), as the λ∗ does not
change significantly and one can also observe effect of λ on drag in one plot. The
dependence resembles Giesekus Combo 1 model with faster growth for higher We
and β inherited from Oldroyd-B Combo 1 model. We get the best from both
worlds.
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Figure 4.23: Plot for Giesekus Combo 2 model of λ∗ versus We for varying β.
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Figure 4.24: Plot for Giesekus Combo 2 model (λ = 0.011) of drag versus We for
varying β.

4.1.10 Oldroyd-B Combo 2 model
Finally, let us investigate impact of different objective derivatives. Above all we
are interested in the transition between Jaumann-Zaremba derivative to upper
convected derivative, i.e., a ∈ [0, 1]. As discussed in the Section 4.1.6 Fluid model
parameters, for a = 0, there is no extra stress in the Cauchy stress tensor, hence
the solution corresponds to the Navier-Stokes. In this section, we use parameters
in the fourth line of the Table (4.2) corresponding to this model. Remaining
parameters are specified later.

Finding minimal λ for Oldroyd-B Combo 2 model

For a → 1 flow starts to exhibit viscoelastic properties, see Figure (4.25) of λ∗

versus We, as there is needed λ∗ > 0. Results were obtained using parameters
in the fourth line of the Table (4.2). Moreover notice that there is either bound
for a for which the viscoelasticity comes to play or for small a the viscoelasticity
takes effect for higher We than plotted.

Effect of a on drag for Oldroyd-B Combo 2 model

Finally, for λ = 0.4 > λ∗ we plot drag versus We, see Figure (4.26). We observe
that for β = 0 the drag does not depend greatly on We until a → 1. This must
be connected with the properties of derivative itself in the rate-type equation as
for a = 0.8 there is no growth of drag even thought that the difference between
values of a ∈ {0.8, 1.0} in the extra stress of the Cauchy stress are relatively close
to each other and may be compensated by a small change of elastic modulus G.

Also notice, that the results for β = 0, a = 1 are different from the results in
the Figure (4.14) even though for this choice of parameters the Oldroyd-B Combo
2 model and Oldroyd-B Combo 1 model are the same. That is because the choice
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of λ is different and it highlights how sensitive the solution is to the magnitude
of the stress diffusion.
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Figure 4.25: Plot for Oldroyd-B Combo 2 model, i.e. transition of Jaumann-
Zaremba to upper convected derivative, (β = 0) of λ∗ versus We.
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Figure 4.26: Plot for Oldroyd-B Combo 2 model, i.e. transition of Jaumann-
Zaremba to upper convected derivative (β = 0, λ = 0.4) of drag versus We.
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4.1.11 Conclusion for the flow past the cylinder
Giesekus Combo 1 model, Giesekus Combo 2 model

For the Giesekus Combo 1 model and the Giesekus Combo 2 model, we observed
that the stress diffusion may play a role as the stabilization, instead of stabi-
lization over edges, since minimal parameter λ needed for solver to converge is
relatively small and the change of the solution due to this stabilization is neg-
ligible. Moreover, we observed that there is a smooth transition of β → 0 and
β → 1, hence the weak solution existence theory could be expanded for these
values.

Oldroyd-B Combo 1 model

For the Oldroyd-B Combo 1 model, we observed that the stress diffusion is
essential for the problem, as the minimal λ needed for solver to converge to the
steady state is huge and such values affect the solution greatly.

Moreover, for β → 1 we observed together with downstream instability from
the cylinder the upstream instability from the cylinder of the flow in the form
of vortex. Despite the surprising nature of this behavior, it was already experi-
mentally observed such upstream instable behavior for viscoelastic fluids in the
works of Shi et al. [2015] and Hopkins et al. [2022]. However, in these works
their authors observed vanishing of the downstream vortex when the upstream
vortex appeared. This may be due to the fact that their experiments were per-
formed for smaller Reynolds number than our benchmark was defined. We suggest
further investigation of this behavior for lesser Reynolds numbers by means of
time-dependent simulations also.

Furhermore, for β → 1 the minimal λ growed linearly with We and we at-
tribute this behavior to the mentioned upstream instability of the flow.

Nevertheless, for β → 0 the situation was better in the terms of λ as there
was only one jump w. r. t. We in the minimal λ connected with the formation of
downstream vortices. And, after that, the value stayed approximatelly constant.

Oldroyd-B Combo 2 model

For the Oldroyd-B Combo 2 model we observed that transition of Jaumann-
Zaremba to upper convected derivative is essentail for the viscoelastic effects.
And that was not due the fact that the parameter from the derivative also appears
in the extra stress in the Cauchy stress tensor as there may be compensated by
the elastic modulus.

It can be seen from the computation of normal stress differences in a simple
shear flow (details are given at the beggining of the next chapter). Solving the
equation:

−a(DBκp(t) + Bκp(t)D) − (WBκp(t) − Bκp(t)W) + δ1(Bκp(t) − I) = O, (4.3)

given the velocity field v = (v(y), 0, 0)T , leads to the following:

Bκp(t) =

⎛⎜⎜⎜⎝
(a+1)(v′)2+δ2

1
(1−a)(1+a)(v′)2+δ2

1

av′δ2
1

(1−a)(1+a)(v′)2+δ2
1

0
av′δ2

1
(1−a)(1+a)(v′)2+δ2

1
1 + (a−1)a(v′)2

(1−a)(1+a)(v′)2+δ2
1

0
0 0 1

⎞⎟⎟⎟⎠ a=0=

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠ . (4.4)
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4.2 Axisymmetric problems with a free surface
Now we turn our interest to the more complex problems – axisymmetric vis-
coelastic problems with a free surface. Firstly, for such problem we need to
rewrite equations in the cylindrical coordinates. Secondly, we need to introduce
a method for flows with a free surface. We choose arbitrary Lagrangian-Eulerian
(ALE) method. Both components for our simulations of rod climbing effect will
be tested separately. For all simulations, we focus on classical Oldroyd-B model
and Giesekus model as these models exhibit non-zero normal stress differences in
a simple shear flow.

Presence of non-zero normal stress differences in a simple shear flow
for viscoelastic model (3.1)

We need to investigate constitutive relation for Cauchy stress tensor T for pre-
scribed velocity v = (v(y), 0, 0)T . We focus on special case of Oldroyd upper
convected derivative (a = 1) and β = 0. Notice that for the computation of
normal stress differences N1 := T11 − T22, N2 := T22 − T33, and N3 := T33 − T11,
it suffices to solve the stationary rate-type equation for the Bκp(t) :

T = −pI + 2νD +G(Bκp(t) − I),
−LBκp(t) − Bκp(t)L

T + δ1(Bκp(t) − I) + δ2(B2
κp(t)

− Bκp(t)) = O,
(4.5)

as the pressure part does not contribute to the differences and D has zero diagonal
entries. It leads to the non-linear system of 6 equations for 6 independent entries
of the Bκp(t) :

−

⎛⎜⎝B12v
′ B22v

′ B23v
′

0 0 0
0 0 0

⎞⎟⎠−

⎛⎜⎝B12v
′ 0 0

B22v
′ 0 0

B23v
′ 0 0

⎞⎟⎠+ δ1

⎛⎜⎝B11 − 1 B12 B13
B12 B22 − 1 B23
B13 B23 B33 − 1

⎞⎟⎠
+δ2(B2

κp(t)
− Bκp(t)) = O.

(4.6)

With general constants δ1, δ2 the Wolfram Mathematica 13 function Solve[]
gives 8 solutions with common results B13 = 0, B23 = 0, and B33 ∈ {1,−δ1/δ2}.
Other entries are very non-trivial. In the next section we use model with the
choice δ1 = δ2 =: δ, which simplifies the result as follows:

B11 = ±
√

2
√︂

−v′δ − δ3

v′ − v′
√
v′2 + δ2 ± δ2

√
v′2+δ2

v′√
v′

√
δ

,

B12 = −δ ±
√
v′2 + δ2

v′ ,

B22 = ±
√

2
√
δ
√︂

−v′δ − δ3

v′ − v′
√
v′2 + δ2 ± δ2

√
v′2+δ2

v′√
v′

√
v′2 + δ2

,

B33 = 1,

(4.7)

with 8 correct combinations of ±. However, we choose such solution where Bκp(t)

is positive definite. This leads to the non-zero N1, N2, N3 for a. e. choices of
δ1, δ2, v(y).
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Futhermore, we are interested in the classical Oldroyd-B model, i. e., δ1 ̸= 0,
δ2 = 0 which makes the system linear, and the solution is unique:

Bκp(t) =

⎛⎜⎜⎝
1 + 2 (v′)2

δ2
1

v′

δ1
0

v′

δ1
1 0

0 0 1

⎞⎟⎟⎠ =⇒ N1 = 2(v′)2

δ2
1
, N2 = 0, N3 = −2(v′)2

δ2
1
. (4.8)

The normal stress differences are non-zero as the velocity gradient in the simple
shear flow is non-zero by definition.

4.2.1 Axisymmetric shear flow
In this simulation, we consider a rotating cylinder immersed in the center of
cylindrical container filled with viscoelastic fluid and covered by a lid, see Figure
(4.27). For this simulation, we use dimensionless quantities and we set the outer
radius Rout = 0.75, the inner radius Rin = 0.25, the outer height Hout = 0.9,
the inner height Hin = 6/20Hout. We consider on all walls to be no-slip except
tangent component of the velocity on the inner cylinder, which is equivalent
with rotating cylinder with angular velocity ω = 0.2 on whose surface the liquid
adheres. Based on such setting, we assume flow to be axisymmetric and we solve
for steady solution. Hence we formulate problem in the cylindrical coordinates.

Figure 4.27: Sketch of the computational domain for the axisymmetric shear flow.

Cylindrical coordinates for axisymmetric problem

Let us denote the distance from the origin by r ≥ 0, the signed angle from the unit
vector in the direction of the positive x-axis by φ ∈ [0, 2π) and the z-axis remains
the same. We assume the most general axisymmetric setting, i.e., ∂A/∂φ = 0,
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hence the quantity (pressure, velocity and the left Cauchy-Green tensor) is in the
form A = A(r, z). Moreover, we assume the most general form of the velocity:

v(r, z) = (vr, vφ, vz)T . (4.9)

All we need is to convert gradients from cartesian coordinates to the polar coor-
dinates and use the axisymmetric assumption. Let us start with the gradient of
a scalar field:

∇p(r, z) = (∂rp, 0, ∂zp)T . (4.10)
The gradient of a vector field is given by:

∇v(r, z) =

⎛⎜⎝∂rvr −1
r
vφ ∂zvr

∂rvφ
1
r
vr ∂zvφ

∂rvz 0 ∂zvz

⎞⎟⎠ . (4.11)

Finally, the gradient of a tensor field is given by:

∇B(r, z) = ∂rB⊗er − 1
r

⎛⎜⎝ 2Brφ Bφφ −Brr Bφz

Bφφ −Brr −2Brφ −Brz

Bφz −Brz 0

⎞⎟⎠⊗eφ +∂zB⊗ez, (4.12)

where er, eφ, ez are basis vectors of cylindrical coordinates and

∂iB(r, z) =

⎛⎜⎝∂iBrr ∂iBrφ ∂iBrz

∂iBrφ ∂iBφφ ∂iBφz

∂iBrz ∂iBφz ∂iBzz

⎞⎟⎠ . (4.13)

One can also precompute the convective term:

v(r, z) · ∇B(r, z) =⎛⎜⎝ v · ∇Brr − 2vφ

r
Brφ v · ∇Brφ − vφ

r
(Bφφ −Brr) v · ∇Brz − vφ

r
Bφz

v · ∇Brφ − vφ

r
(Bφφ −Brr) v · ∇Bφφ + 2vφ

r
Brφ v · ∇Bφz + vφ

r
Brz

v · ∇Brz − vφ

r
Bφz v · ∇Bφz + vφ

r
Brz v · ∇Bzz

⎞⎟⎠ ,
(4.14)

where the gradients on the right hand side are axisymmetric gradients of a scalar
field.

Finally, notice that the integrals over 3D cylindrical domain Ω̂ for axisymmet-
ric integrands f(r, z) are simplified:∫︂

Ω̂
f(r, z) dV =

∫︂ 2π

0

∫︂
Ω
rf(r, z) drdφdz = 2π

∫︂
Ω
rf(r, z) drdz, (4.15)

where Ω is the 2D domain corresponding to the cylindrical symmetry of Ω̂. In-
tegrals over surfaces Γ̂ of the 3D cylindrical domain Ω̂ on the hyperplanes (r, φ)
and (φ, z) are simplified in the same manner:∫︂

Γ̂
f(r, z) dS(r, φ) =

∫︂ 2π

0

∫︂ R2

R1
rf(r, z) drdφ = 2π

∫︂ R2

R1
rf(r, z) dr, (4.16)

∫︂
Γ̂
f(r, z) dS(φ, z) =

∫︂ 2π

0

∫︂ Z2

Z1
rf(r, z) dφdz = 2π

∫︂ Z2

Z1
rf(r, z) dz. (4.17)
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Model and parameters

For this problem we work with dimensionless quantities and choose a combination
of Giesekus and Oldroyd-B model, see section 4.1.9. We set δ1 = δ2 = 1/We,
a = 1, β = 0 and λ = 0. Moreover, we set G = 0.1, Reynolds number Re :=
UL/ν = 5.0, where U is a characteristic velocity, L is a characteristic lenght and
we modify Cauchy-stress tensor from the set of equations (3.1) as follows:

T = − p

Re
I + 2

Re
D + 2aG((1 − β)(Bκp(t) − I) + β(B2

κp(t)
− Bκp(t))). (4.18)

Finally, We ∈ [0.01, 1.0] we choose.

Numerical results

We compute on the fine mesh that leads to the 212 966 degrees of freedom (DoFs).
Numerical results show the expected behavior, that for a sufficiently large We the
secondary flows change direction as the elastic forces due to the presence of non-
zero normal stress differences in a simple shear flow overcome viscous forces, see
Figure 4.28.

Observe that the direction of the secondary flow for large We above the inner
cylinder is in the direction of the positive z-axis. This indicates that these models
should be able to capture the Weissenberg (rod climbing) effect. For simplicity
we choose classical Oldroyd-B model for such simulation and we show that the
computations are possible in the section bellow.

(a) We= 0.01.
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(b) We= 0.4.

(c) We= 1.0.

Figure 4.28: Plots of the rotationaly extruded domain colored by the magnitude of
the 2D velocity v2D(r, z) = (vr(r, z), 0, vz(r, z)) with the stream arrows of uniform
size in every 10th node. Notice different direction of vortices for highly viscoelastic
flow. Direction changes around We = 0.4. Moreover, for such We there are four
vortices in the one slice.
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4.2.2 Pressing of the rectangular piece of viscoelastic ma-
terial

In this simulation, we consider rectangular piece of viscoelastic material, which is
infinitely long in the direction of z-axis. For this simulation, we use dimensionless
quantities and we set the lenght of the rectangle Len = 2 and the width of the
rectangle Wid = 1, see Figure 4.29. We consider boundary conditions on the
boundary part of the rectangle, namely bottom to be no-slip wall, sides to be
free-slip wall in y-direction and top to be a free surface, where we prescribe stress
Tyy = −0.5 on the line segment Γ of the length of Len/2 centered in the middle.
As we are interested purely in the classic Oldroyd-B model, we neglect the surface
tension. Based on such setting, the free surface is going to deform, hence we need
to compute on the time varying domain. This leads us to formulation of the
problem with the use of ALE method.

Figure 4.29: Sketch of the computational domain for the pressing of the viscoelas-
tic rectangle.

Lagrangian formulation

From the technical point of view, to change the formulation is a straightforward
task as we are using a robust finite element code (FEniCS) with a monolithic
non-linear solver. Before we derive ALE formulation, it is instructive to start
the derivation with a Lagrange formulation even though it is not suitable for our
problem since every vertex in the mesh is a material point making the mesh prone
to degenerate if the deformations contain vorticity. We follow the derivation by
Tůma [2014] and extend it for our viscoelastic model.

We introduce a new variable physical deformation u and we identify the
fixed computational mesh with the reference Lagrangian configuration κR (do-
main ΩX), see Figure (1.1), Section 1.1. Now we connect deformation mapping
with the physical deformation by setting:

χκR
: X −→ x := X + u. (4.19)
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From the definion of Lagrangian velocity (1.2), deformation gradient (1.4) we
compute:

V(t,X) = ∂u
∂t

(t,X), (4.20)

FκR
= I + ∇Xu, (4.21)

and we define J := detFκR
. Note, that we emphasize derivatives in the reference

configuration by index ∇X .
To transform the Eulerian weak formulation (3.14) into the Lagrangian, firstly,

we substitute all derivatives with respect to x to derivatives with respect to X.
Also, we need to transform the velocity gradient ∇v and the material time deriva-
tives:

∇XV = ∂V(t, χκR
(t,X))

∂X
= ∂v(t, x)

∂x

∂χκR

∂X
= (∇v)FκR

⇒ ∇v = (∇XV)F−1
κR
,

(4.22)

∂α

∂t

⃓⃓⃓⃓
X

= dα(χκR
(t,X), t)
dt

⃓⃓⃓⃓
X

= ∂α

∂t

⃓⃓⃓⃓
x

+ ∂α

∂x

∂χκR

∂t

⃓⃓⃓⃓
X

= α̇. (4.23)

Secondly, using integral substitution theorem we transform integrals over Ω
to the integrals over ΩX . Finally, we use Piola identity div X

(︂
(detFκR

)F−T
κR

)︂
= 0

in the balance of linear momentum:∫︂
Ω

divT · φ =
∫︂

ΩX

J(∇XT)F−T
κR

· φ =
∫︂

ΩX

div X(JTF−T
κR

) · φ (4.24)

Altogether we obtain: ∫︂
ΩX

Jtr
(︂
(∇XV)F−1

κR

)︂
ψ = 0,∫︂

ΩX

Jρ
∂V
∂t

· ϕ−
∫︂

ΩX

div X

(︂
JTF−T

κR

)︂
· ϕ−

∫︂
ΩX

Jρb · ϕ = 0,

T = −pI + 2νDX + aG
[︂
(1 − β)(Bκp(t) − I) + β(B2

κp(t)
− Bκp(t))

]︂
,∫︂

ΩX

J
δBκp(t)

δt
· A + J

[︂
δ1(Bκp(t) − I) + δ2(B2

κp(t)
− Bκp(t))

]︂
· A = 0,

(4.25)

where for this particular equations for convenience we redefine family of Gordon-
Schowalter derivatives to contain derivatives with respect to X by transformation
(4.22), i.e., 2DX =

[︂
(∇XV)F−1

κR
+ F−T

κR
(∇XV)T

]︂
and analogically WX .

ALE method

Let us now derive ALE formulation, following the derivation by Tůma [2014] and
extending it for our viscoelastic model. The difference between such formulation
and the Lagrangian above is clear. We introduce a new variable deformation
û of the mesh which is arbitrary in the domain with the restriction that the
deformation is physical on the boundary of the domain. Hence, we identify the
mesh with a new configuration κχ (domain Ωχ), see Figure (4.30), and we define
mapping χ̂ from κχ into κt by:

χ̂ : x̂ −→ x := x̂+ û. (4.26)
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Figure 4.30: Sketch of the reference configuration κR and the current configura-
tion κt and the ALE configuration κχ.

Now we prescribe mesh deformation û in such a way, that the material points
are only on the boundary ∂Ωχ and inside the domain we have an arbitrary but
unique solution. Notice, that if we choose solution inside the domain such that
the derivative of û is equal to the velocity v, then we obtain the Lagrangian
formulation. However, we want the solution inside the domain be as simple as
possible, hence we choose Laplace equation, and we obtain:

−∆x̂û = 0 in Ωχ,

∂û
∂t

= v on ∂Ωχ.
(4.27)

Moreover, we define the deformation gradient F̂ and its Jacobian Ĵ = det F̂ by:

F̂ := ∂χ̂

∂x̂
= I + ∇x̂û. (4.28)

Now, in the same manner as in case of the Lagrangian formulation, we trans-
form the Eulerian weak formulation (3.14) into the ALE. We substitute the ve-
locity gradient:

∇x̂v = ∂v(t, χ̂(t, x̂))
∂x̂

= ∂v(t, x)
∂x

∂χ̂

∂x̂
= (∇v)F̂ ⇒ ∇v = (∇x̂v)F̂−1

, (4.29)

and the material time derivative:

∂α

∂t

⃓⃓⃓⃓
x̂

= dα(χ̂(t, x̂), t)
dt

⃓⃓⃓⃓
x̂

= ∂α

∂t

⃓⃓⃓⃓
x

+ ∂α

∂x

∂χ̂

∂t

⃓⃓⃓⃓
x̂

= ∂α

∂t

⃓⃓⃓⃓
x

+ ∂û
∂t

· ∇α ⇒

α̇ = ∂α

∂t

⃓⃓⃓⃓
x̂

+
(︄

v − ∂û
∂t

)︄
· ∇α = ∂α

∂t

⃓⃓⃓⃓
x̂

+
[︄
F̂

−1
(︄

v − ∂û
∂t

)︄]︄
· ∇x̂α.

(4.30)

Finally, using the integral substitution theorem and consequence of Piola identity
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(4.24) we obtain: ∫︂
Ωχ

Ĵtr
(︃

(∇x̂v)F̂−1
)︃
ψ = 0,

∫︂
Ωχ

Ĵρ

[︄
∂v
∂t

+ (∇x̂v)
(︄
F̂

−1(v − ∂û
∂t

)
)︄]︄

· ϕ+
∫︂

Ωχ

ĴT̂F̂
−T

· ∇x̂ϕ

−
∫︂

∂Ωχ

(ĴT̂F̂−T )n̂ · ϕ−
∫︂

Ωχ

Ĵρb · ϕ = 0,

T̂ = −pI + 2νDx̂ + aG
[︂
(1 − β)(Bκp(t) − I) + β(B2

κp(t)
− Bκp(t))

]︂
,∫︂

Ωχ

Ĵ
δBκp(t)

δt

⃓⃓⃓⃓
x̂

· A + Ĵ
[︂
δ1(Bκp(t) − I) + δ2(B2

κp(t)
− Bκp(t))

]︂
· A = 0,

δBκp(t)

δt

⃓⃓⃓⃓
x̂

=
∂Bκp(t)

∂t

⃓⃓⃓⃓
x̂

+ (∇x̂Bκp(t))
(︄
F̂

−1(v − ∂û
∂t

)
)︄

−a(Dx̂Bκp(t) + Bκp(t)Dx̂) − (Wx̂Bκp(t) − Bκp(t)Wx̂),
(4.31)

where 2Dx̂ =
[︃
(∇x̂v)F̂−1 + F̂

−T (∇x̂v)T

]︃
and analogically Wx̂. This set of equa-

tions is closed by the formal weak formulation of equation (4.27):∫︂
Ωχ

∇x̂û · ∇x̂ŵ = 0. (4.32)

Nitsche method

As it is not possible to prescribe boundary condition ∂tû = v on ∂Ωχ directly in
FEniCS, we use the Nitsche method introduced in the work by Nitsche [1971].
We discretize the Laplace equation in time as follows:

−∆x̂ûn+1 = 0 in Ωχ,

ûn+1 − g(vn+1) = 0 on ∂Ωχ,
(4.33)

where g(vn+1) corresponds to the time discretization used. In the case of implicit
three-step θ-scheme, which is introduced in the very next section, it reads:

g(vnew) = ûold + vnewθ∆told. (4.34)
We test the Laplace equation by ŵ, integrate it over Ω, and use the Green’s
theorem. We integrate the Dirichlet boundary condition over ∂Ω, test it by
arbitrary test function ˜︁w, and we immediately choose ˜︁w = (∇ŵ)n, which is
the anti-symmetric Nitsche method with respect to the second term, which may
be found in the work by Burman and Hansbo [2012]. Finally, we sum these
equations together, and we add penatly term motivated by the last term. The
weak formulation for a discrete FE space without any Dirichlet condition in it
then changes as follows:∫︂

Ωχ

∇x̂ûn+1 · ∇x̂ŵ −
∫︂

∂Ωχ

(∇ûn+1)n̂ · ŵ +
∫︂

∂Ωχ

(∇ŵ)n̂ · (ûn+1 − g(vn+1))

+ βst

hmin

∫︂
∂Ωχ

(ûn+1 − g(vn+1)) · ŵ = 0,
(4.35)

where hmin is the minimal edge length on the ∂Ωχ and βst is the stabilization
coefficient. We choose βst = 1000.
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Implicit Glowinski three-step scheme (GL)

To preserve the volume throughout evolution in time while using ALE method,
BE scheme (3.16) turns out to be insufficient, hence one need to use more sophis-
ticated time scheme. It turns out that a good choice is the Implicit Glowinski
three-step scheme which is a special choice of the Implicit three-step θ-scheme for
θ = 1 − 1/

√
2:

1. un+θ(x) − un(x)
θ∆tn + f(un+θ(x)) = 0,

2. un+1−θ(x) = 1 − θ

θ
un+θ(x) + 2θ − 1

θ
un(x),

3. un+1(x) − un+1−θ(x)
θ∆tn + f(un+1(x)) = 0,

(4.36)

which consists of two implicit Euler steps and one explicit Euler step. This scheme
was proposed by Glowinski [2003], it is conditionally stable and almost a third
order scheme.

Model and parameters

For this problem we choose the classical Oldroyd-B model, see Section 4.1.8,
and we set δ1 = 1/We, δ2 = 0, a = 1, β = 0 and λ = 0. Moreover, we set
G = 0.41/We, ν = 0.59, and We = 10.

Numerical results

We compare BE scheme to the GL scheme with various time steps dt on a fine
mesh leading to the 203 408 DoFs. We press the material with the constant force
for t < 5.0 and at t = 5.0 we remove the force and let the material relax up
to time t < 100. At these two times for GL scheme with step dt = 0.1, we
plot the deformed domain, see Figure (4.31). Moreover, we plot the maximal
mesh deformation û over time for all schemes and chosen timesteps, see Figure
(4.32) which is the deformation of the top of the rectangle in its middle (point
(Len/2,Wid)) as can be seen from the previous figure. Finally, we plot ratio
of the current volume of the domain V (t) to the referential volume Vref at time
t = 0, see Figure (4.33). We compute this ratio as follows:

V (t)
Vref

=
∫︁

Ω Ĵ(t)∫︁
Ω Ĵ(0)

. (4.37)

Notice, that the GL scheme outpermorfs the BE scheme, hence we recommend
to use the GL scheme in the viscoelastic flows with a free surface, especially in
the next section about rod-climbing (Weissenberg) effect.
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(a) t = 5.

(b) t = 100.

Figure 4.31: Plots of the deformed domain colored by the magnitude of the mesh
deformation û in the comparison with domain at t = 0.
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Figure 4.32: Plot of the maximal mesh deformation û over time, i.e., so-called
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4.2.3 Rod climbing (Weissenberg) effect
In this section we simulate the well-known rod climbing effect reduced from 3D
to 2D by assumption on axisymmetry. We consider a cylindrical container filled
with a viscoelastic fluid with a free surface. As we are intersted in the classical
Oldroyd-B model itself, we neglect surface tension. In the center of the con-
tainer, cylindrical rod is immersed such that it is not touching the bottom of the
container. The rod is rotating along its z-axis with given rotations per minute
RPM .

The computational domain with its proportions is plotted in the Figure (4.34).
As the rod climbing effect is only slightly investigated and there are no clues for
the best setting for such effect, we estimate proportions based on the experiment
by MIT [2001]. Hence we set Router = 5 cm, Houter = 5 cm, Rinner = 1 cm,
Hinner = 3 cm. We estimate the RPM = 100 min-1 and we consider outer force
b as the usual homogenous gravity field g = (0, 0,−10) m·s-2.

Figure 4.34: Sketch of the computational domain for the rod climbing effect.

Model and parameters

As it was mentioned, for this problem we choose the classical Oldroyd-B model,
see Section 4.1.8, hence we set δ1 = 1/We =: 1/τ , δ2 = 0, a = 1, β = 0 and
λ = 0, where τ is the relaxation time. Moreover, we estimate fluid properties as
ρ = 1000 kg·m-3, G = 1.0 Pa, and τ = 1.0 s. Finally, we choose ν = 30 Pa·s
which is the value that was used in the MIT experiment.

Weak formulation

We combine techniques tested in the previous sections, i. e., formulation in the
cylindrical coordinates and the ALE method with the Nitsche method and the

56



GL time scheme. The key aspect of combination of the axisymmetric cylindrical
coordinates (reduced to 2D) and the ALE method is that the deformation of the
mesh in the φ-direction is setted to zero: ûφ = 0. This is due to the fact, that
the mesh would be virtually wrapped around the cylinder. And we may set it
to zero as the vital component of the ALE method is that only the outter shape
of the domain remains physical. Hence we consider the deformation in the form
û = (ûr, 0, ûz), and the weak formulation is the following:

∫︂
Ωχ

rĴtr
(︃

(∇x̂v)F̂−1
)︃
ψ = 0,

∫︂
Ωχ

rĴρ

[︄
∂v
∂t

+ (∇x̂v)
(︄
F̂

−1
(︄

v − ∂û
∂t

)︄)︄]︄
· ϕ+

∫︂
Ωχ

rĴT̂F̂
−T

· ∇x̂ϕ

−
∫︂

∂Ωχ

r(ĴT̂F̂−T )n̂ · ϕ−
∫︂

Ωχ

rĴρb · ϕ = 0,

T̂ = −pI + 2νDx̂ + aG
[︂
(1 − β)(Bκp(t) − I) + β(B2

κp(t)
− Bκp(t))

]︂
,∫︂

Ωχ

rĴ
δBκp(t)

δt

⃓⃓⃓⃓
x̂

· A + Ĵ
[︂
δ1(Bκp(t) − I) + δ2(B2

κp(t)
− Bκp(t))

]︂
· A = 0,

δBκp(t)

δt

⃓⃓⃓⃓
x̂

=
∂Bκp(t)

∂t

⃓⃓⃓⃓
x̂

+ (∇x̂Bκp(t))
(︄
F̂

−1
(︄

v − ∂û
∂t

)︄)︄
−a(Dx̂Bκp(t) + Bκp(t)Dx̂) − (Wx̂Bκp(t) − Bκp(t)Wx̂),∫︂

Ωχ

r∇x̂ûn+1 · ∇x̂ŵ −
∫︂

∂Ωχ

r(∇ûn+1)n̂ · ŵ +
∫︂

∂Ωχ

r(∇ŵ)n̂ · (ûn+1 − g(vn+1))

+ βst

hmin

∫︂
∂Ωχ

r(ûn+1 − g(vn+1)) · ŵ = 0.

(4.38)

Here all spatial derivatives are modified to be in the cylindrical polar coordinates,
see Section 4.2.1. Also, there is a possibility to prescribe the traction acting
on the surface of the domain (surface integral in the balance of momentum),
however, it is not used in this simulation. In the last equation, the term g(vn+1) =
ûn + vn+1θ∆tn, where θ = 1 − 1/

√
2 for the GL time scheme.

Comments on the extension of the model problem

Note that we may simplify the problem even further and set û = (0, 0, ûz) to
prevent the mesh from degenerating as it has a tendency to be contracted towards
the inner cylinder. However, the experiments suggest that the fluid climbing the
rod is prone to bulge in the r−direction when it reaches its maximal climbing
height. Also, the bulge is usually larger on the top. This cannot be described
with ûr = 0. Moreover, in our computation when the fluid reaches such state,
the mesh degenerates in both cases. Hence we recommend to use û = (ûr, 0, ûz)
with remeshig. However, remeshing is not implemented in our scripts.

Also note that the bulging effect might be supported by the surface tension,
which is not considered now. This also includes the contact angle boundary
condition on the interface of solid rod, viscoelastic fluid and air. We suggest this
topic as a future extension of this problem.
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Boundary conditions

Container: We assume the mantles of the container to be free-slip in the z-
direction. On the mantle we moreover assume no-slip in other directions. On the
bottom of the container we assume full no-slip.
Rod: On the surface of the rod we prescribe velocity in the φ-direction based
on RPM , i. e., vφ = 2πr · RPM/60. Moreover, on the mantle we assume zero
velocity in the r-direction as the centrifugal force would have to be enormous to
tear the liquid away from the rod. And we assume free-slip in the z-direction.
On the bottom of the rod we assume zero velocity in the z-direction as the fluid
can not penetrate the rod. Furthermore, we assume no-slip condition in the
r-direction on the bottom of the rod otherwise computation domain would get
destroyed.
Symmetry wall: This is the part of the boundary, that is not present in the
full 3D problem and appears with the reduction to 2D. We assume that no fluid
may cross this boundary in the r-direction as it would disrupt the assumption of
axisymmetry. We also conclude that this part of the boundary lies in the axis of
rotation of the rod, hence there is zero velocity in the φ-direction. Finally, we
assume free-slip in the z-direction.
Deformation û: For all no-slip (zero velocity) condition we prescribe zero de-
formation on the corresponding boundary parts. Note that there is no ûφ.

Numerical results

We compute on the mesh with 283 047 DoFs with quadruple red-green refinement
close the free surface, see Figure 4.36. Results of the numerical experiment are
shown in the Figure 4.37. Note that the rod is only postprocessing and is not
present during the computation (is cut out). We observe that after transitional
period t > 0.5 s fluid starts to climb the rod. The fluid reaches the maximal
climbing height at t = 5.0 s and begins to bulge. At t = 6.05 s bulging destroys
the mesh and simulation crashes. Note that GL time scheme conserved the volume
exceptionally well – up to 8 digits, see Figure 4.35.

Finally, on the same mesh we compute the very same setup for the Navier-
Stokes fluid, i. e., we set G = 0 Pa. Also we drop the rate-type equation for the
left Cauchy-Green tensor Bκp(t) , which reduces the number of DoFs to 210 783.
Moreover, to magnify the negative rod climbing effect, we set RPM = 1000 min-1.
We observe the expected behaviour, see Figure 4.38.
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Figure 4.36: Computational mesh for the rod climbing effect with quadruple
red-green refinement near the surface leading to the problem with 283 047 DoFs.
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(a) t = 0.01 s.

(b) t = 2.00 s.
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(c) t = 5.00 s.

(d) t = 6.05s.

Figure 4.37: Plots of the rotationaly extruded domain colored by the magnitude
of the mesh deformation û for the non-Newtonian fluid. The rotating rod was
add by postprocessing.
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(a) t = 0.01 s.

(b) t = 0.25 s.

(c) t = 0.50 s.

Figure 4.38: Plots of the rotationaly extruded domain colored by the magnitude
of the mesh deformation û for the Newtonian fluid. The rotating rod was add by
postprocessing.
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Epilog
In this work, we have followed the derivation of viscoelastic models in a consistent
thermodynamic framework. We have presented the numerical investigation of
the model with the stress diffusion, that was considered as a stabilization in
the benchmark of flow past the cylinder. For the stabilization, we have showed
that there exists a minimal value of the stabilization coefficient, for which the
equations can be solved.

We have chosen several special cases of the model that we investagated closely.
We have showed that generalized Giesekus models may be stabilized with the
stress diffusion well. Moreover, we have showed that the weak solution existence
theory could be expanded for the convex combination of energies (how the fluid
stores the energy) up to the ends of the interval, as the numerical results showed
smooth transition to these values.

For the generalized Oldroyd-B model, we have observed that the minimal
value of the stabilization coefficient grows linearly w. r. t. the Weissenberg number
We. This is connected to the fact, that there was growing (w. r. t. We) upstream
instability from the cylinder of the flow in the form of vortex. The vortex appeared
when the convex combinations of energies contained the quadratic energy, and
the growth was faster with the larger contribution of the quadratic energy to
the convex combination. Despite the surprising nature of this behavior, it was
already experimentally observed for the viscoelastic fluids.

Finally, we have investigated the classical Oldroyd-B model (no quadratic
energy) with a different objective derivatives. We have observed that for the
Jaumann-Zaremba derivative, there is no viscoelastic extra stress, and we have
showed it also analytically in the case of the simple shear flow. The viscoelastic
properties appeared with the transition from the Jaumann-Zaremba derivative to
the upper convected Oldroyd derivative.

In this work, further, we have presented a method for simulating viscoelas-
tic flows with specific non-Newtonian phenomena, including axisymmetric shear
flow, free surface flow, and the rod-climbing (Weissenberg) effect. By using the
arbitrary Lagrangian-Eulerian formulation, the non-symmetric stabilized Nitsche
method, and the Implicit Glowinski three-step time scheme, we have demon-
strated that our method is capable of producing computationally efficient and
accurate simulations of these complex flows.

However, our method is currently limited by its tendency to produce mesh
degeneration near the fluid surface, which can lead to blow-ups. We suggest that
future work could focus on incorporating remeshing techniques to address this
issue.

Furthermore, we have shown that our method is robust with respect to the
choice of fluid model, as we have successfully simulated Navier-Stokes fluid with
the expected results.

As an extension to the current model problem, we suggest adding surface
tension, contact boundary conditions for the fluid surface angle, and Navier slip
boundary conditions to better capture the behavior of viscoelastic fluids near
boundaries.

Finally, we propose that future research could investigate the maximal climb-
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ing height and shape of the fluid around a rotating rod, taking into account
factors such as the material coefficient, spatial dimensions, and rotation speed.
Such investigations could lead to a deeper understanding of the complex behavior
of viscoelastic fluids and their applications in various fields.
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A. Appendix

A.1 Description of the FEniCS scripts
Following scripts are published in the Charles University Digital Repository, and
they are available in public repository:
https://github.com/cachja/master-thesis:

Viscoelastic flow past the cylinder

MeshMaker.py: Generates meshes for symmetrical part of the classical bench-
mark flow past the cylinder.
Oldroyd-B Giesekus Combo MinLambda.py: Provides minimal λ∗ for the
benchmark of flow past the cylinder using derived vsicoelastic models with the
stress diffusion.
Oldroyd-B Giesekus Combo.py: Provides results for given λ for the bench-
mark of flow past the cylinder using derived viscoelastic models with the stress
diffusion.

Viscoelastic axisymmetric problems and with a free surface

AxisymmetricShearFlow.py: Solves the axisymmetric shear flow problem for
a viscoelastic fluid described by the classical Giesekus model.
ViscoelasticPush time-study.py: Solves pressing of a rectangular piece of
viscoelastic fluid with a free surface and gives data on volume preservation for
different time schemes ((GL) and (BE)) and timesteps.
RodClimbing.py: Solves Rod Climbing (Weissenberg) problem for the classical
Oldroyd-B model, but any convex combination of Oldroyd-B and Giesekus model
with the stress diffusion is possible.

A.2 An experimental proof on viscoelastic in-
stabilities upstream in front of the cylinder

Following figures are taken directly from an experimental papers and they demon-
strate viscoelastic flow instabilities in microfluidic flow past the cylinder upstream
in front of the cylinder.

In the work by Kenney et al. [2013] they show vortex forming upstream in
front of the cylinder w. r. t. growing Deborah number De (which is the ratio
of a solution’s relaxation time to residence time in the flow) with fixed elastic-
ity number El (which is the ratio of elastic to inertial stresses independent of
kinematic processes), see Figure A.2. Their definitions of dimensionless numbers
are following: De = τU/R, We = τU/(Wid − 2R), Re = ρU2R/µ, El = We/Re,
where τ is the relaxation time, µ is the dynamic viscocity, ρ is the density, R is
the radius of the cylinder in the channel, Wid is the width of the channel and U
is the characteristic velocity on the inflow.

In the work by Hopkins et al. [2022] they observe the same result in a slightly
different experimental setup (height of the channel in z-direction is many times
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larger). They also observe non-symmetric solution, see Figure A.1. They denoted
by BR the blockage ratio BR = 2R/Wid, where they denote by Wid the width
of the whole channel, and Wi = We.

Figure A.1: Time-averaged velocity fields measured for flow of the wormlike mi-
cellar solution past a BR = 0.5 cylinder at (a) Wi = 2.5, (b) Wi = 38, (c) Wi =
100, (d) Wi = 180, (e) Wi = 897. The velocity fields are normalized by the max-
imum velocity in each respective case. Upstream and downstream velocity fields
were measured in separate non-coincident experiments and are thus presented
separately. Courtesy of Hopkins et al. [2022].
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Figure A.2: Flow patterns for Newtonian control and El = 88 Boger fluid. Re
on the left applies to both the Newtonian and El = 88 flows; De on the right
only applies to El = 88. Values of Re and De are typical of experimental work
conducted. Streakline images represent typical results from a given flow condition.
All images here are shown at ×20 magnification, but each image was taken at
a frame rate necessary to accurately capture flow phenomenon. These frame
rates varied from 10 fps to as high as 2,000 fps. Arrow indicates flow direction.
Courtesy of Kenney et al. [2013].
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