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Introduction
The inverse limit is a categorical construction, more specifically, it is a type of
limit, for which the shape of the diagram is an inversely directed poset. The
question we will be asking is as follows: given a class of modules over some ring,
which modules can we get by inverse limits? For the dual construction called the
direct limit, new results were published in the article [8]. In this thesis, we will
see whether they (and some results from other sources) can be dualized in order
to better understand the structure of inverse limits.

In the first chapter, we will provide the definitions needed for the rest of the
thesis, as well as references for a reader who isn’t familiar with category theory.
In the second chapter, we will study the general properties of the class lim←−Cconsisting of inverse limits constructed from modules from some given class C.
Some of the results work in any category and are stated as such (therefore for
example generalizing the original statements about direct limits). In the third
chapter, we will focus on a specific problem, whether any inverse limit of products
of some module M is also an inverse limit of finite products of M . Compared to
the case of direct limits and direct sums, it is pretty easy to find a counterexample,
but as we will see in the fourth chapter, the answer to the question may depend
on the model of the set theory in which we are working. At the end, we will
provide a list of open problems related to the topic of the thesis.
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1. Basic definitions and notation
In this section, we introduce the basic definitions from category theory, because
the notation there isn’t as standardized as in other areas of mathematics we are
going to use. However, we assume the reader is familiar with the basic notions of
it (functors, limits, colimits, natural transformations, ...), as well as the notions
from module theory (direct sums and products, functors Hom and ⊗, ...) and
set theory (ordinals, cardinals). Our basic references for category theory are [7]
and [2], for module theory [2] and for set theory [6].

Definition 1.1. A category C consists of

• class Ob(C) of objects

• for each two objects c1, c2 ∈ Ob(C) a class HomC(c1, c2) of morphism (also
denoted Hom(c1, c2) if there is no ambiguity). The disjoint union of those
classes is denoted by Hom(C).

• for every c ∈ Ob(C) a morphism idc ∈ Hom(c, c) (the identity morphism)

• for each three c1, c2, c3 ∈ Ob(C) a function Hom(c2, c3) × Hom(c1, c2) →
Hom(c1, c3), (f, g)→ f ◦ g (composition of morphisms)

and has to satisfy the following:

• the composition of morphisms is associative, i.e. for every f ∈ Hom(c4, c3),
g ∈ Hom(c3, c2) and h ∈ Hom(c2, c1)) it holds that f ◦ (g ◦ h) = (f ◦ g) ◦ h

• for every c, c′ ∈ Ob(C), for every f ∈ Hom(c, c′) it holds that f ◦ idc = f
and for every g ∈ Hom(c′, c) it holds that idc ◦ g = g

A category is called locally small if for every c1, c2 ∈ Ob(C) the class Hom(c1, c2)
is a set. A category is called small if it is locally small and the class of objects is
a set.

Example 1.2. Some of the categories we will be using are:

• The category Set: Ob(Set) is the class of all sets, HomSet(U, V ) = {f :
U → V }, (composition of two morphisms is their composition as functions)

• For a ring R the categories Mod-R and R-Mod:

– Ob(Mod-R) is the class of all right R-modules, HomMod-R(M1, M2) is
the set of all right R-module homomorphisms M1 →M2

– Ob(R-Mod) is the class of all left R-modules, HomR-Mod(M1, M2) is
the set of all left R-module homomorphisms M1 →M2

• for a cardinal κ the discrete category of size κ with κ-many objects and no
morphisms except the identity morphisms

• For a poset P = (|P |,≤) a category also denoted P , whose objects are
elements of the poset and there is one morphism p1 → p2 if p1 ≤ p2 and no
morphism otherwise
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In the first three examples, the composition of the morphisms is their composition
as functions. In the last two examples, there is only one way how to define the
composition, as there is at most one morphism between any two objects.

Definition 1.3. Let C,D be categories. A functor F : C → D consists of

• a map Ob(C)→ Ob(D), c ↦→ F (c)

• for every c1, c2 ∈ C a map HomC(c1, c2)→ HomD(F (c1), F (c2)), f ↦→ F (f)

and has to satisfy the following:

• for every c ∈ Ob(C) it holds that F (idc) = idF (c)

• for every f ∈ Hom(c3, c2) and g ∈ Hom(c2, c1)) it holds that F (f ◦ g) =
F (f) ◦ F (g)

Definition 1.4. Let C,D be categories, F, G : C → D functors. A natural
transformation φ : F → G is a class of morphisms (φc)c∈Ob(C), such that φc ∈
Hom(F (c), G(c)) and for every f ∈ HomC(c1, c2) it holds that G(f) ◦ φc1 =
φc2 ◦ F (f).

Definition 1.5. Let C be a small category, D a category, F : C → D a functor.

• A cone over F is an object d ∈ Ob(D) together with a set of morphisms
(φc)c∈Ob(C), φc ∈ HomD(d, F (c)), such that for every f ∈ HomC(c1, c2)
it holds that F (f) ◦ φc1 = φc2. A limit of F is a cone (d, (φc)c∈Ob(C)),
such that for every cone (d′, (φ′

c)c∈ObC) over F there is a unique morphism
g ∈ HomD(d′, d) satisfying φ′

c = φc ◦ g for all c ∈ Ob(C).

• A cocone under F is an object d ∈ Ob(D) together with a set of morphisms
(φc)c∈Ob(C), φc ∈ HomD(F (c), d), such that for every f ∈ HomC(c1, c2) it
holds that φc1 = φc2 ◦F (f). A colimit of F is a cocone (d, (φc)c∈Ob(C)), such
that for every cocone (d′, (φ′

c)c∈ObC) under F there is a unique morphism
g ∈ HomD(d, d′) satisfying φ′

c = g ◦ φc for all c ∈ Ob(C).

We will often omit the morphisms and use the word limit/colimit just for the
object d.

Definition 1.6. A directed poset P is a poset, where for every two elements
p1, p2 ∈ P there exists an upper bound q ∈ P , q ≥ p1, p2. An inversely directed
poset P is a poset, where for every two elements p1, p2 ∈ P there exists a lower
bound q ∈ P , q ≤ p1, p2.

Definition 1.7. Let D be a complete category. A direct limit lim−→F is a colimit
of a functor F : P → D, where P is a directed poset considered as a category. An
inverse limit lim←−F is a limit of a functor F : P → D, where P is an inversely
directed poset. For a class C ⊆ Ob(D) we define classes

lim−→C := {lim−→F ; F : P → C a functor, P a directed poset}

lim←−C := {lim←−F ; F : P → C a functor, P an inversely directed poset}.
(By a functor P → C we mean a functor, which maps every object of P to an
object in C. The limit/colimit of a such functor is computed in category D.)
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Definition 1.8. Let C be a category. An opposite category Cop is a category with
Ob(Cop) := Ob(C), HomCop(c1, c2) := HomC(c2, c1) and f ◦Cop g := g ◦C f .

Definition 1.9. Let F : C → D be a functor. An opposite functor F op : Cop →
Dop is defined by F op(c) := F (c) for any c ∈ Ob(C) and F op(f) = F (f) for any
f ∈ Hom(C). Since this functor is determined by the same data as the functor
F , they are sometimes interchanged, but it is important to distinguish them for
example when we are talking about their limits/colimits because the limit of one
is the colimit of the other.

Theorem 1.10. (Maranda’s theorem) [7, Theorem V.2.2] Let D be a small
category, C be a category, F : D → C be a functor. Then the limit lim F is
isomorphic to the equalizer of f, g : ∏︁d∈Ob(D) F (D) → ∏︁

h:d1→d2∈Hom(D) F (d2),
where in the component h′ : d′

1 → d′
2

• f is the projection πd2 : ∏︁d∈Ob(D) F (D)→ F (d2)

• g is the composition h′ ◦ πd1

if those products and this equalizer exist.

Theorem 1.11. (Yoneda lemma) [7, Section III.2] Let D be a locally small
category, F : D → Set be a functor, D ∈ Ob(D). Then there is a bijection
between the natural transformations HomD(d,−) → F and F (d), which sends a
natural transformation φ to φd(idd) ∈ F (d).

Corollary 1.12. [7, Section III.2] Let D be a locally small category, d1, d2 ∈
Ob(D). Then the following are equivalent:

1. the objects d1 and d2 are isomorphic

2. the functors HomD(d1,−) and HomD(d2,−) are naturally isomorphic

3. the functors HomD(−, d1) and HomD(−, d2) are naturally isomorphic

Note. The book [7] only shows the equivalence 1. ⇐⇒ 2., the equivalence
1. ⇐⇒ 3. can be obtained by applying the same argument to the category Dop.

Theorem 1.13. (Commutativity of limits)[7, Corollary in IX.8] Let D1, D2
be small categories, C be a complete category, F : D1×D2 → C be a functor. We
can also view F as a functor from D1 to the category of functors D2 → C (or vice
versa). Then it holds that

lim
(d1,d2)∈D1×D2

F (d1, d2) ∼= lim
d2∈D2

lim
d1∈d1

F (d1, d2) ∼= lim
d1∈D1

lim
d2∈d2

F (d1, d2).
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2. General properties of inverse
limits
In this section, we will examine a few results from the article [8] and the book [5]
about direct limits and present their dualization for the inverse limits. Some of
them hold in any category, not just in categories of modules, therefore the proofs
are also alternative proofs for the theorems about direct limits (as direct limits
in category C are the inverse limits in the category Cop). Some of the results also
hold for any limits without the requirement on the shape of the diagram. We will
start by proving a lemma, which will allow us to write a limit as an inverse limit
of smaller limits:

Lemma 2.1. Let D be a complete category, D be a small category, F : D → D a
functor. Let P be the set of all subcategories of D ordered by opposite inclusion
(p ≥ p′ ⇐⇒ p ⊆ p′) and Q be some inversely directed subposet of P (considered
as a category), such that ⋃︁Q = D. Define a functor G : Q→ D as follows:

• For q ∈ Ob(Q), let G(q) = limi∈q F (i).

• For q1 ⊆ q2, the limit G(q2) as a cone over q2 is also a cone over q1, therefore
the universal property of G(q1) = limi∈q1 F (i) uniquely defines a morphism
G(q2)→ G(q1). Define G(q2 → q1) to be this morphism.

Then lim←−q∈Q
G(q) ∼= limi∈D F (i).

Proof. We will show this using the Corollary of the Yoneda lemma. From
the universal property of the limit, the functor Hom(−, lim←−q∈Q

G(q)) is (natu-
rally) isomorphic to {(fq)q∈Q ∈

∏︁
q∈Q Hom(−, G(q)); fq1 = G(q2 → q1) ◦ fq2}.

Each G(q) is by itself a limit, so we can decompose Hom(−, G(q)) ∼= {(fi)i∈q ∈∏︁
i∈q Hom(−, F (i)); fi1 = F (f) ◦ fi2∀f ∈ Homq(i2, i1)}. Because the morphisms

G(q2 → q1) are defined so that

G(q2) G(q1)

F (i) F (i)

πi

idF (i)

πi

commute for every i ∈ q1, it holds that Hom(−, lim←−q∈Q
G(q)) is isomorphic to the

subset of {(fi,q)i∈q∈Q ∈
∏︁

i∈q∈Q Hom(−, F (i))} given by the following conditions:

• ∀q ∈ Q, ∀i1, i2 ∈ q,∀f ∈ Homq(i2, i1) : fi1 = F (f) ◦ fi2

• ∀i ∈ q1 ⊆ q2 ∈ Q : fi,q1 = fi,q2

Since the poset Q is inversely directed, from the second condition it follows that
fi,q1 = fi,q2 holds for all q1, q2 containing i. Therefore Hom(−, limq∈Q G(q)) is
isomorphic to

{(fi) ∈
∏︂

i∈
⋃︁

q∈Q
Ob(q)

Hom(−, F (i)); fi2 = fi1 ◦ F (f)∀f ∈
⋃︂

q∈Q

Homq(i2, i1)}
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which under the assumption ⋃︁Q = D is isomorphic to Hom(−, limi∈D F (I)).

Lemma 2.2. [8, Lemma 1.1] Let R be a ring, C be a class of R-modules, C ′ its
closure under direct summands. Then lim−→C = lim−→C

′.

Lemma 2.3. Let R be a ring, C be a class of R-modules, C ′ its closure under
direct summands. Then lim←−C = lim←−C

′.

Proof. Let P be an inversely directed poset, F : P → C ′ a functor. For an object
p ∈ P fix a module Mp such that F (p)⊕Mp ∈ C. We will distinguish two cases:

• If P has a minimal element m, then lim←−F = F (m). In that case, we can
get it as an inverse limit of

. . .
π1−→ F (m)⊕Mm

π1−→ F (m)⊕Mm
π1−→ F (m)⊕Mm

• If P does not have a minimal element, define a functor G : P → C ′, such that
G(p) = Mp for any object p ∈ Ob(P ) and G(f) = 0 for any morphism f ∈ P
except identities. Then lim←−G = 0 and therefore lim←−F ∼= lim←−F ⊕ lim←−G ∼=
lim←−(F ⊕G).

In both cases, we got lim←−F as an inverse limit of some functor to C.

Since most of the interesting classes of modules are closed under finite direct
sums, it is important to know what this property implies for the classes lim−→C and
lim←−C.

Theorem 2.4. [8, Proposition 2.2] Let R be a ring, C be a class of R-modules.
If C is closed under finite direct sums, then lim−→C is closed under arbitrary direct
sums.

Theorem 2.5. Let D be a complete category, C be a class of objects in D closed
under finite products. Then lim←−C is closed under arbitrary products.

Proof. For i ∈ I, let Di be an inversely directed poset considered as a category
and Fi : Di → C be a functor, such that lim←−Fi = Ci. Define another poset Q with
the underlying set {q ⊆ I; |q| < ω} and the order defined by opposite inclusion
(this poset is clearly inversely directed, since q ∪ q′ ≤ q, q′ for any q, q′). On
objects, define a functor F : ∏︁i∈I Di × Q → C as F ((di)i∈I , q) = ∏︁

i∈q Fi(di) for
fq : q → q′. Define it on morphism by F ((fi)i∈I , fq) = ∏︁

i∈q2 Fi(fi) if fq : q1 → q2
Now using Theorem 1.13 about commutativity of limits

lim←−
(di)∈

∏︁
i∈I

Di

⎛⎝lim←−
q∈Q

F

⎞⎠ ∼= lim←−
q∈Q

⎛⎜⎝ lim←−
(di)∈

∏︁
i∈I

Di

F

⎞⎟⎠
The right-hand side is an inverse limit of finite products of elements of C. From
Lemma 2.1 it follows that lim←−q∈Q

F ((di), q) ∼=
∏︁

i∈I Fi(di), because product over
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I is a limit from a discrete category on I and F ((di), q) are limits over the finite
subcategories. Since products commute with limits, lim←−(di)∈

∏︁
i∈I

Di

∏︁
i∈I Fi(di) ∼=∏︁

i∈I lim←−(di)∈
∏︁

i∈I
Di

Fi(Di) ∼=
∏︁

i∈I Ci.

For the next theorem, the dual statement doesn’t hold. If we replace direct
sums with products, homomorphic images with submodules and direct limits
with inverse limits, the class of finitely dimensional vector spaces will work as
a counterexample, as we will see in Corollary 3.0.4.. Therefore we present a
statement to the dual, which works in any category and the requirements are a
bit weaker - closure under finite limits in the category Mod-R is equivalent to
closure under finite products and those submodules, for which the quotient is a
submodule of some module from C.

Theorem 2.6. [8, Lemma 2.5] Let R be a ring, C be a class of R-modules. If C
is closed under finite direct sums and homomorphic images, then lim−→C coincides
with the class of homomorphic images of direct sums of modules from C.

Theorem 2.7. Let D be a complete category, C be a class of objects in D closed
under finite limits. Then lim←−C coincides with the class of all limits of C.

Proof. Let D be a small category, F : D → C a functor. When we chose P in
Lemma 2.1 to be the set of all finitely generated subcategories of D, it follows
that lim F ∈ lim←−C.

Definition 2.8. Let R be a ring, C be a class of R-modules, M an R-module.
We say that M is

• C-filtered if there exists an ordinal α and na increasing chain of submodules
0 = M0 ⊆M1 ⊆ · · · ⊆Mα = M , such that

– Mβ+1/Mβ ∈ C.
– If β ≤ α is a limit ordinal, then Mβ = ⋃︁

γ<β Mγ

• C-cofiltered if there exists an ordinal α and a sequence M = Mα → · · · →
M1 →M0 = 0, such that

– the morphisms Mβ+1 →Mβ are epimorphisms with kernel in C
– If β ≤ α is a limit ordinal, then Mβ = lim←−γ<β

Mγ

Theorem 2.9. [8, Lemma 2.5] Let R be a ring, C be a class of R-modules closed
under finite direct sums and homomorphic images. Then lim−→C consists of C-
filtered modules.

Theorem 2.10. Let R be a ring, C be a class of objects in Mod-R closed under
submodules, D a small category, F : D → C a functor. Then lim F is a C-
cofiltered module.
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Proof. Let κ := |Ob(D)|, fix a bijection κ→ Ob(D), α ↦→ dα. Let Mα be the im-
age of the map lim F → ∏︁

β<α F (dβ), whose components are the limit morphisms.
The maps Mα →Mβ for β < α are the projections, therefore epimorphisms. The
kernel of the map Mβ+1 → Mβ contains only elements, which have all compo-
nents except the β component zero, therefore it is isomorphic to a submodule of
F (dβ) ∈ C. Obviously M0 = 0 and from the Maranda’s theorem it follows that
Mκ
∼= M and for a limit ordinal α it holds that Mα = lim←−β<α

Mβ.

Theorem 2.11. [5, Lemma 2.14] Let R be a ring and C a class of modules closed
under direct limits of well-ordered chains. Then C is closed under direct limits.

Theorem 2.12. Let D be a complete category, C a class of objects in D. Suppose
that C is closed under well-ordered inverse limits (inverse limits of functors D →
C where Dop is well-ordered). Then it is closed under arbitrary inverse limits.

Proof. Let D be an inversely directed poset of size κ ≥ ω (finite inversely
directed posets are not important, since they have a minimal element and the
limit of a functor from them is the value of the functor on the minimal element),
G : D → C be a functor with a limit C. We will prove the theorem by induction
on κ. Fix a bijection κ→ D, α ↦→ dα. For α ∈ κ, define inductively an inversely
directed subposet Dα ⊆ D:

• If α = 0, Dα = ∅.

• If α is limit, Dα = ⋃︁
β<α Dβ

• If α = γ +1 is succesor cardinal, define D̃α = Dγ∪{dγ}. This poset doesn’t
have to be inversely directed, therefore we will add elements to it until it is.
If α is finite, we only need to add one element e ∈ D, which is smaller than
all elements of D̃α. Then Dα = D̃α∪{e} is inversely directed. If α is infinite,
let P (D̃α) be the poset D̃α∪{eu,v; u, v ∈ D̃α}, where eu,v ∈ D is some lower
bound of u and v. The poset P (D̃α) doesn’t have to be inversely directed,
since there doesn’t have to be a common lower bound for the elements of
the form eu,v. However, we can repeat this construction to get P (P (D̃α))
and so on and then Dα = ⋃︁

n∈ω P n(D̃α) is inversely directed.

Note that if α ∈ κ is finite, Dα is also finite, and if α is infinite, |Dα| = |α|.
Let Gα be the restriction of G to Dα. From Lemma 2.1 it follows that lim←−G ∼=
lim←−α∈κop

lim←−Gα. By the induction hypothesis, lim←−Gα ∈ C and therefore C ∈ C.
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3. lim←− prod(M) and lim←−Prod(M)
For the direct limits, one can ask a question, whether for a given module M the
class of the direct limits of finite direct sums of M is the same as the class of the
direct limits of all direct sums of M . The question is easy for so-called self-small
modules (in particular for all finitely generated modules), where equality holds.
In general, there are descriptions of both of the classes, but they both use the
endomorphism ring of M , which is usually difficult to describe. More about that
in [8].

We can dualize this question and ask, whether for any given module M the
class of the inverse limits of finite products of M is the same as the class of
the inverse limits of all products of M . As in the case of the direct limit, we
can describe the classes using the endomorphism ring of M and there is a dual
property of modules (being strongly self-slender) which makes it easy to show
equality. However, finding such modules is tricky - whether a module has this
property can depend on the underlying set theory. And it turns out that we can
take even the simplest possible module - a field - as a counterexample.

Definition 3.1. Let R be a ring and M be an R-module. We define classes of
modules

add(M) = {direct summands of finite direct sums of M}

Add(M) = {direct summands of any direct sums of M}

prod(M) = {direct summands of finite direct products of M}

Prod(M) = {direct summands of any direct products of M}

Since we will study the classes of direct/inverse limit of those classes, by Lemma
2.2 and Lemma 2.3 it doesn’t matter whether we include the direct summands
or only the sums/products themselves. Also, since the finite direct sums are the
same as finite direct products, the first and the third class are the same, but it
makes more sense to consider them as direct sums in the case of direct limits and
as direct products in the case of inverse limits.

Theorem 3.2. [8, Theorem 3.3]
Let R be a ring and M be a right R-module. Then lim−→ add(M) = {F ⊗S

M ; F is a flat right S-module}, where S is the endomorphism ring of M .

Theorem 3.3. Let R be a ring and M be a right R-module. Then lim←− prod(M)
= {HomS(F, M); F is a flat left S-module}, where S is the endomorphism ring
of M .

Proof. Let D be an inversely directed poset, G : D → prod(M) a functor.
We will construct a contravariant functor H : D → prod(S)op, such that there
is a natural isomorphism G ∼= HomS(−, M) ◦ H. For d ∈ D, if G(d) = Mnd ,
let H(d) = Snd . For a morphism f ∈ HomD(d, d′), if G(f) is represented by a
matrix A ∈ Snd′ ×nd , let H(f) be represented by the matrix AT ∈ Snd×nd′ . The
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isomorphism φd : G(d) → HomS(H(d), M) is defined by (m1, . . . , mnd
) ↦→ (f :

ei ↦→ mi). On one hand, for f ∈ HomD(d, d′) it holds that

φd′ ◦G(f)(m1, . . . , mnd
) = φd(A · (m1, . . . , mnd

)T ) =

= h : ej ↦→
nd∑︂
i=1

Ajimi.

On the other hand,

HomS(H(f), M) ◦ φd(m1, . . . , mnd
) =

= HomS(H(f), M)(g : ej ↦→ mj) =

= (g : ej ↦→ mj) ◦H(f) = h : ej ↦→
nd∑︂
i=1

Ajimi.

Therefore the isomorphism is natural. Therefore

HomS( lim−→
d∈Dop

Hop(d), M) ∼= lim←−
d∈D

(HomS(H(d), M)) ∼= lim←−
d∈D

G.

According to Lazard’s theorem, direct limits of finitely generated free modules
are precisely the flat modules, therefore one inclusion holds. For any functor H
we can construct back the functor G := HomS(−, M) ◦H, therefore the theorem
is proved.

Corollary 3.4. Let F be a field considered as a module over itself. Then

lim←− prod(F ) ̸= lim←−Prod(F )

Proof. According to previous Theorem, F (ω) ̸∈ lim←− prod(F ), because EndF (F ) =
F and for any F -vector space V , Hom(V, F ) has finite dimension iff V has finite
dimension and uncountable dimension otherwise. On the other hand, F (ω) is a
direct summand of F ω, therefore F (ω) ∈ lim←−Prod(F ).

On the other hand, for a vector space with a countable dimension (and thus for
any infinite-dimensional vector space), the equality lim←− prod(M) = lim←−Prod(M)
holds.

Theorem 3.5. [1, Proposition 4.2] Let F be a field. Then lim←−F (ω) is the class
of all F -vector spaces.

Definition 3.6. Let R be a ring and M be an R-module. We say that M is:

• strongly slender if for any cardinal κ and any collection of R-modules Mα,
α ∈ κ the natural homomorphism⨁︂

α∈κ

Hom(Mα, M)→ Hom(
∏︂
α∈κ

Mα, M)

(fα)α∈κ ↦→
(︄

(mα)α∈κ ↦→
∑︂
α∈κ

fα(mα)
)︄

of abelian groups is an isomorphism (it is always injective, not necessarily
surjective).
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• slender if the above holds for κ = ω.

• strongly self-slender if the above holds (for any cardinal κ) in the case when
∀α ∈ κ : Mα = M .

• self-slender the above holds in the case when all Mα are isomorphic to M
and κ = ω.

• self-small if the natural homomorphism

Hom(M, M)(κ) → Hom(M, M (κ))

(fα)α∈κ ↦→ (g : m ↦→ (fα(m))α∈κ)
is an isomorphism for any cardinal κ.

Theorem 3.7. [8, Corollary 5.3.] Let R be a ring and M be a self-small R-
module. Then lim−→ add(M) = lim−→Add(M).

Theorem 3.8. Let R be a ring and M be a strongly self-slender right R-module.
Then lim←− prod(M) = lim←−Prod(M).

Proof. One inclusion is obvious. For the second one, suppose an inversely
directed poset P and a functor G : P → Prod(M). Since P is a set and not
a proper class, the values of G on objects have to lie in some set of the form
{Mα; α < κ} for some cardinal κ. Since elements of this set are direct summands
of Mκ, it holds that lim←−G ∈ lim←−{M

κ} = lim←− prod(Mκ). Denote S = EndR(M)
and Sκ = EndR(Mκ). From the previous theorem lim←−G ∼= HomSκ(F, Mκ) for
some flat left Sκ-module F . There is an isomorphism of right R-modules Mκ ∼=
HomS(S(κ), M). Since M is strongly self-slender, S(κ) also has the right Sκ-
module structure of Hom(M, Mκ) and this isomorphism Mκ ∼= HomS(S(κ), M)
is also an Sκ-module isomorphism. Using the Hom-tensor adjunction it then
follows that

lim←−G ∼= HomSκ(F, HomS(S(κ), M)) ∼= HomS(S(κ) ⊗Sκ F, M).

From the fact that S(κ) is a flat left S-module follows that S(κ) ⊗Sκ F is flat left
S-module and therefore HomS(S(κ) ⊗Sκ F, M) ∈ lim←− prod(M) by Theorem 3.3.

12



4. Strongly self-slender modules
and measurable cardinals
As we will see, the existence of strongly self-slender modules heavily depends on
the underlying set theory we are working in. From Gödel’s first incompleteness
theorem, we know that there are statements, that (assuming that the set theory
itself is consistent) cannot be proven or disproven. In other words, in some models
of set theory, the statement holds and in some other models, it doesn’t. Thus in
some areas of mathematics, we often add axioms to our basic set theory ZFC to
be able to further specify the model we are working with. From Gödel’s second
incompleteness theorem, we know we will never be able to prove the consistency of
ZFC and trying to prove the consistency of some theory with additional axioms
is therefore pointless. However, we can sometimes prove equiconsistency of some
theories, which means that one theory is consistent if and only if the other one
is. Probably the most famous example is the continuum hypothesis - if ZFC is
consistent, then ZFC +CH is also (the other implication is trivial) and the same
holds for ZFC +¬CH. In our case, we will add axioms about the existence/non-
existence of measurable cardinals:

Definition 4.1. Let S be a set. We say that U ⊆ P(S) is an ultrafilter, if

• u ∈ U, u ⊆ v =⇒ v ∈ U

• u1, u2 ∈ U =⇒ u1 ∩ u2 ∈ U

• u ∈ U ⇐⇒ S \ u ̸∈ U

For a cardinal κ, we say that the ultrafilter U is κ-complete if it is closed not only
under finite intersections but under all intersections of cardinality < κ (for any
V ⊆ U , |V | < κ it holds that ⋂︁V ∈ U).

Example 4.2. Let S be a set. A principal ultrafilter on S is an ultrafilter of
the form {u ⊆ S; s ∈ u} for some fixed element s ∈ S. A principal ultrafilter is
κ-complete for any cardinal κ.

Definition 4.3. Let κ be a cardinal. We say that κ is measurable if it is uncount-
able and there exists a non-principal κ-complete ultrafilter on κ. We say that κ
is ω-measurable if there exists a non-principal ω1-complete ultrafilter (i.e. closed
under finite and countable intersections).

Strongly self-slender modules in the case when
measurable cardinals don’t exist
Measurable cardinals are a kind of large cardinals, i.e. if a cardinal with this
property exists, it must be larger than any cardinal we usually work with. And
it doesn’t have to exist - ZFC + ”∄ measurable cardinal” is equiconsistent with
ZFC (the nonexistence of measurable cardinals follows for example from the
axiom V = L, see [6], Theorem 17.1). In that case, there are many strongly
self-slender modules:
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Theorem 4.4. [3, Theorem II.2.11, Corollary II.2.12] Let κ be a cardinal. Then
κ is ω-measurable iff there exists a measurable cardinal λ ≤ κ.
Theorem 4.5. [3, Corollary III.3.3] Let R be a ring, M a sledner R-module and
λ be a cardinal, which is not ω-measurable. Then for any collection of R-modules
Mα, α ∈ λ the homomorphism ⨁︁

α∈λ Hom(Mα, M) → Hom(∏︁α∈λ Mα, M) is an
isomorphism.

Note. In the book [3], the result is formulated a bit differently, namely, that for
any homomorphism f : ∏︁α∈λ Mα → M there exists J ⊆ λ, such that (∀j ∈ J :
mj = 0) =⇒ f

(︂
(mα)α∈λ

)︂
= 0. But that is exactly the same as saying that f is

in the image of the homomorphism ⨁︁
α∈λ Hom(Mα, M)→ Hom(∏︁α∈λ Mα, M).

Corollary 4.6. Let R be a ring, M slender R-module. If there are no measurable
cardinals, M is strongly slender (and therefore strongly self-slender).
Slender modules are not that rare, we present the following two theorems as a
source of examples:
Theorem 4.7. [3, Corollary III.2.4] Let R be a countable integral domain, which
is not a field. Then R as a module over itself is slender.
Theorem 4.8. [3, Corollary IX.2.4] An abelian group is slender if and only if it
doesn’t contain any of the following groups as a subgroup:

• Q

• Zω

• Zp (the cyclic group of order p)

• Jp (the group of p-adic integers)

Strongly self-slender modules in the case when
measurable cardinals exist
On the other hand, the consistency of ZFC + ”∃ measurable cardinal” is strictly
stronger than the consistency of ZFC alone, i.e. even if we assume that ZFC is
consistent, we cannot possibly prove that ZFC +”∃ measurable cardinal” is. The
reason is that a set of such large cardinality can be a model of ZFC, therefore
proving the consistency of ZFC (see [6], Theorem 12.12).
Theorem 4.9. [3, Theorem II.2.13] Let κ be a measurable cardinal. Then κ is
strongly inaccessible: it is regular and for any cardinal λ < κ it holds that 2λ < κ.
Lemma 4.10. Let U be a κ-complete ultrafilter on S, λ < κ and {Sα; α ∈ λ}
be any partition of S into λ many subsets. Then Sα ∈ U holds for exactly one
α ≤ λ.

Proof. Since Uα ∩ Uβ = ∅ ̸∈ U , there is at most one such α. On the other hand,
since ⋂︁α∈λ(S \ Sα) = ∅ ̸∈ U , there is a α such that S \ Sα ̸∈ U and therefore
Sα ∈ U .
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Lemma 4.11. [3, Chapter II, Exercise 12] Let κ be a measurable cardinal. Then
the number of κ-complete ultrafilters on κ is ≥ 2κ.

Proof. Let T be the set of partial functions {f : α → {0, 1}; α < κ}, from κ
being strongly inaccessible follows |T | = κ (T can be decomposed into κ-many
subsets Tα = {f : α → {0, 1}} of cardinality 2|α| < κ). We assume that there
is a non-principal κ-complete ultrafilter U on T . Fix an ordinal α < κ. De-
compose T into 2|α| + 1 subsets S0 and Sg for each g : α → {0, 1}} defined by
S0 = {f : β → {0, 1}; β < α}, Sg = {f : β → {0, 1}; β ≥ α, f |α = g}. Since
|S0| < κ, S0 ̸∈ U (S0 is a union of < κ-many singletons, which are not in U ,
otherwise U would be principal), therefore using the previous lemma Sf ∈ U for
exactly one f : α → {0, 1}. It is clear that for α < α′ < κ it will hold f ′|α = f ,
therefore the union FU of all such f ’s is a map κ → {0, 1}. Now for a function
h : κ → {0, 1} define a permutation πh on T by f ↦→ f + h|α (mod 2), where
α is the domain of f . Then πh(U) := {πh(u); u ∈ U} is clearly a κ-complete
non-principal ultrafilter with Fπh(U) = FU + h (mod 2). There are 2κ possibilities
for h and therefore at least 2κ non-principal κ-complete ultrafilters.

Theorem 4.12. [4, Corollary 2.4] Let κ be a measurable cardinal, R be a ring
and M be a non-zero R-module of cardinality less than κ. Then M is not strongly
self-slender.

Proof. We will show that |Hom(Mκ, M)| ≥ 2κ > κ ≥ |End(M)(κ)|. When we
view endomorphisms of M as subsets of M ×M , we get a bound End(M) ≤
2|M×M |, which together with the fact that κ is a strongly inaccessible implies
|End(M)| < κ and therefore |End(M)|(κ) ≤ κ. 2κ > κ is a well-known result
of Cantor holding for every cardinal. To show the first inequality, define for
a κ-complete ultrafilter U a homomorphism fU : Mκ → M by fU((mα)α∈κ) =
m ⇐⇒ {α; mα = m} ∈ U . For a nonzero M , those homomorphisms are different
for different ultrafilters.

Corollary 4.13. [4, Corollary 2.5] If there exists a proper class of measurable
cardinals, there is no non-zero strongly self-slender module.
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5. Open problems
Problem 1. In the previous chapter, we saw that if our set theory contains a
measurable cardinal κ, a module with cardinality < κ cannot be strongly self-
slender. Can it be proven that the equality lim←− prod(M) = lim←−Prod(M) doesn’t
hold, at least for example for M = Z? A possible candidate for a module in
lim←−Prod(M) \ lim←− prod(M) could be the kernel of the morphisms fU defined in
Theorem 4.12, as these morphisms are the reason why the module cannot be
strongly self-slender. Moreover, these morphisms are split (their one-sided in-
verse is the diagonal morphism m ↦→ (m)α∈κ, therefore Ker(fU) ∈ lim←−Prod(M).

Problem 2. As was argued in the proof of Theorem 3.8, for any module M it
holds that lim←−Prod(M) = ⋃︁

κ cardinal lim←−{M
κ}. What can be said about the non-

decreasing chain lim←−{M
κ}? For example, if M is slender, does it increase only

at measurable cardinals? Will this chain eventually stabilize for any module M
(at least if we assume that measurable cardinals don’t exist)?

Problem 3. Theorem 3.3 suggests that the question prod(M) = lim←−Prod(M)
could be easy when M is a module, such that End(M) is a right perfect ring, in
that case, flat modules over it are projective and therefore lim←− prod(M) contains
only direct summands of products of M . Can we, therefore, generalize the result
of Corollary 3.4 to all modules with right perfect End(M)?

Problem 4. As can be seen from Corollary 3.4, for the class C := prod(F ) of
finitely-dimensional vector spaces it holds that lim←−C ̸⊊ lim←− lim←−C. For a ring R
and a class C of R-modules and an ordinal α, we can define inductively classes
lim←−

α+1 C := lim←− lim←−
α C and lim←−

α := ⋃︁
β<α lim←−

β C for α limit. Does the chain lim←−
α C

need to stabilize for any class C? If so, can this point of stabilization be bounded
by some ordinal dependent on the ring R? Or even independent on the ring?

16



Bibliography
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